1 /* LibTomCrypt, modular cryptographic library -- Tom St Denis */
2 /* SPDX-License-Identifier: Unlicense */
3
4 /* AES implementation by Tom St Denis
5 *
6 * Derived from the Public Domain source code by
7
8 ---
9 * rijndael-alg-fst.c
10 *
11 * @version 3.0 (December 2000)
12 *
13 * Optimised ANSI C code for the Rijndael cipher (now AES)
14 *
15 * @author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>
16 * @author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>
17 * @author Paulo Barreto <paulo.barreto@terra.com.br>
18 ---
19 */
20 /**
21 @file aes.c
22 Implementation of AES
23 */
24
25 #include "tomcrypt_private.h"
26
27 #ifdef LTC_RIJNDAEL
28
29 #ifndef ENCRYPT_ONLY
30
31 #define SETUP rijndael_setup
32 #define ECB_ENC rijndael_ecb_encrypt
33 #define ECB_DEC rijndael_ecb_decrypt
34 #define ECB_DONE rijndael_done
35 #define ECB_TEST rijndael_test
36 #define ECB_KS rijndael_keysize
37
38 const struct ltc_cipher_descriptor rijndael_desc =
39 {
40 "rijndael",
41 6,
42 16, 32, 16, 10,
43 SETUP, ECB_ENC, ECB_DEC, ECB_TEST, ECB_DONE, ECB_KS,
44 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
45 };
46
47 #else
48
49 #define SETUP rijndael_enc_setup
50 #define ECB_ENC rijndael_enc_ecb_encrypt
51 #define ECB_KS rijndael_enc_keysize
52 #define ECB_DONE rijndael_enc_done
53
54 const struct ltc_cipher_descriptor rijndael_enc_desc =
55 {
56 "rijndael",
57 6,
58 16, 32, 16, 10,
59 SETUP, ECB_ENC, NULL, NULL, ECB_DONE, ECB_KS,
60 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL
61 };
62
63 #endif
64
65 #define LTC_AES_TAB_C
66 #include "aes_tab.c"
67
setup_mix(ulong32 temp)68 static ulong32 setup_mix(ulong32 temp)
69 {
70 return (Te4_3[LTC_BYTE(temp, 2)]) ^
71 (Te4_2[LTC_BYTE(temp, 1)]) ^
72 (Te4_1[LTC_BYTE(temp, 0)]) ^
73 (Te4_0[LTC_BYTE(temp, 3)]);
74 }
75
76 #ifndef ENCRYPT_ONLY
77 #ifdef LTC_SMALL_CODE
setup_mix2(ulong32 temp)78 static ulong32 setup_mix2(ulong32 temp)
79 {
80 return Td0(255 & Te4[LTC_BYTE(temp, 3)]) ^
81 Td1(255 & Te4[LTC_BYTE(temp, 2)]) ^
82 Td2(255 & Te4[LTC_BYTE(temp, 1)]) ^
83 Td3(255 & Te4[LTC_BYTE(temp, 0)]);
84 }
85 #endif
86 #endif
87
88 /**
89 Initialize the AES (Rijndael) block cipher
90 @param key The symmetric key you wish to pass
91 @param keylen The key length in bytes
92 @param num_rounds The number of rounds desired (0 for default)
93 @param skey The key in as scheduled by this function.
94 @return CRYPT_OK if successful
95 */
SETUP(const unsigned char * key,int keylen,int num_rounds,symmetric_key * skey)96 int SETUP(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey)
97 {
98 int i;
99 ulong32 temp, *rk, *K;
100 #ifndef ENCRYPT_ONLY
101 ulong32 *rrk;
102 #endif
103 LTC_ARGCHK(key != NULL);
104 LTC_ARGCHK(skey != NULL);
105
106 if (keylen != 16 && keylen != 24 && keylen != 32) {
107 return CRYPT_INVALID_KEYSIZE;
108 }
109
110 if (num_rounds != 0 && num_rounds != (10 + ((keylen/8)-2)*2)) {
111 return CRYPT_INVALID_ROUNDS;
112 }
113
114 skey->rijndael.Nr = 10 + ((keylen/8)-2)*2;
115 K = LTC_ALIGN_BUF(skey->rijndael.K, 16);
116 skey->rijndael.eK = K;
117 K += 60;
118 skey->rijndael.dK = K;
119
120 /* setup the forward key */
121 i = 0;
122 rk = skey->rijndael.eK;
123 LOAD32H(rk[0], key );
124 LOAD32H(rk[1], key + 4);
125 LOAD32H(rk[2], key + 8);
126 LOAD32H(rk[3], key + 12);
127 if (keylen == 16) {
128 for (;;) {
129 temp = rk[3];
130 rk[4] = rk[0] ^ setup_mix(temp) ^ rcon[i];
131 rk[5] = rk[1] ^ rk[4];
132 rk[6] = rk[2] ^ rk[5];
133 rk[7] = rk[3] ^ rk[6];
134 if (++i == 10) {
135 break;
136 }
137 rk += 4;
138 }
139 } else if (keylen == 24) {
140 LOAD32H(rk[4], key + 16);
141 LOAD32H(rk[5], key + 20);
142 for (;;) {
143 #ifdef _MSC_VER
144 temp = skey->rijndael.eK[rk - skey->rijndael.eK + 5];
145 #else
146 temp = rk[5];
147 #endif
148 rk[ 6] = rk[ 0] ^ setup_mix(temp) ^ rcon[i];
149 rk[ 7] = rk[ 1] ^ rk[ 6];
150 rk[ 8] = rk[ 2] ^ rk[ 7];
151 rk[ 9] = rk[ 3] ^ rk[ 8];
152 if (++i == 8) {
153 break;
154 }
155 rk[10] = rk[ 4] ^ rk[ 9];
156 rk[11] = rk[ 5] ^ rk[10];
157 rk += 6;
158 }
159 } else if (keylen == 32) {
160 LOAD32H(rk[4], key + 16);
161 LOAD32H(rk[5], key + 20);
162 LOAD32H(rk[6], key + 24);
163 LOAD32H(rk[7], key + 28);
164 for (;;) {
165 #ifdef _MSC_VER
166 temp = skey->rijndael.eK[rk - skey->rijndael.eK + 7];
167 #else
168 temp = rk[7];
169 #endif
170 rk[ 8] = rk[ 0] ^ setup_mix(temp) ^ rcon[i];
171 rk[ 9] = rk[ 1] ^ rk[ 8];
172 rk[10] = rk[ 2] ^ rk[ 9];
173 rk[11] = rk[ 3] ^ rk[10];
174 if (++i == 7) {
175 break;
176 }
177 temp = rk[11];
178 rk[12] = rk[ 4] ^ setup_mix(RORc(temp, 8));
179 rk[13] = rk[ 5] ^ rk[12];
180 rk[14] = rk[ 6] ^ rk[13];
181 rk[15] = rk[ 7] ^ rk[14];
182 rk += 8;
183 }
184 } else {
185 /* this can't happen */
186 /* coverity[dead_error_line] */
187 return CRYPT_ERROR;
188 }
189
190 #ifndef ENCRYPT_ONLY
191 /* setup the inverse key now */
192 rk = skey->rijndael.dK;
193 rrk = skey->rijndael.eK + (28 + keylen) - 4;
194
195 /* apply the inverse MixColumn transform to all round keys but the first and the last: */
196 /* copy first */
197 *rk++ = *rrk++;
198 *rk++ = *rrk++;
199 *rk++ = *rrk++;
200 *rk = *rrk;
201 rk -= 3; rrk -= 3;
202
203 for (i = 1; i < skey->rijndael.Nr; i++) {
204 rrk -= 4;
205 rk += 4;
206 #ifdef LTC_SMALL_CODE
207 temp = rrk[0];
208 rk[0] = setup_mix2(temp);
209 temp = rrk[1];
210 rk[1] = setup_mix2(temp);
211 temp = rrk[2];
212 rk[2] = setup_mix2(temp);
213 temp = rrk[3];
214 rk[3] = setup_mix2(temp);
215 #else
216 temp = rrk[0];
217 rk[0] =
218 Tks0[LTC_BYTE(temp, 3)] ^
219 Tks1[LTC_BYTE(temp, 2)] ^
220 Tks2[LTC_BYTE(temp, 1)] ^
221 Tks3[LTC_BYTE(temp, 0)];
222 temp = rrk[1];
223 rk[1] =
224 Tks0[LTC_BYTE(temp, 3)] ^
225 Tks1[LTC_BYTE(temp, 2)] ^
226 Tks2[LTC_BYTE(temp, 1)] ^
227 Tks3[LTC_BYTE(temp, 0)];
228 temp = rrk[2];
229 rk[2] =
230 Tks0[LTC_BYTE(temp, 3)] ^
231 Tks1[LTC_BYTE(temp, 2)] ^
232 Tks2[LTC_BYTE(temp, 1)] ^
233 Tks3[LTC_BYTE(temp, 0)];
234 temp = rrk[3];
235 rk[3] =
236 Tks0[LTC_BYTE(temp, 3)] ^
237 Tks1[LTC_BYTE(temp, 2)] ^
238 Tks2[LTC_BYTE(temp, 1)] ^
239 Tks3[LTC_BYTE(temp, 0)];
240 #endif
241
242 }
243
244 /* copy last */
245 rrk -= 4;
246 rk += 4;
247 *rk++ = *rrk++;
248 *rk++ = *rrk++;
249 *rk++ = *rrk++;
250 *rk = *rrk;
251 #endif /* ENCRYPT_ONLY */
252
253 return CRYPT_OK;
254 }
255
256 /**
257 Encrypts a block of text with AES
258 @param pt The input plaintext (16 bytes)
259 @param ct The output ciphertext (16 bytes)
260 @param skey The key as scheduled
261 @return CRYPT_OK if successful
262 */
263 #ifdef LTC_CLEAN_STACK
s_rijndael_ecb_encrypt(const unsigned char * pt,unsigned char * ct,const symmetric_key * skey)264 static int s_rijndael_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
265 #else
266 int ECB_ENC(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
267 #endif
268 {
269 ulong32 s0, s1, s2, s3, t0, t1, t2, t3;
270 const ulong32 *rk;
271 int Nr, r;
272
273 LTC_ARGCHK(pt != NULL);
274 LTC_ARGCHK(ct != NULL);
275 LTC_ARGCHK(skey != NULL);
276
277 Nr = skey->rijndael.Nr;
278
279 if (Nr < 2 || Nr > 16)
280 return CRYPT_INVALID_ROUNDS;
281
282 rk = skey->rijndael.eK;
283
284 /*
285 * map byte array block to cipher state
286 * and add initial round key:
287 */
288 LOAD32H(s0, pt ); s0 ^= rk[0];
289 LOAD32H(s1, pt + 4); s1 ^= rk[1];
290 LOAD32H(s2, pt + 8); s2 ^= rk[2];
291 LOAD32H(s3, pt + 12); s3 ^= rk[3];
292
293 #ifdef LTC_SMALL_CODE
294
295 for (r = 0; ; r++) {
296 rk += 4;
297 t0 =
298 Te0(LTC_BYTE(s0, 3)) ^
299 Te1(LTC_BYTE(s1, 2)) ^
300 Te2(LTC_BYTE(s2, 1)) ^
301 Te3(LTC_BYTE(s3, 0)) ^
302 rk[0];
303 t1 =
304 Te0(LTC_BYTE(s1, 3)) ^
305 Te1(LTC_BYTE(s2, 2)) ^
306 Te2(LTC_BYTE(s3, 1)) ^
307 Te3(LTC_BYTE(s0, 0)) ^
308 rk[1];
309 t2 =
310 Te0(LTC_BYTE(s2, 3)) ^
311 Te1(LTC_BYTE(s3, 2)) ^
312 Te2(LTC_BYTE(s0, 1)) ^
313 Te3(LTC_BYTE(s1, 0)) ^
314 rk[2];
315 t3 =
316 Te0(LTC_BYTE(s3, 3)) ^
317 Te1(LTC_BYTE(s0, 2)) ^
318 Te2(LTC_BYTE(s1, 1)) ^
319 Te3(LTC_BYTE(s2, 0)) ^
320 rk[3];
321 if (r == Nr-2) {
322 break;
323 }
324 s0 = t0; s1 = t1; s2 = t2; s3 = t3;
325 }
326 rk += 4;
327
328 #else
329
330 /*
331 * Nr - 1 full rounds:
332 */
333 r = Nr >> 1;
334 for (;;) {
335 t0 =
336 Te0(LTC_BYTE(s0, 3)) ^
337 Te1(LTC_BYTE(s1, 2)) ^
338 Te2(LTC_BYTE(s2, 1)) ^
339 Te3(LTC_BYTE(s3, 0)) ^
340 rk[4];
341 t1 =
342 Te0(LTC_BYTE(s1, 3)) ^
343 Te1(LTC_BYTE(s2, 2)) ^
344 Te2(LTC_BYTE(s3, 1)) ^
345 Te3(LTC_BYTE(s0, 0)) ^
346 rk[5];
347 t2 =
348 Te0(LTC_BYTE(s2, 3)) ^
349 Te1(LTC_BYTE(s3, 2)) ^
350 Te2(LTC_BYTE(s0, 1)) ^
351 Te3(LTC_BYTE(s1, 0)) ^
352 rk[6];
353 t3 =
354 Te0(LTC_BYTE(s3, 3)) ^
355 Te1(LTC_BYTE(s0, 2)) ^
356 Te2(LTC_BYTE(s1, 1)) ^
357 Te3(LTC_BYTE(s2, 0)) ^
358 rk[7];
359
360 rk += 8;
361 if (--r == 0) {
362 break;
363 }
364
365 s0 =
366 Te0(LTC_BYTE(t0, 3)) ^
367 Te1(LTC_BYTE(t1, 2)) ^
368 Te2(LTC_BYTE(t2, 1)) ^
369 Te3(LTC_BYTE(t3, 0)) ^
370 rk[0];
371 s1 =
372 Te0(LTC_BYTE(t1, 3)) ^
373 Te1(LTC_BYTE(t2, 2)) ^
374 Te2(LTC_BYTE(t3, 1)) ^
375 Te3(LTC_BYTE(t0, 0)) ^
376 rk[1];
377 s2 =
378 Te0(LTC_BYTE(t2, 3)) ^
379 Te1(LTC_BYTE(t3, 2)) ^
380 Te2(LTC_BYTE(t0, 1)) ^
381 Te3(LTC_BYTE(t1, 0)) ^
382 rk[2];
383 s3 =
384 Te0(LTC_BYTE(t3, 3)) ^
385 Te1(LTC_BYTE(t0, 2)) ^
386 Te2(LTC_BYTE(t1, 1)) ^
387 Te3(LTC_BYTE(t2, 0)) ^
388 rk[3];
389 }
390
391 #endif
392
393 /*
394 * apply last round and
395 * map cipher state to byte array block:
396 */
397 s0 =
398 (Te4_3[LTC_BYTE(t0, 3)]) ^
399 (Te4_2[LTC_BYTE(t1, 2)]) ^
400 (Te4_1[LTC_BYTE(t2, 1)]) ^
401 (Te4_0[LTC_BYTE(t3, 0)]) ^
402 rk[0];
403 STORE32H(s0, ct);
404 s1 =
405 (Te4_3[LTC_BYTE(t1, 3)]) ^
406 (Te4_2[LTC_BYTE(t2, 2)]) ^
407 (Te4_1[LTC_BYTE(t3, 1)]) ^
408 (Te4_0[LTC_BYTE(t0, 0)]) ^
409 rk[1];
410 STORE32H(s1, ct+4);
411 s2 =
412 (Te4_3[LTC_BYTE(t2, 3)]) ^
413 (Te4_2[LTC_BYTE(t3, 2)]) ^
414 (Te4_1[LTC_BYTE(t0, 1)]) ^
415 (Te4_0[LTC_BYTE(t1, 0)]) ^
416 rk[2];
417 STORE32H(s2, ct+8);
418 s3 =
419 (Te4_3[LTC_BYTE(t3, 3)]) ^
420 (Te4_2[LTC_BYTE(t0, 2)]) ^
421 (Te4_1[LTC_BYTE(t1, 1)]) ^
422 (Te4_0[LTC_BYTE(t2, 0)]) ^
423 rk[3];
424 STORE32H(s3, ct+12);
425
426 return CRYPT_OK;
427 }
428
429 #ifdef LTC_CLEAN_STACK
ECB_ENC(const unsigned char * pt,unsigned char * ct,const symmetric_key * skey)430 int ECB_ENC(const unsigned char *pt, unsigned char *ct, const symmetric_key *skey)
431 {
432 int err = s_rijndael_ecb_encrypt(pt, ct, skey);
433 burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
434 return err;
435 }
436 #endif
437
438 #ifndef ENCRYPT_ONLY
439
440 /**
441 Decrypts a block of text with AES
442 @param ct The input ciphertext (16 bytes)
443 @param pt The output plaintext (16 bytes)
444 @param skey The key as scheduled
445 @return CRYPT_OK if successful
446 */
447 #ifdef LTC_CLEAN_STACK
s_rijndael_ecb_decrypt(const unsigned char * ct,unsigned char * pt,const symmetric_key * skey)448 static int s_rijndael_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
449 #else
450 int ECB_DEC(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
451 #endif
452 {
453 ulong32 s0, s1, s2, s3, t0, t1, t2, t3;
454 const ulong32 *rk;
455 int Nr, r;
456
457 LTC_ARGCHK(pt != NULL);
458 LTC_ARGCHK(ct != NULL);
459 LTC_ARGCHK(skey != NULL);
460
461 Nr = skey->rijndael.Nr;
462
463 if (Nr < 2 || Nr > 16)
464 return CRYPT_INVALID_ROUNDS;
465
466 rk = skey->rijndael.dK;
467
468 /*
469 * map byte array block to cipher state
470 * and add initial round key:
471 */
472 LOAD32H(s0, ct ); s0 ^= rk[0];
473 LOAD32H(s1, ct + 4); s1 ^= rk[1];
474 LOAD32H(s2, ct + 8); s2 ^= rk[2];
475 LOAD32H(s3, ct + 12); s3 ^= rk[3];
476
477 #ifdef LTC_SMALL_CODE
478 for (r = 0; ; r++) {
479 rk += 4;
480 t0 =
481 Td0(LTC_BYTE(s0, 3)) ^
482 Td1(LTC_BYTE(s3, 2)) ^
483 Td2(LTC_BYTE(s2, 1)) ^
484 Td3(LTC_BYTE(s1, 0)) ^
485 rk[0];
486 t1 =
487 Td0(LTC_BYTE(s1, 3)) ^
488 Td1(LTC_BYTE(s0, 2)) ^
489 Td2(LTC_BYTE(s3, 1)) ^
490 Td3(LTC_BYTE(s2, 0)) ^
491 rk[1];
492 t2 =
493 Td0(LTC_BYTE(s2, 3)) ^
494 Td1(LTC_BYTE(s1, 2)) ^
495 Td2(LTC_BYTE(s0, 1)) ^
496 Td3(LTC_BYTE(s3, 0)) ^
497 rk[2];
498 t3 =
499 Td0(LTC_BYTE(s3, 3)) ^
500 Td1(LTC_BYTE(s2, 2)) ^
501 Td2(LTC_BYTE(s1, 1)) ^
502 Td3(LTC_BYTE(s0, 0)) ^
503 rk[3];
504 if (r == Nr-2) {
505 break;
506 }
507 s0 = t0; s1 = t1; s2 = t2; s3 = t3;
508 }
509 rk += 4;
510
511 #else
512
513 /*
514 * Nr - 1 full rounds:
515 */
516 r = Nr >> 1;
517 for (;;) {
518
519 t0 =
520 Td0(LTC_BYTE(s0, 3)) ^
521 Td1(LTC_BYTE(s3, 2)) ^
522 Td2(LTC_BYTE(s2, 1)) ^
523 Td3(LTC_BYTE(s1, 0)) ^
524 rk[4];
525 t1 =
526 Td0(LTC_BYTE(s1, 3)) ^
527 Td1(LTC_BYTE(s0, 2)) ^
528 Td2(LTC_BYTE(s3, 1)) ^
529 Td3(LTC_BYTE(s2, 0)) ^
530 rk[5];
531 t2 =
532 Td0(LTC_BYTE(s2, 3)) ^
533 Td1(LTC_BYTE(s1, 2)) ^
534 Td2(LTC_BYTE(s0, 1)) ^
535 Td3(LTC_BYTE(s3, 0)) ^
536 rk[6];
537 t3 =
538 Td0(LTC_BYTE(s3, 3)) ^
539 Td1(LTC_BYTE(s2, 2)) ^
540 Td2(LTC_BYTE(s1, 1)) ^
541 Td3(LTC_BYTE(s0, 0)) ^
542 rk[7];
543
544 rk += 8;
545 if (--r == 0) {
546 break;
547 }
548
549
550 s0 =
551 Td0(LTC_BYTE(t0, 3)) ^
552 Td1(LTC_BYTE(t3, 2)) ^
553 Td2(LTC_BYTE(t2, 1)) ^
554 Td3(LTC_BYTE(t1, 0)) ^
555 rk[0];
556 s1 =
557 Td0(LTC_BYTE(t1, 3)) ^
558 Td1(LTC_BYTE(t0, 2)) ^
559 Td2(LTC_BYTE(t3, 1)) ^
560 Td3(LTC_BYTE(t2, 0)) ^
561 rk[1];
562 s2 =
563 Td0(LTC_BYTE(t2, 3)) ^
564 Td1(LTC_BYTE(t1, 2)) ^
565 Td2(LTC_BYTE(t0, 1)) ^
566 Td3(LTC_BYTE(t3, 0)) ^
567 rk[2];
568 s3 =
569 Td0(LTC_BYTE(t3, 3)) ^
570 Td1(LTC_BYTE(t2, 2)) ^
571 Td2(LTC_BYTE(t1, 1)) ^
572 Td3(LTC_BYTE(t0, 0)) ^
573 rk[3];
574 }
575 #endif
576
577 /*
578 * apply last round and
579 * map cipher state to byte array block:
580 */
581 s0 =
582 (Td4[LTC_BYTE(t0, 3)] & 0xff000000) ^
583 (Td4[LTC_BYTE(t3, 2)] & 0x00ff0000) ^
584 (Td4[LTC_BYTE(t2, 1)] & 0x0000ff00) ^
585 (Td4[LTC_BYTE(t1, 0)] & 0x000000ff) ^
586 rk[0];
587 STORE32H(s0, pt);
588 s1 =
589 (Td4[LTC_BYTE(t1, 3)] & 0xff000000) ^
590 (Td4[LTC_BYTE(t0, 2)] & 0x00ff0000) ^
591 (Td4[LTC_BYTE(t3, 1)] & 0x0000ff00) ^
592 (Td4[LTC_BYTE(t2, 0)] & 0x000000ff) ^
593 rk[1];
594 STORE32H(s1, pt+4);
595 s2 =
596 (Td4[LTC_BYTE(t2, 3)] & 0xff000000) ^
597 (Td4[LTC_BYTE(t1, 2)] & 0x00ff0000) ^
598 (Td4[LTC_BYTE(t0, 1)] & 0x0000ff00) ^
599 (Td4[LTC_BYTE(t3, 0)] & 0x000000ff) ^
600 rk[2];
601 STORE32H(s2, pt+8);
602 s3 =
603 (Td4[LTC_BYTE(t3, 3)] & 0xff000000) ^
604 (Td4[LTC_BYTE(t2, 2)] & 0x00ff0000) ^
605 (Td4[LTC_BYTE(t1, 1)] & 0x0000ff00) ^
606 (Td4[LTC_BYTE(t0, 0)] & 0x000000ff) ^
607 rk[3];
608 STORE32H(s3, pt+12);
609
610 return CRYPT_OK;
611 }
612
613
614 #ifdef LTC_CLEAN_STACK
ECB_DEC(const unsigned char * ct,unsigned char * pt,const symmetric_key * skey)615 int ECB_DEC(const unsigned char *ct, unsigned char *pt, const symmetric_key *skey)
616 {
617 int err = s_rijndael_ecb_decrypt(ct, pt, skey);
618 burn_stack(sizeof(unsigned long)*8 + sizeof(unsigned long*) + sizeof(int)*2);
619 return err;
620 }
621 #endif
622
623 /**
624 Performs a self-test of the AES block cipher
625 @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled
626 */
ECB_TEST(void)627 int ECB_TEST(void)
628 {
629 #ifndef LTC_TEST
630 return CRYPT_NOP;
631 #else
632 int err;
633 static const struct {
634 int keylen;
635 unsigned char key[32], pt[16], ct[16];
636 } tests[] = {
637 { 16,
638 { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
639 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f },
640 { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
641 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
642 { 0x69, 0xc4, 0xe0, 0xd8, 0x6a, 0x7b, 0x04, 0x30,
643 0xd8, 0xcd, 0xb7, 0x80, 0x70, 0xb4, 0xc5, 0x5a }
644 }, {
645 24,
646 { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
647 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
648 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17 },
649 { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
650 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
651 { 0xdd, 0xa9, 0x7c, 0xa4, 0x86, 0x4c, 0xdf, 0xe0,
652 0x6e, 0xaf, 0x70, 0xa0, 0xec, 0x0d, 0x71, 0x91 }
653 }, {
654 32,
655 { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
656 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
657 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
658 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f },
659 { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
660 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
661 { 0x8e, 0xa2, 0xb7, 0xca, 0x51, 0x67, 0x45, 0xbf,
662 0xea, 0xfc, 0x49, 0x90, 0x4b, 0x49, 0x60, 0x89 }
663 }
664 };
665
666 symmetric_key key;
667 unsigned char tmp[2][16];
668 int i, y;
669
670 for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) {
671 zeromem(&key, sizeof(key));
672 if ((err = rijndael_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) {
673 return err;
674 }
675
676 rijndael_ecb_encrypt(tests[i].pt, tmp[0], &key);
677 rijndael_ecb_decrypt(tmp[0], tmp[1], &key);
678 if (compare_testvector(tmp[0], 16, tests[i].ct, 16, "AES Encrypt", i) ||
679 compare_testvector(tmp[1], 16, tests[i].pt, 16, "AES Decrypt", i)) {
680 return CRYPT_FAIL_TESTVECTOR;
681 }
682
683 /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */
684 for (y = 0; y < 16; y++) tmp[0][y] = 0;
685 for (y = 0; y < 1000; y++) rijndael_ecb_encrypt(tmp[0], tmp[0], &key);
686 for (y = 0; y < 1000; y++) rijndael_ecb_decrypt(tmp[0], tmp[0], &key);
687 for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR;
688 }
689 return CRYPT_OK;
690 #endif
691 }
692
693 #endif /* ENCRYPT_ONLY */
694
695
696 /** Terminate the context
697 @param skey The scheduled key
698 */
ECB_DONE(symmetric_key * skey)699 void ECB_DONE(symmetric_key *skey)
700 {
701 LTC_UNUSED_PARAM(skey);
702 }
703
704
705 /**
706 Gets suitable key size
707 @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable.
708 @return CRYPT_OK if the input key size is acceptable.
709 */
ECB_KS(int * keysize)710 int ECB_KS(int *keysize)
711 {
712 LTC_ARGCHK(keysize != NULL);
713
714 if (*keysize < 16) {
715 return CRYPT_INVALID_KEYSIZE;
716 }
717 if (*keysize < 24) {
718 *keysize = 16;
719 return CRYPT_OK;
720 }
721 if (*keysize < 32) {
722 *keysize = 24;
723 return CRYPT_OK;
724 }
725 *keysize = 32;
726 return CRYPT_OK;
727 }
728
729 #endif
730
731