xref: /optee_os/mk/config.mk (revision 79f8990d9d28539864d8f97f9f1cb32e289e595f)
1# Default configuration values for OP-TEE core (all platforms).
2#
3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk.
4# Some subsystem-specific defaults are not here but rather in */sub.mk.
5#
6# Configuration values may be assigned from multiple sources.
7# From higher to lower priority:
8#
9#   1. Make arguments ('make CFG_FOO=bar...')
10#   2. The file specified by $(CFG_OPTEE_CONFIG) (if defined)
11#   3. The environment ('CFG_FOO=bar make...')
12#   4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk
13#   5. This file
14#   6. Subsystem-specific makefiles (*/sub.mk)
15#
16# Actual values used during the build are output to $(out-dir)/conf.mk
17# (CFG_* variables only).
18
19# Cross-compiler prefix and suffix
20CROSS_COMPILE ?= arm-linux-gnueabihf-
21CROSS_COMPILE32 ?= $(CROSS_COMPILE)
22CROSS_COMPILE64 ?= aarch64-linux-gnu-
23COMPILER ?= gcc
24
25# For convenience
26ifdef CFLAGS
27CFLAGS32 ?= $(CFLAGS)
28CFLAGS64 ?= $(CFLAGS)
29endif
30
31# Compiler warning level.
32# Supported values: undefined, 1, 2 and 3. 3 gives more warnings.
33WARNS ?= 3
34
35# Path to the Python interpreter used by the build system.
36# This variable is set to the default python3 interpreter in the user's
37# path. But build environments that require more explicit control can
38# set the path to a specific interpreter through this variable.
39PYTHON3 ?= python3
40
41# Define DEBUG=1 to compile without optimization (forces -O0)
42# DEBUG=1
43ifeq ($(DEBUG),1)
44# For backwards compatibility
45$(call force,CFG_CC_OPT_LEVEL,0)
46$(call force,CFG_DEBUG_INFO,y)
47endif
48
49# CFG_CC_OPT_LEVEL sets compiler optimization level passed with -O directive.
50# Optimize for size by default, usually gives good performance too.
51CFG_CC_OPT_LEVEL ?= s
52
53# Enabling CFG_DEBUG_INFO makes debug information embedded in core.
54CFG_DEBUG_INFO ?= y
55
56# If y, enable debug features of the TEE core (assertions and lock checks
57# are enabled, panic and assert messages are more verbose, data and prefetch
58# aborts show a stack dump). When disabled, the NDEBUG directive is defined
59# so assertions are disabled.
60CFG_TEE_CORE_DEBUG ?= y
61
62# Log levels for the TEE core. Defines which core messages are displayed
63# on the secure console. Disabling core log (level set to 0) also disables
64# logs from the TAs.
65# 0: none
66# 1: error
67# 2: error + info
68# 3: error + info + debug
69# 4: error + info + debug + flow
70CFG_TEE_CORE_LOG_LEVEL ?= 2
71
72# TA log level
73# If user-mode library libutils.a is built with CFG_TEE_TA_LOG_LEVEL=0,
74# TA tracing is disabled regardless of the value of CFG_TEE_TA_LOG_LEVEL
75# when the TA is built.
76CFG_TEE_TA_LOG_LEVEL ?= 1
77
78# TA enablement
79# When defined to "y", TA traces are output according to
80# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all
81CFG_TEE_CORE_TA_TRACE ?= y
82
83# If y, enable the memory leak detection feature in the bget memory allocator.
84# When this feature is enabled, calling mdbg_check(1) will print a list of all
85# the currently allocated buffers and the location of the allocation (file and
86# line number).
87# Note: make sure the log level is high enough for the messages to show up on
88# the secure console! For instance:
89# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with:
90#   $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3
91# - To debug TEE core allocations: build OP-TEE with:
92#   $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3
93CFG_TEE_CORE_MALLOC_DEBUG ?= n
94CFG_TEE_TA_MALLOC_DEBUG ?= n
95# Prints an error message and dumps the stack on failed memory allocations
96# using malloc() and friends.
97CFG_CORE_DUMP_OOM ?= $(CFG_TEE_CORE_MALLOC_DEBUG)
98
99# Mask to select which messages are prefixed with long debugging information
100# (severity, core ID, thread ID, component name, function name, line number)
101# based on the message level. If BIT(level) is set, the long prefix is shown.
102# Otherwise a short prefix is used (severity and component name only).
103# Levels: 0=none 1=error 2=info 3=debug 4=flow
104CFG_MSG_LONG_PREFIX_MASK ?= 0x1a
105
106# Number of threads
107CFG_NUM_THREADS ?= 2
108
109# API implementation version
110CFG_TEE_API_VERSION ?= GPD-1.1-dev
111
112# Implementation description (implementation-dependent)
113CFG_TEE_IMPL_DESCR ?= OPTEE
114
115# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal
116# World?
117CFG_OS_REV_REPORTS_GIT_SHA1 ?= y
118
119# The following values are not extracted from the "git describe" output because
120# we might be outside of a Git environment, or the tree may have been cloned
121# with limited depth not including any tag, so there is really no guarantee
122# that TEE_IMPL_VERSION contains the major and minor revision numbers.
123CFG_OPTEE_REVISION_MAJOR ?= 4
124CFG_OPTEE_REVISION_MINOR ?= 0
125CFG_OPTEE_REVISION_EXTRA ?=
126
127# Trusted OS implementation version
128TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || \
129		      echo Unknown_$(CFG_OPTEE_REVISION_MAJOR).$(CFG_OPTEE_REVISION_MINOR))$(CFG_OPTEE_REVISION_EXTRA)
130ifeq ($(CFG_OS_REV_REPORTS_GIT_SHA1),y)
131TEE_IMPL_GIT_SHA1 := 0x$(shell git rev-parse --short=8 HEAD 2>/dev/null || echo 0)
132else
133TEE_IMPL_GIT_SHA1 := 0x0
134endif
135
136# Trusted OS implementation manufacturer name
137CFG_TEE_MANUFACTURER ?= LINARO
138
139# Trusted firmware version
140CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF
141
142# Trusted OS implementation manufacturer name
143CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF
144
145# Rich Execution Environment (REE) file system support: normal world OS
146# provides the actual storage.
147# This is the default FS when enabled (i.e., the one used when
148# TEE_STORAGE_PRIVATE is passed to the trusted storage API)
149CFG_REE_FS ?= y
150
151# RPMB file system support
152CFG_RPMB_FS ?= n
153
154# Enable roll-back protection of REE file system using RPMB.
155# Roll-back protection only works if CFG_RPMB_FS = y.
156CFG_REE_FS_INTEGRITY_RPMB ?= $(CFG_RPMB_FS)
157$(eval $(call cfg-depends-all,CFG_REE_FS_INTEGRITY_RPMB,CFG_RPMB_FS))
158
159# Device identifier used when CFG_RPMB_FS = y.
160# The exact meaning of this value is platform-dependent. On Linux, the
161# tee-supplicant process will open /dev/mmcblk<id>rpmb
162CFG_RPMB_FS_DEV_ID ?= 0
163
164# This config variable determines the number of entries read in from RPMB at
165# once whenever a function traverses the RPMB FS. Increasing the default value
166# has the following consequences:
167# - More memory required on heap. A single FAT entry currently has a size of
168#   256 bytes.
169# - Potentially significant speed-ups for RPMB I/O. Depending on how many
170#   entries a function needs to traverse, the number of time-consuming RPMB
171#   read-in operations can be reduced.
172# Chosing a proper value is both platform- (available memory) and use-case-
173# dependent (potential number of FAT fs entries), so overwrite in platform
174# config files
175CFG_RPMB_FS_RD_ENTRIES ?= 8
176
177# Enables caching of FAT FS entries when set to a value greater than zero.
178# When enabled, the cache stores the first 'CFG_RPMB_FS_CACHE_ENTRIES' FAT FS
179# entries. The cache is populated when FAT FS entries are initially read in.
180# When traversing the FAT FS entries, we read from the cache instead of reading
181# in the entries from RPMB storage. Consequently, when a FAT FS entry is
182# written, the cache is updated. In scenarios where an estimate of the number
183# of FAT FS entries can be made, the cache may be specifically tailored to
184# store all entries. The caching can improve RPMB I/O at the cost
185# of additional memory.
186# Without caching, we temporarily require
187# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
188# while traversing the FAT FS (e.g. in read_fat).
189# For example 8*256 bytes = 2kB while in read_fat.
190# With caching, we constantly require up to
191# CFG_RPMB_FS_CACHE_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
192# depending on how many elements are in the cache, and additional temporary
193# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
194# in case the cache is too small to hold all elements when traversing.
195CFG_RPMB_FS_CACHE_ENTRIES ?= 0
196
197# Print RPMB data frames sent to and received from the RPMB device
198CFG_RPMB_FS_DEBUG_DATA ?= n
199
200# Clear RPMB content at cold boot
201CFG_RPMB_RESET_FAT ?= n
202
203# Use a hard coded RPMB key instead of deriving it from the platform HUK
204CFG_RPMB_TESTKEY ?= n
205
206# Enables RPMB key programming by the TEE, in case the RPMB partition has not
207# been configured yet.
208# !!! Security warning !!!
209# Do *NOT* enable this in product builds, as doing so would allow the TEE to
210# leak the RPMB key.
211# This option is useful in the following situations:
212# - Testing
213# - RPMB key provisioning in a controlled environment (factory setup)
214CFG_RPMB_WRITE_KEY ?= n
215
216_CFG_WITH_SECURE_STORAGE := $(call cfg-one-enabled,CFG_REE_FS CFG_RPMB_FS)
217
218# Signing key for OP-TEE TA's
219# When performing external HSM signing for TA's TA_SIGN_KEY can be set to dummy
220# key and then set TA_PUBLIC_KEY to match public key from the HSM.
221# TA_PUBLIC_KEY's public key will be embedded into OP-TEE OS.
222TA_SIGN_KEY ?= keys/default_ta.pem
223TA_PUBLIC_KEY ?= $(TA_SIGN_KEY)
224
225# Subkeys is a complement to the normal TA_SIGN_KEY where a subkey is used
226# to verify a TA instead. To sign a TA using a previously prepared subkey
227# two new options are added, TA_SUBKEY_ARGS and TA_SUBKEY_DEPS.  It is
228# typically used by assigning the following in the TA Makefile:
229# BINARY = <TA-uuid-string>
230# TA_SIGN_KEY = subkey.pem
231# TA_SUBKEY_ARGS = --subkey subkey.bin --name subkey_ta
232# TA_SUBKEY_DEPS = subkey.bin
233# See the documentation for more details on subkeys.
234
235# Include lib/libutils/isoc in the build? Most platforms need this, but some
236# may not because they obtain the isoc functions from elsewhere
237CFG_LIBUTILS_WITH_ISOC ?= y
238
239# Enables floating point support for user TAs
240# ARM32: EABI defines both a soft-float ABI and a hard-float ABI,
241#	 hard-float is basically a super set of soft-float. Hard-float
242#	 requires all the support routines provided for soft-float, but the
243#	 compiler may choose to optimize to not use some of them and use
244#	 the floating-point registers instead.
245# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or
246#	 nothing with ` -mgeneral-regs-only`)
247# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types
248CFG_TA_FLOAT_SUPPORT ?= y
249
250# Stack unwinding: print a stack dump to the console on core or TA abort, or
251# when a TA panics.
252# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be
253# unwound (not paged TAs, however).
254# Note that 32-bit ARM code needs unwind tables for this to work, so enabling
255# this option will increase the size of the 32-bit TEE binary by a few KB.
256# Similarly, TAs have to be compiled with -funwind-tables (default when the
257# option is set) otherwise they can't be unwound.
258# Warning: since the unwind sequence for user-mode (TA) code is implemented in
259# the privileged layer of OP-TEE, enabling this feature will weaken the
260# user/kernel isolation. Therefore it should be disabled in release builds.
261ifeq ($(CFG_TEE_CORE_DEBUG),y)
262CFG_UNWIND ?= y
263endif
264
265# Enable support for dynamically loaded user TAs
266CFG_WITH_USER_TA ?= y
267
268# Build user TAs included in this source tree
269CFG_BUILD_IN_TREE_TA ?= y
270
271# Choosing the architecture(s) of user-mode libraries (used by TAs)
272#
273# Platforms may define a list of supported architectures for user-mode code
274# by setting $(supported-ta-targets). Valid values are "ta_arm32", "ta_arm64",
275# "ta_arm32 ta_arm64" and "ta_arm64 ta_arm32".
276# $(supported-ta-targets) defaults to "ta_arm32" when the TEE core is 32-bits,
277# and "ta_arm32 ta_arm64" when it is 64-bits (that is, when CFG_ARM64_core=y).
278# The first entry in $(supported-ta-targets) has a special role, see
279# CFG_USER_TA_TARGET_<ta-name> below.
280#
281# CFG_USER_TA_TARGETS may be defined to restrict $(supported-ta-targets) or
282# change the order of the values.
283#
284# The list of TA architectures is ultimately stored in $(ta-targets).
285
286# CFG_USER_TA_TARGET_<ta-name> (for example, CFG_USER_TA_TARGET_avb), if
287# defined, selects the unique TA architecture mode for building the in-tree TA
288# <ta-name>. Can be either ta_arm32 or ta_arm64.
289# By default, in-tree TAs are built using the first architecture specified in
290# $(ta-targets).
291
292# Address Space Layout Randomization for user-mode Trusted Applications
293#
294# When this flag is enabled, the ELF loader will introduce a random offset
295# when mapping the application in user space. ASLR makes the exploitation of
296# memory corruption vulnerabilities more difficult.
297CFG_TA_ASLR ?= y
298
299# How much ASLR may shift the base address (in pages). The base address is
300# randomly shifted by an integer number of pages comprised between these two
301# values. Bigger ranges are more secure because they make the addresses harder
302# to guess at the expense of using more memory for the page tables.
303CFG_TA_ASLR_MIN_OFFSET_PAGES ?= 0
304CFG_TA_ASLR_MAX_OFFSET_PAGES ?= 128
305
306# Address Space Layout Randomization for TEE Core
307#
308# When this flag is enabled, the early init code will introduce a random
309# offset when mapping TEE Core. ASLR makes the exploitation of memory
310# corruption vulnerabilities more difficult.
311CFG_CORE_ASLR ?= y
312
313# Stack Protection for TEE Core
314# This flag enables the compiler stack protection mechanisms -fstack-protector.
315# It will check the stack canary value before returning from a function to
316# prevent buffer overflow attacks. Stack protector canary logic will be added
317# for vulnerable functions that contain:
318# - A character array larger than 8 bytes.
319# - An 8-bit integer array larger than 8 bytes.
320# - A call to alloca() with either a variable size or a constant size bigger
321#   than 8 bytes.
322CFG_CORE_STACK_PROTECTOR ?= n
323# This enable stack protector flag -fstack-protector-strong. Stack protector
324# canary logic will be added for vulnerable functions that contain:
325# - An array of any size and type.
326# - A call to alloca().
327# - A local variable that has its address taken.
328CFG_CORE_STACK_PROTECTOR_STRONG ?= y
329# This enable stack protector flag -fstack-protector-all. Stack protector canary
330# logic will be added to all functions regardless of their vulnerability.
331CFG_CORE_STACK_PROTECTOR_ALL ?= n
332# Stack Protection for TA
333CFG_TA_STACK_PROTECTOR ?= n
334CFG_TA_STACK_PROTECTOR_STRONG ?= y
335CFG_TA_STACK_PROTECTOR_ALL ?= n
336
337_CFG_CORE_STACK_PROTECTOR := $(call cfg-one-enabled, CFG_CORE_STACK_PROTECTOR \
338						     CFG_CORE_STACK_PROTECTOR_STRONG \
339						     CFG_CORE_STACK_PROTECTOR_ALL)
340_CFG_TA_STACK_PROTECTOR := $(call cfg-one-enabled, CFG_TA_STACK_PROTECTOR \
341						   CFG_TA_STACK_PROTECTOR_STRONG \
342						   CFG_TA_STACK_PROTECTOR_ALL)
343
344# Load user TAs from the REE filesystem via tee-supplicant
345CFG_REE_FS_TA ?= y
346
347# Pre-authentication of TA binaries loaded from the REE filesystem
348#
349# - If CFG_REE_FS_TA_BUFFERED=y: load TA binary into a temporary buffer in the
350#   "Secure DDR" pool, check the signature, then process the file only if it is
351#   valid.
352# - If disabled: hash the binaries as they are being processed and verify the
353#   signature as a last step.
354CFG_REE_FS_TA_BUFFERED ?= n
355$(eval $(call cfg-depends-all,CFG_REE_FS_TA_BUFFERED,CFG_REE_FS_TA))
356
357# When CFG_REE_FS=y:
358# Allow secure storage in the REE FS to be entirely deleted without causing
359# anti-rollback errors. That is, rm /data/tee/dirf.db or rm -rf /data/tee (or
360# whatever path is configured in tee-supplicant as CFG_TEE_FS_PARENT_PATH)
361# can be used to reset the secure storage to a clean, empty state.
362# Intended to be used for testing only since it weakens storage security.
363# Warning: If enabled for release build then it will break rollback protection
364# of TAs and the entire REE FS secure storage.
365CFG_REE_FS_ALLOW_RESET ?= n
366
367# Support for loading user TAs from a special section in the TEE binary.
368# Such TAs are available even before tee-supplicant is available (hence their
369# name), but note that many services exported to TAs may need tee-supplicant,
370# so early use is limited to a subset of the TEE Internal Core API (crypto...)
371# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF
372# file(s). For example:
373#   $ make ... \
374#     EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \
375#                     path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf"
376# Typical build steps:
377#   $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries,
378#                                    # headers, makefiles), ready to build TAs.
379#                                    # CFG_EARLY_TA=y is optional, it prevents
380#                                    # later library recompilations.
381#   <build some TAs>
382#   $ make EARLY_TA_PATHS=<paths>    # Build OP-TEE and embbed the TA(s)
383#
384# Another option is CFG_IN_TREE_EARLY_TAS which is used to point at
385# in-tree TAs. CFG_IN_TREE_EARLY_TAS is formatted as:
386# <name-of-ta>/<uuid>
387# for instance avb/023f8f1a-292a-432b-8fc4-de8471358067
388ifneq ($(EARLY_TA_PATHS)$(CFG_IN_TREE_EARLY_TAS),)
389$(call force,CFG_EARLY_TA,y)
390else
391CFG_EARLY_TA ?= n
392endif
393
394ifeq ($(CFG_EARLY_TA),y)
395$(call force,CFG_EMBEDDED_TS,y)
396endif
397
398ifneq ($(SP_PATHS),)
399$(call force,CFG_EMBEDDED_TS,y)
400else
401CFG_SECURE_PARTITION ?= n
402endif
403
404ifeq ($(CFG_SECURE_PARTITION),y)
405$(call force,CFG_EMBEDDED_TS,y)
406endif
407
408ifeq ($(CFG_EMBEDDED_TS),y)
409$(call force,CFG_ZLIB,y)
410endif
411
412# By default the early TAs are compressed in the TEE binary, it is possible to
413# not compress them with CFG_EARLY_TA_COMPRESS=n
414CFG_EARLY_TA_COMPRESS ?= y
415
416# Enable paging, requires SRAM, can't be enabled by default
417CFG_WITH_PAGER ?= n
418
419# Use the pager for user TAs
420CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER)
421
422# If paging of user TAs, that is, R/W paging default to enable paging of
423# TAG and IV in order to reduce heap usage.
424CFG_CORE_PAGE_TAG_AND_IV ?= $(CFG_PAGED_USER_TA)
425
426# Runtime lock dependency checker: ensures that a proper locking hierarchy is
427# used in the TEE core when acquiring and releasing mutexes. Any violation will
428# cause a panic as soon as the invalid locking condition is detected. If
429# CFG_UNWIND and CFG_LOCKDEP_RECORD_STACK are both enabled, the algorithm
430# records the call stacks when locks are taken, and prints them when a
431# potential deadlock is found.
432# Expect a significant performance impact when enabling this.
433CFG_LOCKDEP ?= n
434CFG_LOCKDEP_RECORD_STACK ?= y
435
436# BestFit algorithm in bget reduces the fragmentation of the heap when running
437# with the pager enabled or lockdep
438CFG_CORE_BGET_BESTFIT ?= $(call cfg-one-enabled, CFG_WITH_PAGER CFG_LOCKDEP)
439
440# Enable support for detected undefined behavior in C
441# Uses a lot of memory, can't be enabled by default
442CFG_CORE_SANITIZE_UNDEFINED ?= n
443
444# Enable Kernel Address sanitizer, has a huge performance impact, uses a
445# lot of memory and need platform specific adaptations, can't be enabled by
446# default
447CFG_CORE_SANITIZE_KADDRESS ?= n
448
449ifeq (y-y,$(CFG_CORE_SANITIZE_KADDRESS)-$(CFG_CORE_ASLR))
450$(error CFG_CORE_SANITIZE_KADDRESS and CFG_CORE_ASLR are not compatible)
451endif
452
453# Add stack guards before/after stacks and periodically check them
454CFG_WITH_STACK_CANARIES ?= y
455
456# Use compiler instrumentation to troubleshoot stack overflows.
457# When enabled, most C functions check the stack pointer against the current
458# stack limits on entry and panic immediately if it is out of range.
459CFG_CORE_DEBUG_CHECK_STACKS ?= n
460
461# Use when the default stack allocations are not sufficient.
462CFG_STACK_THREAD_EXTRA ?= 0
463CFG_STACK_TMP_EXTRA ?= 0
464
465# Device Tree support
466#
467# When CFG_DT is enabled core embeds the FDT library (libfdt) allowing
468# device tree blob (DTB) parsing from the core.
469#
470# When CFG_DT is enabled, the TEE _start function expects to find
471# the address of a DTB in register X2/R2 provided by the early boot stage
472# or value 0 if boot stage provides no DTB.
473#
474# When CFG_EXTERNAL_DT is enabled, the external device tree ABI is implemented
475# and the external device tree is expected to be used/modified. Its value
476# defaults to CFG_DT.
477#
478# When CFG_MAP_EXT_DT_SECURE is enabled the external device tree is expected to
479# be in the secure memory.
480#
481# When CFG_EMBED_DTB is enabled, CFG_EMBED_DTB_SOURCE_FILE shall define the
482# relative path of a DTS file located in core/arch/$(ARCH)/dts.
483# The DTS file is compiled into a DTB file which content is embedded in a
484# read-only section of the core.
485ifneq ($(strip $(CFG_EMBED_DTB_SOURCE_FILE)),)
486CFG_EMBED_DTB ?= y
487endif
488ifeq ($(filter y,$(CFG_EMBED_DTB) $(CFG_CORE_SEL1_SPMC) $(CFG_CORE_SEL2_SPMC) \
489		 $(CFG_CORE_EL3_SPMC)),y)
490$(call force,CFG_DT,y)
491endif
492CFG_EMBED_DTB ?= n
493CFG_DT ?= n
494CFG_EXTERNAL_DT ?= $(CFG_DT)
495CFG_MAP_EXT_DT_SECURE ?= n
496ifeq ($(CFG_MAP_EXT_DT_SECURE),y)
497$(call force,CFG_DT,y)
498endif
499
500# This option enables OP-TEE to support boot arguments handover via Transfer
501# List defined in Firmware Handoff specification.
502# Note: This is an experimental feature and incompatible ABI changes can be
503# expected. It should be off by default until Firmware Handoff specification
504# has a stable release.
505# This feature requires the support of Device Tree.
506CFG_TRANSFER_LIST ?= n
507ifeq ($(CFG_TRANSFER_LIST),y)
508$(call force,CFG_DT,y)
509$(call force,CFG_EXTERNAL_DT,y)
510$(call force,CFG_MAP_EXT_DT_SECURE,y)
511endif
512
513# Maximum size of the Device Tree Blob, has to be large enough to allow
514# editing of the supplied DTB.
515CFG_DTB_MAX_SIZE ?= 0x10000
516
517# Maximum size of the init info data passed to Secure Partitions.
518CFG_SP_INIT_INFO_MAX_SIZE ?= 0x1000
519
520# Device Tree Overlay support.
521# CFG_EXTERNAL_DTB_OVERLAY allows to append a DTB overlay into an existing
522# external DTB. The overlay is created when no valid DTB overlay is found.
523# CFG_GENERATE_DTB_OVERLAY allows to create a DTB overlay at external
524# DTB location.
525# External DTB location (physical address) is provided either by boot
526# argument arg2 or from CFG_DT_ADDR if defined.
527# A subsequent boot stage can then merge the generated overlay DTB into a main
528# DTB using the standard fdt_overlay_apply() method.
529CFG_EXTERNAL_DTB_OVERLAY ?= n
530CFG_GENERATE_DTB_OVERLAY ?= n
531
532ifeq (y-y,$(CFG_EXTERNAL_DTB_OVERLAY)-$(CFG_GENERATE_DTB_OVERLAY))
533$(error CFG_EXTERNAL_DTB_OVERLAY and CFG_GENERATE_DTB_OVERLAY are exclusive)
534endif
535_CFG_USE_DTB_OVERLAY := $(call cfg-one-enabled,CFG_EXTERNAL_DTB_OVERLAY \
536			  CFG_GENERATE_DTB_OVERLAY)
537
538# All embedded tests are supposed to be disabled by default, this flag
539# is used to control the default value of all other embedded tests
540CFG_ENABLE_EMBEDDED_TESTS ?= n
541
542# Enable core self tests and related pseudo TAs
543CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= $(CFG_ENABLE_EMBEDDED_TESTS)
544
545# Compiles bget_main_test() to be called from a test TA
546CFG_TA_BGET_TEST ?= $(CFG_ENABLE_EMBEDDED_TESTS)
547
548# CFG_DT_DRIVER_EMBEDDED_TEST when enabled embedded DT driver probing tests.
549# This also requires embedding a DTB with expected content.
550# Default disable CFG_DRIVERS_CLK_EARLY_PROBE to probe clocks as other drivers.
551# A probe deferral test mandates CFG_DRIVERS_DT_RECURSIVE_PROBE=n.
552CFG_DT_DRIVER_EMBEDDED_TEST ?= n
553ifeq ($(CFG_DT_DRIVER_EMBEDDED_TEST),y)
554CFG_DRIVERS_CLK ?= y
555CFG_DRIVERS_GPIO ?= y
556CFG_DRIVERS_RSTCTRL ?= y
557CFG_DRIVERS_CLK_EARLY_PROBE ?= n
558$(call force,CFG_DRIVERS_DT_RECURSIVE_PROBE,n,Mandated by CFG_DT_DRIVER_EMBEDDED_TEST)
559endif
560
561# CFG_WITH_STATS when enabled embeds PTA statistics service to allow non-secure
562# clients to retrieve debug and statistics information on core and loaded TAs.
563CFG_WITH_STATS ?= n
564
565# CFG_DRIVERS_DT_RECURSIVE_PROBE when enabled forces a recursive subnode
566# parsing in the embedded DTB for driver probing. The alternative is
567# an exploration based on compatible drivers found. It is default disabled.
568CFG_DRIVERS_DT_RECURSIVE_PROBE ?= n
569
570# This option enables OP-TEE to respond to SMP boot request: the Rich OS
571# issues this to request OP-TEE to release secondaries cores out of reset,
572# with specific core number and non-secure entry address.
573CFG_BOOT_SECONDARY_REQUEST ?= n
574
575# Default heap size for Core, 64 kB
576CFG_CORE_HEAP_SIZE ?= 65536
577
578# Default size of nexus heap. 16 kB. Used only if CFG_NS_VIRTUALIZATION
579# is enabled
580CFG_CORE_NEX_HEAP_SIZE ?= 16384
581
582# TA profiling.
583# When this option is enabled, OP-TEE can execute Trusted Applications
584# instrumented with GCC's -pg flag and will output profiling information
585# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in
586# tee-supplicant)
587# Note: this does not work well with shared libraries at the moment for a
588# couple of reasons:
589# 1. The profiling code assumes a unique executable section in the TA VA space.
590# 2. The code used to detect at run time if the TA is intrumented assumes that
591# the TA is linked statically.
592CFG_TA_GPROF_SUPPORT ?= n
593
594# TA function tracing.
595# When this option is enabled, OP-TEE can execute Trusted Applications
596# instrumented with GCC's -pg flag and will output function tracing
597# information for all functions compiled with -pg to
598# /tmp/ftrace-<ta_uuid>.out (path is defined in tee-supplicant).
599CFG_FTRACE_SUPPORT ?= n
600
601# Core syscall function tracing.
602# When this option is enabled, OP-TEE core is instrumented with GCC's
603# -pg flag and will output syscall function graph in user TA ftrace
604# buffer
605CFG_SYSCALL_FTRACE ?= n
606$(call cfg-depends-all,CFG_SYSCALL_FTRACE,CFG_FTRACE_SUPPORT)
607
608# Enable to compile user TA libraries with profiling (-pg).
609# Depends on CFG_TA_GPROF_SUPPORT or CFG_FTRACE_SUPPORT.
610CFG_ULIBS_MCOUNT ?= n
611# Profiling/tracing of syscall wrapper (utee_*)
612CFG_SYSCALL_WRAPPERS_MCOUNT ?= $(CFG_ULIBS_MCOUNT)
613
614ifeq (y,$(filter y,$(CFG_ULIBS_MCOUNT) $(CFG_SYSCALL_WRAPPERS_MCOUNT)))
615ifeq (,$(filter y,$(CFG_TA_GPROF_SUPPORT) $(CFG_FTRACE_SUPPORT)))
616$(error Cannot instrument user libraries if user mode profiling is disabled)
617endif
618endif
619
620# Build libutee, libutils, libmbedtls as shared libraries.
621# - Static libraries are still generated when this is enabled, but TAs will use
622# the shared libraries unless explicitly linked with the -static flag.
623# - Shared libraries are made of two files: for example, libutee is
624#   libutee.so and 527f1a47-b92c-4a74-95bd-72f19f4a6f74.ta. The '.so' file
625#   is a totally standard shared object, and should be used to link against.
626#   The '.ta' file is a signed version of the '.so' and should be installed
627#   in the same way as TAs so that they can be found at runtime.
628CFG_ULIBS_SHARED ?= n
629
630ifeq (y-y,$(CFG_TA_GPROF_SUPPORT)-$(CFG_ULIBS_SHARED))
631$(error CFG_TA_GPROF_SUPPORT and CFG_ULIBS_SHARED are currently incompatible)
632endif
633
634# CFG_GP_SOCKETS
635# Enable Global Platform Sockets support
636CFG_GP_SOCKETS ?= y
637
638# Enable Secure Data Path support in OP-TEE core (TA may be invoked with
639# invocation parameters referring to specific secure memories).
640CFG_SECURE_DATA_PATH ?= n
641
642# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y
643# TA binaries are stored encrypted in the REE FS and are protected by
644# metadata in secure storage.
645CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA)
646$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA))
647
648# Enable the pseudo TA that managages TA storage in secure storage
649CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA)
650$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA))
651
652# Enable the pseudo TA for misc. auxilary services, extending existing
653# GlobalPlatform TEE Internal Core API (for example, re-seeding RNG entropy
654# pool etc...)
655CFG_SYSTEM_PTA ?= $(CFG_WITH_USER_TA)
656$(eval $(call cfg-depends-all,CFG_SYSTEM_PTA,CFG_WITH_USER_TA))
657
658# Enable the pseudo TA for enumeration of TEE based devices for the normal
659# world OS.
660CFG_DEVICE_ENUM_PTA ?= y
661
662# The attestation pseudo TA provides an interface to request measurements of
663# a TA or the TEE binary.
664CFG_ATTESTATION_PTA ?= n
665$(eval $(call cfg-depends-all,CFG_ATTESTATION_PTA,_CFG_WITH_SECURE_STORAGE))
666
667# RSA key size (in bits) for the attestation PTA. Must be at least 528 given
668# other algorithm parameters (RSA PSS with SHA-256 and 32-byte salt), but
669# note that such a low value is not secure.
670# See https://tools.ietf.org/html/rfc8017#section-8.1.1 and
671# https://tools.ietf.org/html/rfc8017#section-9.1.1
672#  emLen >= hlen + sLen + 2 = 32 + 32 + 2 = 66
673#  emLen = ceil((modBits - 1) / 8) => emLen is the key size in bytes
674CFG_ATTESTATION_PTA_KEY_SIZE ?= 3072
675
676# Define the number of cores per cluster used in calculating core position.
677# The cluster number is shifted by this value and added to the core ID,
678# so its value represents log2(cores/cluster).
679# Default is 2**(2) = 4 cores per cluster.
680CFG_CORE_CLUSTER_SHIFT ?= 2
681
682# Define the number of threads per core used in calculating processing
683# element's position. The core number is shifted by this value and added to
684# the thread ID, so its value represents log2(threads/core).
685# Default is 2**(0) = 1 threads per core.
686CFG_CORE_THREAD_SHIFT ?= 0
687
688# Enable support for dynamic shared memory (shared memory anywhere in
689# non-secure memory).
690CFG_CORE_DYN_SHM ?= y
691
692# Enable support for reserved shared memory (shared memory in a carved out
693# memory area).
694CFG_CORE_RESERVED_SHM ?= y
695
696# Enables support for larger physical addresses, that is, it will define
697# paddr_t as a 64-bit type.
698CFG_CORE_LARGE_PHYS_ADDR ?= n
699
700# Define the maximum size, in bits, for big numbers in the Internal Core API
701# Arithmetical functions. This does *not* influence the key size that may be
702# manipulated through the Cryptographic API.
703# Set this to a lower value to reduce the TA memory footprint.
704CFG_TA_BIGNUM_MAX_BITS ?= 2048
705
706# Define the maximum size, in bits, for big numbers in the TEE core (privileged
707# layer).
708# This value is an upper limit for the key size in any cryptographic algorithm
709# implemented by the TEE core.
710# Set this to a lower value to reduce the memory footprint.
711CFG_CORE_BIGNUM_MAX_BITS ?= 4096
712
713# Not used since libmpa was removed. Force the values to catch build scripts
714# that would set = n.
715$(call force,CFG_TA_MBEDTLS_MPI,y)
716$(call force,CFG_TA_MBEDTLS,y)
717
718# Compile the TA library mbedTLS with self test functions, the functions
719# need to be called to test anything
720CFG_TA_MBEDTLS_SELF_TEST ?= y
721
722# By default use tomcrypt as the main crypto lib providing an implementation
723# for the API in <crypto/crypto.h>
724# CFG_CRYPTOLIB_NAME is used as libname and
725# CFG_CRYPTOLIB_DIR is used as libdir when compiling the library
726#
727# It's also possible to configure to use mbedtls instead of tomcrypt.
728# Then the variables should be assigned as "CFG_CRYPTOLIB_NAME=mbedtls" and
729# "CFG_CRYPTOLIB_DIR=lib/libmbedtls" respectively.
730CFG_CRYPTOLIB_NAME ?= tomcrypt
731CFG_CRYPTOLIB_DIR ?= core/lib/libtomcrypt
732
733# Not used since libmpa was removed. Force the value to catch build scripts
734# that would set = n.
735$(call force,CFG_CORE_MBEDTLS_MPI,y)
736
737# When enabled, CFG_NS_VIRTUALIZATION embeds support for virtualization in
738# the non-secure world. OP-TEE will not work without a compatible hypervisor
739# in the non-secure world if this option is enabled.
740#
741# CFG_VIRTUALIZATION served the same purpose as CFG_NS_VIRTUALIZATION but is
742# deprecated as the configuration switch name was ambiguous regarding which
743# world has virtualization enabled.
744ifneq (undefined,$(flavor CFG_VIRTUALIZATION))
745$(info WARNING: CFG_VIRTUALIZATION is deprecated, use CFG_NS_VIRTUALIZATION instead)
746CFG_NS_VIRTUALIZATION ?= $(CFG_VIRTUALIZATION)
747ifneq ($(CFG_NS_VIRTUALIZATION),$(CFG_VIRTUALIZATION))
748$(error Inconsistent CFG_NS_VIRTUALIZATION=$(CFG_NS_VIRTUALIZATION) and CFG_VIRTUALIZATION=$(CFG_VIRTUALIZATION))
749endif
750endif # CFG_VIRTUALIZATION defined
751CFG_NS_VIRTUALIZATION ?= n
752
753ifeq ($(CFG_NS_VIRTUALIZATION),y)
754$(call force,CFG_CORE_RODATA_NOEXEC,y)
755$(call force,CFG_CORE_RWDATA_NOEXEC,y)
756
757# Default number of virtual guests
758CFG_VIRT_GUEST_COUNT ?= 2
759endif
760
761# Enables backwards compatible derivation of RPMB and SSK keys
762CFG_CORE_HUK_SUBKEY_COMPAT ?= y
763
764# Use SoC specific tee_otp_get_die_id() implementation for SSK key generation.
765# This option depends on CFG_CORE_HUK_SUBKEY_COMPAT=y.
766CFG_CORE_HUK_SUBKEY_COMPAT_USE_OTP_DIE_ID ?= n
767
768# Compress and encode conf.mk into the TEE core, and show the encoded string on
769# boot (with severity TRACE_INFO).
770CFG_SHOW_CONF_ON_BOOT ?= n
771
772# Enables support for passing a TPM Event Log stored in secure memory
773# to a TA or FF-A SP, so a TPM Service could use it to extend any measurement
774# taken before the service was up and running.
775CFG_CORE_TPM_EVENT_LOG ?= n
776
777# When enabled, CFG_SCMI_MSG_DRIVERS embeds SCMI message drivers in the core.
778# Refer to the supported SCMI features embedded upon CFG_SCMI_MSG_*
779#
780# CFG_SCMI_MSG_CLOCK embeds SCMI clock protocol support.
781# CFG_SCMI_MSG_RESET_DOMAIN embeds SCMI reset domain protocol support.
782# CFG_SCMI_MSG_SMT embeds a SMT header in shared device memory buffers
783# CFG_SCMI_MSG_VOLTAGE_DOMAIN embeds SCMI voltage domain protocol support.
784# CFG_SCMI_MSG_SMT_FASTCALL_ENTRY embeds fastcall SMC entry with SMT memory
785# CFG_SCMI_MSG_SMT_INTERRUPT_ENTRY embeds interrupt entry with SMT memory
786# CFG_SCMI_MSG_SMT_THREAD_ENTRY embeds threaded entry with SMT memory
787# CFG_SCMI_MSG_SHM_MSG embeds a MSG header in cached shared memory buffer
788CFG_SCMI_MSG_DRIVERS ?= n
789ifeq ($(CFG_SCMI_MSG_DRIVERS),y)
790CFG_SCMI_MSG_CLOCK ?= n
791CFG_SCMI_MSG_RESET_DOMAIN ?= n
792CFG_SCMI_MSG_SHM_MSG ?= n
793CFG_SCMI_MSG_SMT ?= n
794CFG_SCMI_MSG_SMT_FASTCALL_ENTRY ?= n
795CFG_SCMI_MSG_SMT_INTERRUPT_ENTRY ?= n
796CFG_SCMI_MSG_SMT_THREAD_ENTRY ?= n
797CFG_SCMI_MSG_THREAD_ENTRY ?= n
798CFG_SCMI_MSG_VOLTAGE_DOMAIN ?= n
799$(eval $(call cfg-depends-all,CFG_SCMI_MSG_SMT_FASTCALL_ENTRY,CFG_SCMI_MSG_SMT))
800$(eval $(call cfg-depends-all,CFG_SCMI_MSG_SMT_INTERRUPT_ENTRY,CFG_SCMI_MSG_SMT))
801$(eval $(call cfg-depends-one,CFG_SCMI_MSG_SMT_THREAD_ENTRY,CFG_SCMI_MSG_SMT CFG_SCMI_MSG_SHM_MSG))
802ifeq ($(CFG_SCMI_MSG_SMT),y)
803_CFG_SCMI_PTA_SMT_HEADER := y
804endif
805ifeq ($(CFG_SCMI_MSG_SHM_MSG),y)
806_CFG_SCMI_PTA_MSG_HEADER := y
807endif
808endif
809
810# CFG_SCMI_SCPFW, when enabled, embeds the reference SCMI server implementation
811# from SCP-firmware package as an built-in SCMI stack in core. This
812# configuration mandates target product identifier is configured with
813# CFG_SCMI_SCPFW_PRODUCT and the SCP-firmware source tree path with
814# CFG_SCP_FIRMWARE.
815CFG_SCMI_SCPFW ?= n
816
817ifeq ($(CFG_SCMI_SCPFW),y)
818$(call force,CFG_SCMI_PTA,y,Required by CFG_SCMI_SCPFW)
819ifeq (,$(CFG_SCMI_SCPFW_PRODUCT))
820$(error CFG_SCMI_SCPFW=y requires CFG_SCMI_SCPFW_PRODUCT configuration)
821endif
822ifeq (,$(wildcard $(CFG_SCP_FIRMWARE)/CMakeLists.txt))
823$(error CFG_SCMI_SCPFW=y requires CFG_SCP_FIRMWARE configuration)
824endif
825endif #CFG_SCMI_SCPFW
826
827ifeq ($(CFG_SCMI_MSG_DRIVERS)-$(CFG_SCMI_SCPFW),y-y)
828$(error CFG_SCMI_MSG_DRIVERS=y and CFG_SCMI_SCPFW=y are mutually exclusive)
829endif
830
831# When enabled, CFG_SCMI_MSG_USE_CLK embeds SCMI clocks registering services for
832# the platform SCMI server and implements the platform plat_scmi_clock_*()
833# functions.
834CFG_SCMI_MSG_USE_CLK ?= n
835$(eval $(call cfg-depends-all,CFG_SCMI_MSG_USE_CLK,CFG_DRIVERS_CLK CFG_SCMI_MSG_DRIVERS))
836
837# Enable SCMI PTA interface for REE SCMI agents
838CFG_SCMI_PTA ?= n
839ifeq ($(CFG_SCMI_PTA),y)
840_CFG_SCMI_PTA_SMT_HEADER ?= n
841_CFG_SCMI_PTA_MSG_HEADER ?= n
842endif
843
844ifneq ($(CFG_STMM_PATH),)
845$(call force,CFG_WITH_STMM_SP,y)
846else
847CFG_WITH_STMM_SP ?= n
848endif
849ifeq ($(CFG_WITH_STMM_SP),y)
850$(call force,CFG_ZLIB,y)
851endif
852
853# When enabled checks that buffers passed to the GP Internal Core API
854# comply with the rules added as annotations as part of the definition of
855# the API. For example preventing buffers in non-secure shared memory when
856# not allowed.
857CFG_TA_STRICT_ANNOTATION_CHECKS ?= y
858
859# When enabled accepts the DES key sizes excluding parity bits as in
860# the GP Internal API Specification v1.0
861CFG_COMPAT_GP10_DES ?= y
862
863# Defines a limit for many levels TAs may call each others.
864CFG_CORE_MAX_SYSCALL_RECURSION ?= 4
865
866# Pseudo-TA to export hardware RNG output to Normal World
867# RNG characteristics are platform specific
868CFG_HWRNG_PTA ?= n
869ifeq ($(CFG_HWRNG_PTA),y)
870# Output rate of hw_get_random_bytes() in bytes per second, 0: not rate-limited
871CFG_HWRNG_RATE ?= 0
872# Quality/entropy of hw_get_random_bytes() per 1024 bits of output data, in bits
873ifeq (,$(CFG_HWRNG_QUALITY))
874$(error CFG_HWRNG_QUALITY not defined)
875endif
876endif
877
878# CFG_PREALLOC_RPC_CACHE, when enabled, makes core to preallocate
879# shared memory for each secure thread. When disabled, RPC shared
880# memory is released once the secure thread has completed is execution.
881ifeq ($(CFG_WITH_PAGER),y)
882CFG_PREALLOC_RPC_CACHE ?= n
883endif
884CFG_PREALLOC_RPC_CACHE ?= y
885
886# When enabled, CFG_DRIVERS_CLK embeds a clock framework in OP-TEE core.
887# This clock framework allows to describe clock tree and provides functions to
888# get and configure the clocks.
889# CFG_DRIVERS_CLK_DT embeds devicetree clock parsing support
890# CFG_DRIVERS_CLK_FIXED add support for "fixed-clock" compatible clocks
891# CFG_DRIVERS_CLK_EARLY_PROBE makes clocks probed at early_init initcall level.
892# CFG_DRIVERS_CLK_PRINT_TREE embeds a helper function to print the clock tree
893# state on OP-TEE core console with the debug trace level.
894CFG_DRIVERS_CLK ?= n
895CFG_DRIVERS_CLK_DT ?= $(call cfg-all-enabled,CFG_DRIVERS_CLK CFG_DT)
896CFG_DRIVERS_CLK_FIXED ?= $(CFG_DRIVERS_CLK_DT)
897CFG_DRIVERS_CLK_EARLY_PROBE ?= $(CFG_DRIVERS_CLK_DT)
898CFG_DRIVERS_CLK_PRINT_TREE ?= n
899
900$(eval $(call cfg-depends-all,CFG_DRIVERS_CLK_DT,CFG_DRIVERS_CLK CFG_DT))
901$(eval $(call cfg-depends-all,CFG_DRIVERS_CLK_FIXED,CFG_DRIVERS_CLK_DT))
902
903# When enabled, CFG_DRIVERS_RSTCTRL embeds a reset controller framework in
904# OP-TEE core to provide reset controls on subsystems of the devices.
905CFG_DRIVERS_RSTCTRL ?= n
906
907# When enabled, CFG_DRIVERS_GPIO embeds a GPIO controller framework in
908# OP-TEE core to provide GPIO support for drivers.
909CFG_DRIVERS_GPIO ?= n
910
911# When enabled, CFG_DRIVERS_I2C provides I2C controller and devices support.
912CFG_DRIVERS_I2C ?= n
913
914# When enabled, CFG_DRIVERS_PINCTRL embeds a pin muxing controller framework in
915# OP-TEE core to provide drivers a way to apply pin muxing configurations based
916# on device-tree.
917CFG_DRIVERS_PINCTRL ?= n
918
919# When enabled, CFG_DRIVERS_REGULATOR embeds a voltage regulator framework in
920# OP-TEE core to provide drivers a common regulator interface and describe
921# the regulators dependencies using an embedded device tree.
922#
923# When enabled, CFG_REGULATOR_FIXED embeds a voltage regulator driver for
924# DT compatible "regulator-fixed" devices.
925#
926# When enabled, CFG_REGULATOR_GPIO embeds a voltage regulator driver for
927# DT compatible "regulator-gpio" devices.
928#
929# CFG_DRIVERS_REGULATOR_PRINT_TREE embeds a helper function to print the
930# regulator tree state on OP-TEE core console with the info trace level.
931CFG_DRIVERS_REGULATOR ?= n
932CFG_DRIVERS_REGULATOR_PRINT_TREE ?= n
933CFG_REGULATOR_FIXED ?= n
934CFG_REGULATOR_GPIO ?= n
935
936$(eval $(call cfg-enable-all-depends,CFG_REGULATOR_FIXED, \
937	 CFG_DRIVERS_REGULATOR CFG_DT))
938$(eval $(call cfg-enable-all-depends,CFG_REGULATOR_GPIO, \
939	 CFG_DRIVERS_REGULATOR CFG_DT CFG_DRIVERS_GPIO))
940
941# When enabled, CFG_INSECURE permits insecure configuration of OP-TEE core
942# and shows a print (info level) when booting up the device that
943# indicates that the board runs a standard developer configuration.
944#
945# A developer configuration doesn't necessarily have to be secure. The intention
946# is that the one making products based on OP-TEE should override this flag in
947# plat-xxx/conf.mk for the platform they're basing their products on after
948# they've finalized implementing stubbed functionality (see OP-TEE
949# documentation/Porting guidelines) as well as vendor specific security
950# configuration.
951#
952# CFG_WARN_INSECURE served the same purpose as CFG_INSECURE but is deprecated.
953ifneq (undefined,$(flavor CFG_WARN_INSECURE))
954$(info WARNING: CFG_WARN_INSECURE is deprecated, use CFG_INSECURE instead)
955CFG_INSECURE ?= $(CFG_WARN_INSECURE)
956ifneq ($(CFG_INSECURE),$(CFG_WARN_INSECURE))
957$(error Inconsistent CFG_INSECURE=$(CFG_INSECURE) and CFG_WARN_INSECURE=$(CFG_WARN_INSECURE))
958endif
959endif # CFG_WARN_INSECURE defined
960CFG_INSECURE ?= y
961
962# Enables warnings for declarations mixed with statements
963CFG_WARN_DECL_AFTER_STATEMENT ?= y
964
965# Branch Target Identification (part of the ARMv8.5 Extensions) provides a
966# mechanism to limit the set of locations to which computed branch instructions
967# such as BR or BLR can jump. To make use of BTI in TEE core and ldelf on CPU's
968# that support it, enable this option. A GCC toolchain built with
969# --enable-standard-branch-protection is needed to use this option.
970CFG_CORE_BTI ?= n
971
972$(eval $(call cfg-depends-all,CFG_CORE_BTI,CFG_ARM64_core))
973
974# To make use of BTI in user space libraries and TA's on CPU's that support it,
975# enable this option.
976CFG_TA_BTI ?= $(CFG_CORE_BTI)
977
978$(eval $(call cfg-depends-all,CFG_TA_BTI,CFG_ARM64_core))
979
980ifeq (y-y,$(CFG_NS_VIRTUALIZATION)-$(call cfg-one-enabled, CFG_TA_BTI CFG_CORE_BTI))
981$(error CFG_NS_VIRTUALIZATION and BTI are currently incompatible)
982endif
983
984ifeq (y-y,$(CFG_PAGED_USER_TA)-$(CFG_TA_BTI))
985$(error CFG_PAGED_USER_TA and CFG_TA_BTI are currently incompatible)
986endif
987
988# Memory Tagging Extension (part of the ARMv8.5 Extensions) implements lock
989# and key access to memory. This is a hardware supported alternative to
990# CFG_CORE_SANITIZE_KADDRESS which covers both S-EL1 and S-EL0.
991CFG_MEMTAG ?= n
992
993$(eval $(call cfg-depends-all,CFG_MEMTAG,CFG_ARM64_core))
994ifeq (y-y,$(CFG_CORE_SANITIZE_KADDRESS)-$(CFG_MEMTAG))
995$(error CFG_CORE_SANITIZE_KADDRESS and CFG_MEMTAG are not compatible)
996endif
997ifeq (y-y,$(CFG_WITH_PAGER)-$(CFG_MEMTAG))
998$(error CFG_WITH_PAGER and CFG_MEMTAG are not compatible)
999endif
1000
1001# Privileged Access Never (PAN, part of the ARMv8.1 Extensions) can be
1002# used to restrict accesses to unprivileged memory from privileged mode.
1003# For RISC-V architecture, CSR {m|s}status.SUM bit is used to implement PAN.
1004CFG_PAN ?= n
1005
1006$(eval $(call cfg-depends-one,CFG_PAN,CFG_ARM64_core CFG_RV64_core CFG_RV32_core))
1007
1008ifeq ($(filter y, $(CFG_CORE_SEL1_SPMC) $(CFG_CORE_SEL2_SPMC) \
1009		  $(CFG_CORE_EL3_SPMC)),y)
1010# FF-A case, handled via the FF-A ABI
1011CFG_CORE_ASYNC_NOTIF ?= y
1012$(call force,_CFG_CORE_ASYNC_NOTIF_DEFAULT_IMPL,n)
1013else
1014# CFG_CORE_ASYNC_NOTIF is defined by the platform to enable support
1015# for sending asynchronous notifications to normal world.
1016# Interrupt ID must be configurged by the platform too. Currently is only
1017# CFG_CORE_ASYNC_NOTIF_GIC_INTID defined.
1018CFG_CORE_ASYNC_NOTIF ?= n
1019$(call force,_CFG_CORE_ASYNC_NOTIF_DEFAULT_IMPL,$(CFG_CORE_ASYNC_NOTIF))
1020endif
1021
1022$(eval $(call cfg-enable-all-depends,CFG_MEMPOOL_REPORT_LAST_OFFSET, \
1023	 CFG_WITH_STATS))
1024
1025# Pointer Authentication (part of ARMv8.3 Extensions) provides instructions
1026# for signing and authenticating pointers against secret keys. These can
1027# be used to mitigate ROP (Return oriented programming) attacks. This is
1028# currently done by instructing the compiler to add paciasp/autiasp at the
1029# begging and end of functions to sign and verify ELR.
1030#
1031# The CFG_CORE_PAUTH enables these instructions for the core parts
1032# executing at EL1, with one secret key per thread and one secret key per
1033# physical CPU.
1034#
1035# The CFG_TA_PAUTH option enables these instructions for TA's at EL0. When
1036# this option is enabled, TEE core will initialize secret keys per TA.
1037CFG_CORE_PAUTH ?= n
1038CFG_TA_PAUTH ?= $(CFG_CORE_PAUTH)
1039
1040$(eval $(call cfg-depends-all,CFG_CORE_PAUTH,CFG_ARM64_core))
1041$(eval $(call cfg-depends-all,CFG_TA_PAUTH,CFG_ARM64_core))
1042
1043ifeq (y-y,$(CFG_NS_VIRTUALIZATION)-$(CFG_CORE_PAUTH))
1044$(error CFG_NS_VIRTUALIZATION and CFG_CORE_PAUTH are currently incompatible)
1045endif
1046ifeq (y-y,$(CFG_NS_VIRTUALIZATION)-$(CFG_TA_PAUTH))
1047$(error CFG_NS_VIRTUALIZATION and CFG_TA_PAUTH are currently incompatible)
1048endif
1049
1050ifeq (y-y,$(CFG_TA_GPROF_SUPPORT)-$(CFG_TA_PAUTH))
1051$(error CFG_TA_GPROF_SUPPORT and CFG_TA_PAUTH are currently incompatible)
1052endif
1053
1054ifeq (y-y,$(CFG_FTRACE_SUPPORT)-$(CFG_TA_PAUTH))
1055$(error CFG_FTRACE_SUPPORT and CFG_TA_PAUTH are currently incompatible)
1056endif
1057
1058# Enable support for generic watchdog registration
1059# This watchdog will then be usable by non-secure world through SMC calls.
1060CFG_WDT ?= n
1061
1062# Enable watchdog SMC handling compatible with arm-smc-wdt Linux driver
1063CFG_WDT_SM_HANDLER ?= n
1064
1065$(eval $(call cfg-enable-all-depends,CFG_WDT_SM_HANDLER,CFG_WDT))
1066
1067# When CFG_WDT_SM_HANDLER=y, SMC function ID 0x82003D06 default implements
1068# arm-smc-wdt service. Platform can also override this ID with a platform
1069# specific SMC function ID to access arm-smc-wdt service thanks to
1070# optional config switch CFG_WDT_SM_HANDLER_ID.
1071CFG_WDT_SM_HANDLER_ID ?= 0x82003D06
1072
1073# Allow using the udelay/mdelay function for platforms without ARM generic timer
1074# extension. When set to 'n', the plat_get_freq() function must be defined by
1075# the platform code
1076CFG_CORE_HAS_GENERIC_TIMER ?= y
1077
1078# Enable RTC API
1079CFG_DRIVERS_RTC ?= n
1080
1081# Enable PTA for RTC access from non-secure world
1082CFG_RTC_PTA ?= n
1083
1084# Enable the FF-A SPMC tests in xtests
1085CFG_SPMC_TESTS ?= n
1086
1087# Allocate the translation tables needed to map the S-EL0 application
1088# loaded
1089CFG_CORE_PREALLOC_EL0_TBLS ?= n
1090ifeq (y-y,$(CFG_CORE_PREALLOC_EL0_TBLS)-$(CFG_WITH_PAGER))
1091$(error "CFG_WITH_PAGER can't support CFG_CORE_PREALLOC_EL0_TBLS")
1092endif
1093
1094# User TA runtime context dump.
1095# When this option is enabled, OP-TEE provides a debug method for
1096# developer to dump user TA's runtime context, including TA's heap stats.
1097# Developer can open a stats PTA session and then invoke command
1098# STATS_CMD_TA_STATS to get the context of loaded TAs.
1099CFG_TA_STATS ?= n
1100
1101# Enables best effort mitigations against fault injected when the hardware
1102# is tampered with. Details in lib/libutils/ext/include/fault_mitigation.h
1103CFG_FAULT_MITIGATION ?= y
1104
1105# Enables TEE Internal Core API v1.1 compatibility for in-tree TAs. Note
1106# that this doesn't affect libutee itself, it's only the TAs compiled with
1107# this set that are affected. Each out-of-tree must set this if to enable
1108# compatibility with version v1.1 as the value of this variable is not
1109# preserved in the TA dev-kit.
1110CFG_TA_OPTEE_CORE_API_COMPAT_1_1 ?= n
1111
1112# Change supported HMAC key size range, from 64 to 1024.
1113# This is needed to pass AOSP Keymaster VTS tests:
1114#   Link to tests : https://android.googlesource.com/platform/hardware/interfaces/+/master/keymaster/3.0/vts/functional/keymaster_hidl_hal_test.cpp
1115#   Module: VtsHalKeymasterV3_0TargetTest
1116#   Testcases: - PerInstance/SigningOperationsTest#
1117#              - PerInstance/NewKeyGenerationTest#
1118#              - PerInstance/ImportKeyTest#
1119#              - PerInstance/EncryptionOperationsTest#
1120#              - PerInstance/AttestationTest#
1121# Note that this violates GP requirements of HMAC size range.
1122CFG_HMAC_64_1024_RANGE ?= n
1123
1124# Enable a hardware pbkdf2 function
1125# By default use standard pbkdf2 implementation
1126CFG_CRYPTO_HW_PBKDF2 ?= n
1127$(eval $(call cfg-depends-all,CFG_CRYPTO_HW_PBKDF2,CFG_CRYPTO_PBKDF2))
1128
1129# CFG_HALT_CORES_ON_PANIC, when enabled, makes any call to panic() halt the
1130# other cores. The feature currently relies on GIC device to trap the other
1131# cores using an SGI interrupt specified by CFG_HALT_CORES_ON_PANIC_SGI.
1132CFG_HALT_CORES_ON_PANIC ?= n
1133CFG_HALT_CORES_ON_PANIC_SGI ?= 15
1134$(eval $(call cfg-depends-all,CFG_HALT_CORES_ON_PANIC,CFG_GIC))
1135