1# Default configuration values for OP-TEE core (all platforms). 2# 3# Platform-specific overrides are in core/arch/arm32/plat-*/conf.mk. 4# Some subsystem-specific defaults are not here but rather in */sub.mk. 5# 6# Configuration values may be assigned from multiple sources. 7# From higher to lower priority: 8# 9# 1. Make arguments ('make CFG_FOO=bar...') 10# 2. The file specified by $(CFG_OPTEE_CONFIG) (if defined) 11# 3. The environment ('CFG_FOO=bar make...') 12# 4. The platform-specific configuration file: core/arch/arm32/plat-*/conf.mk 13# 5. This file 14# 6. Subsystem-specific makefiles (*/sub.mk) 15# 16# Actual values used during the build are output to $(out-dir)/conf.mk 17# (CFG_* variables only). 18 19# Cross-compiler prefix and suffix 20CROSS_COMPILE ?= arm-linux-gnueabihf- 21CROSS_COMPILE32 ?= $(CROSS_COMPILE) 22CROSS_COMPILE64 ?= aarch64-linux-gnu- 23COMPILER ?= gcc 24 25# For convenience 26ifdef CFLAGS 27CFLAGS32 ?= $(CFLAGS) 28CFLAGS64 ?= $(CFLAGS) 29endif 30 31# Compiler warning level. 32# Supported values: undefined, 1, 2 and 3. 3 gives more warnings. 33WARNS ?= 3 34 35# Define DEBUG=1 to compile without optimization (forces -O0) 36# DEBUG=1 37 38# If y, enable debug features of the TEE core (assertions and lock checks 39# are enabled, panic and assert messages are more verbose, data and prefetch 40# aborts show a stack dump). When disabled, the NDEBUG directive is defined 41# so assertions are disabled. 42CFG_TEE_CORE_DEBUG ?= y 43 44# Log levels for the TEE core and user-mode TAs 45# Defines which messages are displayed on the secure console 46# 0: none 47# 1: error 48# 2: error + warning 49# 3: error + warning + debug 50# 4: error + warning + debug + flow 51CFG_TEE_CORE_LOG_LEVEL ?= 1 52CFG_TEE_TA_LOG_LEVEL ?= 1 53 54# TA enablement 55# When defined to "y", TA traces are output according to 56# CFG_TEE_TA_LOG_LEVEL. Otherwise, they are not output at all 57CFG_TEE_CORE_TA_TRACE ?= y 58 59# If y, enable the memory leak detection feature in the bget memory allocator. 60# When this feature is enabled, calling mdbg_check(1) will print a list of all 61# the currently allocated buffers and the location of the allocation (file and 62# line number). 63# Note: make sure the log level is high enough for the messages to show up on 64# the secure console! For instance: 65# - To debug user-mode (TA) allocations: build OP-TEE *and* the TA with: 66# $ make CFG_TEE_TA_MALLOC_DEBUG=y CFG_TEE_TA_LOG_LEVEL=3 67# - To debug TEE core allocations: build OP-TEE with: 68# $ make CFG_TEE_CORE_MALLOC_DEBUG=y CFG_TEE_CORE_LOG_LEVEL=3 69CFG_TEE_CORE_MALLOC_DEBUG ?= n 70CFG_TEE_TA_MALLOC_DEBUG ?= n 71 72# Mask to select which messages are prefixed with long debugging information 73# (severity, core ID, thread ID, component name, function name, line number) 74# based on the message level. If BIT(level) is set, the long prefix is shown. 75# Otherwise a short prefix is used (severity and component name only). 76# Levels: 0=none 1=error 2=info 3=debug 4=flow 77CFG_MSG_LONG_PREFIX_MASK ?= 0x1a 78 79# PRNG configuration 80# If CFG_WITH_SOFTWARE_PRNG is enabled, crypto provider provided 81# software PRNG implementation is used. 82# Otherwise, you need to implement hw_get_random_byte() for your platform 83CFG_WITH_SOFTWARE_PRNG ?= y 84 85# Number of threads 86CFG_NUM_THREADS ?= 2 87 88# API implementation version 89CFG_TEE_API_VERSION ?= GPD-1.1-dev 90 91# Implementation description (implementation-dependent) 92CFG_TEE_IMPL_DESCR ?= OPTEE 93 94# Should OPTEE_SMC_CALL_GET_OS_REVISION return a build identifier to Normal 95# World? 96CFG_OS_REV_REPORTS_GIT_SHA1 ?= y 97 98# Trusted OS implementation version 99TEE_IMPL_VERSION ?= $(shell git describe --always --dirty=-dev 2>/dev/null || echo Unknown) 100ifeq ($(CFG_OS_REV_REPORTS_GIT_SHA1),y) 101TEE_IMPL_GIT_SHA1 := 0x$(shell git rev-parse --short=8 HEAD 2>/dev/null || echo 0) 102else 103TEE_IMPL_GIT_SHA1 := 0x0 104endif 105# The following values are not extracted from the "git describe" output because 106# we might be outside of a Git environment, or the tree may have been cloned 107# with limited depth not including any tag, so there is really no guarantee 108# that TEE_IMPL_VERSION contains the major and minor revision numbers. 109CFG_OPTEE_REVISION_MAJOR ?= 3 110CFG_OPTEE_REVISION_MINOR ?= 3 111 112# Trusted OS implementation manufacturer name 113CFG_TEE_MANUFACTURER ?= LINARO 114 115# Trusted firmware version 116CFG_TEE_FW_IMPL_VERSION ?= FW_IMPL_UNDEF 117 118# Trusted OS implementation manufacturer name 119CFG_TEE_FW_MANUFACTURER ?= FW_MAN_UNDEF 120 121# Rich Execution Environment (REE) file system support: normal world OS 122# provides the actual storage. 123# This is the default FS when enabled (i.e., the one used when 124# TEE_STORAGE_PRIVATE is passed to the trusted storage API) 125CFG_REE_FS ?= y 126 127# RPMB file system support 128CFG_RPMB_FS ?= n 129 130# Device identifier used when CFG_RPMB_FS = y. 131# The exact meaning of this value is platform-dependent. On Linux, the 132# tee-supplicant process will open /dev/mmcblk<id>rpmb 133CFG_RPMB_FS_DEV_ID ?= 0 134 135# Enables RPMB key programming by the TEE, in case the RPMB partition has not 136# been configured yet. 137# !!! Security warning !!! 138# Do *NOT* enable this in product builds, as doing so would allow the TEE to 139# leak the RPMB key. 140# This option is useful in the following situations: 141# - Testing 142# - RPMB key provisioning in a controlled environment (factory setup) 143CFG_RPMB_WRITE_KEY ?= n 144 145# Embed public part of this key in OP-TEE OS 146TA_SIGN_KEY ?= keys/default_ta.pem 147 148# Include lib/libutils/isoc in the build? Most platforms need this, but some 149# may not because they obtain the isoc functions from elsewhere 150CFG_LIBUTILS_WITH_ISOC ?= y 151 152# Enables floating point support for user TAs 153# ARM32: EABI defines both a soft-float ABI and a hard-float ABI, 154# hard-float is basically a super set of soft-float. Hard-float 155# requires all the support routines provided for soft-float, but the 156# compiler may choose to optimize to not use some of them and use 157# the floating-point registers instead. 158# ARM64: EABI doesn't define a soft-float ABI, everything is hard-float (or 159# nothing with ` -mgeneral-regs-only`) 160# With CFG_TA_FLOAT_SUPPORT enabled TA code is free use floating point types 161CFG_TA_FLOAT_SUPPORT ?= y 162 163# Stack unwinding: print a stack dump to the console on core or TA abort, or 164# when a TA panics. 165# If CFG_UNWIND is enabled, both the kernel and user mode call stacks can be 166# unwound (not paged TAs, however). 167# Note that 32-bit ARM code needs unwind tables for this to work, so enabling 168# this option will increase the size of the 32-bit TEE binary by a few KB. 169# Similarly, TAs have to be compiled with -funwind-tables (default when the 170# option is set) otherwise they can't be unwound. 171# Warning: since the unwind sequence for user-mode (TA) code is implemented in 172# the privileged layer of OP-TEE, enabling this feature will weaken the 173# user/kernel isolation. Therefore it should be disabled in release builds. 174ifeq ($(CFG_TEE_CORE_DEBUG),y) 175CFG_UNWIND ?= y 176endif 177 178# Enable support for dynamically loaded user TAs 179CFG_WITH_USER_TA ?= y 180 181# Load user TAs from the REE filesystem via tee-supplicant 182# There is currently no other alternative, but you may want to disable this in 183# case you implement your own TA store 184CFG_REE_FS_TA ?= y 185 186# Support for loading user TAs from a special section in the TEE binary. 187# Such TAs are available even before tee-supplicant is available (hence their 188# name), but note that many services exported to TAs may need tee-supplicant, 189# so early use is limited to a subset of the TEE Internal Core API (crypto...) 190# To use this feature, set EARLY_TA_PATHS to the paths to one or more TA ELF 191# file(s). For example: 192# $ make ... \ 193# EARLY_TA_PATHS="path/to/8aaaf200-2450-11e4-abe2-0002a5d5c51b.stripped.elf \ 194# path/to/cb3e5ba0-adf1-11e0-998b-0002a5d5c51b.stripped.elf" 195# Typical build steps: 196# $ make ta_dev_kit CFG_EARLY_TA=y # Create the dev kit (user mode libraries, 197# # headers, makefiles), ready to build TAs. 198# # CFG_EARLY_TA=y is optional, it prevents 199# # later library recompilations. 200# <build some TAs> 201# $ make EARLY_TA_PATHS=<paths> # Build OP-TEE and embbed the TA(s) 202# 203# Another option is CFG_IN_TREE_EARLY_TAS which is used to point at 204# in-tree TAs. CFG_IN_TREE_EARLY_TAS is formatted as: 205# <name-of-ta>/<uuid> 206# for instance avb/023f8f1a-292a-432b-8fc4-de8471358067 207ifneq ($(EARLY_TA_PATHS)$(CFG_IN_TREE_EARLY_TAS),) 208$(call force,CFG_EARLY_TA,y) 209else 210CFG_EARLY_TA ?= n 211endif 212ifeq ($(CFG_EARLY_TA),y) 213$(call force,CFG_ZLIB,y) 214endif 215 216# Support for dynamically linked user TAs 217CFG_TA_DYNLINK ?= y 218 219# Enable paging, requires SRAM, can't be enabled by default 220CFG_WITH_PAGER ?= n 221 222# Runtime lock dependency checker: ensures that a proper locking hierarchy is 223# used in the TEE core when acquiring and releasing mutexes. Any violation will 224# cause a panic as soon as the invalid locking condition is detected. If 225# CFG_UNWIND is enabled, the algorithm records the call stacks when locks are 226# taken, and prints them when a potential deadlock is found. 227# Expect a significant performance impact when enabling this. 228CFG_LOCKDEP ?= n 229 230# BestFit algorithm in bget reduces the fragmentation of the heap when running 231# with the pager enabled or lockdep 232CFG_CORE_BGET_BESTFIT ?= $(call cfg-one-enabled, CFG_WITH_PAGER CFG_LOCKDEP) 233 234# Use the pager for user TAs 235CFG_PAGED_USER_TA ?= $(CFG_WITH_PAGER) 236 237# Enable support for detected undefined behavior in C 238# Uses a lot of memory, can't be enabled by default 239CFG_CORE_SANITIZE_UNDEFINED ?= n 240 241# Enable Kernel Address sanitizer, has a huge performance impact, uses a 242# lot of memory and need platform specific adaptations, can't be enabled by 243# default 244CFG_CORE_SANITIZE_KADDRESS ?= n 245 246# Device Tree support 247# When enabled, the TEE _start function expects to find the address of a 248# Device Tree Blob (DTB) in register r2. The DT parsing code relies on 249# libfdt. Currently only used to add the optee node and a reserved-memory 250# node for shared memory. 251CFG_DT ?= n 252 253# Maximum size of the Device Tree Blob, has to be large enough to allow 254# editing of the supplied DTB. 255CFG_DTB_MAX_SIZE ?= 0x10000 256 257# Enable core self tests and related pseudo TAs 258CFG_TEE_CORE_EMBED_INTERNAL_TESTS ?= y 259 260# This option enables OP-TEE to respond to SMP boot request: the Rich OS 261# issues this to request OP-TEE to release secondaries cores out of reset, 262# with specific core number and non-secure entry address. 263CFG_BOOT_SECONDARY_REQUEST ?= n 264 265# Default heap size for Core, 64 kB 266CFG_CORE_HEAP_SIZE ?= 65536 267 268# TA profiling. 269# When this option is enabled, OP-TEE can execute Trusted Applications 270# instrumented with GCC's -pg flag and will output profiling information 271# in gmon.out format to /tmp/gmon-<ta_uuid>.out (path is defined in 272# tee-supplicant) 273CFG_TA_GPROF_SUPPORT ?= n 274 275# Enable to compile user TA libraries with profiling (-pg). 276# Depends on CFG_TA_GPROF_SUPPORT. 277CFG_ULIBS_GPROF ?= n 278 279ifeq ($(CFG_ULIBS_GPROF),y) 280ifneq ($(CFG_TA_GPROF_SUPPORT),y) 281$(error Cannot instrument user libraries if user mode profiling is disabled) 282endif 283endif 284 285# CFG_GP_SOCKETS 286# Enable Global Platform Sockets support 287CFG_GP_SOCKETS ?= y 288 289# Enable Secure Data Path support in OP-TEE core (TA may be invoked with 290# invocation parameters referring to specific secure memories). 291CFG_SECURE_DATA_PATH ?= n 292 293# Enable storage for TAs in secure storage, depends on CFG_REE_FS=y 294# TA binaries are stored encrypted in the REE FS and are protected by 295# metadata in secure storage. 296CFG_SECSTOR_TA ?= $(call cfg-all-enabled,CFG_REE_FS CFG_WITH_USER_TA) 297$(eval $(call cfg-depends-all,CFG_SECSTOR_TA,CFG_REE_FS CFG_WITH_USER_TA)) 298 299# Enable the pseudo TA that managages TA storage in secure storage 300CFG_SECSTOR_TA_MGMT_PTA ?= $(call cfg-all-enabled,CFG_SECSTOR_TA) 301$(eval $(call cfg-depends-all,CFG_SECSTOR_TA_MGMT_PTA,CFG_SECSTOR_TA)) 302 303# Enable the pseudo TA for misc. auxilary services, extending existing 304# GlobalPlatform Core API (for example, re-seeding RNG entropy pool etc.) 305CFG_SYSTEM_PTA ?= y 306 307# Define the number of cores per cluster used in calculating core position. 308# The cluster number is shifted by this value and added to the core ID, 309# so its value represents log2(cores/cluster). 310# Default is 2**(2) = 4 cores per cluster. 311CFG_CORE_CLUSTER_SHIFT ?= 2 312 313# Do not report to NW that dynamic shared memory (shared memory outside 314# predefined region) is enabled. 315# Note that you can disable this feature for debug purposes. OP-TEE will not 316# report to Normal World that it support dynamic SHM. But, nevertheles it 317# will accept dynamic SHM buffers. 318CFG_DYN_SHM_CAP ?= y 319 320# Enables support for larger physical addresses, that is, it will define 321# paddr_t as a 64-bit type. 322CFG_CORE_LARGE_PHYS_ADDR ?= n 323 324# Define the maximum size, in bits, for big numbers in the Internal Core API 325# Arithmetical functions. This does *not* influence the key size that may be 326# manipulated through the Cryptographic API. 327# Set this to a lower value to reduce the TA memory footprint. 328CFG_TA_BIGNUM_MAX_BITS ?= 2048 329 330# Define the maximum size, in bits, for big numbers in the TEE core (privileged 331# layer). 332# This value is an upper limit for the key size in any cryptographic algorithm 333# implemented by the TEE core. 334# Set this to a lower value to reduce the memory footprint. 335CFG_CORE_BIGNUM_MAX_BITS ?= 4096 336 337# Compiles mbedTLS for TA usage 338CFG_TA_MBEDTLS ?= y 339 340# Compile the TA library mbedTLS with self test functions, the functions 341# need to be called to test anything 342CFG_TA_MBEDTLS_SELF_TEST ?= y 343