1# Default configuration values for OP-TEE core (all platforms). 2# 3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk. 4# Some subsystem-specific defaults are not here but rather in */sub.mk. 5# 6# Configuration values may be assigned from multiple sources. 7# From higher to lower priority: 8# 9# 1. Make arguments ('make CFG_FOO=bar...') 10# 2. The file specified by $(CFG_OPTEE_CONFIG) (if defined) 11# 3. The environment ('CFG_FOO=bar make...') 12# 4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk 13# 5. This file 14# 6. Subsystem-specific makefiles (*/sub.mk) 15# 16# Actual values used during the build are output to $(out-dir)/conf.mk 17# (CFG_* variables only). 18 19# Cross-compiler prefix and suffix 20CROSS_COMPILE ?= arm-linux-gnueabihf- 21CROSS_COMPILE32 ?= $(CROSS_COMPILE) 22CROSS_COMPILE64 ?= aarch64-linux-gnu- 23COMPILER ?= gcc 24 25# For convenience 26ifdef CFLAGS 27CFLAGS32 ?= $(CFLAGS) 28CFLAGS64 ?= $(CFLAGS) 29endif 30 31# Compiler warning level. 32# Supported values: undefined, 1, 2 and 3. 3 gives more warnings. 33WARNS ?= 3 34 35# Define NOWERROR=1 so that warnings are not treated as errors 36# NOWERROR=1 37 38# Define DEBUG=1 to compile without optimization (forces -O0) 39# DEBUG=1 40 41# If y, enable debug features of the TEE core (assertions and lock checks 42# are enabled, panic and assert messages are more verbose, data and prefetch 43# aborts show a stack dump). When disabled, the NDEBUG directive is defined 44# so assertions are disabled. 45CFG_TEE_CORE_DEBUG ?= y 46 47# Log levels for the TEE core and user-mode TAs 48# Defines which messages are displayed on the secure console 49# 0: none 50# 1: error 51# 2: error + warning 52# 3: error + warning + debug 53# 4: error + warning + debug + flow 54CFG_TEE_CORE_LOG_LEVEL ?= 1 55CFG_TEE_TA_LOG_LEVEL ?= 1 56 57# TA enablement 58# When defined to "y", TA traces are output according to 59# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all 60CFG_TEE_CORE_TA_TRACE ?= y 61 62# If 1, enable debug features in TA memory allocation. 63# Debug features include check of buffer overflow, statistics, mark/check heap 64# feature. 65CFG_TEE_CORE_USER_MEM_DEBUG ?= 1 66 67# If y, enable the memory leak detection feature in the bget memory allocator. 68# When this feature is enabled, calling mdbg_check(1) will print a list of all 69# the currently allocated buffers and the location of the allocation (file and 70# line number). 71# Note: make sure the log level is high enough for the messages to show up on 72# the secure console! For instance: 73# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with: 74# $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3 75# - To debug TEE core allocations: build OP-TEE with: 76# $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3 77CFG_TEE_CORE_MALLOC_DEBUG ?= n 78CFG_TEE_TA_MALLOC_DEBUG ?= n 79 80# Mask to select which messages are prefixed with long debugging information 81# (severity, thread ID, component name, function name, line number) based on 82# the message level. If BIT(level) is set, the long prefix is shown. 83# Otherwise a short prefix is used (severity and component name only). 84# Levels: 0=none 1=error 2=info 3=debug 4=flow 85CFG_MSG_LONG_PREFIX_MASK ?= 0x1a 86 87# PRNG configuration 88# If CFG_WITH_SOFTWARE_PRNG is enabled, crypto provider provided 89# software PRNG implementation is used. 90# Otherwise, you need to implement hw_get_random_byte() for your platform 91CFG_WITH_SOFTWARE_PRNG ?= y 92 93# Number of threads 94CFG_NUM_THREADS ?= 2 95 96# API implementation version 97CFG_TEE_API_VERSION ?= GPD-1.1-dev 98 99# Implementation description (implementation-dependent) 100CFG_TEE_IMPL_DESCR ?= OPTEE 101 102# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal 103# World? 104CFG_OS_REV_REPORTS_GIT_SHA1 ?= y 105 106# Trusted OS implementation version 107TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || echo Unknown) 108ifeq ($(CFG_OS_REV_REPORTS_GIT_SHA1),y) 109TEE_IMPL_GIT_SHA1 := 0x$(shell git rev-parse --short=8 HEAD 2>/dev/null || echo 0) 110else 111TEE_IMPL_GIT_SHA1 := 0x0 112endif 113# The following values are not extracted from the "git describe" output because 114# we might be outside of a Git environment, or the tree may have been cloned 115# with limited depth not including any tag, so there is really no guarantee 116# that TEE_IMPL_VERSION contains the major and minor revision numbers. 117CFG_OPTEE_REVISION_MAJOR ?= 3 118CFG_OPTEE_REVISION_MINOR ?= 0 119 120# Trusted OS implementation manufacturer name 121CFG_TEE_MANUFACTURER ?= LINARO 122 123# Trusted firmware version 124CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF 125 126# Trusted OS implementation manufacturer name 127CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF 128 129# Rich Execution Environment (REE) file system support: normal world OS 130# provides the actual storage. 131# This is the default FS when enabled (i.e., the one used when 132# TEE_STORAGE_PRIVATE is passed to the trusted storage API) 133CFG_REE_FS ?= y 134 135# RPMB file system support 136CFG_RPMB_FS ?= n 137 138# Device identifier used when CFG_RPMB_FS = y. 139# The exact meaning of this value is platform-dependent. On Linux, the 140# tee-supplicant process will open /dev/mmcblk<id>rpmb 141CFG_RPMB_FS_DEV_ID ?= 0 142 143# Enables RPMB key programming by the TEE, in case the RPMB partition has not 144# been configured yet. 145# !!! Security warning !!! 146# Do *NOT* enable this in product builds, as doing so would allow the TEE to 147# leak the RPMB key. 148# This option is useful in the following situations: 149# - Testing 150# - RPMB key provisioning in a controlled environment (factory setup) 151CFG_RPMB_WRITE_KEY ?= n 152 153# Embed public part of this key in OP-TEE OS 154TA_SIGN_KEY ?= keys/default_ta.pem 155 156# Include lib/libutils/isoc in the build? Most platforms need this, but some 157# may not because they obtain the isoc functions from elsewhere 158CFG_LIBUTILS_WITH_ISOC ?= y 159 160# Enables floating point support for user TAs 161# ARM32: EABI defines both a soft-float ABI and a hard-float ABI, 162# hard-float is basically a super set of soft-float. Hard-float 163# requires all the support routines provided for soft-float, but the 164# compiler may choose to optimize to not use some of them and use 165# the floating-point registers instead. 166# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or 167# nothing with ` -mgeneral-regs-only`) 168# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types 169CFG_TA_FLOAT_SUPPORT ?= y 170 171# Stack unwinding: print a stack dump to the console on core or TA abort, or 172# when a TA panics. 173# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be 174# unwound (not paged TAs, however). 175# Note that 32-bit ARM code needs unwind tables for this to work, so enabling 176# this option will increase the size of the 32-bit TEE binary by a few KB. 177# Similarly, TAs have to be compiled with -funwind-tables (default when the 178# option is set) otherwise they can't be unwound. 179# Warning: since the unwind sequence for user-mode (TA) code is implemented in 180# the privileged layer of OP-TEE, enabling this feature will weaken the 181# user/kernel isolation. Therefore it should be disabled in release builds. 182ifeq ($(CFG_TEE_CORE_DEBUG),y) 183CFG_UNWIND ?= y 184endif 185 186# Enable support for dynamically loaded user TAs 187CFG_WITH_USER_TA ?= y 188 189# Load user TAs from the REE filesystem via tee-supplicant 190# There is currently no other alternative, but you may want to disable this in 191# case you implement your own TA store 192CFG_REE_FS_TA ?= y 193 194# Support for loading user TAs from a special section in the TEE binary. 195# Such TAs are available even before tee-supplicant is available (hence their 196# name), but note that many services exported to TAs may need tee-supplicant, 197# so early use is limited to a subset of the TEE Internal Core API (crypto...) 198# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF 199# file(s). For example: 200# $ make ... \ 201# EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \ 202# path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf" 203# Typical build steps: 204# $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries, 205# # headers, makefiles), ready to build TAs. 206# # CFG_EARLY_TA=y is optional, it prevents 207# # later library recompilations. 208# <build some TAs> 209# $ make EARLY_TA_PATHS=<paths> # Build OP-TEE and embbed the TA(s) 210ifneq ($(EARLY_TA_PATHS),) 211$(call force,CFG_EARLY_TA,y) 212else 213CFG_EARLY_TA ?= n 214endif 215ifeq ($(CFG_EARLY_TA),y) 216$(call force,CFG_ZLIB,y) 217endif 218 219# Enable paging, requires SRAM, can't be enabled by default 220CFG_WITH_PAGER ?= n 221 222# Use the pager for user TAs 223CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER) 224 225# Enable support for detected undefined behavior in C 226# Uses a lot of memory, can't be enabled by default 227CFG_CORE_SANITIZE_UNDEFINED ?= n 228 229# Enable Kernel Address sanitizer, has a huge performance impact, uses a 230# lot of memory and need platform specific adaptations, can't be enabled by 231# default 232CFG_CORE_SANITIZE_KADDRESS ?= n 233 234# Device Tree support 235# When enabled, the TEE _start function expects to find the address of a 236# Device Tree Blob (DTB) in register r2. The DT parsing code relies on 237# libfdt. Currently only used to add the optee node and a reserved-memory 238# node for shared memory. 239CFG_DT ?= n 240 241# Maximum size of the Device Tree Blob, has to be large enough to allow 242# editing of the supplied DTB. 243CFG_DTB_MAX_SIZE ?= 0x10000 244 245# Enable static TA and core self tests 246CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= y 247 248# This option enables OP-TEE to respond to SMP boot request: the Rich OS 249# issues this to request OP-TEE to release secondaries cores out of reset, 250# with specific core number and non-secure entry address. 251CFG_BOOT_SECONDARY_REQUEST ?= n 252 253# Default heap size for Core, 64 kB 254CFG_CORE_HEAP_SIZE ?= 65536 255 256# TA profiling. 257# When this option is enabled, OP-TEE can execute Trusted Applications 258# instrumented with GCC's -pg flag and will output profiling information 259# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in 260# tee-supplicant) 261CFG_TA_GPROF_SUPPORT ?= n 262 263# Enable to compile user TA libraries with profiling (-pg). 264# Depends on CFG_TA_GPROF_SUPPORT. 265CFG_ULIBS_GPROF ?= n 266 267ifeq ($(CFG_ULIBS_GPROF),y) 268ifneq ($(CFG_TA_GPROF_SUPPORT),y) 269$(error Cannot instrument user libraries if user mode profiling is disabled) 270endif 271endif 272 273# CFG_GP_SOCKETS 274# Enable Global Platform Sockets support 275CFG_GP_SOCKETS ?= y 276 277# Enable Secure Data Path support in OP-TEE core (TA may be invoked with 278# invocation parameters referring to specific secure memories). 279CFG_SECURE_DATA_PATH ?= n 280 281# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y 282# TA binaries are stored encrypted in the REE FS and are protected by 283# metadata in secure storage. 284CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA) 285$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA)) 286 287# Enable the pseudo TA that managages TA storage in secure storage 288CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA) 289$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA)) 290 291# Define the number of cores per cluster used in calculating core position. 292# The cluster number is shifted by this value and added to the core ID, 293# so its value represents log2(cores/cluster). 294# Default is 2**(2) = 4 cores per cluster. 295CFG_CORE_CLUSTER_SHIFT ?= 2 296 297# Do not report to NW that dynamic shared memory (shared memory outside 298# predefined region) is enabled. 299# Note that you can disable this feature for debug purposes. OP-TEE will not 300# report to Normal World that it support dynamic SHM. But, nevertheles it 301# will accept dynamic SHM buffers. 302CFG_DYN_SHM_CAP ?= y 303 304# Enables support for larger physical addresses, that is, it will define 305# paddr_t as a 64-bit type. 306CFG_CORE_LARGE_PHYS_ADDR ?= n 307