1# Default configuration values for OP-TEE core (all platforms). 2# 3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk. 4# Some subsystem-specific defaults are not here but rather in */sub.mk. 5# 6# Configuration values may be assigned from multiple sources. 7# From higher to lower priority: 8# 9# 1. Make arguments ('make CFG_FOO=bar...') 10# 2. The file specified by $(CFG_OPTEE_CONFIG) (if defined) 11# 3. The environment ('CFG_FOO=bar make...') 12# 4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk 13# 5. This file 14# 6. Subsystem-specific makefiles (*/sub.mk) 15# 16# Actual values used during the build are output to $(out-dir)/conf.mk 17# (CFG_* variables only). 18 19# Cross-compiler prefix and suffix 20CROSS_COMPILE ?= arm-linux-gnueabihf- 21CROSS_COMPILE32 ?= $(CROSS_COMPILE) 22CROSS_COMPILE64 ?= aarch64-linux-gnu- 23COMPILER ?= gcc 24 25# For convenience 26ifdef CFLAGS 27CFLAGS32 ?= $(CFLAGS) 28CFLAGS64 ?= $(CFLAGS) 29endif 30 31# Compiler warning level. 32# Supported values: undefined, 1, 2 and 3. 3 gives more warnings. 33WARNS ?= 3 34 35# Path to the Python interpreter used by the build system. 36# This variable is set to the default python3 interpreter in the user's 37# path. But build environments that require more explicit control can 38# set the path to a specific interpreter through this variable. 39PYTHON3 ?= python3 40 41# Define DEBUG=1 to compile without optimization (forces -O0) 42# DEBUG=1 43 44# If y, enable debug features of the TEE core (assertions and lock checks 45# are enabled, panic and assert messages are more verbose, data and prefetch 46# aborts show a stack dump). When disabled, the NDEBUG directive is defined 47# so assertions are disabled. 48CFG_TEE_CORE_DEBUG ?= y 49 50# Log levels for the TEE core. Defines which core messages are displayed 51# on the secure console. Disabling core log (level set to 0) also disables 52# logs from the TAs. 53# 0: none 54# 1: error 55# 2: error + warning 56# 3: error + warning + debug 57# 4: error + warning + debug + flow 58CFG_TEE_CORE_LOG_LEVEL ?= 1 59 60# TA log level 61# If user-mode library libutils.a is built with CFG_TEE_TA_LOG_LEVEL=0, 62# TA tracing is disabled regardless of the value of CFG_TEE_TA_LOG_LEVEL 63# when the TA is built. 64CFG_TEE_TA_LOG_LEVEL ?= 1 65 66# TA enablement 67# When defined to "y", TA traces are output according to 68# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all 69CFG_TEE_CORE_TA_TRACE ?= y 70 71# If y, enable the memory leak detection feature in the bget memory allocator. 72# When this feature is enabled, calling mdbg_check(1) will print a list of all 73# the currently allocated buffers and the location of the allocation (file and 74# line number). 75# Note: make sure the log level is high enough for the messages to show up on 76# the secure console! For instance: 77# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with: 78# $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3 79# - To debug TEE core allocations: build OP-TEE with: 80# $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3 81CFG_TEE_CORE_MALLOC_DEBUG ?= n 82CFG_TEE_TA_MALLOC_DEBUG ?= n 83# Prints an error message and dumps the stack on failed memory allocations 84# using malloc() and friends. 85CFG_CORE_DUMP_OOM ?= $(CFG_TEE_CORE_MALLOC_DEBUG) 86 87# Mask to select which messages are prefixed with long debugging information 88# (severity, core ID, thread ID, component name, function name, line number) 89# based on the message level. If BIT(level) is set, the long prefix is shown. 90# Otherwise a short prefix is used (severity and component name only). 91# Levels: 0=none 1=error 2=info 3=debug 4=flow 92CFG_MSG_LONG_PREFIX_MASK ?= 0x1a 93 94# PRNG configuration 95# If CFG_WITH_SOFTWARE_PRNG is enabled, crypto provider provided 96# software PRNG implementation is used. 97# Otherwise, you need to implement hw_get_random_byte() for your platform 98CFG_WITH_SOFTWARE_PRNG ?= y 99 100# Number of threads 101CFG_NUM_THREADS ?= 2 102 103# API implementation version 104CFG_TEE_API_VERSION ?= GPD-1.1-dev 105 106# Implementation description (implementation-dependent) 107CFG_TEE_IMPL_DESCR ?= OPTEE 108 109# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal 110# World? 111CFG_OS_REV_REPORTS_GIT_SHA1 ?= y 112 113# The following values are not extracted from the "git describe" output because 114# we might be outside of a Git environment, or the tree may have been cloned 115# with limited depth not including any tag, so there is really no guarantee 116# that TEE_IMPL_VERSION contains the major and minor revision numbers. 117CFG_OPTEE_REVISION_MAJOR ?= 3 118CFG_OPTEE_REVISION_MINOR ?= 14 119 120# Trusted OS implementation version 121TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || \ 122 echo Unknown_$(CFG_OPTEE_REVISION_MAJOR).$(CFG_OPTEE_REVISION_MINOR)) 123ifeq ($(CFG_OS_REV_REPORTS_GIT_SHA1),y) 124TEE_IMPL_GIT_SHA1 := 0x$(shell git rev-parse --short=8 HEAD 2>/dev/null || echo 0) 125else 126TEE_IMPL_GIT_SHA1 := 0x0 127endif 128 129# Trusted OS implementation manufacturer name 130CFG_TEE_MANUFACTURER ?= LINARO 131 132# Trusted firmware version 133CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF 134 135# Trusted OS implementation manufacturer name 136CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF 137 138# Rich Execution Environment (REE) file system support: normal world OS 139# provides the actual storage. 140# This is the default FS when enabled (i.e., the one used when 141# TEE_STORAGE_PRIVATE is passed to the trusted storage API) 142CFG_REE_FS ?= y 143 144# RPMB file system support 145CFG_RPMB_FS ?= n 146 147# Device identifier used when CFG_RPMB_FS = y. 148# The exact meaning of this value is platform-dependent. On Linux, the 149# tee-supplicant process will open /dev/mmcblk<id>rpmb 150CFG_RPMB_FS_DEV_ID ?= 0 151 152# This config variable determines the number of entries read in from RPMB at 153# once whenever a function traverses the RPMB FS. Increasing the default value 154# has the following consequences: 155# - More memory required on heap. A single FAT entry currently has a size of 156# 256 bytes. 157# - Potentially significant speed-ups for RPMB I/O. Depending on how many 158# entries a function needs to traverse, the number of time-consuming RPMB 159# read-in operations can be reduced. 160# Chosing a proper value is both platform- (available memory) and use-case- 161# dependent (potential number of FAT fs entries), so overwrite in platform 162# config files 163CFG_RPMB_FS_RD_ENTRIES ?= 8 164 165# Enables caching of FAT FS entries when set to a value greater than zero. 166# When enabled, the cache stores the first 'CFG_RPMB_FS_CACHE_ENTRIES' FAT FS 167# entries. The cache is populated when FAT FS entries are initially read in. 168# When traversing the FAT FS entries, we read from the cache instead of reading 169# in the entries from RPMB storage. Consequently, when a FAT FS entry is 170# written, the cache is updated. In scenarios where an estimate of the number 171# of FAT FS entries can be made, the cache may be specifically tailored to 172# store all entries. The caching can improve RPMB I/O at the cost 173# of additional memory. 174# Without caching, we temporarily require 175# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory 176# while traversing the FAT FS (e.g. in read_fat). 177# For example 8*256 bytes = 2kB while in read_fat. 178# With caching, we constantly require up to 179# CFG_RPMB_FS_CACHE_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory 180# depending on how many elements are in the cache, and additional temporary 181# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory 182# in case the cache is too small to hold all elements when traversing. 183CFG_RPMB_FS_CACHE_ENTRIES ?= 0 184 185# Print RPMB data frames sent to and received from the RPMB device 186CFG_RPMB_FS_DEBUG_DATA ?= n 187 188# Clear RPMB content at cold boot 189CFG_RPMB_RESET_FAT ?= n 190 191# Use a hard coded RPMB key instead of deriving it from the platform HUK 192CFG_RPMB_TESTKEY ?= n 193 194# Enables RPMB key programming by the TEE, in case the RPMB partition has not 195# been configured yet. 196# !!! Security warning !!! 197# Do *NOT* enable this in product builds, as doing so would allow the TEE to 198# leak the RPMB key. 199# This option is useful in the following situations: 200# - Testing 201# - RPMB key provisioning in a controlled environment (factory setup) 202CFG_RPMB_WRITE_KEY ?= n 203 204# Signing key for OP-TEE TA's 205# When performing external HSM signing for TA's TA_SIGN_KEY can be set to dummy 206# key and then set TA_PUBLIC_KEY to match public key from the HSM. 207# TA_PUBLIC_KEY's public key will be embedded into OP-TEE OS. 208TA_SIGN_KEY ?= keys/default_ta.pem 209TA_PUBLIC_KEY ?= $(TA_SIGN_KEY) 210 211# Include lib/libutils/isoc in the build? Most platforms need this, but some 212# may not because they obtain the isoc functions from elsewhere 213CFG_LIBUTILS_WITH_ISOC ?= y 214 215# Enables floating point support for user TAs 216# ARM32: EABI defines both a soft-float ABI and a hard-float ABI, 217# hard-float is basically a super set of soft-float. Hard-float 218# requires all the support routines provided for soft-float, but the 219# compiler may choose to optimize to not use some of them and use 220# the floating-point registers instead. 221# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or 222# nothing with ` -mgeneral-regs-only`) 223# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types 224CFG_TA_FLOAT_SUPPORT ?= y 225 226# Stack unwinding: print a stack dump to the console on core or TA abort, or 227# when a TA panics. 228# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be 229# unwound (not paged TAs, however). 230# Note that 32-bit ARM code needs unwind tables for this to work, so enabling 231# this option will increase the size of the 32-bit TEE binary by a few KB. 232# Similarly, TAs have to be compiled with -funwind-tables (default when the 233# option is set) otherwise they can't be unwound. 234# Warning: since the unwind sequence for user-mode (TA) code is implemented in 235# the privileged layer of OP-TEE, enabling this feature will weaken the 236# user/kernel isolation. Therefore it should be disabled in release builds. 237ifeq ($(CFG_TEE_CORE_DEBUG),y) 238CFG_UNWIND ?= y 239endif 240 241# Enable support for dynamically loaded user TAs 242CFG_WITH_USER_TA ?= y 243 244# Choosing the architecture(s) of user-mode libraries (used by TAs) 245# 246# Platforms may define a list of supported architectures for user-mode code 247# by setting $(supported-ta-targets). Valid values are "ta_arm32", "ta_arm64", 248# "ta_arm32 ta_arm64" and "ta_arm64 ta_arm32". 249# $(supported-ta-targets) defaults to "ta_arm32" when the TEE core is 32-bits, 250# and "ta_arm32 ta_arm64" when it is 64-bits (that is, when CFG_ARM64_core=y). 251# The first entry in $(supported-ta-targets) has a special role, see 252# CFG_USER_TA_TARGET_<ta-name> below. 253# 254# CFG_USER_TA_TARGETS may be defined to restrict $(supported-ta-targets) or 255# change the order of the values. 256# 257# The list of TA architectures is ultimately stored in $(ta-targets). 258 259# CFG_USER_TA_TARGET_<ta-name> (for example, CFG_USER_TA_TARGET_avb), if 260# defined, selects the unique TA architecture mode for building the in-tree TA 261# <ta-name>. Can be either ta_arm32 or ta_arm64. 262# By default, in-tree TAs are built using the first architecture specified in 263# $(ta-targets). 264 265# Address Space Layout Randomization for user-mode Trusted Applications 266# 267# When this flag is enabled, the ELF loader will introduce a random offset 268# when mapping the application in user space. ASLR makes the exploitation of 269# memory corruption vulnerabilities more difficult. 270CFG_TA_ASLR ?= y 271 272# How much ASLR may shift the base address (in pages). The base address is 273# randomly shifted by an integer number of pages comprised between these two 274# values. Bigger ranges are more secure because they make the addresses harder 275# to guess at the expense of using more memory for the page tables. 276CFG_TA_ASLR_MIN_OFFSET_PAGES ?= 0 277CFG_TA_ASLR_MAX_OFFSET_PAGES ?= 128 278 279# Address Space Layout Randomization for TEE Core 280# 281# When this flag is enabled, the early init code will introduce a random 282# offset when mapping TEE Core. ASLR makes the exploitation of memory 283# corruption vulnerabilities more difficult. 284CFG_CORE_ASLR ?= y 285 286# Load user TAs from the REE filesystem via tee-supplicant 287CFG_REE_FS_TA ?= y 288 289# Pre-authentication of TA binaries loaded from the REE filesystem 290# 291# - If CFG_REE_FS_TA_BUFFERED=y: load TA binary into a temporary buffer in the 292# "Secure DDR" pool, check the signature, then process the file only if it is 293# valid. 294# - If disabled: hash the binaries as they are being processed and verify the 295# signature as a last step. 296CFG_REE_FS_TA_BUFFERED ?= n 297$(eval $(call cfg-depends-all,CFG_REE_FS_TA_BUFFERED,CFG_REE_FS_TA)) 298 299# When CFG_REE_FS=y and CFG_RPMB_FS=y: 300# Allow secure storage in the REE FS to be entirely deleted without causing 301# anti-rollback errors. That is, rm /data/tee/dirf.db or rm -rf /data/tee (or 302# whatever path is configured in tee-supplicant as CFG_TEE_FS_PARENT_PATH) 303# can be used to reset the secure storage to a clean, empty state. 304# Typically used for testing only since it weakens storage security. 305CFG_REE_FS_ALLOW_RESET ?= n 306 307# Support for loading user TAs from a special section in the TEE binary. 308# Such TAs are available even before tee-supplicant is available (hence their 309# name), but note that many services exported to TAs may need tee-supplicant, 310# so early use is limited to a subset of the TEE Internal Core API (crypto...) 311# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF 312# file(s). For example: 313# $ make ... \ 314# EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \ 315# path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf" 316# Typical build steps: 317# $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries, 318# # headers, makefiles), ready to build TAs. 319# # CFG_EARLY_TA=y is optional, it prevents 320# # later library recompilations. 321# <build some TAs> 322# $ make EARLY_TA_PATHS=<paths> # Build OP-TEE and embbed the TA(s) 323# 324# Another option is CFG_IN_TREE_EARLY_TAS which is used to point at 325# in-tree TAs. CFG_IN_TREE_EARLY_TAS is formatted as: 326# <name-of-ta>/<uuid> 327# for instance avb/023f8f1a-292a-432b-8fc4-de8471358067 328ifneq ($(EARLY_TA_PATHS)$(CFG_IN_TREE_EARLY_TAS),) 329$(call force,CFG_EARLY_TA,y) 330else 331CFG_EARLY_TA ?= n 332endif 333 334ifeq ($(CFG_EARLY_TA),y) 335$(call force,CFG_EMBEDDED_TS,y) 336endif 337 338ifneq ($(SP_PATHS),) 339$(call force,CFG_EMBEDDED_TS,y) 340else 341CFG_SECURE_PARTITION ?= n 342endif 343 344ifeq ($(CFG_SECURE_PARTITION),y) 345$(call force,CFG_EMBEDDED_TS,y) 346endif 347 348ifeq ($(CFG_EMBEDDED_TS),y) 349$(call force,CFG_ZLIB,y) 350endif 351 352# By default the early TAs are compressed in the TEE binary, it is possible to 353# not compress them with CFG_EARLY_TA_COMPRESS=n 354CFG_EARLY_TA_COMPRESS ?= y 355 356# Enable paging, requires SRAM, can't be enabled by default 357CFG_WITH_PAGER ?= n 358 359# Use the pager for user TAs 360CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER) 361 362# If paging of user TAs, that is, R/W paging default to enable paging of 363# TAG and IV in order to reduce heap usage. 364CFG_CORE_PAGE_TAG_AND_IV ?= $(CFG_PAGED_USER_TA) 365 366# Runtime lock dependency checker: ensures that a proper locking hierarchy is 367# used in the TEE core when acquiring and releasing mutexes. Any violation will 368# cause a panic as soon as the invalid locking condition is detected. If 369# CFG_UNWIND and CFG_LOCKDEP_RECORD_STACK are both enabled, the algorithm 370# records the call stacks when locks are taken, and prints them when a 371# potential deadlock is found. 372# Expect a significant performance impact when enabling this. 373CFG_LOCKDEP ?= n 374CFG_LOCKDEP_RECORD_STACK ?= y 375 376# BestFit algorithm in bget reduces the fragmentation of the heap when running 377# with the pager enabled or lockdep 378CFG_CORE_BGET_BESTFIT ?= $(call cfg-one-enabled, CFG_WITH_PAGER CFG_LOCKDEP) 379 380# Enable support for detected undefined behavior in C 381# Uses a lot of memory, can't be enabled by default 382CFG_CORE_SANITIZE_UNDEFINED ?= n 383 384# Enable Kernel Address sanitizer, has a huge performance impact, uses a 385# lot of memory and need platform specific adaptations, can't be enabled by 386# default 387CFG_CORE_SANITIZE_KADDRESS ?= n 388 389# Add stack guards before/after stacks and periodically check them 390CFG_WITH_STACK_CANARIES ?= y 391 392# Use compiler instrumentation to troubleshoot stack overflows. 393# When enabled, most C functions check the stack pointer against the current 394# stack limits on entry and panic immediately if it is out of range. 395CFG_CORE_DEBUG_CHECK_STACKS ?= n 396 397# Use when the default stack allocations are not sufficient. 398CFG_STACK_THREAD_EXTRA ?= 0 399CFG_STACK_TMP_EXTRA ?= 0 400 401# Device Tree support 402# 403# When CFG_DT is enabled core embeds the FDT library (libfdt) allowing 404# device tree blob (DTB) parsing from the core. 405# 406# When CFG_DT is enabled, the TEE _start function expects to find 407# the address of a DTB in register X2/R2 provided by the early boot stage 408# or value 0 if boot stage provides no DTB. 409# 410# When CFG_EMBED_DTB is enabled, CFG_EMBED_DTB_SOURCE_FILE shall define the 411# relative path of a DTS file located in core/arch/$(ARCH)/dts. 412# The DTS file is compiled into a DTB file which content is embedded in a 413# read-only section of the core. 414ifneq ($(strip $(CFG_EMBED_DTB_SOURCE_FILE)),) 415CFG_EMBED_DTB ?= y 416endif 417ifeq ($(CFG_EMBED_DTB),y) 418$(call force,CFG_DT,y) 419endif 420CFG_EMBED_DTB ?= n 421CFG_DT ?= n 422 423# Maximum size of the Device Tree Blob, has to be large enough to allow 424# editing of the supplied DTB. 425CFG_DTB_MAX_SIZE ?= 0x10000 426 427# Device Tree Overlay support. 428# CFG_EXTERNAL_DTB_OVERLAY allows to append a DTB overlay into an existing 429# external DTB. The overlay is created when no valid DTB overlay is found. 430# CFG_GENERATE_DTB_OVERLAY allows to create a DTB overlay at external 431# DTB location. 432# External DTB location (physical address) is provided either by boot 433# argument arg2 or from CFG_DT_ADDR if defined. 434# A subsequent boot stage can then merge the generated overlay DTB into a main 435# DTB using the standard fdt_overlay_apply() method. 436CFG_EXTERNAL_DTB_OVERLAY ?= n 437CFG_GENERATE_DTB_OVERLAY ?= n 438 439ifeq (y-y,$(CFG_EXTERNAL_DTB_OVERLAY)-$(CFG_GENERATE_DTB_OVERLAY)) 440$(error CFG_EXTERNAL_DTB_OVERLAY and CFG_GENERATE_DTB_OVERLAY are exclusive) 441endif 442_CFG_USE_DTB_OVERLAY := $(call cfg-one-enabled,CFG_EXTERNAL_DTB_OVERLAY \ 443 CFG_GENERATE_DTB_OVERLAY) 444 445# All embedded tests are supposed to be disabled by default, this flag 446# is used to control the default value of all other embedded tests 447CFG_ENABLE_EMBEDDED_TESTS ?= n 448 449# Enable core self tests and related pseudo TAs 450CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= $(CFG_ENABLE_EMBEDDED_TESTS) 451 452# Compiles bget_main_test() to be called from a test TA 453CFG_TA_BGET_TEST ?= $(CFG_ENABLE_EMBEDDED_TESTS) 454 455# This option enables OP-TEE to respond to SMP boot request: the Rich OS 456# issues this to request OP-TEE to release secondaries cores out of reset, 457# with specific core number and non-secure entry address. 458CFG_BOOT_SECONDARY_REQUEST ?= n 459 460# Default heap size for Core, 64 kB 461CFG_CORE_HEAP_SIZE ?= 65536 462 463# Default size of nexus heap. 16 kB. Used only if CFG_VIRTUALIZATION 464# is enabled 465CFG_CORE_NEX_HEAP_SIZE ?= 16384 466 467# TA profiling. 468# When this option is enabled, OP-TEE can execute Trusted Applications 469# instrumented with GCC's -pg flag and will output profiling information 470# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in 471# tee-supplicant) 472# Note: this does not work well with shared libraries at the moment for a 473# couple of reasons: 474# 1. The profiling code assumes a unique executable section in the TA VA space. 475# 2. The code used to detect at run time if the TA is intrumented assumes that 476# the TA is linked statically. 477CFG_TA_GPROF_SUPPORT ?= n 478 479# TA function tracing. 480# When this option is enabled, OP-TEE can execute Trusted Applications 481# instrumented with GCC's -pg flag and will output function tracing 482# information in ftrace.out format to /tmp/ftrace-<ta_uuid>.out (path is 483# defined in tee-supplicant) 484CFG_FTRACE_SUPPORT ?= n 485 486# How to make room when the function tracing buffer is full? 487# 'shift': shift the previously stored data by the amount needed in order 488# to always keep the latest logs (slower, especially with big buffer sizes) 489# 'wrap': discard the previous data and start at the beginning of the buffer 490# again (fast, but can result in a mostly empty buffer) 491# 'stop': stop logging new data 492CFG_FTRACE_BUF_WHEN_FULL ?= shift 493$(call cfg-check-value,FTRACE_BUF_WHEN_FULL,shift stop wrap) 494$(call force,_CFG_FTRACE_BUF_WHEN_FULL_$(CFG_FTRACE_BUF_WHEN_FULL),y) 495 496# Function tracing: unit to be used when displaying durations 497# 0: always display durations in microseconds 498# >0: if duration is greater or equal to the specified value (in microseconds), 499# display it in milliseconds 500CFG_FTRACE_US_MS ?= 10000 501 502# Core syscall function tracing. 503# When this option is enabled, OP-TEE core is instrumented with GCC's 504# -pg flag and will output syscall function graph in user TA ftrace 505# buffer 506CFG_SYSCALL_FTRACE ?= n 507$(call cfg-depends-all,CFG_SYSCALL_FTRACE,CFG_FTRACE_SUPPORT) 508 509# Enable to compile user TA libraries with profiling (-pg). 510# Depends on CFG_TA_GPROF_SUPPORT or CFG_FTRACE_SUPPORT. 511CFG_ULIBS_MCOUNT ?= n 512# Profiling/tracing of syscall wrapper (utee_*) 513CFG_SYSCALL_WRAPPERS_MCOUNT ?= $(CFG_ULIBS_MCOUNT) 514 515ifeq (y,$(filter y,$(CFG_ULIBS_MCOUNT) $(CFG_SYSCALL_WRAPPERS_MCOUNT))) 516ifeq (,$(filter y,$(CFG_TA_GPROF_SUPPORT) $(CFG_FTRACE_SUPPORT))) 517$(error Cannot instrument user libraries if user mode profiling is disabled) 518endif 519endif 520 521# Build libutee, libutils, libmbedtls as shared libraries. 522# - Static libraries are still generated when this is enabled, but TAs will use 523# the shared libraries unless explicitly linked with the -static flag. 524# - Shared libraries are made of two files: for example, libutee is 525# libutee.so and 527f1a47-b92c-4a74-95bd-72f19f4a6f74.ta. The '.so' file 526# is a totally standard shared object, and should be used to link against. 527# The '.ta' file is a signed version of the '.so' and should be installed 528# in the same way as TAs so that they can be found at runtime. 529CFG_ULIBS_SHARED ?= n 530 531ifeq (y-y,$(CFG_TA_GPROF_SUPPORT)-$(CFG_ULIBS_SHARED)) 532$(error CFG_TA_GPROF_SUPPORT and CFG_ULIBS_SHARED are currently incompatible) 533endif 534 535# CFG_GP_SOCKETS 536# Enable Global Platform Sockets support 537CFG_GP_SOCKETS ?= y 538 539# Enable Secure Data Path support in OP-TEE core (TA may be invoked with 540# invocation parameters referring to specific secure memories). 541CFG_SECURE_DATA_PATH ?= n 542 543# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y 544# TA binaries are stored encrypted in the REE FS and are protected by 545# metadata in secure storage. 546CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA) 547$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA)) 548 549# Enable the pseudo TA that managages TA storage in secure storage 550CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA) 551$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA)) 552 553# Enable the pseudo TA for misc. auxilary services, extending existing 554# GlobalPlatform Core API (for example, re-seeding RNG entropy pool etc.) 555CFG_SYSTEM_PTA ?= y 556 557# Enable the pseudo TA for enumeration of TEE based devices for the normal 558# world OS. 559CFG_DEVICE_ENUM_PTA ?= y 560 561# Define the number of cores per cluster used in calculating core position. 562# The cluster number is shifted by this value and added to the core ID, 563# so its value represents log2(cores/cluster). 564# Default is 2**(2) = 4 cores per cluster. 565CFG_CORE_CLUSTER_SHIFT ?= 2 566 567# Define the number of threads per core used in calculating processing 568# element's position. The core number is shifted by this value and added to 569# the thread ID, so its value represents log2(threads/core). 570# Default is 2**(0) = 1 threads per core. 571CFG_CORE_THREAD_SHIFT ?= 0 572 573# Enable support for dynamic shared memory (shared memory anywhere in 574# non-secure memory). 575CFG_CORE_DYN_SHM ?= y 576 577# Enable support for reserved shared memory (shared memory in a carved out 578# memory area). 579CFG_CORE_RESERVED_SHM ?= y 580 581# Enables support for larger physical addresses, that is, it will define 582# paddr_t as a 64-bit type. 583CFG_CORE_LARGE_PHYS_ADDR ?= n 584 585# Define the maximum size, in bits, for big numbers in the Internal Core API 586# Arithmetical functions. This does *not* influence the key size that may be 587# manipulated through the Cryptographic API. 588# Set this to a lower value to reduce the TA memory footprint. 589CFG_TA_BIGNUM_MAX_BITS ?= 2048 590 591# Define the maximum size, in bits, for big numbers in the TEE core (privileged 592# layer). 593# This value is an upper limit for the key size in any cryptographic algorithm 594# implemented by the TEE core. 595# Set this to a lower value to reduce the memory footprint. 596CFG_CORE_BIGNUM_MAX_BITS ?= 4096 597 598# Not used since libmpa was removed. Force the values to catch build scripts 599# that would set = n. 600$(call force,CFG_TA_MBEDTLS_MPI,y) 601$(call force,CFG_TA_MBEDTLS,y) 602 603# Compile the TA library mbedTLS with self test functions, the functions 604# need to be called to test anything 605CFG_TA_MBEDTLS_SELF_TEST ?= y 606 607# By default use tomcrypt as the main crypto lib providing an implementation 608# for the API in <crypto/crypto.h> 609# CFG_CRYPTOLIB_NAME is used as libname and 610# CFG_CRYPTOLIB_DIR is used as libdir when compiling the library 611# 612# It's also possible to configure to use mbedtls instead of tomcrypt. 613# Then the variables should be assigned as "CFG_CRYPTOLIB_NAME=mbedtls" and 614# "CFG_CRYPTOLIB_DIR=lib/libmbedtls" respectively. 615CFG_CRYPTOLIB_NAME ?= tomcrypt 616CFG_CRYPTOLIB_DIR ?= core/lib/libtomcrypt 617 618# Not used since libmpa was removed. Force the value to catch build scripts 619# that would set = n. 620$(call force,CFG_CORE_MBEDTLS_MPI,y) 621 622# Enable virtualization support. OP-TEE will not work without compatible 623# hypervisor if this option is enabled. 624CFG_VIRTUALIZATION ?= n 625 626ifeq ($(CFG_VIRTUALIZATION),y) 627$(call force,CFG_CORE_RODATA_NOEXEC,y) 628$(call force,CFG_CORE_RWDATA_NOEXEC,y) 629 630# Default number of virtual guests 631CFG_VIRT_GUEST_COUNT ?= 2 632endif 633 634# Enables backwards compatible derivation of RPMB and SSK keys 635CFG_CORE_HUK_SUBKEY_COMPAT ?= y 636 637# Compress and encode conf.mk into the TEE core, and show the encoded string on 638# boot (with severity TRACE_INFO). 639CFG_SHOW_CONF_ON_BOOT ?= n 640 641# Enables support for passing a TPM Event Log stored in secure memory 642# to a TA, so a TPM Service could use it to extend any measurement 643# taken before the service was up and running. 644CFG_CORE_TPM_EVENT_LOG ?= n 645 646# When enabled, CFG_SCMI_MSG_DRIVERS embeds SCMI message drivers in the core. 647# Refer to the supported SCMI features embedded upon CFG_SCMI_MSG_* 648# CFG_SCMI_MSG_CLOCK embeds SCMI clock protocol support. 649# CFG_SCMI_MSG_RESET_DOMAIN embeds SCMI reset domain protocol support. 650# CFG_SCMI_MSG_SMT embeds SMT based message buffer of communication channel 651# CFG_SCMI_MSG_VOLTAGE_DOMAIN embeds SCMI voltage domain protocol support. 652CFG_SCMI_MSG_DRIVERS ?= n 653CFG_SCMI_MSG_CLOCK ?= n 654CFG_SCMI_MSG_RESET_DOMAIN ?= n 655CFG_SCMI_MSG_SMT ?= n 656CFG_SCMI_MSG_VOLTAGE_DOMAIN ?= n 657 658# Enable SCMI PTA interface for REE SCMI agents 659CFG_SCMI_PTA ?= n 660 661ifneq ($(CFG_STMM_PATH),) 662$(call force,CFG_WITH_STMM_SP,y) 663else 664CFG_WITH_STMM_SP ?= n 665endif 666ifeq ($(CFG_WITH_STMM_SP),y) 667$(call force,CFG_ZLIB,y) 668endif 669 670# When enabled checks that buffers passed to the GP Internal Core API 671# comply with the rules added as annotations as part of the definition of 672# the API. For example preventing buffers in non-secure shared memory when 673# not allowed. 674CFG_TA_STRICT_ANNOTATION_CHECKS ?= y 675 676# When enabled accepts the DES key sizes excluding parity bits as in 677# the GP Internal API Specification v1.0 678CFG_COMPAT_GP10_DES ?= y 679 680# Defines a limit for many levels TAs may call each others. 681CFG_CORE_MAX_SYSCALL_RECURSION ?= 4 682 683# Pseudo-TA to export hardware RNG output to Normal World 684# RNG characteristics are platform specific 685CFG_HWRNG_PTA ?= n 686ifeq ($(CFG_HWRNG_PTA),y) 687# Output rate of hw_get_random_bytes() in bytes per second, 0: not rate-limited 688CFG_HWRNG_RATE ?= 0 689# Quality/entropy of hw_get_random_bytes() per 1024 bits of output data, in bits 690ifeq (,$(CFG_HWRNG_QUALITY)) 691$(error CFG_HWRNG_QUALITY not defined) 692endif 693endif 694