1# Default configuration values for OP-TEE core (all platforms). 2# 3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk. 4# Some subsystem-specific defaults are not here but rather in */sub.mk. 5# 6# Configuration values may be assigned from multiple sources. 7# From higher to lower priority: 8# 9# 1. Make arguments ('make CFG_FOO=bar...') 10# 2. The file specified by $(CFG_OPTEE_CONFIG) (if defined) 11# 3. The environment ('CFG_FOO=bar make...') 12# 4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk 13# 5. This file 14# 6. Subsystem-specific makefiles (*/sub.mk) 15# 16# Actual values used during the build are output to $(out-dir)/conf.mk 17# (CFG_* variables only). 18 19# Cross-compiler prefix and suffix 20CROSS_COMPILE ?= arm-linux-gnueabihf- 21CROSS_COMPILE32 ?= $(CROSS_COMPILE) 22CROSS_COMPILE64 ?= aarch64-linux-gnu- 23COMPILER ?= gcc 24 25# For convenience 26ifdef CFLAGS 27CFLAGS32 ?= $(CFLAGS) 28CFLAGS64 ?= $(CFLAGS) 29endif 30 31# Compiler warning level. 32# Supported values: undefined, 1, 2 and 3. 3 gives more warnings. 33WARNS ?= 3 34 35# Define DEBUG=1 to compile without optimization (forces -O0) 36# DEBUG=1 37 38# If y, enable debug features of the TEE core (assertions and lock checks 39# are enabled, panic and assert messages are more verbose, data and prefetch 40# aborts show a stack dump). When disabled, the NDEBUG directive is defined 41# so assertions are disabled. 42CFG_TEE_CORE_DEBUG ?= y 43 44# Log levels for the TEE core. Defines which core messages are displayed 45# on the secure console. Disabling core log (level set to 0) also disables 46# logs from the TAs. 47# 0: none 48# 1: error 49# 2: error + warning 50# 3: error + warning + debug 51# 4: error + warning + debug + flow 52CFG_TEE_CORE_LOG_LEVEL ?= 1 53 54# TA log level 55# If user-mode library libutils.a is built with CFG_TEE_TA_LOG_LEVEL=0, 56# TA tracing is disabled regardless of the value of CFG_TEE_TA_LOG_LEVEL 57# when the TA is built. 58CFG_TEE_TA_LOG_LEVEL ?= 1 59 60# TA enablement 61# When defined to "y", TA traces are output according to 62# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all 63CFG_TEE_CORE_TA_TRACE ?= y 64 65# If y, enable the memory leak detection feature in the bget memory allocator. 66# When this feature is enabled, calling mdbg_check(1) will print a list of all 67# the currently allocated buffers and the location of the allocation (file and 68# line number). 69# Note: make sure the log level is high enough for the messages to show up on 70# the secure console! For instance: 71# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with: 72# $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3 73# - To debug TEE core allocations: build OP-TEE with: 74# $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3 75CFG_TEE_CORE_MALLOC_DEBUG ?= n 76CFG_TEE_TA_MALLOC_DEBUG ?= n 77 78# Mask to select which messages are prefixed with long debugging information 79# (severity, core ID, thread ID, component name, function name, line number) 80# based on the message level. If BIT(level) is set, the long prefix is shown. 81# Otherwise a short prefix is used (severity and component name only). 82# Levels: 0=none 1=error 2=info 3=debug 4=flow 83CFG_MSG_LONG_PREFIX_MASK ?= 0x1a 84 85# PRNG configuration 86# If CFG_WITH_SOFTWARE_PRNG is enabled, crypto provider provided 87# software PRNG implementation is used. 88# Otherwise, you need to implement hw_get_random_byte() for your platform 89CFG_WITH_SOFTWARE_PRNG ?= y 90 91# Number of threads 92CFG_NUM_THREADS ?= 2 93 94# API implementation version 95CFG_TEE_API_VERSION ?= GPD-1.1-dev 96 97# Implementation description (implementation-dependent) 98CFG_TEE_IMPL_DESCR ?= OPTEE 99 100# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal 101# World? 102CFG_OS_REV_REPORTS_GIT_SHA1 ?= y 103 104# Trusted OS implementation version 105TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || echo Unknown) 106ifeq ($(CFG_OS_REV_REPORTS_GIT_SHA1),y) 107TEE_IMPL_GIT_SHA1 := 0x$(shell git rev-parse --short=8 HEAD 2>/dev/null || echo 0) 108else 109TEE_IMPL_GIT_SHA1 := 0x0 110endif 111# The following values are not extracted from the "git describe" output because 112# we might be outside of a Git environment, or the tree may have been cloned 113# with limited depth not including any tag, so there is really no guarantee 114# that TEE_IMPL_VERSION contains the major and minor revision numbers. 115CFG_OPTEE_REVISION_MAJOR ?= 3 116CFG_OPTEE_REVISION_MINOR ?= 3 117 118# Trusted OS implementation manufacturer name 119CFG_TEE_MANUFACTURER ?= LINARO 120 121# Trusted firmware version 122CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF 123 124# Trusted OS implementation manufacturer name 125CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF 126 127# Rich Execution Environment (REE) file system support: normal world OS 128# provides the actual storage. 129# This is the default FS when enabled (i.e., the one used when 130# TEE_STORAGE_PRIVATE is passed to the trusted storage API) 131CFG_REE_FS ?= y 132 133# RPMB file system support 134CFG_RPMB_FS ?= n 135 136# Device identifier used when CFG_RPMB_FS = y. 137# The exact meaning of this value is platform-dependent. On Linux, the 138# tee-supplicant process will open /dev/mmcblk<id>rpmb 139CFG_RPMB_FS_DEV_ID ?= 0 140 141# Enables RPMB key programming by the TEE, in case the RPMB partition has not 142# been configured yet. 143# !!! Security warning !!! 144# Do *NOT* enable this in product builds, as doing so would allow the TEE to 145# leak the RPMB key. 146# This option is useful in the following situations: 147# - Testing 148# - RPMB key provisioning in a controlled environment (factory setup) 149CFG_RPMB_WRITE_KEY ?= n 150 151# Embed public part of this key in OP-TEE OS 152TA_SIGN_KEY ?= keys/default_ta.pem 153 154# Include lib/libutils/isoc in the build? Most platforms need this, but some 155# may not because they obtain the isoc functions from elsewhere 156CFG_LIBUTILS_WITH_ISOC ?= y 157 158# Enables floating point support for user TAs 159# ARM32: EABI defines both a soft-float ABI and a hard-float ABI, 160# hard-float is basically a super set of soft-float. Hard-float 161# requires all the support routines provided for soft-float, but the 162# compiler may choose to optimize to not use some of them and use 163# the floating-point registers instead. 164# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or 165# nothing with ` -mgeneral-regs-only`) 166# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types 167CFG_TA_FLOAT_SUPPORT ?= y 168 169# Stack unwinding: print a stack dump to the console on core or TA abort, or 170# when a TA panics. 171# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be 172# unwound (not paged TAs, however). 173# Note that 32-bit ARM code needs unwind tables for this to work, so enabling 174# this option will increase the size of the 32-bit TEE binary by a few KB. 175# Similarly, TAs have to be compiled with -funwind-tables (default when the 176# option is set) otherwise they can't be unwound. 177# Warning: since the unwind sequence for user-mode (TA) code is implemented in 178# the privileged layer of OP-TEE, enabling this feature will weaken the 179# user/kernel isolation. Therefore it should be disabled in release builds. 180ifeq ($(CFG_TEE_CORE_DEBUG),y) 181CFG_UNWIND ?= y 182endif 183 184# Enable support for dynamically loaded user TAs 185CFG_WITH_USER_TA ?= y 186 187# Load user TAs from the REE filesystem via tee-supplicant 188# There is currently no other alternative, but you may want to disable this in 189# case you implement your own TA store 190CFG_REE_FS_TA ?= y 191 192# Support for loading user TAs from a special section in the TEE binary. 193# Such TAs are available even before tee-supplicant is available (hence their 194# name), but note that many services exported to TAs may need tee-supplicant, 195# so early use is limited to a subset of the TEE Internal Core API (crypto...) 196# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF 197# file(s). For example: 198# $ make ... \ 199# EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \ 200# path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf" 201# Typical build steps: 202# $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries, 203# # headers, makefiles), ready to build TAs. 204# # CFG_EARLY_TA=y is optional, it prevents 205# # later library recompilations. 206# <build some TAs> 207# $ make EARLY_TA_PATHS=<paths> # Build OP-TEE and embbed the TA(s) 208# 209# Another option is CFG_IN_TREE_EARLY_TAS which is used to point at 210# in-tree TAs. CFG_IN_TREE_EARLY_TAS is formatted as: 211# <name-of-ta>/<uuid> 212# for instance avb/023f8f1a-292a-432b-8fc4-de8471358067 213ifneq ($(EARLY_TA_PATHS)$(CFG_IN_TREE_EARLY_TAS),) 214$(call force,CFG_EARLY_TA,y) 215else 216CFG_EARLY_TA ?= n 217endif 218ifeq ($(CFG_EARLY_TA),y) 219$(call force,CFG_ZLIB,y) 220endif 221 222# Support for dynamically linked user TAs 223CFG_TA_DYNLINK ?= y 224 225# Enable paging, requires SRAM, can't be enabled by default 226CFG_WITH_PAGER ?= n 227 228# Runtime lock dependency checker: ensures that a proper locking hierarchy is 229# used in the TEE core when acquiring and releasing mutexes. Any violation will 230# cause a panic as soon as the invalid locking condition is detected. If 231# CFG_UNWIND is enabled, the algorithm records the call stacks when locks are 232# taken, and prints them when a potential deadlock is found. 233# Expect a significant performance impact when enabling this. 234CFG_LOCKDEP ?= n 235 236# BestFit algorithm in bget reduces the fragmentation of the heap when running 237# with the pager enabled or lockdep 238CFG_CORE_BGET_BESTFIT ?= $(call cfg-one-enabled, CFG_WITH_PAGER CFG_LOCKDEP) 239 240# Use the pager for user TAs 241CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER) 242 243# Enable support for detected undefined behavior in C 244# Uses a lot of memory, can't be enabled by default 245CFG_CORE_SANITIZE_UNDEFINED ?= n 246 247# Enable Kernel Address sanitizer, has a huge performance impact, uses a 248# lot of memory and need platform specific adaptations, can't be enabled by 249# default 250CFG_CORE_SANITIZE_KADDRESS ?= n 251 252# Device Tree support 253# 254# When CFG_DT is enabled core embeds the FDT library (libfdt) allowing 255# device tree blob (DTB) parsing from the core. 256# 257# When CFG_DT is enabled, the TEE _start function expects to find 258# the address of a DTB in register X2/R2 provided by the early boot stage 259# or value 0 if boot stage provides no DTB. 260# 261# When CFG_EMBED_DTB is enabled, CFG_EMBED_DTB_SOURCE_FILE shall define the 262# relative path of a DTS file located in core/arch/$(ARCH)/dts. 263# The DTS file is compiled into a DTB file which content is embedded in a 264# read-only section of the core. 265ifneq ($(strip $(CFG_EMBED_DTB_SOURCE_FILE)),) 266CFG_EMBED_DTB ?= y 267endif 268ifeq ($(CFG_EMBED_DTB),y) 269$(call force,CFG_DT,y) 270endif 271CFG_EMBED_DTB ?= n 272CFG_DT ?= n 273 274# Maximum size of the Device Tree Blob, has to be large enough to allow 275# editing of the supplied DTB. 276CFG_DTB_MAX_SIZE ?= 0x10000 277 278# Device Tree Overlay support. 279# This define enables support for an OP-TEE provided DTB overlay. 280# One of two modes is supported in this case: 281# 1. Append OP-TEE nodes to an existing DTB overlay located at CFG_DT_ADDR or 282# passed in arg2 283# 2. Generate a new DTB overlay at CFG_DT_ADDR 284# A subsequent boot stage must then merge the generated overlay DTB into a main 285# DTB using the standard fdt_overlay_apply() method. 286CFG_EXTERNAL_DTB_OVERLAY ?= n 287 288# Enable core self tests and related pseudo TAs 289CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= y 290 291# This option enables OP-TEE to respond to SMP boot request: the Rich OS 292# issues this to request OP-TEE to release secondaries cores out of reset, 293# with specific core number and non-secure entry address. 294CFG_BOOT_SECONDARY_REQUEST ?= n 295 296# Default heap size for Core, 64 kB 297CFG_CORE_HEAP_SIZE ?= 65536 298 299# TA profiling. 300# When this option is enabled, OP-TEE can execute Trusted Applications 301# instrumented with GCC's -pg flag and will output profiling information 302# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in 303# tee-supplicant) 304CFG_TA_GPROF_SUPPORT ?= n 305 306# Enable to compile user TA libraries with profiling (-pg). 307# Depends on CFG_TA_GPROF_SUPPORT. 308CFG_ULIBS_GPROF ?= n 309 310ifeq ($(CFG_ULIBS_GPROF),y) 311ifneq ($(CFG_TA_GPROF_SUPPORT),y) 312$(error Cannot instrument user libraries if user mode profiling is disabled) 313endif 314endif 315 316# CFG_GP_SOCKETS 317# Enable Global Platform Sockets support 318CFG_GP_SOCKETS ?= y 319 320# Enable Secure Data Path support in OP-TEE core (TA may be invoked with 321# invocation parameters referring to specific secure memories). 322CFG_SECURE_DATA_PATH ?= n 323 324# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y 325# TA binaries are stored encrypted in the REE FS and are protected by 326# metadata in secure storage. 327CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA) 328$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA)) 329 330# Enable the pseudo TA that managages TA storage in secure storage 331CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA) 332$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA)) 333 334# Enable the pseudo TA for misc. auxilary services, extending existing 335# GlobalPlatform Core API (for example, re-seeding RNG entropy pool etc.) 336CFG_SYSTEM_PTA ?= y 337 338# Define the number of cores per cluster used in calculating core position. 339# The cluster number is shifted by this value and added to the core ID, 340# so its value represents log2(cores/cluster). 341# Default is 2**(2) = 4 cores per cluster. 342CFG_CORE_CLUSTER_SHIFT ?= 2 343 344# Do not report to NW that dynamic shared memory (shared memory outside 345# predefined region) is enabled. 346# Note that you can disable this feature for debug purposes. OP-TEE will not 347# report to Normal World that it support dynamic SHM. But, nevertheles it 348# will accept dynamic SHM buffers. 349CFG_DYN_SHM_CAP ?= y 350 351# Enables support for larger physical addresses, that is, it will define 352# paddr_t as a 64-bit type. 353CFG_CORE_LARGE_PHYS_ADDR ?= n 354 355# Define the maximum size, in bits, for big numbers in the Internal Core API 356# Arithmetical functions. This does *not* influence the key size that may be 357# manipulated through the Cryptographic API. 358# Set this to a lower value to reduce the TA memory footprint. 359CFG_TA_BIGNUM_MAX_BITS ?= 2048 360 361# Define the maximum size, in bits, for big numbers in the TEE core (privileged 362# layer). 363# This value is an upper limit for the key size in any cryptographic algorithm 364# implemented by the TEE core. 365# Set this to a lower value to reduce the memory footprint. 366CFG_CORE_BIGNUM_MAX_BITS ?= 4096 367 368# Compiles mbedTLS for TA usage 369CFG_TA_MBEDTLS ?= y 370 371# Compile the TA library mbedTLS with self test functions, the functions 372# need to be called to test anything 373CFG_TA_MBEDTLS_SELF_TEST ?= y 374 375# Enable TEE_ALG_RSASSA_PKCS1_V1_5 algorithm for signing with PKCS#1 v1.5 EMSA 376# # without ASN.1 around the hash. 377CFG_CRYPTO_RSASSA_NA1 ?= y 378