xref: /optee_os/mk/config.mk (revision 2a65ecaf7d6f855e24ce1a117fe1931f7378f82c)
1# Default configuration values for OP-TEE core (all platforms).
2#
3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk.
4# Some subsystem-specific defaults are not here but rather in */sub.mk.
5#
6# Configuration values may be assigned from multiple sources.
7# From higher to lower priority:
8#
9#   1. Make arguments ('make CFG_FOO=bar...')
10#   2. The file specified by $(CFG_OPTEE_CONFIG) (if defined)
11#   3. The environment ('CFG_FOO=bar make...')
12#   4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk
13#   5. This file
14#   6. Subsystem-specific makefiles (*/sub.mk)
15#
16# Actual values used during the build are output to $(out-dir)/conf.mk
17# (CFG_* variables only).
18
19# Cross-compiler prefix and suffix
20ifeq ($(ARCH),arm)
21CROSS_COMPILE ?= arm-linux-gnueabihf-
22CROSS_COMPILE64 ?= aarch64-linux-gnu-
23endif
24ifeq ($(ARCH),riscv)
25CROSS_COMPILE ?= riscv-linux-gnu-
26CROSS_COMPILE64 ?= riscv64-linux-gnu-
27endif
28CROSS_COMPILE32 ?= $(CROSS_COMPILE)
29COMPILER ?= gcc
30
31# For convenience
32ifdef CFLAGS
33CFLAGS32 ?= $(CFLAGS)
34CFLAGS64 ?= $(CFLAGS)
35endif
36
37# Compiler warning level.
38# Supported values: undefined, 1, 2 and 3. 3 gives more warnings.
39WARNS ?= 3
40
41# Path to the Python interpreter used by the build system.
42# This variable is set to the default python3 interpreter in the user's
43# path. But build environments that require more explicit control can
44# set the path to a specific interpreter through this variable.
45PYTHON3 ?= python3
46
47# Define DEBUG=1 to compile without optimization (forces -O0)
48# DEBUG=1
49ifeq ($(DEBUG),1)
50# For backwards compatibility
51$(call force,CFG_CC_OPT_LEVEL,0)
52$(call force,CFG_DEBUG_INFO,y)
53endif
54
55# CFG_CC_OPT_LEVEL sets compiler optimization level passed with -O directive.
56# Optimize for size by default, usually gives good performance too.
57CFG_CC_OPT_LEVEL ?= s
58
59# Enabling CFG_DEBUG_INFO makes debug information embedded in core.
60CFG_DEBUG_INFO ?= y
61
62# If y, enable debug features of the TEE core (assertions and lock checks
63# are enabled, panic and assert messages are more verbose, data and prefetch
64# aborts show a stack dump). When disabled, the NDEBUG directive is defined
65# so assertions are disabled.
66CFG_TEE_CORE_DEBUG ?= y
67
68# Log levels for the TEE core. Defines which core messages are displayed
69# on the secure console. Disabling core log (level set to 0) also disables
70# logs from the TAs.
71# 0: none
72# 1: error
73# 2: error + info
74# 3: error + info + debug
75# 4: error + info + debug + flow
76CFG_TEE_CORE_LOG_LEVEL ?= 2
77
78# TA log level
79# If user-mode library libutils.a is built with CFG_TEE_TA_LOG_LEVEL=0,
80# TA tracing is disabled regardless of the value of CFG_TEE_TA_LOG_LEVEL
81# when the TA is built.
82CFG_TEE_TA_LOG_LEVEL ?= 1
83
84# TA enablement
85# When defined to "y", TA traces are output according to
86# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all
87CFG_TEE_CORE_TA_TRACE ?= y
88
89# If y, enable the memory leak detection feature in the bget memory allocator.
90# When this feature is enabled, calling mdbg_check(1) will print a list of all
91# the currently allocated buffers and the location of the allocation (file and
92# line number).
93# Note: make sure the log level is high enough for the messages to show up on
94# the secure console! For instance:
95# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with:
96#   $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3
97# - To debug TEE core allocations: build OP-TEE with:
98#   $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3
99CFG_TEE_CORE_MALLOC_DEBUG ?= n
100CFG_TEE_TA_MALLOC_DEBUG ?= n
101# Prints an error message and dumps the stack on failed memory allocations
102# using malloc() and friends.
103CFG_CORE_DUMP_OOM ?= $(CFG_TEE_CORE_MALLOC_DEBUG)
104
105# Mask to select which messages are prefixed with long debugging information
106# (severity, core ID, thread ID, component name, function name, line number)
107# based on the message level. If BIT(level) is set, the long prefix is shown.
108# Otherwise a short prefix is used (severity and component name only).
109# Levels: 0=none 1=error 2=info 3=debug 4=flow
110CFG_MSG_LONG_PREFIX_MASK ?= 0x1a
111
112# Number of threads
113CFG_NUM_THREADS ?= 2
114
115# API implementation version
116CFG_TEE_API_VERSION ?= GPD-1.1-dev
117
118# Implementation description (implementation-dependent)
119CFG_TEE_IMPL_DESCR ?= OPTEE
120
121# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal
122# World?
123CFG_OS_REV_REPORTS_GIT_SHA1 ?= y
124
125# The following values are not extracted from the "git describe" output because
126# we might be outside of a Git environment, or the tree may have been cloned
127# with limited depth not including any tag, so there is really no guarantee
128# that TEE_IMPL_VERSION contains the major and minor revision numbers.
129CFG_OPTEE_REVISION_MAJOR ?= 4
130CFG_OPTEE_REVISION_MINOR ?= 2
131CFG_OPTEE_REVISION_EXTRA ?=
132
133# Trusted OS implementation version
134TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || \
135		      echo Unknown_$(CFG_OPTEE_REVISION_MAJOR).$(CFG_OPTEE_REVISION_MINOR))$(CFG_OPTEE_REVISION_EXTRA)
136
137# Trusted OS implementation manufacturer name
138CFG_TEE_MANUFACTURER ?= LINARO
139
140# Trusted firmware version
141CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF
142
143# Trusted OS implementation manufacturer name
144CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF
145
146# Rich Execution Environment (REE) file system support: normal world OS
147# provides the actual storage.
148# This is the default FS when enabled (i.e., the one used when
149# TEE_STORAGE_PRIVATE is passed to the trusted storage API)
150CFG_REE_FS ?= y
151
152# RPMB file system support
153CFG_RPMB_FS ?= n
154
155# Enable roll-back protection of REE file system using RPMB.
156# Roll-back protection only works if CFG_RPMB_FS = y.
157CFG_REE_FS_INTEGRITY_RPMB ?= $(CFG_RPMB_FS)
158$(eval $(call cfg-depends-all,CFG_REE_FS_INTEGRITY_RPMB,CFG_RPMB_FS))
159
160# Device identifier used when CFG_RPMB_FS = y.
161# The exact meaning of this value is platform-dependent. On Linux, the
162# tee-supplicant process will open /dev/mmcblk<id>rpmb
163CFG_RPMB_FS_DEV_ID ?= 0
164
165# This config variable determines the number of entries read in from RPMB at
166# once whenever a function traverses the RPMB FS. Increasing the default value
167# has the following consequences:
168# - More memory required on heap. A single FAT entry currently has a size of
169#   256 bytes.
170# - Potentially significant speed-ups for RPMB I/O. Depending on how many
171#   entries a function needs to traverse, the number of time-consuming RPMB
172#   read-in operations can be reduced.
173# Chosing a proper value is both platform- (available memory) and use-case-
174# dependent (potential number of FAT fs entries), so overwrite in platform
175# config files
176CFG_RPMB_FS_RD_ENTRIES ?= 8
177
178# Enables caching of FAT FS entries when set to a value greater than zero.
179# When enabled, the cache stores the first 'CFG_RPMB_FS_CACHE_ENTRIES' FAT FS
180# entries. The cache is populated when FAT FS entries are initially read in.
181# When traversing the FAT FS entries, we read from the cache instead of reading
182# in the entries from RPMB storage. Consequently, when a FAT FS entry is
183# written, the cache is updated. In scenarios where an estimate of the number
184# of FAT FS entries can be made, the cache may be specifically tailored to
185# store all entries. The caching can improve RPMB I/O at the cost
186# of additional memory.
187# Without caching, we temporarily require
188# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
189# while traversing the FAT FS (e.g. in read_fat).
190# For example 8*256 bytes = 2kB while in read_fat.
191# With caching, we constantly require up to
192# CFG_RPMB_FS_CACHE_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
193# depending on how many elements are in the cache, and additional temporary
194# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory
195# in case the cache is too small to hold all elements when traversing.
196CFG_RPMB_FS_CACHE_ENTRIES ?= 0
197
198# Print RPMB data frames sent to and received from the RPMB device
199CFG_RPMB_FS_DEBUG_DATA ?= n
200
201# Clear RPMB content at cold boot
202CFG_RPMB_RESET_FAT ?= n
203
204# Use a hard coded RPMB key instead of deriving it from the platform HUK
205CFG_RPMB_TESTKEY ?= n
206
207# Enables RPMB key programming by the TEE, in case the RPMB partition has not
208# been configured yet.
209# !!! Security warning !!!
210# Do *NOT* enable this in product builds, as doing so would allow the TEE to
211# leak the RPMB key.
212# This option is useful in the following situations:
213# - Testing
214# - RPMB key provisioning in a controlled environment (factory setup)
215CFG_RPMB_WRITE_KEY ?= n
216
217_CFG_WITH_SECURE_STORAGE := $(call cfg-one-enabled,CFG_REE_FS CFG_RPMB_FS)
218
219# Signing key for OP-TEE TA's
220# When performing external HSM signing for TA's TA_SIGN_KEY can be set to dummy
221# key and then set TA_PUBLIC_KEY to match public key from the HSM.
222# TA_PUBLIC_KEY's public key will be embedded into OP-TEE OS.
223TA_SIGN_KEY ?= keys/default_ta.pem
224TA_PUBLIC_KEY ?= $(TA_SIGN_KEY)
225
226# Subkeys is a complement to the normal TA_SIGN_KEY where a subkey is used
227# to verify a TA instead. To sign a TA using a previously prepared subkey
228# two new options are added, TA_SUBKEY_ARGS and TA_SUBKEY_DEPS.  It is
229# typically used by assigning the following in the TA Makefile:
230# BINARY = <TA-uuid-string>
231# TA_SIGN_KEY = subkey.pem
232# TA_SUBKEY_ARGS = --subkey subkey.bin --name subkey_ta
233# TA_SUBKEY_DEPS = subkey.bin
234# See the documentation for more details on subkeys.
235
236# Include lib/libutils/isoc in the build? Most platforms need this, but some
237# may not because they obtain the isoc functions from elsewhere
238CFG_LIBUTILS_WITH_ISOC ?= y
239
240# Enables floating point support for user TAs
241# ARM32: EABI defines both a soft-float ABI and a hard-float ABI,
242#	 hard-float is basically a super set of soft-float. Hard-float
243#	 requires all the support routines provided for soft-float, but the
244#	 compiler may choose to optimize to not use some of them and use
245#	 the floating-point registers instead.
246# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or
247#	 nothing with ` -mgeneral-regs-only`)
248# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types
249CFG_TA_FLOAT_SUPPORT ?= y
250
251# Stack unwinding: print a stack dump to the console on core or TA abort, or
252# when a TA panics.
253# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be
254# unwound (not paged TAs, however).
255# Note that 32-bit ARM code needs unwind tables for this to work, so enabling
256# this option will increase the size of the 32-bit TEE binary by a few KB.
257# Similarly, TAs have to be compiled with -funwind-tables (default when the
258# option is set) otherwise they can't be unwound.
259# Warning: since the unwind sequence for user-mode (TA) code is implemented in
260# the privileged layer of OP-TEE, enabling this feature will weaken the
261# user/kernel isolation. Therefore it should be disabled in release builds.
262ifeq ($(CFG_TEE_CORE_DEBUG),y)
263CFG_UNWIND ?= y
264endif
265
266# Enable support for dynamically loaded user TAs
267CFG_WITH_USER_TA ?= y
268
269# Build user TAs included in this source tree
270CFG_BUILD_IN_TREE_TA ?= y
271
272# Choosing the architecture(s) of user-mode libraries (used by TAs)
273#
274# Platforms may define a list of supported architectures for user-mode code
275# by setting $(supported-ta-targets). Valid values are "ta_arm32", "ta_arm64",
276# "ta_arm32 ta_arm64" and "ta_arm64 ta_arm32".
277# $(supported-ta-targets) defaults to "ta_arm32" when the TEE core is 32-bits,
278# and "ta_arm32 ta_arm64" when it is 64-bits (that is, when CFG_ARM64_core=y).
279# The first entry in $(supported-ta-targets) has a special role, see
280# CFG_USER_TA_TARGET_<ta-name> below.
281#
282# CFG_USER_TA_TARGETS may be defined to restrict $(supported-ta-targets) or
283# change the order of the values.
284#
285# The list of TA architectures is ultimately stored in $(ta-targets).
286
287# CFG_USER_TA_TARGET_<ta-name> (for example, CFG_USER_TA_TARGET_avb), if
288# defined, selects the unique TA architecture mode for building the in-tree TA
289# <ta-name>. Can be either ta_arm32 or ta_arm64.
290# By default, in-tree TAs are built using the first architecture specified in
291# $(ta-targets).
292
293# Address Space Layout Randomization for user-mode Trusted Applications
294#
295# When this flag is enabled, the ELF loader will introduce a random offset
296# when mapping the application in user space. ASLR makes the exploitation of
297# memory corruption vulnerabilities more difficult.
298CFG_TA_ASLR ?= y
299
300# How much ASLR may shift the base address (in pages). The base address is
301# randomly shifted by an integer number of pages comprised between these two
302# values. Bigger ranges are more secure because they make the addresses harder
303# to guess at the expense of using more memory for the page tables.
304CFG_TA_ASLR_MIN_OFFSET_PAGES ?= 0
305CFG_TA_ASLR_MAX_OFFSET_PAGES ?= 128
306
307# Address Space Layout Randomization for TEE Core
308#
309# When this flag is enabled, the early init code will introduce a random
310# offset when mapping TEE Core. ASLR makes the exploitation of memory
311# corruption vulnerabilities more difficult.
312CFG_CORE_ASLR ?= y
313
314# Stack Protection for TEE Core
315# This flag enables the compiler stack protection mechanisms -fstack-protector.
316# It will check the stack canary value before returning from a function to
317# prevent buffer overflow attacks. Stack protector canary logic will be added
318# for vulnerable functions that contain:
319# - A character array larger than 8 bytes.
320# - An 8-bit integer array larger than 8 bytes.
321# - A call to alloca() with either a variable size or a constant size bigger
322#   than 8 bytes.
323CFG_CORE_STACK_PROTECTOR ?= n
324# This enable stack protector flag -fstack-protector-strong. Stack protector
325# canary logic will be added for vulnerable functions that contain:
326# - An array of any size and type.
327# - A call to alloca().
328# - A local variable that has its address taken.
329CFG_CORE_STACK_PROTECTOR_STRONG ?= y
330# This enable stack protector flag -fstack-protector-all. Stack protector canary
331# logic will be added to all functions regardless of their vulnerability.
332CFG_CORE_STACK_PROTECTOR_ALL ?= n
333# Stack Protection for TA
334CFG_TA_STACK_PROTECTOR ?= n
335CFG_TA_STACK_PROTECTOR_STRONG ?= y
336CFG_TA_STACK_PROTECTOR_ALL ?= n
337
338_CFG_CORE_STACK_PROTECTOR := $(call cfg-one-enabled, CFG_CORE_STACK_PROTECTOR \
339						     CFG_CORE_STACK_PROTECTOR_STRONG \
340						     CFG_CORE_STACK_PROTECTOR_ALL)
341_CFG_TA_STACK_PROTECTOR := $(call cfg-one-enabled, CFG_TA_STACK_PROTECTOR \
342						   CFG_TA_STACK_PROTECTOR_STRONG \
343						   CFG_TA_STACK_PROTECTOR_ALL)
344
345# Load user TAs from the REE filesystem via tee-supplicant
346CFG_REE_FS_TA ?= y
347
348# Pre-authentication of TA binaries loaded from the REE filesystem
349#
350# - If CFG_REE_FS_TA_BUFFERED=y: load TA binary into a temporary buffer in the
351#   "Secure DDR" pool, check the signature, then process the file only if it is
352#   valid.
353# - If disabled: hash the binaries as they are being processed and verify the
354#   signature as a last step.
355CFG_REE_FS_TA_BUFFERED ?= n
356$(eval $(call cfg-depends-all,CFG_REE_FS_TA_BUFFERED,CFG_REE_FS_TA))
357
358# When CFG_REE_FS=y:
359# Allow secure storage in the REE FS to be entirely deleted without causing
360# anti-rollback errors. That is, rm /data/tee/dirf.db or rm -rf /data/tee (or
361# whatever path is configured in tee-supplicant as CFG_TEE_FS_PARENT_PATH)
362# can be used to reset the secure storage to a clean, empty state.
363# Intended to be used for testing only since it weakens storage security.
364# Warning: If enabled for release build then it will break rollback protection
365# of TAs and the entire REE FS secure storage.
366CFG_REE_FS_ALLOW_RESET ?= n
367
368# Support for loading user TAs from a special section in the TEE binary.
369# Such TAs are available even before tee-supplicant is available (hence their
370# name), but note that many services exported to TAs may need tee-supplicant,
371# so early use is limited to a subset of the TEE Internal Core API (crypto...)
372# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF
373# file(s). For example:
374#   $ make ... \
375#     EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \
376#                     path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf"
377# Typical build steps:
378#   $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries,
379#                                    # headers, makefiles), ready to build TAs.
380#                                    # CFG_EARLY_TA=y is optional, it prevents
381#                                    # later library recompilations.
382#   <build some TAs>
383#   $ make EARLY_TA_PATHS=<paths>    # Build OP-TEE and embbed the TA(s)
384#
385# Another option is CFG_IN_TREE_EARLY_TAS which is used to point at
386# in-tree TAs. CFG_IN_TREE_EARLY_TAS is formatted as:
387# <name-of-ta>/<uuid>
388# for instance avb/023f8f1a-292a-432b-8fc4-de8471358067
389ifneq ($(EARLY_TA_PATHS)$(CFG_IN_TREE_EARLY_TAS),)
390$(call force,CFG_EARLY_TA,y)
391else
392CFG_EARLY_TA ?= n
393endif
394
395ifeq ($(CFG_EARLY_TA),y)
396$(call force,CFG_EMBEDDED_TS,y)
397endif
398
399ifneq ($(SP_PATHS),)
400$(call force,CFG_EMBEDDED_TS,y)
401else
402CFG_SECURE_PARTITION ?= n
403endif
404
405ifeq ($(CFG_SECURE_PARTITION),y)
406$(call force,CFG_EMBEDDED_TS,y)
407endif
408
409ifeq ($(CFG_EMBEDDED_TS),y)
410$(call force,CFG_ZLIB,y)
411endif
412
413# By default the early TAs are compressed in the TEE binary, it is possible to
414# not compress them with CFG_EARLY_TA_COMPRESS=n
415CFG_EARLY_TA_COMPRESS ?= y
416
417# Enable paging, requires SRAM, can't be enabled by default
418CFG_WITH_PAGER ?= n
419
420# Use the pager for user TAs
421CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER)
422
423# If paging of user TAs, that is, R/W paging default to enable paging of
424# TAG and IV in order to reduce heap usage.
425CFG_CORE_PAGE_TAG_AND_IV ?= $(CFG_PAGED_USER_TA)
426
427# Runtime lock dependency checker: ensures that a proper locking hierarchy is
428# used in the TEE core when acquiring and releasing mutexes. Any violation will
429# cause a panic as soon as the invalid locking condition is detected. If
430# CFG_UNWIND and CFG_LOCKDEP_RECORD_STACK are both enabled, the algorithm
431# records the call stacks when locks are taken, and prints them when a
432# potential deadlock is found.
433# Expect a significant performance impact when enabling this.
434CFG_LOCKDEP ?= n
435CFG_LOCKDEP_RECORD_STACK ?= y
436
437# BestFit algorithm in bget reduces the fragmentation of the heap when running
438# with the pager enabled or lockdep
439CFG_CORE_BGET_BESTFIT ?= $(call cfg-one-enabled, CFG_WITH_PAGER CFG_LOCKDEP)
440
441# Enable support for detected undefined behavior in C
442# Uses a lot of memory, can't be enabled by default
443CFG_CORE_SANITIZE_UNDEFINED ?= n
444
445# Enable Kernel Address sanitizer, has a huge performance impact, uses a
446# lot of memory and need platform specific adaptations, can't be enabled by
447# default
448CFG_CORE_SANITIZE_KADDRESS ?= n
449
450ifeq (y-y,$(CFG_CORE_SANITIZE_KADDRESS)-$(CFG_CORE_ASLR))
451$(error CFG_CORE_SANITIZE_KADDRESS and CFG_CORE_ASLR are not compatible)
452endif
453
454# Add stack guards before/after stacks and periodically check them
455CFG_WITH_STACK_CANARIES ?= y
456
457# Use compiler instrumentation to troubleshoot stack overflows.
458# When enabled, most C functions check the stack pointer against the current
459# stack limits on entry and panic immediately if it is out of range.
460CFG_CORE_DEBUG_CHECK_STACKS ?= n
461
462# Use when the default stack allocations are not sufficient.
463CFG_STACK_THREAD_EXTRA ?= 0
464CFG_STACK_TMP_EXTRA ?= 0
465
466# Device Tree support
467#
468# When CFG_DT is enabled core embeds the FDT library (libfdt) allowing
469# device tree blob (DTB) parsing from the core.
470#
471# When CFG_DT is enabled, the TEE _start function expects to find
472# the address of a DTB in register X2/R2 provided by the early boot stage
473# or value 0 if boot stage provides no DTB.
474#
475# When CFG_EXTERNAL_DT is enabled, the external device tree ABI is implemented
476# and the external device tree is expected to be used/modified. Its value
477# defaults to CFG_DT.
478#
479# When CFG_MAP_EXT_DT_SECURE is enabled the external device tree is expected to
480# be in the secure memory.
481#
482# When CFG_EMBED_DTB is enabled, CFG_EMBED_DTB_SOURCE_FILE shall define the
483# relative path of a DTS file located in core/arch/$(ARCH)/dts.
484# The DTS file is compiled into a DTB file which content is embedded in a
485# read-only section of the core.
486ifneq ($(strip $(CFG_EMBED_DTB_SOURCE_FILE)),)
487CFG_EMBED_DTB ?= y
488endif
489ifeq ($(filter y,$(CFG_EMBED_DTB) $(CFG_CORE_SEL1_SPMC) $(CFG_CORE_SEL2_SPMC) \
490		 $(CFG_CORE_EL3_SPMC)),y)
491$(call force,CFG_DT,y)
492endif
493CFG_EMBED_DTB ?= n
494CFG_DT ?= n
495CFG_EXTERNAL_DT ?= $(CFG_DT)
496CFG_MAP_EXT_DT_SECURE ?= n
497ifeq ($(CFG_MAP_EXT_DT_SECURE),y)
498$(call force,CFG_DT,y)
499endif
500
501# This option enables OP-TEE to support boot arguments handover via Transfer
502# List defined in Firmware Handoff specification.
503# Note: This is an experimental feature and incompatible ABI changes can be
504# expected. It should be off by default until Firmware Handoff specification
505# has a stable release.
506# This feature requires the support of Device Tree.
507CFG_TRANSFER_LIST ?= n
508ifeq ($(CFG_TRANSFER_LIST),y)
509$(call force,CFG_DT,y)
510$(call force,CFG_EXTERNAL_DT,y)
511$(call force,CFG_MAP_EXT_DT_SECURE,y)
512endif
513
514# Maximum size of the Device Tree Blob, has to be large enough to allow
515# editing of the supplied DTB.
516CFG_DTB_MAX_SIZE ?= 0x10000
517
518# Maximum size of the init info data passed to Secure Partitions.
519CFG_SP_INIT_INFO_MAX_SIZE ?= 0x1000
520
521# Device Tree Overlay support.
522# CFG_EXTERNAL_DTB_OVERLAY allows to append a DTB overlay into an existing
523# external DTB. The overlay is created when no valid DTB overlay is found.
524# CFG_GENERATE_DTB_OVERLAY allows to create a DTB overlay at external
525# DTB location.
526# External DTB location (physical address) is provided either by boot
527# argument arg2 or from CFG_DT_ADDR if defined.
528# A subsequent boot stage can then merge the generated overlay DTB into a main
529# DTB using the standard fdt_overlay_apply() method.
530CFG_EXTERNAL_DTB_OVERLAY ?= n
531CFG_GENERATE_DTB_OVERLAY ?= n
532
533ifeq (y-y,$(CFG_EXTERNAL_DTB_OVERLAY)-$(CFG_GENERATE_DTB_OVERLAY))
534$(error CFG_EXTERNAL_DTB_OVERLAY and CFG_GENERATE_DTB_OVERLAY are exclusive)
535endif
536_CFG_USE_DTB_OVERLAY := $(call cfg-one-enabled,CFG_EXTERNAL_DTB_OVERLAY \
537			  CFG_GENERATE_DTB_OVERLAY)
538
539# All embedded tests are supposed to be disabled by default, this flag
540# is used to control the default value of all other embedded tests
541CFG_ENABLE_EMBEDDED_TESTS ?= n
542
543# Enable core self tests and related pseudo TAs
544CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= $(CFG_ENABLE_EMBEDDED_TESTS)
545
546# Compiles bget_main_test() to be called from a test TA
547CFG_TA_BGET_TEST ?= $(CFG_ENABLE_EMBEDDED_TESTS)
548
549# CFG_DT_DRIVER_EMBEDDED_TEST when enabled embedded DT driver probing tests.
550# This also requires embedding a DTB with expected content.
551# Default disable CFG_DRIVERS_CLK_EARLY_PROBE to probe clocks as other drivers.
552# A probe deferral test mandates CFG_DRIVERS_DT_RECURSIVE_PROBE=n.
553CFG_DT_DRIVER_EMBEDDED_TEST ?= n
554ifeq ($(CFG_DT_DRIVER_EMBEDDED_TEST),y)
555CFG_DRIVERS_CLK ?= y
556CFG_DRIVERS_GPIO ?= y
557CFG_DRIVERS_RSTCTRL ?= y
558CFG_DRIVERS_CLK_EARLY_PROBE ?= n
559$(call force,CFG_DRIVERS_DT_RECURSIVE_PROBE,n,Mandated by CFG_DT_DRIVER_EMBEDDED_TEST)
560endif
561
562# CFG_WITH_STATS when enabled embeds PTA statistics service to allow non-secure
563# clients to retrieve debug and statistics information on core and loaded TAs.
564CFG_WITH_STATS ?= n
565
566# CFG_DRIVERS_DT_RECURSIVE_PROBE when enabled forces a recursive subnode
567# parsing in the embedded DTB for driver probing. The alternative is
568# an exploration based on compatible drivers found. It is default disabled.
569CFG_DRIVERS_DT_RECURSIVE_PROBE ?= n
570
571# This option enables OP-TEE to respond to SMP boot request: the Rich OS
572# issues this to request OP-TEE to release secondaries cores out of reset,
573# with specific core number and non-secure entry address.
574CFG_BOOT_SECONDARY_REQUEST ?= n
575
576# Default heap size for Core, 64 kB
577CFG_CORE_HEAP_SIZE ?= 65536
578
579# Default size of nexus heap. 16 kB. Used only if CFG_NS_VIRTUALIZATION
580# is enabled
581CFG_CORE_NEX_HEAP_SIZE ?= 16384
582
583# TA profiling.
584# When this option is enabled, OP-TEE can execute Trusted Applications
585# instrumented with GCC's -pg flag and will output profiling information
586# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in
587# tee-supplicant)
588# Note: this does not work well with shared libraries at the moment for a
589# couple of reasons:
590# 1. The profiling code assumes a unique executable section in the TA VA space.
591# 2. The code used to detect at run time if the TA is intrumented assumes that
592# the TA is linked statically.
593CFG_TA_GPROF_SUPPORT ?= n
594
595# TA function tracing.
596# When this option is enabled, OP-TEE can execute Trusted Applications
597# instrumented with GCC's -pg flag and will output function tracing
598# information for all functions compiled with -pg to
599# /tmp/ftrace-<ta_uuid>.out (path is defined in tee-supplicant).
600CFG_FTRACE_SUPPORT ?= n
601
602# Core syscall function tracing.
603# When this option is enabled, OP-TEE core is instrumented with GCC's
604# -pg flag and will output syscall function graph in user TA ftrace
605# buffer
606CFG_SYSCALL_FTRACE ?= n
607$(call cfg-depends-all,CFG_SYSCALL_FTRACE,CFG_FTRACE_SUPPORT)
608
609# Enable to compile user TA libraries with profiling (-pg).
610# Depends on CFG_TA_GPROF_SUPPORT or CFG_FTRACE_SUPPORT.
611CFG_ULIBS_MCOUNT ?= n
612# Profiling/tracing of syscall wrapper (utee_*)
613CFG_SYSCALL_WRAPPERS_MCOUNT ?= $(CFG_ULIBS_MCOUNT)
614
615ifeq (y,$(filter y,$(CFG_ULIBS_MCOUNT) $(CFG_SYSCALL_WRAPPERS_MCOUNT)))
616ifeq (,$(filter y,$(CFG_TA_GPROF_SUPPORT) $(CFG_FTRACE_SUPPORT)))
617$(error Cannot instrument user libraries if user mode profiling is disabled)
618endif
619endif
620
621# Build libutee, libutils, libmbedtls as shared libraries.
622# - Static libraries are still generated when this is enabled, but TAs will use
623# the shared libraries unless explicitly linked with the -static flag.
624# - Shared libraries are made of two files: for example, libutee is
625#   libutee.so and 527f1a47-b92c-4a74-95bd-72f19f4a6f74.ta. The '.so' file
626#   is a totally standard shared object, and should be used to link against.
627#   The '.ta' file is a signed version of the '.so' and should be installed
628#   in the same way as TAs so that they can be found at runtime.
629CFG_ULIBS_SHARED ?= n
630
631ifeq (y-y,$(CFG_TA_GPROF_SUPPORT)-$(CFG_ULIBS_SHARED))
632$(error CFG_TA_GPROF_SUPPORT and CFG_ULIBS_SHARED are currently incompatible)
633endif
634
635# CFG_GP_SOCKETS
636# Enable Global Platform Sockets support
637CFG_GP_SOCKETS ?= y
638
639# Enable Secure Data Path support in OP-TEE core (TA may be invoked with
640# invocation parameters referring to specific secure memories).
641CFG_SECURE_DATA_PATH ?= n
642
643# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y
644# TA binaries are stored encrypted in the REE FS and are protected by
645# metadata in secure storage.
646CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA)
647$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA))
648
649# Enable the pseudo TA that managages TA storage in secure storage
650CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA)
651$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA))
652
653# Enable the pseudo TA for misc. auxilary services, extending existing
654# GlobalPlatform TEE Internal Core API (for example, re-seeding RNG entropy
655# pool etc...)
656CFG_SYSTEM_PTA ?= $(CFG_WITH_USER_TA)
657$(eval $(call cfg-depends-all,CFG_SYSTEM_PTA,CFG_WITH_USER_TA))
658
659# Enable the pseudo TA for enumeration of TEE based devices for the normal
660# world OS.
661CFG_DEVICE_ENUM_PTA ?= y
662
663# The attestation pseudo TA provides an interface to request measurements of
664# a TA or the TEE binary.
665CFG_ATTESTATION_PTA ?= n
666$(eval $(call cfg-depends-all,CFG_ATTESTATION_PTA,_CFG_WITH_SECURE_STORAGE))
667
668# RSA key size (in bits) for the attestation PTA. Must be at least 528 given
669# other algorithm parameters (RSA PSS with SHA-256 and 32-byte salt), but
670# note that such a low value is not secure.
671# See https://tools.ietf.org/html/rfc8017#section-8.1.1 and
672# https://tools.ietf.org/html/rfc8017#section-9.1.1
673#  emLen >= hlen + sLen + 2 = 32 + 32 + 2 = 66
674#  emLen = ceil((modBits - 1) / 8) => emLen is the key size in bytes
675CFG_ATTESTATION_PTA_KEY_SIZE ?= 3072
676
677# Define the number of cores per cluster used in calculating core position.
678# The cluster number is shifted by this value and added to the core ID,
679# so its value represents log2(cores/cluster).
680# Default is 2**(2) = 4 cores per cluster.
681CFG_CORE_CLUSTER_SHIFT ?= 2
682
683# Define the number of threads per core used in calculating processing
684# element's position. The core number is shifted by this value and added to
685# the thread ID, so its value represents log2(threads/core).
686# Default is 2**(0) = 1 threads per core.
687CFG_CORE_THREAD_SHIFT ?= 0
688
689# Enable support for dynamic shared memory (shared memory anywhere in
690# non-secure memory).
691CFG_CORE_DYN_SHM ?= y
692
693# Enable support for reserved shared memory (shared memory in a carved out
694# memory area).
695CFG_CORE_RESERVED_SHM ?= y
696
697# Enables support for larger physical addresses, that is, it will define
698# paddr_t as a 64-bit type.
699CFG_CORE_LARGE_PHYS_ADDR ?= n
700
701# Define the maximum size, in bits, for big numbers in the Internal Core API
702# Arithmetical functions. This does *not* influence the key size that may be
703# manipulated through the Cryptographic API.
704# Set this to a lower value to reduce the TA memory footprint.
705CFG_TA_BIGNUM_MAX_BITS ?= 2048
706
707# Not used since libmpa was removed. Force the values to catch build scripts
708# that would set = n.
709$(call force,CFG_TA_MBEDTLS_MPI,y)
710$(call force,CFG_TA_MBEDTLS,y)
711
712# Compile the TA library mbedTLS with self test functions, the functions
713# need to be called to test anything
714CFG_TA_MBEDTLS_SELF_TEST ?= y
715
716# By default use tomcrypt as the main crypto lib providing an implementation
717# for the API in <crypto/crypto.h>
718# CFG_CRYPTOLIB_NAME is used as libname and
719# CFG_CRYPTOLIB_DIR is used as libdir when compiling the library
720#
721# It's also possible to configure to use mbedtls instead of tomcrypt.
722# Then the variables should be assigned as "CFG_CRYPTOLIB_NAME=mbedtls" and
723# "CFG_CRYPTOLIB_DIR=lib/libmbedtls" respectively.
724CFG_CRYPTOLIB_NAME ?= tomcrypt
725CFG_CRYPTOLIB_DIR ?= core/lib/libtomcrypt
726
727# Not used since libmpa was removed. Force the value to catch build scripts
728# that would set = n.
729$(call force,CFG_CORE_MBEDTLS_MPI,y)
730
731# When enabled, CFG_NS_VIRTUALIZATION embeds support for virtualization in
732# the non-secure world. OP-TEE will not work without a compatible hypervisor
733# in the non-secure world if this option is enabled.
734#
735# CFG_VIRTUALIZATION served the same purpose as CFG_NS_VIRTUALIZATION but is
736# deprecated as the configuration switch name was ambiguous regarding which
737# world has virtualization enabled.
738ifneq (undefined,$(flavor CFG_VIRTUALIZATION))
739$(info WARNING: CFG_VIRTUALIZATION is deprecated, use CFG_NS_VIRTUALIZATION instead)
740CFG_NS_VIRTUALIZATION ?= $(CFG_VIRTUALIZATION)
741ifneq ($(CFG_NS_VIRTUALIZATION),$(CFG_VIRTUALIZATION))
742$(error Inconsistent CFG_NS_VIRTUALIZATION=$(CFG_NS_VIRTUALIZATION) and CFG_VIRTUALIZATION=$(CFG_VIRTUALIZATION))
743endif
744endif # CFG_VIRTUALIZATION defined
745CFG_NS_VIRTUALIZATION ?= n
746
747ifeq ($(CFG_NS_VIRTUALIZATION),y)
748$(call force,CFG_CORE_RODATA_NOEXEC,y)
749$(call force,CFG_CORE_RWDATA_NOEXEC,y)
750
751# Default number of virtual guests
752CFG_VIRT_GUEST_COUNT ?= 2
753endif
754
755# Enables backwards compatible derivation of RPMB and SSK keys
756CFG_CORE_HUK_SUBKEY_COMPAT ?= y
757
758# Use SoC specific tee_otp_get_die_id() implementation for SSK key generation.
759# This option depends on CFG_CORE_HUK_SUBKEY_COMPAT=y.
760CFG_CORE_HUK_SUBKEY_COMPAT_USE_OTP_DIE_ID ?= n
761
762# Compress and encode conf.mk into the TEE core, and show the encoded string on
763# boot (with severity TRACE_INFO).
764CFG_SHOW_CONF_ON_BOOT ?= n
765
766# Enables support for passing a TPM Event Log stored in secure memory
767# to a TA or FF-A SP, so a TPM Service could use it to extend any measurement
768# taken before the service was up and running.
769CFG_CORE_TPM_EVENT_LOG ?= n
770
771# When enabled, CFG_SCMI_MSG_DRIVERS embeds SCMI message drivers in the core.
772# Refer to the supported SCMI features embedded upon CFG_SCMI_MSG_*
773#
774# CFG_SCMI_MSG_CLOCK embeds SCMI clock protocol support.
775# CFG_SCMI_MSG_RESET_DOMAIN embeds SCMI reset domain protocol support.
776# CFG_SCMI_MSG_SMT embeds a SMT header in shared device memory buffers
777# CFG_SCMI_MSG_VOLTAGE_DOMAIN embeds SCMI voltage domain protocol support.
778# CFG_SCMI_MSG_SMT_FASTCALL_ENTRY embeds fastcall SMC entry with SMT memory
779# CFG_SCMI_MSG_SMT_INTERRUPT_ENTRY embeds interrupt entry with SMT memory
780# CFG_SCMI_MSG_SMT_THREAD_ENTRY embeds threaded entry with SMT memory
781# CFG_SCMI_MSG_SHM_MSG embeds a MSG header in cached shared memory buffer
782CFG_SCMI_MSG_DRIVERS ?= n
783ifeq ($(CFG_SCMI_MSG_DRIVERS),y)
784CFG_SCMI_MSG_CLOCK ?= n
785CFG_SCMI_MSG_RESET_DOMAIN ?= n
786CFG_SCMI_MSG_SHM_MSG ?= n
787CFG_SCMI_MSG_SMT ?= n
788CFG_SCMI_MSG_SMT_FASTCALL_ENTRY ?= n
789CFG_SCMI_MSG_SMT_INTERRUPT_ENTRY ?= n
790CFG_SCMI_MSG_SMT_THREAD_ENTRY ?= n
791CFG_SCMI_MSG_THREAD_ENTRY ?= n
792CFG_SCMI_MSG_VOLTAGE_DOMAIN ?= n
793$(eval $(call cfg-depends-all,CFG_SCMI_MSG_SMT_FASTCALL_ENTRY,CFG_SCMI_MSG_SMT))
794$(eval $(call cfg-depends-all,CFG_SCMI_MSG_SMT_INTERRUPT_ENTRY,CFG_SCMI_MSG_SMT))
795$(eval $(call cfg-depends-one,CFG_SCMI_MSG_SMT_THREAD_ENTRY,CFG_SCMI_MSG_SMT CFG_SCMI_MSG_SHM_MSG))
796ifeq ($(CFG_SCMI_MSG_SMT),y)
797_CFG_SCMI_PTA_SMT_HEADER := y
798endif
799ifeq ($(CFG_SCMI_MSG_SHM_MSG),y)
800_CFG_SCMI_PTA_MSG_HEADER := y
801endif
802endif
803
804# CFG_SCMI_SCPFW, when enabled, embeds the reference SCMI server implementation
805# from SCP-firmware package as an built-in SCMI stack in core. This
806# configuration mandates target product identifier is configured with
807# CFG_SCMI_SCPFW_PRODUCT and the SCP-firmware source tree path with
808# CFG_SCP_FIRMWARE.
809CFG_SCMI_SCPFW ?= n
810
811ifeq ($(CFG_SCMI_SCPFW),y)
812$(call force,CFG_SCMI_PTA,y,Required by CFG_SCMI_SCPFW)
813ifeq (,$(CFG_SCMI_SCPFW_PRODUCT))
814$(error CFG_SCMI_SCPFW=y requires CFG_SCMI_SCPFW_PRODUCT configuration)
815endif
816ifeq (,$(wildcard $(CFG_SCP_FIRMWARE)/CMakeLists.txt))
817$(error CFG_SCMI_SCPFW=y requires CFG_SCP_FIRMWARE configuration)
818endif
819endif #CFG_SCMI_SCPFW
820
821ifeq ($(CFG_SCMI_MSG_DRIVERS)-$(CFG_SCMI_SCPFW),y-y)
822$(error CFG_SCMI_MSG_DRIVERS=y and CFG_SCMI_SCPFW=y are mutually exclusive)
823endif
824
825# When enabled, CFG_SCMI_MSG_USE_CLK embeds SCMI clocks registering services for
826# the platform SCMI server and implements the platform plat_scmi_clock_*()
827# functions.
828CFG_SCMI_MSG_USE_CLK ?= n
829$(eval $(call cfg-depends-all,CFG_SCMI_MSG_USE_CLK,CFG_DRIVERS_CLK CFG_SCMI_MSG_DRIVERS))
830
831# Enable SCMI PTA interface for REE SCMI agents
832CFG_SCMI_PTA ?= n
833ifeq ($(CFG_SCMI_PTA),y)
834_CFG_SCMI_PTA_SMT_HEADER ?= n
835_CFG_SCMI_PTA_MSG_HEADER ?= n
836endif
837
838ifneq ($(CFG_STMM_PATH),)
839$(call force,CFG_WITH_STMM_SP,y)
840else
841CFG_WITH_STMM_SP ?= n
842endif
843ifeq ($(CFG_WITH_STMM_SP),y)
844$(call force,CFG_ZLIB,y)
845endif
846
847# When enabled checks that buffers passed to the GP Internal Core API
848# comply with the rules added as annotations as part of the definition of
849# the API. For example preventing buffers in non-secure shared memory when
850# not allowed.
851CFG_TA_STRICT_ANNOTATION_CHECKS ?= y
852
853# When enabled accepts the DES key sizes excluding parity bits as in
854# the GP Internal API Specification v1.0
855CFG_COMPAT_GP10_DES ?= y
856
857# Defines a limit for many levels TAs may call each others.
858CFG_CORE_MAX_SYSCALL_RECURSION ?= 4
859
860# Pseudo-TA to export hardware RNG output to Normal World
861# RNG characteristics are platform specific
862CFG_HWRNG_PTA ?= n
863ifeq ($(CFG_HWRNG_PTA),y)
864# Output rate of hw_get_random_bytes() in bytes per second, 0: not rate-limited
865CFG_HWRNG_RATE ?= 0
866# Quality/entropy of hw_get_random_bytes() per 1024 bits of output data, in bits
867ifeq (,$(CFG_HWRNG_QUALITY))
868$(error CFG_HWRNG_QUALITY not defined)
869endif
870endif
871
872# CFG_PREALLOC_RPC_CACHE, when enabled, makes core to preallocate
873# shared memory for each secure thread. When disabled, RPC shared
874# memory is released once the secure thread has completed is execution.
875ifeq ($(CFG_WITH_PAGER),y)
876CFG_PREALLOC_RPC_CACHE ?= n
877endif
878CFG_PREALLOC_RPC_CACHE ?= y
879
880# When enabled, CFG_DRIVERS_CLK embeds a clock framework in OP-TEE core.
881# This clock framework allows to describe clock tree and provides functions to
882# get and configure the clocks.
883# CFG_DRIVERS_CLK_DT embeds devicetree clock parsing support
884# CFG_DRIVERS_CLK_FIXED add support for "fixed-clock" compatible clocks
885# CFG_DRIVERS_CLK_EARLY_PROBE makes clocks probed at early_init initcall level.
886# CFG_DRIVERS_CLK_PRINT_TREE embeds a helper function to print the clock tree
887# state on OP-TEE core console with the debug trace level.
888CFG_DRIVERS_CLK ?= n
889CFG_DRIVERS_CLK_DT ?= $(call cfg-all-enabled,CFG_DRIVERS_CLK CFG_DT)
890CFG_DRIVERS_CLK_FIXED ?= $(CFG_DRIVERS_CLK_DT)
891CFG_DRIVERS_CLK_EARLY_PROBE ?= $(CFG_DRIVERS_CLK_DT)
892CFG_DRIVERS_CLK_PRINT_TREE ?= n
893
894$(eval $(call cfg-depends-all,CFG_DRIVERS_CLK_DT,CFG_DRIVERS_CLK CFG_DT))
895$(eval $(call cfg-depends-all,CFG_DRIVERS_CLK_FIXED,CFG_DRIVERS_CLK_DT))
896
897# When enabled, CFG_DRIVERS_RSTCTRL embeds a reset controller framework in
898# OP-TEE core to provide reset controls on subsystems of the devices.
899CFG_DRIVERS_RSTCTRL ?= n
900
901# When enabled, CFG_DRIVERS_GPIO embeds a GPIO controller framework in
902# OP-TEE core to provide GPIO support for drivers.
903CFG_DRIVERS_GPIO ?= n
904
905# When enabled, CFG_DRIVERS_I2C provides I2C controller and devices support.
906CFG_DRIVERS_I2C ?= n
907
908# When enabled, CFG_DRIVERS_NVMEM provides a framework to register nvmem
909# providers and allow consumer drivers to get NVMEM cells using the Device Tree.
910CFG_DRIVERS_NVMEM ?= n
911
912# When enabled, CFG_DRIVERS_PINCTRL embeds a pin muxing controller framework in
913# OP-TEE core to provide drivers a way to apply pin muxing configurations based
914# on device-tree.
915CFG_DRIVERS_PINCTRL ?= n
916
917# When enabled, CFG_DRIVERS_REGULATOR embeds a voltage regulator framework in
918# OP-TEE core to provide drivers a common regulator interface and describe
919# the regulators dependencies using an embedded device tree.
920#
921# When enabled, CFG_REGULATOR_FIXED embeds a voltage regulator driver for
922# DT compatible "regulator-fixed" devices.
923#
924# When enabled, CFG_REGULATOR_GPIO embeds a voltage regulator driver for
925# DT compatible "regulator-gpio" devices.
926#
927# CFG_DRIVERS_REGULATOR_PRINT_TREE embeds a helper function to print the
928# regulator tree state on OP-TEE core console with the info trace level.
929CFG_DRIVERS_REGULATOR ?= n
930CFG_DRIVERS_REGULATOR_PRINT_TREE ?= n
931CFG_REGULATOR_FIXED ?= n
932CFG_REGULATOR_GPIO ?= n
933
934$(eval $(call cfg-enable-all-depends,CFG_REGULATOR_FIXED, \
935	 CFG_DRIVERS_REGULATOR CFG_DT))
936$(eval $(call cfg-enable-all-depends,CFG_REGULATOR_GPIO, \
937	 CFG_DRIVERS_REGULATOR CFG_DT CFG_DRIVERS_GPIO))
938
939# When enabled, CFG_INSECURE permits insecure configuration of OP-TEE core
940# and shows a print (info level) when booting up the device that
941# indicates that the board runs a standard developer configuration.
942#
943# A developer configuration doesn't necessarily have to be secure. The intention
944# is that the one making products based on OP-TEE should override this flag in
945# plat-xxx/conf.mk for the platform they're basing their products on after
946# they've finalized implementing stubbed functionality (see OP-TEE
947# documentation/Porting guidelines) as well as vendor specific security
948# configuration.
949#
950# CFG_WARN_INSECURE served the same purpose as CFG_INSECURE but is deprecated.
951ifneq (undefined,$(flavor CFG_WARN_INSECURE))
952$(info WARNING: CFG_WARN_INSECURE is deprecated, use CFG_INSECURE instead)
953CFG_INSECURE ?= $(CFG_WARN_INSECURE)
954ifneq ($(CFG_INSECURE),$(CFG_WARN_INSECURE))
955$(error Inconsistent CFG_INSECURE=$(CFG_INSECURE) and CFG_WARN_INSECURE=$(CFG_WARN_INSECURE))
956endif
957endif # CFG_WARN_INSECURE defined
958CFG_INSECURE ?= y
959
960# Enables warnings for declarations mixed with statements
961CFG_WARN_DECL_AFTER_STATEMENT ?= y
962
963# Branch Target Identification (part of the ARMv8.5 Extensions) provides a
964# mechanism to limit the set of locations to which computed branch instructions
965# such as BR or BLR can jump. To make use of BTI in TEE core and ldelf on CPU's
966# that support it, enable this option. A GCC toolchain built with
967# --enable-standard-branch-protection is needed to use this option.
968CFG_CORE_BTI ?= n
969
970$(eval $(call cfg-depends-all,CFG_CORE_BTI,CFG_ARM64_core))
971
972# To make use of BTI in user space libraries and TA's on CPU's that support it,
973# enable this option.
974CFG_TA_BTI ?= $(CFG_CORE_BTI)
975
976$(eval $(call cfg-depends-all,CFG_TA_BTI,CFG_ARM64_core))
977
978ifeq (y-y,$(CFG_NS_VIRTUALIZATION)-$(call cfg-one-enabled, CFG_TA_BTI CFG_CORE_BTI))
979$(error CFG_NS_VIRTUALIZATION and BTI are currently incompatible)
980endif
981
982ifeq (y-y,$(CFG_PAGED_USER_TA)-$(CFG_TA_BTI))
983$(error CFG_PAGED_USER_TA and CFG_TA_BTI are currently incompatible)
984endif
985
986# Memory Tagging Extension (part of the ARMv8.5 Extensions) implements lock
987# and key access to memory. This is a hardware supported alternative to
988# CFG_CORE_SANITIZE_KADDRESS which covers both S-EL1 and S-EL0.
989CFG_MEMTAG ?= n
990
991$(eval $(call cfg-depends-all,CFG_MEMTAG,CFG_ARM64_core))
992ifeq (y-y,$(CFG_CORE_SANITIZE_KADDRESS)-$(CFG_MEMTAG))
993$(error CFG_CORE_SANITIZE_KADDRESS and CFG_MEMTAG are not compatible)
994endif
995ifeq (y-y,$(CFG_WITH_PAGER)-$(CFG_MEMTAG))
996$(error CFG_WITH_PAGER and CFG_MEMTAG are not compatible)
997endif
998
999# Privileged Access Never (PAN, part of the ARMv8.1 Extensions) can be
1000# used to restrict accesses to unprivileged memory from privileged mode.
1001# For RISC-V architecture, CSR {m|s}status.SUM bit is used to implement PAN.
1002CFG_PAN ?= n
1003
1004$(eval $(call cfg-depends-one,CFG_PAN,CFG_ARM64_core CFG_RV64_core CFG_RV32_core))
1005
1006ifeq ($(filter y, $(CFG_CORE_SEL1_SPMC) $(CFG_CORE_SEL2_SPMC) \
1007		  $(CFG_CORE_EL3_SPMC)),y)
1008# FF-A case, handled via the FF-A ABI
1009CFG_CORE_ASYNC_NOTIF ?= y
1010$(call force,_CFG_CORE_ASYNC_NOTIF_DEFAULT_IMPL,n)
1011else
1012# CFG_CORE_ASYNC_NOTIF is defined by the platform to enable support
1013# for sending asynchronous notifications to normal world.
1014# Interrupt ID must be configurged by the platform too. Currently is only
1015# CFG_CORE_ASYNC_NOTIF_GIC_INTID defined.
1016CFG_CORE_ASYNC_NOTIF ?= n
1017$(call force,_CFG_CORE_ASYNC_NOTIF_DEFAULT_IMPL,$(CFG_CORE_ASYNC_NOTIF))
1018endif
1019
1020# Enable callout service
1021CFG_CALLOUT ?= $(CFG_CORE_ASYNC_NOTIF)
1022
1023# Enable notification based test watchdog
1024CFG_NOTIF_TEST_WD ?= $(CFG_ENABLE_EMBEDDED_TESTS)
1025$(eval $(call cfg-depends-all,CFG_NOTIF_TEST_WD,CFG_CALLOUT \
1026	 CFG_CORE_ASYNC_NOTIF))
1027
1028$(eval $(call cfg-enable-all-depends,CFG_MEMPOOL_REPORT_LAST_OFFSET, \
1029	 CFG_WITH_STATS))
1030
1031# Pointer Authentication (part of ARMv8.3 Extensions) provides instructions
1032# for signing and authenticating pointers against secret keys. These can
1033# be used to mitigate ROP (Return oriented programming) attacks. This is
1034# currently done by instructing the compiler to add paciasp/autiasp at the
1035# begging and end of functions to sign and verify ELR.
1036#
1037# The CFG_CORE_PAUTH enables these instructions for the core parts
1038# executing at EL1, with one secret key per thread and one secret key per
1039# physical CPU.
1040#
1041# The CFG_TA_PAUTH option enables these instructions for TA's at EL0. When
1042# this option is enabled, TEE core will initialize secret keys per TA.
1043CFG_CORE_PAUTH ?= n
1044CFG_TA_PAUTH ?= $(CFG_CORE_PAUTH)
1045
1046$(eval $(call cfg-depends-all,CFG_CORE_PAUTH,CFG_ARM64_core))
1047$(eval $(call cfg-depends-all,CFG_TA_PAUTH,CFG_ARM64_core))
1048
1049ifeq (y-y,$(CFG_NS_VIRTUALIZATION)-$(CFG_CORE_PAUTH))
1050$(error CFG_NS_VIRTUALIZATION and CFG_CORE_PAUTH are currently incompatible)
1051endif
1052ifeq (y-y,$(CFG_NS_VIRTUALIZATION)-$(CFG_TA_PAUTH))
1053$(error CFG_NS_VIRTUALIZATION and CFG_TA_PAUTH are currently incompatible)
1054endif
1055
1056ifeq (y-y,$(CFG_TA_GPROF_SUPPORT)-$(CFG_TA_PAUTH))
1057$(error CFG_TA_GPROF_SUPPORT and CFG_TA_PAUTH are currently incompatible)
1058endif
1059
1060ifeq (y-y,$(CFG_FTRACE_SUPPORT)-$(CFG_TA_PAUTH))
1061$(error CFG_FTRACE_SUPPORT and CFG_TA_PAUTH are currently incompatible)
1062endif
1063
1064# Enable support for generic watchdog registration
1065# This watchdog will then be usable by non-secure world through SMC calls.
1066CFG_WDT ?= n
1067
1068# Enable watchdog SMC handling compatible with arm-smc-wdt Linux driver
1069CFG_WDT_SM_HANDLER ?= n
1070
1071$(eval $(call cfg-enable-all-depends,CFG_WDT_SM_HANDLER,CFG_WDT))
1072
1073# When CFG_WDT_SM_HANDLER=y, SMC function ID 0x82003D06 default implements
1074# arm-smc-wdt service. Platform can also override this ID with a platform
1075# specific SMC function ID to access arm-smc-wdt service thanks to
1076# optional config switch CFG_WDT_SM_HANDLER_ID.
1077CFG_WDT_SM_HANDLER_ID ?= 0x82003D06
1078
1079# Allow using the udelay/mdelay function for platforms without ARM generic timer
1080# extension. When set to 'n', the plat_get_freq() function must be defined by
1081# the platform code
1082CFG_CORE_HAS_GENERIC_TIMER ?= y
1083
1084# Enable RTC API
1085CFG_DRIVERS_RTC ?= n
1086
1087# Enable PTA for RTC access from non-secure world
1088CFG_RTC_PTA ?= n
1089
1090# Enable the FF-A SPMC tests in xtests
1091CFG_SPMC_TESTS ?= n
1092
1093# Allocate the translation tables needed to map the S-EL0 application
1094# loaded
1095CFG_CORE_PREALLOC_EL0_TBLS ?= n
1096ifeq (y-y,$(CFG_CORE_PREALLOC_EL0_TBLS)-$(CFG_WITH_PAGER))
1097$(error "CFG_WITH_PAGER can't support CFG_CORE_PREALLOC_EL0_TBLS")
1098endif
1099
1100# User TA runtime context dump.
1101# When this option is enabled, OP-TEE provides a debug method for
1102# developer to dump user TA's runtime context, including TA's heap stats.
1103# Developer can open a stats PTA session and then invoke command
1104# STATS_CMD_TA_STATS to get the context of loaded TAs.
1105CFG_TA_STATS ?= n
1106
1107# Enables best effort mitigations against fault injected when the hardware
1108# is tampered with. Details in lib/libutils/ext/include/fault_mitigation.h
1109CFG_FAULT_MITIGATION ?= y
1110
1111# Enables TEE Internal Core API v1.1 compatibility for in-tree TAs. Note
1112# that this doesn't affect libutee itself, it's only the TAs compiled with
1113# this set that are affected. Each out-of-tree must set this if to enable
1114# compatibility with version v1.1 as the value of this variable is not
1115# preserved in the TA dev-kit.
1116CFG_TA_OPTEE_CORE_API_COMPAT_1_1 ?= n
1117
1118# Change supported HMAC key size range, from 64 to 1024.
1119# This is needed to pass AOSP Keymaster VTS tests:
1120#   Link to tests : https://android.googlesource.com/platform/hardware/interfaces/+/master/keymaster/3.0/vts/functional/keymaster_hidl_hal_test.cpp
1121#   Module: VtsHalKeymasterV3_0TargetTest
1122#   Testcases: - PerInstance/SigningOperationsTest#
1123#              - PerInstance/NewKeyGenerationTest#
1124#              - PerInstance/ImportKeyTest#
1125#              - PerInstance/EncryptionOperationsTest#
1126#              - PerInstance/AttestationTest#
1127# Note that this violates GP requirements of HMAC size range.
1128CFG_HMAC_64_1024_RANGE ?= n
1129
1130# CFG_RSA_PUB_EXPONENT_3, when enabled, allows RSA public exponents in the
1131# range 3 <= e < 2^256. This is needed to pass AOSP KeyMint VTS tests:
1132#    Link to tests: https://android.googlesource.com/platform/hardware/interfaces/+/refs/heads/main/security/keymint/aidl/vts/functional/KeyMintTest.cpp
1133#    Module: VtsAidlKeyMintTargetTest
1134#    Testcases: - PerInstance/EncryptionOperationsTest.RsaNoPaddingSuccess
1135# When CFG_RSA_PUB_EXPONENT_3 is disabled, RSA public exponents must conform
1136# to NIST SP800-56B recommendation and be in the range 65537 <= e < 2^256.
1137CFG_RSA_PUB_EXPONENT_3 ?= n
1138
1139# Enable a hardware pbkdf2 function
1140# By default use standard pbkdf2 implementation
1141CFG_CRYPTO_HW_PBKDF2 ?= n
1142$(eval $(call cfg-depends-all,CFG_CRYPTO_HW_PBKDF2,CFG_CRYPTO_PBKDF2))
1143
1144# CFG_HALT_CORES_ON_PANIC, when enabled, makes any call to panic() halt the
1145# other cores. The feature currently relies on GIC device to trap the other
1146# cores using an SGI interrupt specified by CFG_HALT_CORES_ON_PANIC_SGI.
1147CFG_HALT_CORES_ON_PANIC ?= n
1148CFG_HALT_CORES_ON_PANIC_SGI ?= 15
1149$(eval $(call cfg-depends-all,CFG_HALT_CORES_ON_PANIC,CFG_GIC))
1150
1151# Enable automatic discovery of maximal PA supported by the hardware and
1152# use that. Provides easier configuration of virtual platforms where the
1153# maximal PA can vary.
1154CFG_AUTO_MAX_PA_BITS ?= n
1155
1156# CFG_DRIVERS_REMOTEPROC, when enabled, embeds support for remote processor
1157# management including generic DT bindings for the configuration.
1158CFG_DRIVERS_REMOTEPROC ?= n
1159
1160# CFG_REMOTEPROC_PTA, when enabled, embeds remote processor management PTA
1161# service.
1162CFG_REMOTEPROC_PTA ?= n
1163
1164# When enabled, CFG_WIDEVINE_HUK uses the widevine HUK provided by secure
1165# DTB as OP-TEE HUK.
1166CFG_WIDEVINE_HUK ?= n
1167$(eval $(call cfg-depends-all,CFG_WIDEVINE_HUK,CFG_DT))
1168
1169# When enabled, CFG_WIDEVINE_PTA embeds a PTA that exposes the keys under
1170# DT node "/options/op-tee/widevine" to some specific TAs.
1171CFG_WIDEVINE_PTA ?= n
1172$(eval $(call cfg-depends-all,CFG_WIDEVINE_PTA,CFG_DT CFG_WIDEVINE_HUK))
1173
1174# CFG_SEMIHOSTING_CONSOLE, when enabled, embeds a semihosting console driver.
1175# When CFG_SEMIHOSTING_CONSOLE_FILE=NULL, OP-TEE console reads/writes
1176# trace messages from/to the debug terminal of the semihosting host computer.
1177# When CFG_SEMIHOSTING_CONSOLE_FILE="{your_log_file}", OP-TEE console
1178# outputs trace messages to that file. Output to "optee.log" by default.
1179CFG_SEMIHOSTING_CONSOLE ?= n
1180ifeq ($(CFG_SEMIHOSTING_CONSOLE),y)
1181$(call force,CFG_SEMIHOSTING,y)
1182endif
1183CFG_SEMIHOSTING_CONSOLE_FILE ?= "optee.log"
1184ifeq ($(CFG_SEMIHOSTING_CONSOLE_FILE),)
1185$(error CFG_SEMIHOSTING_CONSOLE_FILE cannot be empty)
1186endif
1187
1188# Semihosting is a debugging mechanism that enables code running on an embedded
1189# system (also called the target) to communicate with and use the I/O of the
1190# host computer.
1191CFG_SEMIHOSTING ?= n
1192