xref: /optee_os/mk/config.mk (revision 4af447d4084e293800d4e463d65003c016b91f29)
1# Default configuration values for OP-TEE core (all platforms).
2#
3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk.
4# Some subsystem-specific defaults are not here but rather in */sub.mk.
5#
6# Configuration values may be assigned from multiple sources.
7# From higher to lower priority:
8#
9#   1. Make arguments ('make CFG_FOO=bar...')
10#   2. The file specified by $(CFG_OPTEE_CONFIG) (if defined)
11#   3. The environment ('CFG_FOO=bar make...')
12#   4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk
13#   5. This file
14#   6. Subsystem-specific makefiles (*/sub.mk)
15#
16# Actual values used during the build are output to $(out-dir)/conf.mk
17# (CFG_* variables only).
18
19# Cross-compiler prefix and suffix
20CROSS_COMPILE ?= arm-linux-gnueabihf-
21CROSS_COMPILE32 ?= $(CROSS_COMPILE)
22CROSS_COMPILE64 ?= aarch64-linux-gnu-
23COMPILER ?= gcc
24
25# For convenience
26ifdef CFLAGS
27CFLAGS32 ?= $(CFLAGS)
28CFLAGS64 ?= $(CFLAGS)
29endif
30
31# Compiler warning level.
32# Supported values: undefined, 1, 2 and 3. 3 gives more warnings.
33WARNS ?= 3
34
35# Path to the Python interpreter used by the build system.
36# This variable is set to the default python3 interpreter in the user's
37# path. But build environments that require more explicit control can
38# set the path to a specific interpreter through this variable.
39PYTHON3 ?= python3
40
41# Define DEBUG=1 to compile without optimization (forces -O0)
42# DEBUG=1
43
44# If y, enable debug features of the TEE core (assertions and lock checks
45# are enabled, panic and assert messages are more verbose, data and prefetch
46# aborts show a stack dump). When disabled, the NDEBUG directive is defined
47# so assertions are disabled.
48CFG_TEE_CORE_DEBUG ?= y
49
50# Log levels for the TEE core. Defines which core messages are displayed
51# on the secure console. Disabling core log (level set to 0) also disables
52# logs from the TAs.
53# 0: none
54# 1: error
55# 2: error + warning
56# 3: error + warning + debug
57# 4: error + warning + debug + flow
58CFG_TEE_CORE_LOG_LEVEL ?= 1
59
60# TA log level
61# If user-mode library libutils.a is built with CFG_TEE_TA_LOG_LEVEL=0,
62# TA tracing is disabled regardless of the value of CFG_TEE_TA_LOG_LEVEL
63# when the TA is built.
64CFG_TEE_TA_LOG_LEVEL ?= 1
65
66# TA enablement
67# When defined to "y", TA traces are output according to
68# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all
69CFG_TEE_CORE_TA_TRACE ?= y
70
71# If y, enable the memory leak detection feature in the bget memory allocator.
72# When this feature is enabled, calling mdbg_check(1) will print a list of all
73# the currently allocated buffers and the location of the allocation (file and
74# line number).
75# Note: make sure the log level is high enough for the messages to show up on
76# the secure console! For instance:
77# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with:
78#   $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3
79# - To debug TEE core allocations: build OP-TEE with:
80#   $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3
81CFG_TEE_CORE_MALLOC_DEBUG ?= n
82CFG_TEE_TA_MALLOC_DEBUG ?= n
83# Prints an error message and dumps the stack on failed memory allocations
84# using malloc() and friends.
85CFG_CORE_DUMP_OOM ?= $(CFG_TEE_CORE_MALLOC_DEBUG)
86
87# Mask to select which messages are prefixed with long debugging information
88# (severity, core ID, thread ID, component name, function name, line number)
89# based on the message level. If BIT(level) is set, the long prefix is shown.
90# Otherwise a short prefix is used (severity and component name only).
91# Levels: 0=none 1=error 2=info 3=debug 4=flow
92CFG_MSG_LONG_PREFIX_MASK ?= 0x1a
93
94# PRNG configuration
95# If CFG_WITH_SOFTWARE_PRNG is enabled, crypto provider provided
96# software PRNG implementation is used.
97# Otherwise, you need to implement hw_get_random_byte() for your platform
98CFG_WITH_SOFTWARE_PRNG ?= y
99
100# Number of threads
101CFG_NUM_THREADS ?= 2
102
103# API implementation version
104CFG_TEE_API_VERSION ?= GPD-1.1-dev
105
106# Implementation description (implementation-dependent)
107CFG_TEE_IMPL_DESCR ?= OPTEE
108
109# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal
110# World?
111CFG_OS_REV_REPORTS_GIT_SHA1 ?= y
112
113# The following values are not extracted from the "git describe" output because
114# we might be outside of a Git environment, or the tree may have been cloned
115# with limited depth not including any tag, so there is really no guarantee
116# that TEE_IMPL_VERSION contains the major and minor revision numbers.
117CFG_OPTEE_REVISION_MAJOR ?= 3
118CFG_OPTEE_REVISION_MINOR ?= 14
119
120# Trusted OS implementation version
121TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || \
122		      echo Unknown_$(CFG_OPTEE_REVISION_MAJOR).$(CFG_OPTEE_REVISION_MINOR))
123ifeq ($(CFG_OS_REV_REPORTS_GIT_SHA1),y)
124TEE_IMPL_GIT_SHA1 := 0x$(shell git rev-parse --short=8 HEAD 2>/dev/null || echo 0)
125else
126TEE_IMPL_GIT_SHA1 := 0x0
127endif
128
129# Trusted OS implementation manufacturer name
130CFG_TEE_MANUFACTURER ?= LINARO
131
132# Trusted firmware version
133CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF
134
135# Trusted OS implementation manufacturer name
136CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF
137
138# Rich Execution Environment (REE) file system support: normal world OS
139# provides the actual storage.
140# This is the default FS when enabled (i.e., the one used when
141# TEE_STORAGE_PRIVATE is passed to the trusted storage API)
142CFG_REE_FS ?= y
143
144# RPMB file system support
145CFG_RPMB_FS ?= n
146
147# Device identifier used when CFG_RPMB_FS = y.
148# The exact meaning of this value is platform-dependent. On Linux, the
149# tee-supplicant process will open /dev/mmcblk<id>rpmb
150CFG_RPMB_FS_DEV_ID ?= 0
151
152# This config variable determines the number of entries read in from RPMB at
153# once whenever a function traverses the RPMB FS. Increasing the default value
154# has the following consequences:
155# - More memory required on heap. A single FAT entry currently has a size of
156#   256 bytes.
157# - Potentially significant speed-ups for RPMB I/O. Depending on how many
158#   entries a function needs to traverse, the number of time-consuming RPMB
159#   read-in operations can be reduced.
160# Chosing a proper value is both platform- (available memory) and use-case-
161# dependent (potential number of FAT fs entries), so overwrite in platform
162# config files
163CFG_RPMB_FS_RD_ENTRIES ?= 8
164
165# Enables caching of FAT FS entries when set to a value greater than zero.
166# When enabled, the cache stores the first 'CFG_RPMB_FS_CACHE_ENTRIES' FAT FS
167# entries. The cache is populated when FAT FS entries are initially read in.
168# When traversing the FAT FS entries, we read from the cache instead of reading
169# in the entries from RPMB storage. Consequently, when a FAT FS entry is
170# written, the cache is updated. In scenarios where an estimate of the number
171# of FAT FS entries can be made, the cache may be specifically tailored to
172# store all entries. The caching can improve RPMB I/O at the cost
173# of additional memory.
174# Without caching, we temporarily require
175# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
176# while traversing the FAT FS (e.g. in read_fat).
177# For example 8*256 bytes = 2kB while in read_fat.
178# With caching, we constantly require up to
179# CFG_RPMB_FS_CACHE_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
180# depending on how many elements are in the cache, and additional temporary
181# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
182# in case the cache is too small to hold all elements when traversing.
183CFG_RPMB_FS_CACHE_ENTRIES ?= 0
184
185# Print RPMB data frames sent to and received from the RPMB device
186CFG_RPMB_FS_DEBUG_DATA ?= n
187
188# Clear RPMB content at cold boot
189CFG_RPMB_RESET_FAT ?= n
190
191# Use a hard coded RPMB key instead of deriving it from the platform HUK
192CFG_RPMB_TESTKEY ?= n
193
194# Enables RPMB key programming by the TEE, in case the RPMB partition has not
195# been configured yet.
196# !!! Security warning !!!
197# Do *NOT* enable this in product builds, as doing so would allow the TEE to
198# leak the RPMB key.
199# This option is useful in the following situations:
200# - Testing
201# - RPMB key provisioning in a controlled environment (factory setup)
202CFG_RPMB_WRITE_KEY ?= n
203
204# Signing key for OP-TEE TA's
205# When performing external HSM signing for TA's TA_SIGN_KEY can be set to dummy
206# key and then set TA_PUBLIC_KEY to match public key from the HSM.
207# TA_PUBLIC_KEY's public key will be embedded into OP-TEE OS.
208TA_SIGN_KEY ?= keys/default_ta.pem
209TA_PUBLIC_KEY ?= $(TA_SIGN_KEY)
210
211# Include lib/libutils/isoc in the build? Most platforms need this, but some
212# may not because they obtain the isoc functions from elsewhere
213CFG_LIBUTILS_WITH_ISOC ?= y
214
215# Enables floating point support for user TAs
216# ARM32: EABI defines both a soft-float ABI and a hard-float ABI,
217#	 hard-float is basically a super set of soft-float. Hard-float
218#	 requires all the support routines provided for soft-float, but the
219#	 compiler may choose to optimize to not use some of them and use
220#	 the floating-point registers instead.
221# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or
222#	 nothing with ` -mgeneral-regs-only`)
223# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types
224CFG_TA_FLOAT_SUPPORT ?= y
225
226# Stack unwinding: print a stack dump to the console on core or TA abort, or
227# when a TA panics.
228# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be
229# unwound (not paged TAs, however).
230# Note that 32-bit ARM code needs unwind tables for this to work, so enabling
231# this option will increase the size of the 32-bit TEE binary by a few KB.
232# Similarly, TAs have to be compiled with -funwind-tables (default when the
233# option is set) otherwise they can't be unwound.
234# Warning: since the unwind sequence for user-mode (TA) code is implemented in
235# the privileged layer of OP-TEE, enabling this feature will weaken the
236# user/kernel isolation. Therefore it should be disabled in release builds.
237ifeq ($(CFG_TEE_CORE_DEBUG),y)
238CFG_UNWIND ?= y
239endif
240
241# Enable support for dynamically loaded user TAs
242CFG_WITH_USER_TA ?= y
243
244# Choosing the architecture(s) of user-mode libraries (used by TAs)
245#
246# Platforms may define a list of supported architectures for user-mode code
247# by setting $(supported-ta-targets). Valid values are "ta_arm32", "ta_arm64",
248# "ta_arm32 ta_arm64" and "ta_arm64 ta_arm32".
249# $(supported-ta-targets) defaults to "ta_arm32" when the TEE core is 32-bits,
250# and "ta_arm32 ta_arm64" when it is 64-bits (that is, when CFG_ARM64_core=y).
251# The first entry in $(supported-ta-targets) has a special role, see
252# CFG_USER_TA_TARGET_<ta-name> below.
253#
254# CFG_USER_TA_TARGETS may be defined to restrict $(supported-ta-targets) or
255# change the order of the values.
256#
257# The list of TA architectures is ultimately stored in $(ta-targets).
258
259# CFG_USER_TA_TARGET_<ta-name> (for example, CFG_USER_TA_TARGET_avb), if
260# defined, selects the unique TA architecture mode for building the in-tree TA
261# <ta-name>. Can be either ta_arm32 or ta_arm64.
262# By default, in-tree TAs are built using the first architecture specified in
263# $(ta-targets).
264
265# Address Space Layout Randomization for user-mode Trusted Applications
266#
267# When this flag is enabled, the ELF loader will introduce a random offset
268# when mapping the application in user space. ASLR makes the exploitation of
269# memory corruption vulnerabilities more difficult.
270CFG_TA_ASLR ?= y
271
272# How much ASLR may shift the base address (in pages). The base address is
273# randomly shifted by an integer number of pages comprised between these two
274# values. Bigger ranges are more secure because they make the addresses harder
275# to guess at the expense of using more memory for the page tables.
276CFG_TA_ASLR_MIN_OFFSET_PAGES ?= 0
277CFG_TA_ASLR_MAX_OFFSET_PAGES ?= 128
278
279# Address Space Layout Randomization for TEE Core
280#
281# When this flag is enabled, the early init code will introduce a random
282# offset when mapping TEE Core. ASLR makes the exploitation of memory
283# corruption vulnerabilities more difficult.
284CFG_CORE_ASLR ?= y
285
286# Load user TAs from the REE filesystem via tee-supplicant
287CFG_REE_FS_TA ?= y
288
289# Pre-authentication of TA binaries loaded from the REE filesystem
290#
291# - If CFG_REE_FS_TA_BUFFERED=y: load TA binary into a temporary buffer in the
292#   "Secure DDR" pool, check the signature, then process the file only if it is
293#   valid.
294# - If disabled: hash the binaries as they are being processed and verify the
295#   signature as a last step.
296CFG_REE_FS_TA_BUFFERED ?= n
297$(eval $(call cfg-depends-all,CFG_REE_FS_TA_BUFFERED,CFG_REE_FS_TA))
298
299# When CFG_REE_FS=y and CFG_RPMB_FS=y:
300# Allow secure storage in the REE FS to be entirely deleted without causing
301# anti-rollback errors. That is, rm /data/tee/dirf.db or rm -rf /data/tee (or
302# whatever path is configured in tee-supplicant as CFG_TEE_FS_PARENT_PATH)
303# can be used to reset the secure storage to a clean, empty state.
304# Typically used for testing only since it weakens storage security.
305CFG_REE_FS_ALLOW_RESET ?= n
306
307# Support for loading user TAs from a special section in the TEE binary.
308# Such TAs are available even before tee-supplicant is available (hence their
309# name), but note that many services exported to TAs may need tee-supplicant,
310# so early use is limited to a subset of the TEE Internal Core API (crypto...)
311# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF
312# file(s). For example:
313#   $ make ... \
314#     EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \
315#                     path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf"
316# Typical build steps:
317#   $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries,
318#                                    # headers, makefiles), ready to build TAs.
319#                                    # CFG_EARLY_TA=y is optional, it prevents
320#                                    # later library recompilations.
321#   <build some TAs>
322#   $ make EARLY_TA_PATHS=<paths>    # Build OP-TEE and embbed the TA(s)
323#
324# Another option is CFG_IN_TREE_EARLY_TAS which is used to point at
325# in-tree TAs. CFG_IN_TREE_EARLY_TAS is formatted as:
326# <name-of-ta>/<uuid>
327# for instance avb/023f8f1a-292a-432b-8fc4-de8471358067
328ifneq ($(EARLY_TA_PATHS)$(CFG_IN_TREE_EARLY_TAS),)
329$(call force,CFG_EARLY_TA,y)
330else
331CFG_EARLY_TA ?= n
332endif
333
334ifeq ($(CFG_EARLY_TA),y)
335$(call force,CFG_EMBEDDED_TS,y)
336endif
337
338ifneq ($(SP_PATHS),)
339$(call force,CFG_EMBEDDED_TS,y)
340else
341CFG_SECURE_PARTITION ?= n
342endif
343
344ifeq ($(CFG_SECURE_PARTITION),y)
345$(call force,CFG_EMBEDDED_TS,y)
346endif
347
348ifeq ($(CFG_EMBEDDED_TS),y)
349$(call force,CFG_ZLIB,y)
350endif
351
352# By default the early TAs are compressed in the TEE binary, it is possible to
353# not compress them with CFG_EARLY_TA_COMPRESS=n
354CFG_EARLY_TA_COMPRESS ?= y
355
356# Enable paging, requires SRAM, can't be enabled by default
357CFG_WITH_PAGER ?= n
358
359# Use the pager for user TAs
360CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER)
361
362# If paging of user TAs, that is, R/W paging default to enable paging of
363# TAG and IV in order to reduce heap usage.
364CFG_CORE_PAGE_TAG_AND_IV ?= $(CFG_PAGED_USER_TA)
365
366# Runtime lock dependency checker: ensures that a proper locking hierarchy is
367# used in the TEE core when acquiring and releasing mutexes. Any violation will
368# cause a panic as soon as the invalid locking condition is detected. If
369# CFG_UNWIND and CFG_LOCKDEP_RECORD_STACK are both enabled, the algorithm
370# records the call stacks when locks are taken, and prints them when a
371# potential deadlock is found.
372# Expect a significant performance impact when enabling this.
373CFG_LOCKDEP ?= n
374CFG_LOCKDEP_RECORD_STACK ?= y
375
376# BestFit algorithm in bget reduces the fragmentation of the heap when running
377# with the pager enabled or lockdep
378CFG_CORE_BGET_BESTFIT ?= $(call cfg-one-enabled, CFG_WITH_PAGER CFG_LOCKDEP)
379
380# Enable support for detected undefined behavior in C
381# Uses a lot of memory, can't be enabled by default
382CFG_CORE_SANITIZE_UNDEFINED ?= n
383
384# Enable Kernel Address sanitizer, has a huge performance impact, uses a
385# lot of memory and need platform specific adaptations, can't be enabled by
386# default
387CFG_CORE_SANITIZE_KADDRESS ?= n
388
389# Add stack guards before/after stacks and periodically check them
390CFG_WITH_STACK_CANARIES ?= y
391
392# Use compiler instrumentation to troubleshoot stack overflows.
393# When enabled, most C functions check the stack pointer against the current
394# stack limits on entry and panic immediately if it is out of range.
395CFG_CORE_DEBUG_CHECK_STACKS ?= n
396
397# Use when the default stack allocations are not sufficient.
398CFG_STACK_THREAD_EXTRA ?= 0
399CFG_STACK_TMP_EXTRA ?= 0
400
401# Device Tree support
402#
403# When CFG_DT is enabled core embeds the FDT library (libfdt) allowing
404# device tree blob (DTB) parsing from the core.
405#
406# When CFG_DT is enabled, the TEE _start function expects to find
407# the address of a DTB in register X2/R2 provided by the early boot stage
408# or value 0 if boot stage provides no DTB.
409#
410# When CFG_EMBED_DTB is enabled, CFG_EMBED_DTB_SOURCE_FILE shall define the
411# relative path of a DTS file located in core/arch/$(ARCH)/dts.
412# The DTS file is compiled into a DTB file which content is embedded in a
413# read-only section of the core.
414ifneq ($(strip $(CFG_EMBED_DTB_SOURCE_FILE)),)
415CFG_EMBED_DTB ?= y
416endif
417ifeq ($(CFG_EMBED_DTB),y)
418$(call force,CFG_DT,y)
419endif
420CFG_EMBED_DTB ?= n
421CFG_DT ?= n
422
423# Maximum size of the Device Tree Blob, has to be large enough to allow
424# editing of the supplied DTB.
425CFG_DTB_MAX_SIZE ?= 0x10000
426
427# Device Tree Overlay support.
428# CFG_EXTERNAL_DTB_OVERLAY allows to append a DTB overlay into an existing
429# external DTB. The overlay is created when no valid DTB overlay is found.
430# CFG_GENERATE_DTB_OVERLAY allows to create a DTB overlay at external
431# DTB location.
432# External DTB location (physical address) is provided either by boot
433# argument arg2 or from CFG_DT_ADDR if defined.
434# A subsequent boot stage can then merge the generated overlay DTB into a main
435# DTB using the standard fdt_overlay_apply() method.
436CFG_EXTERNAL_DTB_OVERLAY ?= n
437CFG_GENERATE_DTB_OVERLAY ?= n
438
439ifeq (y-y,$(CFG_EXTERNAL_DTB_OVERLAY)-$(CFG_GENERATE_DTB_OVERLAY))
440$(error CFG_EXTERNAL_DTB_OVERLAY and CFG_GENERATE_DTB_OVERLAY are exclusive)
441endif
442_CFG_USE_DTB_OVERLAY := $(call cfg-one-enabled,CFG_EXTERNAL_DTB_OVERLAY \
443			  CFG_GENERATE_DTB_OVERLAY)
444
445# All embedded tests are supposed to be disabled by default, this flag
446# is used to control the default value of all other embedded tests
447CFG_ENABLE_EMBEDDED_TESTS ?= n
448
449# Enable core self tests and related pseudo TAs
450CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= $(CFG_ENABLE_EMBEDDED_TESTS)
451
452# Compiles bget_main_test() to be called from a test TA
453CFG_TA_BGET_TEST ?= $(CFG_ENABLE_EMBEDDED_TESTS)
454
455# This option enables OP-TEE to respond to SMP boot request: the Rich OS
456# issues this to request OP-TEE to release secondaries cores out of reset,
457# with specific core number and non-secure entry address.
458CFG_BOOT_SECONDARY_REQUEST ?= n
459
460# Default heap size for Core, 64 kB
461CFG_CORE_HEAP_SIZE ?= 65536
462
463# Default size of nexus heap. 16 kB. Used only if CFG_VIRTUALIZATION
464# is enabled
465CFG_CORE_NEX_HEAP_SIZE ?= 16384
466
467# TA profiling.
468# When this option is enabled, OP-TEE can execute Trusted Applications
469# instrumented with GCC's -pg flag and will output profiling information
470# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in
471# tee-supplicant)
472# Note: this does not work well with shared libraries at the moment for a
473# couple of reasons:
474# 1. The profiling code assumes a unique executable section in the TA VA space.
475# 2. The code used to detect at run time if the TA is intrumented assumes that
476# the TA is linked statically.
477CFG_TA_GPROF_SUPPORT ?= n
478
479# TA function tracing.
480# When this option is enabled, OP-TEE can execute Trusted Applications
481# instrumented with GCC's -pg flag and will output function tracing
482# information in ftrace.out format to /tmp/ftrace-<ta_uuid>.out (path is
483# defined in tee-supplicant)
484CFG_FTRACE_SUPPORT ?= n
485
486# How to make room when the function tracing buffer is full?
487# 'shift': shift the previously stored data by the amount needed in order
488#    to always keep the latest logs (slower, especially with big buffer sizes)
489# 'wrap': discard the previous data and start at the beginning of the buffer
490#    again (fast, but can result in a mostly empty buffer)
491# 'stop': stop logging new data
492CFG_FTRACE_BUF_WHEN_FULL ?= shift
493$(call cfg-check-value,FTRACE_BUF_WHEN_FULL,shift stop wrap)
494$(call force,_CFG_FTRACE_BUF_WHEN_FULL_$(CFG_FTRACE_BUF_WHEN_FULL),y)
495
496# Function tracing: unit to be used when displaying durations
497#  0: always display durations in microseconds
498# >0: if duration is greater or equal to the specified value (in microseconds),
499#     display it in milliseconds
500CFG_FTRACE_US_MS ?= 10000
501
502# Core syscall function tracing.
503# When this option is enabled, OP-TEE core is instrumented with GCC's
504# -pg flag and will output syscall function graph in user TA ftrace
505# buffer
506CFG_SYSCALL_FTRACE ?= n
507$(call cfg-depends-all,CFG_SYSCALL_FTRACE,CFG_FTRACE_SUPPORT)
508
509# Enable to compile user TA libraries with profiling (-pg).
510# Depends on CFG_TA_GPROF_SUPPORT or CFG_FTRACE_SUPPORT.
511CFG_ULIBS_MCOUNT ?= n
512# Profiling/tracing of syscall wrapper (utee_*)
513CFG_SYSCALL_WRAPPERS_MCOUNT ?= $(CFG_ULIBS_MCOUNT)
514
515ifeq (y,$(filter y,$(CFG_ULIBS_MCOUNT) $(CFG_SYSCALL_WRAPPERS_MCOUNT)))
516ifeq (,$(filter y,$(CFG_TA_GPROF_SUPPORT) $(CFG_FTRACE_SUPPORT)))
517$(error Cannot instrument user libraries if user mode profiling is disabled)
518endif
519endif
520
521# Build libutee, libutils, libmbedtls as shared libraries.
522# - Static libraries are still generated when this is enabled, but TAs will use
523# the shared libraries unless explicitly linked with the -static flag.
524# - Shared libraries are made of two files: for example, libutee is
525#   libutee.so and 527f1a47-b92c-4a74-95bd-72f19f4a6f74.ta. The '.so' file
526#   is a totally standard shared object, and should be used to link against.
527#   The '.ta' file is a signed version of the '.so' and should be installed
528#   in the same way as TAs so that they can be found at runtime.
529CFG_ULIBS_SHARED ?= n
530
531ifeq (y-y,$(CFG_TA_GPROF_SUPPORT)-$(CFG_ULIBS_SHARED))
532$(error CFG_TA_GPROF_SUPPORT and CFG_ULIBS_SHARED are currently incompatible)
533endif
534
535# CFG_GP_SOCKETS
536# Enable Global Platform Sockets support
537CFG_GP_SOCKETS ?= y
538
539# Enable Secure Data Path support in OP-TEE core (TA may be invoked with
540# invocation parameters referring to specific secure memories).
541CFG_SECURE_DATA_PATH ?= n
542
543# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y
544# TA binaries are stored encrypted in the REE FS and are protected by
545# metadata in secure storage.
546CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA)
547$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA))
548
549# Enable the pseudo TA that managages TA storage in secure storage
550CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA)
551$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA))
552
553# Enable the pseudo TA for misc. auxilary services, extending existing
554# GlobalPlatform Core API (for example, re-seeding RNG entropy pool etc.)
555CFG_SYSTEM_PTA ?= y
556
557# Enable the pseudo TA for enumeration of TEE based devices for the normal
558# world OS.
559CFG_DEVICE_ENUM_PTA ?= y
560
561# Define the number of cores per cluster used in calculating core position.
562# The cluster number is shifted by this value and added to the core ID,
563# so its value represents log2(cores/cluster).
564# Default is 2**(2) = 4 cores per cluster.
565CFG_CORE_CLUSTER_SHIFT ?= 2
566
567# Define the number of threads per core used in calculating processing
568# element's position. The core number is shifted by this value and added to
569# the thread ID, so its value represents log2(threads/core).
570# Default is 2**(0) = 1 threads per core.
571CFG_CORE_THREAD_SHIFT ?= 0
572
573# Enable support for dynamic shared memory (shared memory anywhere in
574# non-secure memory).
575CFG_CORE_DYN_SHM ?= y
576
577# Enable support for reserved shared memory (shared memory in a carved out
578# memory area).
579CFG_CORE_RESERVED_SHM ?= y
580
581# Enables support for larger physical addresses, that is, it will define
582# paddr_t as a 64-bit type.
583CFG_CORE_LARGE_PHYS_ADDR ?= n
584
585# Define the maximum size, in bits, for big numbers in the Internal Core API
586# Arithmetical functions. This does *not* influence the key size that may be
587# manipulated through the Cryptographic API.
588# Set this to a lower value to reduce the TA memory footprint.
589CFG_TA_BIGNUM_MAX_BITS ?= 2048
590
591# Define the maximum size, in bits, for big numbers in the TEE core (privileged
592# layer).
593# This value is an upper limit for the key size in any cryptographic algorithm
594# implemented by the TEE core.
595# Set this to a lower value to reduce the memory footprint.
596CFG_CORE_BIGNUM_MAX_BITS ?= 4096
597
598# Not used since libmpa was removed. Force the values to catch build scripts
599# that would set = n.
600$(call force,CFG_TA_MBEDTLS_MPI,y)
601$(call force,CFG_TA_MBEDTLS,y)
602
603# Compile the TA library mbedTLS with self test functions, the functions
604# need to be called to test anything
605CFG_TA_MBEDTLS_SELF_TEST ?= y
606
607# By default use tomcrypt as the main crypto lib providing an implementation
608# for the API in <crypto/crypto.h>
609# CFG_CRYPTOLIB_NAME is used as libname and
610# CFG_CRYPTOLIB_DIR is used as libdir when compiling the library
611#
612# It's also possible to configure to use mbedtls instead of tomcrypt.
613# Then the variables should be assigned as "CFG_CRYPTOLIB_NAME=mbedtls" and
614# "CFG_CRYPTOLIB_DIR=lib/libmbedtls" respectively.
615CFG_CRYPTOLIB_NAME ?= tomcrypt
616CFG_CRYPTOLIB_DIR ?= core/lib/libtomcrypt
617
618# Not used since libmpa was removed. Force the value to catch build scripts
619# that would set = n.
620$(call force,CFG_CORE_MBEDTLS_MPI,y)
621
622# Enable virtualization support. OP-TEE will not work without compatible
623# hypervisor if this option is enabled.
624CFG_VIRTUALIZATION ?= n
625
626ifeq ($(CFG_VIRTUALIZATION),y)
627$(call force,CFG_CORE_RODATA_NOEXEC,y)
628$(call force,CFG_CORE_RWDATA_NOEXEC,y)
629
630# Default number of virtual guests
631CFG_VIRT_GUEST_COUNT ?= 2
632endif
633
634# Enables backwards compatible derivation of RPMB and SSK keys
635CFG_CORE_HUK_SUBKEY_COMPAT ?= y
636
637# Compress and encode conf.mk into the TEE core, and show the encoded string on
638# boot (with severity TRACE_INFO).
639CFG_SHOW_CONF_ON_BOOT ?= n
640
641# Enables support for passing a TPM Event Log stored in secure memory
642# to a TA, so a TPM Service could use it to extend any measurement
643# taken before the service was up and running.
644CFG_CORE_TPM_EVENT_LOG ?= n
645
646# When enabled, CFG_SCMI_MSG_DRIVERS embeds SCMI message drivers in the core.
647# Refer to the supported SCMI features embedded upon CFG_SCMI_MSG_*
648# CFG_SCMI_MSG_CLOCK embeds SCMI clock protocol support.
649# CFG_SCMI_MSG_RESET_DOMAIN embeds SCMI reset domain protocol support.
650# CFG_SCMI_MSG_SMT embeds SMT based message buffer of communication channel
651# CFG_SCMI_MSG_VOLTAGE_DOMAIN embeds SCMI voltage domain protocol support.
652CFG_SCMI_MSG_DRIVERS ?= n
653CFG_SCMI_MSG_CLOCK ?= n
654CFG_SCMI_MSG_RESET_DOMAIN ?= n
655CFG_SCMI_MSG_SMT ?= n
656CFG_SCMI_MSG_VOLTAGE_DOMAIN ?= n
657
658# Enable SCMI PTA interface for REE SCMI agents
659CFG_SCMI_PTA ?= n
660
661ifneq ($(CFG_STMM_PATH),)
662$(call force,CFG_WITH_STMM_SP,y)
663else
664CFG_WITH_STMM_SP ?= n
665endif
666ifeq ($(CFG_WITH_STMM_SP),y)
667$(call force,CFG_ZLIB,y)
668endif
669
670# When enabled checks that buffers passed to the GP Internal Core API
671# comply with the rules added as annotations as part of the definition of
672# the API. For example preventing buffers in non-secure shared memory when
673# not allowed.
674CFG_TA_STRICT_ANNOTATION_CHECKS ?= y
675
676# When enabled accepts the DES key sizes excluding parity bits as in
677# the GP Internal API Specification v1.0
678CFG_COMPAT_GP10_DES ?= y
679
680# Defines a limit for many levels TAs may call each others.
681CFG_CORE_MAX_SYSCALL_RECURSION ?= 4
682
683# Pseudo-TA to export hardware RNG output to Normal World
684# RNG characteristics are platform specific
685CFG_HWRNG_PTA ?= n
686ifeq ($(CFG_HWRNG_PTA),y)
687# Output rate of hw_get_random_bytes() in bytes per second, 0: not rate-limited
688CFG_HWRNG_RATE ?= 0
689# Quality/entropy of hw_get_random_bytes() per 1024 bits of output data, in bits
690ifeq (,$(CFG_HWRNG_QUALITY))
691$(error CFG_HWRNG_QUALITY not defined)
692endif
693endif
694