xref: /optee_os/mk/config.mk (revision 827be46c173f31c57006af70ca3a15a5b1a7fba3)
1# Default configuration values for OP-TEE core (all platforms).
2#
3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk.
4# Some subsystem-specific defaults are not here but rather in */sub.mk.
5#
6# Configuration values may be assigned from multiple sources.
7# From higher to lower priority:
8#
9#   1. Make arguments ('make CFG_FOO=bar...')
10#   2. The file specified by $(CFG_OPTEE_CONFIG) (if defined)
11#   3. The environment ('CFG_FOO=bar make...')
12#   4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk
13#   5. This file
14#   6. Subsystem-specific makefiles (*/sub.mk)
15#
16# Actual values used during the build are output to $(out-dir)/conf.mk
17# (CFG_* variables only).
18
19# Cross-compiler prefix and suffix
20CROSS_COMPILE ?= arm-linux-gnueabihf-
21CROSS_COMPILE32 ?= $(CROSS_COMPILE)
22CROSS_COMPILE64 ?= aarch64-linux-gnu-
23COMPILER ?= gcc
24
25# For convenience
26ifdef CFLAGS
27CFLAGS32 ?= $(CFLAGS)
28CFLAGS64 ?= $(CFLAGS)
29endif
30
31# Compiler warning level.
32# Supported values: undefined, 1, 2 and 3. 3 gives more warnings.
33WARNS ?= 3
34
35# Path to the Python interpreter used by the build system.
36# This variable is set to the default python3 interpreter in the user's
37# path. But build environments that require more explicit control can
38# set the path to a specific interpreter through this variable.
39PYTHON3 ?= python3
40
41# Define DEBUG=1 to compile without optimization (forces -O0)
42# DEBUG=1
43
44# If y, enable debug features of the TEE core (assertions and lock checks
45# are enabled, panic and assert messages are more verbose, data and prefetch
46# aborts show a stack dump). When disabled, the NDEBUG directive is defined
47# so assertions are disabled.
48CFG_TEE_CORE_DEBUG ?= y
49
50# Log levels for the TEE core. Defines which core messages are displayed
51# on the secure console. Disabling core log (level set to 0) also disables
52# logs from the TAs.
53# 0: none
54# 1: error
55# 2: error + warning
56# 3: error + warning + debug
57# 4: error + warning + debug + flow
58CFG_TEE_CORE_LOG_LEVEL ?= 1
59
60# TA log level
61# If user-mode library libutils.a is built with CFG_TEE_TA_LOG_LEVEL=0,
62# TA tracing is disabled regardless of the value of CFG_TEE_TA_LOG_LEVEL
63# when the TA is built.
64CFG_TEE_TA_LOG_LEVEL ?= 1
65
66# TA enablement
67# When defined to "y", TA traces are output according to
68# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all
69CFG_TEE_CORE_TA_TRACE ?= y
70
71# If y, enable the memory leak detection feature in the bget memory allocator.
72# When this feature is enabled, calling mdbg_check(1) will print a list of all
73# the currently allocated buffers and the location of the allocation (file and
74# line number).
75# Note: make sure the log level is high enough for the messages to show up on
76# the secure console! For instance:
77# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with:
78#   $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3
79# - To debug TEE core allocations: build OP-TEE with:
80#   $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3
81CFG_TEE_CORE_MALLOC_DEBUG ?= n
82CFG_TEE_TA_MALLOC_DEBUG ?= n
83# Prints an error message and dumps the stack on failed memory allocations
84# using malloc() and friends.
85CFG_CORE_DUMP_OOM ?= $(CFG_TEE_CORE_MALLOC_DEBUG)
86
87# Mask to select which messages are prefixed with long debugging information
88# (severity, core ID, thread ID, component name, function name, line number)
89# based on the message level. If BIT(level) is set, the long prefix is shown.
90# Otherwise a short prefix is used (severity and component name only).
91# Levels: 0=none 1=error 2=info 3=debug 4=flow
92CFG_MSG_LONG_PREFIX_MASK ?= 0x1a
93
94# PRNG configuration
95# If CFG_WITH_SOFTWARE_PRNG is enabled, crypto provider provided
96# software PRNG implementation is used.
97# Otherwise, you need to implement hw_get_random_byte() for your platform
98CFG_WITH_SOFTWARE_PRNG ?= y
99
100# Number of threads
101CFG_NUM_THREADS ?= 2
102
103# API implementation version
104CFG_TEE_API_VERSION ?= GPD-1.1-dev
105
106# Implementation description (implementation-dependent)
107CFG_TEE_IMPL_DESCR ?= OPTEE
108
109# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal
110# World?
111CFG_OS_REV_REPORTS_GIT_SHA1 ?= y
112
113# Trusted OS implementation version
114TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || echo Unknown)
115ifeq ($(CFG_OS_REV_REPORTS_GIT_SHA1),y)
116TEE_IMPL_GIT_SHA1 := 0x$(shell git rev-parse --short=8 HEAD 2>/dev/null || echo 0)
117else
118TEE_IMPL_GIT_SHA1 := 0x0
119endif
120# The following values are not extracted from the "git describe" output because
121# we might be outside of a Git environment, or the tree may have been cloned
122# with limited depth not including any tag, so there is really no guarantee
123# that TEE_IMPL_VERSION contains the major and minor revision numbers.
124CFG_OPTEE_REVISION_MAJOR ?= 3
125CFG_OPTEE_REVISION_MINOR ?= 10
126
127# Trusted OS implementation manufacturer name
128CFG_TEE_MANUFACTURER ?= LINARO
129
130# Trusted firmware version
131CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF
132
133# Trusted OS implementation manufacturer name
134CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF
135
136# Rich Execution Environment (REE) file system support: normal world OS
137# provides the actual storage.
138# This is the default FS when enabled (i.e., the one used when
139# TEE_STORAGE_PRIVATE is passed to the trusted storage API)
140CFG_REE_FS ?= y
141
142# RPMB file system support
143CFG_RPMB_FS ?= n
144
145# Device identifier used when CFG_RPMB_FS = y.
146# The exact meaning of this value is platform-dependent. On Linux, the
147# tee-supplicant process will open /dev/mmcblk<id>rpmb
148CFG_RPMB_FS_DEV_ID ?= 0
149
150# This config variable determines the number of entries read in from RPMB at
151# once whenever a function traverses the RPMB FS. Increasing the default value
152# has the following consequences:
153# - More memory required on heap. A single FAT entry currently has a size of
154#   256 bytes.
155# - Potentially significant speed-ups for RPMB I/O. Depending on how many
156#   entries a function needs to traverse, the number of time-consuming RPMB
157#   read-in operations can be reduced.
158# Chosing a proper value is both platform- (available memory) and use-case-
159# dependent (potential number of FAT fs entries), so overwrite in platform
160# config files
161CFG_RPMB_FS_RD_ENTRIES ?= 8
162
163# Enables caching of FAT FS entries when set to a value greater than zero.
164# When enabled, the cache stores the first 'CFG_RPMB_FS_CACHE_ENTRIES' FAT FS
165# entries. The cache is populated when FAT FS entries are initially read in.
166# When traversing the FAT FS entries, we read from the cache instead of reading
167# in the entries from RPMB storage. Consequently, when a FAT FS entry is
168# written, the cache is updated. In scenarios where an estimate of the number
169# of FAT FS entries can be made, the cache may be specifically tailored to
170# store all entries. The caching can improve RPMB I/O at the cost
171# of additional memory.
172# Without caching, we temporarily require
173# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
174# while traversing the FAT FS (e.g. in read_fat).
175# For example 8*256 bytes = 2kB while in read_fat.
176# With caching, we constantly require up to
177# CFG_RPMB_FS_CACHE_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
178# depending on how many elements are in the cache, and additional temporary
179# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
180# in case the cache is too small to hold all elements when traversing.
181CFG_RPMB_FS_CACHE_ENTRIES ?= 0
182
183# Enables RPMB key programming by the TEE, in case the RPMB partition has not
184# been configured yet.
185# !!! Security warning !!!
186# Do *NOT* enable this in product builds, as doing so would allow the TEE to
187# leak the RPMB key.
188# This option is useful in the following situations:
189# - Testing
190# - RPMB key provisioning in a controlled environment (factory setup)
191CFG_RPMB_WRITE_KEY ?= n
192
193# Embed public part of this key in OP-TEE OS
194TA_SIGN_KEY ?= keys/default_ta.pem
195
196# Include lib/libutils/isoc in the build? Most platforms need this, but some
197# may not because they obtain the isoc functions from elsewhere
198CFG_LIBUTILS_WITH_ISOC ?= y
199
200# Enables floating point support for user TAs
201# ARM32: EABI defines both a soft-float ABI and a hard-float ABI,
202#	 hard-float is basically a super set of soft-float. Hard-float
203#	 requires all the support routines provided for soft-float, but the
204#	 compiler may choose to optimize to not use some of them and use
205#	 the floating-point registers instead.
206# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or
207#	 nothing with ` -mgeneral-regs-only`)
208# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types
209CFG_TA_FLOAT_SUPPORT ?= y
210
211# Stack unwinding: print a stack dump to the console on core or TA abort, or
212# when a TA panics.
213# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be
214# unwound (not paged TAs, however).
215# Note that 32-bit ARM code needs unwind tables for this to work, so enabling
216# this option will increase the size of the 32-bit TEE binary by a few KB.
217# Similarly, TAs have to be compiled with -funwind-tables (default when the
218# option is set) otherwise they can't be unwound.
219# Warning: since the unwind sequence for user-mode (TA) code is implemented in
220# the privileged layer of OP-TEE, enabling this feature will weaken the
221# user/kernel isolation. Therefore it should be disabled in release builds.
222ifeq ($(CFG_TEE_CORE_DEBUG),y)
223CFG_UNWIND ?= y
224endif
225
226# Enable support for dynamically loaded user TAs
227CFG_WITH_USER_TA ?= y
228
229# Choosing the architecture(s) of user-mode libraries (used by TAs)
230#
231# Platforms may define a list of supported architectures for user-mode code
232# by setting $(supported-ta-targets). Valid values are "ta_arm32", "ta_arm64",
233# "ta_arm32 ta_arm64" and "ta_arm64 ta_arm32".
234# $(supported-ta-targets) defaults to "ta_arm32" when the TEE core is 32-bits,
235# and "ta_arm32 ta_arm64" when it is 64-bits (that is, when CFG_ARM64_core=y).
236# The first entry in $(supported-ta-targets) has a special role, see
237# CFG_USER_TA_TARGET_<ta-name> below.
238#
239# CFG_USER_TA_TARGETS may be defined to restrict $(supported-ta-targets) or
240# change the order of the values.
241#
242# The list of TA architectures is ultimately stored in $(ta-targets).
243
244# CFG_USER_TA_TARGET_<ta-name> (for example, CFG_USER_TA_TARGET_avb), if
245# defined, selects the unique TA architecture mode for building the in-tree TA
246# <ta-name>. Can be either ta_arm32 or ta_arm64.
247# By default, in-tree TAs are built using the first architecture specified in
248# $(ta-targets).
249
250# Address Space Layout Randomization for user-mode Trusted Applications
251#
252# When this flag is enabled, the ELF loader will introduce a random offset
253# when mapping the application in user space. ASLR makes the exploitation of
254# memory corruption vulnerabilities more difficult.
255CFG_TA_ASLR ?= y
256
257# How much ASLR may shift the base address (in pages). The base address is
258# randomly shifted by an integer number of pages comprised between these two
259# values. Bigger ranges are more secure because they make the addresses harder
260# to guess at the expense of using more memory for the page tables.
261CFG_TA_ASLR_MIN_OFFSET_PAGES ?= 0
262CFG_TA_ASLR_MAX_OFFSET_PAGES ?= 128
263
264# Address Space Layout Randomization for TEE Core
265#
266# When this flag is enabled, the early init code will introduce a random
267# offset when mapping TEE Core. ASLR makes the exploitation of memory
268# corruption vulnerabilities more difficult.
269CFG_CORE_ASLR ?= y
270
271# Load user TAs from the REE filesystem via tee-supplicant
272CFG_REE_FS_TA ?= y
273
274# Pre-authentication of TA binaries loaded from the REE filesystem
275#
276# - If CFG_REE_FS_TA_BUFFERED=y: load TA binary into a temporary buffer in the
277#   "Secure DDR" pool, check the signature, then process the file only if it is
278#   valid.
279# - If disabled: hash the binaries as they are being processed and verify the
280#   signature as a last step.
281CFG_REE_FS_TA_BUFFERED ?= n
282$(eval $(call cfg-depends-all,CFG_REE_FS_TA_BUFFERED,CFG_REE_FS_TA))
283
284# Support for loading user TAs from a special section in the TEE binary.
285# Such TAs are available even before tee-supplicant is available (hence their
286# name), but note that many services exported to TAs may need tee-supplicant,
287# so early use is limited to a subset of the TEE Internal Core API (crypto...)
288# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF
289# file(s). For example:
290#   $ make ... \
291#     EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \
292#                     path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf"
293# Typical build steps:
294#   $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries,
295#                                    # headers, makefiles), ready to build TAs.
296#                                    # CFG_EARLY_TA=y is optional, it prevents
297#                                    # later library recompilations.
298#   <build some TAs>
299#   $ make EARLY_TA_PATHS=<paths>    # Build OP-TEE and embbed the TA(s)
300#
301# Another option is CFG_IN_TREE_EARLY_TAS which is used to point at
302# in-tree TAs. CFG_IN_TREE_EARLY_TAS is formatted as:
303# <name-of-ta>/<uuid>
304# for instance avb/023f8f1a-292a-432b-8fc4-de8471358067
305ifneq ($(EARLY_TA_PATHS)$(CFG_IN_TREE_EARLY_TAS),)
306$(call force,CFG_EARLY_TA,y)
307else
308CFG_EARLY_TA ?= n
309endif
310ifeq ($(CFG_EARLY_TA),y)
311$(call force,CFG_ZLIB,y)
312endif
313
314# Enable paging, requires SRAM, can't be enabled by default
315CFG_WITH_PAGER ?= n
316
317# Runtime lock dependency checker: ensures that a proper locking hierarchy is
318# used in the TEE core when acquiring and releasing mutexes. Any violation will
319# cause a panic as soon as the invalid locking condition is detected. If
320# CFG_UNWIND and CFG_LOCKDEP_RECORD_STACK are both enabled, the algorithm
321# records the call stacks when locks are taken, and prints them when a
322# potential deadlock is found.
323# Expect a significant performance impact when enabling this.
324CFG_LOCKDEP ?= n
325CFG_LOCKDEP_RECORD_STACK ?= y
326
327# BestFit algorithm in bget reduces the fragmentation of the heap when running
328# with the pager enabled or lockdep
329CFG_CORE_BGET_BESTFIT ?= $(call cfg-one-enabled, CFG_WITH_PAGER CFG_LOCKDEP)
330
331# Use the pager for user TAs
332CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER)
333
334# Enable support for detected undefined behavior in C
335# Uses a lot of memory, can't be enabled by default
336CFG_CORE_SANITIZE_UNDEFINED ?= n
337
338# Enable Kernel Address sanitizer, has a huge performance impact, uses a
339# lot of memory and need platform specific adaptations, can't be enabled by
340# default
341CFG_CORE_SANITIZE_KADDRESS ?= n
342
343# Add stack guards before/after stacks and periodically check them
344CFG_WITH_STACK_CANARIES ?= y
345
346# Use compiler instrumentation to troubleshoot stack overflows.
347# When enabled, most C functions check the stack pointer against the current
348# stack limits on entry and panic immediately if it is out of range.
349CFG_CORE_DEBUG_CHECK_STACKS ?= n
350
351# Device Tree support
352#
353# When CFG_DT is enabled core embeds the FDT library (libfdt) allowing
354# device tree blob (DTB) parsing from the core.
355#
356# When CFG_DT is enabled, the TEE _start function expects to find
357# the address of a DTB in register X2/R2 provided by the early boot stage
358# or value 0 if boot stage provides no DTB.
359#
360# When CFG_EMBED_DTB is enabled, CFG_EMBED_DTB_SOURCE_FILE shall define the
361# relative path of a DTS file located in core/arch/$(ARCH)/dts.
362# The DTS file is compiled into a DTB file which content is embedded in a
363# read-only section of the core.
364ifneq ($(strip $(CFG_EMBED_DTB_SOURCE_FILE)),)
365CFG_EMBED_DTB ?= y
366endif
367ifeq ($(CFG_EMBED_DTB),y)
368$(call force,CFG_DT,y)
369endif
370CFG_EMBED_DTB ?= n
371CFG_DT ?= n
372
373# Maximum size of the Device Tree Blob, has to be large enough to allow
374# editing of the supplied DTB.
375CFG_DTB_MAX_SIZE ?= 0x10000
376
377# Device Tree Overlay support.
378# This define enables support for an OP-TEE provided DTB overlay.
379# One of two modes is supported in this case:
380# 1. Append OP-TEE nodes to an existing DTB overlay located at CFG_DT_ADDR or
381#    passed in arg2
382# 2. Generate a new DTB overlay at CFG_DT_ADDR
383# A subsequent boot stage must then merge the generated overlay DTB into a main
384# DTB using the standard fdt_overlay_apply() method.
385CFG_EXTERNAL_DTB_OVERLAY ?= n
386
387# Enable core self tests and related pseudo TAs
388CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= y
389
390# This option enables OP-TEE to respond to SMP boot request: the Rich OS
391# issues this to request OP-TEE to release secondaries cores out of reset,
392# with specific core number and non-secure entry address.
393CFG_BOOT_SECONDARY_REQUEST ?= n
394
395# Default heap size for Core, 64 kB
396CFG_CORE_HEAP_SIZE ?= 65536
397
398# Default size of nexus heap. 16 kB. Used only if CFG_VIRTUALIZATION
399# is enabled
400CFG_CORE_NEX_HEAP_SIZE ?= 16384
401
402# TA profiling.
403# When this option is enabled, OP-TEE can execute Trusted Applications
404# instrumented with GCC's -pg flag and will output profiling information
405# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in
406# tee-supplicant)
407# Note: this does not work well with shared libraries at the moment for a
408# couple of reasons:
409# 1. The profiling code assumes a unique executable section in the TA VA space.
410# 2. The code used to detect at run time if the TA is intrumented assumes that
411# the TA is linked statically.
412CFG_TA_GPROF_SUPPORT ?= n
413
414# TA function tracing.
415# When this option is enabled, OP-TEE can execute Trusted Applications
416# instrumented with GCC's -pg flag and will output function tracing
417# information in ftrace.out format to /tmp/ftrace-<ta_uuid>.out (path is
418# defined in tee-supplicant)
419CFG_FTRACE_SUPPORT ?= n
420
421# How to make room when the function tracing buffer is full?
422# 'shift': shift the previously stored data by the amount needed in order
423#    to always keep the latest logs (slower, especially with big buffer sizes)
424# 'wrap': discard the previous data and start at the beginning of the buffer
425#    again (fast, but can result in a mostly empty buffer)
426# 'stop': stop logging new data
427CFG_FTRACE_BUF_WHEN_FULL ?= shift
428$(call cfg-check-value,FTRACE_BUF_WHEN_FULL,shift stop wrap)
429$(call force,_CFG_FTRACE_BUF_WHEN_FULL_$(CFG_FTRACE_BUF_WHEN_FULL),y)
430
431# Function tracing: unit to be used when displaying durations
432#  0: always display durations in microseconds
433# >0: if duration is greater or equal to the specified value (in microseconds),
434#     display it in milliseconds
435CFG_FTRACE_US_MS ?= 10000
436
437# Core syscall function tracing.
438# When this option is enabled, OP-TEE core is instrumented with GCC's
439# -pg flag and will output syscall function graph in user TA ftrace
440# buffer
441CFG_SYSCALL_FTRACE ?= n
442$(call cfg-depends-all,CFG_SYSCALL_FTRACE,CFG_FTRACE_SUPPORT)
443
444# Enable to compile user TA libraries with profiling (-pg).
445# Depends on CFG_TA_GPROF_SUPPORT or CFG_FTRACE_SUPPORT.
446CFG_ULIBS_MCOUNT ?= n
447# Profiling/tracing of syscall wrapper (utee_*)
448CFG_SYSCALL_WRAPPERS_MCOUNT ?= $(CFG_ULIBS_MCOUNT)
449
450ifeq (y,$(filter y,$(CFG_ULIBS_MCOUNT) $(CFG_SYSCALL_WRAPPERS_MCOUNT)))
451ifeq (,$(filter y,$(CFG_TA_GPROF_SUPPORT) $(CFG_FTRACE_SUPPORT)))
452$(error Cannot instrument user libraries if user mode profiling is disabled)
453endif
454endif
455
456# Build libutee, libutils, libmbedtls as shared libraries.
457# - Static libraries are still generated when this is enabled, but TAs will use
458# the shared libraries unless explicitly linked with the -static flag.
459# - Shared libraries are made of two files: for example, libutee is
460#   libutee.so and 527f1a47-b92c-4a74-95bd-72f19f4a6f74.ta. The '.so' file
461#   is a totally standard shared object, and should be used to link against.
462#   The '.ta' file is a signed version of the '.so' and should be installed
463#   in the same way as TAs so that they can be found at runtime.
464CFG_ULIBS_SHARED ?= n
465
466ifeq (yy,$(CFG_TA_GPROF_SUPPORT)$(CFG_ULIBS_SHARED))
467$(error CFG_TA_GPROF_SUPPORT and CFG_ULIBS_SHARED are currently incompatible)
468endif
469
470# CFG_GP_SOCKETS
471# Enable Global Platform Sockets support
472CFG_GP_SOCKETS ?= y
473
474# Enable Secure Data Path support in OP-TEE core (TA may be invoked with
475# invocation parameters referring to specific secure memories).
476CFG_SECURE_DATA_PATH ?= n
477
478# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y
479# TA binaries are stored encrypted in the REE FS and are protected by
480# metadata in secure storage.
481CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA)
482$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA))
483
484# Enable the pseudo TA that managages TA storage in secure storage
485CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA)
486$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA))
487
488# Enable the pseudo TA for misc. auxilary services, extending existing
489# GlobalPlatform Core API (for example, re-seeding RNG entropy pool etc.)
490CFG_SYSTEM_PTA ?= y
491
492# Enable the pseudo TA for enumeration of TEE based devices for the normal
493# world OS.
494CFG_DEVICE_ENUM_PTA ?= y
495
496# Define the number of cores per cluster used in calculating core position.
497# The cluster number is shifted by this value and added to the core ID,
498# so its value represents log2(cores/cluster).
499# Default is 2**(2) = 4 cores per cluster.
500CFG_CORE_CLUSTER_SHIFT ?= 2
501
502# Define the number of threads per core used in calculating processing
503# element's position. The core number is shifted by this value and added to
504# the thread ID, so its value represents log2(threads/core).
505# Default is 2**(0) = 1 threads per core.
506CFG_CORE_THREAD_SHIFT ?= 0
507
508# Enable support for dynamic shared memory (shared memory anywhere in
509# non-secure memory).
510CFG_CORE_DYN_SHM ?= y
511
512# Enable support for reserved shared memory (shared memory in a carved out
513# memory area).
514CFG_CORE_RESERVED_SHM ?= y
515
516# Enables support for larger physical addresses, that is, it will define
517# paddr_t as a 64-bit type.
518CFG_CORE_LARGE_PHYS_ADDR ?= n
519
520# Define the maximum size, in bits, for big numbers in the Internal Core API
521# Arithmetical functions. This does *not* influence the key size that may be
522# manipulated through the Cryptographic API.
523# Set this to a lower value to reduce the TA memory footprint.
524CFG_TA_BIGNUM_MAX_BITS ?= 2048
525
526# Define the maximum size, in bits, for big numbers in the TEE core (privileged
527# layer).
528# This value is an upper limit for the key size in any cryptographic algorithm
529# implemented by the TEE core.
530# Set this to a lower value to reduce the memory footprint.
531CFG_CORE_BIGNUM_MAX_BITS ?= 4096
532
533# Not used since libmpa was removed. Force the values to catch build scripts
534# that would set = n.
535$(call force,CFG_TA_MBEDTLS_MPI,y)
536$(call force,CFG_TA_MBEDTLS,y)
537
538# Compile the TA library mbedTLS with self test functions, the functions
539# need to be called to test anything
540CFG_TA_MBEDTLS_SELF_TEST ?= y
541
542# By default use tomcrypt as the main crypto lib providing an implementation
543# for the API in <crypto/crypto.h>
544# CFG_CRYPTOLIB_NAME is used as libname and
545# CFG_CRYPTOLIB_DIR is used as libdir when compiling the library
546#
547# It's also possible to configure to use mbedtls instead of tomcrypt.
548# Then the variables should be assigned as "CFG_CRYPTOLIB_NAME=mbedtls" and
549# "CFG_CRYPTOLIB_DIR=lib/libmbedtls" respectively.
550CFG_CRYPTOLIB_NAME ?= tomcrypt
551CFG_CRYPTOLIB_DIR ?= core/lib/libtomcrypt
552
553# Enable TEE_ALG_RSASSA_PKCS1_V1_5 algorithm for signing with PKCS#1 v1.5 EMSA
554# without ASN.1 around the hash.
555ifeq ($(CFG_CRYPTOLIB_NAME),tomcrypt)
556CFG_CRYPTO_RSASSA_NA1 ?= y
557endif
558
559# Not used since libmpa was removed. Force the value to catch build scripts
560# that would set = n.
561$(call force,CFG_CORE_MBEDTLS_MPI,y)
562
563# Enable virtualization support. OP-TEE will not work without compatible
564# hypervisor if this option is enabled.
565CFG_VIRTUALIZATION ?= n
566
567ifeq ($(CFG_VIRTUALIZATION),y)
568$(call force,CFG_CORE_RODATA_NOEXEC,y)
569$(call force,CFG_CORE_RWDATA_NOEXEC,y)
570
571# Default number of virtual guests
572CFG_VIRT_GUEST_COUNT ?= 2
573endif
574
575# Enables backwards compatible derivation of RPMB and SSK keys
576CFG_CORE_HUK_SUBKEY_COMPAT ?= y
577
578# Compress and encode conf.mk into the TEE core, and show the encoded string on
579# boot (with severity TRACE_INFO).
580CFG_SHOW_CONF_ON_BOOT ?= n
581
582# Enables support for passing a TPM Event Log stored in secure memory
583# to a TA, so a TPM Service could use it to extend any measurement
584# taken before the service was up and running.
585CFG_CORE_TPM_EVENT_LOG ?= n
586
587# When enabled, CFG_SCMI_MSG_DRIVERS embeds SCMI message drivers in the core.
588# Refer to the supported SCMI features embedded upon CFG_SCMI_MSG_*
589# CFG_SCMI_MSG_CLOCK embeds SCMI clock protocol support.
590# CFG_SCMI_MSG_RESET_DOMAIN embeds SCMI reset domain protocol support.
591# CFG_SCMI_MSG_SMT embeds SMT based message buffer of communication channel
592CFG_SCMI_MSG_DRIVERS ?= n
593CFG_SCMI_MSG_CLOCK ?= n
594CFG_SCMI_MSG_RESET_DOMAIN ?= n
595CFG_SCMI_MSG_SMT ?= n
596