1# Default configuration values for OP-TEE core (all platforms). 2# 3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk. 4# Some subsystem-specific defaults are not here but rather in */sub.mk. 5# 6# Configuration values may be assigned from multiple sources. 7# From higher to lower priority: 8# 9# 1. Make arguments ('make CFG_FOO=bar...') 10# 2. The file specified by $(CFG_OPTEE_CONFIG) (if defined) 11# 3. The environment ('CFG_FOO=bar make...') 12# 4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk 13# 5. This file 14# 6. Subsystem-specific makefiles (*/sub.mk) 15# 16# Actual values used during the build are output to $(out-dir)/conf.mk 17# (CFG_* variables only). 18 19# Cross-compiler prefix and suffix 20ifeq ($(ARCH),arm) 21CROSS_COMPILE ?= arm-linux-gnueabihf- 22CROSS_COMPILE64 ?= aarch64-linux-gnu- 23endif 24ifeq ($(ARCH),riscv) 25CROSS_COMPILE ?= riscv-linux-gnu- 26CROSS_COMPILE64 ?= riscv64-linux-gnu- 27endif 28CROSS_COMPILE32 ?= $(CROSS_COMPILE) 29COMPILER ?= gcc 30 31# For convenience 32ifdef CFLAGS 33CFLAGS32 ?= $(CFLAGS) 34CFLAGS64 ?= $(CFLAGS) 35endif 36 37# Compiler warning level. 38# Supported values: undefined, 1, 2 and 3. 3 gives more warnings. 39WARNS ?= 3 40 41# Path to the Python interpreter used by the build system. 42# This variable is set to the default python3 interpreter in the user's 43# path. But build environments that require more explicit control can 44# set the path to a specific interpreter through this variable. 45PYTHON3 ?= python3 46 47# Define DEBUG=1 to compile without optimization (forces -O0) 48# DEBUG=1 49ifeq ($(DEBUG),1) 50# For backwards compatibility 51$(call force,CFG_CC_OPT_LEVEL,0) 52$(call force,CFG_DEBUG_INFO,y) 53endif 54 55# CFG_CC_OPT_LEVEL sets compiler optimization level passed with -O directive. 56# Optimize for size by default, usually gives good performance too. 57CFG_CC_OPT_LEVEL ?= s 58 59# Enabling CFG_DEBUG_INFO makes debug information embedded in core. 60CFG_DEBUG_INFO ?= y 61 62# If y, enable debug features of the TEE core (assertions and lock checks 63# are enabled, panic and assert messages are more verbose, data and prefetch 64# aborts show a stack dump). When disabled, the NDEBUG directive is defined 65# so assertions are disabled. 66CFG_TEE_CORE_DEBUG ?= y 67 68# Log levels for the TEE core. Defines which core messages are displayed 69# on the secure console. Disabling core log (level set to 0) also disables 70# logs from the TAs. 71# 0: none 72# 1: error 73# 2: error + info 74# 3: error + info + debug 75# 4: error + info + debug + flow 76CFG_TEE_CORE_LOG_LEVEL ?= 2 77 78# TA log level 79# If user-mode library libutils.a is built with CFG_TEE_TA_LOG_LEVEL=0, 80# TA tracing is disabled regardless of the value of CFG_TEE_TA_LOG_LEVEL 81# when the TA is built. 82CFG_TEE_TA_LOG_LEVEL ?= 1 83 84# TA enablement 85# When defined to "y", TA traces are output according to 86# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all 87CFG_TEE_CORE_TA_TRACE ?= y 88 89# If y, enable the memory leak detection feature in the bget memory allocator. 90# When this feature is enabled, calling mdbg_check(1) will print a list of all 91# the currently allocated buffers and the location of the allocation (file and 92# line number). 93# Note: make sure the log level is high enough for the messages to show up on 94# the secure console! For instance: 95# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with: 96# $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3 97# - To debug TEE core allocations: build OP-TEE with: 98# $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3 99CFG_TEE_CORE_MALLOC_DEBUG ?= n 100CFG_TEE_TA_MALLOC_DEBUG ?= n 101# Prints an error message and dumps the stack on failed memory allocations 102# using malloc() and friends. 103CFG_CORE_DUMP_OOM ?= $(CFG_TEE_CORE_MALLOC_DEBUG) 104 105# Mask to select which messages are prefixed with long debugging information 106# (severity, core ID, thread ID, component name, function name, line number) 107# based on the message level. If BIT(level) is set, the long prefix is shown. 108# Otherwise a short prefix is used (severity and component name only). 109# Levels: 0=none 1=error 2=info 3=debug 4=flow 110CFG_MSG_LONG_PREFIX_MASK ?= 0x1a 111 112# Number of threads 113CFG_NUM_THREADS ?= 2 114 115# API implementation version 116CFG_TEE_API_VERSION ?= GPD-1.1-dev 117 118# Implementation description (implementation-dependent) 119CFG_TEE_IMPL_DESCR ?= OPTEE 120 121# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal 122# World? 123CFG_OS_REV_REPORTS_GIT_SHA1 ?= y 124 125# The following values are not extracted from the "git describe" output because 126# we might be outside of a Git environment, or the tree may have been cloned 127# with limited depth not including any tag, so there is really no guarantee 128# that TEE_IMPL_VERSION contains the major and minor revision numbers. 129CFG_OPTEE_REVISION_MAJOR ?= 4 130CFG_OPTEE_REVISION_MINOR ?= 2 131CFG_OPTEE_REVISION_EXTRA ?= 132 133# Trusted OS implementation version 134TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || \ 135 echo Unknown_$(CFG_OPTEE_REVISION_MAJOR).$(CFG_OPTEE_REVISION_MINOR))$(CFG_OPTEE_REVISION_EXTRA) 136 137# Trusted OS implementation manufacturer name 138CFG_TEE_MANUFACTURER ?= LINARO 139 140# Trusted firmware version 141CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF 142 143# Trusted OS implementation manufacturer name 144CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF 145 146# Rich Execution Environment (REE) file system support: normal world OS 147# provides the actual storage. 148# This is the default FS when enabled (i.e., the one used when 149# TEE_STORAGE_PRIVATE is passed to the trusted storage API) 150CFG_REE_FS ?= y 151 152# RPMB file system support 153CFG_RPMB_FS ?= n 154 155# Enable roll-back protection of REE file system using RPMB. 156# Roll-back protection only works if CFG_RPMB_FS = y. 157CFG_REE_FS_INTEGRITY_RPMB ?= $(CFG_RPMB_FS) 158$(eval $(call cfg-depends-all,CFG_REE_FS_INTEGRITY_RPMB,CFG_RPMB_FS)) 159 160# Device identifier used when CFG_RPMB_FS = y. 161# The exact meaning of this value is platform-dependent. On Linux, the 162# tee-supplicant process will open /dev/mmcblk<id>rpmb 163CFG_RPMB_FS_DEV_ID ?= 0 164 165# This config variable determines the number of entries read in from RPMB at 166# once whenever a function traverses the RPMB FS. Increasing the default value 167# has the following consequences: 168# - More memory required on heap. A single FAT entry currently has a size of 169# 256 bytes. 170# - Potentially significant speed-ups for RPMB I/O. Depending on how many 171# entries a function needs to traverse, the number of time-consuming RPMB 172# read-in operations can be reduced. 173# Chosing a proper value is both platform- (available memory) and use-case- 174# dependent (potential number of FAT fs entries), so overwrite in platform 175# config files 176CFG_RPMB_FS_RD_ENTRIES ?= 8 177 178# Enables caching of FAT FS entries when set to a value greater than zero. 179# When enabled, the cache stores the first 'CFG_RPMB_FS_CACHE_ENTRIES' FAT FS 180# entries. The cache is populated when FAT FS entries are initially read in. 181# When traversing the FAT FS entries, we read from the cache instead of reading 182# in the entries from RPMB storage. Consequently, when a FAT FS entry is 183# written, the cache is updated. In scenarios where an estimate of the number 184# of FAT FS entries can be made, the cache may be specifically tailored to 185# store all entries. The caching can improve RPMB I/O at the cost 186# of additional memory. 187# Without caching, we temporarily require 188# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory 189# while traversing the FAT FS (e.g. in read_fat). 190# For example 8*256 bytes = 2kB while in read_fat. 191# With caching, we constantly require up to 192# CFG_RPMB_FS_CACHE_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory 193# depending on how many elements are in the cache, and additional temporary 194# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory 195# in case the cache is too small to hold all elements when traversing. 196CFG_RPMB_FS_CACHE_ENTRIES ?= 0 197 198# Print RPMB data frames sent to and received from the RPMB device 199CFG_RPMB_FS_DEBUG_DATA ?= n 200 201# Clear RPMB content at cold boot 202CFG_RPMB_RESET_FAT ?= n 203 204# Use a hard coded RPMB key instead of deriving it from the platform HUK 205CFG_RPMB_TESTKEY ?= n 206 207# Enables RPMB key programming by the TEE, in case the RPMB partition has not 208# been configured yet. 209# !!! Security warning !!! 210# Do *NOT* enable this in product builds, as doing so would allow the TEE to 211# leak the RPMB key. 212# This option is useful in the following situations: 213# - Testing 214# - RPMB key provisioning in a controlled environment (factory setup) 215CFG_RPMB_WRITE_KEY ?= n 216 217_CFG_WITH_SECURE_STORAGE := $(call cfg-one-enabled,CFG_REE_FS CFG_RPMB_FS) 218 219# Signing key for OP-TEE TA's 220# When performing external HSM signing for TA's TA_SIGN_KEY can be set to dummy 221# key and then set TA_PUBLIC_KEY to match public key from the HSM. 222# TA_PUBLIC_KEY's public key will be embedded into OP-TEE OS. 223TA_SIGN_KEY ?= keys/default_ta.pem 224TA_PUBLIC_KEY ?= $(TA_SIGN_KEY) 225 226# Subkeys is a complement to the normal TA_SIGN_KEY where a subkey is used 227# to verify a TA instead. To sign a TA using a previously prepared subkey 228# two new options are added, TA_SUBKEY_ARGS and TA_SUBKEY_DEPS. It is 229# typically used by assigning the following in the TA Makefile: 230# BINARY = <TA-uuid-string> 231# TA_SIGN_KEY = subkey.pem 232# TA_SUBKEY_ARGS = --subkey subkey.bin --name subkey_ta 233# TA_SUBKEY_DEPS = subkey.bin 234# See the documentation for more details on subkeys. 235 236# Include lib/libutils/isoc in the build? Most platforms need this, but some 237# may not because they obtain the isoc functions from elsewhere 238CFG_LIBUTILS_WITH_ISOC ?= y 239 240# Enables floating point support for user TAs 241# ARM32: EABI defines both a soft-float ABI and a hard-float ABI, 242# hard-float is basically a super set of soft-float. Hard-float 243# requires all the support routines provided for soft-float, but the 244# compiler may choose to optimize to not use some of them and use 245# the floating-point registers instead. 246# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or 247# nothing with ` -mgeneral-regs-only`) 248# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types 249CFG_TA_FLOAT_SUPPORT ?= y 250 251# Stack unwinding: print a stack dump to the console on core or TA abort, or 252# when a TA panics. 253# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be 254# unwound (not paged TAs, however). 255# Note that 32-bit ARM code needs unwind tables for this to work, so enabling 256# this option will increase the size of the 32-bit TEE binary by a few KB. 257# Similarly, TAs have to be compiled with -funwind-tables (default when the 258# option is set) otherwise they can't be unwound. 259# Warning: since the unwind sequence for user-mode (TA) code is implemented in 260# the privileged layer of OP-TEE, enabling this feature will weaken the 261# user/kernel isolation. Therefore it should be disabled in release builds. 262ifeq ($(CFG_TEE_CORE_DEBUG),y) 263CFG_UNWIND ?= y 264endif 265 266# Enable support for dynamically loaded user TAs 267CFG_WITH_USER_TA ?= y 268 269# Build user TAs included in this source tree 270CFG_BUILD_IN_TREE_TA ?= y 271 272# Choosing the architecture(s) of user-mode libraries (used by TAs) 273# 274# Platforms may define a list of supported architectures for user-mode code 275# by setting $(supported-ta-targets). Valid values are "ta_arm32", "ta_arm64", 276# "ta_arm32 ta_arm64" and "ta_arm64 ta_arm32". 277# $(supported-ta-targets) defaults to "ta_arm32" when the TEE core is 32-bits, 278# and "ta_arm32 ta_arm64" when it is 64-bits (that is, when CFG_ARM64_core=y). 279# The first entry in $(supported-ta-targets) has a special role, see 280# CFG_USER_TA_TARGET_<ta-name> below. 281# 282# CFG_USER_TA_TARGETS may be defined to restrict $(supported-ta-targets) or 283# change the order of the values. 284# 285# The list of TA architectures is ultimately stored in $(ta-targets). 286 287# CFG_USER_TA_TARGET_<ta-name> (for example, CFG_USER_TA_TARGET_avb), if 288# defined, selects the unique TA architecture mode for building the in-tree TA 289# <ta-name>. Can be either ta_arm32 or ta_arm64. 290# By default, in-tree TAs are built using the first architecture specified in 291# $(ta-targets). 292 293# Address Space Layout Randomization for user-mode Trusted Applications 294# 295# When this flag is enabled, the ELF loader will introduce a random offset 296# when mapping the application in user space. ASLR makes the exploitation of 297# memory corruption vulnerabilities more difficult. 298CFG_TA_ASLR ?= y 299 300# How much ASLR may shift the base address (in pages). The base address is 301# randomly shifted by an integer number of pages comprised between these two 302# values. Bigger ranges are more secure because they make the addresses harder 303# to guess at the expense of using more memory for the page tables. 304CFG_TA_ASLR_MIN_OFFSET_PAGES ?= 0 305CFG_TA_ASLR_MAX_OFFSET_PAGES ?= 128 306 307# Address Space Layout Randomization for TEE Core 308# 309# When this flag is enabled, the early init code will introduce a random 310# offset when mapping TEE Core. ASLR makes the exploitation of memory 311# corruption vulnerabilities more difficult. 312CFG_CORE_ASLR ?= y 313 314# Stack Protection for TEE Core 315# This flag enables the compiler stack protection mechanisms -fstack-protector. 316# It will check the stack canary value before returning from a function to 317# prevent buffer overflow attacks. Stack protector canary logic will be added 318# for vulnerable functions that contain: 319# - A character array larger than 8 bytes. 320# - An 8-bit integer array larger than 8 bytes. 321# - A call to alloca() with either a variable size or a constant size bigger 322# than 8 bytes. 323CFG_CORE_STACK_PROTECTOR ?= n 324# This enable stack protector flag -fstack-protector-strong. Stack protector 325# canary logic will be added for vulnerable functions that contain: 326# - An array of any size and type. 327# - A call to alloca(). 328# - A local variable that has its address taken. 329CFG_CORE_STACK_PROTECTOR_STRONG ?= y 330# This enable stack protector flag -fstack-protector-all. Stack protector canary 331# logic will be added to all functions regardless of their vulnerability. 332CFG_CORE_STACK_PROTECTOR_ALL ?= n 333# Stack Protection for TA 334CFG_TA_STACK_PROTECTOR ?= n 335CFG_TA_STACK_PROTECTOR_STRONG ?= y 336CFG_TA_STACK_PROTECTOR_ALL ?= n 337 338_CFG_CORE_STACK_PROTECTOR := $(call cfg-one-enabled, CFG_CORE_STACK_PROTECTOR \ 339 CFG_CORE_STACK_PROTECTOR_STRONG \ 340 CFG_CORE_STACK_PROTECTOR_ALL) 341_CFG_TA_STACK_PROTECTOR := $(call cfg-one-enabled, CFG_TA_STACK_PROTECTOR \ 342 CFG_TA_STACK_PROTECTOR_STRONG \ 343 CFG_TA_STACK_PROTECTOR_ALL) 344 345# Load user TAs from the REE filesystem via tee-supplicant 346CFG_REE_FS_TA ?= y 347 348# Pre-authentication of TA binaries loaded from the REE filesystem 349# 350# - If CFG_REE_FS_TA_BUFFERED=y: load TA binary into a temporary buffer in the 351# "Secure DDR" pool, check the signature, then process the file only if it is 352# valid. 353# - If disabled: hash the binaries as they are being processed and verify the 354# signature as a last step. 355CFG_REE_FS_TA_BUFFERED ?= n 356$(eval $(call cfg-depends-all,CFG_REE_FS_TA_BUFFERED,CFG_REE_FS_TA)) 357 358# When CFG_REE_FS=y: 359# Allow secure storage in the REE FS to be entirely deleted without causing 360# anti-rollback errors. That is, rm /data/tee/dirf.db or rm -rf /data/tee (or 361# whatever path is configured in tee-supplicant as CFG_TEE_FS_PARENT_PATH) 362# can be used to reset the secure storage to a clean, empty state. 363# Intended to be used for testing only since it weakens storage security. 364# Warning: If enabled for release build then it will break rollback protection 365# of TAs and the entire REE FS secure storage. 366CFG_REE_FS_ALLOW_RESET ?= n 367 368# Support for loading user TAs from a special section in the TEE binary. 369# Such TAs are available even before tee-supplicant is available (hence their 370# name), but note that many services exported to TAs may need tee-supplicant, 371# so early use is limited to a subset of the TEE Internal Core API (crypto...) 372# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF 373# file(s). For example: 374# $ make ... \ 375# EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \ 376# path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf" 377# Typical build steps: 378# $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries, 379# # headers, makefiles), ready to build TAs. 380# # CFG_EARLY_TA=y is optional, it prevents 381# # later library recompilations. 382# <build some TAs> 383# $ make EARLY_TA_PATHS=<paths> # Build OP-TEE and embbed the TA(s) 384# 385# Another option is CFG_IN_TREE_EARLY_TAS which is used to point at 386# in-tree TAs. CFG_IN_TREE_EARLY_TAS is formatted as: 387# <name-of-ta>/<uuid> 388# for instance avb/023f8f1a-292a-432b-8fc4-de8471358067 389ifneq ($(EARLY_TA_PATHS)$(CFG_IN_TREE_EARLY_TAS),) 390$(call force,CFG_EARLY_TA,y) 391else 392CFG_EARLY_TA ?= n 393endif 394 395ifeq ($(CFG_EARLY_TA),y) 396$(call force,CFG_EMBEDDED_TS,y) 397endif 398 399ifneq ($(SP_PATHS),) 400$(call force,CFG_EMBEDDED_TS,y) 401else 402CFG_SECURE_PARTITION ?= n 403endif 404 405ifeq ($(CFG_SECURE_PARTITION),y) 406$(call force,CFG_EMBEDDED_TS,y) 407endif 408 409ifeq ($(CFG_EMBEDDED_TS),y) 410$(call force,CFG_ZLIB,y) 411endif 412 413# By default the early TAs are compressed in the TEE binary, it is possible to 414# not compress them with CFG_EARLY_TA_COMPRESS=n 415CFG_EARLY_TA_COMPRESS ?= y 416 417# Enable paging, requires SRAM, can't be enabled by default 418CFG_WITH_PAGER ?= n 419 420# Use the pager for user TAs 421CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER) 422 423# If paging of user TAs, that is, R/W paging default to enable paging of 424# TAG and IV in order to reduce heap usage. 425CFG_CORE_PAGE_TAG_AND_IV ?= $(CFG_PAGED_USER_TA) 426 427# Runtime lock dependency checker: ensures that a proper locking hierarchy is 428# used in the TEE core when acquiring and releasing mutexes. Any violation will 429# cause a panic as soon as the invalid locking condition is detected. If 430# CFG_UNWIND and CFG_LOCKDEP_RECORD_STACK are both enabled, the algorithm 431# records the call stacks when locks are taken, and prints them when a 432# potential deadlock is found. 433# Expect a significant performance impact when enabling this. 434CFG_LOCKDEP ?= n 435CFG_LOCKDEP_RECORD_STACK ?= y 436 437# BestFit algorithm in bget reduces the fragmentation of the heap when running 438# with the pager enabled or lockdep 439CFG_CORE_BGET_BESTFIT ?= $(call cfg-one-enabled, CFG_WITH_PAGER CFG_LOCKDEP) 440 441# Enable support for detected undefined behavior in C 442# Uses a lot of memory, can't be enabled by default 443CFG_CORE_SANITIZE_UNDEFINED ?= n 444 445# Enable Kernel Address sanitizer, has a huge performance impact, uses a 446# lot of memory and need platform specific adaptations, can't be enabled by 447# default 448CFG_CORE_SANITIZE_KADDRESS ?= n 449 450ifeq (y-y,$(CFG_CORE_SANITIZE_KADDRESS)-$(CFG_CORE_ASLR)) 451$(error CFG_CORE_SANITIZE_KADDRESS and CFG_CORE_ASLR are not compatible) 452endif 453 454# Add stack guards before/after stacks and periodically check them 455CFG_WITH_STACK_CANARIES ?= y 456 457# Use compiler instrumentation to troubleshoot stack overflows. 458# When enabled, most C functions check the stack pointer against the current 459# stack limits on entry and panic immediately if it is out of range. 460CFG_CORE_DEBUG_CHECK_STACKS ?= n 461 462# Use when the default stack allocations are not sufficient. 463CFG_STACK_THREAD_EXTRA ?= 0 464CFG_STACK_TMP_EXTRA ?= 0 465 466# Device Tree support 467# 468# When CFG_DT is enabled core embeds the FDT library (libfdt) allowing 469# device tree blob (DTB) parsing from the core. 470# 471# When CFG_DT is enabled, the TEE _start function expects to find 472# the address of a DTB in register X2/R2 provided by the early boot stage 473# or value 0 if boot stage provides no DTB. 474# 475# When CFG_EXTERNAL_DT is enabled, the external device tree ABI is implemented 476# and the external device tree is expected to be used/modified. Its value 477# defaults to CFG_DT. 478# 479# When CFG_MAP_EXT_DT_SECURE is enabled the external device tree is expected to 480# be in the secure memory. 481# 482# When CFG_EMBED_DTB is enabled, CFG_EMBED_DTB_SOURCE_FILE shall define the 483# relative path of a DTS file located in core/arch/$(ARCH)/dts. 484# The DTS file is compiled into a DTB file which content is embedded in a 485# read-only section of the core. 486ifneq ($(strip $(CFG_EMBED_DTB_SOURCE_FILE)),) 487CFG_EMBED_DTB ?= y 488endif 489ifeq ($(filter y,$(CFG_EMBED_DTB) $(CFG_CORE_SEL1_SPMC) $(CFG_CORE_SEL2_SPMC) \ 490 $(CFG_CORE_EL3_SPMC)),y) 491$(call force,CFG_DT,y) 492endif 493CFG_EMBED_DTB ?= n 494CFG_DT ?= n 495CFG_EXTERNAL_DT ?= $(CFG_DT) 496CFG_MAP_EXT_DT_SECURE ?= n 497ifeq ($(CFG_MAP_EXT_DT_SECURE),y) 498$(call force,CFG_DT,y) 499endif 500 501# This option enables OP-TEE to support boot arguments handover via Transfer 502# List defined in Firmware Handoff specification. 503# Note: This is an experimental feature and incompatible ABI changes can be 504# expected. It should be off by default until Firmware Handoff specification 505# has a stable release. 506# This feature requires the support of Device Tree. 507CFG_TRANSFER_LIST ?= n 508ifeq ($(CFG_TRANSFER_LIST),y) 509$(call force,CFG_DT,y) 510$(call force,CFG_EXTERNAL_DT,y) 511$(call force,CFG_MAP_EXT_DT_SECURE,y) 512endif 513 514# Maximum size of the Device Tree Blob, has to be large enough to allow 515# editing of the supplied DTB. 516CFG_DTB_MAX_SIZE ?= 0x10000 517 518# Maximum size of the init info data passed to Secure Partitions. 519CFG_SP_INIT_INFO_MAX_SIZE ?= 0x1000 520 521# Device Tree Overlay support. 522# CFG_EXTERNAL_DTB_OVERLAY allows to append a DTB overlay into an existing 523# external DTB. The overlay is created when no valid DTB overlay is found. 524# CFG_GENERATE_DTB_OVERLAY allows to create a DTB overlay at external 525# DTB location. 526# External DTB location (physical address) is provided either by boot 527# argument arg2 or from CFG_DT_ADDR if defined. 528# A subsequent boot stage can then merge the generated overlay DTB into a main 529# DTB using the standard fdt_overlay_apply() method. 530CFG_EXTERNAL_DTB_OVERLAY ?= n 531CFG_GENERATE_DTB_OVERLAY ?= n 532 533ifeq (y-y,$(CFG_EXTERNAL_DTB_OVERLAY)-$(CFG_GENERATE_DTB_OVERLAY)) 534$(error CFG_EXTERNAL_DTB_OVERLAY and CFG_GENERATE_DTB_OVERLAY are exclusive) 535endif 536_CFG_USE_DTB_OVERLAY := $(call cfg-one-enabled,CFG_EXTERNAL_DTB_OVERLAY \ 537 CFG_GENERATE_DTB_OVERLAY) 538 539# All embedded tests are supposed to be disabled by default, this flag 540# is used to control the default value of all other embedded tests 541CFG_ENABLE_EMBEDDED_TESTS ?= n 542 543# Enable core self tests and related pseudo TAs 544CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= $(CFG_ENABLE_EMBEDDED_TESTS) 545 546# Compiles bget_main_test() to be called from a test TA 547CFG_TA_BGET_TEST ?= $(CFG_ENABLE_EMBEDDED_TESTS) 548 549# CFG_DT_DRIVER_EMBEDDED_TEST when enabled embedded DT driver probing tests. 550# This also requires embedding a DTB with expected content. 551# Default disable CFG_DRIVERS_CLK_EARLY_PROBE to probe clocks as other drivers. 552# A probe deferral test mandates CFG_DRIVERS_DT_RECURSIVE_PROBE=n. 553CFG_DT_DRIVER_EMBEDDED_TEST ?= n 554ifeq ($(CFG_DT_DRIVER_EMBEDDED_TEST),y) 555CFG_DRIVERS_CLK ?= y 556CFG_DRIVERS_GPIO ?= y 557CFG_DRIVERS_RSTCTRL ?= y 558CFG_DRIVERS_CLK_EARLY_PROBE ?= n 559$(call force,CFG_DRIVERS_DT_RECURSIVE_PROBE,n,Mandated by CFG_DT_DRIVER_EMBEDDED_TEST) 560endif 561 562# CFG_WITH_STATS when enabled embeds PTA statistics service to allow non-secure 563# clients to retrieve debug and statistics information on core and loaded TAs. 564CFG_WITH_STATS ?= n 565 566# CFG_DRIVERS_DT_RECURSIVE_PROBE when enabled forces a recursive subnode 567# parsing in the embedded DTB for driver probing. The alternative is 568# an exploration based on compatible drivers found. It is default disabled. 569CFG_DRIVERS_DT_RECURSIVE_PROBE ?= n 570 571# This option enables OP-TEE to respond to SMP boot request: the Rich OS 572# issues this to request OP-TEE to release secondaries cores out of reset, 573# with specific core number and non-secure entry address. 574CFG_BOOT_SECONDARY_REQUEST ?= n 575 576# Default heap size for Core, 64 kB 577CFG_CORE_HEAP_SIZE ?= 65536 578 579# Default size of nexus heap. 16 kB. Used only if CFG_NS_VIRTUALIZATION 580# is enabled 581CFG_CORE_NEX_HEAP_SIZE ?= 16384 582 583# TA profiling. 584# When this option is enabled, OP-TEE can execute Trusted Applications 585# instrumented with GCC's -pg flag and will output profiling information 586# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in 587# tee-supplicant) 588# Note: this does not work well with shared libraries at the moment for a 589# couple of reasons: 590# 1. The profiling code assumes a unique executable section in the TA VA space. 591# 2. The code used to detect at run time if the TA is intrumented assumes that 592# the TA is linked statically. 593CFG_TA_GPROF_SUPPORT ?= n 594 595# TA function tracing. 596# When this option is enabled, OP-TEE can execute Trusted Applications 597# instrumented with GCC's -pg flag and will output function tracing 598# information for all functions compiled with -pg to 599# /tmp/ftrace-<ta_uuid>.out (path is defined in tee-supplicant). 600CFG_FTRACE_SUPPORT ?= n 601 602# Core syscall function tracing. 603# When this option is enabled, OP-TEE core is instrumented with GCC's 604# -pg flag and will output syscall function graph in user TA ftrace 605# buffer 606CFG_SYSCALL_FTRACE ?= n 607$(call cfg-depends-all,CFG_SYSCALL_FTRACE,CFG_FTRACE_SUPPORT) 608 609# Enable to compile user TA libraries with profiling (-pg). 610# Depends on CFG_TA_GPROF_SUPPORT or CFG_FTRACE_SUPPORT. 611CFG_ULIBS_MCOUNT ?= n 612# Profiling/tracing of syscall wrapper (utee_*) 613CFG_SYSCALL_WRAPPERS_MCOUNT ?= $(CFG_ULIBS_MCOUNT) 614 615ifeq (y,$(filter y,$(CFG_ULIBS_MCOUNT) $(CFG_SYSCALL_WRAPPERS_MCOUNT))) 616ifeq (,$(filter y,$(CFG_TA_GPROF_SUPPORT) $(CFG_FTRACE_SUPPORT))) 617$(error Cannot instrument user libraries if user mode profiling is disabled) 618endif 619endif 620 621# Build libutee, libutils, libmbedtls as shared libraries. 622# - Static libraries are still generated when this is enabled, but TAs will use 623# the shared libraries unless explicitly linked with the -static flag. 624# - Shared libraries are made of two files: for example, libutee is 625# libutee.so and 527f1a47-b92c-4a74-95bd-72f19f4a6f74.ta. The '.so' file 626# is a totally standard shared object, and should be used to link against. 627# The '.ta' file is a signed version of the '.so' and should be installed 628# in the same way as TAs so that they can be found at runtime. 629CFG_ULIBS_SHARED ?= n 630 631ifeq (y-y,$(CFG_TA_GPROF_SUPPORT)-$(CFG_ULIBS_SHARED)) 632$(error CFG_TA_GPROF_SUPPORT and CFG_ULIBS_SHARED are currently incompatible) 633endif 634 635# CFG_GP_SOCKETS 636# Enable Global Platform Sockets support 637CFG_GP_SOCKETS ?= y 638 639# Enable Secure Data Path support in OP-TEE core (TA may be invoked with 640# invocation parameters referring to specific secure memories). 641CFG_SECURE_DATA_PATH ?= n 642 643# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y 644# TA binaries are stored encrypted in the REE FS and are protected by 645# metadata in secure storage. 646CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA) 647$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA)) 648 649# Enable the pseudo TA that managages TA storage in secure storage 650CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA) 651$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA)) 652 653# Enable the pseudo TA for misc. auxilary services, extending existing 654# GlobalPlatform TEE Internal Core API (for example, re-seeding RNG entropy 655# pool etc...) 656CFG_SYSTEM_PTA ?= $(CFG_WITH_USER_TA) 657$(eval $(call cfg-depends-all,CFG_SYSTEM_PTA,CFG_WITH_USER_TA)) 658 659# Enable the pseudo TA for enumeration of TEE based devices for the normal 660# world OS. 661CFG_DEVICE_ENUM_PTA ?= y 662 663# The attestation pseudo TA provides an interface to request measurements of 664# a TA or the TEE binary. 665CFG_ATTESTATION_PTA ?= n 666$(eval $(call cfg-depends-all,CFG_ATTESTATION_PTA,_CFG_WITH_SECURE_STORAGE)) 667 668# RSA key size (in bits) for the attestation PTA. Must be at least 528 given 669# other algorithm parameters (RSA PSS with SHA-256 and 32-byte salt), but 670# note that such a low value is not secure. 671# See https://tools.ietf.org/html/rfc8017#section-8.1.1 and 672# https://tools.ietf.org/html/rfc8017#section-9.1.1 673# emLen >= hlen + sLen + 2 = 32 + 32 + 2 = 66 674# emLen = ceil((modBits - 1) / 8) => emLen is the key size in bytes 675CFG_ATTESTATION_PTA_KEY_SIZE ?= 3072 676 677# Define the number of cores per cluster used in calculating core position. 678# The cluster number is shifted by this value and added to the core ID, 679# so its value represents log2(cores/cluster). 680# Default is 2**(2) = 4 cores per cluster. 681CFG_CORE_CLUSTER_SHIFT ?= 2 682 683# Define the number of threads per core used in calculating processing 684# element's position. The core number is shifted by this value and added to 685# the thread ID, so its value represents log2(threads/core). 686# Default is 2**(0) = 1 threads per core. 687CFG_CORE_THREAD_SHIFT ?= 0 688 689# Enable support for dynamic shared memory (shared memory anywhere in 690# non-secure memory). 691CFG_CORE_DYN_SHM ?= y 692 693# Enable support for reserved shared memory (shared memory in a carved out 694# memory area). 695CFG_CORE_RESERVED_SHM ?= y 696 697# Enables support for larger physical addresses, that is, it will define 698# paddr_t as a 64-bit type. 699CFG_CORE_LARGE_PHYS_ADDR ?= n 700 701# Define the maximum size, in bits, for big numbers in the Internal Core API 702# Arithmetical functions. This does *not* influence the key size that may be 703# manipulated through the Cryptographic API. 704# Set this to a lower value to reduce the TA memory footprint. 705CFG_TA_BIGNUM_MAX_BITS ?= 2048 706 707# Not used since libmpa was removed. Force the values to catch build scripts 708# that would set = n. 709$(call force,CFG_TA_MBEDTLS_MPI,y) 710$(call force,CFG_TA_MBEDTLS,y) 711 712# Compile the TA library mbedTLS with self test functions, the functions 713# need to be called to test anything 714CFG_TA_MBEDTLS_SELF_TEST ?= y 715 716# By default use tomcrypt as the main crypto lib providing an implementation 717# for the API in <crypto/crypto.h> 718# CFG_CRYPTOLIB_NAME is used as libname and 719# CFG_CRYPTOLIB_DIR is used as libdir when compiling the library 720# 721# It's also possible to configure to use mbedtls instead of tomcrypt. 722# Then the variables should be assigned as "CFG_CRYPTOLIB_NAME=mbedtls" and 723# "CFG_CRYPTOLIB_DIR=lib/libmbedtls" respectively. 724CFG_CRYPTOLIB_NAME ?= tomcrypt 725CFG_CRYPTOLIB_DIR ?= core/lib/libtomcrypt 726 727# Not used since libmpa was removed. Force the value to catch build scripts 728# that would set = n. 729$(call force,CFG_CORE_MBEDTLS_MPI,y) 730 731# When enabled, CFG_NS_VIRTUALIZATION embeds support for virtualization in 732# the non-secure world. OP-TEE will not work without a compatible hypervisor 733# in the non-secure world if this option is enabled. 734# 735# CFG_VIRTUALIZATION served the same purpose as CFG_NS_VIRTUALIZATION but is 736# deprecated as the configuration switch name was ambiguous regarding which 737# world has virtualization enabled. 738ifneq (undefined,$(flavor CFG_VIRTUALIZATION)) 739$(info WARNING: CFG_VIRTUALIZATION is deprecated, use CFG_NS_VIRTUALIZATION instead) 740CFG_NS_VIRTUALIZATION ?= $(CFG_VIRTUALIZATION) 741ifneq ($(CFG_NS_VIRTUALIZATION),$(CFG_VIRTUALIZATION)) 742$(error Inconsistent CFG_NS_VIRTUALIZATION=$(CFG_NS_VIRTUALIZATION) and CFG_VIRTUALIZATION=$(CFG_VIRTUALIZATION)) 743endif 744endif # CFG_VIRTUALIZATION defined 745CFG_NS_VIRTUALIZATION ?= n 746 747ifeq ($(CFG_NS_VIRTUALIZATION),y) 748$(call force,CFG_CORE_RODATA_NOEXEC,y) 749$(call force,CFG_CORE_RWDATA_NOEXEC,y) 750 751# Default number of virtual guests 752CFG_VIRT_GUEST_COUNT ?= 2 753endif 754 755# Enables backwards compatible derivation of RPMB and SSK keys 756CFG_CORE_HUK_SUBKEY_COMPAT ?= y 757 758# Use SoC specific tee_otp_get_die_id() implementation for SSK key generation. 759# This option depends on CFG_CORE_HUK_SUBKEY_COMPAT=y. 760CFG_CORE_HUK_SUBKEY_COMPAT_USE_OTP_DIE_ID ?= n 761 762# Compress and encode conf.mk into the TEE core, and show the encoded string on 763# boot (with severity TRACE_INFO). 764CFG_SHOW_CONF_ON_BOOT ?= n 765 766# Enables support for passing a TPM Event Log stored in secure memory 767# to a TA or FF-A SP, so a TPM Service could use it to extend any measurement 768# taken before the service was up and running. 769CFG_CORE_TPM_EVENT_LOG ?= n 770 771# When enabled, CFG_SCMI_MSG_DRIVERS embeds SCMI message drivers in the core. 772# Refer to the supported SCMI features embedded upon CFG_SCMI_MSG_* 773# 774# CFG_SCMI_MSG_CLOCK embeds SCMI clock protocol support. 775# CFG_SCMI_MSG_RESET_DOMAIN embeds SCMI reset domain protocol support. 776# CFG_SCMI_MSG_SMT embeds a SMT header in shared device memory buffers 777# CFG_SCMI_MSG_VOLTAGE_DOMAIN embeds SCMI voltage domain protocol support. 778# CFG_SCMI_MSG_SMT_FASTCALL_ENTRY embeds fastcall SMC entry with SMT memory 779# CFG_SCMI_MSG_SMT_INTERRUPT_ENTRY embeds interrupt entry with SMT memory 780# CFG_SCMI_MSG_SMT_THREAD_ENTRY embeds threaded entry with SMT memory 781# CFG_SCMI_MSG_SHM_MSG embeds a MSG header in cached shared memory buffer 782CFG_SCMI_MSG_DRIVERS ?= n 783ifeq ($(CFG_SCMI_MSG_DRIVERS),y) 784CFG_SCMI_MSG_CLOCK ?= n 785CFG_SCMI_MSG_RESET_DOMAIN ?= n 786CFG_SCMI_MSG_SHM_MSG ?= n 787CFG_SCMI_MSG_SMT ?= n 788CFG_SCMI_MSG_SMT_FASTCALL_ENTRY ?= n 789CFG_SCMI_MSG_SMT_INTERRUPT_ENTRY ?= n 790CFG_SCMI_MSG_SMT_THREAD_ENTRY ?= n 791CFG_SCMI_MSG_THREAD_ENTRY ?= n 792CFG_SCMI_MSG_VOLTAGE_DOMAIN ?= n 793$(eval $(call cfg-depends-all,CFG_SCMI_MSG_SMT_FASTCALL_ENTRY,CFG_SCMI_MSG_SMT)) 794$(eval $(call cfg-depends-all,CFG_SCMI_MSG_SMT_INTERRUPT_ENTRY,CFG_SCMI_MSG_SMT)) 795$(eval $(call cfg-depends-one,CFG_SCMI_MSG_SMT_THREAD_ENTRY,CFG_SCMI_MSG_SMT CFG_SCMI_MSG_SHM_MSG)) 796ifeq ($(CFG_SCMI_MSG_SMT),y) 797_CFG_SCMI_PTA_SMT_HEADER := y 798endif 799ifeq ($(CFG_SCMI_MSG_SHM_MSG),y) 800_CFG_SCMI_PTA_MSG_HEADER := y 801endif 802endif 803 804# CFG_SCMI_SCPFW, when enabled, embeds the reference SCMI server implementation 805# from SCP-firmware package as an built-in SCMI stack in core. This 806# configuration mandates target product identifier is configured with 807# CFG_SCMI_SCPFW_PRODUCT and the SCP-firmware source tree path with 808# CFG_SCP_FIRMWARE. 809CFG_SCMI_SCPFW ?= n 810 811ifeq ($(CFG_SCMI_SCPFW),y) 812$(call force,CFG_SCMI_PTA,y,Required by CFG_SCMI_SCPFW) 813ifeq (,$(CFG_SCMI_SCPFW_PRODUCT)) 814$(error CFG_SCMI_SCPFW=y requires CFG_SCMI_SCPFW_PRODUCT configuration) 815endif 816ifeq (,$(wildcard $(CFG_SCP_FIRMWARE)/CMakeLists.txt)) 817$(error CFG_SCMI_SCPFW=y requires CFG_SCP_FIRMWARE configuration) 818endif 819endif #CFG_SCMI_SCPFW 820 821ifeq ($(CFG_SCMI_MSG_DRIVERS)-$(CFG_SCMI_SCPFW),y-y) 822$(error CFG_SCMI_MSG_DRIVERS=y and CFG_SCMI_SCPFW=y are mutually exclusive) 823endif 824 825# When enabled, CFG_SCMI_MSG_USE_CLK embeds SCMI clocks registering services for 826# the platform SCMI server and implements the platform plat_scmi_clock_*() 827# functions. 828CFG_SCMI_MSG_USE_CLK ?= n 829$(eval $(call cfg-depends-all,CFG_SCMI_MSG_USE_CLK,CFG_DRIVERS_CLK CFG_SCMI_MSG_DRIVERS)) 830 831# Enable SCMI PTA interface for REE SCMI agents 832CFG_SCMI_PTA ?= n 833ifeq ($(CFG_SCMI_PTA),y) 834_CFG_SCMI_PTA_SMT_HEADER ?= n 835_CFG_SCMI_PTA_MSG_HEADER ?= n 836endif 837 838ifneq ($(CFG_STMM_PATH),) 839$(call force,CFG_WITH_STMM_SP,y) 840else 841CFG_WITH_STMM_SP ?= n 842endif 843ifeq ($(CFG_WITH_STMM_SP),y) 844$(call force,CFG_ZLIB,y) 845endif 846 847# When enabled checks that buffers passed to the GP Internal Core API 848# comply with the rules added as annotations as part of the definition of 849# the API. For example preventing buffers in non-secure shared memory when 850# not allowed. 851CFG_TA_STRICT_ANNOTATION_CHECKS ?= y 852 853# When enabled accepts the DES key sizes excluding parity bits as in 854# the GP Internal API Specification v1.0 855CFG_COMPAT_GP10_DES ?= y 856 857# Defines a limit for many levels TAs may call each others. 858CFG_CORE_MAX_SYSCALL_RECURSION ?= 4 859 860# Pseudo-TA to export hardware RNG output to Normal World 861# RNG characteristics are platform specific 862CFG_HWRNG_PTA ?= n 863ifeq ($(CFG_HWRNG_PTA),y) 864# Output rate of hw_get_random_bytes() in bytes per second, 0: not rate-limited 865CFG_HWRNG_RATE ?= 0 866# Quality/entropy of hw_get_random_bytes() per 1024 bits of output data, in bits 867ifeq (,$(CFG_HWRNG_QUALITY)) 868$(error CFG_HWRNG_QUALITY not defined) 869endif 870endif 871 872# CFG_PREALLOC_RPC_CACHE, when enabled, makes core to preallocate 873# shared memory for each secure thread. When disabled, RPC shared 874# memory is released once the secure thread has completed is execution. 875ifeq ($(CFG_WITH_PAGER),y) 876CFG_PREALLOC_RPC_CACHE ?= n 877endif 878CFG_PREALLOC_RPC_CACHE ?= y 879 880# When enabled, CFG_DRIVERS_CLK embeds a clock framework in OP-TEE core. 881# This clock framework allows to describe clock tree and provides functions to 882# get and configure the clocks. 883# CFG_DRIVERS_CLK_DT embeds devicetree clock parsing support 884# CFG_DRIVERS_CLK_FIXED add support for "fixed-clock" compatible clocks 885# CFG_DRIVERS_CLK_EARLY_PROBE makes clocks probed at early_init initcall level. 886# CFG_DRIVERS_CLK_PRINT_TREE embeds a helper function to print the clock tree 887# state on OP-TEE core console with the debug trace level. 888CFG_DRIVERS_CLK ?= n 889CFG_DRIVERS_CLK_DT ?= $(call cfg-all-enabled,CFG_DRIVERS_CLK CFG_DT) 890CFG_DRIVERS_CLK_FIXED ?= $(CFG_DRIVERS_CLK_DT) 891CFG_DRIVERS_CLK_EARLY_PROBE ?= $(CFG_DRIVERS_CLK_DT) 892CFG_DRIVERS_CLK_PRINT_TREE ?= n 893 894$(eval $(call cfg-depends-all,CFG_DRIVERS_CLK_DT,CFG_DRIVERS_CLK CFG_DT)) 895$(eval $(call cfg-depends-all,CFG_DRIVERS_CLK_FIXED,CFG_DRIVERS_CLK_DT)) 896 897# When enabled, CFG_DRIVERS_RSTCTRL embeds a reset controller framework in 898# OP-TEE core to provide reset controls on subsystems of the devices. 899CFG_DRIVERS_RSTCTRL ?= n 900 901# When enabled, CFG_DRIVERS_GPIO embeds a GPIO controller framework in 902# OP-TEE core to provide GPIO support for drivers. 903CFG_DRIVERS_GPIO ?= n 904 905# When enabled, CFG_DRIVERS_I2C provides I2C controller and devices support. 906CFG_DRIVERS_I2C ?= n 907 908# When enabled, CFG_DRIVERS_NVMEM provides a framework to register nvmem 909# providers and allow consumer drivers to get NVMEM cells using the Device Tree. 910CFG_DRIVERS_NVMEM ?= n 911 912# When enabled, CFG_DRIVERS_PINCTRL embeds a pin muxing controller framework in 913# OP-TEE core to provide drivers a way to apply pin muxing configurations based 914# on device-tree. 915CFG_DRIVERS_PINCTRL ?= n 916 917# When enabled, CFG_DRIVERS_REGULATOR embeds a voltage regulator framework in 918# OP-TEE core to provide drivers a common regulator interface and describe 919# the regulators dependencies using an embedded device tree. 920# 921# When enabled, CFG_REGULATOR_FIXED embeds a voltage regulator driver for 922# DT compatible "regulator-fixed" devices. 923# 924# When enabled, CFG_REGULATOR_GPIO embeds a voltage regulator driver for 925# DT compatible "regulator-gpio" devices. 926# 927# CFG_DRIVERS_REGULATOR_PRINT_TREE embeds a helper function to print the 928# regulator tree state on OP-TEE core console with the info trace level. 929CFG_DRIVERS_REGULATOR ?= n 930CFG_DRIVERS_REGULATOR_PRINT_TREE ?= n 931CFG_REGULATOR_FIXED ?= n 932CFG_REGULATOR_GPIO ?= n 933 934$(eval $(call cfg-enable-all-depends,CFG_REGULATOR_FIXED, \ 935 CFG_DRIVERS_REGULATOR CFG_DT)) 936$(eval $(call cfg-enable-all-depends,CFG_REGULATOR_GPIO, \ 937 CFG_DRIVERS_REGULATOR CFG_DT CFG_DRIVERS_GPIO)) 938 939# When enabled, CFG_INSECURE permits insecure configuration of OP-TEE core 940# and shows a print (info level) when booting up the device that 941# indicates that the board runs a standard developer configuration. 942# 943# A developer configuration doesn't necessarily have to be secure. The intention 944# is that the one making products based on OP-TEE should override this flag in 945# plat-xxx/conf.mk for the platform they're basing their products on after 946# they've finalized implementing stubbed functionality (see OP-TEE 947# documentation/Porting guidelines) as well as vendor specific security 948# configuration. 949# 950# CFG_WARN_INSECURE served the same purpose as CFG_INSECURE but is deprecated. 951ifneq (undefined,$(flavor CFG_WARN_INSECURE)) 952$(info WARNING: CFG_WARN_INSECURE is deprecated, use CFG_INSECURE instead) 953CFG_INSECURE ?= $(CFG_WARN_INSECURE) 954ifneq ($(CFG_INSECURE),$(CFG_WARN_INSECURE)) 955$(error Inconsistent CFG_INSECURE=$(CFG_INSECURE) and CFG_WARN_INSECURE=$(CFG_WARN_INSECURE)) 956endif 957endif # CFG_WARN_INSECURE defined 958CFG_INSECURE ?= y 959 960# Enables warnings for declarations mixed with statements 961CFG_WARN_DECL_AFTER_STATEMENT ?= y 962 963# Branch Target Identification (part of the ARMv8.5 Extensions) provides a 964# mechanism to limit the set of locations to which computed branch instructions 965# such as BR or BLR can jump. To make use of BTI in TEE core and ldelf on CPU's 966# that support it, enable this option. A GCC toolchain built with 967# --enable-standard-branch-protection is needed to use this option. 968CFG_CORE_BTI ?= n 969 970$(eval $(call cfg-depends-all,CFG_CORE_BTI,CFG_ARM64_core)) 971 972# To make use of BTI in user space libraries and TA's on CPU's that support it, 973# enable this option. 974CFG_TA_BTI ?= $(CFG_CORE_BTI) 975 976$(eval $(call cfg-depends-all,CFG_TA_BTI,CFG_ARM64_core)) 977 978ifeq (y-y,$(CFG_NS_VIRTUALIZATION)-$(call cfg-one-enabled, CFG_TA_BTI CFG_CORE_BTI)) 979$(error CFG_NS_VIRTUALIZATION and BTI are currently incompatible) 980endif 981 982ifeq (y-y,$(CFG_PAGED_USER_TA)-$(CFG_TA_BTI)) 983$(error CFG_PAGED_USER_TA and CFG_TA_BTI are currently incompatible) 984endif 985 986# Memory Tagging Extension (part of the ARMv8.5 Extensions) implements lock 987# and key access to memory. This is a hardware supported alternative to 988# CFG_CORE_SANITIZE_KADDRESS which covers both S-EL1 and S-EL0. 989CFG_MEMTAG ?= n 990 991$(eval $(call cfg-depends-all,CFG_MEMTAG,CFG_ARM64_core)) 992ifeq (y-y,$(CFG_CORE_SANITIZE_KADDRESS)-$(CFG_MEMTAG)) 993$(error CFG_CORE_SANITIZE_KADDRESS and CFG_MEMTAG are not compatible) 994endif 995ifeq (y-y,$(CFG_WITH_PAGER)-$(CFG_MEMTAG)) 996$(error CFG_WITH_PAGER and CFG_MEMTAG are not compatible) 997endif 998 999# Privileged Access Never (PAN, part of the ARMv8.1 Extensions) can be 1000# used to restrict accesses to unprivileged memory from privileged mode. 1001# For RISC-V architecture, CSR {m|s}status.SUM bit is used to implement PAN. 1002CFG_PAN ?= n 1003 1004$(eval $(call cfg-depends-one,CFG_PAN,CFG_ARM64_core CFG_RV64_core CFG_RV32_core)) 1005 1006ifeq ($(filter y, $(CFG_CORE_SEL1_SPMC) $(CFG_CORE_SEL2_SPMC) \ 1007 $(CFG_CORE_EL3_SPMC)),y) 1008# FF-A case, handled via the FF-A ABI 1009CFG_CORE_ASYNC_NOTIF ?= y 1010$(call force,_CFG_CORE_ASYNC_NOTIF_DEFAULT_IMPL,n) 1011else 1012# CFG_CORE_ASYNC_NOTIF is defined by the platform to enable support 1013# for sending asynchronous notifications to normal world. 1014# Interrupt ID must be configurged by the platform too. Currently is only 1015# CFG_CORE_ASYNC_NOTIF_GIC_INTID defined. 1016CFG_CORE_ASYNC_NOTIF ?= n 1017$(call force,_CFG_CORE_ASYNC_NOTIF_DEFAULT_IMPL,$(CFG_CORE_ASYNC_NOTIF)) 1018endif 1019 1020# Enable callout service 1021CFG_CALLOUT ?= $(CFG_CORE_ASYNC_NOTIF) 1022 1023# Enable notification based test watchdog 1024CFG_NOTIF_TEST_WD ?= $(CFG_ENABLE_EMBEDDED_TESTS) 1025$(eval $(call cfg-depends-all,CFG_NOTIF_TEST_WD,CFG_CALLOUT \ 1026 CFG_CORE_ASYNC_NOTIF)) 1027 1028$(eval $(call cfg-enable-all-depends,CFG_MEMPOOL_REPORT_LAST_OFFSET, \ 1029 CFG_WITH_STATS)) 1030 1031# Pointer Authentication (part of ARMv8.3 Extensions) provides instructions 1032# for signing and authenticating pointers against secret keys. These can 1033# be used to mitigate ROP (Return oriented programming) attacks. This is 1034# currently done by instructing the compiler to add paciasp/autiasp at the 1035# begging and end of functions to sign and verify ELR. 1036# 1037# The CFG_CORE_PAUTH enables these instructions for the core parts 1038# executing at EL1, with one secret key per thread and one secret key per 1039# physical CPU. 1040# 1041# The CFG_TA_PAUTH option enables these instructions for TA's at EL0. When 1042# this option is enabled, TEE core will initialize secret keys per TA. 1043CFG_CORE_PAUTH ?= n 1044CFG_TA_PAUTH ?= $(CFG_CORE_PAUTH) 1045 1046$(eval $(call cfg-depends-all,CFG_CORE_PAUTH,CFG_ARM64_core)) 1047$(eval $(call cfg-depends-all,CFG_TA_PAUTH,CFG_ARM64_core)) 1048 1049ifeq (y-y,$(CFG_NS_VIRTUALIZATION)-$(CFG_CORE_PAUTH)) 1050$(error CFG_NS_VIRTUALIZATION and CFG_CORE_PAUTH are currently incompatible) 1051endif 1052ifeq (y-y,$(CFG_NS_VIRTUALIZATION)-$(CFG_TA_PAUTH)) 1053$(error CFG_NS_VIRTUALIZATION and CFG_TA_PAUTH are currently incompatible) 1054endif 1055 1056ifeq (y-y,$(CFG_TA_GPROF_SUPPORT)-$(CFG_TA_PAUTH)) 1057$(error CFG_TA_GPROF_SUPPORT and CFG_TA_PAUTH are currently incompatible) 1058endif 1059 1060ifeq (y-y,$(CFG_FTRACE_SUPPORT)-$(CFG_TA_PAUTH)) 1061$(error CFG_FTRACE_SUPPORT and CFG_TA_PAUTH are currently incompatible) 1062endif 1063 1064# Enable support for generic watchdog registration 1065# This watchdog will then be usable by non-secure world through SMC calls. 1066CFG_WDT ?= n 1067 1068# Enable watchdog SMC handling compatible with arm-smc-wdt Linux driver 1069CFG_WDT_SM_HANDLER ?= n 1070 1071$(eval $(call cfg-enable-all-depends,CFG_WDT_SM_HANDLER,CFG_WDT)) 1072 1073# When CFG_WDT_SM_HANDLER=y, SMC function ID 0x82003D06 default implements 1074# arm-smc-wdt service. Platform can also override this ID with a platform 1075# specific SMC function ID to access arm-smc-wdt service thanks to 1076# optional config switch CFG_WDT_SM_HANDLER_ID. 1077CFG_WDT_SM_HANDLER_ID ?= 0x82003D06 1078 1079# Allow using the udelay/mdelay function for platforms without ARM generic timer 1080# extension. When set to 'n', the plat_get_freq() function must be defined by 1081# the platform code 1082CFG_CORE_HAS_GENERIC_TIMER ?= y 1083 1084# Enable RTC API 1085CFG_DRIVERS_RTC ?= n 1086 1087# Enable PTA for RTC access from non-secure world 1088CFG_RTC_PTA ?= n 1089 1090# Enable the FF-A SPMC tests in xtests 1091CFG_SPMC_TESTS ?= n 1092 1093# Allocate the translation tables needed to map the S-EL0 application 1094# loaded 1095CFG_CORE_PREALLOC_EL0_TBLS ?= n 1096ifeq (y-y,$(CFG_CORE_PREALLOC_EL0_TBLS)-$(CFG_WITH_PAGER)) 1097$(error "CFG_WITH_PAGER can't support CFG_CORE_PREALLOC_EL0_TBLS") 1098endif 1099 1100# User TA runtime context dump. 1101# When this option is enabled, OP-TEE provides a debug method for 1102# developer to dump user TA's runtime context, including TA's heap stats. 1103# Developer can open a stats PTA session and then invoke command 1104# STATS_CMD_TA_STATS to get the context of loaded TAs. 1105CFG_TA_STATS ?= n 1106 1107# Enables best effort mitigations against fault injected when the hardware 1108# is tampered with. Details in lib/libutils/ext/include/fault_mitigation.h 1109CFG_FAULT_MITIGATION ?= y 1110 1111# Enables TEE Internal Core API v1.1 compatibility for in-tree TAs. Note 1112# that this doesn't affect libutee itself, it's only the TAs compiled with 1113# this set that are affected. Each out-of-tree must set this if to enable 1114# compatibility with version v1.1 as the value of this variable is not 1115# preserved in the TA dev-kit. 1116CFG_TA_OPTEE_CORE_API_COMPAT_1_1 ?= n 1117 1118# Change supported HMAC key size range, from 64 to 1024. 1119# This is needed to pass AOSP Keymaster VTS tests: 1120# Link to tests : https://android.googlesource.com/platform/hardware/interfaces/+/master/keymaster/3.0/vts/functional/keymaster_hidl_hal_test.cpp 1121# Module: VtsHalKeymasterV3_0TargetTest 1122# Testcases: - PerInstance/SigningOperationsTest# 1123# - PerInstance/NewKeyGenerationTest# 1124# - PerInstance/ImportKeyTest# 1125# - PerInstance/EncryptionOperationsTest# 1126# - PerInstance/AttestationTest# 1127# Note that this violates GP requirements of HMAC size range. 1128CFG_HMAC_64_1024_RANGE ?= n 1129 1130# CFG_RSA_PUB_EXPONENT_3, when enabled, allows RSA public exponents in the 1131# range 3 <= e < 2^256. This is needed to pass AOSP KeyMint VTS tests: 1132# Link to tests: https://android.googlesource.com/platform/hardware/interfaces/+/refs/heads/main/security/keymint/aidl/vts/functional/KeyMintTest.cpp 1133# Module: VtsAidlKeyMintTargetTest 1134# Testcases: - PerInstance/EncryptionOperationsTest.RsaNoPaddingSuccess 1135# When CFG_RSA_PUB_EXPONENT_3 is disabled, RSA public exponents must conform 1136# to NIST SP800-56B recommendation and be in the range 65537 <= e < 2^256. 1137CFG_RSA_PUB_EXPONENT_3 ?= n 1138 1139# Enable a hardware pbkdf2 function 1140# By default use standard pbkdf2 implementation 1141CFG_CRYPTO_HW_PBKDF2 ?= n 1142$(eval $(call cfg-depends-all,CFG_CRYPTO_HW_PBKDF2,CFG_CRYPTO_PBKDF2)) 1143 1144# CFG_HALT_CORES_ON_PANIC, when enabled, makes any call to panic() halt the 1145# other cores. The feature currently relies on GIC device to trap the other 1146# cores using an SGI interrupt specified by CFG_HALT_CORES_ON_PANIC_SGI. 1147CFG_HALT_CORES_ON_PANIC ?= n 1148CFG_HALT_CORES_ON_PANIC_SGI ?= 15 1149$(eval $(call cfg-depends-all,CFG_HALT_CORES_ON_PANIC,CFG_GIC)) 1150 1151# Enable automatic discovery of maximal PA supported by the hardware and 1152# use that. Provides easier configuration of virtual platforms where the 1153# maximal PA can vary. 1154CFG_AUTO_MAX_PA_BITS ?= n 1155 1156# CFG_DRIVERS_REMOTEPROC, when enabled, embeds support for remote processor 1157# management including generic DT bindings for the configuration. 1158CFG_DRIVERS_REMOTEPROC ?= n 1159 1160# CFG_REMOTEPROC_PTA, when enabled, embeds remote processor management PTA 1161# service. 1162CFG_REMOTEPROC_PTA ?= n 1163 1164# When enabled, CFG_WIDEVINE_HUK uses the widevine HUK provided by secure 1165# DTB as OP-TEE HUK. 1166CFG_WIDEVINE_HUK ?= n 1167$(eval $(call cfg-depends-all,CFG_WIDEVINE_HUK,CFG_DT)) 1168 1169# When enabled, CFG_WIDEVINE_PTA embeds a PTA that exposes the keys under 1170# DT node "/options/op-tee/widevine" to some specific TAs. 1171CFG_WIDEVINE_PTA ?= n 1172$(eval $(call cfg-depends-all,CFG_WIDEVINE_PTA,CFG_DT CFG_WIDEVINE_HUK)) 1173 1174# CFG_SEMIHOSTING_CONSOLE, when enabled, embeds a semihosting console driver. 1175# When CFG_SEMIHOSTING_CONSOLE_FILE=NULL, OP-TEE console reads/writes 1176# trace messages from/to the debug terminal of the semihosting host computer. 1177# When CFG_SEMIHOSTING_CONSOLE_FILE="{your_log_file}", OP-TEE console 1178# outputs trace messages to that file. Output to "optee.log" by default. 1179CFG_SEMIHOSTING_CONSOLE ?= n 1180ifeq ($(CFG_SEMIHOSTING_CONSOLE),y) 1181$(call force,CFG_SEMIHOSTING,y) 1182endif 1183CFG_SEMIHOSTING_CONSOLE_FILE ?= "optee.log" 1184ifeq ($(CFG_SEMIHOSTING_CONSOLE_FILE),) 1185$(error CFG_SEMIHOSTING_CONSOLE_FILE cannot be empty) 1186endif 1187 1188# Semihosting is a debugging mechanism that enables code running on an embedded 1189# system (also called the target) to communicate with and use the I/O of the 1190# host computer. 1191CFG_SEMIHOSTING ?= n 1192