xref: /optee_os/mk/config.mk (revision 062e3d01c039dac541b9fc9eaa1d6c4497435474)
1# Default configuration values for OP-TEE core (all platforms).
2#
3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk.
4# Some subsystem-specific defaults are not here but rather in */sub.mk.
5#
6# Configuration values may be assigned from multiple sources.
7# From higher to lower priority:
8#
9#   1. Make arguments ('make CFG_FOO=bar...')
10#   2. The file specified by $(CFG_OPTEE_CONFIG) (if defined)
11#   3. The environment ('CFG_FOO=bar make...')
12#   4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk
13#   5. This file
14#   6. Subsystem-specific makefiles (*/sub.mk)
15#
16# Actual values used during the build are output to $(out-dir)/conf.mk
17# (CFG_* variables only).
18
19# Cross-compiler prefix and suffix
20CROSS_COMPILE ?= arm-linux-gnueabihf-
21CROSS_COMPILE32 ?= $(CROSS_COMPILE)
22CROSS_COMPILE64 ?= aarch64-linux-gnu-
23COMPILER ?= gcc
24
25# For convenience
26ifdef CFLAGS
27CFLAGS32 ?= $(CFLAGS)
28CFLAGS64 ?= $(CFLAGS)
29endif
30
31# Compiler warning level.
32# Supported values: undefined, 1, 2 and 3. 3 gives more warnings.
33WARNS ?= 3
34
35# Define DEBUG=1 to compile without optimization (forces -O0)
36# DEBUG=1
37
38# If y, enable debug features of the TEE core (assertions and lock checks
39# are enabled, panic and assert messages are more verbose, data and prefetch
40# aborts show a stack dump). When disabled, the NDEBUG directive is defined
41# so assertions are disabled.
42CFG_TEE_CORE_DEBUG ?= y
43
44# Log levels for the TEE core. Defines which core messages are displayed
45# on the secure console. Disabling core log (level set to 0) also disables
46# logs from the TAs.
47# 0: none
48# 1: error
49# 2: error + warning
50# 3: error + warning + debug
51# 4: error + warning + debug + flow
52CFG_TEE_CORE_LOG_LEVEL ?= 1
53
54# TA log level
55# If user-mode library libutils.a is built with CFG_TEE_TA_LOG_LEVEL=0,
56# TA tracing is disabled regardless of the value of CFG_TEE_TA_LOG_LEVEL
57# when the TA is built.
58CFG_TEE_TA_LOG_LEVEL ?= 1
59
60# TA enablement
61# When defined to "y", TA traces are output according to
62# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all
63CFG_TEE_CORE_TA_TRACE ?= y
64
65# If y, enable the memory leak detection feature in the bget memory allocator.
66# When this feature is enabled, calling mdbg_check(1) will print a list of all
67# the currently allocated buffers and the location of the allocation (file and
68# line number).
69# Note: make sure the log level is high enough for the messages to show up on
70# the secure console! For instance:
71# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with:
72#   $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3
73# - To debug TEE core allocations: build OP-TEE with:
74#   $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3
75CFG_TEE_CORE_MALLOC_DEBUG ?= n
76CFG_TEE_TA_MALLOC_DEBUG ?= n
77
78# Mask to select which messages are prefixed with long debugging information
79# (severity, core ID, thread ID, component name, function name, line number)
80# based on the message level. If BIT(level) is set, the long prefix is shown.
81# Otherwise a short prefix is used (severity and component name only).
82# Levels: 0=none 1=error 2=info 3=debug 4=flow
83CFG_MSG_LONG_PREFIX_MASK ?= 0x1a
84
85# PRNG configuration
86# If CFG_WITH_SOFTWARE_PRNG is enabled, crypto provider provided
87# software PRNG implementation is used.
88# Otherwise, you need to implement hw_get_random_byte() for your platform
89CFG_WITH_SOFTWARE_PRNG ?= y
90
91# Number of threads
92CFG_NUM_THREADS ?= 2
93
94# API implementation version
95CFG_TEE_API_VERSION ?= GPD-1.1-dev
96
97# Implementation description (implementation-dependent)
98CFG_TEE_IMPL_DESCR ?= OPTEE
99
100# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal
101# World?
102CFG_OS_REV_REPORTS_GIT_SHA1 ?= y
103
104# Trusted OS implementation version
105TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || echo Unknown)
106ifeq ($(CFG_OS_REV_REPORTS_GIT_SHA1),y)
107TEE_IMPL_GIT_SHA1 := 0x$(shell git rev-parse --short=8 HEAD 2>/dev/null || echo 0)
108else
109TEE_IMPL_GIT_SHA1 := 0x0
110endif
111# The following values are not extracted from the "git describe" output because
112# we might be outside of a Git environment, or the tree may have been cloned
113# with limited depth not including any tag, so there is really no guarantee
114# that TEE_IMPL_VERSION contains the major and minor revision numbers.
115CFG_OPTEE_REVISION_MAJOR ?= 3
116CFG_OPTEE_REVISION_MINOR ?= 3
117
118# Trusted OS implementation manufacturer name
119CFG_TEE_MANUFACTURER ?= LINARO
120
121# Trusted firmware version
122CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF
123
124# Trusted OS implementation manufacturer name
125CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF
126
127# Rich Execution Environment (REE) file system support: normal world OS
128# provides the actual storage.
129# This is the default FS when enabled (i.e., the one used when
130# TEE_STORAGE_PRIVATE is passed to the trusted storage API)
131CFG_REE_FS ?= y
132
133# RPMB file system support
134CFG_RPMB_FS ?= n
135
136# Device identifier used when CFG_RPMB_FS = y.
137# The exact meaning of this value is platform-dependent. On Linux, the
138# tee-supplicant process will open /dev/mmcblk<id>rpmb
139CFG_RPMB_FS_DEV_ID ?= 0
140
141# Enables RPMB key programming by the TEE, in case the RPMB partition has not
142# been configured yet.
143# !!! Security warning !!!
144# Do *NOT* enable this in product builds, as doing so would allow the TEE to
145# leak the RPMB key.
146# This option is useful in the following situations:
147# - Testing
148# - RPMB key provisioning in a controlled environment (factory setup)
149CFG_RPMB_WRITE_KEY ?= n
150
151# Embed public part of this key in OP-TEE OS
152TA_SIGN_KEY ?= keys/default_ta.pem
153
154# Include lib/libutils/isoc in the build? Most platforms need this, but some
155# may not because they obtain the isoc functions from elsewhere
156CFG_LIBUTILS_WITH_ISOC ?= y
157
158# Enables floating point support for user TAs
159# ARM32: EABI defines both a soft-float ABI and a hard-float ABI,
160#	 hard-float is basically a super set of soft-float. Hard-float
161#	 requires all the support routines provided for soft-float, but the
162#	 compiler may choose to optimize to not use some of them and use
163#	 the floating-point registers instead.
164# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or
165#	 nothing with ` -mgeneral-regs-only`)
166# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types
167CFG_TA_FLOAT_SUPPORT ?= y
168
169# Stack unwinding: print a stack dump to the console on core or TA abort, or
170# when a TA panics.
171# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be
172# unwound (not paged TAs, however).
173# Note that 32-bit ARM code needs unwind tables for this to work, so enabling
174# this option will increase the size of the 32-bit TEE binary by a few KB.
175# Similarly, TAs have to be compiled with -funwind-tables (default when the
176# option is set) otherwise they can't be unwound.
177# Warning: since the unwind sequence for user-mode (TA) code is implemented in
178# the privileged layer of OP-TEE, enabling this feature will weaken the
179# user/kernel isolation. Therefore it should be disabled in release builds.
180ifeq ($(CFG_TEE_CORE_DEBUG),y)
181CFG_UNWIND ?= y
182endif
183
184# Enable support for dynamically loaded user TAs
185CFG_WITH_USER_TA ?= y
186
187# Load user TAs from the REE filesystem via tee-supplicant
188# There is currently no other alternative, but you may want to disable this in
189# case you implement your own TA store
190CFG_REE_FS_TA ?= y
191
192# Support for loading user TAs from a special section in the TEE binary.
193# Such TAs are available even before tee-supplicant is available (hence their
194# name), but note that many services exported to TAs may need tee-supplicant,
195# so early use is limited to a subset of the TEE Internal Core API (crypto...)
196# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF
197# file(s). For example:
198#   $ make ... \
199#     EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \
200#                     path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf"
201# Typical build steps:
202#   $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries,
203#                                    # headers, makefiles), ready to build TAs.
204#                                    # CFG_EARLY_TA=y is optional, it prevents
205#                                    # later library recompilations.
206#   <build some TAs>
207#   $ make EARLY_TA_PATHS=<paths>    # Build OP-TEE and embbed the TA(s)
208#
209# Another option is CFG_IN_TREE_EARLY_TAS which is used to point at
210# in-tree TAs. CFG_IN_TREE_EARLY_TAS is formatted as:
211# <name-of-ta>/<uuid>
212# for instance avb/023f8f1a-292a-432b-8fc4-de8471358067
213ifneq ($(EARLY_TA_PATHS)$(CFG_IN_TREE_EARLY_TAS),)
214$(call force,CFG_EARLY_TA,y)
215else
216CFG_EARLY_TA ?= n
217endif
218ifeq ($(CFG_EARLY_TA),y)
219$(call force,CFG_ZLIB,y)
220endif
221
222# Support for dynamically linked user TAs
223CFG_TA_DYNLINK ?= y
224
225# Enable paging, requires SRAM, can't be enabled by default
226CFG_WITH_PAGER ?= n
227
228# Runtime lock dependency checker: ensures that a proper locking hierarchy is
229# used in the TEE core when acquiring and releasing mutexes. Any violation will
230# cause a panic as soon as the invalid locking condition is detected. If
231# CFG_UNWIND is enabled, the algorithm records the call stacks when locks are
232# taken, and prints them when a potential deadlock is found.
233# Expect a significant performance impact when enabling this.
234CFG_LOCKDEP ?= n
235
236# BestFit algorithm in bget reduces the fragmentation of the heap when running
237# with the pager enabled or lockdep
238CFG_CORE_BGET_BESTFIT ?= $(call cfg-one-enabled, CFG_WITH_PAGER CFG_LOCKDEP)
239
240# Use the pager for user TAs
241CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER)
242
243# Enable support for detected undefined behavior in C
244# Uses a lot of memory, can't be enabled by default
245CFG_CORE_SANITIZE_UNDEFINED ?= n
246
247# Enable Kernel Address sanitizer, has a huge performance impact, uses a
248# lot of memory and need platform specific adaptations, can't be enabled by
249# default
250CFG_CORE_SANITIZE_KADDRESS ?= n
251
252# Device Tree support
253#
254# When CFG_DT is enabled core embeds the FDT library (libfdt) allowing
255# device tree blob (DTB) parsing from the core.
256#
257# When CFG_DT is enabled, the TEE _start function expects to find
258# the address of a DTB in register X2/R2 provided by the early boot stage
259# or value 0 if boot stage provides no DTB.
260#
261# When CFG_EMBED_DTB is enabled, CFG_EMBED_DTB_SOURCE_FILE shall define the
262# relative path of a DTS file located in core/arch/$(ARCH)/dts.
263# The DTS file is compiled into a DTB file which content is embedded in a
264# read-only section of the core.
265ifneq ($(strip $(CFG_EMBED_DTB_SOURCE_FILE)),)
266CFG_EMBED_DTB ?= y
267endif
268ifeq ($(CFG_EMBED_DTB),y)
269$(call force,CFG_DT,y)
270endif
271CFG_EMBED_DTB ?= n
272CFG_DT ?= n
273
274# Maximum size of the Device Tree Blob, has to be large enough to allow
275# editing of the supplied DTB.
276CFG_DTB_MAX_SIZE ?= 0x10000
277
278# Device Tree Overlay support.
279# This define enables support for an OP-TEE provided DTB overlay.
280# One of two modes is supported in this case:
281# 1. Append OP-TEE nodes to an existing DTB overlay located at CFG_DT_ADDR or
282#    passed in arg2
283# 2. Generate a new DTB overlay at CFG_DT_ADDR
284# A subsequent boot stage must then merge the generated overlay DTB into a main
285# DTB using the standard fdt_overlay_apply() method.
286CFG_EXTERNAL_DTB_OVERLAY ?= n
287
288# Enable core self tests and related pseudo TAs
289CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= y
290
291# This option enables OP-TEE to respond to SMP boot request: the Rich OS
292# issues this to request OP-TEE to release secondaries cores out of reset,
293# with specific core number and non-secure entry address.
294CFG_BOOT_SECONDARY_REQUEST ?= n
295
296# Default heap size for Core, 64 kB
297CFG_CORE_HEAP_SIZE ?= 65536
298
299# TA profiling.
300# When this option is enabled, OP-TEE can execute Trusted Applications
301# instrumented with GCC's -pg flag and will output profiling information
302# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in
303# tee-supplicant)
304CFG_TA_GPROF_SUPPORT ?= n
305
306# Enable to compile user TA libraries with profiling (-pg).
307# Depends on CFG_TA_GPROF_SUPPORT.
308CFG_ULIBS_GPROF ?= n
309
310ifeq ($(CFG_ULIBS_GPROF),y)
311ifneq ($(CFG_TA_GPROF_SUPPORT),y)
312$(error Cannot instrument user libraries if user mode profiling is disabled)
313endif
314endif
315
316# CFG_GP_SOCKETS
317# Enable Global Platform Sockets support
318CFG_GP_SOCKETS ?= y
319
320# Enable Secure Data Path support in OP-TEE core (TA may be invoked with
321# invocation parameters referring to specific secure memories).
322CFG_SECURE_DATA_PATH ?= n
323
324# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y
325# TA binaries are stored encrypted in the REE FS and are protected by
326# metadata in secure storage.
327CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA)
328$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA))
329
330# Enable the pseudo TA that managages TA storage in secure storage
331CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA)
332$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA))
333
334# Enable the pseudo TA for misc. auxilary services, extending existing
335# GlobalPlatform Core API (for example, re-seeding RNG entropy pool etc.)
336CFG_SYSTEM_PTA ?= y
337
338# Define the number of cores per cluster used in calculating core position.
339# The cluster number is shifted by this value and added to the core ID,
340# so its value represents log2(cores/cluster).
341# Default is 2**(2) = 4 cores per cluster.
342CFG_CORE_CLUSTER_SHIFT ?= 2
343
344# Do not report to NW that dynamic shared memory (shared memory outside
345# predefined region) is enabled.
346# Note that you can disable this feature for debug purposes. OP-TEE will not
347# report to Normal World that it support dynamic SHM. But, nevertheles it
348# will accept dynamic SHM buffers.
349CFG_DYN_SHM_CAP ?= y
350
351# Enables support for larger physical addresses, that is, it will define
352# paddr_t as a 64-bit type.
353CFG_CORE_LARGE_PHYS_ADDR ?= n
354
355# Define the maximum size, in bits, for big numbers in the Internal Core API
356# Arithmetical functions. This does *not* influence the key size that may be
357# manipulated through the Cryptographic API.
358# Set this to a lower value to reduce the TA memory footprint.
359CFG_TA_BIGNUM_MAX_BITS ?= 2048
360
361# Define the maximum size, in bits, for big numbers in the TEE core (privileged
362# layer).
363# This value is an upper limit for the key size in any cryptographic algorithm
364# implemented by the TEE core.
365# Set this to a lower value to reduce the memory footprint.
366CFG_CORE_BIGNUM_MAX_BITS ?= 4096
367
368# Compiles mbedTLS for TA usage
369CFG_TA_MBEDTLS ?= y
370
371# Compile the TA library mbedTLS with self test functions, the functions
372# need to be called to test anything
373CFG_TA_MBEDTLS_SELF_TEST ?= y
374
375# Enable TEE_ALG_RSASSA_PKCS1_V1_5 algorithm for signing with PKCS#1 v1.5 EMSA
376# # without ASN.1 around the hash.
377CFG_CRYPTO_RSASSA_NA1 ?= y
378