1# Default configuration values for OP-TEE core (all platforms). 2# 3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk. 4# Some subsystem-specific defaults are not here but rather in */sub.mk. 5# 6# Configuration values may be assigned from multiple sources. 7# From higher to lower priority: 8# 9# 1. Make arguments ('make CFG_FOO=bar...') 10# 2. The file specified by $(CFG_OPTEE_CONFIG) (if defined) 11# 3. The environment ('CFG_FOO=bar make...') 12# 4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk 13# 5. This file 14# 6. Subsystem-specific makefiles (*/sub.mk) 15# 16# Actual values used during the build are output to $(out-dir)/conf.mk 17# (CFG_* variables only). 18 19# Cross-compiler prefix and suffix 20CROSS_COMPILE ?= arm-linux-gnueabihf- 21CROSS_COMPILE32 ?= $(CROSS_COMPILE) 22CROSS_COMPILE64 ?= aarch64-linux-gnu- 23COMPILER ?= gcc 24 25# For convenience 26ifdef CFLAGS 27CFLAGS32 ?= $(CFLAGS) 28CFLAGS64 ?= $(CFLAGS) 29endif 30 31# Compiler warning level. 32# Supported values: undefined, 1, 2 and 3. 3 gives more warnings. 33WARNS ?= 3 34 35# Path to the Python interpreter used by the build system. 36# This variable is set to the default python3 interpreter in the user's 37# path. But build environments that require more explicit control can 38# set the path to a specific interpreter through this variable. 39PYTHON3 ?= python3 40 41# Define DEBUG=1 to compile without optimization (forces -O0) 42# DEBUG=1 43ifeq ($(DEBUG),1) 44# For backwards compatibility 45$(call force,CFG_CC_OPT_LEVEL,0) 46$(call force,CFG_DEBUG_INFO,y) 47endif 48 49# CFG_CC_OPT_LEVEL sets compiler optimization level passed with -O directive. 50# Optimize for size by default, usually gives good performance too. 51CFG_CC_OPT_LEVEL ?= s 52 53# Enabling CFG_DEBUG_INFO makes debug information embedded in core. 54CFG_DEBUG_INFO ?= y 55 56# If y, enable debug features of the TEE core (assertions and lock checks 57# are enabled, panic and assert messages are more verbose, data and prefetch 58# aborts show a stack dump). When disabled, the NDEBUG directive is defined 59# so assertions are disabled. 60CFG_TEE_CORE_DEBUG ?= y 61 62# Log levels for the TEE core. Defines which core messages are displayed 63# on the secure console. Disabling core log (level set to 0) also disables 64# logs from the TAs. 65# 0: none 66# 1: error 67# 2: error + info 68# 3: error + info + debug 69# 4: error + info + debug + flow 70CFG_TEE_CORE_LOG_LEVEL ?= 2 71 72# TA log level 73# If user-mode library libutils.a is built with CFG_TEE_TA_LOG_LEVEL=0, 74# TA tracing is disabled regardless of the value of CFG_TEE_TA_LOG_LEVEL 75# when the TA is built. 76CFG_TEE_TA_LOG_LEVEL ?= 1 77 78# TA enablement 79# When defined to "y", TA traces are output according to 80# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all 81CFG_TEE_CORE_TA_TRACE ?= y 82 83# If y, enable the memory leak detection feature in the bget memory allocator. 84# When this feature is enabled, calling mdbg_check(1) will print a list of all 85# the currently allocated buffers and the location of the allocation (file and 86# line number). 87# Note: make sure the log level is high enough for the messages to show up on 88# the secure console! For instance: 89# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with: 90# $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3 91# - To debug TEE core allocations: build OP-TEE with: 92# $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3 93CFG_TEE_CORE_MALLOC_DEBUG ?= n 94CFG_TEE_TA_MALLOC_DEBUG ?= n 95# Prints an error message and dumps the stack on failed memory allocations 96# using malloc() and friends. 97CFG_CORE_DUMP_OOM ?= $(CFG_TEE_CORE_MALLOC_DEBUG) 98 99# Mask to select which messages are prefixed with long debugging information 100# (severity, core ID, thread ID, component name, function name, line number) 101# based on the message level. If BIT(level) is set, the long prefix is shown. 102# Otherwise a short prefix is used (severity and component name only). 103# Levels: 0=none 1=error 2=info 3=debug 4=flow 104CFG_MSG_LONG_PREFIX_MASK ?= 0x1a 105 106# Number of threads 107CFG_NUM_THREADS ?= 2 108 109# API implementation version 110CFG_TEE_API_VERSION ?= GPD-1.1-dev 111 112# Implementation description (implementation-dependent) 113CFG_TEE_IMPL_DESCR ?= OPTEE 114 115# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal 116# World? 117CFG_OS_REV_REPORTS_GIT_SHA1 ?= y 118 119# The following values are not extracted from the "git describe" output because 120# we might be outside of a Git environment, or the tree may have been cloned 121# with limited depth not including any tag, so there is really no guarantee 122# that TEE_IMPL_VERSION contains the major and minor revision numbers. 123CFG_OPTEE_REVISION_MAJOR ?= 4 124CFG_OPTEE_REVISION_MINOR ?= 0 125CFG_OPTEE_REVISION_EXTRA ?= 126 127# Trusted OS implementation version 128TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || \ 129 echo Unknown_$(CFG_OPTEE_REVISION_MAJOR).$(CFG_OPTEE_REVISION_MINOR))$(CFG_OPTEE_REVISION_EXTRA) 130ifeq ($(CFG_OS_REV_REPORTS_GIT_SHA1),y) 131TEE_IMPL_GIT_SHA1 := 0x$(shell git rev-parse --short=8 HEAD 2>/dev/null || echo 0) 132else 133TEE_IMPL_GIT_SHA1 := 0x0 134endif 135 136# Trusted OS implementation manufacturer name 137CFG_TEE_MANUFACTURER ?= LINARO 138 139# Trusted firmware version 140CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF 141 142# Trusted OS implementation manufacturer name 143CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF 144 145# Rich Execution Environment (REE) file system support: normal world OS 146# provides the actual storage. 147# This is the default FS when enabled (i.e., the one used when 148# TEE_STORAGE_PRIVATE is passed to the trusted storage API) 149CFG_REE_FS ?= y 150 151# RPMB file system support 152CFG_RPMB_FS ?= n 153 154# Enable roll-back protection of REE file system using RPMB. 155# Roll-back protection only works if CFG_RPMB_FS = y. 156CFG_REE_FS_INTEGRITY_RPMB ?= $(CFG_RPMB_FS) 157$(eval $(call cfg-depends-all,CFG_REE_FS_INTEGRITY_RPMB,CFG_RPMB_FS)) 158 159# Device identifier used when CFG_RPMB_FS = y. 160# The exact meaning of this value is platform-dependent. On Linux, the 161# tee-supplicant process will open /dev/mmcblk<id>rpmb 162CFG_RPMB_FS_DEV_ID ?= 0 163 164# This config variable determines the number of entries read in from RPMB at 165# once whenever a function traverses the RPMB FS. Increasing the default value 166# has the following consequences: 167# - More memory required on heap. A single FAT entry currently has a size of 168# 256 bytes. 169# - Potentially significant speed-ups for RPMB I/O. Depending on how many 170# entries a function needs to traverse, the number of time-consuming RPMB 171# read-in operations can be reduced. 172# Chosing a proper value is both platform- (available memory) and use-case- 173# dependent (potential number of FAT fs entries), so overwrite in platform 174# config files 175CFG_RPMB_FS_RD_ENTRIES ?= 8 176 177# Enables caching of FAT FS entries when set to a value greater than zero. 178# When enabled, the cache stores the first 'CFG_RPMB_FS_CACHE_ENTRIES' FAT FS 179# entries. The cache is populated when FAT FS entries are initially read in. 180# When traversing the FAT FS entries, we read from the cache instead of reading 181# in the entries from RPMB storage. Consequently, when a FAT FS entry is 182# written, the cache is updated. In scenarios where an estimate of the number 183# of FAT FS entries can be made, the cache may be specifically tailored to 184# store all entries. The caching can improve RPMB I/O at the cost 185# of additional memory. 186# Without caching, we temporarily require 187# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory 188# while traversing the FAT FS (e.g. in read_fat). 189# For example 8*256 bytes = 2kB while in read_fat. 190# With caching, we constantly require up to 191# CFG_RPMB_FS_CACHE_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory 192# depending on how many elements are in the cache, and additional temporary 193# CFG_RPMB_FS_RD_ENTRIES*sizeof(struct rpmb_fat_entry) bytes of heap memory 194# in case the cache is too small to hold all elements when traversing. 195CFG_RPMB_FS_CACHE_ENTRIES ?= 0 196 197# Print RPMB data frames sent to and received from the RPMB device 198CFG_RPMB_FS_DEBUG_DATA ?= n 199 200# Clear RPMB content at cold boot 201CFG_RPMB_RESET_FAT ?= n 202 203# Use a hard coded RPMB key instead of deriving it from the platform HUK 204CFG_RPMB_TESTKEY ?= n 205 206# Enables RPMB key programming by the TEE, in case the RPMB partition has not 207# been configured yet. 208# !!! Security warning !!! 209# Do *NOT* enable this in product builds, as doing so would allow the TEE to 210# leak the RPMB key. 211# This option is useful in the following situations: 212# - Testing 213# - RPMB key provisioning in a controlled environment (factory setup) 214CFG_RPMB_WRITE_KEY ?= n 215 216_CFG_WITH_SECURE_STORAGE := $(call cfg-one-enabled,CFG_REE_FS CFG_RPMB_FS) 217 218# Signing key for OP-TEE TA's 219# When performing external HSM signing for TA's TA_SIGN_KEY can be set to dummy 220# key and then set TA_PUBLIC_KEY to match public key from the HSM. 221# TA_PUBLIC_KEY's public key will be embedded into OP-TEE OS. 222TA_SIGN_KEY ?= keys/default_ta.pem 223TA_PUBLIC_KEY ?= $(TA_SIGN_KEY) 224 225# Subkeys is a complement to the normal TA_SIGN_KEY where a subkey is used 226# to verify a TA instead. To sign a TA using a previously prepared subkey 227# two new options are added, TA_SUBKEY_ARGS and TA_SUBKEY_DEPS. It is 228# typically used by assigning the following in the TA Makefile: 229# BINARY = <TA-uuid-string> 230# TA_SIGN_KEY = subkey.pem 231# TA_SUBKEY_ARGS = --subkey subkey.bin --name subkey_ta 232# TA_SUBKEY_DEPS = subkey.bin 233# See the documentation for more details on subkeys. 234 235# Include lib/libutils/isoc in the build? Most platforms need this, but some 236# may not because they obtain the isoc functions from elsewhere 237CFG_LIBUTILS_WITH_ISOC ?= y 238 239# Enables floating point support for user TAs 240# ARM32: EABI defines both a soft-float ABI and a hard-float ABI, 241# hard-float is basically a super set of soft-float. Hard-float 242# requires all the support routines provided for soft-float, but the 243# compiler may choose to optimize to not use some of them and use 244# the floating-point registers instead. 245# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or 246# nothing with ` -mgeneral-regs-only`) 247# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types 248CFG_TA_FLOAT_SUPPORT ?= y 249 250# Stack unwinding: print a stack dump to the console on core or TA abort, or 251# when a TA panics. 252# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be 253# unwound (not paged TAs, however). 254# Note that 32-bit ARM code needs unwind tables for this to work, so enabling 255# this option will increase the size of the 32-bit TEE binary by a few KB. 256# Similarly, TAs have to be compiled with -funwind-tables (default when the 257# option is set) otherwise they can't be unwound. 258# Warning: since the unwind sequence for user-mode (TA) code is implemented in 259# the privileged layer of OP-TEE, enabling this feature will weaken the 260# user/kernel isolation. Therefore it should be disabled in release builds. 261ifeq ($(CFG_TEE_CORE_DEBUG),y) 262CFG_UNWIND ?= y 263endif 264 265# Enable support for dynamically loaded user TAs 266CFG_WITH_USER_TA ?= y 267 268# Build user TAs included in this source tree 269CFG_BUILD_IN_TREE_TA ?= y 270 271# Choosing the architecture(s) of user-mode libraries (used by TAs) 272# 273# Platforms may define a list of supported architectures for user-mode code 274# by setting $(supported-ta-targets). Valid values are "ta_arm32", "ta_arm64", 275# "ta_arm32 ta_arm64" and "ta_arm64 ta_arm32". 276# $(supported-ta-targets) defaults to "ta_arm32" when the TEE core is 32-bits, 277# and "ta_arm32 ta_arm64" when it is 64-bits (that is, when CFG_ARM64_core=y). 278# The first entry in $(supported-ta-targets) has a special role, see 279# CFG_USER_TA_TARGET_<ta-name> below. 280# 281# CFG_USER_TA_TARGETS may be defined to restrict $(supported-ta-targets) or 282# change the order of the values. 283# 284# The list of TA architectures is ultimately stored in $(ta-targets). 285 286# CFG_USER_TA_TARGET_<ta-name> (for example, CFG_USER_TA_TARGET_avb), if 287# defined, selects the unique TA architecture mode for building the in-tree TA 288# <ta-name>. Can be either ta_arm32 or ta_arm64. 289# By default, in-tree TAs are built using the first architecture specified in 290# $(ta-targets). 291 292# Address Space Layout Randomization for user-mode Trusted Applications 293# 294# When this flag is enabled, the ELF loader will introduce a random offset 295# when mapping the application in user space. ASLR makes the exploitation of 296# memory corruption vulnerabilities more difficult. 297CFG_TA_ASLR ?= y 298 299# How much ASLR may shift the base address (in pages). The base address is 300# randomly shifted by an integer number of pages comprised between these two 301# values. Bigger ranges are more secure because they make the addresses harder 302# to guess at the expense of using more memory for the page tables. 303CFG_TA_ASLR_MIN_OFFSET_PAGES ?= 0 304CFG_TA_ASLR_MAX_OFFSET_PAGES ?= 128 305 306# Address Space Layout Randomization for TEE Core 307# 308# When this flag is enabled, the early init code will introduce a random 309# offset when mapping TEE Core. ASLR makes the exploitation of memory 310# corruption vulnerabilities more difficult. 311CFG_CORE_ASLR ?= y 312 313# Stack Protection for TEE Core 314# This flag enables the compiler stack protection mechanisms -fstack-protector. 315# It will check the stack canary value before returning from a function to 316# prevent buffer overflow attacks. Stack protector canary logic will be added 317# for vulnerable functions that contain: 318# - A character array larger than 8 bytes. 319# - An 8-bit integer array larger than 8 bytes. 320# - A call to alloca() with either a variable size or a constant size bigger 321# than 8 bytes. 322CFG_CORE_STACK_PROTECTOR ?= n 323# This enable stack protector flag -fstack-protector-strong. Stack protector 324# canary logic will be added for vulnerable functions that contain: 325# - An array of any size and type. 326# - A call to alloca(). 327# - A local variable that has its address taken. 328CFG_CORE_STACK_PROTECTOR_STRONG ?= y 329# This enable stack protector flag -fstack-protector-all. Stack protector canary 330# logic will be added to all functions regardless of their vulnerability. 331CFG_CORE_STACK_PROTECTOR_ALL ?= n 332# Stack Protection for TA 333CFG_TA_STACK_PROTECTOR ?= n 334CFG_TA_STACK_PROTECTOR_STRONG ?= y 335CFG_TA_STACK_PROTECTOR_ALL ?= n 336 337_CFG_CORE_STACK_PROTECTOR := $(call cfg-one-enabled, CFG_CORE_STACK_PROTECTOR \ 338 CFG_CORE_STACK_PROTECTOR_STRONG \ 339 CFG_CORE_STACK_PROTECTOR_ALL) 340_CFG_TA_STACK_PROTECTOR := $(call cfg-one-enabled, CFG_TA_STACK_PROTECTOR \ 341 CFG_TA_STACK_PROTECTOR_STRONG \ 342 CFG_TA_STACK_PROTECTOR_ALL) 343 344# Load user TAs from the REE filesystem via tee-supplicant 345CFG_REE_FS_TA ?= y 346 347# Pre-authentication of TA binaries loaded from the REE filesystem 348# 349# - If CFG_REE_FS_TA_BUFFERED=y: load TA binary into a temporary buffer in the 350# "Secure DDR" pool, check the signature, then process the file only if it is 351# valid. 352# - If disabled: hash the binaries as they are being processed and verify the 353# signature as a last step. 354CFG_REE_FS_TA_BUFFERED ?= n 355$(eval $(call cfg-depends-all,CFG_REE_FS_TA_BUFFERED,CFG_REE_FS_TA)) 356 357# When CFG_REE_FS=y: 358# Allow secure storage in the REE FS to be entirely deleted without causing 359# anti-rollback errors. That is, rm /data/tee/dirf.db or rm -rf /data/tee (or 360# whatever path is configured in tee-supplicant as CFG_TEE_FS_PARENT_PATH) 361# can be used to reset the secure storage to a clean, empty state. 362# Intended to be used for testing only since it weakens storage security. 363# Warning: If enabled for release build then it will break rollback protection 364# of TAs and the entire REE FS secure storage. 365CFG_REE_FS_ALLOW_RESET ?= n 366 367# Support for loading user TAs from a special section in the TEE binary. 368# Such TAs are available even before tee-supplicant is available (hence their 369# name), but note that many services exported to TAs may need tee-supplicant, 370# so early use is limited to a subset of the TEE Internal Core API (crypto...) 371# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF 372# file(s). For example: 373# $ make ... \ 374# EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \ 375# path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf" 376# Typical build steps: 377# $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries, 378# # headers, makefiles), ready to build TAs. 379# # CFG_EARLY_TA=y is optional, it prevents 380# # later library recompilations. 381# <build some TAs> 382# $ make EARLY_TA_PATHS=<paths> # Build OP-TEE and embbed the TA(s) 383# 384# Another option is CFG_IN_TREE_EARLY_TAS which is used to point at 385# in-tree TAs. CFG_IN_TREE_EARLY_TAS is formatted as: 386# <name-of-ta>/<uuid> 387# for instance avb/023f8f1a-292a-432b-8fc4-de8471358067 388ifneq ($(EARLY_TA_PATHS)$(CFG_IN_TREE_EARLY_TAS),) 389$(call force,CFG_EARLY_TA,y) 390else 391CFG_EARLY_TA ?= n 392endif 393 394ifeq ($(CFG_EARLY_TA),y) 395$(call force,CFG_EMBEDDED_TS,y) 396endif 397 398ifneq ($(SP_PATHS),) 399$(call force,CFG_EMBEDDED_TS,y) 400else 401CFG_SECURE_PARTITION ?= n 402endif 403 404ifeq ($(CFG_SECURE_PARTITION),y) 405$(call force,CFG_EMBEDDED_TS,y) 406endif 407 408ifeq ($(CFG_EMBEDDED_TS),y) 409$(call force,CFG_ZLIB,y) 410endif 411 412# By default the early TAs are compressed in the TEE binary, it is possible to 413# not compress them with CFG_EARLY_TA_COMPRESS=n 414CFG_EARLY_TA_COMPRESS ?= y 415 416# Enable paging, requires SRAM, can't be enabled by default 417CFG_WITH_PAGER ?= n 418 419# Use the pager for user TAs 420CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER) 421 422# If paging of user TAs, that is, R/W paging default to enable paging of 423# TAG and IV in order to reduce heap usage. 424CFG_CORE_PAGE_TAG_AND_IV ?= $(CFG_PAGED_USER_TA) 425 426# Runtime lock dependency checker: ensures that a proper locking hierarchy is 427# used in the TEE core when acquiring and releasing mutexes. Any violation will 428# cause a panic as soon as the invalid locking condition is detected. If 429# CFG_UNWIND and CFG_LOCKDEP_RECORD_STACK are both enabled, the algorithm 430# records the call stacks when locks are taken, and prints them when a 431# potential deadlock is found. 432# Expect a significant performance impact when enabling this. 433CFG_LOCKDEP ?= n 434CFG_LOCKDEP_RECORD_STACK ?= y 435 436# BestFit algorithm in bget reduces the fragmentation of the heap when running 437# with the pager enabled or lockdep 438CFG_CORE_BGET_BESTFIT ?= $(call cfg-one-enabled, CFG_WITH_PAGER CFG_LOCKDEP) 439 440# Enable support for detected undefined behavior in C 441# Uses a lot of memory, can't be enabled by default 442CFG_CORE_SANITIZE_UNDEFINED ?= n 443 444# Enable Kernel Address sanitizer, has a huge performance impact, uses a 445# lot of memory and need platform specific adaptations, can't be enabled by 446# default 447CFG_CORE_SANITIZE_KADDRESS ?= n 448 449ifeq (y-y,$(CFG_CORE_SANITIZE_KADDRESS)-$(CFG_CORE_ASLR)) 450$(error CFG_CORE_SANITIZE_KADDRESS and CFG_CORE_ASLR are not compatible) 451endif 452 453# Add stack guards before/after stacks and periodically check them 454CFG_WITH_STACK_CANARIES ?= y 455 456# Use compiler instrumentation to troubleshoot stack overflows. 457# When enabled, most C functions check the stack pointer against the current 458# stack limits on entry and panic immediately if it is out of range. 459CFG_CORE_DEBUG_CHECK_STACKS ?= n 460 461# Use when the default stack allocations are not sufficient. 462CFG_STACK_THREAD_EXTRA ?= 0 463CFG_STACK_TMP_EXTRA ?= 0 464 465# Device Tree support 466# 467# When CFG_DT is enabled core embeds the FDT library (libfdt) allowing 468# device tree blob (DTB) parsing from the core. 469# 470# When CFG_DT is enabled, the TEE _start function expects to find 471# the address of a DTB in register X2/R2 provided by the early boot stage 472# or value 0 if boot stage provides no DTB. 473# 474# When CFG_EXTERNAL_DT is enabled, the external device tree ABI is implemented 475# and the external device tree is expected to be used/modified. Its value 476# defaults to CFG_DT. 477# 478# When CFG_MAP_EXT_DT_SECURE is enabled the external device tree is expected to 479# be in the secure memory. 480# 481# When CFG_EMBED_DTB is enabled, CFG_EMBED_DTB_SOURCE_FILE shall define the 482# relative path of a DTS file located in core/arch/$(ARCH)/dts. 483# The DTS file is compiled into a DTB file which content is embedded in a 484# read-only section of the core. 485ifneq ($(strip $(CFG_EMBED_DTB_SOURCE_FILE)),) 486CFG_EMBED_DTB ?= y 487endif 488ifeq ($(filter y,$(CFG_EMBED_DTB) $(CFG_CORE_SEL1_SPMC) $(CFG_CORE_SEL2_SPMC) \ 489 $(CFG_CORE_EL3_SPMC)),y) 490$(call force,CFG_DT,y) 491endif 492CFG_EMBED_DTB ?= n 493CFG_DT ?= n 494CFG_EXTERNAL_DT ?= $(CFG_DT) 495CFG_MAP_EXT_DT_SECURE ?= n 496ifeq ($(CFG_MAP_EXT_DT_SECURE),y) 497$(call force,CFG_DT,y) 498endif 499 500# This option enables OP-TEE to support boot arguments handover via Transfer 501# List defined in Firmware Handoff specification. 502# This feature requires the support of Device Tree. 503CFG_TRANSFER_LIST ?= n 504ifeq ($(CFG_TRANSFER_LIST),y) 505$(call force,CFG_DT,y) 506$(call force,CFG_EXTERNAL_DT,y) 507$(call force,CFG_MAP_EXT_DT_SECURE,y) 508endif 509 510# Maximum size of the Device Tree Blob, has to be large enough to allow 511# editing of the supplied DTB. 512CFG_DTB_MAX_SIZE ?= 0x10000 513 514# Maximum size of the init info data passed to Secure Partitions. 515CFG_SP_INIT_INFO_MAX_SIZE ?= 0x1000 516 517# Device Tree Overlay support. 518# CFG_EXTERNAL_DTB_OVERLAY allows to append a DTB overlay into an existing 519# external DTB. The overlay is created when no valid DTB overlay is found. 520# CFG_GENERATE_DTB_OVERLAY allows to create a DTB overlay at external 521# DTB location. 522# External DTB location (physical address) is provided either by boot 523# argument arg2 or from CFG_DT_ADDR if defined. 524# A subsequent boot stage can then merge the generated overlay DTB into a main 525# DTB using the standard fdt_overlay_apply() method. 526CFG_EXTERNAL_DTB_OVERLAY ?= n 527CFG_GENERATE_DTB_OVERLAY ?= n 528 529ifeq (y-y,$(CFG_EXTERNAL_DTB_OVERLAY)-$(CFG_GENERATE_DTB_OVERLAY)) 530$(error CFG_EXTERNAL_DTB_OVERLAY and CFG_GENERATE_DTB_OVERLAY are exclusive) 531endif 532_CFG_USE_DTB_OVERLAY := $(call cfg-one-enabled,CFG_EXTERNAL_DTB_OVERLAY \ 533 CFG_GENERATE_DTB_OVERLAY) 534 535# All embedded tests are supposed to be disabled by default, this flag 536# is used to control the default value of all other embedded tests 537CFG_ENABLE_EMBEDDED_TESTS ?= n 538 539# Enable core self tests and related pseudo TAs 540CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= $(CFG_ENABLE_EMBEDDED_TESTS) 541 542# Compiles bget_main_test() to be called from a test TA 543CFG_TA_BGET_TEST ?= $(CFG_ENABLE_EMBEDDED_TESTS) 544 545# CFG_DT_DRIVER_EMBEDDED_TEST when enabled embedded DT driver probing tests. 546# This also requires embedding a DTB with expected content. 547# Default disable CFG_DRIVERS_CLK_EARLY_PROBE to probe clocks as other drivers. 548# A probe deferral test mandates CFG_DRIVERS_DT_RECURSIVE_PROBE=n. 549CFG_DT_DRIVER_EMBEDDED_TEST ?= n 550ifeq ($(CFG_DT_DRIVER_EMBEDDED_TEST),y) 551CFG_DRIVERS_CLK ?= y 552CFG_DRIVERS_GPIO ?= y 553CFG_DRIVERS_RSTCTRL ?= y 554CFG_DRIVERS_CLK_EARLY_PROBE ?= n 555$(call force,CFG_DRIVERS_DT_RECURSIVE_PROBE,n,Mandated by CFG_DT_DRIVER_EMBEDDED_TEST) 556endif 557 558# CFG_WITH_STATS when enabled embeds PTA statistics service to allow non-secure 559# clients to retrieve debug and statistics information on core and loaded TAs. 560CFG_WITH_STATS ?= n 561 562# CFG_DRIVERS_DT_RECURSIVE_PROBE when enabled forces a recursive subnode 563# parsing in the embedded DTB for driver probing. The alternative is 564# an exploration based on compatible drivers found. It is default disabled. 565CFG_DRIVERS_DT_RECURSIVE_PROBE ?= n 566 567# This option enables OP-TEE to respond to SMP boot request: the Rich OS 568# issues this to request OP-TEE to release secondaries cores out of reset, 569# with specific core number and non-secure entry address. 570CFG_BOOT_SECONDARY_REQUEST ?= n 571 572# Default heap size for Core, 64 kB 573CFG_CORE_HEAP_SIZE ?= 65536 574 575# Default size of nexus heap. 16 kB. Used only if CFG_NS_VIRTUALIZATION 576# is enabled 577CFG_CORE_NEX_HEAP_SIZE ?= 16384 578 579# TA profiling. 580# When this option is enabled, OP-TEE can execute Trusted Applications 581# instrumented with GCC's -pg flag and will output profiling information 582# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in 583# tee-supplicant) 584# Note: this does not work well with shared libraries at the moment for a 585# couple of reasons: 586# 1. The profiling code assumes a unique executable section in the TA VA space. 587# 2. The code used to detect at run time if the TA is intrumented assumes that 588# the TA is linked statically. 589CFG_TA_GPROF_SUPPORT ?= n 590 591# TA function tracing. 592# When this option is enabled, OP-TEE can execute Trusted Applications 593# instrumented with GCC's -pg flag and will output function tracing 594# information for all functions compiled with -pg to 595# /tmp/ftrace-<ta_uuid>.out (path is defined in tee-supplicant). 596CFG_FTRACE_SUPPORT ?= n 597 598# Core syscall function tracing. 599# When this option is enabled, OP-TEE core is instrumented with GCC's 600# -pg flag and will output syscall function graph in user TA ftrace 601# buffer 602CFG_SYSCALL_FTRACE ?= n 603$(call cfg-depends-all,CFG_SYSCALL_FTRACE,CFG_FTRACE_SUPPORT) 604 605# Enable to compile user TA libraries with profiling (-pg). 606# Depends on CFG_TA_GPROF_SUPPORT or CFG_FTRACE_SUPPORT. 607CFG_ULIBS_MCOUNT ?= n 608# Profiling/tracing of syscall wrapper (utee_*) 609CFG_SYSCALL_WRAPPERS_MCOUNT ?= $(CFG_ULIBS_MCOUNT) 610 611ifeq (y,$(filter y,$(CFG_ULIBS_MCOUNT) $(CFG_SYSCALL_WRAPPERS_MCOUNT))) 612ifeq (,$(filter y,$(CFG_TA_GPROF_SUPPORT) $(CFG_FTRACE_SUPPORT))) 613$(error Cannot instrument user libraries if user mode profiling is disabled) 614endif 615endif 616 617# Build libutee, libutils, libmbedtls as shared libraries. 618# - Static libraries are still generated when this is enabled, but TAs will use 619# the shared libraries unless explicitly linked with the -static flag. 620# - Shared libraries are made of two files: for example, libutee is 621# libutee.so and 527f1a47-b92c-4a74-95bd-72f19f4a6f74.ta. The '.so' file 622# is a totally standard shared object, and should be used to link against. 623# The '.ta' file is a signed version of the '.so' and should be installed 624# in the same way as TAs so that they can be found at runtime. 625CFG_ULIBS_SHARED ?= n 626 627ifeq (y-y,$(CFG_TA_GPROF_SUPPORT)-$(CFG_ULIBS_SHARED)) 628$(error CFG_TA_GPROF_SUPPORT and CFG_ULIBS_SHARED are currently incompatible) 629endif 630 631# CFG_GP_SOCKETS 632# Enable Global Platform Sockets support 633CFG_GP_SOCKETS ?= y 634 635# Enable Secure Data Path support in OP-TEE core (TA may be invoked with 636# invocation parameters referring to specific secure memories). 637CFG_SECURE_DATA_PATH ?= n 638 639# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y 640# TA binaries are stored encrypted in the REE FS and are protected by 641# metadata in secure storage. 642CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA) 643$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA)) 644 645# Enable the pseudo TA that managages TA storage in secure storage 646CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA) 647$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA)) 648 649# Enable the pseudo TA for misc. auxilary services, extending existing 650# GlobalPlatform TEE Internal Core API (for example, re-seeding RNG entropy 651# pool etc...) 652CFG_SYSTEM_PTA ?= $(CFG_WITH_USER_TA) 653$(eval $(call cfg-depends-all,CFG_SYSTEM_PTA,CFG_WITH_USER_TA)) 654 655# Enable the pseudo TA for enumeration of TEE based devices for the normal 656# world OS. 657CFG_DEVICE_ENUM_PTA ?= y 658 659# The attestation pseudo TA provides an interface to request measurements of 660# a TA or the TEE binary. 661CFG_ATTESTATION_PTA ?= n 662$(eval $(call cfg-depends-all,CFG_ATTESTATION_PTA,_CFG_WITH_SECURE_STORAGE)) 663 664# RSA key size (in bits) for the attestation PTA. Must be at least 528 given 665# other algorithm parameters (RSA PSS with SHA-256 and 32-byte salt), but 666# note that such a low value is not secure. 667# See https://tools.ietf.org/html/rfc8017#section-8.1.1 and 668# https://tools.ietf.org/html/rfc8017#section-9.1.1 669# emLen >= hlen + sLen + 2 = 32 + 32 + 2 = 66 670# emLen = ceil((modBits - 1) / 8) => emLen is the key size in bytes 671CFG_ATTESTATION_PTA_KEY_SIZE ?= 3072 672 673# Define the number of cores per cluster used in calculating core position. 674# The cluster number is shifted by this value and added to the core ID, 675# so its value represents log2(cores/cluster). 676# Default is 2**(2) = 4 cores per cluster. 677CFG_CORE_CLUSTER_SHIFT ?= 2 678 679# Define the number of threads per core used in calculating processing 680# element's position. The core number is shifted by this value and added to 681# the thread ID, so its value represents log2(threads/core). 682# Default is 2**(0) = 1 threads per core. 683CFG_CORE_THREAD_SHIFT ?= 0 684 685# Enable support for dynamic shared memory (shared memory anywhere in 686# non-secure memory). 687CFG_CORE_DYN_SHM ?= y 688 689# Enable support for reserved shared memory (shared memory in a carved out 690# memory area). 691CFG_CORE_RESERVED_SHM ?= y 692 693# Enables support for larger physical addresses, that is, it will define 694# paddr_t as a 64-bit type. 695CFG_CORE_LARGE_PHYS_ADDR ?= n 696 697# Define the maximum size, in bits, for big numbers in the Internal Core API 698# Arithmetical functions. This does *not* influence the key size that may be 699# manipulated through the Cryptographic API. 700# Set this to a lower value to reduce the TA memory footprint. 701CFG_TA_BIGNUM_MAX_BITS ?= 2048 702 703# Define the maximum size, in bits, for big numbers in the TEE core (privileged 704# layer). 705# This value is an upper limit for the key size in any cryptographic algorithm 706# implemented by the TEE core. 707# Set this to a lower value to reduce the memory footprint. 708CFG_CORE_BIGNUM_MAX_BITS ?= 4096 709 710# Not used since libmpa was removed. Force the values to catch build scripts 711# that would set = n. 712$(call force,CFG_TA_MBEDTLS_MPI,y) 713$(call force,CFG_TA_MBEDTLS,y) 714 715# Compile the TA library mbedTLS with self test functions, the functions 716# need to be called to test anything 717CFG_TA_MBEDTLS_SELF_TEST ?= y 718 719# By default use tomcrypt as the main crypto lib providing an implementation 720# for the API in <crypto/crypto.h> 721# CFG_CRYPTOLIB_NAME is used as libname and 722# CFG_CRYPTOLIB_DIR is used as libdir when compiling the library 723# 724# It's also possible to configure to use mbedtls instead of tomcrypt. 725# Then the variables should be assigned as "CFG_CRYPTOLIB_NAME=mbedtls" and 726# "CFG_CRYPTOLIB_DIR=lib/libmbedtls" respectively. 727CFG_CRYPTOLIB_NAME ?= tomcrypt 728CFG_CRYPTOLIB_DIR ?= core/lib/libtomcrypt 729 730# Not used since libmpa was removed. Force the value to catch build scripts 731# that would set = n. 732$(call force,CFG_CORE_MBEDTLS_MPI,y) 733 734# When enabled, CFG_NS_VIRTUALIZATION embeds support for virtualization in 735# the non-secure world. OP-TEE will not work without a compatible hypervisor 736# in the non-secure world if this option is enabled. 737# 738# CFG_VIRTUALIZATION served the same purpose as CFG_NS_VIRTUALIZATION but is 739# deprecated as the configuration switch name was ambiguous regarding which 740# world has virtualization enabled. 741ifneq (undefined,$(flavor CFG_VIRTUALIZATION)) 742$(info WARNING: CFG_VIRTUALIZATION is deprecated, use CFG_NS_VIRTUALIZATION instead) 743CFG_NS_VIRTUALIZATION ?= $(CFG_VIRTUALIZATION) 744ifneq ($(CFG_NS_VIRTUALIZATION),$(CFG_VIRTUALIZATION)) 745$(error Inconsistent CFG_NS_VIRTUALIZATION=$(CFG_NS_VIRTUALIZATION) and CFG_VIRTUALIZATION=$(CFG_VIRTUALIZATION)) 746endif 747endif # CFG_VIRTUALIZATION defined 748CFG_NS_VIRTUALIZATION ?= n 749 750ifeq ($(CFG_NS_VIRTUALIZATION),y) 751$(call force,CFG_CORE_RODATA_NOEXEC,y) 752$(call force,CFG_CORE_RWDATA_NOEXEC,y) 753 754# Default number of virtual guests 755CFG_VIRT_GUEST_COUNT ?= 2 756endif 757 758# Enables backwards compatible derivation of RPMB and SSK keys 759CFG_CORE_HUK_SUBKEY_COMPAT ?= y 760 761# Use SoC specific tee_otp_get_die_id() implementation for SSK key generation. 762# This option depends on CFG_CORE_HUK_SUBKEY_COMPAT=y. 763CFG_CORE_HUK_SUBKEY_COMPAT_USE_OTP_DIE_ID ?= n 764 765# Compress and encode conf.mk into the TEE core, and show the encoded string on 766# boot (with severity TRACE_INFO). 767CFG_SHOW_CONF_ON_BOOT ?= n 768 769# Enables support for passing a TPM Event Log stored in secure memory 770# to a TA or FF-A SP, so a TPM Service could use it to extend any measurement 771# taken before the service was up and running. 772CFG_CORE_TPM_EVENT_LOG ?= n 773 774# When enabled, CFG_SCMI_MSG_DRIVERS embeds SCMI message drivers in the core. 775# Refer to the supported SCMI features embedded upon CFG_SCMI_MSG_* 776# 777# CFG_SCMI_MSG_CLOCK embeds SCMI clock protocol support. 778# CFG_SCMI_MSG_RESET_DOMAIN embeds SCMI reset domain protocol support. 779# CFG_SCMI_MSG_SMT embeds a SMT header in shared device memory buffers 780# CFG_SCMI_MSG_VOLTAGE_DOMAIN embeds SCMI voltage domain protocol support. 781# CFG_SCMI_MSG_SMT_FASTCALL_ENTRY embeds fastcall SMC entry with SMT memory 782# CFG_SCMI_MSG_SMT_INTERRUPT_ENTRY embeds interrupt entry with SMT memory 783# CFG_SCMI_MSG_SMT_THREAD_ENTRY embeds threaded entry with SMT memory 784# CFG_SCMI_MSG_SHM_MSG embeds a MSG header in cached shared memory buffer 785CFG_SCMI_MSG_DRIVERS ?= n 786ifeq ($(CFG_SCMI_MSG_DRIVERS),y) 787CFG_SCMI_MSG_CLOCK ?= n 788CFG_SCMI_MSG_RESET_DOMAIN ?= n 789CFG_SCMI_MSG_SHM_MSG ?= n 790CFG_SCMI_MSG_SMT ?= n 791CFG_SCMI_MSG_SMT_FASTCALL_ENTRY ?= n 792CFG_SCMI_MSG_SMT_INTERRUPT_ENTRY ?= n 793CFG_SCMI_MSG_SMT_THREAD_ENTRY ?= n 794CFG_SCMI_MSG_THREAD_ENTRY ?= n 795CFG_SCMI_MSG_VOLTAGE_DOMAIN ?= n 796$(eval $(call cfg-depends-all,CFG_SCMI_MSG_SMT_FASTCALL_ENTRY,CFG_SCMI_MSG_SMT)) 797$(eval $(call cfg-depends-all,CFG_SCMI_MSG_SMT_INTERRUPT_ENTRY,CFG_SCMI_MSG_SMT)) 798$(eval $(call cfg-depends-one,CFG_SCMI_MSG_SMT_THREAD_ENTRY,CFG_SCMI_MSG_SMT CFG_SCMI_MSG_SHM_MSG)) 799ifeq ($(CFG_SCMI_MSG_SMT),y) 800_CFG_SCMI_PTA_SMT_HEADER := y 801endif 802ifeq ($(CFG_SCMI_MSG_SHM_MSG),y) 803_CFG_SCMI_PTA_MSG_HEADER := y 804endif 805endif 806 807# CFG_SCMI_SCPFW, when enabled, embeds the reference SCMI server implementation 808# from SCP-firmware package as an built-in SCMI stack in core. This 809# configuration mandates target product identifier is configured with 810# CFG_SCMI_SCPFW_PRODUCT and the SCP-firmware source tree path with 811# CFG_SCP_FIRMWARE. 812CFG_SCMI_SCPFW ?= n 813 814ifeq ($(CFG_SCMI_SCPFW),y) 815$(call force,CFG_SCMI_PTA,y,Required by CFG_SCMI_SCPFW) 816ifeq (,$(CFG_SCMI_SCPFW_PRODUCT)) 817$(error CFG_SCMI_SCPFW=y requires CFG_SCMI_SCPFW_PRODUCT configuration) 818endif 819ifeq (,$(wildcard $(CFG_SCP_FIRMWARE)/CMakeLists.txt)) 820$(error CFG_SCMI_SCPFW=y requires CFG_SCP_FIRMWARE configuration) 821endif 822endif #CFG_SCMI_SCPFW 823 824ifeq ($(CFG_SCMI_MSG_DRIVERS)-$(CFG_SCMI_SCPFW),y-y) 825$(error CFG_SCMI_MSG_DRIVERS=y and CFG_SCMI_SCPFW=y are mutually exclusive) 826endif 827 828# When enabled, CFG_SCMI_MSG_USE_CLK embeds SCMI clocks registering services for 829# the platform SCMI server and implements the platform plat_scmi_clock_*() 830# functions. 831CFG_SCMI_MSG_USE_CLK ?= n 832$(eval $(call cfg-depends-all,CFG_SCMI_MSG_USE_CLK,CFG_DRIVERS_CLK CFG_SCMI_MSG_DRIVERS)) 833 834# Enable SCMI PTA interface for REE SCMI agents 835CFG_SCMI_PTA ?= n 836ifeq ($(CFG_SCMI_PTA),y) 837_CFG_SCMI_PTA_SMT_HEADER ?= n 838_CFG_SCMI_PTA_MSG_HEADER ?= n 839endif 840 841ifneq ($(CFG_STMM_PATH),) 842$(call force,CFG_WITH_STMM_SP,y) 843else 844CFG_WITH_STMM_SP ?= n 845endif 846ifeq ($(CFG_WITH_STMM_SP),y) 847$(call force,CFG_ZLIB,y) 848endif 849 850# When enabled checks that buffers passed to the GP Internal Core API 851# comply with the rules added as annotations as part of the definition of 852# the API. For example preventing buffers in non-secure shared memory when 853# not allowed. 854CFG_TA_STRICT_ANNOTATION_CHECKS ?= y 855 856# When enabled accepts the DES key sizes excluding parity bits as in 857# the GP Internal API Specification v1.0 858CFG_COMPAT_GP10_DES ?= y 859 860# Defines a limit for many levels TAs may call each others. 861CFG_CORE_MAX_SYSCALL_RECURSION ?= 4 862 863# Pseudo-TA to export hardware RNG output to Normal World 864# RNG characteristics are platform specific 865CFG_HWRNG_PTA ?= n 866ifeq ($(CFG_HWRNG_PTA),y) 867# Output rate of hw_get_random_bytes() in bytes per second, 0: not rate-limited 868CFG_HWRNG_RATE ?= 0 869# Quality/entropy of hw_get_random_bytes() per 1024 bits of output data, in bits 870ifeq (,$(CFG_HWRNG_QUALITY)) 871$(error CFG_HWRNG_QUALITY not defined) 872endif 873endif 874 875# CFG_PREALLOC_RPC_CACHE, when enabled, makes core to preallocate 876# shared memory for each secure thread. When disabled, RPC shared 877# memory is released once the secure thread has completed is execution. 878ifeq ($(CFG_WITH_PAGER),y) 879CFG_PREALLOC_RPC_CACHE ?= n 880endif 881CFG_PREALLOC_RPC_CACHE ?= y 882 883# When enabled, CFG_DRIVERS_CLK embeds a clock framework in OP-TEE core. 884# This clock framework allows to describe clock tree and provides functions to 885# get and configure the clocks. 886# CFG_DRIVERS_CLK_DT embeds devicetree clock parsing support 887# CFG_DRIVERS_CLK_FIXED add support for "fixed-clock" compatible clocks 888# CFG_DRIVERS_CLK_EARLY_PROBE makes clocks probed at early_init initcall level. 889# CFG_DRIVERS_CLK_PRINT_TREE embeds a helper function to print the clock tree 890# state on OP-TEE core console with the debug trace level. 891CFG_DRIVERS_CLK ?= n 892CFG_DRIVERS_CLK_DT ?= $(call cfg-all-enabled,CFG_DRIVERS_CLK CFG_DT) 893CFG_DRIVERS_CLK_FIXED ?= $(CFG_DRIVERS_CLK_DT) 894CFG_DRIVERS_CLK_EARLY_PROBE ?= $(CFG_DRIVERS_CLK_DT) 895CFG_DRIVERS_CLK_PRINT_TREE ?= n 896 897$(eval $(call cfg-depends-all,CFG_DRIVERS_CLK_DT,CFG_DRIVERS_CLK CFG_DT)) 898$(eval $(call cfg-depends-all,CFG_DRIVERS_CLK_FIXED,CFG_DRIVERS_CLK_DT)) 899 900# When enabled, CFG_DRIVERS_RSTCTRL embeds a reset controller framework in 901# OP-TEE core to provide reset controls on subsystems of the devices. 902CFG_DRIVERS_RSTCTRL ?= n 903 904# When enabled, CFG_DRIVERS_GPIO embeds a GPIO controller framework in 905# OP-TEE core to provide GPIO support for drivers. 906CFG_DRIVERS_GPIO ?= n 907 908# When enabled, CFG_DRIVERS_I2C provides I2C controller and devices support. 909CFG_DRIVERS_I2C ?= n 910 911# When enabled, CFG_DRIVERS_PINCTRL embeds a pin muxing controller framework in 912# OP-TEE core to provide drivers a way to apply pin muxing configurations based 913# on device-tree. 914CFG_DRIVERS_PINCTRL ?= n 915 916# When enabled, CFG_DRIVERS_REGULATOR embeds a voltage regulator framework in 917# OP-TEE core to provide drivers a common regulator interface and describe 918# the regulators dependencies using an embedded device tree. 919# 920# When enabled, CFG_REGULATOR_FIXED embeds a voltage regulator driver for 921# DT compatible "regulator-fixed" devices. 922# 923# When enabled, CFG_REGULATOR_GPIO embeds a voltage regulator driver for 924# DT compatible "regulator-gpio" devices. 925# 926# CFG_DRIVERS_REGULATOR_PRINT_TREE embeds a helper function to print the 927# regulator tree state on OP-TEE core console with the info trace level. 928CFG_DRIVERS_REGULATOR ?= n 929CFG_DRIVERS_REGULATOR_PRINT_TREE ?= n 930CFG_REGULATOR_FIXED ?= n 931CFG_REGULATOR_GPIO ?= n 932 933$(eval $(call cfg-enable-all-depends,CFG_REGULATOR_FIXED, \ 934 CFG_DRIVERS_REGULATOR CFG_DT)) 935$(eval $(call cfg-enable-all-depends,CFG_REGULATOR_GPIO, \ 936 CFG_DRIVERS_REGULATOR CFG_DT CFG_DRIVERS_GPIO)) 937 938# When enabled, CFG_INSECURE permits insecure configuration of OP-TEE core 939# and shows a print (info level) when booting up the device that 940# indicates that the board runs a standard developer configuration. 941# 942# A developer configuration doesn't necessarily have to be secure. The intention 943# is that the one making products based on OP-TEE should override this flag in 944# plat-xxx/conf.mk for the platform they're basing their products on after 945# they've finalized implementing stubbed functionality (see OP-TEE 946# documentation/Porting guidelines) as well as vendor specific security 947# configuration. 948# 949# CFG_WARN_INSECURE served the same purpose as CFG_INSECURE but is deprecated. 950ifneq (undefined,$(flavor CFG_WARN_INSECURE)) 951$(info WARNING: CFG_WARN_INSECURE is deprecated, use CFG_INSECURE instead) 952CFG_INSECURE ?= $(CFG_WARN_INSECURE) 953ifneq ($(CFG_INSECURE),$(CFG_WARN_INSECURE)) 954$(error Inconsistent CFG_INSECURE=$(CFG_INSECURE) and CFG_WARN_INSECURE=$(CFG_WARN_INSECURE)) 955endif 956endif # CFG_WARN_INSECURE defined 957CFG_INSECURE ?= y 958 959# Enables warnings for declarations mixed with statements 960CFG_WARN_DECL_AFTER_STATEMENT ?= y 961 962# Branch Target Identification (part of the ARMv8.5 Extensions) provides a 963# mechanism to limit the set of locations to which computed branch instructions 964# such as BR or BLR can jump. To make use of BTI in TEE core and ldelf on CPU's 965# that support it, enable this option. A GCC toolchain built with 966# --enable-standard-branch-protection is needed to use this option. 967CFG_CORE_BTI ?= n 968 969$(eval $(call cfg-depends-all,CFG_CORE_BTI,CFG_ARM64_core)) 970 971# To make use of BTI in user space libraries and TA's on CPU's that support it, 972# enable this option. 973CFG_TA_BTI ?= $(CFG_CORE_BTI) 974 975$(eval $(call cfg-depends-all,CFG_TA_BTI,CFG_ARM64_core)) 976 977ifeq (y-y,$(CFG_NS_VIRTUALIZATION)-$(call cfg-one-enabled, CFG_TA_BTI CFG_CORE_BTI)) 978$(error CFG_NS_VIRTUALIZATION and BTI are currently incompatible) 979endif 980 981ifeq (y-y,$(CFG_PAGED_USER_TA)-$(CFG_TA_BTI)) 982$(error CFG_PAGED_USER_TA and CFG_TA_BTI are currently incompatible) 983endif 984 985# Memory Tagging Extension (part of the ARMv8.5 Extensions) implements lock 986# and key access to memory. This is a hardware supported alternative to 987# CFG_CORE_SANITIZE_KADDRESS which covers both S-EL1 and S-EL0. 988CFG_MEMTAG ?= n 989 990$(eval $(call cfg-depends-all,CFG_MEMTAG,CFG_ARM64_core)) 991ifeq (y-y,$(CFG_CORE_SANITIZE_KADDRESS)-$(CFG_MEMTAG)) 992$(error CFG_CORE_SANITIZE_KADDRESS and CFG_MEMTAG are not compatible) 993endif 994ifeq (y-y,$(CFG_WITH_PAGER)-$(CFG_MEMTAG)) 995$(error CFG_WITH_PAGER and CFG_MEMTAG are not compatible) 996endif 997 998# Privileged Access Never (PAN, part of the ARMv8.1 Extensions) can be 999# used to restrict accesses to unprivileged memory from privileged mode. 1000# For RISC-V architecture, CSR {m|s}status.SUM bit is used to implement PAN. 1001CFG_PAN ?= n 1002 1003$(eval $(call cfg-depends-one,CFG_PAN,CFG_ARM64_core CFG_RV64_core CFG_RV32_core)) 1004 1005ifeq ($(filter y, $(CFG_CORE_SEL1_SPMC) $(CFG_CORE_SEL2_SPMC) \ 1006 $(CFG_CORE_EL3_SPMC)),y) 1007# FF-A case, handled via the FF-A ABI 1008CFG_CORE_ASYNC_NOTIF ?= y 1009$(call force,_CFG_CORE_ASYNC_NOTIF_DEFAULT_IMPL,n) 1010else 1011# CFG_CORE_ASYNC_NOTIF is defined by the platform to enable support 1012# for sending asynchronous notifications to normal world. 1013# Interrupt ID must be configurged by the platform too. Currently is only 1014# CFG_CORE_ASYNC_NOTIF_GIC_INTID defined. 1015CFG_CORE_ASYNC_NOTIF ?= n 1016$(call force,_CFG_CORE_ASYNC_NOTIF_DEFAULT_IMPL,$(CFG_CORE_ASYNC_NOTIF)) 1017endif 1018 1019$(eval $(call cfg-enable-all-depends,CFG_MEMPOOL_REPORT_LAST_OFFSET, \ 1020 CFG_WITH_STATS)) 1021 1022# Pointer Authentication (part of ARMv8.3 Extensions) provides instructions 1023# for signing and authenticating pointers against secret keys. These can 1024# be used to mitigate ROP (Return oriented programming) attacks. This is 1025# currently done by instructing the compiler to add paciasp/autiasp at the 1026# begging and end of functions to sign and verify ELR. 1027# 1028# The CFG_CORE_PAUTH enables these instructions for the core parts 1029# executing at EL1, with one secret key per thread and one secret key per 1030# physical CPU. 1031# 1032# The CFG_TA_PAUTH option enables these instructions for TA's at EL0. When 1033# this option is enabled, TEE core will initialize secret keys per TA. 1034CFG_CORE_PAUTH ?= n 1035CFG_TA_PAUTH ?= $(CFG_CORE_PAUTH) 1036 1037$(eval $(call cfg-depends-all,CFG_CORE_PAUTH,CFG_ARM64_core)) 1038$(eval $(call cfg-depends-all,CFG_TA_PAUTH,CFG_ARM64_core)) 1039 1040ifeq (y-y,$(CFG_NS_VIRTUALIZATION)-$(CFG_CORE_PAUTH)) 1041$(error CFG_NS_VIRTUALIZATION and CFG_CORE_PAUTH are currently incompatible) 1042endif 1043ifeq (y-y,$(CFG_NS_VIRTUALIZATION)-$(CFG_TA_PAUTH)) 1044$(error CFG_NS_VIRTUALIZATION and CFG_TA_PAUTH are currently incompatible) 1045endif 1046 1047ifeq (y-y,$(CFG_TA_GPROF_SUPPORT)-$(CFG_TA_PAUTH)) 1048$(error CFG_TA_GPROF_SUPPORT and CFG_TA_PAUTH are currently incompatible) 1049endif 1050 1051ifeq (y-y,$(CFG_FTRACE_SUPPORT)-$(CFG_TA_PAUTH)) 1052$(error CFG_FTRACE_SUPPORT and CFG_TA_PAUTH are currently incompatible) 1053endif 1054 1055# Enable support for generic watchdog registration 1056# This watchdog will then be usable by non-secure world through SMC calls. 1057CFG_WDT ?= n 1058 1059# Enable watchdog SMC handling compatible with arm-smc-wdt Linux driver 1060CFG_WDT_SM_HANDLER ?= n 1061 1062$(eval $(call cfg-enable-all-depends,CFG_WDT_SM_HANDLER,CFG_WDT)) 1063 1064# When CFG_WDT_SM_HANDLER=y, SMC function ID 0x82003D06 default implements 1065# arm-smc-wdt service. Platform can also override this ID with a platform 1066# specific SMC function ID to access arm-smc-wdt service thanks to 1067# optional config switch CFG_WDT_SM_HANDLER_ID. 1068CFG_WDT_SM_HANDLER_ID ?= 0x82003D06 1069 1070# Allow using the udelay/mdelay function for platforms without ARM generic timer 1071# extension. When set to 'n', the plat_get_freq() function must be defined by 1072# the platform code 1073CFG_CORE_HAS_GENERIC_TIMER ?= y 1074 1075# Enable RTC API 1076CFG_DRIVERS_RTC ?= n 1077 1078# Enable PTA for RTC access from non-secure world 1079CFG_RTC_PTA ?= n 1080 1081# Enable the FF-A SPMC tests in xtests 1082CFG_SPMC_TESTS ?= n 1083 1084# Allocate the translation tables needed to map the S-EL0 application 1085# loaded 1086CFG_CORE_PREALLOC_EL0_TBLS ?= n 1087ifeq (y-y,$(CFG_CORE_PREALLOC_EL0_TBLS)-$(CFG_WITH_PAGER)) 1088$(error "CFG_WITH_PAGER can't support CFG_CORE_PREALLOC_EL0_TBLS") 1089endif 1090 1091# User TA runtime context dump. 1092# When this option is enabled, OP-TEE provides a debug method for 1093# developer to dump user TA's runtime context, including TA's heap stats. 1094# Developer can open a stats PTA session and then invoke command 1095# STATS_CMD_TA_STATS to get the context of loaded TAs. 1096CFG_TA_STATS ?= n 1097 1098# Enables best effort mitigations against fault injected when the hardware 1099# is tampered with. Details in lib/libutils/ext/include/fault_mitigation.h 1100CFG_FAULT_MITIGATION ?= y 1101 1102# Enables TEE Internal Core API v1.1 compatibility for in-tree TAs. Note 1103# that this doesn't affect libutee itself, it's only the TAs compiled with 1104# this set that are affected. Each out-of-tree must set this if to enable 1105# compatibility with version v1.1 as the value of this variable is not 1106# preserved in the TA dev-kit. 1107CFG_TA_OPTEE_CORE_API_COMPAT_1_1 ?= n 1108 1109# Change supported HMAC key size range, from 64 to 1024. 1110# This is needed to pass AOSP Keymaster VTS tests: 1111# Link to tests : https://android.googlesource.com/platform/hardware/interfaces/+/master/keymaster/3.0/vts/functional/keymaster_hidl_hal_test.cpp 1112# Module: VtsHalKeymasterV3_0TargetTest 1113# Testcases: - PerInstance/SigningOperationsTest# 1114# - PerInstance/NewKeyGenerationTest# 1115# - PerInstance/ImportKeyTest# 1116# - PerInstance/EncryptionOperationsTest# 1117# - PerInstance/AttestationTest# 1118# Note that this violates GP requirements of HMAC size range. 1119CFG_HMAC_64_1024_RANGE ?= n 1120 1121# Enable a hardware pbkdf2 function 1122# By default use standard pbkdf2 implementation 1123CFG_CRYPTO_HW_PBKDF2 ?= n 1124$(eval $(call cfg-depends-all,CFG_CRYPTO_HW_PBKDF2,CFG_CRYPTO_PBKDF2)) 1125 1126# CFG_HALT_CORES_ON_PANIC, when enabled, makes any call to panic() halt the 1127# other cores. The feature currently relies on GIC device to trap the other 1128# cores using an SGI interrupt specified by CFG_HALT_CORES_ON_PANIC_SGI. 1129CFG_HALT_CORES_ON_PANIC ?= n 1130CFG_HALT_CORES_ON_PANIC_SGI ?= 15 1131$(eval $(call cfg-depends-all,CFG_HALT_CORES_ON_PANIC,CFG_GIC)) 1132