xref: /optee_os/mk/config.mk (revision 628a9a10ca369de28147b52b56e901bb2a0806f9)
1# Default configuration values for OP-TEE core (all platforms).
2#
3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk.
4# Some subsystem-specific defaults are not here but rather in */sub.mk.
5#
6# Configuration values may be assigned from multiple sources.
7# From higher to lower priority:
8#
9#   1. Make arguments ('make CFG_FOO=bar...')
10#   2. The file specified by $(CFG_OPTEE_CONFIG) (if defined)
11#   3. The environment ('CFG_FOO=bar make...')
12#   4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk
13#   5. This file
14#   6. Subsystem-specific makefiles (*/sub.mk)
15#
16# Actual values used during the build are output to $(out-dir)/conf.mk
17# (CFG_* variables only).
18
19# Cross-compiler prefix and suffix
20CROSS_COMPILE ?= arm-linux-gnueabihf-
21CROSS_COMPILE32 ?= $(CROSS_COMPILE)
22CROSS_COMPILE64 ?= aarch64-linux-gnu-
23COMPILER ?= gcc
24
25# For convenience
26ifdef CFLAGS
27CFLAGS32 ?= $(CFLAGS)
28CFLAGS64 ?= $(CFLAGS)
29endif
30
31# Compiler warning level.
32# Supported values: undefined, 1, 2 and 3. 3 gives more warnings.
33WARNS ?= 3
34
35# Define NOWERROR=1 so that warnings are not treated as errors
36# NOWERROR=1
37
38# Define DEBUG=1 to compile without optimization (forces -O0)
39# DEBUG=1
40
41# If y, enable debug features of the TEE core (assertions and lock checks
42# are enabled, panic and assert messages are more verbose, data and prefetch
43# aborts show a stack dump). When disabled, the NDEBUG directive is defined
44# so assertions are disabled.
45CFG_TEE_CORE_DEBUG ?= y
46
47# Log levels for the TEE core and user-mode TAs
48# Defines which messages are displayed on the secure console
49# 0: none
50# 1: error
51# 2: error + warning
52# 3: error + warning + debug
53# 4: error + warning + debug + flow
54CFG_TEE_CORE_LOG_LEVEL ?= 1
55CFG_TEE_TA_LOG_LEVEL ?= 1
56
57# TA enablement
58# When defined to "y", TA traces are output according to
59# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all
60CFG_TEE_CORE_TA_TRACE ?= y
61
62# If 1, enable debug features in TA memory allocation.
63# Debug features include check of buffer overflow, statistics, mark/check heap
64# feature.
65CFG_TEE_CORE_USER_MEM_DEBUG ?= 1
66
67# If y, enable the memory leak detection feature in the bget memory allocator.
68# When this feature is enabled, calling mdbg_check(1) will print a list of all
69# the currently allocated buffers and the location of the allocation (file and
70# line number).
71# Note: make sure the log level is high enough for the messages to show up on
72# the secure console! For instance:
73# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with:
74#   $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3
75# - To debug TEE core allocations: build OP-TEE with:
76#   $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3
77CFG_TEE_CORE_MALLOC_DEBUG ?= n
78CFG_TEE_TA_MALLOC_DEBUG ?= n
79
80# Mask to select which messages are prefixed with long debugging information
81# (severity, thread ID, component name, function name, line number) based on
82# the message level. If BIT(level) is set, the long prefix is shown.
83# Otherwise a short prefix is used (severity and component name only).
84# Levels: 0=none 1=error 2=info 3=debug 4=flow
85CFG_MSG_LONG_PREFIX_MASK ?= 0x1a
86
87# PRNG configuration
88# If CFG_WITH_SOFTWARE_PRNG is enabled, crypto provider provided
89# software PRNG implementation is used.
90# Otherwise, you need to implement hw_get_random_byte() for your platform
91CFG_WITH_SOFTWARE_PRNG ?= y
92
93# Number of threads
94CFG_NUM_THREADS ?= 2
95
96# API implementation version
97CFG_TEE_API_VERSION ?= GPD-1.1-dev
98
99# Implementation description (implementation-dependent)
100CFG_TEE_IMPL_DESCR ?= OPTEE
101
102# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal
103# World?
104CFG_OS_REV_REPORTS_GIT_SHA1 ?= y
105
106# Trusted OS implementation version
107TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || echo Unknown)
108ifeq ($(CFG_OS_REV_REPORTS_GIT_SHA1),y)
109TEE_IMPL_GIT_SHA1 := 0x$(shell git rev-parse --short=8 HEAD 2>/dev/null || echo 0)
110else
111TEE_IMPL_GIT_SHA1 := 0x0
112endif
113# The following values are not extracted from the "git describe" output because
114# we might be outside of a Git environment, or the tree may have been cloned
115# with limited depth not including any tag, so there is really no guarantee
116# that TEE_IMPL_VERSION contains the major and minor revision numbers.
117CFG_OPTEE_REVISION_MAJOR ?= 3
118CFG_OPTEE_REVISION_MINOR ?= 0
119
120# Trusted OS implementation manufacturer name
121CFG_TEE_MANUFACTURER ?= LINARO
122
123# Trusted firmware version
124CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF
125
126# Trusted OS implementation manufacturer name
127CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF
128
129# Rich Execution Environment (REE) file system support: normal world OS
130# provides the actual storage.
131# This is the default FS when enabled (i.e., the one used when
132# TEE_STORAGE_PRIVATE is passed to the trusted storage API)
133CFG_REE_FS ?= y
134
135# RPMB file system support
136CFG_RPMB_FS ?= n
137
138# Device identifier used when CFG_RPMB_FS = y.
139# The exact meaning of this value is platform-dependent. On Linux, the
140# tee-supplicant process will open /dev/mmcblk<id>rpmb
141CFG_RPMB_FS_DEV_ID ?= 0
142
143# Enables RPMB key programming by the TEE, in case the RPMB partition has not
144# been configured yet.
145# !!! Security warning !!!
146# Do *NOT* enable this in product builds, as doing so would allow the TEE to
147# leak the RPMB key.
148# This option is useful in the following situations:
149# - Testing
150# - RPMB key provisioning in a controlled environment (factory setup)
151CFG_RPMB_WRITE_KEY ?= n
152
153# Embed public part of this key in OP-TEE OS
154TA_SIGN_KEY ?= keys/default_ta.pem
155
156# Include lib/libutils/isoc in the build? Most platforms need this, but some
157# may not because they obtain the isoc functions from elsewhere
158CFG_LIBUTILS_WITH_ISOC ?= y
159
160# Enables floating point support for user TAs
161# ARM32: EABI defines both a soft-float ABI and a hard-float ABI,
162#	 hard-float is basically a super set of soft-float. Hard-float
163#	 requires all the support routines provided for soft-float, but the
164#	 compiler may choose to optimize to not use some of them and use
165#	 the floating-point registers instead.
166# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or
167#	 nothing with ` -mgeneral-regs-only`)
168# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types
169CFG_TA_FLOAT_SUPPORT ?= y
170
171# Stack unwinding: print a stack dump to the console on core or TA abort, or
172# when a TA panics.
173# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be
174# unwound (not paged TAs, however).
175# Note that 32-bit ARM code needs unwind tables for this to work, so enabling
176# this option will increase the size of the 32-bit TEE binary by a few KB.
177# Similarly, TAs have to be compiled with -funwind-tables (default when the
178# option is set) otherwise they can't be unwound.
179# Warning: since the unwind sequence for user-mode (TA) code is implemented in
180# the privileged layer of OP-TEE, enabling this feature will weaken the
181# user/kernel isolation. Therefore it should be disabled in release builds.
182ifeq ($(CFG_TEE_CORE_DEBUG),y)
183CFG_UNWIND ?= y
184endif
185
186# Enable support for dynamically loaded user TAs
187CFG_WITH_USER_TA ?= y
188
189# Load user TAs from the REE filesystem via tee-supplicant
190# There is currently no other alternative, but you may want to disable this in
191# case you implement your own TA store
192CFG_REE_FS_TA ?= y
193
194# Support for loading user TAs from a special section in the TEE binary.
195# Such TAs are available even before tee-supplicant is available (hence their
196# name), but note that many services exported to TAs may need tee-supplicant,
197# so early use is limited to a subset of the TEE Internal Core API (crypto...)
198# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF
199# file(s). For example:
200#   $ make ... \
201#     EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \
202#                     path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf"
203# Typical build steps:
204#   $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries,
205#                                    # headers, makefiles), ready to build TAs.
206#                                    # CFG_EARLY_TA=y is optional, it prevents
207#                                    # later library recompilations.
208#   <build some TAs>
209#   $ make EARLY_TA_PATHS=<paths>    # Build OP-TEE and embbed the TA(s)
210ifneq ($(EARLY_TA_PATHS),)
211$(call force,CFG_EARLY_TA,y)
212else
213CFG_EARLY_TA ?= n
214endif
215ifeq ($(CFG_EARLY_TA),y)
216$(call force,CFG_ZLIB,y)
217endif
218
219# Enable paging, requires SRAM, can't be enabled by default
220CFG_WITH_PAGER ?= n
221
222# Use the pager for user TAs
223CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER)
224
225# Enable support for detected undefined behavior in C
226# Uses a lot of memory, can't be enabled by default
227CFG_CORE_SANITIZE_UNDEFINED ?= n
228
229# Enable Kernel Address sanitizer, has a huge performance impact, uses a
230# lot of memory and need platform specific adaptations, can't be enabled by
231# default
232CFG_CORE_SANITIZE_KADDRESS ?= n
233
234# Device Tree support
235# When enabled, the TEE _start function expects to find the address of a
236# Device Tree Blob (DTB) in register r2. The DT parsing code relies on
237# libfdt.  Currently only used to add the optee node and a reserved-memory
238# node for shared memory.
239CFG_DT ?= n
240
241# Maximum size of the Device Tree Blob, has to be large enough to allow
242# editing of the supplied DTB.
243CFG_DTB_MAX_SIZE ?= 0x10000
244
245# Enable static TA and core self tests
246CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= y
247
248# This option enables OP-TEE to respond to SMP boot request: the Rich OS
249# issues this to request OP-TEE to release secondaries cores out of reset,
250# with specific core number and non-secure entry address.
251CFG_BOOT_SECONDARY_REQUEST ?= n
252
253# Default heap size for Core, 64 kB
254CFG_CORE_HEAP_SIZE ?= 65536
255
256# TA profiling.
257# When this option is enabled, OP-TEE can execute Trusted Applications
258# instrumented with GCC's -pg flag and will output profiling information
259# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in
260# tee-supplicant)
261CFG_TA_GPROF_SUPPORT ?= n
262
263# Enable to compile user TA libraries with profiling (-pg).
264# Depends on CFG_TA_GPROF_SUPPORT.
265CFG_ULIBS_GPROF ?= n
266
267ifeq ($(CFG_ULIBS_GPROF),y)
268ifneq ($(CFG_TA_GPROF_SUPPORT),y)
269$(error Cannot instrument user libraries if user mode profiling is disabled)
270endif
271endif
272
273# CFG_GP_SOCKETS
274# Enable Global Platform Sockets support
275CFG_GP_SOCKETS ?= y
276
277# Enable Secure Data Path support in OP-TEE core (TA may be invoked with
278# invocation parameters referring to specific secure memories).
279CFG_SECURE_DATA_PATH ?= n
280
281# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y
282# TA binaries are stored encrypted in the REE FS and are protected by
283# metadata in secure storage.
284CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA)
285$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA))
286
287# Enable the pseudo TA that managages TA storage in secure storage
288CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA)
289$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA))
290
291# Define the number of cores per cluster used in calculating core position.
292# The cluster number is shifted by this value and added to the core ID,
293# so its value represents log2(cores/cluster).
294# Default is 2**(2) = 4 cores per cluster.
295CFG_CORE_CLUSTER_SHIFT ?= 2
296
297# Do not report to NW that dynamic shared memory (shared memory outside
298# predefined region) is enabled.
299# Note that you can disable this feature for debug purposes. OP-TEE will not
300# report to Normal World that it support dynamic SHM. But, nevertheles it
301# will accept dynamic SHM buffers.
302CFG_DYN_SHM_CAP ?= y
303
304# Enables support for larger physical addresses, that is, it will define
305# paddr_t as a 64-bit type.
306CFG_CORE_LARGE_PHYS_ADDR ?= n
307