// SPDX-License-Identifier: BSD-2-Clause /* * Copyright (c) 2016-2025 Linaro Limited * Copyright (c) 2014, STMicroelectronics International N.V. * Copyright (c) 2022, Arm Limited and Contributors. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef DEBUG_XLAT_TABLE #define DEBUG_XLAT_TABLE 0 #endif #define SHM_VASPACE_SIZE (1024 * 1024 * 32) /* Virtual memory pool for core mappings */ tee_mm_pool_t core_virt_mem_pool; /* Virtual memory pool for shared memory mappings */ tee_mm_pool_t core_virt_shm_pool; #ifdef CFG_CORE_PHYS_RELOCATABLE unsigned long core_mmu_tee_load_pa __nex_bss; #else const unsigned long core_mmu_tee_load_pa = TEE_LOAD_ADDR; #endif /* * These variables are initialized before .bss is cleared. To avoid * resetting them when .bss is cleared we're storing them in .data instead, * even if they initially are zero. */ #ifdef CFG_CORE_RESERVED_SHM /* Default NSec shared memory allocated from NSec world */ unsigned long default_nsec_shm_size __nex_bss; unsigned long default_nsec_shm_paddr __nex_bss; #endif static struct memory_map static_memory_map __nex_bss; void (*memory_map_realloc_func)(struct memory_map *mem_map) __nex_bss; /* Offset of the first TEE RAM mapping from start of secure RAM */ static size_t tee_ram_initial_offs __nex_bss; /* Define the platform's memory layout. */ struct memaccess_area { paddr_t paddr; size_t size; }; #define MEMACCESS_AREA(a, s) { .paddr = a, .size = s } static struct memaccess_area secure_only[] __nex_data = { #ifdef CFG_CORE_PHYS_RELOCATABLE MEMACCESS_AREA(0, 0), #else #ifdef TRUSTED_SRAM_BASE MEMACCESS_AREA(TRUSTED_SRAM_BASE, TRUSTED_SRAM_SIZE), #endif MEMACCESS_AREA(TRUSTED_DRAM_BASE, TRUSTED_DRAM_SIZE), #endif }; static struct memaccess_area nsec_shared[] __nex_data = { #ifdef CFG_CORE_RESERVED_SHM MEMACCESS_AREA(TEE_SHMEM_START, TEE_SHMEM_SIZE), #endif }; #if defined(CFG_SECURE_DATA_PATH) static const char *tz_sdp_match = "linaro,secure-heap"; static struct memaccess_area sec_sdp; #ifdef CFG_TEE_SDP_MEM_BASE register_sdp_mem(CFG_TEE_SDP_MEM_BASE, CFG_TEE_SDP_MEM_SIZE); #endif #ifdef TEE_SDP_TEST_MEM_BASE register_sdp_mem(TEE_SDP_TEST_MEM_BASE, TEE_SDP_TEST_MEM_SIZE); #endif #endif #ifdef CFG_CORE_RESERVED_SHM register_phys_mem(MEM_AREA_NSEC_SHM, TEE_SHMEM_START, TEE_SHMEM_SIZE); #endif static unsigned int mmu_spinlock; static uint32_t mmu_lock(void) { return cpu_spin_lock_xsave(&mmu_spinlock); } static void mmu_unlock(uint32_t exceptions) { cpu_spin_unlock_xrestore(&mmu_spinlock, exceptions); } static void heap_realloc_memory_map(struct memory_map *mem_map) { struct tee_mmap_region *m = NULL; struct tee_mmap_region *old = mem_map->map; size_t old_sz = sizeof(*old) * mem_map->alloc_count; size_t sz = old_sz + sizeof(*m); assert(nex_malloc_buffer_is_within_alloced(old, old_sz)); m = nex_realloc(old, sz); if (!m) panic(); mem_map->map = m; mem_map->alloc_count++; } static void boot_mem_realloc_memory_map(struct memory_map *mem_map) { struct tee_mmap_region *m = NULL; struct tee_mmap_region *old = mem_map->map; size_t old_sz = sizeof(*old) * mem_map->alloc_count; size_t sz = old_sz * 2; m = boot_mem_alloc_tmp(sz, alignof(*m)); memcpy(m, old, old_sz); mem_map->map = m; mem_map->alloc_count *= 2; } static void grow_mem_map(struct memory_map *mem_map) { if (mem_map->count == mem_map->alloc_count) { if (!memory_map_realloc_func) { EMSG("Out of entries (%zu) in mem_map", mem_map->alloc_count); panic(); } memory_map_realloc_func(mem_map); } mem_map->count++; } void core_mmu_get_secure_memory(paddr_t *base, paddr_size_t *size) { /* * The first range is always used to cover OP-TEE core memory, but * depending on configuration it may cover more than that. */ *base = secure_only[0].paddr; *size = secure_only[0].size; } void core_mmu_set_secure_memory(paddr_t base, size_t size) { #ifdef CFG_CORE_PHYS_RELOCATABLE static_assert(ARRAY_SIZE(secure_only) == 1); #endif runtime_assert(IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE)); assert(!secure_only[0].size); assert(base && size); DMSG("Physical secure memory base %#"PRIxPA" size %#zx", base, size); secure_only[0].paddr = base; secure_only[0].size = size; } static struct memory_map *get_memory_map(void) { if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { struct memory_map *map = virt_get_memory_map(); if (map) return map; } return &static_memory_map; } static bool _pbuf_intersects(struct memaccess_area *a, size_t alen, paddr_t pa, size_t size) { size_t n; for (n = 0; n < alen; n++) if (core_is_buffer_intersect(pa, size, a[n].paddr, a[n].size)) return true; return false; } #define pbuf_intersects(a, pa, size) \ _pbuf_intersects((a), ARRAY_SIZE(a), (pa), (size)) static bool _pbuf_is_inside(struct memaccess_area *a, size_t alen, paddr_t pa, size_t size) { size_t n; for (n = 0; n < alen; n++) if (core_is_buffer_inside(pa, size, a[n].paddr, a[n].size)) return true; return false; } #define pbuf_is_inside(a, pa, size) \ _pbuf_is_inside((a), ARRAY_SIZE(a), (pa), (size)) static bool pa_is_in_map(struct tee_mmap_region *map, paddr_t pa, size_t len) { paddr_t end_pa = 0; if (!map) return false; if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) return false; return (pa >= map->pa && end_pa <= map->pa + map->size - 1); } static bool va_is_in_map(struct tee_mmap_region *map, vaddr_t va) { if (!map) return false; return (va >= map->va && va <= (map->va + map->size - 1)); } /* check if target buffer fits in a core default map area */ static bool pbuf_inside_map_area(unsigned long p, size_t l, struct tee_mmap_region *map) { return core_is_buffer_inside(p, l, map->pa, map->size); } TEE_Result core_mmu_for_each_map(void *ptr, TEE_Result (*fn)(struct tee_mmap_region *map, void *ptr)) { struct memory_map *mem_map = get_memory_map(); TEE_Result res = TEE_SUCCESS; size_t n = 0; for (n = 0; n < mem_map->count; n++) { res = fn(mem_map->map + n, ptr); if (res) return res; } return TEE_SUCCESS; } static struct tee_mmap_region *find_map_by_type(enum teecore_memtypes type) { struct memory_map *mem_map = get_memory_map(); size_t n = 0; for (n = 0; n < mem_map->count; n++) { if (mem_map->map[n].type == type) return mem_map->map + n; } return NULL; } static struct tee_mmap_region * find_map_by_type_and_pa(enum teecore_memtypes type, paddr_t pa, size_t len) { struct memory_map *mem_map = get_memory_map(); size_t n = 0; for (n = 0; n < mem_map->count; n++) { if (mem_map->map[n].type != type) continue; if (pa_is_in_map(mem_map->map + n, pa, len)) return mem_map->map + n; } return NULL; } static struct tee_mmap_region *find_map_by_va(void *va) { struct memory_map *mem_map = get_memory_map(); vaddr_t a = (vaddr_t)va; size_t n = 0; for (n = 0; n < mem_map->count; n++) { if (a >= mem_map->map[n].va && a <= (mem_map->map[n].va - 1 + mem_map->map[n].size)) return mem_map->map + n; } return NULL; } static struct tee_mmap_region *find_map_by_pa(unsigned long pa) { struct memory_map *mem_map = get_memory_map(); size_t n = 0; for (n = 0; n < mem_map->count; n++) { /* Skip unmapped regions */ if ((mem_map->map[n].attr & TEE_MATTR_VALID_BLOCK) && pa >= mem_map->map[n].pa && pa <= (mem_map->map[n].pa - 1 + mem_map->map[n].size)) return mem_map->map + n; } return NULL; } #if defined(CFG_SECURE_DATA_PATH) static bool dtb_get_sdp_region(void) { void *fdt = NULL; int node = 0; int tmp_node = 0; paddr_t tmp_addr = 0; size_t tmp_size = 0; if (!IS_ENABLED(CFG_EMBED_DTB)) return false; fdt = get_embedded_dt(); if (!fdt) panic("No DTB found"); node = fdt_node_offset_by_compatible(fdt, -1, tz_sdp_match); if (node < 0) { DMSG("No %s compatible node found", tz_sdp_match); return false; } tmp_node = node; while (tmp_node >= 0) { tmp_node = fdt_node_offset_by_compatible(fdt, tmp_node, tz_sdp_match); if (tmp_node >= 0) DMSG("Ignore SDP pool node %s, supports only 1 node", fdt_get_name(fdt, tmp_node, NULL)); } if (fdt_reg_info(fdt, node, &tmp_addr, &tmp_size)) { EMSG("%s: Unable to get base addr or size from DT", tz_sdp_match); return false; } sec_sdp.paddr = tmp_addr; sec_sdp.size = tmp_size; return true; } #endif #if defined(CFG_CORE_DYN_SHM) || defined(CFG_SECURE_DATA_PATH) static bool pbuf_is_special_mem(paddr_t pbuf, size_t len, const struct core_mmu_phys_mem *start, const struct core_mmu_phys_mem *end) { const struct core_mmu_phys_mem *mem; for (mem = start; mem < end; mem++) { if (core_is_buffer_inside(pbuf, len, mem->addr, mem->size)) return true; } return false; } #endif #ifdef CFG_CORE_DYN_SHM static void carve_out_phys_mem(struct core_mmu_phys_mem **mem, size_t *nelems, paddr_t pa, size_t size) { struct core_mmu_phys_mem *m = *mem; size_t n = 0; while (n < *nelems) { if (!core_is_buffer_intersect(pa, size, m[n].addr, m[n].size)) { n++; continue; } if (core_is_buffer_inside(m[n].addr, m[n].size, pa, size)) { /* m[n] is completely covered by pa:size */ rem_array_elem(m, *nelems, sizeof(*m), n); (*nelems)--; m = nex_realloc(m, sizeof(*m) * *nelems); if (!m) panic(); *mem = m; continue; } if (pa > m[n].addr && pa + size - 1 < m[n].addr + m[n].size - 1) { /* * pa:size is strictly inside m[n] range so split * m[n] entry. */ m = nex_realloc(m, sizeof(*m) * (*nelems + 1)); if (!m) panic(); *mem = m; (*nelems)++; ins_array_elem(m, *nelems, sizeof(*m), n + 1, NULL); m[n + 1].addr = pa + size; m[n + 1].size = m[n].addr + m[n].size - pa - size; m[n].size = pa - m[n].addr; n++; } else if (pa <= m[n].addr) { /* * pa:size is overlapping (possibly partially) at the * beginning of m[n]. */ m[n].size = m[n].addr + m[n].size - pa - size; m[n].addr = pa + size; } else { /* * pa:size is overlapping (possibly partially) at * the end of m[n]. */ m[n].size = pa - m[n].addr; } n++; } } static void check_phys_mem_is_outside(struct core_mmu_phys_mem *start, size_t nelems, struct tee_mmap_region *map) { size_t n; for (n = 0; n < nelems; n++) { if (!core_is_buffer_outside(start[n].addr, start[n].size, map->pa, map->size)) { EMSG("Non-sec mem (%#" PRIxPA ":%#" PRIxPASZ ") overlaps map (type %d %#" PRIxPA ":%#zx)", start[n].addr, start[n].size, map->type, map->pa, map->size); panic(); } } } static const struct core_mmu_phys_mem *discovered_nsec_ddr_start __nex_bss; static size_t discovered_nsec_ddr_nelems __nex_bss; static int cmp_pmem_by_addr(const void *a, const void *b) { const struct core_mmu_phys_mem *pmem_a = a; const struct core_mmu_phys_mem *pmem_b = b; return CMP_TRILEAN(pmem_a->addr, pmem_b->addr); } void core_mmu_set_discovered_nsec_ddr(struct core_mmu_phys_mem *start, size_t nelems) { struct core_mmu_phys_mem *m = start; size_t num_elems = nelems; struct memory_map *mem_map = &static_memory_map; const struct core_mmu_phys_mem __maybe_unused *pmem; size_t n = 0; assert(!discovered_nsec_ddr_start); assert(m && num_elems); qsort(m, num_elems, sizeof(*m), cmp_pmem_by_addr); /* * Non-secure shared memory and also secure data * path memory are supposed to reside inside * non-secure memory. Since NSEC_SHM and SDP_MEM * are used for a specific purpose make holes for * those memory in the normal non-secure memory. * * This has to be done since for instance QEMU * isn't aware of which memory range in the * non-secure memory is used for NSEC_SHM. */ #ifdef CFG_SECURE_DATA_PATH if (dtb_get_sdp_region()) carve_out_phys_mem(&m, &num_elems, sec_sdp.paddr, sec_sdp.size); for (pmem = phys_sdp_mem_begin; pmem < phys_sdp_mem_end; pmem++) carve_out_phys_mem(&m, &num_elems, pmem->addr, pmem->size); #endif for (n = 0; n < ARRAY_SIZE(secure_only); n++) carve_out_phys_mem(&m, &num_elems, secure_only[n].paddr, secure_only[n].size); for (n = 0; n < mem_map->count; n++) { switch (mem_map->map[n].type) { case MEM_AREA_NSEC_SHM: carve_out_phys_mem(&m, &num_elems, mem_map->map[n].pa, mem_map->map[n].size); break; case MEM_AREA_EXT_DT: case MEM_AREA_MANIFEST_DT: case MEM_AREA_RAM_NSEC: case MEM_AREA_RES_VASPACE: case MEM_AREA_SHM_VASPACE: case MEM_AREA_TS_VASPACE: case MEM_AREA_PAGER_VASPACE: case MEM_AREA_NEX_DYN_VASPACE: case MEM_AREA_TEE_DYN_VASPACE: break; default: check_phys_mem_is_outside(m, num_elems, mem_map->map + n); } } discovered_nsec_ddr_start = m; discovered_nsec_ddr_nelems = num_elems; DMSG("Non-secure RAM:"); for (n = 0; n < num_elems; n++) DMSG("%zu: pa %#"PRIxPA"..%#"PRIxPA" sz %#"PRIxPASZ, n, m[n].addr, m[n].addr + m[n].size - 1, m[n].size); if (!core_mmu_check_end_pa(m[num_elems - 1].addr, m[num_elems - 1].size)) panic(); } static bool get_discovered_nsec_ddr(const struct core_mmu_phys_mem **start, const struct core_mmu_phys_mem **end) { if (!discovered_nsec_ddr_start) return false; *start = discovered_nsec_ddr_start; *end = discovered_nsec_ddr_start + discovered_nsec_ddr_nelems; return true; } static bool pbuf_is_nsec_ddr(paddr_t pbuf, size_t len) { const struct core_mmu_phys_mem *start; const struct core_mmu_phys_mem *end; if (!get_discovered_nsec_ddr(&start, &end)) return false; return pbuf_is_special_mem(pbuf, len, start, end); } bool core_mmu_nsec_ddr_is_defined(void) { const struct core_mmu_phys_mem *start; const struct core_mmu_phys_mem *end; if (!get_discovered_nsec_ddr(&start, &end)) return false; return start != end; } #else static bool pbuf_is_nsec_ddr(paddr_t pbuf __unused, size_t len __unused) { return false; } #endif /*CFG_CORE_DYN_SHM*/ #define MSG_MEM_INSTERSECT(pa1, sz1, pa2, sz2) \ EMSG("[%" PRIxPA " %" PRIx64 "] intersects [%" PRIxPA " %" PRIx64 "]", \ pa1, (uint64_t)pa1 + (sz1), pa2, (uint64_t)pa2 + (sz2)) #ifdef CFG_SECURE_DATA_PATH static bool pbuf_is_sdp_mem(paddr_t pbuf, size_t len) { bool is_sdp_mem = false; if (sec_sdp.size) is_sdp_mem = core_is_buffer_inside(pbuf, len, sec_sdp.paddr, sec_sdp.size); if (!is_sdp_mem) is_sdp_mem = pbuf_is_special_mem(pbuf, len, phys_sdp_mem_begin, phys_sdp_mem_end); return is_sdp_mem; } static struct mobj *core_sdp_mem_alloc_mobj(paddr_t pa, size_t size) { struct mobj *mobj = mobj_phys_alloc(pa, size, TEE_MATTR_MEM_TYPE_CACHED, CORE_MEM_SDP_MEM); if (!mobj) panic("can't create SDP physical memory object"); return mobj; } struct mobj **core_sdp_mem_create_mobjs(void) { const struct core_mmu_phys_mem *mem = NULL; struct mobj **mobj_base = NULL; struct mobj **mobj = NULL; int cnt = phys_sdp_mem_end - phys_sdp_mem_begin; if (sec_sdp.size) cnt++; /* SDP mobjs table must end with a NULL entry */ mobj_base = calloc(cnt + 1, sizeof(struct mobj *)); if (!mobj_base) panic("Out of memory"); mobj = mobj_base; for (mem = phys_sdp_mem_begin; mem < phys_sdp_mem_end; mem++, mobj++) *mobj = core_sdp_mem_alloc_mobj(mem->addr, mem->size); if (sec_sdp.size) *mobj = core_sdp_mem_alloc_mobj(sec_sdp.paddr, sec_sdp.size); return mobj_base; } #else /* CFG_SECURE_DATA_PATH */ static bool pbuf_is_sdp_mem(paddr_t pbuf __unused, size_t len __unused) { return false; } #endif /* CFG_SECURE_DATA_PATH */ /* Check special memories comply with registered memories */ static void verify_special_mem_areas(struct memory_map *mem_map, const struct core_mmu_phys_mem *start, const struct core_mmu_phys_mem *end, const char *area_name __maybe_unused) { const struct core_mmu_phys_mem *mem = NULL; const struct core_mmu_phys_mem *mem2 = NULL; size_t n = 0; if (start == end) { DMSG("No %s memory area defined", area_name); return; } for (mem = start; mem < end; mem++) DMSG("%s memory [%" PRIxPA " %" PRIx64 "]", area_name, mem->addr, (uint64_t)mem->addr + mem->size); /* Check memories do not intersect each other */ for (mem = start; mem + 1 < end; mem++) { for (mem2 = mem + 1; mem2 < end; mem2++) { if (core_is_buffer_intersect(mem2->addr, mem2->size, mem->addr, mem->size)) { MSG_MEM_INSTERSECT(mem2->addr, mem2->size, mem->addr, mem->size); panic("Special memory intersection"); } } } /* * Check memories do not intersect any mapped memory. * This is called before reserved VA space is loaded in mem_map. */ for (mem = start; mem < end; mem++) { for (n = 0; n < mem_map->count; n++) { #ifdef TEE_SDP_TEST_MEM_BASE /* * Ignore MEM_AREA_SEC_RAM_OVERALL since it covers * TEE_SDP_TEST_MEM too. */ if (mem->addr == TEE_SDP_TEST_MEM_BASE && mem->size == TEE_SDP_TEST_MEM_SIZE && mem_map->map[n].type == MEM_AREA_SEC_RAM_OVERALL) continue; #endif if (core_is_buffer_intersect(mem->addr, mem->size, mem_map->map[n].pa, mem_map->map[n].size)) { MSG_MEM_INSTERSECT(mem->addr, mem->size, mem_map->map[n].pa, mem_map->map[n].size); panic("Special memory intersection"); } } } } static void merge_mmaps(struct tee_mmap_region *dst, const struct tee_mmap_region *src) { paddr_t end_pa = MAX(dst->pa + dst->size - 1, src->pa + src->size - 1); paddr_t pa = MIN(dst->pa, src->pa); DMSG("Merging %#"PRIxPA"..%#"PRIxPA" and %#"PRIxPA"..%#"PRIxPA, dst->pa, dst->pa + dst->size - 1, src->pa, src->pa + src->size - 1); dst->pa = pa; dst->size = end_pa - pa + 1; } static bool mmaps_are_mergeable(const struct tee_mmap_region *r1, const struct tee_mmap_region *r2) { if (r1->type != r2->type) return false; if (r1->pa == r2->pa) return true; if (r1->pa < r2->pa) return r1->pa + r1->size >= r2->pa; else return r2->pa + r2->size >= r1->pa; } static void add_phys_mem(struct memory_map *mem_map, const char *mem_name __maybe_unused, enum teecore_memtypes mem_type, paddr_t mem_addr, paddr_size_t mem_size) { size_t n = 0; const struct tee_mmap_region m0 = { .type = mem_type, .pa = mem_addr, .size = mem_size, }; if (!mem_size) /* Discard null size entries */ return; /* * If some ranges of memory of the same type do overlap * each others they are coalesced into one entry. To help this * added entries are sorted by increasing physical. * * Note that it's valid to have the same physical memory as several * different memory types, for instance the same device memory * mapped as both secure and non-secure. This will probably not * happen often in practice. */ DMSG("%s type %s 0x%08" PRIxPA " size 0x%08" PRIxPASZ, mem_name, teecore_memtype_name(mem_type), mem_addr, mem_size); for (n = 0; n < mem_map->count; n++) { if (mmaps_are_mergeable(mem_map->map + n, &m0)) { merge_mmaps(mem_map->map + n, &m0); /* * The merged result might be mergeable with the * next or previous entry. */ if (n + 1 < mem_map->count && mmaps_are_mergeable(mem_map->map + n, mem_map->map + n + 1)) { merge_mmaps(mem_map->map + n, mem_map->map + n + 1); rem_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), n + 1); mem_map->count--; } if (n > 0 && mmaps_are_mergeable(mem_map->map + n - 1, mem_map->map + n)) { merge_mmaps(mem_map->map + n - 1, mem_map->map + n); rem_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), n); mem_map->count--; } return; } if (mem_type < mem_map->map[n].type || (mem_type == mem_map->map[n].type && mem_addr < mem_map->map[n].pa)) break; /* found the spot where to insert this memory */ } grow_mem_map(mem_map); ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), n, &m0); } static void add_va_space(struct memory_map *mem_map, enum teecore_memtypes type, size_t size) { size_t n = 0; DMSG("type %s size 0x%08zx", teecore_memtype_name(type), size); for (n = 0; n < mem_map->count; n++) { if (type < mem_map->map[n].type) break; } grow_mem_map(mem_map); ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), n, NULL); mem_map->map[n] = (struct tee_mmap_region){ .type = type, .size = size, }; } uint32_t core_mmu_type_to_attr(enum teecore_memtypes t) { const uint32_t attr = TEE_MATTR_VALID_BLOCK; const uint32_t tagged = TEE_MATTR_MEM_TYPE_TAGGED << TEE_MATTR_MEM_TYPE_SHIFT; const uint32_t cached = TEE_MATTR_MEM_TYPE_CACHED << TEE_MATTR_MEM_TYPE_SHIFT; const uint32_t noncache = TEE_MATTR_MEM_TYPE_DEV << TEE_MATTR_MEM_TYPE_SHIFT; switch (t) { case MEM_AREA_TEE_RAM: return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | tagged; case MEM_AREA_TEE_RAM_RX: case MEM_AREA_INIT_RAM_RX: case MEM_AREA_IDENTITY_MAP_RX: return attr | TEE_MATTR_SECURE | TEE_MATTR_PRX | tagged; case MEM_AREA_TEE_RAM_RO: case MEM_AREA_INIT_RAM_RO: return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | tagged; case MEM_AREA_TEE_RAM_RW: case MEM_AREA_NEX_RAM_RO: /* This has to be r/w during init runtime */ case MEM_AREA_NEX_RAM_RW: case MEM_AREA_NEX_DYN_VASPACE: case MEM_AREA_TEE_DYN_VASPACE: case MEM_AREA_TEE_ASAN: return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; case MEM_AREA_TEE_COHERENT: return attr | TEE_MATTR_SECURE | TEE_MATTR_PRWX | noncache; case MEM_AREA_NSEC_SHM: case MEM_AREA_NEX_NSEC_SHM: return attr | TEE_MATTR_PRW | cached; case MEM_AREA_MANIFEST_DT: return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; case MEM_AREA_TRANSFER_LIST: return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; case MEM_AREA_EXT_DT: /* * If CFG_MAP_EXT_DT_SECURE is enabled map the external device * tree as secure non-cached memory, otherwise, fall back to * non-secure mapping. */ if (IS_ENABLED(CFG_MAP_EXT_DT_SECURE)) return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; fallthrough; case MEM_AREA_IO_NSEC: return attr | TEE_MATTR_PRW | noncache; case MEM_AREA_IO_SEC: return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | noncache; case MEM_AREA_RAM_NSEC: return attr | TEE_MATTR_PRW | cached; case MEM_AREA_RAM_SEC: return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | cached; case MEM_AREA_SEC_RAM_OVERALL: return attr | TEE_MATTR_SECURE | TEE_MATTR_PRW | tagged; case MEM_AREA_ROM_SEC: return attr | TEE_MATTR_SECURE | TEE_MATTR_PR | cached; case MEM_AREA_RES_VASPACE: case MEM_AREA_SHM_VASPACE: return 0; case MEM_AREA_PAGER_VASPACE: return TEE_MATTR_SECURE; default: panic("invalid type"); } } static bool __maybe_unused map_is_tee_ram(const struct tee_mmap_region *mm) { switch (mm->type) { case MEM_AREA_TEE_RAM: case MEM_AREA_TEE_RAM_RX: case MEM_AREA_TEE_RAM_RO: case MEM_AREA_TEE_RAM_RW: case MEM_AREA_INIT_RAM_RX: case MEM_AREA_INIT_RAM_RO: case MEM_AREA_NEX_RAM_RW: case MEM_AREA_NEX_RAM_RO: case MEM_AREA_TEE_ASAN: return true; default: return false; } } static bool __maybe_unused map_is_secure(const struct tee_mmap_region *mm) { return !!(core_mmu_type_to_attr(mm->type) & TEE_MATTR_SECURE); } static bool __maybe_unused map_is_pgdir(const struct tee_mmap_region *mm) { return mm->region_size == CORE_MMU_PGDIR_SIZE; } static int cmp_mmap_by_lower_va(const void *a, const void *b) { const struct tee_mmap_region *mm_a = a; const struct tee_mmap_region *mm_b = b; return CMP_TRILEAN(mm_a->va, mm_b->va); } static void dump_mmap_table(struct memory_map *mem_map) { size_t n = 0; for (n = 0; n < mem_map->count; n++) { struct tee_mmap_region *map __maybe_unused = mem_map->map + n; DMSG("type %-12s va 0x%08" PRIxVA "..0x%08" PRIxVA " pa 0x%08" PRIxPA "..0x%08" PRIxPA " size 0x%08zx (%s)", teecore_memtype_name(map->type), map->va, map->va + map->size - 1, map->pa, (paddr_t)(map->pa + map->size - 1), map->size, map->region_size == SMALL_PAGE_SIZE ? "smallpg" : "pgdir"); } } #if DEBUG_XLAT_TABLE static void dump_xlat_table(vaddr_t va, unsigned int level) { struct core_mmu_table_info tbl_info; unsigned int idx = 0; paddr_t pa; uint32_t attr; core_mmu_find_table(NULL, va, level, &tbl_info); va = tbl_info.va_base; for (idx = 0; idx < tbl_info.num_entries; idx++) { core_mmu_get_entry(&tbl_info, idx, &pa, &attr); if (attr || level > CORE_MMU_BASE_TABLE_LEVEL) { const char *security_bit = ""; if (core_mmu_entry_have_security_bit(attr)) { if (attr & TEE_MATTR_SECURE) security_bit = "S"; else security_bit = "NS"; } if (attr & TEE_MATTR_TABLE) { DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA " TBL:0x%010" PRIxPA " %s", level * 2, "", level, va, pa, security_bit); dump_xlat_table(va, level + 1); } else if (attr) { DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA " PA:0x%010" PRIxPA " %s-%s-%s-%s", level * 2, "", level, va, pa, mattr_is_cached(attr) ? "MEM" : "DEV", attr & TEE_MATTR_PW ? "RW" : "RO", attr & TEE_MATTR_PX ? "X " : "XN", security_bit); } else { DMSG_RAW("%*s [LVL%d] VA:0x%010" PRIxVA " INVALID\n", level * 2, "", level, va); } } va += BIT64(tbl_info.shift); } } #else static void dump_xlat_table(vaddr_t va __unused, int level __unused) { } #endif /* * Reserves virtual memory space for pager usage. * * From the start of the first memory used by the link script + * TEE_RAM_VA_SIZE should be covered, either with a direct mapping or empty * mapping for pager usage. This adds translation tables as needed for the * pager to operate. */ static void add_pager_vaspace(struct memory_map *mem_map) { paddr_t begin = 0; paddr_t end = 0; size_t size = 0; size_t pos = 0; size_t n = 0; for (n = 0; n < mem_map->count; n++) { if (map_is_tee_ram(mem_map->map + n)) { if (!begin) begin = mem_map->map[n].pa; pos = n + 1; } } end = mem_map->map[pos - 1].pa + mem_map->map[pos - 1].size; assert(end - begin < TEE_RAM_VA_SIZE); size = TEE_RAM_VA_SIZE - (end - begin); grow_mem_map(mem_map); ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), n, NULL); mem_map->map[n] = (struct tee_mmap_region){ .type = MEM_AREA_PAGER_VASPACE, .size = size, .region_size = SMALL_PAGE_SIZE, .attr = core_mmu_type_to_attr(MEM_AREA_PAGER_VASPACE), }; } static void check_sec_nsec_mem_config(void) { size_t n = 0; for (n = 0; n < ARRAY_SIZE(secure_only); n++) { if (pbuf_intersects(nsec_shared, secure_only[n].paddr, secure_only[n].size)) panic("Invalid memory access config: sec/nsec"); } } static void collect_device_mem_ranges(struct memory_map *mem_map) { const char *compatible = "arm,ffa-manifest-device-regions"; void *fdt = get_manifest_dt(); const char *name = NULL; uint64_t page_count = 0; uint64_t base = 0; int subnode = 0; int node = 0; assert(fdt); node = fdt_node_offset_by_compatible(fdt, 0, compatible); if (node < 0) return; fdt_for_each_subnode(subnode, fdt, node) { name = fdt_get_name(fdt, subnode, NULL); if (!name) continue; if (dt_getprop_as_number(fdt, subnode, "base-address", &base)) { EMSG("Mandatory field is missing: base-address"); continue; } if (base & SMALL_PAGE_MASK) { EMSG("base-address is not page aligned"); continue; } if (dt_getprop_as_number(fdt, subnode, "pages-count", &page_count)) { EMSG("Mandatory field is missing: pages-count"); continue; } add_phys_mem(mem_map, name, MEM_AREA_IO_SEC, base, page_count * SMALL_PAGE_SIZE); } } static void collect_mem_ranges(struct memory_map *mem_map) { const struct core_mmu_phys_mem *mem = NULL; vaddr_t ram_start = secure_only[0].paddr; size_t n = 0; #define ADD_PHYS_MEM(_type, _addr, _size) \ add_phys_mem(mem_map, #_addr, (_type), (_addr), (_size)) if (IS_ENABLED(CFG_CORE_RWDATA_NOEXEC)) { paddr_t next_pa = 0; /* * Read-only and read-execute physical memory areas must * not be mapped by MEM_AREA_SEC_RAM_OVERALL, but all the * read/write should. */ ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, ram_start, VCORE_UNPG_RX_PA - ram_start); assert(VCORE_UNPG_RX_PA >= ram_start); tee_ram_initial_offs = VCORE_UNPG_RX_PA - ram_start; DMSG("tee_ram_initial_offs %#zx", tee_ram_initial_offs); ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RX, VCORE_UNPG_RX_PA, VCORE_UNPG_RX_SZ); ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RO, VCORE_UNPG_RO_PA, VCORE_UNPG_RO_SZ); if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RO, VCORE_UNPG_RW_PA, VCORE_UNPG_RW_SZ); ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA, VCORE_UNPG_RW_SZ); ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_NEX_RW_PA, VCORE_NEX_RW_SZ); ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_NEX_RW_PA, VCORE_NEX_RW_SZ); ADD_PHYS_MEM(MEM_AREA_NEX_RAM_RW, VCORE_FREE_PA, VCORE_FREE_SZ); ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA, VCORE_FREE_SZ); next_pa = VCORE_FREE_PA + VCORE_FREE_SZ; } else { ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_UNPG_RW_PA, VCORE_UNPG_RW_SZ); ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_UNPG_RW_PA, VCORE_UNPG_RW_SZ); ADD_PHYS_MEM(MEM_AREA_TEE_RAM_RW, VCORE_FREE_PA, VCORE_FREE_SZ); ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, VCORE_FREE_PA, VCORE_FREE_SZ); next_pa = VCORE_FREE_PA + VCORE_FREE_SZ; } if (IS_ENABLED(CFG_WITH_PAGER)) { paddr_t pa = 0; size_t sz = 0; ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RX, VCORE_INIT_RX_PA, VCORE_INIT_RX_SZ); ADD_PHYS_MEM(MEM_AREA_INIT_RAM_RO, VCORE_INIT_RO_PA, VCORE_INIT_RO_SZ); /* * Core init mapping shall cover up to end of the * physical RAM. This is required since the hash * table is appended to the binary data after the * firmware build sequence. */ pa = VCORE_INIT_RO_PA + VCORE_INIT_RO_SZ; sz = TEE_RAM_START + TEE_RAM_PH_SIZE - pa; ADD_PHYS_MEM(MEM_AREA_TEE_RAM, pa, sz); } else { ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, next_pa, secure_only[0].paddr + secure_only[0].size - next_pa); } } else { ADD_PHYS_MEM(MEM_AREA_TEE_RAM, TEE_RAM_START, TEE_RAM_PH_SIZE); ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr, secure_only[0].size); } for (n = 1; n < ARRAY_SIZE(secure_only); n++) ADD_PHYS_MEM(MEM_AREA_SEC_RAM_OVERALL, secure_only[n].paddr, secure_only[n].size); if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS) && IS_ENABLED(CFG_WITH_PAGER)) { /* * Asan ram is part of MEM_AREA_TEE_RAM_RW when pager is * disabled. */ ADD_PHYS_MEM(MEM_AREA_TEE_ASAN, ASAN_MAP_PA, ASAN_MAP_SZ); } #undef ADD_PHYS_MEM /* Collect device memory info from SP manifest */ if (IS_ENABLED(CFG_CORE_SEL2_SPMC)) collect_device_mem_ranges(mem_map); for (mem = phys_mem_map_begin; mem < phys_mem_map_end; mem++) { /* Only unmapped virtual range may have a null phys addr */ assert(mem->addr || !core_mmu_type_to_attr(mem->type)); add_phys_mem(mem_map, mem->name, mem->type, mem->addr, mem->size); } if (IS_ENABLED(CFG_SECURE_DATA_PATH)) verify_special_mem_areas(mem_map, phys_sdp_mem_begin, phys_sdp_mem_end, "SDP"); add_va_space(mem_map, MEM_AREA_RES_VASPACE, CFG_RESERVED_VASPACE_SIZE); add_va_space(mem_map, MEM_AREA_SHM_VASPACE, SHM_VASPACE_SIZE); if (IS_ENABLED(CFG_DYN_CONFIG)) { if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) add_va_space(mem_map, MEM_AREA_NEX_DYN_VASPACE, ROUNDUP(CFG_NEX_DYN_VASPACE_SIZE, CORE_MMU_PGDIR_SIZE)); add_va_space(mem_map, MEM_AREA_TEE_DYN_VASPACE, CFG_TEE_DYN_VASPACE_SIZE); } } static void assign_mem_granularity(struct memory_map *mem_map) { size_t n = 0; /* * Assign region sizes, note that MEM_AREA_TEE_RAM always uses * SMALL_PAGE_SIZE. */ for (n = 0; n < mem_map->count; n++) { paddr_t mask = mem_map->map[n].pa | mem_map->map[n].size; if (mask & SMALL_PAGE_MASK) panic("Impossible memory alignment"); if (map_is_tee_ram(mem_map->map + n)) mem_map->map[n].region_size = SMALL_PAGE_SIZE; else mem_map->map[n].region_size = CORE_MMU_PGDIR_SIZE; } } static bool place_tee_ram_at_top(paddr_t paddr) { return paddr > BIT64(core_mmu_get_va_width()) / 2; } /* * MMU arch driver shall override this function if it helps * optimizing the memory footprint of the address translation tables. */ bool __weak core_mmu_prefer_tee_ram_at_top(paddr_t paddr) { return place_tee_ram_at_top(paddr); } static bool assign_mem_va_dir(vaddr_t tee_ram_va, struct memory_map *mem_map, bool tee_ram_at_top) { struct tee_mmap_region *map = NULL; bool va_is_nex_shared = false; bool va_is_secure = true; vaddr_t va = 0; size_t n = 0; /* * tee_ram_va might equals 0 when CFG_CORE_ASLR=y. * 0 is by design an invalid va, so return false directly. */ if (!tee_ram_va) return false; /* Clear eventual previous assignments */ for (n = 0; n < mem_map->count; n++) mem_map->map[n].va = 0; /* * TEE RAM regions are always aligned with region_size. * * Note that MEM_AREA_PAGER_VASPACE also counts as TEE RAM here * since it handles virtual memory which covers the part of the ELF * that cannot fit directly into memory. */ va = tee_ram_va + tee_ram_initial_offs; for (n = 0; n < mem_map->count; n++) { map = mem_map->map + n; if (map_is_tee_ram(map) || map->type == MEM_AREA_PAGER_VASPACE) { assert(!(va & (map->region_size - 1))); assert(!(map->size & (map->region_size - 1))); map->va = va; if (ADD_OVERFLOW(va, map->size, &va)) return false; if (!core_mmu_va_is_valid(va)) return false; } } if (tee_ram_at_top) { /* * Map non-tee ram regions at addresses lower than the tee * ram region. */ va = tee_ram_va; for (n = 0; n < mem_map->count; n++) { map = mem_map->map + n; map->attr = core_mmu_type_to_attr(map->type); if (map->va) continue; if (!IS_ENABLED(CFG_WITH_LPAE) && va_is_secure != map_is_secure(map)) { va_is_secure = !va_is_secure; va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); } else if (va_is_nex_shared != core_mmu_type_is_nex_shared(map->type)) { va_is_nex_shared = !va_is_nex_shared; va = ROUNDDOWN(va, CORE_MMU_PGDIR_SIZE); } if (SUB_OVERFLOW(va, map->size, &va)) return false; va = ROUNDDOWN2(va, map->region_size); /* * Make sure that va is aligned with pa for * efficient pgdir mapping. Basically pa & * pgdir_mask should be == va & pgdir_mask */ if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { if (SUB_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) return false; va += (map->pa - va) & CORE_MMU_PGDIR_MASK; } map->va = va; } } else { /* * Map non-tee ram regions at addresses higher than the tee * ram region. */ for (n = 0; n < mem_map->count; n++) { map = mem_map->map + n; map->attr = core_mmu_type_to_attr(map->type); if (map->va) continue; if (!IS_ENABLED(CFG_WITH_LPAE) && va_is_secure != map_is_secure(map)) { va_is_secure = !va_is_secure; if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) return false; } else if (va_is_nex_shared != core_mmu_type_is_nex_shared(map->type)) { va_is_nex_shared = !va_is_nex_shared; if (ROUNDUP_OVERFLOW(va, CORE_MMU_PGDIR_SIZE, &va)) return false; } if (ROUNDUP2_OVERFLOW(va, map->region_size, &va)) return false; /* * Make sure that va is aligned with pa for * efficient pgdir mapping. Basically pa & * pgdir_mask should be == va & pgdir_mask */ if (map->size > 2 * CORE_MMU_PGDIR_SIZE) { vaddr_t offs = (map->pa - va) & CORE_MMU_PGDIR_MASK; if (ADD_OVERFLOW(va, offs, &va)) return false; } map->va = va; if (ADD_OVERFLOW(va, map->size, &va)) return false; if (!core_mmu_va_is_valid(va)) return false; } } return true; } static bool assign_mem_va(vaddr_t tee_ram_va, struct memory_map *mem_map) { bool tee_ram_at_top = place_tee_ram_at_top(tee_ram_va); /* * Check that we're not overlapping with the user VA range. */ if (IS_ENABLED(CFG_WITH_LPAE)) { /* * User VA range is supposed to be defined after these * mappings have been established. */ assert(!core_mmu_user_va_range_is_defined()); } else { vaddr_t user_va_base = 0; size_t user_va_size = 0; assert(core_mmu_user_va_range_is_defined()); core_mmu_get_user_va_range(&user_va_base, &user_va_size); if (tee_ram_va < (user_va_base + user_va_size)) return false; } if (IS_ENABLED(CFG_WITH_PAGER)) { bool prefered_dir = core_mmu_prefer_tee_ram_at_top(tee_ram_va); /* Try whole mapping covered by a single base xlat entry */ if (prefered_dir != tee_ram_at_top && assign_mem_va_dir(tee_ram_va, mem_map, prefered_dir)) return true; } return assign_mem_va_dir(tee_ram_va, mem_map, tee_ram_at_top); } static int cmp_init_mem_map(const void *a, const void *b) { const struct tee_mmap_region *mm_a = a; const struct tee_mmap_region *mm_b = b; int rc = 0; rc = CMP_TRILEAN(mm_a->region_size, mm_b->region_size); if (!rc) rc = CMP_TRILEAN(mm_a->pa, mm_b->pa); /* * 32bit MMU descriptors cannot mix secure and non-secure mapping in * the same level2 table. Hence sort secure mapping from non-secure * mapping. */ if (!rc && !IS_ENABLED(CFG_WITH_LPAE)) rc = CMP_TRILEAN(map_is_secure(mm_a), map_is_secure(mm_b)); /* * Nexus mappings shared between partitions should not be mixed * with other mappings in the same translation table. Hence sort * nexus shared mappings from other mappings. */ if (!rc) rc = CMP_TRILEAN(core_mmu_type_is_nex_shared(mm_a->type), core_mmu_type_is_nex_shared(mm_b->type)); return rc; } static bool mem_map_add_id_map(struct memory_map *mem_map, vaddr_t id_map_start, vaddr_t id_map_end) { vaddr_t start = ROUNDDOWN(id_map_start, SMALL_PAGE_SIZE); vaddr_t end = ROUNDUP(id_map_end, SMALL_PAGE_SIZE); size_t len = end - start; size_t n = 0; for (n = 0; n < mem_map->count; n++) if (core_is_buffer_intersect(mem_map->map[n].va, mem_map->map[n].size, start, len)) return false; grow_mem_map(mem_map); mem_map->map[mem_map->count - 1] = (struct tee_mmap_region){ .type = MEM_AREA_IDENTITY_MAP_RX, /* * Could use CORE_MMU_PGDIR_SIZE to potentially save a * translation table, at the increased risk of clashes with * the rest of the memory map. */ .region_size = SMALL_PAGE_SIZE, .pa = start, .va = start, .size = len, .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), }; return true; } static struct memory_map *init_mem_map(struct memory_map *mem_map, unsigned long seed, unsigned long *ret_offs) { /* * @id_map_start and @id_map_end describes a physical memory range * that must be mapped Read-Only eXecutable at identical virtual * addresses. */ vaddr_t id_map_start = (vaddr_t)__identity_map_init_start; vaddr_t id_map_end = (vaddr_t)__identity_map_init_end; vaddr_t start_addr = secure_only[0].paddr; unsigned long offs = 0; collect_mem_ranges(mem_map); assign_mem_granularity(mem_map); /* * To ease mapping and lower use of xlat tables, sort mapping * description moving small-page regions after the pgdir regions. */ qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region), cmp_init_mem_map); if (IS_ENABLED(CFG_WITH_PAGER)) add_pager_vaspace(mem_map); if (IS_ENABLED(CFG_CORE_ASLR) && seed) { vaddr_t ba = 0; size_t n = 0; for (n = 0; n < 3; n++) { ba = arch_aslr_base_addr(start_addr, seed, n); if (assign_mem_va(ba, mem_map) && mem_map_add_id_map(mem_map, id_map_start, id_map_end)) { offs = ba - start_addr; DMSG("Mapping core at %#"PRIxVA" offs %#lx", ba, offs); goto out; } else { DMSG("Failed to map core at %#"PRIxVA, ba); } } EMSG("Failed to map core with seed %#lx", seed); } if (!assign_mem_va(start_addr, mem_map)) panic(); out: qsort(mem_map->map, mem_map->count, sizeof(struct tee_mmap_region), cmp_mmap_by_lower_va); dump_mmap_table(mem_map); *ret_offs = offs; return mem_map; } static void check_mem_map(struct memory_map *mem_map) { struct tee_mmap_region *m = NULL; size_t n = 0; for (n = 0; n < mem_map->count; n++) { m = mem_map->map + n; switch (m->type) { case MEM_AREA_TEE_RAM: case MEM_AREA_TEE_RAM_RX: case MEM_AREA_TEE_RAM_RO: case MEM_AREA_TEE_RAM_RW: case MEM_AREA_INIT_RAM_RX: case MEM_AREA_INIT_RAM_RO: case MEM_AREA_NEX_RAM_RW: case MEM_AREA_NEX_RAM_RO: case MEM_AREA_IDENTITY_MAP_RX: if (!pbuf_is_inside(secure_only, m->pa, m->size)) panic("TEE_RAM can't fit in secure_only"); break; case MEM_AREA_SEC_RAM_OVERALL: if (!pbuf_is_inside(secure_only, m->pa, m->size)) panic("SEC_RAM_OVERALL can't fit in secure_only"); break; case MEM_AREA_NSEC_SHM: if (!pbuf_is_inside(nsec_shared, m->pa, m->size)) panic("NS_SHM can't fit in nsec_shared"); break; case MEM_AREA_TEE_COHERENT: case MEM_AREA_TEE_ASAN: case MEM_AREA_IO_SEC: case MEM_AREA_IO_NSEC: case MEM_AREA_EXT_DT: case MEM_AREA_MANIFEST_DT: case MEM_AREA_TRANSFER_LIST: case MEM_AREA_RAM_SEC: case MEM_AREA_RAM_NSEC: case MEM_AREA_ROM_SEC: case MEM_AREA_RES_VASPACE: case MEM_AREA_SHM_VASPACE: case MEM_AREA_PAGER_VASPACE: case MEM_AREA_NEX_DYN_VASPACE: case MEM_AREA_TEE_DYN_VASPACE: break; default: EMSG("Uhandled memtype %d", m->type); panic(); } } } /* * core_init_mmu_map() - init tee core default memory mapping * * This routine sets the static default TEE core mapping. If @seed is > 0 * and configured with CFG_CORE_ASLR it will map tee core at a location * based on the seed and return the offset from the link address. * * If an error happened: core_init_mmu_map is expected to panic. * * Note: this function is weak just to make it possible to exclude it from * the unpaged area. */ void __weak core_init_mmu_map(unsigned long seed, struct core_mmu_config *cfg) { #ifndef CFG_NS_VIRTUALIZATION vaddr_t start = ROUNDDOWN((vaddr_t)__nozi_start, SMALL_PAGE_SIZE); #else vaddr_t start = ROUNDDOWN((vaddr_t)__vcore_nex_rw_start, SMALL_PAGE_SIZE); #endif #ifdef CFG_DYN_CONFIG vaddr_t len = ROUNDUP(VCORE_FREE_END_PA, SMALL_PAGE_SIZE) - start; #else vaddr_t len = ROUNDUP((vaddr_t)__nozi_end, SMALL_PAGE_SIZE) - start; #endif struct tee_mmap_region tmp_mmap_region = { }; struct memory_map mem_map = { }; unsigned long offs = 0; if (IS_ENABLED(CFG_CORE_PHYS_RELOCATABLE) && (core_mmu_tee_load_pa & SMALL_PAGE_MASK)) panic("OP-TEE load address is not page aligned"); check_sec_nsec_mem_config(); mem_map.alloc_count = CFG_MMAP_REGIONS; mem_map.map = boot_mem_alloc_tmp(mem_map.alloc_count * sizeof(*mem_map.map), alignof(*mem_map.map)); memory_map_realloc_func = boot_mem_realloc_memory_map; static_memory_map = (struct memory_map){ .map = &tmp_mmap_region, .alloc_count = 1, .count = 1, }; /* * Add a entry covering the translation tables which will be * involved in some virt_to_phys() and phys_to_virt() conversions. */ static_memory_map.map[0] = (struct tee_mmap_region){ .type = MEM_AREA_TEE_RAM, .region_size = SMALL_PAGE_SIZE, .pa = start, .va = start, .size = len, .attr = core_mmu_type_to_attr(MEM_AREA_IDENTITY_MAP_RX), }; init_mem_map(&mem_map, seed, &offs); check_mem_map(&mem_map); core_init_mmu(&mem_map); dump_xlat_table(0x0, CORE_MMU_BASE_TABLE_LEVEL); core_init_mmu_regs(cfg); cfg->map_offset = offs; static_memory_map = mem_map; boot_mem_add_reloc(&static_memory_map.map); } void core_mmu_save_mem_map(void) { size_t alloc_count = static_memory_map.count + 5; size_t elem_sz = sizeof(*static_memory_map.map); void *p = NULL; p = nex_calloc(alloc_count, elem_sz); if (!p) panic(); memcpy(p, static_memory_map.map, static_memory_map.count * elem_sz); static_memory_map.map = p; static_memory_map.alloc_count = alloc_count; memory_map_realloc_func = heap_realloc_memory_map; } bool core_mmu_mattr_is_ok(uint32_t mattr) { /* * Keep in sync with core_mmu_lpae.c:mattr_to_desc and * core_mmu_v7.c:mattr_to_texcb */ switch ((mattr >> TEE_MATTR_MEM_TYPE_SHIFT) & TEE_MATTR_MEM_TYPE_MASK) { case TEE_MATTR_MEM_TYPE_DEV: case TEE_MATTR_MEM_TYPE_STRONGLY_O: case TEE_MATTR_MEM_TYPE_CACHED: case TEE_MATTR_MEM_TYPE_TAGGED: return true; default: return false; } } /* * test attributes of target physical buffer * * Flags: pbuf_is(SECURE, NOT_SECURE, RAM, IOMEM, KEYVAULT). * */ bool core_pbuf_is(uint32_t attr, paddr_t pbuf, size_t len) { struct tee_mmap_region *map; /* Empty buffers complies with anything */ if (len == 0) return true; switch (attr) { case CORE_MEM_SEC: return pbuf_is_inside(secure_only, pbuf, len); case CORE_MEM_NON_SEC: return pbuf_is_inside(nsec_shared, pbuf, len) || pbuf_is_nsec_ddr(pbuf, len); case CORE_MEM_TEE_RAM: return core_is_buffer_inside(pbuf, len, TEE_RAM_START, TEE_RAM_PH_SIZE); #ifdef CFG_CORE_RESERVED_SHM case CORE_MEM_NSEC_SHM: return core_is_buffer_inside(pbuf, len, TEE_SHMEM_START, TEE_SHMEM_SIZE); #endif case CORE_MEM_SDP_MEM: return pbuf_is_sdp_mem(pbuf, len); case CORE_MEM_CACHED: map = find_map_by_pa(pbuf); if (!map || !pbuf_inside_map_area(pbuf, len, map)) return false; return mattr_is_cached(map->attr); default: return false; } } /* test attributes of target virtual buffer (in core mapping) */ bool core_vbuf_is(uint32_t attr, const void *vbuf, size_t len) { paddr_t p; /* Empty buffers complies with anything */ if (len == 0) return true; p = virt_to_phys((void *)vbuf); if (!p) return false; return core_pbuf_is(attr, p, len); } /* core_va2pa - teecore exported service */ static int __maybe_unused core_va2pa_helper(void *va, paddr_t *pa) { struct tee_mmap_region *map; map = find_map_by_va(va); if (!va_is_in_map(map, (vaddr_t)va)) return -1; /* * We can calculate PA for static map. Virtual address ranges * reserved to core dynamic mapping return a 'match' (return 0;) * together with an invalid null physical address. */ if (map->pa) *pa = map->pa + (vaddr_t)va - map->va; else *pa = 0; return 0; } static void *map_pa2va(struct tee_mmap_region *map, paddr_t pa, size_t len) { if (!pa_is_in_map(map, pa, len)) return NULL; return (void *)(vaddr_t)(map->va + pa - map->pa); } /* * teecore gets some memory area definitions */ void core_mmu_get_mem_by_type(enum teecore_memtypes type, vaddr_t *s, vaddr_t *e) { struct tee_mmap_region *map = find_map_by_type(type); if (map) { *s = map->va; *e = map->va + map->size; } else { *s = 0; *e = 0; } } enum teecore_memtypes core_mmu_get_type_by_pa(paddr_t pa) { struct tee_mmap_region *map = find_map_by_pa(pa); if (!map) return MEM_AREA_MAXTYPE; return map->type; } void core_mmu_set_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, paddr_t pa, uint32_t attr) { assert(idx < tbl_info->num_entries); core_mmu_set_entry_primitive(tbl_info->table, tbl_info->level, idx, pa, attr); } void core_mmu_get_entry(struct core_mmu_table_info *tbl_info, unsigned int idx, paddr_t *pa, uint32_t *attr) { assert(idx < tbl_info->num_entries); core_mmu_get_entry_primitive(tbl_info->table, tbl_info->level, idx, pa, attr); } static void clear_region(struct core_mmu_table_info *tbl_info, struct tee_mmap_region *region) { unsigned int end = 0; unsigned int idx = 0; /* va, len and pa should be block aligned */ assert(!core_mmu_get_block_offset(tbl_info, region->va)); assert(!core_mmu_get_block_offset(tbl_info, region->size)); assert(!core_mmu_get_block_offset(tbl_info, region->pa)); idx = core_mmu_va2idx(tbl_info, region->va); end = core_mmu_va2idx(tbl_info, region->va + region->size); while (idx < end) { core_mmu_set_entry(tbl_info, idx, 0, 0); idx++; } } static void set_region(struct core_mmu_table_info *tbl_info, struct tee_mmap_region *region) { unsigned int end; unsigned int idx; paddr_t pa; /* va, len and pa should be block aligned */ assert(!core_mmu_get_block_offset(tbl_info, region->va)); assert(!core_mmu_get_block_offset(tbl_info, region->size)); assert(!core_mmu_get_block_offset(tbl_info, region->pa)); idx = core_mmu_va2idx(tbl_info, region->va); end = core_mmu_va2idx(tbl_info, region->va + region->size); pa = region->pa; while (idx < end) { core_mmu_set_entry(tbl_info, idx, pa, region->attr); idx++; pa += BIT64(tbl_info->shift); } } static void set_pg_region(struct core_mmu_table_info *dir_info, struct vm_region *region, struct pgt **pgt, struct core_mmu_table_info *pg_info) { struct tee_mmap_region r = { .va = region->va, .size = region->size, .attr = region->attr, }; vaddr_t end = r.va + r.size; uint32_t pgt_attr = (r.attr & TEE_MATTR_SECURE) | TEE_MATTR_TABLE; while (r.va < end) { if (!pg_info->table || r.va >= (pg_info->va_base + CORE_MMU_PGDIR_SIZE)) { /* * We're assigning a new translation table. */ unsigned int idx; /* Virtual addresses must grow */ assert(r.va > pg_info->va_base); idx = core_mmu_va2idx(dir_info, r.va); pg_info->va_base = core_mmu_idx2va(dir_info, idx); /* * Advance pgt to va_base, note that we may need to * skip multiple page tables if there are large * holes in the vm map. */ while ((*pgt)->vabase < pg_info->va_base) { *pgt = SLIST_NEXT(*pgt, link); /* We should have allocated enough */ assert(*pgt); } assert((*pgt)->vabase == pg_info->va_base); pg_info->table = (*pgt)->tbl; core_mmu_set_entry(dir_info, idx, virt_to_phys(pg_info->table), pgt_attr); } r.size = MIN(CORE_MMU_PGDIR_SIZE - (r.va - pg_info->va_base), end - r.va); if (!(*pgt)->populated && !mobj_is_paged(region->mobj)) { size_t granule = BIT(pg_info->shift); size_t offset = r.va - region->va + region->offset; r.size = MIN(r.size, mobj_get_phys_granule(region->mobj)); r.size = ROUNDUP(r.size, SMALL_PAGE_SIZE); if (mobj_get_pa(region->mobj, offset, granule, &r.pa) != TEE_SUCCESS) panic("Failed to get PA of unpaged mobj"); set_region(pg_info, &r); } r.va += r.size; } } static bool can_map_at_level(paddr_t paddr, vaddr_t vaddr, size_t size_left, paddr_t block_size, struct tee_mmap_region *mm) { /* VA and PA are aligned to block size at current level */ if ((vaddr | paddr) & (block_size - 1)) return false; /* Remainder fits into block at current level */ if (size_left < block_size) return false; /* * The required block size of the region is compatible with the * block size of the current level. */ if (mm->region_size < block_size) return false; #ifdef CFG_WITH_PAGER /* * If pager is enabled, we need to map TEE RAM and the whole pager * regions with small pages only */ if ((map_is_tee_ram(mm) || mm->type == MEM_AREA_PAGER_VASPACE) && block_size != SMALL_PAGE_SIZE) return false; #endif return true; } void core_mmu_map_region(struct mmu_partition *prtn, struct tee_mmap_region *mm) { struct core_mmu_table_info tbl_info = { }; unsigned int idx = 0; vaddr_t vaddr = mm->va; paddr_t paddr = mm->pa; ssize_t size_left = mm->size; uint32_t attr = mm->attr; unsigned int level = 0; bool table_found = false; uint32_t old_attr = 0; assert(!((vaddr | paddr) & SMALL_PAGE_MASK)); if (!paddr) attr = 0; while (size_left > 0) { level = CORE_MMU_BASE_TABLE_LEVEL; while (true) { paddr_t block_size = 0; assert(core_mmu_level_in_range(level)); table_found = core_mmu_find_table(prtn, vaddr, level, &tbl_info); if (!table_found) panic("can't find table for mapping"); block_size = BIT64(tbl_info.shift); idx = core_mmu_va2idx(&tbl_info, vaddr); if (!can_map_at_level(paddr, vaddr, size_left, block_size, mm)) { bool secure = mm->attr & TEE_MATTR_SECURE; /* * This part of the region can't be mapped at * this level. Need to go deeper. */ if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, secure)) panic("Can't divide MMU entry"); level = tbl_info.next_level; continue; } /* We can map part of the region at current level */ core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); if (old_attr) panic("Page is already mapped"); core_mmu_set_entry(&tbl_info, idx, paddr, attr); /* * Dynamic vaspace regions don't have a physical * address initially but we need to allocate and * initialize the translation tables now for later * updates to work properly. */ if (paddr) paddr += block_size; vaddr += block_size; size_left -= block_size; break; } } } TEE_Result core_mmu_map_pages(vaddr_t vstart, paddr_t *pages, size_t num_pages, enum teecore_memtypes memtype) { TEE_Result ret; struct core_mmu_table_info tbl_info; struct tee_mmap_region *mm; unsigned int idx; uint32_t old_attr; uint32_t exceptions; vaddr_t vaddr = vstart; size_t i; bool secure; assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; if (vaddr & SMALL_PAGE_MASK) return TEE_ERROR_BAD_PARAMETERS; exceptions = mmu_lock(); mm = find_map_by_va((void *)vaddr); if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) panic("VA does not belong to any known mm region"); if (!core_mmu_is_dynamic_vaspace(mm)) panic("Trying to map into static region"); for (i = 0; i < num_pages; i++) { if (pages[i] & SMALL_PAGE_MASK) { ret = TEE_ERROR_BAD_PARAMETERS; goto err; } while (true) { if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, &tbl_info)) panic("Can't find pagetable for vaddr "); idx = core_mmu_va2idx(&tbl_info, vaddr); if (tbl_info.shift == SMALL_PAGE_SHIFT) break; /* This is supertable. Need to divide it. */ if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, secure)) panic("Failed to spread pgdir on small tables"); } core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); if (old_attr) panic("Page is already mapped"); core_mmu_set_entry(&tbl_info, idx, pages[i], core_mmu_type_to_attr(memtype)); vaddr += SMALL_PAGE_SIZE; } /* * Make sure all the changes to translation tables are visible * before returning. TLB doesn't need to be invalidated as we are * guaranteed that there's no valid mapping in this range. */ core_mmu_table_write_barrier(); mmu_unlock(exceptions); return TEE_SUCCESS; err: mmu_unlock(exceptions); if (i) core_mmu_unmap_pages(vstart, i); return ret; } TEE_Result core_mmu_map_contiguous_pages(vaddr_t vstart, paddr_t pstart, size_t num_pages, enum teecore_memtypes memtype) { struct core_mmu_table_info tbl_info = { }; struct tee_mmap_region *mm = NULL; unsigned int idx = 0; uint32_t old_attr = 0; uint32_t exceptions = 0; vaddr_t vaddr = vstart; paddr_t paddr = pstart; size_t i = 0; bool secure = false; assert(!(core_mmu_type_to_attr(memtype) & TEE_MATTR_PX)); secure = core_mmu_type_to_attr(memtype) & TEE_MATTR_SECURE; if ((vaddr | paddr) & SMALL_PAGE_MASK) return TEE_ERROR_BAD_PARAMETERS; exceptions = mmu_lock(); mm = find_map_by_va((void *)vaddr); if (!mm || !va_is_in_map(mm, vaddr + num_pages * SMALL_PAGE_SIZE - 1)) panic("VA does not belong to any known mm region"); if (!core_mmu_is_dynamic_vaspace(mm)) panic("Trying to map into static region"); for (i = 0; i < num_pages; i++) { while (true) { if (!core_mmu_find_table(NULL, vaddr, UINT_MAX, &tbl_info)) panic("Can't find pagetable for vaddr "); idx = core_mmu_va2idx(&tbl_info, vaddr); if (tbl_info.shift == SMALL_PAGE_SHIFT) break; /* This is supertable. Need to divide it. */ if (!core_mmu_entry_to_finer_grained(&tbl_info, idx, secure)) panic("Failed to spread pgdir on small tables"); } core_mmu_get_entry(&tbl_info, idx, NULL, &old_attr); if (old_attr) panic("Page is already mapped"); core_mmu_set_entry(&tbl_info, idx, paddr, core_mmu_type_to_attr(memtype)); paddr += SMALL_PAGE_SIZE; vaddr += SMALL_PAGE_SIZE; } /* * Make sure all the changes to translation tables are visible * before returning. TLB doesn't need to be invalidated as we are * guaranteed that there's no valid mapping in this range. */ core_mmu_table_write_barrier(); mmu_unlock(exceptions); return TEE_SUCCESS; } static bool mem_range_is_in_vcore_free(vaddr_t vstart, size_t num_pages) { return core_is_buffer_inside(vstart, num_pages * SMALL_PAGE_SIZE, VCORE_FREE_PA, VCORE_FREE_SZ); } static void maybe_remove_from_mem_map(vaddr_t vstart, size_t num_pages) { struct memory_map *mem_map = NULL; struct tee_mmap_region *mm = NULL; size_t idx = 0; vaddr_t va = 0; mm = find_map_by_va((void *)vstart); if (!mm || !va_is_in_map(mm, vstart + num_pages * SMALL_PAGE_SIZE - 1)) panic("VA does not belong to any known mm region"); if (core_mmu_is_dynamic_vaspace(mm)) return; if (!mem_range_is_in_vcore_free(vstart, num_pages)) panic("Trying to unmap static region"); /* * We're going to remove a memory from the VCORE_FREE memory range. * Depending where the range is we may need to remove the matching * mm, peal of a bit from the start or end of the mm, or split it * into two with a whole in the middle. */ va = ROUNDDOWN(vstart, SMALL_PAGE_SIZE); assert(mm->region_size == SMALL_PAGE_SIZE); if (va == mm->va && mm->size == num_pages * SMALL_PAGE_SIZE) { mem_map = get_memory_map(); idx = mm - mem_map->map; assert(idx < mem_map->count); rem_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), idx); mem_map->count--; } else if (va == mm->va) { mm->va += num_pages * SMALL_PAGE_SIZE; mm->pa += num_pages * SMALL_PAGE_SIZE; mm->size -= num_pages * SMALL_PAGE_SIZE; } else if (va + num_pages * SMALL_PAGE_SIZE == mm->va + mm->size) { mm->size -= num_pages * SMALL_PAGE_SIZE; } else { struct tee_mmap_region m = *mm; mem_map = get_memory_map(); idx = mm - mem_map->map; assert(idx < mem_map->count); mm->size = va - mm->va; m.va += mm->size + num_pages * SMALL_PAGE_SIZE; m.pa += mm->size + num_pages * SMALL_PAGE_SIZE; m.size -= mm->size + num_pages * SMALL_PAGE_SIZE; grow_mem_map(mem_map); ins_array_elem(mem_map->map, mem_map->count, sizeof(*mem_map->map), idx + 1, &m); } } void core_mmu_unmap_pages(vaddr_t vstart, size_t num_pages) { struct core_mmu_table_info tbl_info; size_t i; unsigned int idx; uint32_t exceptions; exceptions = mmu_lock(); maybe_remove_from_mem_map(vstart, num_pages); for (i = 0; i < num_pages; i++, vstart += SMALL_PAGE_SIZE) { if (!core_mmu_find_table(NULL, vstart, UINT_MAX, &tbl_info)) panic("Can't find pagetable"); if (tbl_info.shift != SMALL_PAGE_SHIFT) panic("Invalid pagetable level"); idx = core_mmu_va2idx(&tbl_info, vstart); core_mmu_set_entry(&tbl_info, idx, 0, 0); } tlbi_all(); mmu_unlock(exceptions); } void core_mmu_populate_user_map(struct core_mmu_table_info *dir_info, struct user_mode_ctx *uctx) { struct core_mmu_table_info pg_info = { }; struct pgt_cache *pgt_cache = &uctx->pgt_cache; struct pgt *pgt = NULL; struct pgt *p = NULL; struct vm_region *r = NULL; if (TAILQ_EMPTY(&uctx->vm_info.regions)) return; /* Nothing to map */ /* * Allocate all page tables in advance. */ pgt_get_all(uctx); pgt = SLIST_FIRST(pgt_cache); core_mmu_set_info_table(&pg_info, dir_info->next_level, 0, NULL); TAILQ_FOREACH(r, &uctx->vm_info.regions, link) set_pg_region(dir_info, r, &pgt, &pg_info); /* Record that the translation tables now are populated. */ SLIST_FOREACH(p, pgt_cache, link) { p->populated = true; if (p == pgt) break; } assert(p == pgt); } TEE_Result core_mmu_remove_mapping(enum teecore_memtypes type, void *addr, size_t len) { struct core_mmu_table_info tbl_info = { }; struct tee_mmap_region *res_map = NULL; struct tee_mmap_region *map = NULL; paddr_t pa = virt_to_phys(addr); size_t granule = 0; ptrdiff_t i = 0; paddr_t p = 0; size_t l = 0; map = find_map_by_type_and_pa(type, pa, len); if (!map) return TEE_ERROR_GENERIC; res_map = find_map_by_type(MEM_AREA_RES_VASPACE); if (!res_map) return TEE_ERROR_GENERIC; if (!core_mmu_find_table(NULL, res_map->va, UINT_MAX, &tbl_info)) return TEE_ERROR_GENERIC; granule = BIT(tbl_info.shift); if (map < static_memory_map.map || map >= static_memory_map.map + static_memory_map.count) return TEE_ERROR_GENERIC; i = map - static_memory_map.map; /* Check that we have a full match */ p = ROUNDDOWN2(pa, granule); l = ROUNDUP2(len + pa - p, granule); if (map->pa != p || map->size != l) return TEE_ERROR_GENERIC; clear_region(&tbl_info, map); tlbi_all(); /* If possible remove the va range from res_map */ if (res_map->va - map->size == map->va) { res_map->va -= map->size; res_map->size += map->size; } /* Remove the entry. */ rem_array_elem(static_memory_map.map, static_memory_map.count, sizeof(*static_memory_map.map), i); static_memory_map.count--; return TEE_SUCCESS; } struct tee_mmap_region * core_mmu_find_mapping_exclusive(enum teecore_memtypes type, size_t len) { struct memory_map *mem_map = get_memory_map(); struct tee_mmap_region *map_found = NULL; size_t n = 0; if (!len) return NULL; for (n = 0; n < mem_map->count; n++) { if (mem_map->map[n].type != type) continue; if (map_found) return NULL; map_found = mem_map->map + n; } if (!map_found || map_found->size < len) return NULL; return map_found; } void *core_mmu_add_mapping(enum teecore_memtypes type, paddr_t addr, size_t len) { struct memory_map *mem_map = &static_memory_map; struct core_mmu_table_info tbl_info = { }; struct tee_mmap_region *map = NULL; size_t granule = 0; paddr_t p = 0; size_t l = 0; if (!len) return NULL; if (!core_mmu_check_end_pa(addr, len)) return NULL; /* Check if the memory is already mapped */ map = find_map_by_type_and_pa(type, addr, len); if (map && pbuf_inside_map_area(addr, len, map)) return (void *)(vaddr_t)(map->va + addr - map->pa); /* Find the reserved va space used for late mappings */ map = find_map_by_type(MEM_AREA_RES_VASPACE); if (!map) return NULL; if (!core_mmu_find_table(NULL, map->va, UINT_MAX, &tbl_info)) return NULL; granule = BIT64(tbl_info.shift); p = ROUNDDOWN2(addr, granule); l = ROUNDUP2(len + addr - p, granule); /* Ban overflowing virtual addresses */ if (map->size < l) return NULL; /* * Something is wrong, we can't fit the va range into the selected * table. The reserved va range is possibly missaligned with * granule. */ if (core_mmu_va2idx(&tbl_info, map->va + len) >= tbl_info.num_entries) return NULL; if (static_memory_map.count >= static_memory_map.alloc_count) return NULL; mem_map->map[mem_map->count] = (struct tee_mmap_region){ .va = map->va, .size = l, .type = type, .region_size = granule, .attr = core_mmu_type_to_attr(type), .pa = p, }; map->va += l; map->size -= l; map = mem_map->map + mem_map->count; mem_map->count++; set_region(&tbl_info, map); /* Make sure the new entry is visible before continuing. */ core_mmu_table_write_barrier(); return (void *)(vaddr_t)(map->va + addr - map->pa); } #ifdef CFG_WITH_PAGER static vaddr_t get_linear_map_end_va(void) { /* this is synced with the generic linker file kern.ld.S */ return (vaddr_t)__heap2_end; } static paddr_t get_linear_map_end_pa(void) { return get_linear_map_end_va() - boot_mmu_config.map_offset; } #endif #if defined(CFG_TEE_CORE_DEBUG) static void check_pa_matches_va(void *va, paddr_t pa) { TEE_Result res = TEE_ERROR_GENERIC; vaddr_t v = (vaddr_t)va; paddr_t p = 0; struct core_mmu_table_info ti __maybe_unused = { }; if (core_mmu_user_va_range_is_defined()) { vaddr_t user_va_base = 0; size_t user_va_size = 0; core_mmu_get_user_va_range(&user_va_base, &user_va_size); if (v >= user_va_base && v <= (user_va_base - 1 + user_va_size)) { if (!core_mmu_user_mapping_is_active()) { if (pa) panic("issue in linear address space"); return; } res = vm_va2pa(to_user_mode_ctx(thread_get_tsd()->ctx), va, &p); if (res == TEE_ERROR_NOT_SUPPORTED) return; if (res == TEE_SUCCESS && pa != p) panic("bad pa"); if (res != TEE_SUCCESS && pa) panic("false pa"); return; } } #ifdef CFG_WITH_PAGER if (is_unpaged(va)) { if (v - boot_mmu_config.map_offset != pa) panic("issue in linear address space"); return; } if (tee_pager_get_table_info(v, &ti)) { uint32_t a; /* * Lookups in the page table managed by the pager is * dangerous for addresses in the paged area as those pages * changes all the time. But some ranges are safe, * rw-locked areas when the page is populated for instance. */ core_mmu_get_entry(&ti, core_mmu_va2idx(&ti, v), &p, &a); if (a & TEE_MATTR_VALID_BLOCK) { paddr_t mask = BIT64(ti.shift) - 1; p |= v & mask; if (pa != p) panic(); } else { if (pa) panic(); } return; } #endif if (!core_va2pa_helper(va, &p)) { /* Verfiy only the static mapping (case non null phys addr) */ if (p && pa != p) { DMSG("va %p maps 0x%" PRIxPA ", expect 0x%" PRIxPA, va, p, pa); panic(); } } else { if (pa) { DMSG("va %p unmapped, expect 0x%" PRIxPA, va, pa); panic(); } } } #else static void check_pa_matches_va(void *va __unused, paddr_t pa __unused) { } #endif paddr_t virt_to_phys(void *va) { paddr_t pa = 0; if (!arch_va2pa_helper(va, &pa)) pa = 0; check_pa_matches_va(memtag_strip_tag(va), pa); return pa; } /* * Don't use check_va_matches_pa() for RISC-V, as its callee * arch_va2pa_helper() will call it eventually, this creates * indirect recursion and can lead to a stack overflow. * Moreover, if arch_va2pa_helper() returns true, it implies * the va2pa mapping is matched, no need to check it again. */ #if defined(CFG_TEE_CORE_DEBUG) && !defined(__riscv) static void check_va_matches_pa(paddr_t pa, void *va) { paddr_t p = 0; if (!va) return; p = virt_to_phys(va); if (p != pa) { DMSG("va %p maps 0x%" PRIxPA " expect 0x%" PRIxPA, va, p, pa); panic(); } } #else static void check_va_matches_pa(paddr_t pa __unused, void *va __unused) { } #endif static void *phys_to_virt_ts_vaspace(paddr_t pa, size_t len) { if (!core_mmu_user_mapping_is_active()) return NULL; return vm_pa2va(to_user_mode_ctx(thread_get_tsd()->ctx), pa, len); } #ifdef CFG_WITH_PAGER static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) { paddr_t end_pa = 0; if (SUB_OVERFLOW(len, 1, &end_pa) || ADD_OVERFLOW(pa, end_pa, &end_pa)) return NULL; if (pa >= TEE_LOAD_ADDR && pa < get_linear_map_end_pa()) { if (end_pa > get_linear_map_end_pa()) return NULL; return (void *)(vaddr_t)(pa + boot_mmu_config.map_offset); } return tee_pager_phys_to_virt(pa, len); } #else static void *phys_to_virt_tee_ram(paddr_t pa, size_t len) { struct tee_mmap_region *mmap = NULL; mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM, pa, len); if (!mmap) mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RW, pa, len); if (!mmap) mmap = find_map_by_type_and_pa(MEM_AREA_NEX_RAM_RO, pa, len); if (!mmap) mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RW, pa, len); if (!mmap) mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RO, pa, len); if (!mmap) mmap = find_map_by_type_and_pa(MEM_AREA_TEE_RAM_RX, pa, len); /* * Note that MEM_AREA_INIT_RAM_RO and MEM_AREA_INIT_RAM_RX are only * used with pager and not needed here. */ return map_pa2va(mmap, pa, len); } #endif void *phys_to_virt(paddr_t pa, enum teecore_memtypes m, size_t len) { void *va = NULL; switch (m) { case MEM_AREA_TS_VASPACE: va = phys_to_virt_ts_vaspace(pa, len); break; case MEM_AREA_TEE_RAM: case MEM_AREA_TEE_RAM_RX: case MEM_AREA_TEE_RAM_RO: case MEM_AREA_TEE_RAM_RW: case MEM_AREA_NEX_RAM_RO: case MEM_AREA_NEX_RAM_RW: va = phys_to_virt_tee_ram(pa, len); break; case MEM_AREA_SHM_VASPACE: case MEM_AREA_NEX_DYN_VASPACE: case MEM_AREA_TEE_DYN_VASPACE: /* Find VA from PA in dynamic SHM is not yet supported */ va = NULL; break; default: va = map_pa2va(find_map_by_type_and_pa(m, pa, len), pa, len); } if (m != MEM_AREA_SEC_RAM_OVERALL) check_va_matches_pa(pa, va); return va; } void *phys_to_virt_io(paddr_t pa, size_t len) { struct tee_mmap_region *map = NULL; void *va = NULL; map = find_map_by_type_and_pa(MEM_AREA_IO_SEC, pa, len); if (!map) map = find_map_by_type_and_pa(MEM_AREA_IO_NSEC, pa, len); if (!map) return NULL; va = map_pa2va(map, pa, len); check_va_matches_pa(pa, va); return va; } vaddr_t core_mmu_get_va(paddr_t pa, enum teecore_memtypes type, size_t len) { if (cpu_mmu_enabled()) return (vaddr_t)phys_to_virt(pa, type, len); return (vaddr_t)pa; } #ifdef CFG_WITH_PAGER bool is_unpaged(const void *va) { vaddr_t v = (vaddr_t)va; return v >= VCORE_START_VA && v < get_linear_map_end_va(); } #endif #ifdef CFG_NS_VIRTUALIZATION bool is_nexus(const void *va) { vaddr_t v = (vaddr_t)va; return v >= VCORE_START_VA && v < VCORE_NEX_RW_PA + VCORE_NEX_RW_SZ; } #endif vaddr_t io_pa_or_va(struct io_pa_va *p, size_t len) { assert(p->pa); if (cpu_mmu_enabled()) { if (!p->va) p->va = (vaddr_t)phys_to_virt_io(p->pa, len); assert(p->va); return p->va; } return p->pa; } vaddr_t io_pa_or_va_secure(struct io_pa_va *p, size_t len) { assert(p->pa); if (cpu_mmu_enabled()) { if (!p->va) p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_SEC, len); assert(p->va); return p->va; } return p->pa; } vaddr_t io_pa_or_va_nsec(struct io_pa_va *p, size_t len) { assert(p->pa); if (cpu_mmu_enabled()) { if (!p->va) p->va = (vaddr_t)phys_to_virt(p->pa, MEM_AREA_IO_NSEC, len); assert(p->va); return p->va; } return p->pa; } #ifdef CFG_CORE_RESERVED_SHM static TEE_Result teecore_init_pub_ram(void) { vaddr_t s = 0; vaddr_t e = 0; /* get virtual addr/size of NSec shared mem allocated from teecore */ core_mmu_get_mem_by_type(MEM_AREA_NSEC_SHM, &s, &e); if (s >= e || s & SMALL_PAGE_MASK || e & SMALL_PAGE_MASK) panic("invalid PUB RAM"); /* extra check: we could rely on core_mmu_get_mem_by_type() */ if (!tee_vbuf_is_non_sec(s, e - s)) panic("PUB RAM is not non-secure"); #ifdef CFG_PL310 /* Allocate statically the l2cc mutex */ tee_l2cc_store_mutex_boot_pa(virt_to_phys((void *)s)); s += sizeof(uint32_t); /* size of a pl310 mutex */ s = ROUNDUP(s, SMALL_PAGE_SIZE); /* keep required alignment */ #endif default_nsec_shm_paddr = virt_to_phys((void *)s); default_nsec_shm_size = e - s; return TEE_SUCCESS; } early_init(teecore_init_pub_ram); #endif /*CFG_CORE_RESERVED_SHM*/ static void __maybe_unused carve_out_core_mem(paddr_t pa, paddr_t end_pa) { tee_mm_entry_t *mm __maybe_unused = NULL; DMSG("%#"PRIxPA" .. %#"PRIxPA, pa, end_pa); mm = phys_mem_alloc2(pa, end_pa - pa); assert(mm); } void core_mmu_init_phys_mem(void) { if (IS_ENABLED(CFG_NS_VIRTUALIZATION)) { paddr_t b1 = 0; paddr_size_t s1 = 0; static_assert(ARRAY_SIZE(secure_only) <= 2); if (ARRAY_SIZE(secure_only) == 2) { b1 = secure_only[1].paddr; s1 = secure_only[1].size; } virt_init_memory(&static_memory_map, secure_only[0].paddr, secure_only[0].size, b1, s1); } else { #ifdef CFG_WITH_PAGER /* * The pager uses all core memory so there's no need to add * it to the pool. */ static_assert(ARRAY_SIZE(secure_only) == 2); phys_mem_init(0, 0, secure_only[1].paddr, secure_only[1].size); #else /*!CFG_WITH_PAGER*/ size_t align = BIT(CORE_MMU_USER_CODE_SHIFT); paddr_t end_pa = 0; size_t size = 0; paddr_t ps = 0; paddr_t pa = 0; static_assert(ARRAY_SIZE(secure_only) <= 2); if (ARRAY_SIZE(secure_only) == 2) { ps = secure_only[1].paddr; size = secure_only[1].size; } phys_mem_init(secure_only[0].paddr, secure_only[0].size, ps, size); /* * The VCORE macros are relocatable so we need to translate * the addresses now that the MMU is enabled. */ end_pa = vaddr_to_phys(ROUNDUP2(VCORE_FREE_END_PA, align) - 1) + 1; /* Carve out the part used by OP-TEE core */ carve_out_core_mem(vaddr_to_phys(VCORE_UNPG_RX_PA), end_pa); if (IS_ENABLED(CFG_CORE_SANITIZE_KADDRESS)) { pa = vaddr_to_phys(ROUNDUP2(ASAN_MAP_PA, align)); carve_out_core_mem(pa, pa + ASAN_MAP_SZ); } /* Carve out test SDP memory */ #ifdef TEE_SDP_TEST_MEM_BASE if (TEE_SDP_TEST_MEM_SIZE) { pa = TEE_SDP_TEST_MEM_BASE; carve_out_core_mem(pa, pa + TEE_SDP_TEST_MEM_SIZE); } #endif #endif /*!CFG_WITH_PAGER*/ } }