1# Default configuration values for OP-TEE core (all platforms). 2# 3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk. 4# Some subsystem-specific defaults are not here but rather in */sub.mk. 5# 6# Configuration values may be assigned from multiple sources. 7# From higher to lower priority: 8# 9# 1. Make arguments ('make CFG_FOO=bar...') 10# 2. The file specified by $(CFG_OPTEE_CONFIG) (if defined) 11# 3. The environment ('CFG_FOO=bar make...') 12# 4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk 13# 5. This file 14# 6. Subsystem-specific makefiles (*/sub.mk) 15# 16# Actual values used during the build are output to $(out-dir)/conf.mk 17# (CFG_* variables only). 18 19# Cross-compiler prefix and suffix 20CROSS_COMPILE ?= arm-linux-gnueabihf- 21CROSS_COMPILE32 ?= $(CROSS_COMPILE) 22CROSS_COMPILE64 ?= aarch64-linux-gnu- 23COMPILER ?= gcc 24 25# For convenience 26ifdef CFLAGS 27CFLAGS32 ?= $(CFLAGS) 28CFLAGS64 ?= $(CFLAGS) 29endif 30 31# Compiler warning level. 32# Supported values: undefined, 1, 2 and 3. 3 gives more warnings. 33WARNS ?= 3 34 35# Define NOWERROR=1 so that warnings are not treated as errors 36# NOWERROR=1 37 38# Define DEBUG=1 to compile without optimization (forces -O0) 39# DEBUG=1 40 41# If y, enable debug features of the TEE core (assertions and lock checks 42# are enabled, panic and assert messages are more verbose, data and prefetch 43# aborts show a stack dump). When disabled, the NDEBUG directive is defined 44# so assertions are disabled. 45CFG_TEE_CORE_DEBUG ?= y 46 47# Log levels for the TEE core and user-mode TAs 48# Defines which messages are displayed on the secure console 49# 0: none 50# 1: error 51# 2: error + warning 52# 3: error + warning + debug 53# 4: error + warning + debug + flow 54CFG_TEE_CORE_LOG_LEVEL ?= 1 55CFG_TEE_TA_LOG_LEVEL ?= 1 56 57# TA enablement 58# When defined to "y", TA traces are output according to 59# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all 60CFG_TEE_CORE_TA_TRACE ?= y 61 62# If y, enable the memory leak detection feature in the bget memory allocator. 63# When this feature is enabled, calling mdbg_check(1) will print a list of all 64# the currently allocated buffers and the location of the allocation (file and 65# line number). 66# Note: make sure the log level is high enough for the messages to show up on 67# the secure console! For instance: 68# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with: 69# $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3 70# - To debug TEE core allocations: build OP-TEE with: 71# $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3 72CFG_TEE_CORE_MALLOC_DEBUG ?= n 73CFG_TEE_TA_MALLOC_DEBUG ?= n 74 75# Mask to select which messages are prefixed with long debugging information 76# (severity, thread ID, component name, function name, line number) based on 77# the message level. If BIT(level) is set, the long prefix is shown. 78# Otherwise a short prefix is used (severity and component name only). 79# Levels: 0=none 1=error 2=info 3=debug 4=flow 80CFG_MSG_LONG_PREFIX_MASK ?= 0x1a 81 82# PRNG configuration 83# If CFG_WITH_SOFTWARE_PRNG is enabled, crypto provider provided 84# software PRNG implementation is used. 85# Otherwise, you need to implement hw_get_random_byte() for your platform 86CFG_WITH_SOFTWARE_PRNG ?= y 87 88# Number of threads 89CFG_NUM_THREADS ?= 2 90 91# API implementation version 92CFG_TEE_API_VERSION ?= GPD-1.1-dev 93 94# Implementation description (implementation-dependent) 95CFG_TEE_IMPL_DESCR ?= OPTEE 96 97# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal 98# World? 99CFG_OS_REV_REPORTS_GIT_SHA1 ?= y 100 101# Trusted OS implementation version 102TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || echo Unknown) 103ifeq ($(CFG_OS_REV_REPORTS_GIT_SHA1),y) 104TEE_IMPL_GIT_SHA1 := 0x$(shell git rev-parse --short=8 HEAD 2>/dev/null || echo 0) 105else 106TEE_IMPL_GIT_SHA1 := 0x0 107endif 108# The following values are not extracted from the "git describe" output because 109# we might be outside of a Git environment, or the tree may have been cloned 110# with limited depth not including any tag, so there is really no guarantee 111# that TEE_IMPL_VERSION contains the major and minor revision numbers. 112CFG_OPTEE_REVISION_MAJOR ?= 3 113CFG_OPTEE_REVISION_MINOR ?= 1 114 115# Trusted OS implementation manufacturer name 116CFG_TEE_MANUFACTURER ?= LINARO 117 118# Trusted firmware version 119CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF 120 121# Trusted OS implementation manufacturer name 122CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF 123 124# Rich Execution Environment (REE) file system support: normal world OS 125# provides the actual storage. 126# This is the default FS when enabled (i.e., the one used when 127# TEE_STORAGE_PRIVATE is passed to the trusted storage API) 128CFG_REE_FS ?= y 129 130# RPMB file system support 131CFG_RPMB_FS ?= n 132 133# Device identifier used when CFG_RPMB_FS = y. 134# The exact meaning of this value is platform-dependent. On Linux, the 135# tee-supplicant process will open /dev/mmcblk<id>rpmb 136CFG_RPMB_FS_DEV_ID ?= 0 137 138# Enables RPMB key programming by the TEE, in case the RPMB partition has not 139# been configured yet. 140# !!! Security warning !!! 141# Do *NOT* enable this in product builds, as doing so would allow the TEE to 142# leak the RPMB key. 143# This option is useful in the following situations: 144# - Testing 145# - RPMB key provisioning in a controlled environment (factory setup) 146CFG_RPMB_WRITE_KEY ?= n 147 148# Embed public part of this key in OP-TEE OS 149TA_SIGN_KEY ?= keys/default_ta.pem 150 151# Include lib/libutils/isoc in the build? Most platforms need this, but some 152# may not because they obtain the isoc functions from elsewhere 153CFG_LIBUTILS_WITH_ISOC ?= y 154 155# Enables floating point support for user TAs 156# ARM32: EABI defines both a soft-float ABI and a hard-float ABI, 157# hard-float is basically a super set of soft-float. Hard-float 158# requires all the support routines provided for soft-float, but the 159# compiler may choose to optimize to not use some of them and use 160# the floating-point registers instead. 161# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or 162# nothing with ` -mgeneral-regs-only`) 163# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types 164CFG_TA_FLOAT_SUPPORT ?= y 165 166# Stack unwinding: print a stack dump to the console on core or TA abort, or 167# when a TA panics. 168# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be 169# unwound (not paged TAs, however). 170# Note that 32-bit ARM code needs unwind tables for this to work, so enabling 171# this option will increase the size of the 32-bit TEE binary by a few KB. 172# Similarly, TAs have to be compiled with -funwind-tables (default when the 173# option is set) otherwise they can't be unwound. 174# Warning: since the unwind sequence for user-mode (TA) code is implemented in 175# the privileged layer of OP-TEE, enabling this feature will weaken the 176# user/kernel isolation. Therefore it should be disabled in release builds. 177ifeq ($(CFG_TEE_CORE_DEBUG),y) 178CFG_UNWIND ?= y 179endif 180 181# Enable support for dynamically loaded user TAs 182CFG_WITH_USER_TA ?= y 183 184# Load user TAs from the REE filesystem via tee-supplicant 185# There is currently no other alternative, but you may want to disable this in 186# case you implement your own TA store 187CFG_REE_FS_TA ?= y 188 189# Support for loading user TAs from a special section in the TEE binary. 190# Such TAs are available even before tee-supplicant is available (hence their 191# name), but note that many services exported to TAs may need tee-supplicant, 192# so early use is limited to a subset of the TEE Internal Core API (crypto...) 193# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF 194# file(s). For example: 195# $ make ... \ 196# EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \ 197# path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf" 198# Typical build steps: 199# $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries, 200# # headers, makefiles), ready to build TAs. 201# # CFG_EARLY_TA=y is optional, it prevents 202# # later library recompilations. 203# <build some TAs> 204# $ make EARLY_TA_PATHS=<paths> # Build OP-TEE and embbed the TA(s) 205ifneq ($(EARLY_TA_PATHS),) 206$(call force,CFG_EARLY_TA,y) 207else 208CFG_EARLY_TA ?= n 209endif 210ifeq ($(CFG_EARLY_TA),y) 211$(call force,CFG_ZLIB,y) 212endif 213 214# Support for dynamically linked user TAs 215CFG_TA_DYNLINK ?= y 216 217# Enable paging, requires SRAM, can't be enabled by default 218CFG_WITH_PAGER ?= n 219 220# Use the pager for user TAs 221CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER) 222 223# Enable support for detected undefined behavior in C 224# Uses a lot of memory, can't be enabled by default 225CFG_CORE_SANITIZE_UNDEFINED ?= n 226 227# Enable Kernel Address sanitizer, has a huge performance impact, uses a 228# lot of memory and need platform specific adaptations, can't be enabled by 229# default 230CFG_CORE_SANITIZE_KADDRESS ?= n 231 232# Device Tree support 233# When enabled, the TEE _start function expects to find the address of a 234# Device Tree Blob (DTB) in register r2. The DT parsing code relies on 235# libfdt. Currently only used to add the optee node and a reserved-memory 236# node for shared memory. 237CFG_DT ?= n 238 239# Maximum size of the Device Tree Blob, has to be large enough to allow 240# editing of the supplied DTB. 241CFG_DTB_MAX_SIZE ?= 0x10000 242 243# Enable core self tests and related pseudo TAs 244CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= y 245 246# This option enables OP-TEE to respond to SMP boot request: the Rich OS 247# issues this to request OP-TEE to release secondaries cores out of reset, 248# with specific core number and non-secure entry address. 249CFG_BOOT_SECONDARY_REQUEST ?= n 250 251# Default heap size for Core, 64 kB 252CFG_CORE_HEAP_SIZE ?= 65536 253 254# TA profiling. 255# When this option is enabled, OP-TEE can execute Trusted Applications 256# instrumented with GCC's -pg flag and will output profiling information 257# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in 258# tee-supplicant) 259CFG_TA_GPROF_SUPPORT ?= n 260 261# Enable to compile user TA libraries with profiling (-pg). 262# Depends on CFG_TA_GPROF_SUPPORT. 263CFG_ULIBS_GPROF ?= n 264 265ifeq ($(CFG_ULIBS_GPROF),y) 266ifneq ($(CFG_TA_GPROF_SUPPORT),y) 267$(error Cannot instrument user libraries if user mode profiling is disabled) 268endif 269endif 270 271# CFG_GP_SOCKETS 272# Enable Global Platform Sockets support 273CFG_GP_SOCKETS ?= y 274 275# Enable Secure Data Path support in OP-TEE core (TA may be invoked with 276# invocation parameters referring to specific secure memories). 277CFG_SECURE_DATA_PATH ?= n 278 279# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y 280# TA binaries are stored encrypted in the REE FS and are protected by 281# metadata in secure storage. 282CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA) 283$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA)) 284 285# Enable the pseudo TA that managages TA storage in secure storage 286CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA) 287$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA)) 288 289# Define the number of cores per cluster used in calculating core position. 290# The cluster number is shifted by this value and added to the core ID, 291# so its value represents log2(cores/cluster). 292# Default is 2**(2) = 4 cores per cluster. 293CFG_CORE_CLUSTER_SHIFT ?= 2 294 295# Do not report to NW that dynamic shared memory (shared memory outside 296# predefined region) is enabled. 297# Note that you can disable this feature for debug purposes. OP-TEE will not 298# report to Normal World that it support dynamic SHM. But, nevertheles it 299# will accept dynamic SHM buffers. 300CFG_DYN_SHM_CAP ?= y 301 302# Enables support for larger physical addresses, that is, it will define 303# paddr_t as a 64-bit type. 304CFG_CORE_LARGE_PHYS_ADDR ?= n 305 306# Define the maximum size, in bits, for big numbers in the Internal Core API 307# Arithmetical functions. This does *not* influence the key size that may be 308# manipulated through the Cryptographic API. 309# Set this to a lower value to reduce the TA memory footprint. 310CFG_TA_BIGNUM_MAX_BITS ?= 2048 311 312# Define the maximum size, in bits, for big numbers in the TEE core (privileged 313# layer). 314# This value is an upper limit for the key size in any cryptographic algorithm 315# implemented by the TEE core. 316# Set this to a lower value to reduce the memory footprint. 317CFG_CORE_BIGNUM_MAX_BITS ?= 4096 318