xref: /optee_os/mk/config.mk (revision 03368b7b9b3b8bb7c3d50bf4d53c03fefd873646)
1# Default configuration values for OP-TEE core (all platforms).
2#
3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk.
4# Some subsystem-specific defaults are not here but rather in */sub.mk.
5#
6# Configuration values may be assigned from multiple sources.
7# From higher to lower priority:
8#
9#   1. Make arguments ('make CFG_FOO=bar...')
10#   2. The file specified by $(CFG_OPTEE_CONFIG) (if defined)
11#   3. The environment ('CFG_FOO=bar make...')
12#   4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk
13#   5. This file
14#   6. Subsystem-specific makefiles (*/sub.mk)
15#
16# Actual values used during the build are output to $(out-dir)/conf.mk
17# (CFG_* variables only).
18
19# Cross-compiler prefix and suffix
20CROSS_COMPILE ?= arm-linux-gnueabihf-
21CROSS_COMPILE32 ?= $(CROSS_COMPILE)
22CROSS_COMPILE64 ?= aarch64-linux-gnu-
23COMPILER ?= gcc
24
25# For convenience
26ifdef CFLAGS
27CFLAGS32 ?= $(CFLAGS)
28CFLAGS64 ?= $(CFLAGS)
29endif
30
31# Compiler warning level.
32# Supported values: undefined, 1, 2 and 3. 3 gives more warnings.
33WARNS ?= 3
34
35# Define NOWERROR=1 so that warnings are not treated as errors
36# NOWERROR=1
37
38# Define DEBUG=1 to compile without optimization (forces -O0)
39# DEBUG=1
40
41# If y, enable debug features of the TEE core (assertions and lock checks
42# are enabled, panic and assert messages are more verbose, data and prefetch
43# aborts show a stack dump). When disabled, the NDEBUG directive is defined
44# so assertions are disabled.
45CFG_TEE_CORE_DEBUG ?= y
46
47# Log levels for the TEE core and user-mode TAs
48# Defines which messages are displayed on the secure console
49# 0: none
50# 1: error
51# 2: error + warning
52# 3: error + warning + debug
53# 4: error + warning + debug + flow
54CFG_TEE_CORE_LOG_LEVEL ?= 1
55CFG_TEE_TA_LOG_LEVEL ?= 1
56
57# TA enablement
58# When defined to "y", TA traces are output according to
59# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all
60CFG_TEE_CORE_TA_TRACE ?= y
61
62# If y, enable the memory leak detection feature in the bget memory allocator.
63# When this feature is enabled, calling mdbg_check(1) will print a list of all
64# the currently allocated buffers and the location of the allocation (file and
65# line number).
66# Note: make sure the log level is high enough for the messages to show up on
67# the secure console! For instance:
68# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with:
69#   $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3
70# - To debug TEE core allocations: build OP-TEE with:
71#   $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3
72CFG_TEE_CORE_MALLOC_DEBUG ?= n
73CFG_TEE_TA_MALLOC_DEBUG ?= n
74
75# Mask to select which messages are prefixed with long debugging information
76# (severity, thread ID, component name, function name, line number) based on
77# the message level. If BIT(level) is set, the long prefix is shown.
78# Otherwise a short prefix is used (severity and component name only).
79# Levels: 0=none 1=error 2=info 3=debug 4=flow
80CFG_MSG_LONG_PREFIX_MASK ?= 0x1a
81
82# PRNG configuration
83# If CFG_WITH_SOFTWARE_PRNG is enabled, crypto provider provided
84# software PRNG implementation is used.
85# Otherwise, you need to implement hw_get_random_byte() for your platform
86CFG_WITH_SOFTWARE_PRNG ?= y
87
88# Number of threads
89CFG_NUM_THREADS ?= 2
90
91# API implementation version
92CFG_TEE_API_VERSION ?= GPD-1.1-dev
93
94# Implementation description (implementation-dependent)
95CFG_TEE_IMPL_DESCR ?= OPTEE
96
97# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal
98# World?
99CFG_OS_REV_REPORTS_GIT_SHA1 ?= y
100
101# Trusted OS implementation version
102TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || echo Unknown)
103ifeq ($(CFG_OS_REV_REPORTS_GIT_SHA1),y)
104TEE_IMPL_GIT_SHA1 := 0x$(shell git rev-parse --short=8 HEAD 2>/dev/null || echo 0)
105else
106TEE_IMPL_GIT_SHA1 := 0x0
107endif
108# The following values are not extracted from the "git describe" output because
109# we might be outside of a Git environment, or the tree may have been cloned
110# with limited depth not including any tag, so there is really no guarantee
111# that TEE_IMPL_VERSION contains the major and minor revision numbers.
112CFG_OPTEE_REVISION_MAJOR ?= 3
113CFG_OPTEE_REVISION_MINOR ?= 1
114
115# Trusted OS implementation manufacturer name
116CFG_TEE_MANUFACTURER ?= LINARO
117
118# Trusted firmware version
119CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF
120
121# Trusted OS implementation manufacturer name
122CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF
123
124# Rich Execution Environment (REE) file system support: normal world OS
125# provides the actual storage.
126# This is the default FS when enabled (i.e., the one used when
127# TEE_STORAGE_PRIVATE is passed to the trusted storage API)
128CFG_REE_FS ?= y
129
130# RPMB file system support
131CFG_RPMB_FS ?= n
132
133# Device identifier used when CFG_RPMB_FS = y.
134# The exact meaning of this value is platform-dependent. On Linux, the
135# tee-supplicant process will open /dev/mmcblk<id>rpmb
136CFG_RPMB_FS_DEV_ID ?= 0
137
138# Enables RPMB key programming by the TEE, in case the RPMB partition has not
139# been configured yet.
140# !!! Security warning !!!
141# Do *NOT* enable this in product builds, as doing so would allow the TEE to
142# leak the RPMB key.
143# This option is useful in the following situations:
144# - Testing
145# - RPMB key provisioning in a controlled environment (factory setup)
146CFG_RPMB_WRITE_KEY ?= n
147
148# Embed public part of this key in OP-TEE OS
149TA_SIGN_KEY ?= keys/default_ta.pem
150
151# Include lib/libutils/isoc in the build? Most platforms need this, but some
152# may not because they obtain the isoc functions from elsewhere
153CFG_LIBUTILS_WITH_ISOC ?= y
154
155# Enables floating point support for user TAs
156# ARM32: EABI defines both a soft-float ABI and a hard-float ABI,
157#	 hard-float is basically a super set of soft-float. Hard-float
158#	 requires all the support routines provided for soft-float, but the
159#	 compiler may choose to optimize to not use some of them and use
160#	 the floating-point registers instead.
161# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or
162#	 nothing with ` -mgeneral-regs-only`)
163# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types
164CFG_TA_FLOAT_SUPPORT ?= y
165
166# Stack unwinding: print a stack dump to the console on core or TA abort, or
167# when a TA panics.
168# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be
169# unwound (not paged TAs, however).
170# Note that 32-bit ARM code needs unwind tables for this to work, so enabling
171# this option will increase the size of the 32-bit TEE binary by a few KB.
172# Similarly, TAs have to be compiled with -funwind-tables (default when the
173# option is set) otherwise they can't be unwound.
174# Warning: since the unwind sequence for user-mode (TA) code is implemented in
175# the privileged layer of OP-TEE, enabling this feature will weaken the
176# user/kernel isolation. Therefore it should be disabled in release builds.
177ifeq ($(CFG_TEE_CORE_DEBUG),y)
178CFG_UNWIND ?= y
179endif
180
181# Enable support for dynamically loaded user TAs
182CFG_WITH_USER_TA ?= y
183
184# Load user TAs from the REE filesystem via tee-supplicant
185# There is currently no other alternative, but you may want to disable this in
186# case you implement your own TA store
187CFG_REE_FS_TA ?= y
188
189# Support for loading user TAs from a special section in the TEE binary.
190# Such TAs are available even before tee-supplicant is available (hence their
191# name), but note that many services exported to TAs may need tee-supplicant,
192# so early use is limited to a subset of the TEE Internal Core API (crypto...)
193# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF
194# file(s). For example:
195#   $ make ... \
196#     EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \
197#                     path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf"
198# Typical build steps:
199#   $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries,
200#                                    # headers, makefiles), ready to build TAs.
201#                                    # CFG_EARLY_TA=y is optional, it prevents
202#                                    # later library recompilations.
203#   <build some TAs>
204#   $ make EARLY_TA_PATHS=<paths>    # Build OP-TEE and embbed the TA(s)
205ifneq ($(EARLY_TA_PATHS),)
206$(call force,CFG_EARLY_TA,y)
207else
208CFG_EARLY_TA ?= n
209endif
210ifeq ($(CFG_EARLY_TA),y)
211$(call force,CFG_ZLIB,y)
212endif
213
214# Support for dynamically linked user TAs
215CFG_TA_DYNLINK ?= y
216
217# Enable paging, requires SRAM, can't be enabled by default
218CFG_WITH_PAGER ?= n
219
220# Use the pager for user TAs
221CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER)
222
223# Enable support for detected undefined behavior in C
224# Uses a lot of memory, can't be enabled by default
225CFG_CORE_SANITIZE_UNDEFINED ?= n
226
227# Enable Kernel Address sanitizer, has a huge performance impact, uses a
228# lot of memory and need platform specific adaptations, can't be enabled by
229# default
230CFG_CORE_SANITIZE_KADDRESS ?= n
231
232# Device Tree support
233# When enabled, the TEE _start function expects to find the address of a
234# Device Tree Blob (DTB) in register r2. The DT parsing code relies on
235# libfdt.  Currently only used to add the optee node and a reserved-memory
236# node for shared memory.
237CFG_DT ?= n
238
239# Maximum size of the Device Tree Blob, has to be large enough to allow
240# editing of the supplied DTB.
241CFG_DTB_MAX_SIZE ?= 0x10000
242
243# Enable core self tests and related pseudo TAs
244CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= y
245
246# This option enables OP-TEE to respond to SMP boot request: the Rich OS
247# issues this to request OP-TEE to release secondaries cores out of reset,
248# with specific core number and non-secure entry address.
249CFG_BOOT_SECONDARY_REQUEST ?= n
250
251# Default heap size for Core, 64 kB
252CFG_CORE_HEAP_SIZE ?= 65536
253
254# TA profiling.
255# When this option is enabled, OP-TEE can execute Trusted Applications
256# instrumented with GCC's -pg flag and will output profiling information
257# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in
258# tee-supplicant)
259CFG_TA_GPROF_SUPPORT ?= n
260
261# Enable to compile user TA libraries with profiling (-pg).
262# Depends on CFG_TA_GPROF_SUPPORT.
263CFG_ULIBS_GPROF ?= n
264
265ifeq ($(CFG_ULIBS_GPROF),y)
266ifneq ($(CFG_TA_GPROF_SUPPORT),y)
267$(error Cannot instrument user libraries if user mode profiling is disabled)
268endif
269endif
270
271# CFG_GP_SOCKETS
272# Enable Global Platform Sockets support
273CFG_GP_SOCKETS ?= y
274
275# Enable Secure Data Path support in OP-TEE core (TA may be invoked with
276# invocation parameters referring to specific secure memories).
277CFG_SECURE_DATA_PATH ?= n
278
279# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y
280# TA binaries are stored encrypted in the REE FS and are protected by
281# metadata in secure storage.
282CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA)
283$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA))
284
285# Enable the pseudo TA that managages TA storage in secure storage
286CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA)
287$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA))
288
289# Define the number of cores per cluster used in calculating core position.
290# The cluster number is shifted by this value and added to the core ID,
291# so its value represents log2(cores/cluster).
292# Default is 2**(2) = 4 cores per cluster.
293CFG_CORE_CLUSTER_SHIFT ?= 2
294
295# Do not report to NW that dynamic shared memory (shared memory outside
296# predefined region) is enabled.
297# Note that you can disable this feature for debug purposes. OP-TEE will not
298# report to Normal World that it support dynamic SHM. But, nevertheles it
299# will accept dynamic SHM buffers.
300CFG_DYN_SHM_CAP ?= y
301
302# Enables support for larger physical addresses, that is, it will define
303# paddr_t as a 64-bit type.
304CFG_CORE_LARGE_PHYS_ADDR ?= n
305
306# Define the maximum size, in bits, for big numbers in the Internal Core API
307# Arithmetical functions. This does *not* influence the key size that may be
308# manipulated through the Cryptographic API.
309# Set this to a lower value to reduce the TA memory footprint.
310CFG_TA_BIGNUM_MAX_BITS ?= 2048
311
312# Define the maximum size, in bits, for big numbers in the TEE core (privileged
313# layer).
314# This value is an upper limit for the key size in any cryptographic algorithm
315# implemented by the TEE core.
316# Set this to a lower value to reduce the memory footprint.
317CFG_CORE_BIGNUM_MAX_BITS ?= 4096
318