xref: /optee_os/core/mm/core_mmu.c (revision c879bd896c23a61fd25ea5e3c7c1dedc2075926b)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016-2025 Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved.
6  */
7 
8 #include <assert.h>
9 #include <config.h>
10 #include <kernel/boot.h>
11 #include <kernel/dt.h>
12 #include <kernel/linker.h>
13 #include <kernel/panic.h>
14 #include <kernel/spinlock.h>
15 #include <kernel/tee_l2cc_mutex.h>
16 #include <kernel/tee_misc.h>
17 #include <kernel/tlb_helpers.h>
18 #include <kernel/user_mode_ctx.h>
19 #include <kernel/virtualization.h>
20 #include <libfdt.h>
21 #include <memtag.h>
22 #include <mm/core_memprot.h>
23 #include <mm/core_mmu.h>
24 #include <mm/mobj.h>
25 #include <mm/pgt_cache.h>
26 #include <mm/phys_mem.h>
27 #include <mm/tee_pager.h>
28 #include <mm/vm.h>
29 #include <platform_config.h>
30 #include <stdalign.h>
31 #include <string.h>
32 #include <trace.h>
33 #include <util.h>
34 
35 #ifndef DEBUG_XLAT_TABLE
36 #define DEBUG_XLAT_TABLE 0
37 #endif
38 
39 #define SHM_VASPACE_SIZE	(1024 * 1024 * 32)
40 
41 /* Virtual memory pool for core mappings */
42 tee_mm_pool_t core_virt_mem_pool;
43 
44 /* Virtual memory pool for shared memory mappings */
45 tee_mm_pool_t core_virt_shm_pool;
46 
47 #ifdef CFG_CORE_PHYS_RELOCATABLE
48 unsigned long core_mmu_tee_load_pa __nex_bss;
49 #else
50 const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR;
51 #endif
52 
53 /*
54  * These variables are initialized before .bss is cleared. To avoid
55  * resetting them when .bss is cleared we're storing them in .data instead,
56  * even if they initially are zero.
57  */
58 
59 #ifdef CFG_CORE_RESERVED_SHM
60 /* Default NSec shared memory allocated from NSec world */
61 unsigned long default_nsec_shm_size __nex_bss;
62 unsigned long default_nsec_shm_paddr __nex_bss;
63 #endif
64 
65 static struct memory_map static_memory_map __nex_bss;
66 void (*memory_map_realloc_func)(struct memory_map *mem_map) __nex_bss;
67 
68 /* Offset of the first TEE RAM mapping from start of secure RAM */
69 static size_t tee_ram_initial_offs __nex_bss;
70 
71 /* Define the platform's memory layout. */
72 struct memaccess_area {
73 	paddr_t paddr;
74 	size_t size;
75 };
76 
77 #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s }
78 
79 static struct memaccess_area secure_only[] __nex_data = {
80 #ifdef CFG_CORE_PHYS_RELOCATABLE
81 	MEMACCESS_AREA(0, 0),
82 #else
83 #ifdef TRUSTED_SRAM_BASE
84 	MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE),
85 #endif
86 	MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE),
87 #endif
88 };
89 
90 static struct memaccess_area nsec_shared[] __nex_data = {
91 #ifdef CFG_CORE_RESERVED_SHM
92 	MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE),
93 #endif
94 };
95 
96 #if defined(CFG_SECURE_DATA_PATH)
97 static const char *tz_sdp_match = "linaro,secure-heap";
98 static struct memaccess_area sec_sdp;
99 #ifdef CFG_TEE_SDP_MEM_BASE
100 register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE);
101 #endif
102 #ifdef TEE_SDP_TEST_MEM_BASE
103 register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE);
104 #endif
105 #endif
106 
107 #ifdef CFG_CORE_RESERVED_SHM
108 register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE);
109 #endif
110 static unsigned int mmu_spinlock;
111 
112 static uint32_t mmu_lock(void)
113 {
114 	return cpu_spin_lock_xsave(&mmu_spinlock);
115 }
116 
117 static void mmu_unlock(uint32_t exceptions)
118 {
119 	cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions);
120 }
121 
122 static void heap_realloc_memory_map(struct memory_map *mem_map)
123 {
124 	struct tee_mmap_region *m = NULL;
125 	struct tee_mmap_region *old = mem_map->map;
126 	size_t old_sz = sizeof(*old) * mem_map->alloc_count;
127 	size_t sz = old_sz + sizeof(*m);
128 
129 	assert(nex_malloc_buffer_is_within_alloced(old, old_sz));
130 	m = nex_realloc(old, sz);
131 	if (!m)
132 		panic();
133 	mem_map->map = m;
134 	mem_map->alloc_count++;
135 }
136 
137 static void boot_mem_realloc_memory_map(struct memory_map *mem_map)
138 {
139 	struct tee_mmap_region *m = NULL;
140 	struct tee_mmap_region *old = mem_map->map;
141 	size_t old_sz = sizeof(*old) * mem_map->alloc_count;
142 	size_t sz = old_sz * 2;
143 
144 	m = boot_mem_alloc_tmp(sz, alignof(*m));
145 	memcpy(m, old, old_sz);
146 	mem_map->map = m;
147 	mem_map->alloc_count *= 2;
148 }
149 
150 static void grow_mem_map(struct memory_map *mem_map)
151 {
152 	if (mem_map->count == mem_map->alloc_count) {
153 		if (!memory_map_realloc_func) {
154 			EMSG("Out of entries (%zu) in mem_map",
155 			     mem_map->alloc_count);
156 			panic();
157 		}
158 		memory_map_realloc_func(mem_map);
159 	}
160 	mem_map->count++;
161 }
162 
163 void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size)
164 {
165 	/*
166 	 * The first range is always used to cover OP-TEE core memory, but
167 	 * depending on configuration it may cover more than that.
168 	 */
169 	*base = secure_only[0].paddr;
170 	*size = secure_only[0].size;
171 }
172 
173 void core_mmu_set_secure_memory(paddr_t base, size_t size)
174 {
175 #ifdef CFG_CORE_PHYS_RELOCATABLE
176 	static_assert(ARRAY_SIZE(secure_only) == 1);
177 #endif
178 	runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE));
179 	assert(!secure_only[0].size);
180 	assert(base && size);
181 
182 	DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size);
183 	secure_only[0].paddr = base;
184 	secure_only[0].size = size;
185 }
186 
187 static struct memory_map *get_memory_map(void)
188 {
189 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
190 		struct memory_map *map = virt_get_memory_map();
191 
192 		if (map)
193 			return map;
194 	}
195 
196 	return &static_memory_map;
197 }
198 
199 static bool _pbuf_intersects(struct memaccess_area *a, size_t alen,
200 			     paddr_t pa, size_t size)
201 {
202 	size_t n;
203 
204 	for (n = 0; n < alen; n++)
205 		if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size))
206 			return true;
207 	return false;
208 }
209 
210 #define pbuf_intersects(a, pa, size) \
211 	_pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size))
212 
213 static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen,
214 			    paddr_t pa, size_t size)
215 {
216 	size_t n;
217 
218 	for (n = 0; n < alen; n++)
219 		if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size))
220 			return true;
221 	return false;
222 }
223 
224 #define pbuf_is_inside(a, pa, size) \
225 	_pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size))
226 
227 static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len)
228 {
229 	paddr_t end_pa = 0;
230 
231 	if (!map)
232 		return false;
233 
234 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
235 		return false;
236 
237 	return (pa >= map->pa && end_pa <= map->pa + map->size - 1);
238 }
239 
240 static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va)
241 {
242 	if (!map)
243 		return false;
244 	return (va >= map->va && va <= (map->va + map->size - 1));
245 }
246 
247 /* check if target buffer fits in a core default map area */
248 static bool pbuf_inside_map_area(unsigned long p, size_t l,
249 				 struct tee_mmap_region *map)
250 {
251 	return core_is_buffer_inside(p, l, map->pa, map->size);
252 }
253 
254 TEE_Result core_mmu_for_each_map(void *ptr,
255 				 TEE_Result (*fn)(struct tee_mmap_region *map,
256 						  void *ptr))
257 {
258 	struct memory_map *mem_map = get_memory_map();
259 	TEE_Result res = TEE_SUCCESS;
260 	size_t n = 0;
261 
262 	for (n = 0; n < mem_map->count; n++) {
263 		res = fn(mem_map->map + n, ptr);
264 		if (res)
265 			return res;
266 	}
267 
268 	return TEE_SUCCESS;
269 }
270 
271 static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type)
272 {
273 	struct memory_map *mem_map = get_memory_map();
274 	size_t n = 0;
275 
276 	for (n = 0; n < mem_map->count; n++) {
277 		if (mem_map->map[n].type == type)
278 			return mem_map->map + n;
279 	}
280 	return NULL;
281 }
282 
283 static struct tee_mmap_region *
284 find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len)
285 {
286 	struct memory_map *mem_map = get_memory_map();
287 	size_t n = 0;
288 
289 	for (n = 0; n < mem_map->count; n++) {
290 		if (mem_map->map[n].type != type)
291 			continue;
292 		if (pa_is_in_map(mem_map->map + n, pa, len))
293 			return mem_map->map + n;
294 	}
295 	return NULL;
296 }
297 
298 static struct tee_mmap_region *find_map_by_va(void *va)
299 {
300 	struct memory_map *mem_map = get_memory_map();
301 	vaddr_t a = (vaddr_t)va;
302 	size_t n = 0;
303 
304 	for (n = 0; n < mem_map->count; n++) {
305 		if (a >= mem_map->map[n].va &&
306 		    a <= (mem_map->map[n].va - 1 + mem_map->map[n].size))
307 			return mem_map->map + n;
308 	}
309 
310 	return NULL;
311 }
312 
313 static struct tee_mmap_region *find_map_by_pa(unsigned long pa)
314 {
315 	struct memory_map *mem_map = get_memory_map();
316 	size_t n = 0;
317 
318 	for (n = 0; n < mem_map->count; n++) {
319 		/* Skip unmapped regions */
320 		if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) &&
321 		    pa >= mem_map->map[n].pa &&
322 		    pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size))
323 			return mem_map->map + n;
324 	}
325 
326 	return NULL;
327 }
328 
329 #if defined(CFG_SECURE_DATA_PATH)
330 static bool dtb_get_sdp_region(void)
331 {
332 	void *fdt = NULL;
333 	int node = 0;
334 	int tmp_node = 0;
335 	paddr_t tmp_addr = 0;
336 	size_t tmp_size = 0;
337 
338 	if (!IS_ENABLED(CFG_EMBED_DTB))
339 		return false;
340 
341 	fdt = get_embedded_dt();
342 	if (!fdt)
343 		panic("No DTB found");
344 
345 	node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match);
346 	if (node < 0) {
347 		DMSG("No %s compatible node found", tz_sdp_match);
348 		return false;
349 	}
350 	tmp_node = node;
351 	while (tmp_node >= 0) {
352 		tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node,
353 							 tz_sdp_match);
354 		if (tmp_node >= 0)
355 			DMSG("Ignore SDP pool node %s, supports only 1 node",
356 			     fdt_get_name(fdt, tmp_node, NULL));
357 	}
358 
359 	if (fdt_reg_info(fdt, node, &tmp_addr, &tmp_size)) {
360 		EMSG("%s: Unable to get base addr or size from DT",
361 		     tz_sdp_match);
362 		return false;
363 	}
364 
365 	sec_sdp.paddr = tmp_addr;
366 	sec_sdp.size = tmp_size;
367 
368 	return true;
369 }
370 #endif
371 
372 #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH)
373 static bool pbuf_is_special_mem(paddr_t pbuf, size_t len,
374 				const struct core_mmu_phys_mem *start,
375 				const struct core_mmu_phys_mem *end)
376 {
377 	const struct core_mmu_phys_mem *mem;
378 
379 	for (mem = start; mem < end; mem++) {
380 		if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size))
381 			return true;
382 	}
383 
384 	return false;
385 }
386 #endif
387 
388 #ifdef CFG_CORE_DYN_SHM
389 static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems,
390 			       paddr_t pa, size_t size)
391 {
392 	struct core_mmu_phys_mem *m = *mem;
393 	size_t n = 0;
394 
395 	while (n < *nelems) {
396 		if (!core_is_buffer_intersect(pa, size, m[n].addr, m[n].size)) {
397 			n++;
398 			continue;
399 		}
400 
401 		if (core_is_buffer_inside(m[n].addr, m[n].size, pa, size)) {
402 			/* m[n] is completely covered by pa:size */
403 			rem_array_elem(m, *nelems, sizeof(*m), n);
404 			(*nelems)--;
405 			m = nex_realloc(m, sizeof(*m) * *nelems);
406 			if (!m)
407 				panic();
408 			*mem = m;
409 			continue;
410 		}
411 
412 		if (pa > m[n].addr &&
413 		    pa + size - 1 < m[n].addr + m[n].size - 1) {
414 			/*
415 			 * pa:size is strictly inside m[n] range so split
416 			 * m[n] entry.
417 			 */
418 			m = nex_realloc(m, sizeof(*m) * (*nelems + 1));
419 			if (!m)
420 				panic();
421 			*mem = m;
422 			(*nelems)++;
423 			ins_array_elem(m, *nelems, sizeof(*m), n + 1, NULL);
424 			m[n + 1].addr = pa + size;
425 			m[n + 1].size = m[n].addr + m[n].size - pa - size;
426 			m[n].size = pa - m[n].addr;
427 			n++;
428 		} else if (pa <= m[n].addr) {
429 			/*
430 			 * pa:size is overlapping (possibly partially) at the
431 			 * beginning of m[n].
432 			 */
433 			m[n].size = m[n].addr + m[n].size - pa - size;
434 			m[n].addr = pa + size;
435 		} else {
436 			/*
437 			 * pa:size is overlapping (possibly partially) at
438 			 * the end of m[n].
439 			 */
440 			m[n].size = pa - m[n].addr;
441 		}
442 		n++;
443 	}
444 }
445 
446 static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start,
447 				      size_t nelems,
448 				      struct tee_mmap_region *map)
449 {
450 	size_t n;
451 
452 	for (n = 0; n < nelems; n++) {
453 		if (!core_is_buffer_outside(start[n].addr, start[n].size,
454 					    map->pa, map->size)) {
455 			EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ
456 			     ") overlaps map (type %d %#" PRIxPA ":%#zx)",
457 			     start[n].addr, start[n].size,
458 			     map->type, map->pa, map->size);
459 			panic();
460 		}
461 	}
462 }
463 
464 static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss;
465 static size_t discovered_nsec_ddr_nelems __nex_bss;
466 
467 static int cmp_pmem_by_addr(const void *a, const void *b)
468 {
469 	const struct core_mmu_phys_mem *pmem_a = a;
470 	const struct core_mmu_phys_mem *pmem_b = b;
471 
472 	return CMP_TRILEAN(pmem_a->addr, pmem_b->addr);
473 }
474 
475 void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start,
476 				      size_t nelems)
477 {
478 	struct core_mmu_phys_mem *m = start;
479 	size_t num_elems = nelems;
480 	struct memory_map *mem_map = &static_memory_map;
481 	const struct core_mmu_phys_mem __maybe_unused *pmem;
482 	size_t n = 0;
483 
484 	assert(!discovered_nsec_ddr_start);
485 	assert(m && num_elems);
486 
487 	qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr);
488 
489 	/*
490 	 * Non-secure shared memory and also secure data
491 	 * path memory are supposed to reside inside
492 	 * non-secure memory. Since NSEC_SHM and SDP_MEM
493 	 * are used for a specific purpose make holes for
494 	 * those memory in the normal non-secure memory.
495 	 *
496 	 * This has to be done since for instance QEMU
497 	 * isn't aware of which memory range in the
498 	 * non-secure memory is used for NSEC_SHM.
499 	 */
500 
501 #ifdef CFG_SECURE_DATA_PATH
502 	if (dtb_get_sdp_region())
503 		carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size);
504 
505 	for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++)
506 		carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size);
507 #endif
508 
509 	for (n = 0; n < ARRAY_SIZE(secure_only); n++)
510 		carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr,
511 				   secure_only[n].size);
512 
513 	for  (n = 0; n < mem_map->count; n++) {
514 		switch (mem_map->map[n].type) {
515 		case MEM_AREA_NSEC_SHM:
516 			carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa,
517 					   mem_map->map[n].size);
518 			break;
519 		case MEM_AREA_EXT_DT:
520 		case MEM_AREA_MANIFEST_DT:
521 		case MEM_AREA_RAM_NSEC:
522 		case MEM_AREA_RES_VASPACE:
523 		case MEM_AREA_SHM_VASPACE:
524 		case MEM_AREA_TS_VASPACE:
525 		case MEM_AREA_PAGER_VASPACE:
526 		case MEM_AREA_NEX_DYN_VASPACE:
527 		case MEM_AREA_TEE_DYN_VASPACE:
528 			break;
529 		default:
530 			check_phys_mem_is_outside(m, num_elems,
531 						  mem_map->map + n);
532 		}
533 	}
534 
535 	discovered_nsec_ddr_start = m;
536 	discovered_nsec_ddr_nelems = num_elems;
537 
538 	DMSG("Non-secure RAM:");
539 	for (n = 0; n < num_elems; n++)
540 		DMSG("%zu: pa %#"PRIxPA"..%#"PRIxPA" sz %#"PRIxPASZ,
541 		     n, m[n].addr, m[n].addr + m[n].size - 1, m[n].size);
542 
543 	if (!core_mmu_check_end_pa(m[num_elems - 1].addr,
544 				   m[num_elems - 1].size))
545 		panic();
546 }
547 
548 static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start,
549 				    const struct core_mmu_phys_mem **end)
550 {
551 	if (!discovered_nsec_ddr_start)
552 		return false;
553 
554 	*start = discovered_nsec_ddr_start;
555 	*end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems;
556 
557 	return true;
558 }
559 
560 static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len)
561 {
562 	const struct core_mmu_phys_mem *start;
563 	const struct core_mmu_phys_mem *end;
564 
565 	if (!get_discovered_nsec_ddr(&start, &end))
566 		return false;
567 
568 	return pbuf_is_special_mem(pbuf, len, start, end);
569 }
570 
571 bool core_mmu_nsec_ddr_is_defined(void)
572 {
573 	const struct core_mmu_phys_mem *start;
574 	const struct core_mmu_phys_mem *end;
575 
576 	if (!get_discovered_nsec_ddr(&start, &end))
577 		return false;
578 
579 	return start != end;
580 }
581 #else
582 static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused)
583 {
584 	return false;
585 }
586 #endif /*CFG_CORE_DYN_SHM*/
587 
588 #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \
589 	EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \
590 			pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2))
591 
592 #ifdef CFG_SECURE_DATA_PATH
593 static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len)
594 {
595 	bool is_sdp_mem = false;
596 
597 	if (sec_sdp.size)
598 		is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr,
599 						   sec_sdp.size);
600 
601 	if (!is_sdp_mem)
602 		is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin,
603 						 phys_sdp_mem_end);
604 
605 	return is_sdp_mem;
606 }
607 
608 static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size)
609 {
610 	struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED,
611 					    CORE_MEM_SDP_MEM);
612 
613 	if (!mobj)
614 		panic("can't create SDP physical memory object");
615 
616 	return mobj;
617 }
618 
619 struct mobj **core_sdp_mem_create_mobjs(void)
620 {
621 	const struct core_mmu_phys_mem *mem = NULL;
622 	struct mobj **mobj_base = NULL;
623 	struct mobj **mobj = NULL;
624 	int cnt = phys_sdp_mem_end - phys_sdp_mem_begin;
625 
626 	if (sec_sdp.size)
627 		cnt++;
628 
629 	/* SDP mobjs table must end with a NULL entry */
630 	mobj_base = calloc(cnt + 1, sizeof(struct mobj *));
631 	if (!mobj_base)
632 		panic("Out of memory");
633 
634 	mobj = mobj_base;
635 
636 	for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++)
637 		*mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size);
638 
639 	if (sec_sdp.size)
640 		*mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size);
641 
642 	return mobj_base;
643 }
644 
645 #else /* CFG_SECURE_DATA_PATH */
646 static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused)
647 {
648 	return false;
649 }
650 
651 #endif /* CFG_SECURE_DATA_PATH */
652 
653 /* Check special memories comply with registered memories */
654 static void verify_special_mem_areas(struct memory_map *mem_map,
655 				     const struct core_mmu_phys_mem *start,
656 				     const struct core_mmu_phys_mem *end,
657 				     const char *area_name __maybe_unused)
658 {
659 	const struct core_mmu_phys_mem *mem = NULL;
660 	const struct core_mmu_phys_mem *mem2 = NULL;
661 	size_t n = 0;
662 
663 	if (start == end) {
664 		DMSG("No %s memory area defined", area_name);
665 		return;
666 	}
667 
668 	for (mem = start; mem < end; mem++)
669 		DMSG("%s memory [%" PRIxPA " %" PRIx64 "]",
670 		     area_name, mem->addr, (uint64_t)mem->addr + mem->size);
671 
672 	/* Check memories do not intersect each other */
673 	for (mem = start; mem + 1 < end; mem++) {
674 		for (mem2 = mem + 1; mem2 < end; mem2++) {
675 			if (core_is_buffer_intersect(mem2->addr, mem2->size,
676 						     mem->addr, mem->size)) {
677 				MSG_MEM_INSTERSECT(mem2->addr, mem2->size,
678 						   mem->addr, mem->size);
679 				panic("Special memory intersection");
680 			}
681 		}
682 	}
683 
684 	/*
685 	 * Check memories do not intersect any mapped memory.
686 	 * This is called before reserved VA space is loaded in mem_map.
687 	 */
688 	for (mem = start; mem < end; mem++) {
689 		for (n = 0; n < mem_map->count; n++) {
690 #ifdef TEE_SDP_TEST_MEM_BASE
691 			/*
692 			 * Ignore MEM_AREA_SEC_RAM_OVERALL since it covers
693 			 * TEE_SDP_TEST_MEM too.
694 			 */
695 			if (mem->addr == TEE_SDP_TEST_MEM_BASE &&
696 			    mem->size == TEE_SDP_TEST_MEM_SIZE &&
697 			    mem_map->map[n].type == MEM_AREA_SEC_RAM_OVERALL)
698 				continue;
699 #endif
700 			if (core_is_buffer_intersect(mem->addr, mem->size,
701 						     mem_map->map[n].pa,
702 						     mem_map->map[n].size)) {
703 				MSG_MEM_INSTERSECT(mem->addr, mem->size,
704 						   mem_map->map[n].pa,
705 						   mem_map->map[n].size);
706 				panic("Special memory intersection");
707 			}
708 		}
709 	}
710 }
711 
712 static void merge_mmaps(struct tee_mmap_region *dst,
713 			const struct tee_mmap_region *src)
714 {
715 	paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1);
716 	paddr_t pa = MIN(dst->pa, src->pa);
717 
718 	DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA,
719 	     dst->pa, dst->pa + dst->size - 1, src->pa,
720 	     src->pa + src->size - 1);
721 	dst->pa = pa;
722 	dst->size = end_pa - pa + 1;
723 }
724 
725 static bool mmaps_are_mergeable(const struct tee_mmap_region *r1,
726 				const struct tee_mmap_region *r2)
727 {
728 	if (r1->type != r2->type)
729 		return false;
730 
731 	if (r1->pa == r2->pa)
732 		return true;
733 
734 	if (r1->pa < r2->pa)
735 		return r1->pa + r1->size >= r2->pa;
736 	else
737 		return r2->pa + r2->size >= r1->pa;
738 }
739 
740 static void add_phys_mem(struct memory_map *mem_map,
741 			 const char *mem_name __maybe_unused,
742 			 enum teecore_memtypes mem_type,
743 			 paddr_t mem_addr, paddr_size_t mem_size)
744 {
745 	size_t n = 0;
746 	const struct tee_mmap_region m0 = {
747 		.type = mem_type,
748 		.pa = mem_addr,
749 		.size = mem_size,
750 	};
751 
752 	if (!mem_size)	/* Discard null size entries */
753 		return;
754 
755 	/*
756 	 * If some ranges of memory of the same type do overlap
757 	 * each others they are coalesced into one entry. To help this
758 	 * added entries are sorted by increasing physical.
759 	 *
760 	 * Note that it's valid to have the same physical memory as several
761 	 * different memory types, for instance the same device memory
762 	 * mapped as both secure and non-secure. This will probably not
763 	 * happen often in practice.
764 	 */
765 	DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ,
766 	     mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size);
767 	for  (n = 0; n < mem_map->count; n++) {
768 		if (mmaps_are_mergeable(mem_map->map + n, &m0)) {
769 			merge_mmaps(mem_map->map + n, &m0);
770 			/*
771 			 * The merged result might be mergeable with the
772 			 * next or previous entry.
773 			 */
774 			if (n + 1 < mem_map->count &&
775 			    mmaps_are_mergeable(mem_map->map + n,
776 						mem_map->map + n + 1)) {
777 				merge_mmaps(mem_map->map + n,
778 					    mem_map->map + n + 1);
779 				rem_array_elem(mem_map->map, mem_map->count,
780 					       sizeof(*mem_map->map), n + 1);
781 				mem_map->count--;
782 			}
783 			if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1,
784 							 mem_map->map + n)) {
785 				merge_mmaps(mem_map->map + n - 1,
786 					    mem_map->map + n);
787 				rem_array_elem(mem_map->map, mem_map->count,
788 					       sizeof(*mem_map->map), n);
789 				mem_map->count--;
790 			}
791 			return;
792 		}
793 		if (mem_type < mem_map->map[n].type ||
794 		    (mem_type == mem_map->map[n].type &&
795 		     mem_addr < mem_map->map[n].pa))
796 			break; /* found the spot where to insert this memory */
797 	}
798 
799 	grow_mem_map(mem_map);
800 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
801 		       n, &m0);
802 }
803 
804 static void add_va_space(struct memory_map *mem_map,
805 			 enum teecore_memtypes type, size_t size)
806 {
807 	size_t n = 0;
808 
809 	DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size);
810 	for  (n = 0; n < mem_map->count; n++) {
811 		if (type < mem_map->map[n].type)
812 			break;
813 	}
814 
815 	grow_mem_map(mem_map);
816 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
817 		       n, NULL);
818 	mem_map->map[n] = (struct tee_mmap_region){
819 		.type = type,
820 		.size = size,
821 	};
822 }
823 
824 uint32_t core_mmu_type_to_attr(enum teecore_memtypes t)
825 {
826 	const uint32_t attr = TEE_MATTR_VALID_BLOCK;
827 	const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED <<
828 				TEE_MATTR_MEM_TYPE_SHIFT;
829 	const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED <<
830 				TEE_MATTR_MEM_TYPE_SHIFT;
831 	const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV <<
832 				  TEE_MATTR_MEM_TYPE_SHIFT;
833 
834 	switch (t) {
835 	case MEM_AREA_TEE_RAM:
836 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged;
837 	case MEM_AREA_TEE_RAM_RX:
838 	case MEM_AREA_INIT_RAM_RX:
839 	case MEM_AREA_IDENTITY_MAP_RX:
840 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged;
841 	case MEM_AREA_TEE_RAM_RO:
842 	case MEM_AREA_INIT_RAM_RO:
843 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged;
844 	case MEM_AREA_TEE_RAM_RW:
845 	case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */
846 	case MEM_AREA_NEX_RAM_RW:
847 	case MEM_AREA_NEX_DYN_VASPACE:
848 	case MEM_AREA_TEE_DYN_VASPACE:
849 	case MEM_AREA_TEE_ASAN:
850 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
851 	case MEM_AREA_TEE_COHERENT:
852 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache;
853 	case MEM_AREA_NSEC_SHM:
854 	case MEM_AREA_NEX_NSEC_SHM:
855 		return attr | TEE_MATTR_PRW | cached;
856 	case MEM_AREA_MANIFEST_DT:
857 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
858 	case MEM_AREA_TRANSFER_LIST:
859 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
860 	case MEM_AREA_EXT_DT:
861 		/*
862 		 * If CFG_MAP_EXT_DT_SECURE is enabled map the external device
863 		 * tree as secure non-cached memory, otherwise, fall back to
864 		 * non-secure mapping.
865 		 */
866 		if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE))
867 			return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW |
868 			       noncache;
869 		fallthrough;
870 	case MEM_AREA_IO_NSEC:
871 		return attr | TEE_MATTR_PRW | noncache;
872 	case MEM_AREA_IO_SEC:
873 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache;
874 	case MEM_AREA_RAM_NSEC:
875 		return attr | TEE_MATTR_PRW | cached;
876 	case MEM_AREA_RAM_SEC:
877 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached;
878 	case MEM_AREA_SEC_RAM_OVERALL:
879 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged;
880 	case MEM_AREA_ROM_SEC:
881 		return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached;
882 	case MEM_AREA_RES_VASPACE:
883 	case MEM_AREA_SHM_VASPACE:
884 		return 0;
885 	case MEM_AREA_PAGER_VASPACE:
886 		return TEE_MATTR_SECURE;
887 	default:
888 		panic("invalid type");
889 	}
890 }
891 
892 static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm)
893 {
894 	switch (mm->type) {
895 	case MEM_AREA_TEE_RAM:
896 	case MEM_AREA_TEE_RAM_RX:
897 	case MEM_AREA_TEE_RAM_RO:
898 	case MEM_AREA_TEE_RAM_RW:
899 	case MEM_AREA_INIT_RAM_RX:
900 	case MEM_AREA_INIT_RAM_RO:
901 	case MEM_AREA_NEX_RAM_RW:
902 	case MEM_AREA_NEX_RAM_RO:
903 	case MEM_AREA_TEE_ASAN:
904 		return true;
905 	default:
906 		return false;
907 	}
908 }
909 
910 static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm)
911 {
912 	return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE);
913 }
914 
915 static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm)
916 {
917 	return mm->region_size == CORE_MMU_PGDIR_SIZE;
918 }
919 
920 static int cmp_mmap_by_lower_va(const void *a, const void *b)
921 {
922 	const struct tee_mmap_region *mm_a = a;
923 	const struct tee_mmap_region *mm_b = b;
924 
925 	return CMP_TRILEAN(mm_a->va, mm_b->va);
926 }
927 
928 static void dump_mmap_table(struct memory_map *mem_map)
929 {
930 	size_t n = 0;
931 
932 	for (n = 0; n < mem_map->count; n++) {
933 		struct tee_mmap_region *map __maybe_unused = mem_map->map + n;
934 
935 		DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA
936 		     " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)",
937 		     teecore_memtype_name(map->type), map->va,
938 		     map->va + map->size - 1, map->pa,
939 		     (paddr_t)(map->pa + map->size - 1), map->size,
940 		     map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir");
941 	}
942 }
943 
944 #if DEBUG_XLAT_TABLE
945 
946 static void dump_xlat_table(vaddr_t va, unsigned int level)
947 {
948 	struct core_mmu_table_info tbl_info;
949 	unsigned int idx = 0;
950 	paddr_t pa;
951 	uint32_t attr;
952 
953 	core_mmu_find_table(NULL, va, level, &tbl_info);
954 	va = tbl_info.va_base;
955 	for (idx = 0; idx < tbl_info.num_entries; idx++) {
956 		core_mmu_get_entry(&tbl_info, idx, &pa, &attr);
957 		if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) {
958 			const char *security_bit = "";
959 
960 			if (core_mmu_entry_have_security_bit(attr)) {
961 				if (attr & TEE_MATTR_SECURE)
962 					security_bit = "S";
963 				else
964 					security_bit = "NS";
965 			}
966 
967 			if (attr & TEE_MATTR_TABLE) {
968 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
969 					" TBL:0x%010" PRIxPA " %s",
970 					level * 2, "", level, va, pa,
971 					security_bit);
972 				dump_xlat_table(va, level + 1);
973 			} else if (attr) {
974 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
975 					" PA:0x%010" PRIxPA " %s-%s-%s-%s",
976 					level * 2, "", level, va, pa,
977 					mattr_is_cached(attr) ? "MEM" :
978 					"DEV",
979 					attr & TEE_MATTR_PW ? "RW" : "RO",
980 					attr & TEE_MATTR_PX ? "X " : "XN",
981 					security_bit);
982 			} else {
983 				DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA
984 					    " INVALID\n",
985 					    level * 2, "", level, va);
986 			}
987 		}
988 		va += BIT64(tbl_info.shift);
989 	}
990 }
991 
992 #else
993 
994 static void dump_xlat_table(vaddr_t va __unused, int level __unused)
995 {
996 }
997 
998 #endif
999 
1000 /*
1001  * Reserves virtual memory space for pager usage.
1002  *
1003  * From the start of the first memory used by the link script +
1004  * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty
1005  * mapping for pager usage. This adds translation tables as needed for the
1006  * pager to operate.
1007  */
1008 static void add_pager_vaspace(struct memory_map *mem_map)
1009 {
1010 	paddr_t begin = 0;
1011 	paddr_t end = 0;
1012 	size_t size = 0;
1013 	size_t pos = 0;
1014 	size_t n = 0;
1015 
1016 
1017 	for (n = 0; n < mem_map->count; n++) {
1018 		if (map_is_tee_ram(mem_map->map + n)) {
1019 			if (!begin)
1020 				begin = mem_map->map[n].pa;
1021 			pos = n + 1;
1022 		}
1023 	}
1024 
1025 	end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size;
1026 	assert(end - begin < TEE_RAM_VA_SIZE);
1027 	size = TEE_RAM_VA_SIZE - (end - begin);
1028 
1029 	grow_mem_map(mem_map);
1030 	ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map),
1031 		       n, NULL);
1032 	mem_map->map[n] = (struct tee_mmap_region){
1033 		.type = MEM_AREA_PAGER_VASPACE,
1034 		.size = size,
1035 		.region_size = SMALL_PAGE_SIZE,
1036 		.attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE),
1037 	};
1038 }
1039 
1040 static void check_sec_nsec_mem_config(void)
1041 {
1042 	size_t n = 0;
1043 
1044 	for (n = 0; n < ARRAY_SIZE(secure_only); n++) {
1045 		if (pbuf_intersects(nsec_shared, secure_only[n].paddr,
1046 				    secure_only[n].size))
1047 			panic("Invalid memory access config: sec/nsec");
1048 	}
1049 }
1050 
1051 static void collect_device_mem_ranges(struct memory_map *mem_map)
1052 {
1053 	const char *compatible = "arm,ffa-manifest-device-regions";
1054 	void *fdt = get_manifest_dt();
1055 	const char *name = NULL;
1056 	uint64_t page_count = 0;
1057 	uint64_t base = 0;
1058 	int subnode = 0;
1059 	int node = 0;
1060 
1061 	assert(fdt);
1062 
1063 	node = fdt_node_offset_by_compatible(fdt, 0, compatible);
1064 	if (node < 0)
1065 		return;
1066 
1067 	fdt_for_each_subnode(subnode, fdt, node) {
1068 		name = fdt_get_name(fdt, subnode, NULL);
1069 		if (!name)
1070 			continue;
1071 
1072 		if (dt_getprop_as_number(fdt, subnode, "base-address",
1073 					 &base)) {
1074 			EMSG("Mandatory field is missing: base-address");
1075 			continue;
1076 		}
1077 
1078 		if (base & SMALL_PAGE_MASK) {
1079 			EMSG("base-address is not page aligned");
1080 			continue;
1081 		}
1082 
1083 		if (dt_getprop_as_number(fdt, subnode, "pages-count",
1084 					 &page_count)) {
1085 			EMSG("Mandatory field is missing: pages-count");
1086 			continue;
1087 		}
1088 
1089 		add_phys_mem(mem_map, name, MEM_AREA_IO_SEC,
1090 			     base, page_count * SMALL_PAGE_SIZE);
1091 	}
1092 }
1093 
1094 static void collect_mem_ranges(struct memory_map *mem_map)
1095 {
1096 	const struct core_mmu_phys_mem *mem = NULL;
1097 	vaddr_t ram_start = secure_only[0].paddr;
1098 	size_t n = 0;
1099 
1100 #define ADD_PHYS_MEM(_type, _addr, _size) \
1101 		add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size))
1102 
1103 	if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) {
1104 		paddr_t next_pa = 0;
1105 
1106 		/*
1107 		 * Read-only and read-execute physical memory areas must
1108 		 * not be mapped by MEM_AREA_SEC_RAM_OVERALL, but all the
1109 		 * read/write should.
1110 		 */
1111 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, ram_start,
1112 			     VCORE_UNPG_RX_PA - ram_start);
1113 		assert(VCORE_UNPG_RX_PA >= ram_start);
1114 		tee_ram_initial_offs = VCORE_UNPG_RX_PA - ram_start;
1115 		DMSG("tee_ram_initial_offs %#zx", tee_ram_initial_offs);
1116 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA,
1117 			     VCORE_UNPG_RX_SZ);
1118 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA,
1119 			     VCORE_UNPG_RO_SZ);
1120 
1121 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
1122 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA,
1123 				     VCORE_UNPG_RW_SZ);
1124 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA,
1125 				     VCORE_UNPG_RW_SZ);
1126 
1127 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA,
1128 				     VCORE_NEX_RW_SZ);
1129 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_NEX_RW_PA,
1130 				     VCORE_NEX_RW_SZ);
1131 
1132 			ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_FREE_PA,
1133 				     VCORE_FREE_SZ);
1134 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA,
1135 				     VCORE_FREE_SZ);
1136 			next_pa = VCORE_FREE_PA + VCORE_FREE_SZ;
1137 		} else {
1138 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA,
1139 				     VCORE_UNPG_RW_SZ);
1140 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA,
1141 				     VCORE_UNPG_RW_SZ);
1142 
1143 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_FREE_PA,
1144 				     VCORE_FREE_SZ);
1145 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA,
1146 				     VCORE_FREE_SZ);
1147 			next_pa = VCORE_FREE_PA + VCORE_FREE_SZ;
1148 		}
1149 
1150 		if (IS_ENABLED(CFG_WITH_PAGER)) {
1151 			paddr_t pa = 0;
1152 			size_t sz = 0;
1153 
1154 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA,
1155 				     VCORE_INIT_RX_SZ);
1156 			ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA,
1157 				     VCORE_INIT_RO_SZ);
1158 			/*
1159 			 * Core init mapping shall cover up to end of the
1160 			 * physical RAM.  This is required since the hash
1161 			 * table is appended to the binary data after the
1162 			 * firmware build sequence.
1163 			 */
1164 			pa = VCORE_INIT_RO_PA + VCORE_INIT_RO_SZ;
1165 			sz = TEE_RAM_START + TEE_RAM_PH_SIZE - pa;
1166 			ADD_PHYS_MEM(MEM_AREA_TEE_RAM, pa, sz);
1167 		} else {
1168 			ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, next_pa,
1169 				     secure_only[0].paddr +
1170 				     secure_only[0].size - next_pa);
1171 		}
1172 	} else {
1173 		ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE);
1174 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr,
1175 			     secure_only[0].size);
1176 	}
1177 
1178 	for (n = 1; n < ARRAY_SIZE(secure_only); n++)
1179 		ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr,
1180 			     secure_only[n].size);
1181 
1182 	if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) &&
1183 	    IS_ENABLED(CFG_WITH_PAGER)) {
1184 		/*
1185 		 * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is
1186 		 * disabled.
1187 		 */
1188 		ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ);
1189 	}
1190 
1191 #undef ADD_PHYS_MEM
1192 
1193 	/* Collect device memory info from SP manifest */
1194 	if (IS_ENABLED(CFG_CORE_SEL2_SPMC))
1195 		collect_device_mem_ranges(mem_map);
1196 
1197 	for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) {
1198 		/* Only unmapped virtual range may have a null phys addr */
1199 		assert(mem->addr || !core_mmu_type_to_attr(mem->type));
1200 
1201 		add_phys_mem(mem_map, mem->name, mem->type,
1202 			     mem->addr, mem->size);
1203 	}
1204 
1205 	if (IS_ENABLED(CFG_SECURE_DATA_PATH))
1206 		verify_special_mem_areas(mem_map, phys_sdp_mem_begin,
1207 					 phys_sdp_mem_end, "SDP");
1208 
1209 	add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE);
1210 	add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE);
1211 	if (IS_ENABLED(CFG_DYN_CONFIG)) {
1212 		if (IS_ENABLED(CFG_NS_VIRTUALIZATION))
1213 			add_va_space(mem_map, MEM_AREA_NEX_DYN_VASPACE,
1214 				     ROUNDUP(CFG_NEX_DYN_VASPACE_SIZE,
1215 					     CORE_MMU_PGDIR_SIZE));
1216 		add_va_space(mem_map, MEM_AREA_TEE_DYN_VASPACE,
1217 			     CFG_TEE_DYN_VASPACE_SIZE);
1218 	}
1219 }
1220 
1221 static void assign_mem_granularity(struct memory_map *mem_map)
1222 {
1223 	size_t n = 0;
1224 
1225 	/*
1226 	 * Assign region sizes, note that MEM_AREA_TEE_RAM always uses
1227 	 * SMALL_PAGE_SIZE.
1228 	 */
1229 	for  (n = 0; n < mem_map->count; n++) {
1230 		paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size;
1231 
1232 		if (mask & SMALL_PAGE_MASK)
1233 			panic("Impossible memory alignment");
1234 
1235 		if (map_is_tee_ram(mem_map->map + n))
1236 			mem_map->map[n].region_size = SMALL_PAGE_SIZE;
1237 		else
1238 			mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE;
1239 	}
1240 }
1241 
1242 static bool place_tee_ram_at_top(paddr_t paddr)
1243 {
1244 	return paddr > BIT64(core_mmu_get_va_width()) / 2;
1245 }
1246 
1247 /*
1248  * MMU arch driver shall override this function if it helps
1249  * optimizing the memory footprint of the address translation tables.
1250  */
1251 bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr)
1252 {
1253 	return place_tee_ram_at_top(paddr);
1254 }
1255 
1256 static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map,
1257 			      bool tee_ram_at_top)
1258 {
1259 	struct tee_mmap_region *map = NULL;
1260 	bool va_is_nex_shared = false;
1261 	bool va_is_secure = true;
1262 	vaddr_t va = 0;
1263 	size_t n = 0;
1264 
1265 	/*
1266 	 * tee_ram_va might equals 0 when CFG_CORE_ASLR=y.
1267 	 * 0 is by design an invalid va, so return false directly.
1268 	 */
1269 	if (!tee_ram_va)
1270 		return false;
1271 
1272 	/* Clear eventual previous assignments */
1273 	for (n = 0; n < mem_map->count; n++)
1274 		mem_map->map[n].va = 0;
1275 
1276 	/*
1277 	 * TEE RAM regions are always aligned with region_size.
1278 	 *
1279 	 * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here
1280 	 * since it handles virtual memory which covers the part of the ELF
1281 	 * that cannot fit directly into memory.
1282 	 */
1283 	va = tee_ram_va + tee_ram_initial_offs;
1284 	for (n = 0; n < mem_map->count; n++) {
1285 		map = mem_map->map + n;
1286 		if (map_is_tee_ram(map) ||
1287 		    map->type == MEM_AREA_PAGER_VASPACE) {
1288 			assert(!(va & (map->region_size - 1)));
1289 			assert(!(map->size & (map->region_size - 1)));
1290 			map->va = va;
1291 			if (ADD_OVERFLOW(va, map->size, &va))
1292 				return false;
1293 			if (!core_mmu_va_is_valid(va))
1294 				return false;
1295 		}
1296 	}
1297 
1298 	if (tee_ram_at_top) {
1299 		/*
1300 		 * Map non-tee ram regions at addresses lower than the tee
1301 		 * ram region.
1302 		 */
1303 		va = tee_ram_va;
1304 		for (n = 0; n < mem_map->count; n++) {
1305 			map = mem_map->map + n;
1306 			map->attr = core_mmu_type_to_attr(map->type);
1307 			if (map->va)
1308 				continue;
1309 
1310 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1311 			    va_is_secure != map_is_secure(map)) {
1312 				va_is_secure = !va_is_secure;
1313 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1314 			} else if (va_is_nex_shared !=
1315 				   core_mmu_type_is_nex_shared(map->type)) {
1316 				va_is_nex_shared = !va_is_nex_shared;
1317 				va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE);
1318 			}
1319 
1320 			if (SUB_OVERFLOW(va, map->size, &va))
1321 				return false;
1322 			va = ROUNDDOWN2(va, map->region_size);
1323 			/*
1324 			 * Make sure that va is aligned with pa for
1325 			 * efficient pgdir mapping. Basically pa &
1326 			 * pgdir_mask should be == va & pgdir_mask
1327 			 */
1328 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1329 				if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va))
1330 					return false;
1331 				va += (map->pa - va) & CORE_MMU_PGDIR_MASK;
1332 			}
1333 			map->va = va;
1334 		}
1335 	} else {
1336 		/*
1337 		 * Map non-tee ram regions at addresses higher than the tee
1338 		 * ram region.
1339 		 */
1340 		for (n = 0; n < mem_map->count; n++) {
1341 			map = mem_map->map + n;
1342 			map->attr = core_mmu_type_to_attr(map->type);
1343 			if (map->va)
1344 				continue;
1345 
1346 			if (!IS_ENABLED(CFG_WITH_LPAE) &&
1347 			    va_is_secure != map_is_secure(map)) {
1348 				va_is_secure = !va_is_secure;
1349 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1350 						     &va))
1351 					return false;
1352 			} else if (va_is_nex_shared !=
1353 				   core_mmu_type_is_nex_shared(map->type)) {
1354 				va_is_nex_shared = !va_is_nex_shared;
1355 				if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE,
1356 						     &va))
1357 					return false;
1358 			}
1359 
1360 			if (ROUNDUP2_OVERFLOW(va, map->region_size, &va))
1361 				return false;
1362 			/*
1363 			 * Make sure that va is aligned with pa for
1364 			 * efficient pgdir mapping. Basically pa &
1365 			 * pgdir_mask should be == va & pgdir_mask
1366 			 */
1367 			if (map->size > 2 * CORE_MMU_PGDIR_SIZE) {
1368 				vaddr_t offs = (map->pa - va) &
1369 					       CORE_MMU_PGDIR_MASK;
1370 
1371 				if (ADD_OVERFLOW(va, offs, &va))
1372 					return false;
1373 			}
1374 
1375 			map->va = va;
1376 			if (ADD_OVERFLOW(va, map->size, &va))
1377 				return false;
1378 			if (!core_mmu_va_is_valid(va))
1379 				return false;
1380 		}
1381 	}
1382 
1383 	return true;
1384 }
1385 
1386 static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map)
1387 {
1388 	bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va);
1389 
1390 	/*
1391 	 * Check that we're not overlapping with the user VA range.
1392 	 */
1393 	if (IS_ENABLED(CFG_WITH_LPAE)) {
1394 		/*
1395 		 * User VA range is supposed to be defined after these
1396 		 * mappings have been established.
1397 		 */
1398 		assert(!core_mmu_user_va_range_is_defined());
1399 	} else {
1400 		vaddr_t user_va_base = 0;
1401 		size_t user_va_size = 0;
1402 
1403 		assert(core_mmu_user_va_range_is_defined());
1404 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
1405 		if (tee_ram_va < (user_va_base + user_va_size))
1406 			return false;
1407 	}
1408 
1409 	if (IS_ENABLED(CFG_WITH_PAGER)) {
1410 		bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va);
1411 
1412 		/* Try whole mapping covered by a single base xlat entry */
1413 		if (prefered_dir != tee_ram_at_top &&
1414 		    assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir))
1415 			return true;
1416 	}
1417 
1418 	return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top);
1419 }
1420 
1421 static int cmp_init_mem_map(const void *a, const void *b)
1422 {
1423 	const struct tee_mmap_region *mm_a = a;
1424 	const struct tee_mmap_region *mm_b = b;
1425 	int rc = 0;
1426 
1427 	rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size);
1428 	if (!rc)
1429 		rc = CMP_TRILEAN(mm_a->pa, mm_b->pa);
1430 	/*
1431 	 * 32bit MMU descriptors cannot mix secure and non-secure mapping in
1432 	 * the same level2 table. Hence sort secure mapping from non-secure
1433 	 * mapping.
1434 	 */
1435 	if (!rc && !IS_ENABLED(CFG_WITH_LPAE))
1436 		rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b));
1437 
1438 	/*
1439 	 * Nexus mappings shared between partitions should not be mixed
1440 	 * with other mappings in the same translation table. Hence sort
1441 	 * nexus shared mappings from other mappings.
1442 	 */
1443 	if (!rc)
1444 		rc = CMP_TRILEAN(core_mmu_type_is_nex_shared(mm_a->type),
1445 				 core_mmu_type_is_nex_shared(mm_b->type));
1446 
1447 	return rc;
1448 }
1449 
1450 static bool mem_map_add_id_map(struct memory_map *mem_map,
1451 			       vaddr_t id_map_start, vaddr_t id_map_end)
1452 {
1453 	vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE);
1454 	vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE);
1455 	size_t len = end - start;
1456 	size_t n = 0;
1457 
1458 
1459 	for (n = 0; n < mem_map->count; n++)
1460 		if (core_is_buffer_intersect(mem_map->map[n].va,
1461 					     mem_map->map[n].size, start, len))
1462 			return false;
1463 
1464 	grow_mem_map(mem_map);
1465 	mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){
1466 		.type = MEM_AREA_IDENTITY_MAP_RX,
1467 		/*
1468 		 * Could use CORE_MMU_PGDIR_SIZE to potentially save a
1469 		 * translation table, at the increased risk of clashes with
1470 		 * the rest of the memory map.
1471 		 */
1472 		.region_size = SMALL_PAGE_SIZE,
1473 		.pa = start,
1474 		.va = start,
1475 		.size = len,
1476 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1477 	};
1478 
1479 	return true;
1480 }
1481 
1482 static struct memory_map *init_mem_map(struct memory_map *mem_map,
1483 				       unsigned long seed,
1484 				       unsigned long *ret_offs)
1485 {
1486 	/*
1487 	 * @id_map_start and @id_map_end describes a physical memory range
1488 	 * that must be mapped Read-Only eXecutable at identical virtual
1489 	 * addresses.
1490 	 */
1491 	vaddr_t id_map_start = (vaddr_t)__identity_map_init_start;
1492 	vaddr_t id_map_end = (vaddr_t)__identity_map_init_end;
1493 	vaddr_t start_addr = secure_only[0].paddr;
1494 	unsigned long offs = 0;
1495 
1496 	collect_mem_ranges(mem_map);
1497 	assign_mem_granularity(mem_map);
1498 
1499 	/*
1500 	 * To ease mapping and lower use of xlat tables, sort mapping
1501 	 * description moving small-page regions after the pgdir regions.
1502 	 */
1503 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1504 	      cmp_init_mem_map);
1505 
1506 	if (IS_ENABLED(CFG_WITH_PAGER))
1507 		add_pager_vaspace(mem_map);
1508 
1509 	if (IS_ENABLED(CFG_CORE_ASLR) && seed) {
1510 		vaddr_t ba = 0;
1511 		size_t n = 0;
1512 
1513 		for (n = 0; n < 3; n++) {
1514 			ba = arch_aslr_base_addr(start_addr, seed, n);
1515 			if (assign_mem_va(ba, mem_map) &&
1516 			    mem_map_add_id_map(mem_map, id_map_start,
1517 					       id_map_end)) {
1518 				offs = ba - start_addr;
1519 				DMSG("Mapping core at %#"PRIxVA" offs %#lx",
1520 				     ba, offs);
1521 				goto out;
1522 			} else {
1523 				DMSG("Failed to map core at %#"PRIxVA, ba);
1524 			}
1525 		}
1526 		EMSG("Failed to map core with seed %#lx", seed);
1527 	}
1528 
1529 	if (!assign_mem_va(start_addr, mem_map))
1530 		panic();
1531 
1532 out:
1533 	qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region),
1534 	      cmp_mmap_by_lower_va);
1535 
1536 	dump_mmap_table(mem_map);
1537 
1538 	*ret_offs = offs;
1539 	return mem_map;
1540 }
1541 
1542 static void check_mem_map(struct memory_map *mem_map)
1543 {
1544 	struct tee_mmap_region *m = NULL;
1545 	size_t n = 0;
1546 
1547 	for (n = 0; n < mem_map->count; n++) {
1548 		m = mem_map->map + n;
1549 		switch (m->type) {
1550 		case MEM_AREA_TEE_RAM:
1551 		case MEM_AREA_TEE_RAM_RX:
1552 		case MEM_AREA_TEE_RAM_RO:
1553 		case MEM_AREA_TEE_RAM_RW:
1554 		case MEM_AREA_INIT_RAM_RX:
1555 		case MEM_AREA_INIT_RAM_RO:
1556 		case MEM_AREA_NEX_RAM_RW:
1557 		case MEM_AREA_NEX_RAM_RO:
1558 		case MEM_AREA_IDENTITY_MAP_RX:
1559 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1560 				panic("TEE_RAM can't fit in secure_only");
1561 			break;
1562 		case MEM_AREA_SEC_RAM_OVERALL:
1563 			if (!pbuf_is_inside(secure_only, m->pa, m->size))
1564 				panic("SEC_RAM_OVERALL can't fit in secure_only");
1565 			break;
1566 		case MEM_AREA_NSEC_SHM:
1567 			if (!pbuf_is_inside(nsec_shared, m->pa, m->size))
1568 				panic("NS_SHM can't fit in nsec_shared");
1569 			break;
1570 		case MEM_AREA_TEE_COHERENT:
1571 		case MEM_AREA_TEE_ASAN:
1572 		case MEM_AREA_IO_SEC:
1573 		case MEM_AREA_IO_NSEC:
1574 		case MEM_AREA_EXT_DT:
1575 		case MEM_AREA_MANIFEST_DT:
1576 		case MEM_AREA_TRANSFER_LIST:
1577 		case MEM_AREA_RAM_SEC:
1578 		case MEM_AREA_RAM_NSEC:
1579 		case MEM_AREA_ROM_SEC:
1580 		case MEM_AREA_RES_VASPACE:
1581 		case MEM_AREA_SHM_VASPACE:
1582 		case MEM_AREA_PAGER_VASPACE:
1583 		case MEM_AREA_NEX_DYN_VASPACE:
1584 		case MEM_AREA_TEE_DYN_VASPACE:
1585 			break;
1586 		default:
1587 			EMSG("Uhandled memtype %d", m->type);
1588 			panic();
1589 		}
1590 	}
1591 }
1592 
1593 /*
1594  * core_init_mmu_map() - init tee core default memory mapping
1595  *
1596  * This routine sets the static default TEE core mapping. If @seed is > 0
1597  * and configured with CFG_CORE_ASLR it will map tee core at a location
1598  * based on the seed and return the offset from the link address.
1599  *
1600  * If an error happened: core_init_mmu_map is expected to panic.
1601  *
1602  * Note: this function is weak just to make it possible to exclude it from
1603  * the unpaged area.
1604  */
1605 void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg)
1606 {
1607 #ifndef CFG_NS_VIRTUALIZATION
1608 	vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE);
1609 #else
1610 	vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start,
1611 				  SMALL_PAGE_SIZE);
1612 #endif
1613 #ifdef CFG_DYN_CONFIG
1614 	vaddr_t len = ROUNDUP(VCORE_FREE_END_PA, SMALL_PAGE_SIZE) - start;
1615 #else
1616 	vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start;
1617 #endif
1618 	struct tee_mmap_region tmp_mmap_region = { };
1619 	struct memory_map mem_map = { };
1620 	unsigned long offs = 0;
1621 
1622 	if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) &&
1623 	    (core_mmu_tee_load_pa & SMALL_PAGE_MASK))
1624 		panic("OP-TEE load address is not page aligned");
1625 
1626 	check_sec_nsec_mem_config();
1627 
1628 	mem_map.alloc_count = CFG_MMAP_REGIONS;
1629 	mem_map.map = boot_mem_alloc_tmp(mem_map.alloc_count *
1630 						sizeof(*mem_map.map),
1631 					 alignof(*mem_map.map));
1632 	memory_map_realloc_func = boot_mem_realloc_memory_map;
1633 
1634 	static_memory_map = (struct memory_map){
1635 		.map = &tmp_mmap_region,
1636 		.alloc_count = 1,
1637 		.count = 1,
1638 	};
1639 	/*
1640 	 * Add a entry covering the translation tables which will be
1641 	 * involved in some virt_to_phys() and phys_to_virt() conversions.
1642 	 */
1643 	static_memory_map.map[0] = (struct tee_mmap_region){
1644 		.type = MEM_AREA_TEE_RAM,
1645 		.region_size = SMALL_PAGE_SIZE,
1646 		.pa = start,
1647 		.va = start,
1648 		.size = len,
1649 		.attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX),
1650 	};
1651 
1652 	init_mem_map(&mem_map, seed, &offs);
1653 
1654 	check_mem_map(&mem_map);
1655 	core_init_mmu(&mem_map);
1656 	dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL);
1657 	core_init_mmu_regs(cfg);
1658 	cfg->map_offset = offs;
1659 	static_memory_map = mem_map;
1660 	boot_mem_add_reloc(&static_memory_map.map);
1661 }
1662 
1663 void core_mmu_save_mem_map(void)
1664 {
1665 	size_t alloc_count = static_memory_map.count + 5;
1666 	size_t elem_sz = sizeof(*static_memory_map.map);
1667 	void *p = NULL;
1668 
1669 	p = nex_calloc(alloc_count, elem_sz);
1670 	if (!p)
1671 		panic();
1672 	memcpy(p, static_memory_map.map, static_memory_map.count * elem_sz);
1673 	static_memory_map.map = p;
1674 	static_memory_map.alloc_count = alloc_count;
1675 	memory_map_realloc_func = heap_realloc_memory_map;
1676 }
1677 
1678 bool core_mmu_mattr_is_ok(uint32_t mattr)
1679 {
1680 	/*
1681 	 * Keep in sync with core_mmu_lpae.c:mattr_to_desc and
1682 	 * core_mmu_v7.c:mattr_to_texcb
1683 	 */
1684 
1685 	switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) {
1686 	case TEE_MATTR_MEM_TYPE_DEV:
1687 	case TEE_MATTR_MEM_TYPE_STRONGLY_O:
1688 	case TEE_MATTR_MEM_TYPE_CACHED:
1689 	case TEE_MATTR_MEM_TYPE_TAGGED:
1690 		return true;
1691 	default:
1692 		return false;
1693 	}
1694 }
1695 
1696 /*
1697  * test attributes of target physical buffer
1698  *
1699  * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT).
1700  *
1701  */
1702 bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len)
1703 {
1704 	struct tee_mmap_region *map;
1705 
1706 	/* Empty buffers complies with anything */
1707 	if (len == 0)
1708 		return true;
1709 
1710 	switch (attr) {
1711 	case CORE_MEM_SEC:
1712 		return pbuf_is_inside(secure_only, pbuf, len);
1713 	case CORE_MEM_NON_SEC:
1714 		return pbuf_is_inside(nsec_shared, pbuf, len) ||
1715 			pbuf_is_nsec_ddr(pbuf, len);
1716 	case CORE_MEM_TEE_RAM:
1717 		return core_is_buffer_inside(pbuf, len, TEE_RAM_START,
1718 							TEE_RAM_PH_SIZE);
1719 #ifdef CFG_CORE_RESERVED_SHM
1720 	case CORE_MEM_NSEC_SHM:
1721 		return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START,
1722 							TEE_SHMEM_SIZE);
1723 #endif
1724 	case CORE_MEM_SDP_MEM:
1725 		return pbuf_is_sdp_mem(pbuf, len);
1726 	case CORE_MEM_CACHED:
1727 		map = find_map_by_pa(pbuf);
1728 		if (!map || !pbuf_inside_map_area(pbuf, len, map))
1729 			return false;
1730 		return mattr_is_cached(map->attr);
1731 	default:
1732 		return false;
1733 	}
1734 }
1735 
1736 /* test attributes of target virtual buffer (in core mapping) */
1737 bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len)
1738 {
1739 	paddr_t p;
1740 
1741 	/* Empty buffers complies with anything */
1742 	if (len == 0)
1743 		return true;
1744 
1745 	p = virt_to_phys((void *)vbuf);
1746 	if (!p)
1747 		return false;
1748 
1749 	return core_pbuf_is(attr, p, len);
1750 }
1751 
1752 /* core_va2pa - teecore exported service */
1753 static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa)
1754 {
1755 	struct tee_mmap_region *map;
1756 
1757 	map = find_map_by_va(va);
1758 	if (!va_is_in_map(map, (vaddr_t)va))
1759 		return -1;
1760 
1761 	/*
1762 	 * We can calculate PA for static map. Virtual address ranges
1763 	 * reserved to core dynamic mapping return a 'match' (return 0;)
1764 	 * together with an invalid null physical address.
1765 	 */
1766 	if (map->pa)
1767 		*pa = map->pa + (vaddr_t)va  - map->va;
1768 	else
1769 		*pa = 0;
1770 
1771 	return 0;
1772 }
1773 
1774 static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len)
1775 {
1776 	if (!pa_is_in_map(map, pa, len))
1777 		return NULL;
1778 
1779 	return (void *)(vaddr_t)(map->va + pa - map->pa);
1780 }
1781 
1782 /*
1783  * teecore gets some memory area definitions
1784  */
1785 void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s,
1786 			      vaddr_t *e)
1787 {
1788 	struct tee_mmap_region *map = find_map_by_type(type);
1789 
1790 	if (map) {
1791 		*s = map->va;
1792 		*e = map->va + map->size;
1793 	} else {
1794 		*s = 0;
1795 		*e = 0;
1796 	}
1797 }
1798 
1799 enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa)
1800 {
1801 	struct tee_mmap_region *map = find_map_by_pa(pa);
1802 
1803 	if (!map)
1804 		return MEM_AREA_MAXTYPE;
1805 	return map->type;
1806 }
1807 
1808 void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1809 			paddr_t pa, uint32_t attr)
1810 {
1811 	assert(idx < tbl_info->num_entries);
1812 	core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level,
1813 				     idx, pa, attr);
1814 }
1815 
1816 void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx,
1817 			paddr_t *pa, uint32_t *attr)
1818 {
1819 	assert(idx < tbl_info->num_entries);
1820 	core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level,
1821 				     idx, pa, attr);
1822 }
1823 
1824 static void clear_region(struct core_mmu_table_info *tbl_info,
1825 			 struct tee_mmap_region *region)
1826 {
1827 	unsigned int end = 0;
1828 	unsigned int idx = 0;
1829 
1830 	/* va, len and pa should be block aligned */
1831 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1832 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1833 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1834 
1835 	idx = core_mmu_va2idx(tbl_info, region->va);
1836 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1837 
1838 	while (idx < end) {
1839 		core_mmu_set_entry(tbl_info, idx, 0, 0);
1840 		idx++;
1841 	}
1842 }
1843 
1844 static void set_region(struct core_mmu_table_info *tbl_info,
1845 		       struct tee_mmap_region *region)
1846 {
1847 	unsigned int end;
1848 	unsigned int idx;
1849 	paddr_t pa;
1850 
1851 	/* va, len and pa should be block aligned */
1852 	assert(!core_mmu_get_block_offset(tbl_info, region->va));
1853 	assert(!core_mmu_get_block_offset(tbl_info, region->size));
1854 	assert(!core_mmu_get_block_offset(tbl_info, region->pa));
1855 
1856 	idx = core_mmu_va2idx(tbl_info, region->va);
1857 	end = core_mmu_va2idx(tbl_info, region->va + region->size);
1858 	pa = region->pa;
1859 
1860 	while (idx < end) {
1861 		core_mmu_set_entry(tbl_info, idx, pa, region->attr);
1862 		idx++;
1863 		pa += BIT64(tbl_info->shift);
1864 	}
1865 }
1866 
1867 static void set_pg_region(struct core_mmu_table_info *dir_info,
1868 			  struct vm_region *region, struct pgt **pgt,
1869 			  struct core_mmu_table_info *pg_info)
1870 {
1871 	struct tee_mmap_region r = {
1872 		.va = region->va,
1873 		.size = region->size,
1874 		.attr = region->attr,
1875 	};
1876 	vaddr_t end = r.va + r.size;
1877 	uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE;
1878 
1879 	while (r.va < end) {
1880 		if (!pg_info->table ||
1881 		    r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) {
1882 			/*
1883 			 * We're assigning a new translation table.
1884 			 */
1885 			unsigned int idx;
1886 
1887 			/* Virtual addresses must grow */
1888 			assert(r.va > pg_info->va_base);
1889 
1890 			idx = core_mmu_va2idx(dir_info, r.va);
1891 			pg_info->va_base = core_mmu_idx2va(dir_info, idx);
1892 
1893 			/*
1894 			 * Advance pgt to va_base, note that we may need to
1895 			 * skip multiple page tables if there are large
1896 			 * holes in the vm map.
1897 			 */
1898 			while ((*pgt)->vabase < pg_info->va_base) {
1899 				*pgt = SLIST_NEXT(*pgt, link);
1900 				/* We should have allocated enough */
1901 				assert(*pgt);
1902 			}
1903 			assert((*pgt)->vabase == pg_info->va_base);
1904 			pg_info->table = (*pgt)->tbl;
1905 
1906 			core_mmu_set_entry(dir_info, idx,
1907 					   virt_to_phys(pg_info->table),
1908 					   pgt_attr);
1909 		}
1910 
1911 		r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base),
1912 			     end - r.va);
1913 
1914 		if (!(*pgt)->populated  && !mobj_is_paged(region->mobj)) {
1915 			size_t granule = BIT(pg_info->shift);
1916 			size_t offset = r.va - region->va + region->offset;
1917 
1918 			r.size = MIN(r.size,
1919 				     mobj_get_phys_granule(region->mobj));
1920 			r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE);
1921 
1922 			if (mobj_get_pa(region->mobj, offset, granule,
1923 					&r.pa) != TEE_SUCCESS)
1924 				panic("Failed to get PA of unpaged mobj");
1925 			set_region(pg_info, &r);
1926 		}
1927 		r.va += r.size;
1928 	}
1929 }
1930 
1931 static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr,
1932 			     size_t size_left, paddr_t block_size,
1933 			     struct tee_mmap_region *mm)
1934 {
1935 	/* VA and PA are aligned to block size at current level */
1936 	if ((vaddr | paddr) & (block_size - 1))
1937 		return false;
1938 
1939 	/* Remainder fits into block at current level */
1940 	if (size_left < block_size)
1941 		return false;
1942 
1943 	/*
1944 	 * The required block size of the region is compatible with the
1945 	 * block size of the current level.
1946 	 */
1947 	if (mm->region_size < block_size)
1948 		return false;
1949 
1950 #ifdef CFG_WITH_PAGER
1951 	/*
1952 	 * If pager is enabled, we need to map TEE RAM and the whole pager
1953 	 * regions with small pages only
1954 	 */
1955 	if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) &&
1956 	    block_size != SMALL_PAGE_SIZE)
1957 		return false;
1958 #endif
1959 
1960 	return true;
1961 }
1962 
1963 void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm)
1964 {
1965 	struct core_mmu_table_info tbl_info = { };
1966 	unsigned int idx = 0;
1967 	vaddr_t vaddr = mm->va;
1968 	paddr_t paddr = mm->pa;
1969 	ssize_t size_left = mm->size;
1970 	uint32_t attr = mm->attr;
1971 	unsigned int level = 0;
1972 	bool table_found = false;
1973 	uint32_t old_attr = 0;
1974 
1975 	assert(!((vaddr | paddr) & SMALL_PAGE_MASK));
1976 	if (!paddr)
1977 		attr = 0;
1978 
1979 	while (size_left > 0) {
1980 		level = CORE_MMU_BASE_TABLE_LEVEL;
1981 
1982 		while (true) {
1983 			paddr_t block_size = 0;
1984 
1985 			assert(core_mmu_level_in_range(level));
1986 
1987 			table_found = core_mmu_find_table(prtn, vaddr, level,
1988 							  &tbl_info);
1989 			if (!table_found)
1990 				panic("can't find table for mapping");
1991 
1992 			block_size = BIT64(tbl_info.shift);
1993 
1994 			idx = core_mmu_va2idx(&tbl_info, vaddr);
1995 			if (!can_map_at_level(paddr, vaddr, size_left,
1996 					      block_size, mm)) {
1997 				bool secure = mm->attr & TEE_MATTR_SECURE;
1998 
1999 				/*
2000 				 * This part of the region can't be mapped at
2001 				 * this level. Need to go deeper.
2002 				 */
2003 				if (!core_mmu_entry_to_finer_grained(&tbl_info,
2004 								     idx,
2005 								     secure))
2006 					panic("Can't divide MMU entry");
2007 				level = tbl_info.next_level;
2008 				continue;
2009 			}
2010 
2011 			/* We can map part of the region at current level */
2012 			core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2013 			if (old_attr)
2014 				panic("Page is already mapped");
2015 
2016 			core_mmu_set_entry(&tbl_info, idx, paddr, attr);
2017 			/*
2018 			 * Dynamic vaspace regions don't have a physical
2019 			 * address initially but we need to allocate and
2020 			 * initialize the translation tables now for later
2021 			 * updates to work properly.
2022 			 */
2023 			if (paddr)
2024 				paddr += block_size;
2025 			vaddr += block_size;
2026 			size_left -= block_size;
2027 
2028 			break;
2029 		}
2030 	}
2031 }
2032 
2033 TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages,
2034 			      enum teecore_memtypes memtype)
2035 {
2036 	TEE_Result ret;
2037 	struct core_mmu_table_info tbl_info;
2038 	struct tee_mmap_region *mm;
2039 	unsigned int idx;
2040 	uint32_t old_attr;
2041 	uint32_t exceptions;
2042 	vaddr_t vaddr = vstart;
2043 	size_t i;
2044 	bool secure;
2045 
2046 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
2047 
2048 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
2049 
2050 	if (vaddr & SMALL_PAGE_MASK)
2051 		return TEE_ERROR_BAD_PARAMETERS;
2052 
2053 	exceptions = mmu_lock();
2054 
2055 	mm = find_map_by_va((void *)vaddr);
2056 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
2057 		panic("VA does not belong to any known mm region");
2058 
2059 	if (!core_mmu_is_dynamic_vaspace(mm))
2060 		panic("Trying to map into static region");
2061 
2062 	for (i = 0; i < num_pages; i++) {
2063 		if (pages[i] & SMALL_PAGE_MASK) {
2064 			ret = TEE_ERROR_BAD_PARAMETERS;
2065 			goto err;
2066 		}
2067 
2068 		while (true) {
2069 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
2070 						 &tbl_info))
2071 				panic("Can't find pagetable for vaddr ");
2072 
2073 			idx = core_mmu_va2idx(&tbl_info, vaddr);
2074 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
2075 				break;
2076 
2077 			/* This is supertable. Need to divide it. */
2078 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
2079 							     secure))
2080 				panic("Failed to spread pgdir on small tables");
2081 		}
2082 
2083 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2084 		if (old_attr)
2085 			panic("Page is already mapped");
2086 
2087 		core_mmu_set_entry(&tbl_info, idx, pages[i],
2088 				   core_mmu_type_to_attr(memtype));
2089 		vaddr += SMALL_PAGE_SIZE;
2090 	}
2091 
2092 	/*
2093 	 * Make sure all the changes to translation tables are visible
2094 	 * before returning. TLB doesn't need to be invalidated as we are
2095 	 * guaranteed that there's no valid mapping in this range.
2096 	 */
2097 	core_mmu_table_write_barrier();
2098 	mmu_unlock(exceptions);
2099 
2100 	return TEE_SUCCESS;
2101 err:
2102 	mmu_unlock(exceptions);
2103 
2104 	if (i)
2105 		core_mmu_unmap_pages(vstart, i);
2106 
2107 	return ret;
2108 }
2109 
2110 TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart,
2111 					 size_t num_pages,
2112 					 enum teecore_memtypes memtype)
2113 {
2114 	struct core_mmu_table_info tbl_info = { };
2115 	struct tee_mmap_region *mm = NULL;
2116 	unsigned int idx = 0;
2117 	uint32_t old_attr = 0;
2118 	uint32_t exceptions = 0;
2119 	vaddr_t vaddr = vstart;
2120 	paddr_t paddr = pstart;
2121 	size_t i = 0;
2122 	bool secure = false;
2123 
2124 	assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX));
2125 
2126 	secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE;
2127 
2128 	if ((vaddr | paddr) & SMALL_PAGE_MASK)
2129 		return TEE_ERROR_BAD_PARAMETERS;
2130 
2131 	exceptions = mmu_lock();
2132 
2133 	mm = find_map_by_va((void *)vaddr);
2134 	if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1))
2135 		panic("VA does not belong to any known mm region");
2136 
2137 	if (!core_mmu_is_dynamic_vaspace(mm))
2138 		panic("Trying to map into static region");
2139 
2140 	for (i = 0; i < num_pages; i++) {
2141 		while (true) {
2142 			if (!core_mmu_find_table(NULL, vaddr, UINT_MAX,
2143 						 &tbl_info))
2144 				panic("Can't find pagetable for vaddr ");
2145 
2146 			idx = core_mmu_va2idx(&tbl_info, vaddr);
2147 			if (tbl_info.shift == SMALL_PAGE_SHIFT)
2148 				break;
2149 
2150 			/* This is supertable. Need to divide it. */
2151 			if (!core_mmu_entry_to_finer_grained(&tbl_info, idx,
2152 							     secure))
2153 				panic("Failed to spread pgdir on small tables");
2154 		}
2155 
2156 		core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr);
2157 		if (old_attr)
2158 			panic("Page is already mapped");
2159 
2160 		core_mmu_set_entry(&tbl_info, idx, paddr,
2161 				   core_mmu_type_to_attr(memtype));
2162 		paddr += SMALL_PAGE_SIZE;
2163 		vaddr += SMALL_PAGE_SIZE;
2164 	}
2165 
2166 	/*
2167 	 * Make sure all the changes to translation tables are visible
2168 	 * before returning. TLB doesn't need to be invalidated as we are
2169 	 * guaranteed that there's no valid mapping in this range.
2170 	 */
2171 	core_mmu_table_write_barrier();
2172 	mmu_unlock(exceptions);
2173 
2174 	return TEE_SUCCESS;
2175 }
2176 
2177 static bool mem_range_is_in_vcore_free(vaddr_t vstart, size_t num_pages)
2178 {
2179 	return core_is_buffer_inside(vstart, num_pages * SMALL_PAGE_SIZE,
2180 				     VCORE_FREE_PA, VCORE_FREE_SZ);
2181 }
2182 
2183 static void maybe_remove_from_mem_map(vaddr_t vstart, size_t num_pages)
2184 {
2185 	struct memory_map *mem_map = NULL;
2186 	struct tee_mmap_region *mm = NULL;
2187 	size_t idx = 0;
2188 	vaddr_t va = 0;
2189 
2190 	mm = find_map_by_va((void *)vstart);
2191 	if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1))
2192 		panic("VA does not belong to any known mm region");
2193 
2194 	if (core_mmu_is_dynamic_vaspace(mm))
2195 		return;
2196 
2197 	if (!mem_range_is_in_vcore_free(vstart, num_pages))
2198 		panic("Trying to unmap static region");
2199 
2200 	/*
2201 	 * We're going to remove a memory from the VCORE_FREE memory range.
2202 	 * Depending where the range is we may need to remove the matching
2203 	 * mm, peal of a bit from the start or end of the mm, or split it
2204 	 * into two with a whole in the middle.
2205 	 */
2206 
2207 	va = ROUNDDOWN(vstart, SMALL_PAGE_SIZE);
2208 	assert(mm->region_size == SMALL_PAGE_SIZE);
2209 
2210 	if (va == mm->va && mm->size == num_pages * SMALL_PAGE_SIZE) {
2211 		mem_map = get_memory_map();
2212 		idx = mm - mem_map->map;
2213 		assert(idx < mem_map->count);
2214 
2215 		rem_array_elem(mem_map->map, mem_map->count,
2216 			       sizeof(*mem_map->map), idx);
2217 		mem_map->count--;
2218 	} else if (va == mm->va) {
2219 		mm->va += num_pages * SMALL_PAGE_SIZE;
2220 		mm->pa += num_pages * SMALL_PAGE_SIZE;
2221 		mm->size -= num_pages * SMALL_PAGE_SIZE;
2222 	} else if (va + num_pages * SMALL_PAGE_SIZE == mm->va + mm->size) {
2223 		mm->size -= num_pages * SMALL_PAGE_SIZE;
2224 	} else {
2225 		struct tee_mmap_region m = *mm;
2226 
2227 		mem_map = get_memory_map();
2228 		idx = mm - mem_map->map;
2229 		assert(idx < mem_map->count);
2230 
2231 		mm->size = va - mm->va;
2232 		m.va += mm->size + num_pages * SMALL_PAGE_SIZE;
2233 		m.pa += mm->size + num_pages * SMALL_PAGE_SIZE;
2234 		m.size -= mm->size + num_pages * SMALL_PAGE_SIZE;
2235 		grow_mem_map(mem_map);
2236 		ins_array_elem(mem_map->map, mem_map->count,
2237 			       sizeof(*mem_map->map), idx + 1, &m);
2238 	}
2239 }
2240 
2241 void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages)
2242 {
2243 	struct core_mmu_table_info tbl_info;
2244 	size_t i;
2245 	unsigned int idx;
2246 	uint32_t exceptions;
2247 
2248 	exceptions = mmu_lock();
2249 
2250 	maybe_remove_from_mem_map(vstart, num_pages);
2251 
2252 	for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) {
2253 		if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info))
2254 			panic("Can't find pagetable");
2255 
2256 		if (tbl_info.shift != SMALL_PAGE_SHIFT)
2257 			panic("Invalid pagetable level");
2258 
2259 		idx = core_mmu_va2idx(&tbl_info, vstart);
2260 		core_mmu_set_entry(&tbl_info, idx, 0, 0);
2261 	}
2262 	tlbi_all();
2263 
2264 	mmu_unlock(exceptions);
2265 }
2266 
2267 void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info,
2268 				struct user_mode_ctx *uctx)
2269 {
2270 	struct core_mmu_table_info pg_info = { };
2271 	struct pgt_cache *pgt_cache = &uctx->pgt_cache;
2272 	struct pgt *pgt = NULL;
2273 	struct pgt *p = NULL;
2274 	struct vm_region *r = NULL;
2275 
2276 	if (TAILQ_EMPTY(&uctx->vm_info.regions))
2277 		return; /* Nothing to map */
2278 
2279 	/*
2280 	 * Allocate all page tables in advance.
2281 	 */
2282 	pgt_get_all(uctx);
2283 	pgt = SLIST_FIRST(pgt_cache);
2284 
2285 	core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL);
2286 
2287 	TAILQ_FOREACH(r, &uctx->vm_info.regions, link)
2288 		set_pg_region(dir_info, r, &pgt, &pg_info);
2289 	/* Record that the translation tables now are populated. */
2290 	SLIST_FOREACH(p, pgt_cache, link) {
2291 		p->populated = true;
2292 		if (p == pgt)
2293 			break;
2294 	}
2295 	assert(p == pgt);
2296 }
2297 
2298 TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr,
2299 				   size_t len)
2300 {
2301 	struct core_mmu_table_info tbl_info = { };
2302 	struct tee_mmap_region *res_map = NULL;
2303 	struct tee_mmap_region *map = NULL;
2304 	paddr_t pa = virt_to_phys(addr);
2305 	size_t granule = 0;
2306 	ptrdiff_t i = 0;
2307 	paddr_t p = 0;
2308 	size_t l = 0;
2309 
2310 	map = find_map_by_type_and_pa(type, pa, len);
2311 	if (!map)
2312 		return TEE_ERROR_GENERIC;
2313 
2314 	res_map = find_map_by_type(MEM_AREA_RES_VASPACE);
2315 	if (!res_map)
2316 		return TEE_ERROR_GENERIC;
2317 	if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info))
2318 		return TEE_ERROR_GENERIC;
2319 	granule = BIT(tbl_info.shift);
2320 
2321 	if (map < static_memory_map.map ||
2322 	    map >= static_memory_map.map + static_memory_map.count)
2323 		return TEE_ERROR_GENERIC;
2324 	i = map - static_memory_map.map;
2325 
2326 	/* Check that we have a full match */
2327 	p = ROUNDDOWN2(pa, granule);
2328 	l = ROUNDUP2(len + pa - p, granule);
2329 	if (map->pa != p || map->size != l)
2330 		return TEE_ERROR_GENERIC;
2331 
2332 	clear_region(&tbl_info, map);
2333 	tlbi_all();
2334 
2335 	/* If possible remove the va range from res_map */
2336 	if (res_map->va - map->size == map->va) {
2337 		res_map->va -= map->size;
2338 		res_map->size += map->size;
2339 	}
2340 
2341 	/* Remove the entry. */
2342 	rem_array_elem(static_memory_map.map, static_memory_map.count,
2343 		       sizeof(*static_memory_map.map), i);
2344 	static_memory_map.count--;
2345 
2346 	return TEE_SUCCESS;
2347 }
2348 
2349 struct tee_mmap_region *
2350 core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len)
2351 {
2352 	struct memory_map *mem_map = get_memory_map();
2353 	struct tee_mmap_region *map_found = NULL;
2354 	size_t n = 0;
2355 
2356 	if (!len)
2357 		return NULL;
2358 
2359 	for (n = 0; n < mem_map->count; n++) {
2360 		if (mem_map->map[n].type != type)
2361 			continue;
2362 
2363 		if (map_found)
2364 			return NULL;
2365 
2366 		map_found = mem_map->map + n;
2367 	}
2368 
2369 	if (!map_found || map_found->size < len)
2370 		return NULL;
2371 
2372 	return map_found;
2373 }
2374 
2375 void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len)
2376 {
2377 	struct memory_map *mem_map = &static_memory_map;
2378 	struct core_mmu_table_info tbl_info = { };
2379 	struct tee_mmap_region *map = NULL;
2380 	size_t granule = 0;
2381 	paddr_t p = 0;
2382 	size_t l = 0;
2383 
2384 	if (!len)
2385 		return NULL;
2386 
2387 	if (!core_mmu_check_end_pa(addr, len))
2388 		return NULL;
2389 
2390 	/* Check if the memory is already mapped */
2391 	map = find_map_by_type_and_pa(type, addr, len);
2392 	if (map && pbuf_inside_map_area(addr, len, map))
2393 		return (void *)(vaddr_t)(map->va + addr - map->pa);
2394 
2395 	/* Find the reserved va space used for late mappings */
2396 	map = find_map_by_type(MEM_AREA_RES_VASPACE);
2397 	if (!map)
2398 		return NULL;
2399 
2400 	if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info))
2401 		return NULL;
2402 
2403 	granule = BIT64(tbl_info.shift);
2404 	p = ROUNDDOWN2(addr, granule);
2405 	l = ROUNDUP2(len + addr - p, granule);
2406 
2407 	/* Ban overflowing virtual addresses */
2408 	if (map->size < l)
2409 		return NULL;
2410 
2411 	/*
2412 	 * Something is wrong, we can't fit the va range into the selected
2413 	 * table. The reserved va range is possibly missaligned with
2414 	 * granule.
2415 	 */
2416 	if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries)
2417 		return NULL;
2418 
2419 	if (static_memory_map.count >= static_memory_map.alloc_count)
2420 		return NULL;
2421 
2422 	mem_map->map[mem_map->count] = (struct tee_mmap_region){
2423 		.va = map->va,
2424 		.size = l,
2425 		.type = type,
2426 		.region_size = granule,
2427 		.attr = core_mmu_type_to_attr(type),
2428 		.pa = p,
2429 	};
2430 	map->va += l;
2431 	map->size -= l;
2432 	map = mem_map->map + mem_map->count;
2433 	mem_map->count++;
2434 
2435 	set_region(&tbl_info, map);
2436 
2437 	/* Make sure the new entry is visible before continuing. */
2438 	core_mmu_table_write_barrier();
2439 
2440 	return (void *)(vaddr_t)(map->va + addr - map->pa);
2441 }
2442 
2443 #ifdef CFG_WITH_PAGER
2444 static vaddr_t get_linear_map_end_va(void)
2445 {
2446 	/* this is synced with the generic linker file kern.ld.S */
2447 	return (vaddr_t)__heap2_end;
2448 }
2449 
2450 static paddr_t get_linear_map_end_pa(void)
2451 {
2452 	return get_linear_map_end_va() - boot_mmu_config.map_offset;
2453 }
2454 #endif
2455 
2456 #if defined(CFG_TEE_CORE_DEBUG)
2457 static void check_pa_matches_va(void *va, paddr_t pa)
2458 {
2459 	TEE_Result res = TEE_ERROR_GENERIC;
2460 	vaddr_t v = (vaddr_t)va;
2461 	paddr_t p = 0;
2462 	struct core_mmu_table_info ti __maybe_unused = { };
2463 
2464 	if (core_mmu_user_va_range_is_defined()) {
2465 		vaddr_t user_va_base = 0;
2466 		size_t user_va_size = 0;
2467 
2468 		core_mmu_get_user_va_range(&user_va_base, &user_va_size);
2469 		if (v >= user_va_base &&
2470 		    v <= (user_va_base - 1 + user_va_size)) {
2471 			if (!core_mmu_user_mapping_is_active()) {
2472 				if (pa)
2473 					panic("issue in linear address space");
2474 				return;
2475 			}
2476 
2477 			res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx),
2478 				       va, &p);
2479 			if (res == TEE_ERROR_NOT_SUPPORTED)
2480 				return;
2481 			if (res == TEE_SUCCESS && pa != p)
2482 				panic("bad pa");
2483 			if (res != TEE_SUCCESS && pa)
2484 				panic("false pa");
2485 			return;
2486 		}
2487 	}
2488 #ifdef CFG_WITH_PAGER
2489 	if (is_unpaged(va)) {
2490 		if (v - boot_mmu_config.map_offset != pa)
2491 			panic("issue in linear address space");
2492 		return;
2493 	}
2494 
2495 	if (tee_pager_get_table_info(v, &ti)) {
2496 		uint32_t a;
2497 
2498 		/*
2499 		 * Lookups in the page table managed by the pager is
2500 		 * dangerous for addresses in the paged area as those pages
2501 		 * changes all the time. But some ranges are safe,
2502 		 * rw-locked areas when the page is populated for instance.
2503 		 */
2504 		core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a);
2505 		if (a & TEE_MATTR_VALID_BLOCK) {
2506 			paddr_t mask = BIT64(ti.shift) - 1;
2507 
2508 			p |= v & mask;
2509 			if (pa != p)
2510 				panic();
2511 		} else {
2512 			if (pa)
2513 				panic();
2514 		}
2515 		return;
2516 	}
2517 #endif
2518 
2519 	if (!core_va2pa_helper(va, &p)) {
2520 		/* Verfiy only the static mapping (case non null phys addr) */
2521 		if (p && pa != p) {
2522 			DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA,
2523 			     va, p, pa);
2524 			panic();
2525 		}
2526 	} else {
2527 		if (pa) {
2528 			DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa);
2529 			panic();
2530 		}
2531 	}
2532 }
2533 #else
2534 static void check_pa_matches_va(void *va __unused, paddr_t pa __unused)
2535 {
2536 }
2537 #endif
2538 
2539 paddr_t virt_to_phys(void *va)
2540 {
2541 	paddr_t pa = 0;
2542 
2543 	if (!arch_va2pa_helper(va, &pa))
2544 		pa = 0;
2545 	check_pa_matches_va(memtag_strip_tag(va), pa);
2546 	return pa;
2547 }
2548 
2549 /*
2550  * Don't use check_va_matches_pa() for RISC-V, as its callee
2551  * arch_va2pa_helper() will call it eventually, this creates
2552  * indirect recursion and can lead to a stack overflow.
2553  * Moreover, if arch_va2pa_helper() returns true, it implies
2554  * the va2pa mapping is matched, no need to check it again.
2555  */
2556 #if defined(CFG_TEE_CORE_DEBUG) && !defined(__riscv)
2557 static void check_va_matches_pa(paddr_t pa, void *va)
2558 {
2559 	paddr_t p = 0;
2560 
2561 	if (!va)
2562 		return;
2563 
2564 	p = virt_to_phys(va);
2565 	if (p != pa) {
2566 		DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa);
2567 		panic();
2568 	}
2569 }
2570 #else
2571 static void check_va_matches_pa(paddr_t pa __unused, void *va __unused)
2572 {
2573 }
2574 #endif
2575 
2576 static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len)
2577 {
2578 	if (!core_mmu_user_mapping_is_active())
2579 		return NULL;
2580 
2581 	return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len);
2582 }
2583 
2584 #ifdef CFG_WITH_PAGER
2585 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2586 {
2587 	paddr_t end_pa = 0;
2588 
2589 	if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa))
2590 		return NULL;
2591 
2592 	if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) {
2593 		if (end_pa > get_linear_map_end_pa())
2594 			return NULL;
2595 		return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset);
2596 	}
2597 
2598 	return tee_pager_phys_to_virt(pa, len);
2599 }
2600 #else
2601 static void *phys_to_virt_tee_ram(paddr_t pa, size_t len)
2602 {
2603 	struct tee_mmap_region *mmap = NULL;
2604 
2605 	mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len);
2606 	if (!mmap)
2607 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len);
2608 	if (!mmap)
2609 		mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len);
2610 	if (!mmap)
2611 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len);
2612 	if (!mmap)
2613 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len);
2614 	if (!mmap)
2615 		mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len);
2616 
2617 	/*
2618 	 * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only
2619 	 * used with pager and not needed here.
2620 	 */
2621 	return map_pa2va(mmap, pa, len);
2622 }
2623 #endif
2624 
2625 void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len)
2626 {
2627 	void *va = NULL;
2628 
2629 	switch (m) {
2630 	case MEM_AREA_TS_VASPACE:
2631 		va = phys_to_virt_ts_vaspace(pa, len);
2632 		break;
2633 	case MEM_AREA_TEE_RAM:
2634 	case MEM_AREA_TEE_RAM_RX:
2635 	case MEM_AREA_TEE_RAM_RO:
2636 	case MEM_AREA_TEE_RAM_RW:
2637 	case MEM_AREA_NEX_RAM_RO:
2638 	case MEM_AREA_NEX_RAM_RW:
2639 		va = phys_to_virt_tee_ram(pa, len);
2640 		break;
2641 	case MEM_AREA_SHM_VASPACE:
2642 	case MEM_AREA_NEX_DYN_VASPACE:
2643 	case MEM_AREA_TEE_DYN_VASPACE:
2644 		/* Find VA from PA in dynamic SHM is not yet supported */
2645 		va = NULL;
2646 		break;
2647 	default:
2648 		va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len);
2649 	}
2650 	if (m != MEM_AREA_SEC_RAM_OVERALL)
2651 		check_va_matches_pa(pa, va);
2652 	return va;
2653 }
2654 
2655 void *phys_to_virt_io(paddr_t pa, size_t len)
2656 {
2657 	struct tee_mmap_region *map = NULL;
2658 	void *va = NULL;
2659 
2660 	map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len);
2661 	if (!map)
2662 		map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len);
2663 	if (!map)
2664 		return NULL;
2665 	va = map_pa2va(map, pa, len);
2666 	check_va_matches_pa(pa, va);
2667 	return va;
2668 }
2669 
2670 vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len)
2671 {
2672 	if (cpu_mmu_enabled())
2673 		return (vaddr_t)phys_to_virt(pa, type, len);
2674 
2675 	return (vaddr_t)pa;
2676 }
2677 
2678 #ifdef CFG_WITH_PAGER
2679 bool is_unpaged(const void *va)
2680 {
2681 	vaddr_t v = (vaddr_t)va;
2682 
2683 	return v >= VCORE_START_VA && v < get_linear_map_end_va();
2684 }
2685 #endif
2686 
2687 #ifdef CFG_NS_VIRTUALIZATION
2688 bool is_nexus(const void *va)
2689 {
2690 	vaddr_t v = (vaddr_t)va;
2691 
2692 	return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ;
2693 }
2694 #endif
2695 
2696 vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len)
2697 {
2698 	assert(p->pa);
2699 	if (cpu_mmu_enabled()) {
2700 		if (!p->va)
2701 			p->va = (vaddr_t)phys_to_virt_io(p->pa, len);
2702 		assert(p->va);
2703 		return p->va;
2704 	}
2705 	return p->pa;
2706 }
2707 
2708 vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len)
2709 {
2710 	assert(p->pa);
2711 	if (cpu_mmu_enabled()) {
2712 		if (!p->va)
2713 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC,
2714 						      len);
2715 		assert(p->va);
2716 		return p->va;
2717 	}
2718 	return p->pa;
2719 }
2720 
2721 vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len)
2722 {
2723 	assert(p->pa);
2724 	if (cpu_mmu_enabled()) {
2725 		if (!p->va)
2726 			p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC,
2727 						      len);
2728 		assert(p->va);
2729 		return p->va;
2730 	}
2731 	return p->pa;
2732 }
2733 
2734 #ifdef CFG_CORE_RESERVED_SHM
2735 static TEE_Result teecore_init_pub_ram(void)
2736 {
2737 	vaddr_t s = 0;
2738 	vaddr_t e = 0;
2739 
2740 	/* get virtual addr/size of NSec shared mem allocated from teecore */
2741 	core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e);
2742 
2743 	if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK)
2744 		panic("invalid PUB RAM");
2745 
2746 	/* extra check: we could rely on core_mmu_get_mem_by_type() */
2747 	if (!tee_vbuf_is_non_sec(s, e - s))
2748 		panic("PUB RAM is not non-secure");
2749 
2750 #ifdef CFG_PL310
2751 	/* Allocate statically the l2cc mutex */
2752 	tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s));
2753 	s += sizeof(uint32_t);			/* size of a pl310 mutex */
2754 	s = ROUNDUP(s, SMALL_PAGE_SIZE);	/* keep required alignment */
2755 #endif
2756 
2757 	default_nsec_shm_paddr = virt_to_phys((void *)s);
2758 	default_nsec_shm_size = e - s;
2759 
2760 	return TEE_SUCCESS;
2761 }
2762 early_init(teecore_init_pub_ram);
2763 #endif /*CFG_CORE_RESERVED_SHM*/
2764 
2765 static void __maybe_unused carve_out_core_mem(paddr_t pa, paddr_t end_pa)
2766 {
2767 	tee_mm_entry_t *mm __maybe_unused = NULL;
2768 
2769 	DMSG("%#"PRIxPA" .. %#"PRIxPA, pa, end_pa);
2770 	mm = phys_mem_alloc2(pa, end_pa - pa);
2771 	assert(mm);
2772 }
2773 
2774 void core_mmu_init_phys_mem(void)
2775 {
2776 	if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
2777 		paddr_t b1 = 0;
2778 		paddr_size_t s1 = 0;
2779 
2780 		static_assert(ARRAY_SIZE(secure_only) <= 2);
2781 
2782 		if (ARRAY_SIZE(secure_only) == 2) {
2783 			b1 = secure_only[1].paddr;
2784 			s1 = secure_only[1].size;
2785 		}
2786 		virt_init_memory(&static_memory_map, secure_only[0].paddr,
2787 				 secure_only[0].size, b1, s1);
2788 	} else {
2789 #ifdef CFG_WITH_PAGER
2790 		/*
2791 		 * The pager uses all core memory so there's no need to add
2792 		 * it to the pool.
2793 		 */
2794 		static_assert(ARRAY_SIZE(secure_only) == 2);
2795 		phys_mem_init(0, 0, secure_only[1].paddr, secure_only[1].size);
2796 #else /*!CFG_WITH_PAGER*/
2797 		size_t align = BIT(CORE_MMU_USER_CODE_SHIFT);
2798 		paddr_t end_pa = 0;
2799 		size_t size = 0;
2800 		paddr_t ps = 0;
2801 		paddr_t pa = 0;
2802 
2803 		static_assert(ARRAY_SIZE(secure_only) <= 2);
2804 		if (ARRAY_SIZE(secure_only) == 2) {
2805 			ps = secure_only[1].paddr;
2806 			size = secure_only[1].size;
2807 		}
2808 		phys_mem_init(secure_only[0].paddr, secure_only[0].size,
2809 			      ps, size);
2810 
2811 		/*
2812 		 * The VCORE macros are relocatable so we need to translate
2813 		 * the addresses now that the MMU is enabled.
2814 		 */
2815 		end_pa = vaddr_to_phys(ROUNDUP2(VCORE_FREE_END_PA,
2816 						align) - 1) + 1;
2817 		/* Carve out the part used by OP-TEE core */
2818 		carve_out_core_mem(vaddr_to_phys(VCORE_UNPG_RX_PA), end_pa);
2819 		if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS)) {
2820 			pa = vaddr_to_phys(ROUNDUP2(ASAN_MAP_PA, align));
2821 			carve_out_core_mem(pa, pa + ASAN_MAP_SZ);
2822 		}
2823 
2824 		/* Carve out test SDP memory */
2825 #ifdef TEE_SDP_TEST_MEM_BASE
2826 		if (TEE_SDP_TEST_MEM_SIZE) {
2827 			pa = TEE_SDP_TEST_MEM_BASE;
2828 			carve_out_core_mem(pa, pa + TEE_SDP_TEST_MEM_SIZE);
2829 		}
2830 #endif
2831 #endif /*!CFG_WITH_PAGER*/
2832 	}
2833 }
2834