xref: /optee_os/mk/config.mk (revision 98ada65e9e6db4ac1b8c5bd3faa7a398ee410f7e)
1# Default configuration values for OP-TEE core (all platforms).
2#
3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk.
4# Some subsystem-specific defaults are not here but rather in */sub.mk.
5#
6# Configuration values may be assigned from multiple sources.
7# From higher to lower priority:
8#
9#   1. Make arguments ('make CFG_FOO=bar...')
10#   2. The file specified by $(CFG_OPTEE_CONFIG) (if defined)
11#   3. The environment ('CFG_FOO=bar make...')
12#   4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk
13#   5. This file
14#   6. Subsystem-specific makefiles (*/sub.mk)
15#
16# Actual values used during the build are output to $(out-dir)/conf.mk
17# (CFG_* variables only).
18
19# Cross-compiler prefix and suffix
20CROSS_COMPILE ?= arm-linux-gnueabihf-
21CROSS_COMPILE32 ?= $(CROSS_COMPILE)
22CROSS_COMPILE64 ?= aarch64-linux-gnu-
23COMPILER ?= gcc
24
25# For convenience
26ifdef CFLAGS
27CFLAGS32 ?= $(CFLAGS)
28CFLAGS64 ?= $(CFLAGS)
29endif
30
31# Compiler warning level.
32# Supported values: undefined, 1, 2 and 3. 3 gives more warnings.
33WARNS ?= 3
34
35# Path to the Python interpreter used by the build system.
36# This variable is set to the default python3 interpreter in the user's
37# path. But build environments that require more explicit control can
38# set the path to a specific interpreter through this variable.
39PYTHON3 ?= python3
40
41# Define DEBUG=1 to compile without optimization (forces -O0)
42# DEBUG=1
43ifeq ($(DEBUG),1)
44# For backwards compatibility
45$(call force,CFG_CC_OPT_LEVEL,0)
46$(call force,CFG_DEBUG_INFO,y)
47endif
48
49# CFG_CC_OPT_LEVEL sets compiler optimization level passed with -O directive.
50# Optimize for size by default, usually gives good performance too.
51CFG_CC_OPT_LEVEL ?= s
52
53# Enabling CFG_DEBUG_INFO makes debug information embedded in core.
54CFG_DEBUG_INFO ?= y
55
56# If y, enable debug features of the TEE core (assertions and lock checks
57# are enabled, panic and assert messages are more verbose, data and prefetch
58# aborts show a stack dump). When disabled, the NDEBUG directive is defined
59# so assertions are disabled.
60CFG_TEE_CORE_DEBUG ?= y
61
62# Log levels for the TEE core. Defines which core messages are displayed
63# on the secure console. Disabling core log (level set to 0) also disables
64# logs from the TAs.
65# 0: none
66# 1: error
67# 2: error + info
68# 3: error + info + debug
69# 4: error + info + debug + flow
70CFG_TEE_CORE_LOG_LEVEL ?= 2
71
72# TA log level
73# If user-mode library libutils.a is built with CFG_TEE_TA_LOG_LEVEL=0,
74# TA tracing is disabled regardless of the value of CFG_TEE_TA_LOG_LEVEL
75# when the TA is built.
76CFG_TEE_TA_LOG_LEVEL ?= 1
77
78# TA enablement
79# When defined to "y", TA traces are output according to
80# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all
81CFG_TEE_CORE_TA_TRACE ?= y
82
83# If y, enable the memory leak detection feature in the bget memory allocator.
84# When this feature is enabled, calling mdbg_check(1) will print a list of all
85# the currently allocated buffers and the location of the allocation (file and
86# line number).
87# Note: make sure the log level is high enough for the messages to show up on
88# the secure console! For instance:
89# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with:
90#   $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3
91# - To debug TEE core allocations: build OP-TEE with:
92#   $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3
93CFG_TEE_CORE_MALLOC_DEBUG ?= n
94CFG_TEE_TA_MALLOC_DEBUG ?= n
95# Prints an error message and dumps the stack on failed memory allocations
96# using malloc() and friends.
97CFG_CORE_DUMP_OOM ?= $(CFG_TEE_CORE_MALLOC_DEBUG)
98
99# Mask to select which messages are prefixed with long debugging information
100# (severity, core ID, thread ID, component name, function name, line number)
101# based on the message level. If BIT(level) is set, the long prefix is shown.
102# Otherwise a short prefix is used (severity and component name only).
103# Levels: 0=none 1=error 2=info 3=debug 4=flow
104CFG_MSG_LONG_PREFIX_MASK ?= 0x1a
105
106# PRNG configuration
107# If CFG_WITH_SOFTWARE_PRNG is enabled, crypto provider provided
108# software PRNG implementation is used.
109# Otherwise, you need to implement hw_get_random_bytes() for your platform
110CFG_WITH_SOFTWARE_PRNG ?= y
111
112# Number of threads
113CFG_NUM_THREADS ?= 2
114
115# API implementation version
116CFG_TEE_API_VERSION ?= GPD-1.1-dev
117
118# Implementation description (implementation-dependent)
119CFG_TEE_IMPL_DESCR ?= OPTEE
120
121# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal
122# World?
123CFG_OS_REV_REPORTS_GIT_SHA1 ?= y
124
125# The following values are not extracted from the "git describe" output because
126# we might be outside of a Git environment, or the tree may have been cloned
127# with limited depth not including any tag, so there is really no guarantee
128# that TEE_IMPL_VERSION contains the major and minor revision numbers.
129CFG_OPTEE_REVISION_MAJOR ?= 3
130CFG_OPTEE_REVISION_MINOR ?= 19
131CFG_OPTEE_REVISION_EXTRA ?=
132
133# Trusted OS implementation version
134TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || \
135		      echo Unknown_$(CFG_OPTEE_REVISION_MAJOR).$(CFG_OPTEE_REVISION_MINOR))$(CFG_OPTEE_REVISION_EXTRA)
136ifeq ($(CFG_OS_REV_REPORTS_GIT_SHA1),y)
137TEE_IMPL_GIT_SHA1 := 0x$(shell git rev-parse --short=8 HEAD 2>/dev/null || echo 0)
138else
139TEE_IMPL_GIT_SHA1 := 0x0
140endif
141
142# Trusted OS implementation manufacturer name
143CFG_TEE_MANUFACTURER ?= LINARO
144
145# Trusted firmware version
146CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF
147
148# Trusted OS implementation manufacturer name
149CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF
150
151# Rich Execution Environment (REE) file system support: normal world OS
152# provides the actual storage.
153# This is the default FS when enabled (i.e., the one used when
154# TEE_STORAGE_PRIVATE is passed to the trusted storage API)
155CFG_REE_FS ?= y
156
157# RPMB file system support
158CFG_RPMB_FS ?= n
159
160# Enable roll-back protection of REE file system using RPMB.
161# Roll-back protection only works if CFG_RPMB_FS = y.
162CFG_REE_FS_INTEGRITY_RPMB ?= $(CFG_RPMB_FS)
163$(eval $(call cfg-depends-all,CFG_REE_FS_INTEGRITY_RPMB,CFG_RPMB_FS))
164
165# Device identifier used when CFG_RPMB_FS = y.
166# The exact meaning of this value is platform-dependent. On Linux, the
167# tee-supplicant process will open /dev/mmcblk<id>rpmb
168CFG_RPMB_FS_DEV_ID ?= 0
169
170# This config variable determines the number of entries read in from RPMB at
171# once whenever a function traverses the RPMB FS. Increasing the default value
172# has the following consequences:
173# - More memory required on heap. A single FAT entry currently has a size of
174#   256 bytes.
175# - Potentially significant speed-ups for RPMB I/O. Depending on how many
176#   entries a function needs to traverse, the number of time-consuming RPMB
177#   read-in operations can be reduced.
178# Chosing a proper value is both platform- (available memory) and use-case-
179# dependent (potential number of FAT fs entries), so overwrite in platform
180# config files
181CFG_RPMB_FS_RD_ENTRIES ?= 8
182
183# Enables caching of FAT FS entries when set to a value greater than zero.
184# When enabled, the cache stores the first 'CFG_RPMB_FS_CACHE_ENTRIES' FAT FS
185# entries. The cache is populated when FAT FS entries are initially read in.
186# When traversing the FAT FS entries, we read from the cache instead of reading
187# in the entries from RPMB storage. Consequently, when a FAT FS entry is
188# written, the cache is updated. In scenarios where an estimate of the number
189# of FAT FS entries can be made, the cache may be specifically tailored to
190# store all entries. The caching can improve RPMB I/O at the cost
191# of additional memory.
192# Without caching, we temporarily require
193# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
194# while traversing the FAT FS (e.g. in read_fat).
195# For example 8*256 bytes = 2kB while in read_fat.
196# With caching, we constantly require up to
197# CFG_RPMB_FS_CACHE_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
198# depending on how many elements are in the cache, and additional temporary
199# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
200# in case the cache is too small to hold all elements when traversing.
201CFG_RPMB_FS_CACHE_ENTRIES ?= 0
202
203# Print RPMB data frames sent to and received from the RPMB device
204CFG_RPMB_FS_DEBUG_DATA ?= n
205
206# Clear RPMB content at cold boot
207CFG_RPMB_RESET_FAT ?= n
208
209# Use a hard coded RPMB key instead of deriving it from the platform HUK
210CFG_RPMB_TESTKEY ?= n
211
212# Enables RPMB key programming by the TEE, in case the RPMB partition has not
213# been configured yet.
214# !!! Security warning !!!
215# Do *NOT* enable this in product builds, as doing so would allow the TEE to
216# leak the RPMB key.
217# This option is useful in the following situations:
218# - Testing
219# - RPMB key provisioning in a controlled environment (factory setup)
220CFG_RPMB_WRITE_KEY ?= n
221
222_CFG_WITH_SECURE_STORAGE := $(call cfg-one-enabled,CFG_REE_FS CFG_RPMB_FS)
223
224# Signing key for OP-TEE TA's
225# When performing external HSM signing for TA's TA_SIGN_KEY can be set to dummy
226# key and then set TA_PUBLIC_KEY to match public key from the HSM.
227# TA_PUBLIC_KEY's public key will be embedded into OP-TEE OS.
228TA_SIGN_KEY ?= keys/default_ta.pem
229TA_PUBLIC_KEY ?= $(TA_SIGN_KEY)
230
231# Subkeys is a complement to the normal TA_SIGN_KEY where a subkey is used
232# to verify a TA instead. To sign a TA using a previously prepared subkey
233# two new options are added, TA_SUBKEY_ARGS and TA_SUBKEY_DEPS.  It is
234# typically used by assigning the following in the TA Makefile:
235# BINARY = <TA-uuid-string>
236# TA_SIGN_KEY = subkey.pem
237# TA_SUBKEY_ARGS = --subkey subkey.bin --name subkey_ta
238# TA_SUBKEY_DEPS = subkey.bin
239# See the documentation for more details on subkeys.
240
241# Include lib/libutils/isoc in the build? Most platforms need this, but some
242# may not because they obtain the isoc functions from elsewhere
243CFG_LIBUTILS_WITH_ISOC ?= y
244
245# Enables floating point support for user TAs
246# ARM32: EABI defines both a soft-float ABI and a hard-float ABI,
247#	 hard-float is basically a super set of soft-float. Hard-float
248#	 requires all the support routines provided for soft-float, but the
249#	 compiler may choose to optimize to not use some of them and use
250#	 the floating-point registers instead.
251# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or
252#	 nothing with ` -mgeneral-regs-only`)
253# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types
254CFG_TA_FLOAT_SUPPORT ?= y
255
256# Stack unwinding: print a stack dump to the console on core or TA abort, or
257# when a TA panics.
258# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be
259# unwound (not paged TAs, however).
260# Note that 32-bit ARM code needs unwind tables for this to work, so enabling
261# this option will increase the size of the 32-bit TEE binary by a few KB.
262# Similarly, TAs have to be compiled with -funwind-tables (default when the
263# option is set) otherwise they can't be unwound.
264# Warning: since the unwind sequence for user-mode (TA) code is implemented in
265# the privileged layer of OP-TEE, enabling this feature will weaken the
266# user/kernel isolation. Therefore it should be disabled in release builds.
267ifeq ($(CFG_TEE_CORE_DEBUG),y)
268CFG_UNWIND ?= y
269endif
270
271# Enable support for dynamically loaded user TAs
272CFG_WITH_USER_TA ?= y
273
274# Choosing the architecture(s) of user-mode libraries (used by TAs)
275#
276# Platforms may define a list of supported architectures for user-mode code
277# by setting $(supported-ta-targets). Valid values are "ta_arm32", "ta_arm64",
278# "ta_arm32 ta_arm64" and "ta_arm64 ta_arm32".
279# $(supported-ta-targets) defaults to "ta_arm32" when the TEE core is 32-bits,
280# and "ta_arm32 ta_arm64" when it is 64-bits (that is, when CFG_ARM64_core=y).
281# The first entry in $(supported-ta-targets) has a special role, see
282# CFG_USER_TA_TARGET_<ta-name> below.
283#
284# CFG_USER_TA_TARGETS may be defined to restrict $(supported-ta-targets) or
285# change the order of the values.
286#
287# The list of TA architectures is ultimately stored in $(ta-targets).
288
289# CFG_USER_TA_TARGET_<ta-name> (for example, CFG_USER_TA_TARGET_avb), if
290# defined, selects the unique TA architecture mode for building the in-tree TA
291# <ta-name>. Can be either ta_arm32 or ta_arm64.
292# By default, in-tree TAs are built using the first architecture specified in
293# $(ta-targets).
294
295# Address Space Layout Randomization for user-mode Trusted Applications
296#
297# When this flag is enabled, the ELF loader will introduce a random offset
298# when mapping the application in user space. ASLR makes the exploitation of
299# memory corruption vulnerabilities more difficult.
300CFG_TA_ASLR ?= y
301
302# How much ASLR may shift the base address (in pages). The base address is
303# randomly shifted by an integer number of pages comprised between these two
304# values. Bigger ranges are more secure because they make the addresses harder
305# to guess at the expense of using more memory for the page tables.
306CFG_TA_ASLR_MIN_OFFSET_PAGES ?= 0
307CFG_TA_ASLR_MAX_OFFSET_PAGES ?= 128
308
309# Address Space Layout Randomization for TEE Core
310#
311# When this flag is enabled, the early init code will introduce a random
312# offset when mapping TEE Core. ASLR makes the exploitation of memory
313# corruption vulnerabilities more difficult.
314CFG_CORE_ASLR ?= y
315
316# Load user TAs from the REE filesystem via tee-supplicant
317CFG_REE_FS_TA ?= y
318
319# Pre-authentication of TA binaries loaded from the REE filesystem
320#
321# - If CFG_REE_FS_TA_BUFFERED=y: load TA binary into a temporary buffer in the
322#   "Secure DDR" pool, check the signature, then process the file only if it is
323#   valid.
324# - If disabled: hash the binaries as they are being processed and verify the
325#   signature as a last step.
326CFG_REE_FS_TA_BUFFERED ?= n
327$(eval $(call cfg-depends-all,CFG_REE_FS_TA_BUFFERED,CFG_REE_FS_TA))
328
329# When CFG_REE_FS=y and CFG_RPMB_FS=y:
330# Allow secure storage in the REE FS to be entirely deleted without causing
331# anti-rollback errors. That is, rm /data/tee/dirf.db or rm -rf /data/tee (or
332# whatever path is configured in tee-supplicant as CFG_TEE_FS_PARENT_PATH)
333# can be used to reset the secure storage to a clean, empty state.
334# Typically used for testing only since it weakens storage security.
335CFG_REE_FS_ALLOW_RESET ?= n
336
337# Support for loading user TAs from a special section in the TEE binary.
338# Such TAs are available even before tee-supplicant is available (hence their
339# name), but note that many services exported to TAs may need tee-supplicant,
340# so early use is limited to a subset of the TEE Internal Core API (crypto...)
341# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF
342# file(s). For example:
343#   $ make ... \
344#     EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \
345#                     path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf"
346# Typical build steps:
347#   $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries,
348#                                    # headers, makefiles), ready to build TAs.
349#                                    # CFG_EARLY_TA=y is optional, it prevents
350#                                    # later library recompilations.
351#   <build some TAs>
352#   $ make EARLY_TA_PATHS=<paths>    # Build OP-TEE and embbed the TA(s)
353#
354# Another option is CFG_IN_TREE_EARLY_TAS which is used to point at
355# in-tree TAs. CFG_IN_TREE_EARLY_TAS is formatted as:
356# <name-of-ta>/<uuid>
357# for instance avb/023f8f1a-292a-432b-8fc4-de8471358067
358ifneq ($(EARLY_TA_PATHS)$(CFG_IN_TREE_EARLY_TAS),)
359$(call force,CFG_EARLY_TA,y)
360else
361CFG_EARLY_TA ?= n
362endif
363
364ifeq ($(CFG_EARLY_TA),y)
365$(call force,CFG_EMBEDDED_TS,y)
366endif
367
368ifneq ($(SP_PATHS),)
369$(call force,CFG_EMBEDDED_TS,y)
370else
371CFG_SECURE_PARTITION ?= n
372endif
373
374ifeq ($(CFG_SECURE_PARTITION),y)
375$(call force,CFG_EMBEDDED_TS,y)
376endif
377
378ifeq ($(CFG_EMBEDDED_TS),y)
379$(call force,CFG_ZLIB,y)
380endif
381
382# By default the early TAs are compressed in the TEE binary, it is possible to
383# not compress them with CFG_EARLY_TA_COMPRESS=n
384CFG_EARLY_TA_COMPRESS ?= y
385
386# Enable paging, requires SRAM, can't be enabled by default
387CFG_WITH_PAGER ?= n
388
389# Use the pager for user TAs
390CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER)
391
392# If paging of user TAs, that is, R/W paging default to enable paging of
393# TAG and IV in order to reduce heap usage.
394CFG_CORE_PAGE_TAG_AND_IV ?= $(CFG_PAGED_USER_TA)
395
396# Runtime lock dependency checker: ensures that a proper locking hierarchy is
397# used in the TEE core when acquiring and releasing mutexes. Any violation will
398# cause a panic as soon as the invalid locking condition is detected. If
399# CFG_UNWIND and CFG_LOCKDEP_RECORD_STACK are both enabled, the algorithm
400# records the call stacks when locks are taken, and prints them when a
401# potential deadlock is found.
402# Expect a significant performance impact when enabling this.
403CFG_LOCKDEP ?= n
404CFG_LOCKDEP_RECORD_STACK ?= y
405
406# BestFit algorithm in bget reduces the fragmentation of the heap when running
407# with the pager enabled or lockdep
408CFG_CORE_BGET_BESTFIT ?= $(call cfg-one-enabled, CFG_WITH_PAGER CFG_LOCKDEP)
409
410# Enable support for detected undefined behavior in C
411# Uses a lot of memory, can't be enabled by default
412CFG_CORE_SANITIZE_UNDEFINED ?= n
413
414# Enable Kernel Address sanitizer, has a huge performance impact, uses a
415# lot of memory and need platform specific adaptations, can't be enabled by
416# default
417CFG_CORE_SANITIZE_KADDRESS ?= n
418
419# Add stack guards before/after stacks and periodically check them
420CFG_WITH_STACK_CANARIES ?= y
421
422# Use compiler instrumentation to troubleshoot stack overflows.
423# When enabled, most C functions check the stack pointer against the current
424# stack limits on entry and panic immediately if it is out of range.
425CFG_CORE_DEBUG_CHECK_STACKS ?= n
426
427# Use when the default stack allocations are not sufficient.
428CFG_STACK_THREAD_EXTRA ?= 0
429CFG_STACK_TMP_EXTRA ?= 0
430
431# Device Tree support
432#
433# When CFG_DT is enabled core embeds the FDT library (libfdt) allowing
434# device tree blob (DTB) parsing from the core.
435#
436# When CFG_DT is enabled, the TEE _start function expects to find
437# the address of a DTB in register X2/R2 provided by the early boot stage
438# or value 0 if boot stage provides no DTB.
439#
440# When CFG_EXTERNAL_DT is enabled, the external device tree ABI is implemented
441# and the external device tree is expected to be used/modified. Its value
442# defaults to CFG_DT.
443#
444# When CFG_MAP_EXT_DT_SECURE is enabled the external device tree is expected to
445# be in the secure memory.
446#
447# When CFG_EMBED_DTB is enabled, CFG_EMBED_DTB_SOURCE_FILE shall define the
448# relative path of a DTS file located in core/arch/$(ARCH)/dts.
449# The DTS file is compiled into a DTB file which content is embedded in a
450# read-only section of the core.
451ifneq ($(strip $(CFG_EMBED_DTB_SOURCE_FILE)),)
452CFG_EMBED_DTB ?= y
453endif
454ifeq ($(CFG_EMBED_DTB),y)
455$(call force,CFG_DT,y)
456endif
457CFG_EMBED_DTB ?= n
458CFG_DT ?= n
459CFG_EXTERNAL_DT ?= $(CFG_DT)
460CFG_MAP_EXT_DT_SECURE ?= n
461ifeq ($(CFG_MAP_EXT_DT_SECURE),y)
462$(call force,CFG_DT,y)
463endif
464
465# Maximum size of the Device Tree Blob, has to be large enough to allow
466# editing of the supplied DTB.
467CFG_DTB_MAX_SIZE ?= 0x10000
468
469# Maximum size of the init info data passed to Secure Partitions.
470CFG_SP_INIT_INFO_MAX_SIZE ?= 0x1000
471
472# Device Tree Overlay support.
473# CFG_EXTERNAL_DTB_OVERLAY allows to append a DTB overlay into an existing
474# external DTB. The overlay is created when no valid DTB overlay is found.
475# CFG_GENERATE_DTB_OVERLAY allows to create a DTB overlay at external
476# DTB location.
477# External DTB location (physical address) is provided either by boot
478# argument arg2 or from CFG_DT_ADDR if defined.
479# A subsequent boot stage can then merge the generated overlay DTB into a main
480# DTB using the standard fdt_overlay_apply() method.
481CFG_EXTERNAL_DTB_OVERLAY ?= n
482CFG_GENERATE_DTB_OVERLAY ?= n
483
484ifeq (y-y,$(CFG_EXTERNAL_DTB_OVERLAY)-$(CFG_GENERATE_DTB_OVERLAY))
485$(error CFG_EXTERNAL_DTB_OVERLAY and CFG_GENERATE_DTB_OVERLAY are exclusive)
486endif
487_CFG_USE_DTB_OVERLAY := $(call cfg-one-enabled,CFG_EXTERNAL_DTB_OVERLAY \
488			  CFG_GENERATE_DTB_OVERLAY)
489
490# All embedded tests are supposed to be disabled by default, this flag
491# is used to control the default value of all other embedded tests
492CFG_ENABLE_EMBEDDED_TESTS ?= n
493
494# Enable core self tests and related pseudo TAs
495CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= $(CFG_ENABLE_EMBEDDED_TESTS)
496
497# Compiles bget_main_test() to be called from a test TA
498CFG_TA_BGET_TEST ?= $(CFG_ENABLE_EMBEDDED_TESTS)
499
500# CFG_DT_DRIVER_EMBEDDED_TEST when enabled embedb DT driver probing tests.
501# This also requires embeddeding a DTB with expected content.
502# Defautl disable CFG_DRIVERS_CLK_EARLY_PROBE to probe clocks as other drivers.
503# A probe deferral test mandates CFG_DRIVERS_DT_RECURSIVE_PROBE=n.
504CFG_DT_DRIVER_EMBEDDED_TEST ?= n
505ifeq ($(CFG_DT_DRIVER_EMBEDDED_TEST),y)
506CFG_DRIVERS_CLK ?= y
507CFG_DRIVERS_RSTCTRL ?= y
508CFG_DRIVERS_CLK_EARLY_PROBE ?= n
509$(call force,CFG_DRIVERS_DT_RECURSIVE_PROBE,n,Mandated by CFG_DT_DRIVER_EMBEDDED_TEST)
510endif
511
512# CFG_DRIVERS_DT_RECURSIVE_PROBE when enabled forces a recursive subnode
513# parsing in the embedded DTB for driver probing. The alternative is
514# an exploration based on compatible drivers found. It is default disabled.
515CFG_DRIVERS_DT_RECURSIVE_PROBE ?= n
516
517# This option enables OP-TEE to respond to SMP boot request: the Rich OS
518# issues this to request OP-TEE to release secondaries cores out of reset,
519# with specific core number and non-secure entry address.
520CFG_BOOT_SECONDARY_REQUEST ?= n
521
522# Default heap size for Core, 64 kB
523CFG_CORE_HEAP_SIZE ?= 65536
524
525# Default size of nexus heap. 16 kB. Used only if CFG_VIRTUALIZATION
526# is enabled
527CFG_CORE_NEX_HEAP_SIZE ?= 16384
528
529# TA profiling.
530# When this option is enabled, OP-TEE can execute Trusted Applications
531# instrumented with GCC's -pg flag and will output profiling information
532# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in
533# tee-supplicant)
534# Note: this does not work well with shared libraries at the moment for a
535# couple of reasons:
536# 1. The profiling code assumes a unique executable section in the TA VA space.
537# 2. The code used to detect at run time if the TA is intrumented assumes that
538# the TA is linked statically.
539CFG_TA_GPROF_SUPPORT ?= n
540
541# TA function tracing.
542# When this option is enabled, OP-TEE can execute Trusted Applications
543# instrumented with GCC's -pg flag and will output function tracing
544# information in ftrace.out format to /tmp/ftrace-<ta_uuid>.out (path is
545# defined in tee-supplicant)
546CFG_FTRACE_SUPPORT ?= n
547
548# How to make room when the function tracing buffer is full?
549# 'shift': shift the previously stored data by the amount needed in order
550#    to always keep the latest logs (slower, especially with big buffer sizes)
551# 'wrap': discard the previous data and start at the beginning of the buffer
552#    again (fast, but can result in a mostly empty buffer)
553# 'stop': stop logging new data
554CFG_FTRACE_BUF_WHEN_FULL ?= shift
555$(call cfg-check-value,FTRACE_BUF_WHEN_FULL,shift stop wrap)
556$(call force,_CFG_FTRACE_BUF_WHEN_FULL_$(CFG_FTRACE_BUF_WHEN_FULL),y)
557
558# Function tracing: unit to be used when displaying durations
559#  0: always display durations in microseconds
560# >0: if duration is greater or equal to the specified value (in microseconds),
561#     display it in milliseconds
562CFG_FTRACE_US_MS ?= 10000
563
564# Core syscall function tracing.
565# When this option is enabled, OP-TEE core is instrumented with GCC's
566# -pg flag and will output syscall function graph in user TA ftrace
567# buffer
568CFG_SYSCALL_FTRACE ?= n
569$(call cfg-depends-all,CFG_SYSCALL_FTRACE,CFG_FTRACE_SUPPORT)
570
571# Enable to compile user TA libraries with profiling (-pg).
572# Depends on CFG_TA_GPROF_SUPPORT or CFG_FTRACE_SUPPORT.
573CFG_ULIBS_MCOUNT ?= n
574# Profiling/tracing of syscall wrapper (utee_*)
575CFG_SYSCALL_WRAPPERS_MCOUNT ?= $(CFG_ULIBS_MCOUNT)
576
577ifeq (y,$(filter y,$(CFG_ULIBS_MCOUNT) $(CFG_SYSCALL_WRAPPERS_MCOUNT)))
578ifeq (,$(filter y,$(CFG_TA_GPROF_SUPPORT) $(CFG_FTRACE_SUPPORT)))
579$(error Cannot instrument user libraries if user mode profiling is disabled)
580endif
581endif
582
583# Build libutee, libutils, libmbedtls as shared libraries.
584# - Static libraries are still generated when this is enabled, but TAs will use
585# the shared libraries unless explicitly linked with the -static flag.
586# - Shared libraries are made of two files: for example, libutee is
587#   libutee.so and 527f1a47-b92c-4a74-95bd-72f19f4a6f74.ta. The '.so' file
588#   is a totally standard shared object, and should be used to link against.
589#   The '.ta' file is a signed version of the '.so' and should be installed
590#   in the same way as TAs so that they can be found at runtime.
591CFG_ULIBS_SHARED ?= n
592
593ifeq (y-y,$(CFG_TA_GPROF_SUPPORT)-$(CFG_ULIBS_SHARED))
594$(error CFG_TA_GPROF_SUPPORT and CFG_ULIBS_SHARED are currently incompatible)
595endif
596
597# CFG_GP_SOCKETS
598# Enable Global Platform Sockets support
599CFG_GP_SOCKETS ?= y
600
601# Enable Secure Data Path support in OP-TEE core (TA may be invoked with
602# invocation parameters referring to specific secure memories).
603CFG_SECURE_DATA_PATH ?= n
604
605# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y
606# TA binaries are stored encrypted in the REE FS and are protected by
607# metadata in secure storage.
608CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA)
609$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA))
610
611# Enable the pseudo TA that managages TA storage in secure storage
612CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA)
613$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA))
614
615# Enable the pseudo TA for misc. auxilary services, extending existing
616# GlobalPlatform TEE Internal Core API (for example, re-seeding RNG entropy
617# pool etc...)
618CFG_SYSTEM_PTA ?= $(CFG_WITH_USER_TA)
619$(eval $(call cfg-depends-all,CFG_SYSTEM_PTA,CFG_WITH_USER_TA))
620
621# Enable the pseudo TA for enumeration of TEE based devices for the normal
622# world OS.
623CFG_DEVICE_ENUM_PTA ?= y
624
625# The attestation pseudo TA provides an interface to request measurements of
626# a TA or the TEE binary.
627CFG_ATTESTATION_PTA ?= n
628$(eval $(call cfg-depends-all,CFG_ATTESTATION_PTA,_CFG_WITH_SECURE_STORAGE))
629
630# RSA key size (in bits) for the attestation PTA. Must be at least 528 given
631# other algorithm parameters (RSA PSS with SHA-256 and 32-byte salt), but
632# note that such a low value is not secure.
633# See https://tools.ietf.org/html/rfc8017#section-8.1.1 and
634# https://tools.ietf.org/html/rfc8017#section-9.1.1
635#  emLen >= hlen + sLen + 2 = 32 + 32 + 2 = 66
636#  emLen = ceil((modBits - 1) / 8) => emLen is the key size in bytes
637CFG_ATTESTATION_PTA_KEY_SIZE ?= 3072
638
639# Define the number of cores per cluster used in calculating core position.
640# The cluster number is shifted by this value and added to the core ID,
641# so its value represents log2(cores/cluster).
642# Default is 2**(2) = 4 cores per cluster.
643CFG_CORE_CLUSTER_SHIFT ?= 2
644
645# Define the number of threads per core used in calculating processing
646# element's position. The core number is shifted by this value and added to
647# the thread ID, so its value represents log2(threads/core).
648# Default is 2**(0) = 1 threads per core.
649CFG_CORE_THREAD_SHIFT ?= 0
650
651# Enable support for dynamic shared memory (shared memory anywhere in
652# non-secure memory).
653CFG_CORE_DYN_SHM ?= y
654
655# Enable support for reserved shared memory (shared memory in a carved out
656# memory area).
657CFG_CORE_RESERVED_SHM ?= y
658
659# Enables support for larger physical addresses, that is, it will define
660# paddr_t as a 64-bit type.
661CFG_CORE_LARGE_PHYS_ADDR ?= n
662
663# Define the maximum size, in bits, for big numbers in the Internal Core API
664# Arithmetical functions. This does *not* influence the key size that may be
665# manipulated through the Cryptographic API.
666# Set this to a lower value to reduce the TA memory footprint.
667CFG_TA_BIGNUM_MAX_BITS ?= 2048
668
669# Define the maximum size, in bits, for big numbers in the TEE core (privileged
670# layer).
671# This value is an upper limit for the key size in any cryptographic algorithm
672# implemented by the TEE core.
673# Set this to a lower value to reduce the memory footprint.
674CFG_CORE_BIGNUM_MAX_BITS ?= 4096
675
676# Not used since libmpa was removed. Force the values to catch build scripts
677# that would set = n.
678$(call force,CFG_TA_MBEDTLS_MPI,y)
679$(call force,CFG_TA_MBEDTLS,y)
680
681# Compile the TA library mbedTLS with self test functions, the functions
682# need to be called to test anything
683CFG_TA_MBEDTLS_SELF_TEST ?= y
684
685# By default use tomcrypt as the main crypto lib providing an implementation
686# for the API in <crypto/crypto.h>
687# CFG_CRYPTOLIB_NAME is used as libname and
688# CFG_CRYPTOLIB_DIR is used as libdir when compiling the library
689#
690# It's also possible to configure to use mbedtls instead of tomcrypt.
691# Then the variables should be assigned as "CFG_CRYPTOLIB_NAME=mbedtls" and
692# "CFG_CRYPTOLIB_DIR=lib/libmbedtls" respectively.
693CFG_CRYPTOLIB_NAME ?= tomcrypt
694CFG_CRYPTOLIB_DIR ?= core/lib/libtomcrypt
695
696# Not used since libmpa was removed. Force the value to catch build scripts
697# that would set = n.
698$(call force,CFG_CORE_MBEDTLS_MPI,y)
699
700# Enable virtualization support. OP-TEE will not work without compatible
701# hypervisor if this option is enabled.
702CFG_VIRTUALIZATION ?= n
703
704ifeq ($(CFG_VIRTUALIZATION),y)
705$(call force,CFG_CORE_RODATA_NOEXEC,y)
706$(call force,CFG_CORE_RWDATA_NOEXEC,y)
707
708# Default number of virtual guests
709CFG_VIRT_GUEST_COUNT ?= 2
710endif
711
712# Enables backwards compatible derivation of RPMB and SSK keys
713CFG_CORE_HUK_SUBKEY_COMPAT ?= y
714
715# Use SoC specific tee_otp_get_die_id() implementation for SSK key generation.
716# This option depends on CFG_CORE_HUK_SUBKEY_COMPAT=y.
717CFG_CORE_HUK_SUBKEY_COMPAT_USE_OTP_DIE_ID ?= n
718
719# Compress and encode conf.mk into the TEE core, and show the encoded string on
720# boot (with severity TRACE_INFO).
721CFG_SHOW_CONF_ON_BOOT ?= n
722
723# Enables support for passing a TPM Event Log stored in secure memory
724# to a TA or FF-A SP, so a TPM Service could use it to extend any measurement
725# taken before the service was up and running.
726CFG_CORE_TPM_EVENT_LOG ?= n
727
728# When enabled, CFG_SCMI_MSG_DRIVERS embeds SCMI message drivers in the core.
729# Refer to the supported SCMI features embedded upon CFG_SCMI_MSG_*
730#
731# CFG_SCMI_MSG_CLOCK embeds SCMI clock protocol support.
732# CFG_SCMI_MSG_RESET_DOMAIN embeds SCMI reset domain protocol support.
733# CFG_SCMI_MSG_SMT embeds a SMT header in shared device memory buffers
734# CFG_SCMI_MSG_VOLTAGE_DOMAIN embeds SCMI voltage domain protocol support.
735# CFG_SCMI_MSG_SMT_FASTCALL_ENTRY embeds fastcall SMC entry with SMT memory
736# CFG_SCMI_MSG_SMT_INTERRUPT_ENTRY embeds interrupt entry with SMT memory
737# CFG_SCMI_MSG_SMT_THREAD_ENTRY embeds threaded entry with SMT memory
738# CFG_SCMI_MSG_SHM_MSG embeds a MSG header in cached shared memory buffer
739CFG_SCMI_MSG_DRIVERS ?= n
740ifeq ($(CFG_SCMI_MSG_DRIVERS),y)
741CFG_SCMI_MSG_CLOCK ?= n
742CFG_SCMI_MSG_RESET_DOMAIN ?= n
743CFG_SCMI_MSG_SHM_MSG ?= n
744CFG_SCMI_MSG_SMT ?= n
745CFG_SCMI_MSG_SMT_FASTCALL_ENTRY ?= n
746CFG_SCMI_MSG_SMT_INTERRUPT_ENTRY ?= n
747CFG_SCMI_MSG_SMT_THREAD_ENTRY ?= n
748CFG_SCMI_MSG_THREAD_ENTRY ?= n
749CFG_SCMI_MSG_VOLTAGE_DOMAIN ?= n
750$(eval $(call cfg-depends-all,CFG_SCMI_MSG_SMT_FASTCALL_ENTRY,CFG_SCMI_MSG_SMT))
751$(eval $(call cfg-depends-all,CFG_SCMI_MSG_SMT_INTERRUPT_ENTRY,CFG_SCMI_MSG_SMT))
752$(eval $(call cfg-depends-one,CFG_SCMI_MSG_SMT_THREAD_ENTRY,CFG_SCMI_MSG_SMT CFG_SCMI_MSG_SHM_MSG))
753endif
754
755# Enable SCMI PTA interface for REE SCMI agents
756CFG_SCMI_PTA ?= n
757
758ifneq ($(CFG_STMM_PATH),)
759$(call force,CFG_WITH_STMM_SP,y)
760else
761CFG_WITH_STMM_SP ?= n
762endif
763ifeq ($(CFG_WITH_STMM_SP),y)
764$(call force,CFG_ZLIB,y)
765endif
766
767# When enabled checks that buffers passed to the GP Internal Core API
768# comply with the rules added as annotations as part of the definition of
769# the API. For example preventing buffers in non-secure shared memory when
770# not allowed.
771CFG_TA_STRICT_ANNOTATION_CHECKS ?= y
772
773# When enabled accepts the DES key sizes excluding parity bits as in
774# the GP Internal API Specification v1.0
775CFG_COMPAT_GP10_DES ?= y
776
777# Defines a limit for many levels TAs may call each others.
778CFG_CORE_MAX_SYSCALL_RECURSION ?= 4
779
780# Pseudo-TA to export hardware RNG output to Normal World
781# RNG characteristics are platform specific
782CFG_HWRNG_PTA ?= n
783ifeq ($(CFG_HWRNG_PTA),y)
784# Output rate of hw_get_random_bytes() in bytes per second, 0: not rate-limited
785CFG_HWRNG_RATE ?= 0
786# Quality/entropy of hw_get_random_bytes() per 1024 bits of output data, in bits
787ifeq (,$(CFG_HWRNG_QUALITY))
788$(error CFG_HWRNG_QUALITY not defined)
789endif
790endif
791
792# CFG_PREALLOC_RPC_CACHE, when enabled, makes core to preallocate
793# shared memory for each secure thread. When disabled, RPC shared
794# memory is released once the secure thread has completed is execution.
795ifeq ($(CFG_WITH_PAGER),y)
796CFG_PREALLOC_RPC_CACHE ?= n
797endif
798CFG_PREALLOC_RPC_CACHE ?= y
799
800# When enabled, CFG_DRIVERS_CLK embeds a clock framework in OP-TEE core.
801# This clock framework allows to describe clock tree and provides functions to
802# get and configure the clocks.
803# CFG_DRIVERS_CLK_DT embeds devicetree clock parsing support
804# CFG_DRIVERS_CLK_FIXED add support for "fixed-clock" compatible clocks
805# CFG_DRIVERS_CLK_EARLY_PROBE makes clocks probed at early_init initcall level.
806CFG_DRIVERS_CLK ?= n
807CFG_DRIVERS_CLK_DT ?= $(call cfg-all-enabled,CFG_DRIVERS_CLK CFG_DT)
808CFG_DRIVERS_CLK_FIXED ?= $(CFG_DRIVERS_CLK_DT)
809CFG_DRIVERS_CLK_EARLY_PROBE ?= $(CFG_DRIVERS_CLK_DT)
810
811$(eval $(call cfg-depends-all,CFG_DRIVERS_CLK_DT,CFG_DRIVERS_CLK CFG_DT))
812$(eval $(call cfg-depends-all,CFG_DRIVERS_CLK_FIXED,CFG_DRIVERS_CLK_DT))
813
814# When enabled, CFG_DRIVERS_RSTCTRL embeds a reset controller framework in
815# OP-TEE core to provide reset controls on subsystems of the devices.
816CFG_DRIVERS_RSTCTRL ?= n
817
818# The purpose of this flag is to show a print when booting up the device that
819# indicates whether the board runs a standard developer configuration or not.
820# A developer configuration doesn't necessarily has to be secure. The intention
821# is that the one making products based on OP-TEE should override this flag in
822# plat-xxx/conf.mk for the platform they're basing their products on after
823# they've finalized implementing stubbed functionality (see OP-TEE
824# documentation/Porting guidelines) as well as vendor specific security
825# configuration.
826CFG_WARN_INSECURE ?= y
827
828# Enables warnings for declarations mixed with statements
829CFG_WARN_DECL_AFTER_STATEMENT ?= y
830
831# Branch Target Identification (part of the ARMv8.5 Extensions) provides a
832# mechanism to limit the set of locations to which computed branch instructions
833# such as BR or BLR can jump. To make use of BTI in TEE core and ldelf on CPU's
834# that support it, enable this option. A GCC toolchain built with
835# --enable-standard-branch-protection is needed to use this option.
836CFG_CORE_BTI ?= n
837
838$(eval $(call cfg-depends-all,CFG_CORE_BTI,CFG_ARM64_core))
839
840# To make use of BTI in user space libraries and TA's on CPU's that support it,
841# enable this option.
842CFG_TA_BTI ?= $(CFG_CORE_BTI)
843
844$(eval $(call cfg-depends-all,CFG_TA_BTI,CFG_ARM64_core))
845
846ifeq (y-y,$(CFG_VIRTUALIZATION)-$(call cfg-one-enabled, CFG_TA_BTI CFG_CORE_BTI))
847$(error CFG_VIRTUALIZATION and BTI are currently incompatible)
848endif
849
850ifeq (y-y,$(CFG_PAGED_USER_TA)-$(CFG_TA_BTI))
851$(error CFG_PAGED_USER_TA and CFG_TA_BTI are currently incompatible)
852endif
853
854# Memory Tagging Extension (part of the ARMv8.5 Extensions) implements lock
855# and key access to memory. This is a hardware supported alternative to
856# CFG_CORE_SANITIZE_KADDRESS which covers both S-EL1 and S-EL0.
857CFG_MEMTAG ?= n
858
859$(eval $(call cfg-depends-all,CFG_MEMTAG,CFG_ARM64_core))
860ifeq (y-y,$(CFG_CORE_SANITIZE_KADDRESS)-$(CFG_MEMTAG))
861$(error CFG_CORE_SANITIZE_KADDRESS and CFG_MEMTAG are not compatible)
862endif
863ifeq (y-y,$(CFG_WITH_PAGER)-$(CFG_MEMTAG))
864$(error CFG_WITH_PAGER and CFG_MEMTAG are not compatible)
865endif
866
867# CFG_CORE_ASYNC_NOTIF is defined by the platform to enable enables support
868# for sending asynchronous notifications to normal world. Note that an
869# interrupt ID must be configurged by the platform too. Currently is only
870# CFG_CORE_ASYNC_NOTIF_GIC_INTID defined.
871CFG_CORE_ASYNC_NOTIF ?= n
872
873$(eval $(call cfg-enable-all-depends,CFG_MEMPOOL_REPORT_LAST_OFFSET, \
874	 CFG_WITH_STATS))
875
876# Pointer Authentication (part of ARMv8.3 Extensions) provides instructions
877# for signing and authenticating pointers against secret keys. These can
878# be used to mitigate ROP (Return oriented programming) attacks. This is
879# currently done by instructing the compiler to add paciasp/autiasp at the
880# begging and end of functions to sign and verify ELR.
881#
882# The CFG_CORE_PAUTH enables these instructions for the core parts
883# executing at EL1, with one secret key per thread and one secret key per
884# physical CPU.
885#
886# The CFG_TA_PAUTH option enables these instructions for TA's at EL0. When
887# this option is enabled, TEE core will initialize secret keys per TA.
888CFG_CORE_PAUTH ?= n
889CFG_TA_PAUTH ?= $(CFG_CORE_PAUTH)
890
891$(eval $(call cfg-depends-all,CFG_CORE_PAUTH,CFG_ARM64_core))
892$(eval $(call cfg-depends-all,CFG_TA_PAUTH,CFG_ARM64_core))
893
894ifeq (y-y,$(CFG_VIRTUALIZATION)-$(CFG_CORE_PAUTH))
895$(error CFG_VIRTUALIZATION and CFG_CORE_PAUTH are currently incompatible)
896endif
897ifeq (y-y,$(CFG_VIRTUALIZATION)-$(CFG_TA_PAUTH))
898$(error CFG_VIRTUALIZATION and CFG_TA_PAUTH are currently incompatible)
899endif
900
901ifeq (y-y,$(CFG_TA_GPROF_SUPPORT)-$(CFG_TA_PAUTH))
902$(error CFG_TA_GPROF_SUPPORT and CFG_TA_PAUTH are currently incompatible)
903endif
904
905ifeq (y-y,$(CFG_FTRACE_SUPPORT)-$(CFG_TA_PAUTH))
906$(error CFG_FTRACE_SUPPORT and CFG_TA_PAUTH are currently incompatible)
907endif
908
909# Enable support for generic watchdog registration
910# This watchdog will then be usable by non-secure world through SMC calls.
911CFG_WDT ?= n
912
913# Enable watchdog SMC handling compatible with arm-smc-wdt Linux driver
914# When enabled, CFG_WDT_SM_HANDLER_ID must be defined with a SMC ID
915CFG_WDT_SM_HANDLER ?= n
916
917$(eval $(call cfg-enable-all-depends,CFG_WDT_SM_HANDLER,CFG_WDT))
918ifeq (y-,$(CFG_WDT_SM_HANDLER)-$(CFG_WDT_SM_HANDLER_ID))
919$(error CFG_WDT_SM_HANDLER_ID must be defined when enabling CFG_WDT_SM_HANDLER)
920endif
921
922# Allow using the udelay/mdelay function for platforms without ARM generic timer
923# extension. When set to 'n', the plat_get_freq() function must be defined by
924# the platform code
925CFG_CORE_HAS_GENERIC_TIMER ?= y
926
927# Enable RTC API
928CFG_DRIVERS_RTC ?= n
929
930# Enable PTA for RTC access from non-secure world
931CFG_RTC_PTA ?= n
932
933# Enable TPM2
934CFG_DRIVERS_TPM2 ?= n
935CFG_DRIVERS_TPM2_MMIO ?= n
936ifeq ($(CFG_CORE_TPM_EVENT_LOG),y)
937CFG_CORE_TCG_PROVIDER ?= $(CFG_DRIVERS_TPM2)
938endif
939
940# Enable the FF-A SPMC tests in xtests
941CFG_SPMC_TESTS ?= n
942
943# Allocate the translation tables needed to map the S-EL0 application
944# loaded
945CFG_CORE_PREALLOC_EL0_TBLS ?= n
946ifeq (y-y,$(CFG_CORE_PREALLOC_EL0_TBLS)-$(CFG_WITH_PAGER))
947$(error "CFG_WITH_PAGER can't support CFG_CORE_PREALLOC_EL0_TBLS")
948endif
949
950# User TA runtime context dump.
951# When this option is enabled, OP-TEE provides a debug method for
952# developer to dump user TA's runtime context, including TA's heap stats.
953# Developer can open a stats PTA session and then invoke command
954# STATS_CMD_TA_STATS to get the context of loaded TAs.
955CFG_TA_STATS ?= n
956
957# Enables best effort mitigations against fault injected when the hardware
958# is tampered with. Details in lib/libutils/ext/include/fault_mitigation.h
959CFG_FAULT_MITIGATION ?= y
960