xref: /optee_os/mk/config.mk (revision 919323d94ecb6b29ef8abf9d25ca926c8abc6209)
1# Default configuration values for OP-TEE core (all platforms).
2#
3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk.
4# Some subsystem-specific defaults are not here but rather in */sub.mk.
5#
6# Configuration values may be assigned from multiple sources.
7# From higher to lower priority:
8#
9#   1. Make arguments ('make CFG_FOO=bar...')
10#   2. The file specified by $(CFG_OPTEE_CONFIG) (if defined)
11#   3. The environment ('CFG_FOO=bar make...')
12#   4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk
13#   5. This file
14#   6. Subsystem-specific makefiles (*/sub.mk)
15#
16# Actual values used during the build are output to $(out-dir)/conf.mk
17# (CFG_* variables only).
18
19# Cross-compiler prefix and suffix
20CROSS_COMPILE ?= arm-linux-gnueabihf-
21CROSS_COMPILE32 ?= $(CROSS_COMPILE)
22CROSS_COMPILE64 ?= aarch64-linux-gnu-
23COMPILER ?= gcc
24
25# For convenience
26ifdef CFLAGS
27CFLAGS32 ?= $(CFLAGS)
28CFLAGS64 ?= $(CFLAGS)
29endif
30
31# Compiler warning level.
32# Supported values: undefined, 1, 2 and 3. 3 gives more warnings.
33WARNS ?= 3
34
35# Define DEBUG=1 to compile without optimization (forces -O0)
36# DEBUG=1
37
38# If y, enable debug features of the TEE core (assertions and lock checks
39# are enabled, panic and assert messages are more verbose, data and prefetch
40# aborts show a stack dump). When disabled, the NDEBUG directive is defined
41# so assertions are disabled.
42CFG_TEE_CORE_DEBUG ?= y
43
44# Log levels for the TEE core. Defines which core messages are displayed
45# on the secure console. Disabling core log (level set to 0) also disables
46# logs from the TAs.
47# 0: none
48# 1: error
49# 2: error + warning
50# 3: error + warning + debug
51# 4: error + warning + debug + flow
52CFG_TEE_CORE_LOG_LEVEL ?= 1
53
54# TA log level
55# If user-mode library libutils.a is built with CFG_TEE_TA_LOG_LEVEL=0,
56# TA tracing is disabled regardless of the value of CFG_TEE_TA_LOG_LEVEL
57# when the TA is built.
58CFG_TEE_TA_LOG_LEVEL ?= 1
59
60# TA enablement
61# When defined to "y", TA traces are output according to
62# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all
63CFG_TEE_CORE_TA_TRACE ?= y
64
65# If y, enable the memory leak detection feature in the bget memory allocator.
66# When this feature is enabled, calling mdbg_check(1) will print a list of all
67# the currently allocated buffers and the location of the allocation (file and
68# line number).
69# Note: make sure the log level is high enough for the messages to show up on
70# the secure console! For instance:
71# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with:
72#   $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3
73# - To debug TEE core allocations: build OP-TEE with:
74#   $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3
75CFG_TEE_CORE_MALLOC_DEBUG ?= n
76CFG_TEE_TA_MALLOC_DEBUG ?= n
77# Prints an error message and dumps the stack on failed memory allocations
78# using malloc() and friends.
79CFG_CORE_DUMP_OOM ?= $(CFG_TEE_CORE_MALLOC_DEBUG)
80
81# Mask to select which messages are prefixed with long debugging information
82# (severity, core ID, thread ID, component name, function name, line number)
83# based on the message level. If BIT(level) is set, the long prefix is shown.
84# Otherwise a short prefix is used (severity and component name only).
85# Levels: 0=none 1=error 2=info 3=debug 4=flow
86CFG_MSG_LONG_PREFIX_MASK ?= 0x1a
87
88# PRNG configuration
89# If CFG_WITH_SOFTWARE_PRNG is enabled, crypto provider provided
90# software PRNG implementation is used.
91# Otherwise, you need to implement hw_get_random_byte() for your platform
92CFG_WITH_SOFTWARE_PRNG ?= y
93
94# Number of threads
95CFG_NUM_THREADS ?= 2
96
97# API implementation version
98CFG_TEE_API_VERSION ?= GPD-1.1-dev
99
100# Implementation description (implementation-dependent)
101CFG_TEE_IMPL_DESCR ?= OPTEE
102
103# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal
104# World?
105CFG_OS_REV_REPORTS_GIT_SHA1 ?= y
106
107# Trusted OS implementation version
108TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || echo Unknown)
109ifeq ($(CFG_OS_REV_REPORTS_GIT_SHA1),y)
110TEE_IMPL_GIT_SHA1 := 0x$(shell git rev-parse --short=8 HEAD 2>/dev/null || echo 0)
111else
112TEE_IMPL_GIT_SHA1 := 0x0
113endif
114# The following values are not extracted from the "git describe" output because
115# we might be outside of a Git environment, or the tree may have been cloned
116# with limited depth not including any tag, so there is really no guarantee
117# that TEE_IMPL_VERSION contains the major and minor revision numbers.
118CFG_OPTEE_REVISION_MAJOR ?= 3
119CFG_OPTEE_REVISION_MINOR ?= 8
120
121# Trusted OS implementation manufacturer name
122CFG_TEE_MANUFACTURER ?= LINARO
123
124# Trusted firmware version
125CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF
126
127# Trusted OS implementation manufacturer name
128CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF
129
130# Rich Execution Environment (REE) file system support: normal world OS
131# provides the actual storage.
132# This is the default FS when enabled (i.e., the one used when
133# TEE_STORAGE_PRIVATE is passed to the trusted storage API)
134CFG_REE_FS ?= y
135
136# RPMB file system support
137CFG_RPMB_FS ?= n
138
139# Device identifier used when CFG_RPMB_FS = y.
140# The exact meaning of this value is platform-dependent. On Linux, the
141# tee-supplicant process will open /dev/mmcblk<id>rpmb
142CFG_RPMB_FS_DEV_ID ?= 0
143
144# This config variable determines the number of entries read in from RPMB at
145# once whenever a function traverses the RPMB FS. Increasing the default value
146# has the following consequences:
147# - More memory required on heap. A single FAT entry currently has a size of
148#   256 bytes.
149# - Potentially significant speed-ups for RPMB I/O. Depending on how many
150#   entries a function needs to traverse, the number of time-consuming RPMB
151#   read-in operations can be reduced.
152# Chosing a proper value is both platform- (available memory) and use-case-
153# dependent (potential number of FAT fs entries), so overwrite in platform
154# config files
155CFG_RPMB_FS_RD_ENTRIES ?= 8
156
157# Enables caching of FAT FS entries when set to a value greater than zero.
158# When enabled, the cache stores the first 'CFG_RPMB_FS_CACHE_ENTRIES' FAT FS
159# entries. The cache is populated when FAT FS entries are initially read in.
160# When traversing the FAT FS entries, we read from the cache instead of reading
161# in the entries from RPMB storage. Consequently, when a FAT FS entry is
162# written, the cache is updated. In scenarios where an estimate of the number
163# of FAT FS entries can be made, the cache may be specifically tailored to
164# store all entries. The caching can improve RPMB I/O at the cost
165# of additional memory.
166# Without caching, we temporarily require
167# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
168# while traversing the FAT FS (e.g. in read_fat).
169# For example 8*256 bytes = 2kB while in read_fat.
170# With caching, we constantly require up to
171# CFG_RPMB_FS_CACHE_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
172# depending on how many elements are in the cache, and additional temporary
173# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
174# in case the cache is too small to hold all elements when traversing.
175CFG_RPMB_FS_CACHE_ENTRIES ?= 0
176
177# Enables RPMB key programming by the TEE, in case the RPMB partition has not
178# been configured yet.
179# !!! Security warning !!!
180# Do *NOT* enable this in product builds, as doing so would allow the TEE to
181# leak the RPMB key.
182# This option is useful in the following situations:
183# - Testing
184# - RPMB key provisioning in a controlled environment (factory setup)
185CFG_RPMB_WRITE_KEY ?= n
186
187# Embed public part of this key in OP-TEE OS
188TA_SIGN_KEY ?= keys/default_ta.pem
189
190# Include lib/libutils/isoc in the build? Most platforms need this, but some
191# may not because they obtain the isoc functions from elsewhere
192CFG_LIBUTILS_WITH_ISOC ?= y
193
194# Enables floating point support for user TAs
195# ARM32: EABI defines both a soft-float ABI and a hard-float ABI,
196#	 hard-float is basically a super set of soft-float. Hard-float
197#	 requires all the support routines provided for soft-float, but the
198#	 compiler may choose to optimize to not use some of them and use
199#	 the floating-point registers instead.
200# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or
201#	 nothing with ` -mgeneral-regs-only`)
202# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types
203CFG_TA_FLOAT_SUPPORT ?= y
204
205# Stack unwinding: print a stack dump to the console on core or TA abort, or
206# when a TA panics.
207# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be
208# unwound (not paged TAs, however).
209# Note that 32-bit ARM code needs unwind tables for this to work, so enabling
210# this option will increase the size of the 32-bit TEE binary by a few KB.
211# Similarly, TAs have to be compiled with -funwind-tables (default when the
212# option is set) otherwise they can't be unwound.
213# Warning: since the unwind sequence for user-mode (TA) code is implemented in
214# the privileged layer of OP-TEE, enabling this feature will weaken the
215# user/kernel isolation. Therefore it should be disabled in release builds.
216ifeq ($(CFG_TEE_CORE_DEBUG),y)
217CFG_UNWIND ?= y
218endif
219
220# Enable support for dynamically loaded user TAs
221CFG_WITH_USER_TA ?= y
222
223# Choosing the architecture(s) of user-mode libraries (used by TAs)
224#
225# Platforms may define a list of supported architectures for user-mode code
226# by setting $(supported-ta-targets). Valid values are "ta_arm32", "ta_arm64",
227# "ta_arm32 ta_arm64" and "ta_arm64 ta_arm32".
228# $(supported-ta-targets) defaults to "ta_arm32" when the TEE core is 32-bits,
229# and "ta_arm32 ta_arm64" when it is 64-bits (that is, when CFG_ARM64_core=y).
230# The first entry in $(supported-ta-targets) has a special role, see
231# CFG_USER_TA_TARGET_<ta-name> below.
232#
233# CFG_USER_TA_TARGETS may be defined to restrict $(supported-ta-targets) or
234# change the order of the values.
235#
236# The list of TA architectures is ultimately stored in $(ta-targets).
237
238# CFG_USER_TA_TARGET_<ta-name> (for example, CFG_USER_TA_TARGET_avb), if
239# defined, selects the unique TA architecture mode for building the in-tree TA
240# <ta-name>. Can be either ta_arm32 or ta_arm64.
241# By default, in-tree TAs are built using the first architecture specified in
242# $(ta-targets).
243
244# Address Space Layout Randomization for user-mode Trusted Applications
245#
246# When this flag is enabled, the ELF loader will introduce a random offset
247# when mapping the application in user space. ASLR makes the exploitation of
248# memory corruption vulnerabilities more difficult.
249CFG_TA_ASLR ?= y
250
251# How much ASLR may shift the base address (in pages). The base address is
252# randomly shifted by an integer number of pages comprised between these two
253# values. Bigger ranges are more secure because they make the addresses harder
254# to guess at the expense of using more memory for the page tables.
255CFG_TA_ASLR_MIN_OFFSET_PAGES ?= 0
256CFG_TA_ASLR_MAX_OFFSET_PAGES ?= 128
257
258# Address Space Layout Randomization for TEE Core
259#
260# When this flag is enabled, the early init code will introduce a random
261# offset when mapping TEE Core. ASLR makes the exploitation of memory
262# corruption vulnerabilities more difficult.
263CFG_CORE_ASLR ?= y
264
265# Load user TAs from the REE filesystem via tee-supplicant
266CFG_REE_FS_TA ?= y
267
268# Pre-authentication of TA binaries loaded from the REE filesystem
269#
270# - If CFG_REE_FS_TA_BUFFERED=y: load TA binary into a temporary buffer in the
271#   "Secure DDR" pool, check the signature, then process the file only if it is
272#   valid.
273# - If disabled: hash the binaries as they are being processed and verify the
274#   signature as a last step.
275CFG_REE_FS_TA_BUFFERED ?= n
276$(eval $(call cfg-depends-all,CFG_REE_FS_TA_BUFFERED,CFG_REE_FS_TA))
277
278# Support for loading user TAs from a special section in the TEE binary.
279# Such TAs are available even before tee-supplicant is available (hence their
280# name), but note that many services exported to TAs may need tee-supplicant,
281# so early use is limited to a subset of the TEE Internal Core API (crypto...)
282# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF
283# file(s). For example:
284#   $ make ... \
285#     EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \
286#                     path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf"
287# Typical build steps:
288#   $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries,
289#                                    # headers, makefiles), ready to build TAs.
290#                                    # CFG_EARLY_TA=y is optional, it prevents
291#                                    # later library recompilations.
292#   <build some TAs>
293#   $ make EARLY_TA_PATHS=<paths>    # Build OP-TEE and embbed the TA(s)
294#
295# Another option is CFG_IN_TREE_EARLY_TAS which is used to point at
296# in-tree TAs. CFG_IN_TREE_EARLY_TAS is formatted as:
297# <name-of-ta>/<uuid>
298# for instance avb/023f8f1a-292a-432b-8fc4-de8471358067
299ifneq ($(EARLY_TA_PATHS)$(CFG_IN_TREE_EARLY_TAS),)
300$(call force,CFG_EARLY_TA,y)
301else
302CFG_EARLY_TA ?= n
303endif
304ifeq ($(CFG_EARLY_TA),y)
305$(call force,CFG_ZLIB,y)
306endif
307
308# Enable paging, requires SRAM, can't be enabled by default
309CFG_WITH_PAGER ?= n
310
311# Runtime lock dependency checker: ensures that a proper locking hierarchy is
312# used in the TEE core when acquiring and releasing mutexes. Any violation will
313# cause a panic as soon as the invalid locking condition is detected. If
314# CFG_UNWIND and CFG_LOCKDEP_RECORD_STACK are both enabled, the algorithm
315# records the call stacks when locks are taken, and prints them when a
316# potential deadlock is found.
317# Expect a significant performance impact when enabling this.
318CFG_LOCKDEP ?= n
319CFG_LOCKDEP_RECORD_STACK ?= y
320
321# BestFit algorithm in bget reduces the fragmentation of the heap when running
322# with the pager enabled or lockdep
323CFG_CORE_BGET_BESTFIT ?= $(call cfg-one-enabled, CFG_WITH_PAGER CFG_LOCKDEP)
324
325# Use the pager for user TAs
326CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER)
327
328# Enable support for detected undefined behavior in C
329# Uses a lot of memory, can't be enabled by default
330CFG_CORE_SANITIZE_UNDEFINED ?= n
331
332# Enable Kernel Address sanitizer, has a huge performance impact, uses a
333# lot of memory and need platform specific adaptations, can't be enabled by
334# default
335CFG_CORE_SANITIZE_KADDRESS ?= n
336
337# Device Tree support
338#
339# When CFG_DT is enabled core embeds the FDT library (libfdt) allowing
340# device tree blob (DTB) parsing from the core.
341#
342# When CFG_DT is enabled, the TEE _start function expects to find
343# the address of a DTB in register X2/R2 provided by the early boot stage
344# or value 0 if boot stage provides no DTB.
345#
346# When CFG_EMBED_DTB is enabled, CFG_EMBED_DTB_SOURCE_FILE shall define the
347# relative path of a DTS file located in core/arch/$(ARCH)/dts.
348# The DTS file is compiled into a DTB file which content is embedded in a
349# read-only section of the core.
350ifneq ($(strip $(CFG_EMBED_DTB_SOURCE_FILE)),)
351CFG_EMBED_DTB ?= y
352endif
353ifeq ($(CFG_EMBED_DTB),y)
354$(call force,CFG_DT,y)
355endif
356CFG_EMBED_DTB ?= n
357CFG_DT ?= n
358
359# Maximum size of the Device Tree Blob, has to be large enough to allow
360# editing of the supplied DTB.
361CFG_DTB_MAX_SIZE ?= 0x10000
362
363# Device Tree Overlay support.
364# This define enables support for an OP-TEE provided DTB overlay.
365# One of two modes is supported in this case:
366# 1. Append OP-TEE nodes to an existing DTB overlay located at CFG_DT_ADDR or
367#    passed in arg2
368# 2. Generate a new DTB overlay at CFG_DT_ADDR
369# A subsequent boot stage must then merge the generated overlay DTB into a main
370# DTB using the standard fdt_overlay_apply() method.
371CFG_EXTERNAL_DTB_OVERLAY ?= n
372
373# Enable core self tests and related pseudo TAs
374CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= y
375
376# This option enables OP-TEE to respond to SMP boot request: the Rich OS
377# issues this to request OP-TEE to release secondaries cores out of reset,
378# with specific core number and non-secure entry address.
379CFG_BOOT_SECONDARY_REQUEST ?= n
380
381# Default heap size for Core, 64 kB
382CFG_CORE_HEAP_SIZE ?= 65536
383
384# Default size of nexus heap. 16 kB. Used only if CFG_VIRTUALIZATION
385# is enabled
386CFG_CORE_NEX_HEAP_SIZE ?= 16384
387
388# TA profiling.
389# When this option is enabled, OP-TEE can execute Trusted Applications
390# instrumented with GCC's -pg flag and will output profiling information
391# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in
392# tee-supplicant)
393# Note: this does not work well with shared libraries at the moment for a
394# couple of reasons:
395# 1. The profiling code assumes a unique executable section in the TA VA space.
396# 2. The code used to detect at run time if the TA is intrumented assumes that
397# the TA is linked statically.
398CFG_TA_GPROF_SUPPORT ?= n
399
400# TA function tracing.
401# When this option is enabled, OP-TEE can execute Trusted Applications
402# instrumented with GCC's -pg flag and will output function tracing
403# information in ftrace.out format to /tmp/ftrace-<ta_uuid>.out (path is
404# defined in tee-supplicant)
405CFG_FTRACE_SUPPORT ?= n
406
407# How to make room when the function tracing buffer is full?
408# 'shift': shift the previously stored data by the amount needed in order
409#    to always keep the latest logs (slower, especially with big buffer sizes)
410# 'wrap': discard the previous data and start at the beginning of the buffer
411#    again (fast, but can result in a mostly empty buffer)
412# 'stop': stop logging new data
413CFG_FTRACE_BUF_WHEN_FULL ?= shift
414$(call cfg-check-value,FTRACE_BUF_WHEN_FULL,shift stop wrap)
415$(call force,_CFG_FTRACE_BUF_WHEN_FULL_$(CFG_FTRACE_BUF_WHEN_FULL),y)
416
417# Function tracing: unit to be used when displaying durations
418#  0: always display durations in microseconds
419# >0: if duration is greater or equal to the specified value (in microseconds),
420#     display it in milliseconds
421CFG_FTRACE_US_MS ?= 10000
422
423# Core syscall function tracing.
424# When this option is enabled, OP-TEE core is instrumented with GCC's
425# -pg flag and will output syscall function graph in user TA ftrace
426# buffer
427CFG_SYSCALL_FTRACE ?= n
428$(call cfg-depends-all,CFG_SYSCALL_FTRACE,CFG_FTRACE_SUPPORT)
429
430# Enable to compile user TA libraries with profiling (-pg).
431# Depends on CFG_TA_GPROF_SUPPORT or CFG_FTRACE_SUPPORT.
432CFG_ULIBS_MCOUNT ?= n
433# Profiling/tracing of syscall wrapper (utee_*)
434CFG_SYSCALL_WRAPPERS_MCOUNT ?= $(CFG_ULIBS_MCOUNT)
435
436ifeq (y,$(filter y,$(CFG_ULIBS_MCOUNT) $(CFG_SYSCALL_WRAPPERS_MCOUNT)))
437ifeq (,$(filter y,$(CFG_TA_GPROF_SUPPORT) $(CFG_FTRACE_SUPPORT)))
438$(error Cannot instrument user libraries if user mode profiling is disabled)
439endif
440endif
441
442# Build libutee, libutils, libmbedtls as shared libraries.
443# - Static libraries are still generated when this is enabled, but TAs will use
444# the shared libraries unless explicitly linked with the -static flag.
445# - Shared libraries are made of two files: for example, libutee is
446#   libutee.so and 527f1a47-b92c-4a74-95bd-72f19f4a6f74.ta. The '.so' file
447#   is a totally standard shared object, and should be used to link against.
448#   The '.ta' file is a signed version of the '.so' and should be installed
449#   in the same way as TAs so that they can be found at runtime.
450CFG_ULIBS_SHARED ?= n
451
452ifeq (yy,$(CFG_TA_GPROF_SUPPORT)$(CFG_ULIBS_SHARED))
453$(error CFG_TA_GPROF_SUPPORT and CFG_ULIBS_SHARED are currently incompatible)
454endif
455
456# CFG_GP_SOCKETS
457# Enable Global Platform Sockets support
458CFG_GP_SOCKETS ?= y
459
460# Enable Secure Data Path support in OP-TEE core (TA may be invoked with
461# invocation parameters referring to specific secure memories).
462CFG_SECURE_DATA_PATH ?= n
463
464# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y
465# TA binaries are stored encrypted in the REE FS and are protected by
466# metadata in secure storage.
467CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA)
468$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA))
469
470# Enable the pseudo TA that managages TA storage in secure storage
471CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA)
472$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA))
473
474# Enable the pseudo TA for misc. auxilary services, extending existing
475# GlobalPlatform Core API (for example, re-seeding RNG entropy pool etc.)
476CFG_SYSTEM_PTA ?= y
477
478# Enable the pseudo TA for enumeration of TEE based devices for the normal
479# world OS.
480CFG_DEVICE_ENUM_PTA ?= y
481
482# Define the number of cores per cluster used in calculating core position.
483# The cluster number is shifted by this value and added to the core ID,
484# so its value represents log2(cores/cluster).
485# Default is 2**(2) = 4 cores per cluster.
486CFG_CORE_CLUSTER_SHIFT ?= 2
487
488# Define the number of threads per core used in calculating processing
489# element's position. The core number is shifted by this value and added to
490# the thread ID, so its value represents log2(threads/core).
491# Default is 2**(0) = 1 threads per core.
492CFG_CORE_THREAD_SHIFT ?= 0
493
494# Enable support for dynamic shared memory (shared memory anywhere in
495# non-secure memory).
496CFG_CORE_DYN_SHM ?= y
497
498# Enable support for reserved shared memory (shared memory in a carved out
499# memory area).
500CFG_CORE_RESERVED_SHM ?= y
501
502# Enables support for larger physical addresses, that is, it will define
503# paddr_t as a 64-bit type.
504CFG_CORE_LARGE_PHYS_ADDR ?= n
505
506# Define the maximum size, in bits, for big numbers in the Internal Core API
507# Arithmetical functions. This does *not* influence the key size that may be
508# manipulated through the Cryptographic API.
509# Set this to a lower value to reduce the TA memory footprint.
510CFG_TA_BIGNUM_MAX_BITS ?= 2048
511
512# Define the maximum size, in bits, for big numbers in the TEE core (privileged
513# layer).
514# This value is an upper limit for the key size in any cryptographic algorithm
515# implemented by the TEE core.
516# Set this to a lower value to reduce the memory footprint.
517CFG_CORE_BIGNUM_MAX_BITS ?= 4096
518
519# Not used since libmpa was removed. Force the values to catch build scripts
520# that would set = n.
521$(call force,CFG_TA_MBEDTLS_MPI,y)
522$(call force,CFG_TA_MBEDTLS,y)
523
524# Compile the TA library mbedTLS with self test functions, the functions
525# need to be called to test anything
526CFG_TA_MBEDTLS_SELF_TEST ?= y
527
528# By default use tomcrypt as the main crypto lib providing an implementation
529# for the API in <crypto/crypto.h>
530# CFG_CRYPTOLIB_NAME is used as libname and
531# CFG_CRYPTOLIB_DIR is used as libdir when compiling the library
532#
533# It's also possible to configure to use mbedtls instead of tomcrypt.
534# Then the variables should be assigned as "CFG_CRYPTOLIB_NAME=mbedtls" and
535# "CFG_CRYPTOLIB_DIR=lib/libmbedtls" respectively.
536CFG_CRYPTOLIB_NAME ?= tomcrypt
537CFG_CRYPTOLIB_DIR ?= core/lib/libtomcrypt
538
539# Enable TEE_ALG_RSASSA_PKCS1_V1_5 algorithm for signing with PKCS#1 v1.5 EMSA
540# without ASN.1 around the hash.
541ifeq ($(CFG_CRYPTOLIB_NAME),tomcrypt)
542CFG_CRYPTO_RSASSA_NA1 ?= y
543endif
544
545# Not used since libmpa was removed. Force the value to catch build scripts
546# that would set = n.
547$(call force,CFG_CORE_MBEDTLS_MPI,y)
548
549# Enable virtualization support. OP-TEE will not work without compatible
550# hypervisor if this option is enabled.
551CFG_VIRTUALIZATION ?= n
552
553ifeq ($(CFG_VIRTUALIZATION),y)
554$(call force,CFG_CORE_RODATA_NOEXEC,y)
555$(call force,CFG_CORE_RWDATA_NOEXEC,y)
556
557# Default number of virtual guests
558CFG_VIRT_GUEST_COUNT ?= 2
559endif
560
561# Enables backwards compatible derivation of RPMB and SSK keys
562CFG_CORE_HUK_SUBKEY_COMPAT ?= y
563
564# Compress and encode conf.mk into the TEE core, and show the encoded string on
565# boot (with severity TRACE_INFO).
566CFG_SHOW_CONF_ON_BOOT ?= n
567
568# Enables support for passing a TPM Event Log stored in secure memory
569# to a TA, so a TPM Service could use it to extend any measurement
570# taken before the service was up and running.
571CFG_CORE_TPM_EVENT_LOG ?= n
572
573# When enabled, CFG_SCMI_MSG_DRIVERS embeds SCMI message drivers in the core.
574# Refer to the supported SCMI features embedded upon CFG_SCMI_MSG_*
575# CFG_SCMI_MSG_CLOCK embeds SCMI clock protocol support.
576# CFG_SCMI_MSG_RESET_DOMAIN embeds SCMI reset domain protocol support.
577# CFG_SCMI_MSG_SMT embeds SMT based message buffer of communication channel
578CFG_SCMI_MSG_DRIVERS ?= n
579CFG_SCMI_MSG_CLOCK ?= n
580CFG_SCMI_MSG_RESET_DOMAIN ?= n
581CFG_SCMI_MSG_SMT ?= n
582