xref: /optee_os/mk/config.mk (revision 0d77037f5943c86560dd7c8f473fbc6a55d60a34)
1# Default configuration values for OP-TEE core (all platforms).
2#
3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk.
4# Some subsystem-specific defaults are not here but rather in */sub.mk.
5#
6# Configuration values may be assigned from multiple sources.
7# From higher to lower priority:
8#
9#   1. Make arguments ('make CFG_FOO=bar...')
10#   2. The file specified by $(CFG_OPTEE_CONFIG) (if defined)
11#   3. The environment ('CFG_FOO=bar make...')
12#   4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk
13#   5. This file
14#   6. Subsystem-specific makefiles (*/sub.mk)
15#
16# Actual values used during the build are output to $(out-dir)/conf.mk
17# (CFG_* variables only).
18
19# Cross-compiler prefix and suffix
20CROSS_COMPILE ?= arm-linux-gnueabihf-
21CROSS_COMPILE32 ?= $(CROSS_COMPILE)
22CROSS_COMPILE64 ?= aarch64-linux-gnu-
23COMPILER ?= gcc
24
25# For convenience
26ifdef CFLAGS
27CFLAGS32 ?= $(CFLAGS)
28CFLAGS64 ?= $(CFLAGS)
29endif
30
31# Compiler warning level.
32# Supported values: undefined, 1, 2 and 3. 3 gives more warnings.
33WARNS ?= 3
34
35# Define DEBUG=1 to compile without optimization (forces -O0)
36# DEBUG=1
37
38# If y, enable debug features of the TEE core (assertions and lock checks
39# are enabled, panic and assert messages are more verbose, data and prefetch
40# aborts show a stack dump). When disabled, the NDEBUG directive is defined
41# so assertions are disabled.
42CFG_TEE_CORE_DEBUG ?= y
43
44# Log levels for the TEE core. Defines which core messages are displayed
45# on the secure console. Disabling core log (level set to 0) also disables
46# logs from the TAs.
47# 0: none
48# 1: error
49# 2: error + warning
50# 3: error + warning + debug
51# 4: error + warning + debug + flow
52CFG_TEE_CORE_LOG_LEVEL ?= 1
53
54# TA log level
55# If user-mode library libutils.a is built with CFG_TEE_TA_LOG_LEVEL=0,
56# TA tracing is disabled regardless of the value of CFG_TEE_TA_LOG_LEVEL
57# when the TA is built.
58CFG_TEE_TA_LOG_LEVEL ?= 1
59
60# TA enablement
61# When defined to "y", TA traces are output according to
62# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all
63CFG_TEE_CORE_TA_TRACE ?= y
64
65# If y, enable the memory leak detection feature in the bget memory allocator.
66# When this feature is enabled, calling mdbg_check(1) will print a list of all
67# the currently allocated buffers and the location of the allocation (file and
68# line number).
69# Note: make sure the log level is high enough for the messages to show up on
70# the secure console! For instance:
71# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with:
72#   $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3
73# - To debug TEE core allocations: build OP-TEE with:
74#   $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3
75CFG_TEE_CORE_MALLOC_DEBUG ?= n
76CFG_TEE_TA_MALLOC_DEBUG ?= n
77# Prints an error message and dumps the stack on failed memory allocations
78# using malloc() and friends.
79CFG_CORE_DUMP_OOM ?= $(CFG_TEE_CORE_MALLOC_DEBUG)
80
81# Mask to select which messages are prefixed with long debugging information
82# (severity, core ID, thread ID, component name, function name, line number)
83# based on the message level. If BIT(level) is set, the long prefix is shown.
84# Otherwise a short prefix is used (severity and component name only).
85# Levels: 0=none 1=error 2=info 3=debug 4=flow
86CFG_MSG_LONG_PREFIX_MASK ?= 0x1a
87
88# PRNG configuration
89# If CFG_WITH_SOFTWARE_PRNG is enabled, crypto provider provided
90# software PRNG implementation is used.
91# Otherwise, you need to implement hw_get_random_byte() for your platform
92CFG_WITH_SOFTWARE_PRNG ?= y
93
94# Number of threads
95CFG_NUM_THREADS ?= 2
96
97# API implementation version
98CFG_TEE_API_VERSION ?= GPD-1.1-dev
99
100# Implementation description (implementation-dependent)
101CFG_TEE_IMPL_DESCR ?= OPTEE
102
103# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal
104# World?
105CFG_OS_REV_REPORTS_GIT_SHA1 ?= y
106
107# Trusted OS implementation version
108TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || echo Unknown)
109ifeq ($(CFG_OS_REV_REPORTS_GIT_SHA1),y)
110TEE_IMPL_GIT_SHA1 := 0x$(shell git rev-parse --short=8 HEAD 2>/dev/null || echo 0)
111else
112TEE_IMPL_GIT_SHA1 := 0x0
113endif
114# The following values are not extracted from the "git describe" output because
115# we might be outside of a Git environment, or the tree may have been cloned
116# with limited depth not including any tag, so there is really no guarantee
117# that TEE_IMPL_VERSION contains the major and minor revision numbers.
118CFG_OPTEE_REVISION_MAJOR ?= 3
119CFG_OPTEE_REVISION_MINOR ?= 7
120
121# Trusted OS implementation manufacturer name
122CFG_TEE_MANUFACTURER ?= LINARO
123
124# Trusted firmware version
125CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF
126
127# Trusted OS implementation manufacturer name
128CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF
129
130# Rich Execution Environment (REE) file system support: normal world OS
131# provides the actual storage.
132# This is the default FS when enabled (i.e., the one used when
133# TEE_STORAGE_PRIVATE is passed to the trusted storage API)
134CFG_REE_FS ?= y
135
136# RPMB file system support
137CFG_RPMB_FS ?= n
138
139# Device identifier used when CFG_RPMB_FS = y.
140# The exact meaning of this value is platform-dependent. On Linux, the
141# tee-supplicant process will open /dev/mmcblk<id>rpmb
142CFG_RPMB_FS_DEV_ID ?= 0
143
144# Enables RPMB key programming by the TEE, in case the RPMB partition has not
145# been configured yet.
146# !!! Security warning !!!
147# Do *NOT* enable this in product builds, as doing so would allow the TEE to
148# leak the RPMB key.
149# This option is useful in the following situations:
150# - Testing
151# - RPMB key provisioning in a controlled environment (factory setup)
152CFG_RPMB_WRITE_KEY ?= n
153
154# Embed public part of this key in OP-TEE OS
155TA_SIGN_KEY ?= keys/default_ta.pem
156
157# Include lib/libutils/isoc in the build? Most platforms need this, but some
158# may not because they obtain the isoc functions from elsewhere
159CFG_LIBUTILS_WITH_ISOC ?= y
160
161# Enables floating point support for user TAs
162# ARM32: EABI defines both a soft-float ABI and a hard-float ABI,
163#	 hard-float is basically a super set of soft-float. Hard-float
164#	 requires all the support routines provided for soft-float, but the
165#	 compiler may choose to optimize to not use some of them and use
166#	 the floating-point registers instead.
167# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or
168#	 nothing with ` -mgeneral-regs-only`)
169# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types
170CFG_TA_FLOAT_SUPPORT ?= y
171
172# Stack unwinding: print a stack dump to the console on core or TA abort, or
173# when a TA panics.
174# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be
175# unwound (not paged TAs, however).
176# Note that 32-bit ARM code needs unwind tables for this to work, so enabling
177# this option will increase the size of the 32-bit TEE binary by a few KB.
178# Similarly, TAs have to be compiled with -funwind-tables (default when the
179# option is set) otherwise they can't be unwound.
180# Warning: since the unwind sequence for user-mode (TA) code is implemented in
181# the privileged layer of OP-TEE, enabling this feature will weaken the
182# user/kernel isolation. Therefore it should be disabled in release builds.
183ifeq ($(CFG_TEE_CORE_DEBUG),y)
184CFG_UNWIND ?= y
185endif
186
187# Enable support for dynamically loaded user TAs
188CFG_WITH_USER_TA ?= y
189
190# Choosing the architecture(s) of user-mode libraries (used by TAs)
191#
192# Platforms may define a list of supported architectures for user-mode code
193# by setting $(supported-ta-targets). Valid values are "ta_arm32", "ta_arm64",
194# "ta_arm32 ta_arm64" and "ta_arm64 ta_arm32".
195# $(supported-ta-targets) defaults to "ta_arm32" when the TEE core is 32-bits,
196# and "ta_arm32 ta_arm64" when it is 64-bits (that is, when CFG_ARM64_core=y).
197# The first entry in $(supported-ta-targets) has a special role, see
198# CFG_USER_TA_TARGET_<ta-name> below.
199#
200# CFG_USER_TA_TARGETS may be defined to restrict $(supported-ta-targets) or
201# change the order of the values.
202#
203# The list of TA architectures is ultimately stored in $(ta-targets).
204
205# CFG_USER_TA_TARGET_<ta-name> (for example, CFG_USER_TA_TARGET_avb), if
206# defined, selects the unique TA architecture mode for building the in-tree TA
207# <ta-name>. Can be either ta_arm32 or ta_arm64.
208# By default, in-tree TAs are built using the first architecture specified in
209# $(ta-targets).
210
211# Address Space Layout Randomization for user-mode Trusted Applications
212#
213# When this flag is enabled, the ELF loader will introduce a random offset
214# when mapping the application in user space. ASLR makes the exploitation of
215# memory corruption vulnerabilities more difficult.
216CFG_TA_ASLR ?= n
217
218# How much ASLR may shift the base address (in pages). The base address is
219# randomly shifted by an integer number of pages comprised between these two
220# values. Bigger ranges are more secure because they make the addresses harder
221# to guess at the expense of using more memory for the page tables.
222CFG_TA_ASLR_MIN_OFFSET_PAGES ?= 0
223CFG_TA_ASLR_MAX_OFFSET_PAGES ?= 128
224
225# Address Space Layout Randomization for TEE Core
226#
227# When this flag is enabled, the early init code will introduce a random
228# offset when mapping TEE Core. ASLR makes the exploitation of memory
229# corruption vulnerabilities more difficult.
230CFG_CORE_ASLR ?= n
231
232# Load user TAs from the REE filesystem via tee-supplicant
233CFG_REE_FS_TA ?= y
234
235# Pre-authentication of TA binaries loaded from the REE filesystem
236#
237# - If CFG_REE_FS_TA_BUFFERED=y: load TA binary into a temporary buffer in the
238#   "Secure DDR" pool, check the signature, then process the file only if it is
239#   valid.
240# - If disabled: hash the binaries as they are being processed and verify the
241#   signature as a last step.
242CFG_REE_FS_TA_BUFFERED ?= n
243$(eval $(call cfg-depends-all,CFG_REE_FS_TA_BUFFERED,CFG_REE_FS_TA))
244
245# Support for loading user TAs from a special section in the TEE binary.
246# Such TAs are available even before tee-supplicant is available (hence their
247# name), but note that many services exported to TAs may need tee-supplicant,
248# so early use is limited to a subset of the TEE Internal Core API (crypto...)
249# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF
250# file(s). For example:
251#   $ make ... \
252#     EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \
253#                     path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf"
254# Typical build steps:
255#   $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries,
256#                                    # headers, makefiles), ready to build TAs.
257#                                    # CFG_EARLY_TA=y is optional, it prevents
258#                                    # later library recompilations.
259#   <build some TAs>
260#   $ make EARLY_TA_PATHS=<paths>    # Build OP-TEE and embbed the TA(s)
261#
262# Another option is CFG_IN_TREE_EARLY_TAS which is used to point at
263# in-tree TAs. CFG_IN_TREE_EARLY_TAS is formatted as:
264# <name-of-ta>/<uuid>
265# for instance avb/023f8f1a-292a-432b-8fc4-de8471358067
266ifneq ($(EARLY_TA_PATHS)$(CFG_IN_TREE_EARLY_TAS),)
267$(call force,CFG_EARLY_TA,y)
268else
269CFG_EARLY_TA ?= n
270endif
271ifeq ($(CFG_EARLY_TA),y)
272$(call force,CFG_ZLIB,y)
273endif
274
275# Enable paging, requires SRAM, can't be enabled by default
276CFG_WITH_PAGER ?= n
277ifeq ($(CFG_WITH_PAGER)-$(CFG_CORE_ASLR),y-y)
278$(error CFG_WITH_PAGER and CFG_CORE_ASLR are currently incompatible)
279endif
280
281# Runtime lock dependency checker: ensures that a proper locking hierarchy is
282# used in the TEE core when acquiring and releasing mutexes. Any violation will
283# cause a panic as soon as the invalid locking condition is detected. If
284# CFG_UNWIND is enabled, the algorithm records the call stacks when locks are
285# taken, and prints them when a potential deadlock is found.
286# Expect a significant performance impact when enabling this.
287CFG_LOCKDEP ?= n
288
289# BestFit algorithm in bget reduces the fragmentation of the heap when running
290# with the pager enabled or lockdep
291CFG_CORE_BGET_BESTFIT ?= $(call cfg-one-enabled, CFG_WITH_PAGER CFG_LOCKDEP)
292
293# Use the pager for user TAs
294CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER)
295
296# Enable support for detected undefined behavior in C
297# Uses a lot of memory, can't be enabled by default
298CFG_CORE_SANITIZE_UNDEFINED ?= n
299
300# Enable Kernel Address sanitizer, has a huge performance impact, uses a
301# lot of memory and need platform specific adaptations, can't be enabled by
302# default
303CFG_CORE_SANITIZE_KADDRESS ?= n
304
305# Device Tree support
306#
307# When CFG_DT is enabled core embeds the FDT library (libfdt) allowing
308# device tree blob (DTB) parsing from the core.
309#
310# When CFG_DT is enabled, the TEE _start function expects to find
311# the address of a DTB in register X2/R2 provided by the early boot stage
312# or value 0 if boot stage provides no DTB.
313#
314# When CFG_EMBED_DTB is enabled, CFG_EMBED_DTB_SOURCE_FILE shall define the
315# relative path of a DTS file located in core/arch/$(ARCH)/dts.
316# The DTS file is compiled into a DTB file which content is embedded in a
317# read-only section of the core.
318ifneq ($(strip $(CFG_EMBED_DTB_SOURCE_FILE)),)
319CFG_EMBED_DTB ?= y
320endif
321ifeq ($(CFG_EMBED_DTB),y)
322$(call force,CFG_DT,y)
323endif
324CFG_EMBED_DTB ?= n
325CFG_DT ?= n
326
327# Maximum size of the Device Tree Blob, has to be large enough to allow
328# editing of the supplied DTB.
329CFG_DTB_MAX_SIZE ?= 0x10000
330
331# Device Tree Overlay support.
332# This define enables support for an OP-TEE provided DTB overlay.
333# One of two modes is supported in this case:
334# 1. Append OP-TEE nodes to an existing DTB overlay located at CFG_DT_ADDR or
335#    passed in arg2
336# 2. Generate a new DTB overlay at CFG_DT_ADDR
337# A subsequent boot stage must then merge the generated overlay DTB into a main
338# DTB using the standard fdt_overlay_apply() method.
339CFG_EXTERNAL_DTB_OVERLAY ?= n
340
341# Enable core self tests and related pseudo TAs
342CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= y
343
344# This option enables OP-TEE to respond to SMP boot request: the Rich OS
345# issues this to request OP-TEE to release secondaries cores out of reset,
346# with specific core number and non-secure entry address.
347CFG_BOOT_SECONDARY_REQUEST ?= n
348
349# Default heap size for Core, 64 kB
350CFG_CORE_HEAP_SIZE ?= 65536
351
352# Default size of nexus heap. 16 kB. Used only if CFG_VIRTUALIZATION
353# is enabled
354CFG_CORE_NEX_HEAP_SIZE ?= 16384
355
356# TA profiling.
357# When this option is enabled, OP-TEE can execute Trusted Applications
358# instrumented with GCC's -pg flag and will output profiling information
359# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in
360# tee-supplicant)
361# Note: this does not work well with shared libraries at the moment for a
362# couple of reasons:
363# 1. The profiling code assumes a unique executable section in the TA VA space.
364# 2. The code used to detect at run time if the TA is intrumented assumes that
365# the TA is linked statically.
366CFG_TA_GPROF_SUPPORT ?= n
367
368# TA function tracing.
369# When this option is enabled, OP-TEE can execute Trusted Applications
370# instrumented with GCC's -pg flag and will output function tracing
371# information in ftrace.out format to /tmp/ftrace-<ta_uuid>.out (path is
372# defined in tee-supplicant)
373CFG_FTRACE_SUPPORT ?= n
374
375# Function tracing: unit to be used when displaying durations
376#  0: always display durations in microseconds
377# >0: if duration is greater or equal to the specified value (in microseconds),
378#     display it in milliseconds
379CFG_FTRACE_US_MS ?= 10000
380
381# Core syscall function tracing.
382# When this option is enabled, OP-TEE core is instrumented with GCC's
383# -pg flag and will output syscall function graph in user TA ftrace
384# buffer
385CFG_SYSCALL_FTRACE ?= n
386$(call cfg-depends-all,CFG_SYSCALL_FTRACE,CFG_FTRACE_SUPPORT)
387
388# Enable to compile user TA libraries with profiling (-pg).
389# Depends on CFG_TA_GPROF_SUPPORT or CFG_FTRACE_SUPPORT.
390CFG_ULIBS_MCOUNT ?= n
391# Profiling/tracing of syscall wrapper (utee_*)
392CFG_SYSCALL_WRAPPERS_MCOUNT ?= $(CFG_ULIBS_MCOUNT)
393
394ifeq (y,$(filter y,$(CFG_ULIBS_MCOUNT) $(CFG_SYSCALL_WRAPPERS_MCOUNT)))
395ifeq (,$(filter y,$(CFG_TA_GPROF_SUPPORT) $(CFG_FTRACE_SUPPORT)))
396$(error Cannot instrument user libraries if user mode profiling is disabled)
397endif
398endif
399
400# Build libutee, libutils, libmpa/libmbedtls as shared libraries.
401# - Static libraries are still generated when this is enabled, but TAs will use
402# the shared libraries unless explicitly linked with the -static flag.
403# - Shared libraries are made of two files: for example, libutee is
404#   libutee.so and 527f1a47-b92c-4a74-95bd-72f19f4a6f74.ta. The '.so' file
405#   is a totally standard shared object, and should be used to link against.
406#   The '.ta' file is a signed version of the '.so' and should be installed
407#   in the same way as TAs so that they can be found at runtime.
408CFG_ULIBS_SHARED ?= n
409
410ifeq (yy,$(CFG_TA_GPROF_SUPPORT)$(CFG_ULIBS_SHARED))
411$(error CFG_TA_GPROF_SUPPORT and CFG_ULIBS_SHARED are currently incompatible)
412endif
413
414# CFG_GP_SOCKETS
415# Enable Global Platform Sockets support
416CFG_GP_SOCKETS ?= y
417
418# Enable Secure Data Path support in OP-TEE core (TA may be invoked with
419# invocation parameters referring to specific secure memories).
420CFG_SECURE_DATA_PATH ?= n
421
422# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y
423# TA binaries are stored encrypted in the REE FS and are protected by
424# metadata in secure storage.
425CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA)
426$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA))
427
428# Enable the pseudo TA that managages TA storage in secure storage
429CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA)
430$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA))
431
432# Enable the pseudo TA for misc. auxilary services, extending existing
433# GlobalPlatform Core API (for example, re-seeding RNG entropy pool etc.)
434CFG_SYSTEM_PTA ?= y
435
436# Enable the pseudo TA for enumeration of TEE based devices for the normal
437# world OS.
438CFG_DEVICE_ENUM_PTA ?= y
439
440# Define the number of cores per cluster used in calculating core position.
441# The cluster number is shifted by this value and added to the core ID,
442# so its value represents log2(cores/cluster).
443# Default is 2**(2) = 4 cores per cluster.
444CFG_CORE_CLUSTER_SHIFT ?= 2
445
446# Define the number of threads per core used in calculating processing
447# element's position. The core number is shifted by this value and added to
448# the thread ID, so its value represents log2(threads/core).
449# Default is 2**(0) = 1 threads per core.
450CFG_CORE_THREAD_SHIFT ?= 0
451
452# Enable support for dynamic shared memory (shared memory anywhere in
453# non-secure memory).
454CFG_CORE_DYN_SHM ?= y
455
456# Enable support for reserved shared memory (shared memory in a carved out
457# memory area).
458CFG_CORE_RESERVED_SHM ?= y
459
460# Enables support for larger physical addresses, that is, it will define
461# paddr_t as a 64-bit type.
462CFG_CORE_LARGE_PHYS_ADDR ?= n
463
464# Define the maximum size, in bits, for big numbers in the Internal Core API
465# Arithmetical functions. This does *not* influence the key size that may be
466# manipulated through the Cryptographic API.
467# Set this to a lower value to reduce the TA memory footprint.
468CFG_TA_BIGNUM_MAX_BITS ?= 2048
469
470# Define the maximum size, in bits, for big numbers in the TEE core (privileged
471# layer).
472# This value is an upper limit for the key size in any cryptographic algorithm
473# implemented by the TEE core.
474# Set this to a lower value to reduce the memory footprint.
475CFG_CORE_BIGNUM_MAX_BITS ?= 4096
476
477# Compiles mbedTLS for TA usage
478CFG_TA_MBEDTLS ?= y
479
480# Compile the TA library mbedTLS with self test functions, the functions
481# need to be called to test anything
482CFG_TA_MBEDTLS_SELF_TEST ?= y
483
484# By default use tomcrypt as the main crypto lib providing an implementation
485# for the API in <crypto/crypto.h>
486# CFG_CRYPTOLIB_NAME is used as libname and
487# CFG_CRYPTOLIB_DIR is used as libdir when compiling the library
488#
489# It's also possible to configure to use mbedtls instead of tomcrypt.
490# Then the variables should be assigned as "CFG_CRYPTOLIB_NAME=mbedtls" and
491# "CFG_CRYPTOLIB_DIR=lib/libmbedtls" respectively.
492CFG_CRYPTOLIB_NAME ?= tomcrypt
493CFG_CRYPTOLIB_DIR ?= core/lib/libtomcrypt
494
495# Enable TEE_ALG_RSASSA_PKCS1_V1_5 algorithm for signing with PKCS#1 v1.5 EMSA
496# without ASN.1 around the hash.
497ifeq ($(CFG_CRYPTOLIB_NAME),tomcrypt)
498CFG_CRYPTO_RSASSA_NA1 ?= y
499CFG_CORE_MBEDTLS_MPI ?= y
500endif
501
502# Enable virtualization support. OP-TEE will not work without compatible
503# hypervisor if this option is enabled.
504CFG_VIRTUALIZATION ?= n
505
506ifeq ($(CFG_VIRTUALIZATION),y)
507$(call force,CFG_CORE_RODATA_NOEXEC,y)
508$(call force,CFG_CORE_RWDATA_NOEXEC,y)
509
510# Default number of virtual guests
511CFG_VIRT_GUEST_COUNT ?= 2
512endif
513
514# Enables backwards compatible derivation of RPMB and SSK keys
515CFG_CORE_HUK_SUBKEY_COMPAT ?= y
516
517# Compress and encode conf.mk into the TEE core, and show the encoded string on
518# boot (with severity TRACE_INFO).
519CFG_SHOW_CONF_ON_BOOT ?= n
520