xref: /optee_os/mk/config.mk (revision 3cd271a44bb7aafdda808fd47c47def83be41ad7)
1# Default configuration values for OP-TEE core (all platforms).
2#
3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk.
4# Some subsystem-specific defaults are not here but rather in */sub.mk.
5#
6# Configuration values may be assigned from multiple sources.
7# From higher to lower priority:
8#
9#   1. Make arguments ('make CFG_FOO=bar...')
10#   2. The file specified by $(CFG_OPTEE_CONFIG) (if defined)
11#   3. The environment ('CFG_FOO=bar make...')
12#   4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk
13#   5. This file
14#   6. Subsystem-specific makefiles (*/sub.mk)
15#
16# Actual values used during the build are output to $(out-dir)/conf.mk
17# (CFG_* variables only).
18
19# Cross-compiler prefix and suffix
20CROSS_COMPILE ?= arm-linux-gnueabihf-
21CROSS_COMPILE32 ?= $(CROSS_COMPILE)
22CROSS_COMPILE64 ?= aarch64-linux-gnu-
23COMPILER ?= gcc
24
25# For convenience
26ifdef CFLAGS
27CFLAGS32 ?= $(CFLAGS)
28CFLAGS64 ?= $(CFLAGS)
29endif
30
31# Compiler warning level.
32# Supported values: undefined, 1, 2 and 3. 3 gives more warnings.
33WARNS ?= 3
34
35# Path to the Python interpreter used by the build system.
36# This variable is set to the default python3 interpreter in the user's
37# path. But build environments that require more explicit control can
38# set the path to a specific interpreter through this variable.
39PYTHON3 ?= python3
40
41# Define DEBUG=1 to compile without optimization (forces -O0)
42# DEBUG=1
43ifeq ($(DEBUG),1)
44# For backwards compatibility
45$(call force,CFG_CC_OPT_LEVEL,0)
46$(call force,CFG_DEBUG_INFO,y)
47endif
48
49# CFG_CC_OPT_LEVEL sets compiler optimization level passed with -O directive.
50# Optimize for size by default, usually gives good performance too.
51CFG_CC_OPT_LEVEL ?= s
52
53# Enabling CFG_DEBUG_INFO makes debug information embedded in core.
54CFG_DEBUG_INFO ?= y
55
56# If y, enable debug features of the TEE core (assertions and lock checks
57# are enabled, panic and assert messages are more verbose, data and prefetch
58# aborts show a stack dump). When disabled, the NDEBUG directive is defined
59# so assertions are disabled.
60CFG_TEE_CORE_DEBUG ?= y
61
62# Log levels for the TEE core. Defines which core messages are displayed
63# on the secure console. Disabling core log (level set to 0) also disables
64# logs from the TAs.
65# 0: none
66# 1: error
67# 2: error + info
68# 3: error + info + debug
69# 4: error + info + debug + flow
70CFG_TEE_CORE_LOG_LEVEL ?= 2
71
72# TA log level
73# If user-mode library libutils.a is built with CFG_TEE_TA_LOG_LEVEL=0,
74# TA tracing is disabled regardless of the value of CFG_TEE_TA_LOG_LEVEL
75# when the TA is built.
76CFG_TEE_TA_LOG_LEVEL ?= 1
77
78# TA enablement
79# When defined to "y", TA traces are output according to
80# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all
81CFG_TEE_CORE_TA_TRACE ?= y
82
83# If y, enable the memory leak detection feature in the bget memory allocator.
84# When this feature is enabled, calling mdbg_check(1) will print a list of all
85# the currently allocated buffers and the location of the allocation (file and
86# line number).
87# Note: make sure the log level is high enough for the messages to show up on
88# the secure console! For instance:
89# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with:
90#   $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3
91# - To debug TEE core allocations: build OP-TEE with:
92#   $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3
93CFG_TEE_CORE_MALLOC_DEBUG ?= n
94CFG_TEE_TA_MALLOC_DEBUG ?= n
95# Prints an error message and dumps the stack on failed memory allocations
96# using malloc() and friends.
97CFG_CORE_DUMP_OOM ?= $(CFG_TEE_CORE_MALLOC_DEBUG)
98
99# Mask to select which messages are prefixed with long debugging information
100# (severity, core ID, thread ID, component name, function name, line number)
101# based on the message level. If BIT(level) is set, the long prefix is shown.
102# Otherwise a short prefix is used (severity and component name only).
103# Levels: 0=none 1=error 2=info 3=debug 4=flow
104CFG_MSG_LONG_PREFIX_MASK ?= 0x1a
105
106# PRNG configuration
107# If CFG_WITH_SOFTWARE_PRNG is enabled, crypto provider provided
108# software PRNG implementation is used.
109# Otherwise, you need to implement hw_get_random_bytes() for your platform
110CFG_WITH_SOFTWARE_PRNG ?= y
111
112# Number of threads
113CFG_NUM_THREADS ?= 2
114
115# API implementation version
116CFG_TEE_API_VERSION ?= GPD-1.1-dev
117
118# Implementation description (implementation-dependent)
119CFG_TEE_IMPL_DESCR ?= OPTEE
120
121# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal
122# World?
123CFG_OS_REV_REPORTS_GIT_SHA1 ?= y
124
125# The following values are not extracted from the "git describe" output because
126# we might be outside of a Git environment, or the tree may have been cloned
127# with limited depth not including any tag, so there is really no guarantee
128# that TEE_IMPL_VERSION contains the major and minor revision numbers.
129CFG_OPTEE_REVISION_MAJOR ?= 3
130CFG_OPTEE_REVISION_MINOR ?= 20
131CFG_OPTEE_REVISION_EXTRA ?=
132
133# Trusted OS implementation version
134TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || \
135		      echo Unknown_$(CFG_OPTEE_REVISION_MAJOR).$(CFG_OPTEE_REVISION_MINOR))$(CFG_OPTEE_REVISION_EXTRA)
136ifeq ($(CFG_OS_REV_REPORTS_GIT_SHA1),y)
137TEE_IMPL_GIT_SHA1 := 0x$(shell git rev-parse --short=8 HEAD 2>/dev/null || echo 0)
138else
139TEE_IMPL_GIT_SHA1 := 0x0
140endif
141
142# Trusted OS implementation manufacturer name
143CFG_TEE_MANUFACTURER ?= LINARO
144
145# Trusted firmware version
146CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF
147
148# Trusted OS implementation manufacturer name
149CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF
150
151# Rich Execution Environment (REE) file system support: normal world OS
152# provides the actual storage.
153# This is the default FS when enabled (i.e., the one used when
154# TEE_STORAGE_PRIVATE is passed to the trusted storage API)
155CFG_REE_FS ?= y
156
157# RPMB file system support
158CFG_RPMB_FS ?= n
159
160# Enable roll-back protection of REE file system using RPMB.
161# Roll-back protection only works if CFG_RPMB_FS = y.
162CFG_REE_FS_INTEGRITY_RPMB ?= $(CFG_RPMB_FS)
163$(eval $(call cfg-depends-all,CFG_REE_FS_INTEGRITY_RPMB,CFG_RPMB_FS))
164
165# Device identifier used when CFG_RPMB_FS = y.
166# The exact meaning of this value is platform-dependent. On Linux, the
167# tee-supplicant process will open /dev/mmcblk<id>rpmb
168CFG_RPMB_FS_DEV_ID ?= 0
169
170# This config variable determines the number of entries read in from RPMB at
171# once whenever a function traverses the RPMB FS. Increasing the default value
172# has the following consequences:
173# - More memory required on heap. A single FAT entry currently has a size of
174#   256 bytes.
175# - Potentially significant speed-ups for RPMB I/O. Depending on how many
176#   entries a function needs to traverse, the number of time-consuming RPMB
177#   read-in operations can be reduced.
178# Chosing a proper value is both platform- (available memory) and use-case-
179# dependent (potential number of FAT fs entries), so overwrite in platform
180# config files
181CFG_RPMB_FS_RD_ENTRIES ?= 8
182
183# Enables caching of FAT FS entries when set to a value greater than zero.
184# When enabled, the cache stores the first 'CFG_RPMB_FS_CACHE_ENTRIES' FAT FS
185# entries. The cache is populated when FAT FS entries are initially read in.
186# When traversing the FAT FS entries, we read from the cache instead of reading
187# in the entries from RPMB storage. Consequently, when a FAT FS entry is
188# written, the cache is updated. In scenarios where an estimate of the number
189# of FAT FS entries can be made, the cache may be specifically tailored to
190# store all entries. The caching can improve RPMB I/O at the cost
191# of additional memory.
192# Without caching, we temporarily require
193# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
194# while traversing the FAT FS (e.g. in read_fat).
195# For example 8*256 bytes = 2kB while in read_fat.
196# With caching, we constantly require up to
197# CFG_RPMB_FS_CACHE_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
198# depending on how many elements are in the cache, and additional temporary
199# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
200# in case the cache is too small to hold all elements when traversing.
201CFG_RPMB_FS_CACHE_ENTRIES ?= 0
202
203# Print RPMB data frames sent to and received from the RPMB device
204CFG_RPMB_FS_DEBUG_DATA ?= n
205
206# Clear RPMB content at cold boot
207CFG_RPMB_RESET_FAT ?= n
208
209# Use a hard coded RPMB key instead of deriving it from the platform HUK
210CFG_RPMB_TESTKEY ?= n
211
212# Enables RPMB key programming by the TEE, in case the RPMB partition has not
213# been configured yet.
214# !!! Security warning !!!
215# Do *NOT* enable this in product builds, as doing so would allow the TEE to
216# leak the RPMB key.
217# This option is useful in the following situations:
218# - Testing
219# - RPMB key provisioning in a controlled environment (factory setup)
220CFG_RPMB_WRITE_KEY ?= n
221
222_CFG_WITH_SECURE_STORAGE := $(call cfg-one-enabled,CFG_REE_FS CFG_RPMB_FS)
223
224# Signing key for OP-TEE TA's
225# When performing external HSM signing for TA's TA_SIGN_KEY can be set to dummy
226# key and then set TA_PUBLIC_KEY to match public key from the HSM.
227# TA_PUBLIC_KEY's public key will be embedded into OP-TEE OS.
228TA_SIGN_KEY ?= keys/default_ta.pem
229TA_PUBLIC_KEY ?= $(TA_SIGN_KEY)
230
231# Subkeys is a complement to the normal TA_SIGN_KEY where a subkey is used
232# to verify a TA instead. To sign a TA using a previously prepared subkey
233# two new options are added, TA_SUBKEY_ARGS and TA_SUBKEY_DEPS.  It is
234# typically used by assigning the following in the TA Makefile:
235# BINARY = <TA-uuid-string>
236# TA_SIGN_KEY = subkey.pem
237# TA_SUBKEY_ARGS = --subkey subkey.bin --name subkey_ta
238# TA_SUBKEY_DEPS = subkey.bin
239# See the documentation for more details on subkeys.
240
241# Include lib/libutils/isoc in the build? Most platforms need this, but some
242# may not because they obtain the isoc functions from elsewhere
243CFG_LIBUTILS_WITH_ISOC ?= y
244
245# Enables floating point support for user TAs
246# ARM32: EABI defines both a soft-float ABI and a hard-float ABI,
247#	 hard-float is basically a super set of soft-float. Hard-float
248#	 requires all the support routines provided for soft-float, but the
249#	 compiler may choose to optimize to not use some of them and use
250#	 the floating-point registers instead.
251# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or
252#	 nothing with ` -mgeneral-regs-only`)
253# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types
254CFG_TA_FLOAT_SUPPORT ?= y
255
256# Stack unwinding: print a stack dump to the console on core or TA abort, or
257# when a TA panics.
258# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be
259# unwound (not paged TAs, however).
260# Note that 32-bit ARM code needs unwind tables for this to work, so enabling
261# this option will increase the size of the 32-bit TEE binary by a few KB.
262# Similarly, TAs have to be compiled with -funwind-tables (default when the
263# option is set) otherwise they can't be unwound.
264# Warning: since the unwind sequence for user-mode (TA) code is implemented in
265# the privileged layer of OP-TEE, enabling this feature will weaken the
266# user/kernel isolation. Therefore it should be disabled in release builds.
267ifeq ($(CFG_TEE_CORE_DEBUG),y)
268CFG_UNWIND ?= y
269endif
270
271# Enable support for dynamically loaded user TAs
272CFG_WITH_USER_TA ?= y
273
274# Build user TAs included in this source tree
275CFG_BUILD_IN_TREE_TA ?= y
276
277# Choosing the architecture(s) of user-mode libraries (used by TAs)
278#
279# Platforms may define a list of supported architectures for user-mode code
280# by setting $(supported-ta-targets). Valid values are "ta_arm32", "ta_arm64",
281# "ta_arm32 ta_arm64" and "ta_arm64 ta_arm32".
282# $(supported-ta-targets) defaults to "ta_arm32" when the TEE core is 32-bits,
283# and "ta_arm32 ta_arm64" when it is 64-bits (that is, when CFG_ARM64_core=y).
284# The first entry in $(supported-ta-targets) has a special role, see
285# CFG_USER_TA_TARGET_<ta-name> below.
286#
287# CFG_USER_TA_TARGETS may be defined to restrict $(supported-ta-targets) or
288# change the order of the values.
289#
290# The list of TA architectures is ultimately stored in $(ta-targets).
291
292# CFG_USER_TA_TARGET_<ta-name> (for example, CFG_USER_TA_TARGET_avb), if
293# defined, selects the unique TA architecture mode for building the in-tree TA
294# <ta-name>. Can be either ta_arm32 or ta_arm64.
295# By default, in-tree TAs are built using the first architecture specified in
296# $(ta-targets).
297
298# Address Space Layout Randomization for user-mode Trusted Applications
299#
300# When this flag is enabled, the ELF loader will introduce a random offset
301# when mapping the application in user space. ASLR makes the exploitation of
302# memory corruption vulnerabilities more difficult.
303CFG_TA_ASLR ?= y
304
305# How much ASLR may shift the base address (in pages). The base address is
306# randomly shifted by an integer number of pages comprised between these two
307# values. Bigger ranges are more secure because they make the addresses harder
308# to guess at the expense of using more memory for the page tables.
309CFG_TA_ASLR_MIN_OFFSET_PAGES ?= 0
310CFG_TA_ASLR_MAX_OFFSET_PAGES ?= 128
311
312# Address Space Layout Randomization for TEE Core
313#
314# When this flag is enabled, the early init code will introduce a random
315# offset when mapping TEE Core. ASLR makes the exploitation of memory
316# corruption vulnerabilities more difficult.
317CFG_CORE_ASLR ?= y
318
319# Stack Protection for TEE Core
320# This flag enables the compiler stack protection mechanisms -fstack-protector.
321# It will check the stack canary value before returning from a function to
322# prevent buffer overflow attacks. Stack protector canary logic will be added
323# for vulnerable functions that contain:
324# - A character array larger than 8 bytes.
325# - An 8-bit integer array larger than 8 bytes.
326# - A call to alloca() with either a variable size or a constant size bigger
327#   than 8 bytes.
328CFG_CORE_STACK_PROTECTOR ?= n
329# This enable stack protector flag -fstack-protector-strong. Stack protector
330# canary logic will be added for vulnerable functions that contain:
331# - An array of any size and type.
332# - A call to alloca().
333# - A local variable that has its address taken.
334CFG_CORE_STACK_PROTECTOR_STRONG ?= y
335# This enable stack protector flag -fstack-protector-all. Stack protector canary
336# logic will be added to all functions regardless of their vulnerability.
337CFG_CORE_STACK_PROTECTOR_ALL ?= n
338# Stack Protection for TA
339CFG_TA_STACK_PROTECTOR ?= n
340CFG_TA_STACK_PROTECTOR_STRONG ?= y
341CFG_TA_STACK_PROTECTOR_ALL ?= n
342
343_CFG_CORE_STACK_PROTECTOR := $(call cfg-one-enabled, CFG_CORE_STACK_PROTECTOR \
344						     CFG_CORE_STACK_PROTECTOR_STRONG \
345						     CFG_CORE_STACK_PROTECTOR_ALL)
346_CFG_TA_STACK_PROTECTOR := $(call cfg-one-enabled, CFG_TA_STACK_PROTECTOR \
347						   CFG_TA_STACK_PROTECTOR_STRONG \
348						   CFG_TA_STACK_PROTECTOR_ALL)
349
350# Load user TAs from the REE filesystem via tee-supplicant
351CFG_REE_FS_TA ?= y
352
353# Pre-authentication of TA binaries loaded from the REE filesystem
354#
355# - If CFG_REE_FS_TA_BUFFERED=y: load TA binary into a temporary buffer in the
356#   "Secure DDR" pool, check the signature, then process the file only if it is
357#   valid.
358# - If disabled: hash the binaries as they are being processed and verify the
359#   signature as a last step.
360CFG_REE_FS_TA_BUFFERED ?= n
361$(eval $(call cfg-depends-all,CFG_REE_FS_TA_BUFFERED,CFG_REE_FS_TA))
362
363# When CFG_REE_FS=y and CFG_RPMB_FS=y:
364# Allow secure storage in the REE FS to be entirely deleted without causing
365# anti-rollback errors. That is, rm /data/tee/dirf.db or rm -rf /data/tee (or
366# whatever path is configured in tee-supplicant as CFG_TEE_FS_PARENT_PATH)
367# can be used to reset the secure storage to a clean, empty state.
368# Typically used for testing only since it weakens storage security.
369CFG_REE_FS_ALLOW_RESET ?= n
370
371# Support for loading user TAs from a special section in the TEE binary.
372# Such TAs are available even before tee-supplicant is available (hence their
373# name), but note that many services exported to TAs may need tee-supplicant,
374# so early use is limited to a subset of the TEE Internal Core API (crypto...)
375# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF
376# file(s). For example:
377#   $ make ... \
378#     EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \
379#                     path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf"
380# Typical build steps:
381#   $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries,
382#                                    # headers, makefiles), ready to build TAs.
383#                                    # CFG_EARLY_TA=y is optional, it prevents
384#                                    # later library recompilations.
385#   <build some TAs>
386#   $ make EARLY_TA_PATHS=<paths>    # Build OP-TEE and embbed the TA(s)
387#
388# Another option is CFG_IN_TREE_EARLY_TAS which is used to point at
389# in-tree TAs. CFG_IN_TREE_EARLY_TAS is formatted as:
390# <name-of-ta>/<uuid>
391# for instance avb/023f8f1a-292a-432b-8fc4-de8471358067
392ifneq ($(EARLY_TA_PATHS)$(CFG_IN_TREE_EARLY_TAS),)
393$(call force,CFG_EARLY_TA,y)
394else
395CFG_EARLY_TA ?= n
396endif
397
398ifeq ($(CFG_EARLY_TA),y)
399$(call force,CFG_EMBEDDED_TS,y)
400endif
401
402ifneq ($(SP_PATHS),)
403$(call force,CFG_EMBEDDED_TS,y)
404else
405CFG_SECURE_PARTITION ?= n
406endif
407
408ifeq ($(CFG_SECURE_PARTITION),y)
409$(call force,CFG_EMBEDDED_TS,y)
410endif
411
412ifeq ($(CFG_EMBEDDED_TS),y)
413$(call force,CFG_ZLIB,y)
414endif
415
416# By default the early TAs are compressed in the TEE binary, it is possible to
417# not compress them with CFG_EARLY_TA_COMPRESS=n
418CFG_EARLY_TA_COMPRESS ?= y
419
420# Enable paging, requires SRAM, can't be enabled by default
421CFG_WITH_PAGER ?= n
422
423# Use the pager for user TAs
424CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER)
425
426# If paging of user TAs, that is, R/W paging default to enable paging of
427# TAG and IV in order to reduce heap usage.
428CFG_CORE_PAGE_TAG_AND_IV ?= $(CFG_PAGED_USER_TA)
429
430# Runtime lock dependency checker: ensures that a proper locking hierarchy is
431# used in the TEE core when acquiring and releasing mutexes. Any violation will
432# cause a panic as soon as the invalid locking condition is detected. If
433# CFG_UNWIND and CFG_LOCKDEP_RECORD_STACK are both enabled, the algorithm
434# records the call stacks when locks are taken, and prints them when a
435# potential deadlock is found.
436# Expect a significant performance impact when enabling this.
437CFG_LOCKDEP ?= n
438CFG_LOCKDEP_RECORD_STACK ?= y
439
440# BestFit algorithm in bget reduces the fragmentation of the heap when running
441# with the pager enabled or lockdep
442CFG_CORE_BGET_BESTFIT ?= $(call cfg-one-enabled, CFG_WITH_PAGER CFG_LOCKDEP)
443
444# Enable support for detected undefined behavior in C
445# Uses a lot of memory, can't be enabled by default
446CFG_CORE_SANITIZE_UNDEFINED ?= n
447
448# Enable Kernel Address sanitizer, has a huge performance impact, uses a
449# lot of memory and need platform specific adaptations, can't be enabled by
450# default
451CFG_CORE_SANITIZE_KADDRESS ?= n
452
453# Add stack guards before/after stacks and periodically check them
454CFG_WITH_STACK_CANARIES ?= y
455
456# Use compiler instrumentation to troubleshoot stack overflows.
457# When enabled, most C functions check the stack pointer against the current
458# stack limits on entry and panic immediately if it is out of range.
459CFG_CORE_DEBUG_CHECK_STACKS ?= n
460
461# Use when the default stack allocations are not sufficient.
462CFG_STACK_THREAD_EXTRA ?= 0
463CFG_STACK_TMP_EXTRA ?= 0
464
465# Device Tree support
466#
467# When CFG_DT is enabled core embeds the FDT library (libfdt) allowing
468# device tree blob (DTB) parsing from the core.
469#
470# When CFG_DT is enabled, the TEE _start function expects to find
471# the address of a DTB in register X2/R2 provided by the early boot stage
472# or value 0 if boot stage provides no DTB.
473#
474# When CFG_EXTERNAL_DT is enabled, the external device tree ABI is implemented
475# and the external device tree is expected to be used/modified. Its value
476# defaults to CFG_DT.
477#
478# When CFG_MAP_EXT_DT_SECURE is enabled the external device tree is expected to
479# be in the secure memory.
480#
481# When CFG_EMBED_DTB is enabled, CFG_EMBED_DTB_SOURCE_FILE shall define the
482# relative path of a DTS file located in core/arch/$(ARCH)/dts.
483# The DTS file is compiled into a DTB file which content is embedded in a
484# read-only section of the core.
485ifneq ($(strip $(CFG_EMBED_DTB_SOURCE_FILE)),)
486CFG_EMBED_DTB ?= y
487endif
488ifeq ($(CFG_EMBED_DTB),y)
489$(call force,CFG_DT,y)
490endif
491CFG_EMBED_DTB ?= n
492CFG_DT ?= n
493CFG_EXTERNAL_DT ?= $(CFG_DT)
494CFG_MAP_EXT_DT_SECURE ?= n
495ifeq ($(CFG_MAP_EXT_DT_SECURE),y)
496$(call force,CFG_DT,y)
497endif
498
499# Maximum size of the Device Tree Blob, has to be large enough to allow
500# editing of the supplied DTB.
501CFG_DTB_MAX_SIZE ?= 0x10000
502
503# Maximum size of the init info data passed to Secure Partitions.
504CFG_SP_INIT_INFO_MAX_SIZE ?= 0x1000
505
506# Device Tree Overlay support.
507# CFG_EXTERNAL_DTB_OVERLAY allows to append a DTB overlay into an existing
508# external DTB. The overlay is created when no valid DTB overlay is found.
509# CFG_GENERATE_DTB_OVERLAY allows to create a DTB overlay at external
510# DTB location.
511# External DTB location (physical address) is provided either by boot
512# argument arg2 or from CFG_DT_ADDR if defined.
513# A subsequent boot stage can then merge the generated overlay DTB into a main
514# DTB using the standard fdt_overlay_apply() method.
515CFG_EXTERNAL_DTB_OVERLAY ?= n
516CFG_GENERATE_DTB_OVERLAY ?= n
517
518ifeq (y-y,$(CFG_EXTERNAL_DTB_OVERLAY)-$(CFG_GENERATE_DTB_OVERLAY))
519$(error CFG_EXTERNAL_DTB_OVERLAY and CFG_GENERATE_DTB_OVERLAY are exclusive)
520endif
521_CFG_USE_DTB_OVERLAY := $(call cfg-one-enabled,CFG_EXTERNAL_DTB_OVERLAY \
522			  CFG_GENERATE_DTB_OVERLAY)
523
524# All embedded tests are supposed to be disabled by default, this flag
525# is used to control the default value of all other embedded tests
526CFG_ENABLE_EMBEDDED_TESTS ?= n
527
528# Enable core self tests and related pseudo TAs
529CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= $(CFG_ENABLE_EMBEDDED_TESTS)
530
531# Compiles bget_main_test() to be called from a test TA
532CFG_TA_BGET_TEST ?= $(CFG_ENABLE_EMBEDDED_TESTS)
533
534# CFG_DT_DRIVER_EMBEDDED_TEST when enabled embedb DT driver probing tests.
535# This also requires embeddeding a DTB with expected content.
536# Defautl disable CFG_DRIVERS_CLK_EARLY_PROBE to probe clocks as other drivers.
537# A probe deferral test mandates CFG_DRIVERS_DT_RECURSIVE_PROBE=n.
538CFG_DT_DRIVER_EMBEDDED_TEST ?= n
539ifeq ($(CFG_DT_DRIVER_EMBEDDED_TEST),y)
540CFG_DRIVERS_CLK ?= y
541CFG_DRIVERS_RSTCTRL ?= y
542CFG_DRIVERS_CLK_EARLY_PROBE ?= n
543$(call force,CFG_DRIVERS_DT_RECURSIVE_PROBE,n,Mandated by CFG_DT_DRIVER_EMBEDDED_TEST)
544endif
545
546# CFG_DRIVERS_DT_RECURSIVE_PROBE when enabled forces a recursive subnode
547# parsing in the embedded DTB for driver probing. The alternative is
548# an exploration based on compatible drivers found. It is default disabled.
549CFG_DRIVERS_DT_RECURSIVE_PROBE ?= n
550
551# This option enables OP-TEE to respond to SMP boot request: the Rich OS
552# issues this to request OP-TEE to release secondaries cores out of reset,
553# with specific core number and non-secure entry address.
554CFG_BOOT_SECONDARY_REQUEST ?= n
555
556# Default heap size for Core, 64 kB
557CFG_CORE_HEAP_SIZE ?= 65536
558
559# Default size of nexus heap. 16 kB. Used only if CFG_VIRTUALIZATION
560# is enabled
561CFG_CORE_NEX_HEAP_SIZE ?= 16384
562
563# TA profiling.
564# When this option is enabled, OP-TEE can execute Trusted Applications
565# instrumented with GCC's -pg flag and will output profiling information
566# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in
567# tee-supplicant)
568# Note: this does not work well with shared libraries at the moment for a
569# couple of reasons:
570# 1. The profiling code assumes a unique executable section in the TA VA space.
571# 2. The code used to detect at run time if the TA is intrumented assumes that
572# the TA is linked statically.
573CFG_TA_GPROF_SUPPORT ?= n
574
575# TA function tracing.
576# When this option is enabled, OP-TEE can execute Trusted Applications
577# instrumented with GCC's -pg flag and will output function tracing
578# information in ftrace.out format to /tmp/ftrace-<ta_uuid>.out (path is
579# defined in tee-supplicant)
580CFG_FTRACE_SUPPORT ?= n
581
582# How to make room when the function tracing buffer is full?
583# 'shift': shift the previously stored data by the amount needed in order
584#    to always keep the latest logs (slower, especially with big buffer sizes)
585# 'wrap': discard the previous data and start at the beginning of the buffer
586#    again (fast, but can result in a mostly empty buffer)
587# 'stop': stop logging new data
588CFG_FTRACE_BUF_WHEN_FULL ?= shift
589$(call cfg-check-value,FTRACE_BUF_WHEN_FULL,shift stop wrap)
590$(call force,_CFG_FTRACE_BUF_WHEN_FULL_$(CFG_FTRACE_BUF_WHEN_FULL),y)
591
592# Function tracing: unit to be used when displaying durations
593#  0: always display durations in microseconds
594# >0: if duration is greater or equal to the specified value (in microseconds),
595#     display it in milliseconds
596CFG_FTRACE_US_MS ?= 10000
597
598# Core syscall function tracing.
599# When this option is enabled, OP-TEE core is instrumented with GCC's
600# -pg flag and will output syscall function graph in user TA ftrace
601# buffer
602CFG_SYSCALL_FTRACE ?= n
603$(call cfg-depends-all,CFG_SYSCALL_FTRACE,CFG_FTRACE_SUPPORT)
604
605# Enable to compile user TA libraries with profiling (-pg).
606# Depends on CFG_TA_GPROF_SUPPORT or CFG_FTRACE_SUPPORT.
607CFG_ULIBS_MCOUNT ?= n
608# Profiling/tracing of syscall wrapper (utee_*)
609CFG_SYSCALL_WRAPPERS_MCOUNT ?= $(CFG_ULIBS_MCOUNT)
610
611ifeq (y,$(filter y,$(CFG_ULIBS_MCOUNT) $(CFG_SYSCALL_WRAPPERS_MCOUNT)))
612ifeq (,$(filter y,$(CFG_TA_GPROF_SUPPORT) $(CFG_FTRACE_SUPPORT)))
613$(error Cannot instrument user libraries if user mode profiling is disabled)
614endif
615endif
616
617# Build libutee, libutils, libmbedtls as shared libraries.
618# - Static libraries are still generated when this is enabled, but TAs will use
619# the shared libraries unless explicitly linked with the -static flag.
620# - Shared libraries are made of two files: for example, libutee is
621#   libutee.so and 527f1a47-b92c-4a74-95bd-72f19f4a6f74.ta. The '.so' file
622#   is a totally standard shared object, and should be used to link against.
623#   The '.ta' file is a signed version of the '.so' and should be installed
624#   in the same way as TAs so that they can be found at runtime.
625CFG_ULIBS_SHARED ?= n
626
627ifeq (y-y,$(CFG_TA_GPROF_SUPPORT)-$(CFG_ULIBS_SHARED))
628$(error CFG_TA_GPROF_SUPPORT and CFG_ULIBS_SHARED are currently incompatible)
629endif
630
631# CFG_GP_SOCKETS
632# Enable Global Platform Sockets support
633CFG_GP_SOCKETS ?= y
634
635# Enable Secure Data Path support in OP-TEE core (TA may be invoked with
636# invocation parameters referring to specific secure memories).
637CFG_SECURE_DATA_PATH ?= n
638
639# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y
640# TA binaries are stored encrypted in the REE FS and are protected by
641# metadata in secure storage.
642CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA)
643$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA))
644
645# Enable the pseudo TA that managages TA storage in secure storage
646CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA)
647$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA))
648
649# Enable the pseudo TA for misc. auxilary services, extending existing
650# GlobalPlatform TEE Internal Core API (for example, re-seeding RNG entropy
651# pool etc...)
652CFG_SYSTEM_PTA ?= $(CFG_WITH_USER_TA)
653$(eval $(call cfg-depends-all,CFG_SYSTEM_PTA,CFG_WITH_USER_TA))
654
655# Enable the pseudo TA for enumeration of TEE based devices for the normal
656# world OS.
657CFG_DEVICE_ENUM_PTA ?= y
658
659# The attestation pseudo TA provides an interface to request measurements of
660# a TA or the TEE binary.
661CFG_ATTESTATION_PTA ?= n
662$(eval $(call cfg-depends-all,CFG_ATTESTATION_PTA,_CFG_WITH_SECURE_STORAGE))
663
664# RSA key size (in bits) for the attestation PTA. Must be at least 528 given
665# other algorithm parameters (RSA PSS with SHA-256 and 32-byte salt), but
666# note that such a low value is not secure.
667# See https://tools.ietf.org/html/rfc8017#section-8.1.1 and
668# https://tools.ietf.org/html/rfc8017#section-9.1.1
669#  emLen >= hlen + sLen + 2 = 32 + 32 + 2 = 66
670#  emLen = ceil((modBits - 1) / 8) => emLen is the key size in bytes
671CFG_ATTESTATION_PTA_KEY_SIZE ?= 3072
672
673# Define the number of cores per cluster used in calculating core position.
674# The cluster number is shifted by this value and added to the core ID,
675# so its value represents log2(cores/cluster).
676# Default is 2**(2) = 4 cores per cluster.
677CFG_CORE_CLUSTER_SHIFT ?= 2
678
679# Define the number of threads per core used in calculating processing
680# element's position. The core number is shifted by this value and added to
681# the thread ID, so its value represents log2(threads/core).
682# Default is 2**(0) = 1 threads per core.
683CFG_CORE_THREAD_SHIFT ?= 0
684
685# Enable support for dynamic shared memory (shared memory anywhere in
686# non-secure memory).
687CFG_CORE_DYN_SHM ?= y
688
689# Enable support for reserved shared memory (shared memory in a carved out
690# memory area).
691CFG_CORE_RESERVED_SHM ?= y
692
693# Enables support for larger physical addresses, that is, it will define
694# paddr_t as a 64-bit type.
695CFG_CORE_LARGE_PHYS_ADDR ?= n
696
697# Define the maximum size, in bits, for big numbers in the Internal Core API
698# Arithmetical functions. This does *not* influence the key size that may be
699# manipulated through the Cryptographic API.
700# Set this to a lower value to reduce the TA memory footprint.
701CFG_TA_BIGNUM_MAX_BITS ?= 2048
702
703# Define the maximum size, in bits, for big numbers in the TEE core (privileged
704# layer).
705# This value is an upper limit for the key size in any cryptographic algorithm
706# implemented by the TEE core.
707# Set this to a lower value to reduce the memory footprint.
708CFG_CORE_BIGNUM_MAX_BITS ?= 4096
709
710# Not used since libmpa was removed. Force the values to catch build scripts
711# that would set = n.
712$(call force,CFG_TA_MBEDTLS_MPI,y)
713$(call force,CFG_TA_MBEDTLS,y)
714
715# Compile the TA library mbedTLS with self test functions, the functions
716# need to be called to test anything
717CFG_TA_MBEDTLS_SELF_TEST ?= y
718
719# By default use tomcrypt as the main crypto lib providing an implementation
720# for the API in <crypto/crypto.h>
721# CFG_CRYPTOLIB_NAME is used as libname and
722# CFG_CRYPTOLIB_DIR is used as libdir when compiling the library
723#
724# It's also possible to configure to use mbedtls instead of tomcrypt.
725# Then the variables should be assigned as "CFG_CRYPTOLIB_NAME=mbedtls" and
726# "CFG_CRYPTOLIB_DIR=lib/libmbedtls" respectively.
727CFG_CRYPTOLIB_NAME ?= tomcrypt
728CFG_CRYPTOLIB_DIR ?= core/lib/libtomcrypt
729
730# Not used since libmpa was removed. Force the value to catch build scripts
731# that would set = n.
732$(call force,CFG_CORE_MBEDTLS_MPI,y)
733
734# Enable virtualization support. OP-TEE will not work without compatible
735# hypervisor if this option is enabled.
736CFG_VIRTUALIZATION ?= n
737
738ifeq ($(CFG_VIRTUALIZATION),y)
739$(call force,CFG_CORE_RODATA_NOEXEC,y)
740$(call force,CFG_CORE_RWDATA_NOEXEC,y)
741
742# Default number of virtual guests
743CFG_VIRT_GUEST_COUNT ?= 2
744endif
745
746# Enables backwards compatible derivation of RPMB and SSK keys
747CFG_CORE_HUK_SUBKEY_COMPAT ?= y
748
749# Use SoC specific tee_otp_get_die_id() implementation for SSK key generation.
750# This option depends on CFG_CORE_HUK_SUBKEY_COMPAT=y.
751CFG_CORE_HUK_SUBKEY_COMPAT_USE_OTP_DIE_ID ?= n
752
753# Compress and encode conf.mk into the TEE core, and show the encoded string on
754# boot (with severity TRACE_INFO).
755CFG_SHOW_CONF_ON_BOOT ?= n
756
757# Enables support for passing a TPM Event Log stored in secure memory
758# to a TA or FF-A SP, so a TPM Service could use it to extend any measurement
759# taken before the service was up and running.
760CFG_CORE_TPM_EVENT_LOG ?= n
761
762# When enabled, CFG_SCMI_MSG_DRIVERS embeds SCMI message drivers in the core.
763# Refer to the supported SCMI features embedded upon CFG_SCMI_MSG_*
764#
765# CFG_SCMI_MSG_CLOCK embeds SCMI clock protocol support.
766# CFG_SCMI_MSG_RESET_DOMAIN embeds SCMI reset domain protocol support.
767# CFG_SCMI_MSG_SMT embeds a SMT header in shared device memory buffers
768# CFG_SCMI_MSG_VOLTAGE_DOMAIN embeds SCMI voltage domain protocol support.
769# CFG_SCMI_MSG_SMT_FASTCALL_ENTRY embeds fastcall SMC entry with SMT memory
770# CFG_SCMI_MSG_SMT_INTERRUPT_ENTRY embeds interrupt entry with SMT memory
771# CFG_SCMI_MSG_SMT_THREAD_ENTRY embeds threaded entry with SMT memory
772# CFG_SCMI_MSG_SHM_MSG embeds a MSG header in cached shared memory buffer
773CFG_SCMI_MSG_DRIVERS ?= n
774ifeq ($(CFG_SCMI_MSG_DRIVERS),y)
775CFG_SCMI_MSG_CLOCK ?= n
776CFG_SCMI_MSG_RESET_DOMAIN ?= n
777CFG_SCMI_MSG_SHM_MSG ?= n
778CFG_SCMI_MSG_SMT ?= n
779CFG_SCMI_MSG_SMT_FASTCALL_ENTRY ?= n
780CFG_SCMI_MSG_SMT_INTERRUPT_ENTRY ?= n
781CFG_SCMI_MSG_SMT_THREAD_ENTRY ?= n
782CFG_SCMI_MSG_THREAD_ENTRY ?= n
783CFG_SCMI_MSG_VOLTAGE_DOMAIN ?= n
784$(eval $(call cfg-depends-all,CFG_SCMI_MSG_SMT_FASTCALL_ENTRY,CFG_SCMI_MSG_SMT))
785$(eval $(call cfg-depends-all,CFG_SCMI_MSG_SMT_INTERRUPT_ENTRY,CFG_SCMI_MSG_SMT))
786$(eval $(call cfg-depends-one,CFG_SCMI_MSG_SMT_THREAD_ENTRY,CFG_SCMI_MSG_SMT CFG_SCMI_MSG_SHM_MSG))
787ifeq ($(CFG_SCMI_MSG_SMT),y)
788_CFG_SCMI_PTA_SMT_HEADER := y
789endif
790ifeq ($(CFG_SCMI_MSG_SHM_MSG),y)
791_CFG_SCMI_PTA_MSG_HEADER := y
792endif
793endif
794
795# CFG_SCMI_SCPFW, when enabled, embeds the reference SCMI server implementation
796# from SCP-firmware package as an built-in SCMI stack in core. This
797# configuration mandates target product identifier is configured with
798# CFG_SCMI_SCPFW_PRODUCT and the SCP-firmware source tree path with
799# CFG_SCP_FIRMWARE.
800CFG_SCMI_SCPFW ?= n
801
802ifeq ($(CFG_SCMI_SCPFW),y)
803$(call force,CFG_SCMI_PTA,y,Required by CFG_SCMI_SCPFW)
804ifeq (,$(CFG_SCMI_SCPFW_PRODUCT))
805$(error CFG_SCMI_SCPFW=y requires CFG_SCMI_SCPFW_PRODUCT configuration)
806endif
807ifeq (,$(wildcard $(CFG_SCP_FIRMWARE)/CMakeLists.txt))
808$(error CFG_SCMI_SCPFW=y requires CFG_SCP_FIRMWARE configuration)
809endif
810endif #CFG_SCMI_SCPFW
811
812ifeq ($(CFG_SCMI_MSG_DRIVERS)-$(CFG_SCMI_SCPFW),y-y)
813$(error CFG_SCMI_MSG_DRIVERS=y and CFG_SCMI_SCPFW=y are mutually exclusive)
814endif
815
816# Enable SCMI PTA interface for REE SCMI agents
817CFG_SCMI_PTA ?= n
818ifeq ($(CFG_SCMI_PTA),y)
819_CFG_SCMI_PTA_SMT_HEADER ?= n
820_CFG_SCMI_PTA_MSG_HEADER ?= n
821endif
822
823ifneq ($(CFG_STMM_PATH),)
824$(call force,CFG_WITH_STMM_SP,y)
825else
826CFG_WITH_STMM_SP ?= n
827endif
828ifeq ($(CFG_WITH_STMM_SP),y)
829$(call force,CFG_ZLIB,y)
830endif
831
832# When enabled checks that buffers passed to the GP Internal Core API
833# comply with the rules added as annotations as part of the definition of
834# the API. For example preventing buffers in non-secure shared memory when
835# not allowed.
836CFG_TA_STRICT_ANNOTATION_CHECKS ?= y
837
838# When enabled accepts the DES key sizes excluding parity bits as in
839# the GP Internal API Specification v1.0
840CFG_COMPAT_GP10_DES ?= y
841
842# Defines a limit for many levels TAs may call each others.
843CFG_CORE_MAX_SYSCALL_RECURSION ?= 4
844
845# Pseudo-TA to export hardware RNG output to Normal World
846# RNG characteristics are platform specific
847CFG_HWRNG_PTA ?= n
848ifeq ($(CFG_HWRNG_PTA),y)
849# Output rate of hw_get_random_bytes() in bytes per second, 0: not rate-limited
850CFG_HWRNG_RATE ?= 0
851# Quality/entropy of hw_get_random_bytes() per 1024 bits of output data, in bits
852ifeq (,$(CFG_HWRNG_QUALITY))
853$(error CFG_HWRNG_QUALITY not defined)
854endif
855endif
856
857# CFG_PREALLOC_RPC_CACHE, when enabled, makes core to preallocate
858# shared memory for each secure thread. When disabled, RPC shared
859# memory is released once the secure thread has completed is execution.
860ifeq ($(CFG_WITH_PAGER),y)
861CFG_PREALLOC_RPC_CACHE ?= n
862endif
863CFG_PREALLOC_RPC_CACHE ?= y
864
865# When enabled, CFG_DRIVERS_CLK embeds a clock framework in OP-TEE core.
866# This clock framework allows to describe clock tree and provides functions to
867# get and configure the clocks.
868# CFG_DRIVERS_CLK_DT embeds devicetree clock parsing support
869# CFG_DRIVERS_CLK_FIXED add support for "fixed-clock" compatible clocks
870# CFG_DRIVERS_CLK_EARLY_PROBE makes clocks probed at early_init initcall level.
871CFG_DRIVERS_CLK ?= n
872CFG_DRIVERS_CLK_DT ?= $(call cfg-all-enabled,CFG_DRIVERS_CLK CFG_DT)
873CFG_DRIVERS_CLK_FIXED ?= $(CFG_DRIVERS_CLK_DT)
874CFG_DRIVERS_CLK_EARLY_PROBE ?= $(CFG_DRIVERS_CLK_DT)
875
876$(eval $(call cfg-depends-all,CFG_DRIVERS_CLK_DT,CFG_DRIVERS_CLK CFG_DT))
877$(eval $(call cfg-depends-all,CFG_DRIVERS_CLK_FIXED,CFG_DRIVERS_CLK_DT))
878
879# When enabled, CFG_DRIVERS_RSTCTRL embeds a reset controller framework in
880# OP-TEE core to provide reset controls on subsystems of the devices.
881CFG_DRIVERS_RSTCTRL ?= n
882
883# The purpose of this flag is to show a print when booting up the device that
884# indicates whether the board runs a standard developer configuration or not.
885# A developer configuration doesn't necessarily has to be secure. The intention
886# is that the one making products based on OP-TEE should override this flag in
887# plat-xxx/conf.mk for the platform they're basing their products on after
888# they've finalized implementing stubbed functionality (see OP-TEE
889# documentation/Porting guidelines) as well as vendor specific security
890# configuration.
891CFG_WARN_INSECURE ?= y
892
893# Enables warnings for declarations mixed with statements
894CFG_WARN_DECL_AFTER_STATEMENT ?= y
895
896# Branch Target Identification (part of the ARMv8.5 Extensions) provides a
897# mechanism to limit the set of locations to which computed branch instructions
898# such as BR or BLR can jump. To make use of BTI in TEE core and ldelf on CPU's
899# that support it, enable this option. A GCC toolchain built with
900# --enable-standard-branch-protection is needed to use this option.
901CFG_CORE_BTI ?= n
902
903$(eval $(call cfg-depends-all,CFG_CORE_BTI,CFG_ARM64_core))
904
905# To make use of BTI in user space libraries and TA's on CPU's that support it,
906# enable this option.
907CFG_TA_BTI ?= $(CFG_CORE_BTI)
908
909$(eval $(call cfg-depends-all,CFG_TA_BTI,CFG_ARM64_core))
910
911ifeq (y-y,$(CFG_VIRTUALIZATION)-$(call cfg-one-enabled, CFG_TA_BTI CFG_CORE_BTI))
912$(error CFG_VIRTUALIZATION and BTI are currently incompatible)
913endif
914
915ifeq (y-y,$(CFG_PAGED_USER_TA)-$(CFG_TA_BTI))
916$(error CFG_PAGED_USER_TA and CFG_TA_BTI are currently incompatible)
917endif
918
919# Memory Tagging Extension (part of the ARMv8.5 Extensions) implements lock
920# and key access to memory. This is a hardware supported alternative to
921# CFG_CORE_SANITIZE_KADDRESS which covers both S-EL1 and S-EL0.
922CFG_MEMTAG ?= n
923
924$(eval $(call cfg-depends-all,CFG_MEMTAG,CFG_ARM64_core))
925ifeq (y-y,$(CFG_CORE_SANITIZE_KADDRESS)-$(CFG_MEMTAG))
926$(error CFG_CORE_SANITIZE_KADDRESS and CFG_MEMTAG are not compatible)
927endif
928ifeq (y-y,$(CFG_WITH_PAGER)-$(CFG_MEMTAG))
929$(error CFG_WITH_PAGER and CFG_MEMTAG are not compatible)
930endif
931
932# CFG_CORE_ASYNC_NOTIF is defined by the platform to enable enables support
933# for sending asynchronous notifications to normal world. Note that an
934# interrupt ID must be configurged by the platform too. Currently is only
935# CFG_CORE_ASYNC_NOTIF_GIC_INTID defined.
936CFG_CORE_ASYNC_NOTIF ?= n
937
938$(eval $(call cfg-enable-all-depends,CFG_MEMPOOL_REPORT_LAST_OFFSET, \
939	 CFG_WITH_STATS))
940
941# Pointer Authentication (part of ARMv8.3 Extensions) provides instructions
942# for signing and authenticating pointers against secret keys. These can
943# be used to mitigate ROP (Return oriented programming) attacks. This is
944# currently done by instructing the compiler to add paciasp/autiasp at the
945# begging and end of functions to sign and verify ELR.
946#
947# The CFG_CORE_PAUTH enables these instructions for the core parts
948# executing at EL1, with one secret key per thread and one secret key per
949# physical CPU.
950#
951# The CFG_TA_PAUTH option enables these instructions for TA's at EL0. When
952# this option is enabled, TEE core will initialize secret keys per TA.
953CFG_CORE_PAUTH ?= n
954CFG_TA_PAUTH ?= $(CFG_CORE_PAUTH)
955
956$(eval $(call cfg-depends-all,CFG_CORE_PAUTH,CFG_ARM64_core))
957$(eval $(call cfg-depends-all,CFG_TA_PAUTH,CFG_ARM64_core))
958
959ifeq (y-y,$(CFG_VIRTUALIZATION)-$(CFG_CORE_PAUTH))
960$(error CFG_VIRTUALIZATION and CFG_CORE_PAUTH are currently incompatible)
961endif
962ifeq (y-y,$(CFG_VIRTUALIZATION)-$(CFG_TA_PAUTH))
963$(error CFG_VIRTUALIZATION and CFG_TA_PAUTH are currently incompatible)
964endif
965
966ifeq (y-y,$(CFG_TA_GPROF_SUPPORT)-$(CFG_TA_PAUTH))
967$(error CFG_TA_GPROF_SUPPORT and CFG_TA_PAUTH are currently incompatible)
968endif
969
970ifeq (y-y,$(CFG_FTRACE_SUPPORT)-$(CFG_TA_PAUTH))
971$(error CFG_FTRACE_SUPPORT and CFG_TA_PAUTH are currently incompatible)
972endif
973
974# Enable support for generic watchdog registration
975# This watchdog will then be usable by non-secure world through SMC calls.
976CFG_WDT ?= n
977
978# Enable watchdog SMC handling compatible with arm-smc-wdt Linux driver
979# When enabled, CFG_WDT_SM_HANDLER_ID must be defined with a SMC ID
980CFG_WDT_SM_HANDLER ?= n
981
982$(eval $(call cfg-enable-all-depends,CFG_WDT_SM_HANDLER,CFG_WDT))
983ifeq (y-,$(CFG_WDT_SM_HANDLER)-$(CFG_WDT_SM_HANDLER_ID))
984$(error CFG_WDT_SM_HANDLER_ID must be defined when enabling CFG_WDT_SM_HANDLER)
985endif
986
987# Allow using the udelay/mdelay function for platforms without ARM generic timer
988# extension. When set to 'n', the plat_get_freq() function must be defined by
989# the platform code
990CFG_CORE_HAS_GENERIC_TIMER ?= y
991
992# Enable RTC API
993CFG_DRIVERS_RTC ?= n
994
995# Enable PTA for RTC access from non-secure world
996CFG_RTC_PTA ?= n
997
998# Enable TPM2
999CFG_DRIVERS_TPM2 ?= n
1000CFG_DRIVERS_TPM2_MMIO ?= n
1001ifeq ($(CFG_CORE_TPM_EVENT_LOG),y)
1002CFG_CORE_TCG_PROVIDER ?= $(CFG_DRIVERS_TPM2)
1003endif
1004
1005# Enable the FF-A SPMC tests in xtests
1006CFG_SPMC_TESTS ?= n
1007
1008# Allocate the translation tables needed to map the S-EL0 application
1009# loaded
1010CFG_CORE_PREALLOC_EL0_TBLS ?= n
1011ifeq (y-y,$(CFG_CORE_PREALLOC_EL0_TBLS)-$(CFG_WITH_PAGER))
1012$(error "CFG_WITH_PAGER can't support CFG_CORE_PREALLOC_EL0_TBLS")
1013endif
1014
1015# User TA runtime context dump.
1016# When this option is enabled, OP-TEE provides a debug method for
1017# developer to dump user TA's runtime context, including TA's heap stats.
1018# Developer can open a stats PTA session and then invoke command
1019# STATS_CMD_TA_STATS to get the context of loaded TAs.
1020CFG_TA_STATS ?= n
1021
1022# Enables best effort mitigations against fault injected when the hardware
1023# is tampered with. Details in lib/libutils/ext/include/fault_mitigation.h
1024CFG_FAULT_MITIGATION ?= y
1025
1026# Enable TEE Internal Core API v1.1 compatibility for in-tree TAs
1027CFG_TA_OPTEE_CORE_API_COMPAT_1_1 ?= y
1028