1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3 * Copyright (c) 2016-2022, Linaro Limited
4 * Copyright (c) 2014, STMicroelectronics International N.V.
5 * Copyright (c) 2020-2021, Arm Limited
6 */
7
8 #include <config.h>
9 #include <crypto/crypto.h>
10 #include <kernel/asan.h>
11 #include <kernel/boot.h>
12 #include <kernel/lockdep.h>
13 #include <kernel/misc.h>
14 #include <kernel/panic.h>
15 #include <kernel/spinlock.h>
16 #include <kernel/thread.h>
17 #include <kernel/thread_private.h>
18 #include <mm/mobj.h>
19 #include <mm/page_alloc.h>
20 #include <stdalign.h>
21
22 #if defined(CFG_DYN_CONFIG)
23 struct thread_core_local *thread_core_local __nex_bss;
24 size_t thread_core_count __nex_bss;
25 struct thread_ctx *threads;
26 size_t thread_count;
27 #else
28 static struct thread_core_local
29 __thread_core_local[CFG_TEE_CORE_NB_CORE] __nex_bss;
30 struct thread_core_local *thread_core_local __nex_data = __thread_core_local;
31 size_t thread_core_count __nex_data = CFG_TEE_CORE_NB_CORE;
32 static struct thread_ctx __threads[CFG_NUM_THREADS];
33 struct thread_ctx *threads = __threads;
34 size_t thread_count = CFG_NUM_THREADS;
35 #endif
36 unsigned long thread_core_local_pa __nex_bss;
37 struct thread_core_local *__thread_core_local_new __nex_bss;
38 size_t __thread_core_count_new __nex_bss;
39
40 /*
41 * Stacks
42 *
43 * [Lower addresses on the left]
44 *
45 * [ STACK_CANARY_SIZE/2 | STACK_CHECK_EXTRA | STACK_XXX_SIZE | STACK_CANARY_SIZE/2 ]
46 * ^ ^ ^ ^
47 * stack_xxx[n] "hard" top "soft" top bottom
48 */
49
50 static uint32_t start_canary_value = 0xdedede00;
51 static uint32_t end_canary_value = 0xababab00;
52
53 #define DECLARE_STACK(name, num_stacks, stack_size, linkage) \
54 linkage uint32_t name[num_stacks] \
55 [ROUNDUP(stack_size + STACK_CANARY_SIZE + STACK_CHECK_EXTRA, \
56 STACK_ALIGNMENT) / sizeof(uint32_t)] \
57 __attribute__((section(".nozi_stack." # name), \
58 aligned(STACK_ALIGNMENT)))
59
60 #ifndef CFG_DYN_CONFIG
61 DECLARE_STACK(stack_tmp, CFG_TEE_CORE_NB_CORE, STACK_TMP_SIZE,
62 /* global linkage */);
63 DECLARE_STACK(stack_abt, CFG_TEE_CORE_NB_CORE, STACK_ABT_SIZE, static);
64 #define GET_STACK_BOTTOM(stack, n) ((vaddr_t)&(stack)[n] + sizeof(stack[n]) - \
65 STACK_CANARY_SIZE / 2)
66 #else
67 /* Not used */
68 #define GET_STACK_BOTTOM(stack, n) 0
69 #endif
70
71 #if defined(CFG_DYN_CONFIG) || defined(CFG_WITH_PAGER)
72 /* Not used */
73 #define GET_STACK_THREAD_BOTTOM(n) 0
74 #else
75 DECLARE_STACK(stack_thread, CFG_NUM_THREADS, STACK_THREAD_SIZE, static);
76 #define GET_STACK_THREAD_BOTTOM(n) \
77 ((vaddr_t)&stack_thread[n] + sizeof(stack_thread[n]) - \
78 STACK_CANARY_SIZE / 2)
79 #endif
80
81 #ifndef CFG_DYN_CONFIG
82 const uint32_t stack_tmp_stride __section(".identity_map.stack_tmp_stride") =
83 sizeof(stack_tmp[0]);
84
85 /*
86 * This stack setup info is required by secondary boot cores before they
87 * each locally enable the pager (the mmu). Hence kept in pager sections.
88 */
89 DECLARE_KEEP_PAGER(stack_tmp_stride);
90 #endif
91
92 static unsigned int thread_global_lock __nex_bss = SPINLOCK_UNLOCK;
93
stack_size_to_alloc_size(size_t stack_size)94 static size_t stack_size_to_alloc_size(size_t stack_size)
95 {
96 return ROUNDUP(stack_size + STACK_CANARY_SIZE + STACK_CHECK_EXTRA,
97 STACK_ALIGNMENT);
98 }
99
stack_end_va_to_top_hard(size_t stack_size,vaddr_t end_va)100 static vaddr_t stack_end_va_to_top_hard(size_t stack_size, vaddr_t end_va)
101 {
102 size_t l = stack_size_to_alloc_size(stack_size);
103
104 return end_va - l + STACK_CANARY_SIZE;
105 }
106
stack_end_va_to_top_soft(size_t stack_size,vaddr_t end_va)107 static vaddr_t stack_end_va_to_top_soft(size_t stack_size, vaddr_t end_va)
108 {
109 return stack_end_va_to_top_hard(stack_size, end_va) + STACK_CHECK_EXTRA;
110 }
111
stack_end_va_to_bottom(size_t stack_size __unused,vaddr_t end_va)112 static vaddr_t stack_end_va_to_bottom(size_t stack_size __unused,
113 vaddr_t end_va)
114 {
115 return end_va;
116 }
117
stack_end_va_to_start_canary(size_t stack_size,vaddr_t end_va)118 static uint32_t *stack_end_va_to_start_canary(size_t stack_size, vaddr_t end_va)
119 {
120 return (uint32_t *)(stack_end_va_to_top_hard(stack_size, end_va) -
121 STACK_CANARY_SIZE / 2);
122 }
123
stack_end_va_to_end_canary(size_t stack_size __unused,vaddr_t end_va)124 static uint32_t *stack_end_va_to_end_canary(size_t stack_size __unused,
125 vaddr_t end_va)
126 {
127 return (uint32_t *)(end_va + STACK_CANARY_SIZE / 2 - sizeof(uint32_t));
128 }
129
init_canaries(size_t stack_size,vaddr_t va_end)130 static void init_canaries(size_t stack_size, vaddr_t va_end)
131 {
132 uint32_t *canary = NULL;
133
134 assert(va_end);
135 canary = stack_end_va_to_start_canary(stack_size, va_end);
136 *canary = start_canary_value;
137 canary = stack_end_va_to_end_canary(stack_size, va_end);
138 *canary = end_canary_value;
139 }
140
thread_init_canaries(void)141 void thread_init_canaries(void)
142 {
143 vaddr_t va = 0;
144 size_t n = 0;
145
146 if (IS_ENABLED(CFG_WITH_STACK_CANARIES)) {
147 for (n = 0; n < thread_core_count; n++) {
148 if (thread_core_local[n].tmp_stack_va_end) {
149 va = thread_core_local[n].tmp_stack_va_end +
150 STACK_TMP_OFFS;
151 init_canaries(STACK_TMP_SIZE, va);
152 }
153 va = thread_core_local[n].abt_stack_va_end;
154 if (va)
155 init_canaries(STACK_ABT_SIZE, va);
156 }
157
158 }
159
160 if (IS_ENABLED(CFG_WITH_STACK_CANARIES) &&
161 !IS_ENABLED(CFG_WITH_PAGER) &&
162 !IS_ENABLED(CFG_NS_VIRTUALIZATION) && threads) {
163 for (n = 0; n < thread_count; n++) {
164 va = threads[n].stack_va_end;
165 if (va)
166 init_canaries(STACK_THREAD_SIZE, va);
167 }
168 }
169 }
170
171 #if defined(CFG_WITH_STACK_CANARIES)
thread_update_canaries(void)172 void thread_update_canaries(void)
173 {
174 uint32_t canary[2] = { };
175 uint32_t exceptions = 0;
176
177 plat_get_random_stack_canaries(canary, ARRAY_SIZE(canary),
178 sizeof(canary[0]));
179
180 exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
181
182 thread_check_canaries();
183
184 start_canary_value = canary[0];
185 end_canary_value = canary[1];
186 thread_init_canaries();
187
188 thread_unmask_exceptions(exceptions);
189 }
190 #endif
191
check_stack_canary(const char * stack_name __maybe_unused,size_t n __maybe_unused,size_t stack_size,vaddr_t end_va)192 static void check_stack_canary(const char *stack_name __maybe_unused,
193 size_t n __maybe_unused,
194 size_t stack_size, vaddr_t end_va)
195 {
196 uint32_t *canary = NULL;
197
198 canary = stack_end_va_to_start_canary(stack_size, end_va);
199 if (*canary != start_canary_value) {
200 EMSG_RAW("Dead canary at start of '%s[%zu]' (%p)",
201 stack_name, n, (void *)canary);
202 panic();
203 }
204
205 canary = stack_end_va_to_end_canary(stack_size, end_va);
206 if (*canary != end_canary_value) {
207 EMSG_RAW("Dead canary at end of '%s[%zu]' (%p)",
208 stack_name, n, (void *)canary);
209 panic();
210 }
211 }
212
thread_check_canaries(void)213 void thread_check_canaries(void)
214 {
215 vaddr_t va = 0;
216 size_t n = 0;
217
218 if (IS_ENABLED(CFG_WITH_STACK_CANARIES)) {
219 for (n = 0; n < thread_core_count; n++) {
220 if (thread_core_local[n].tmp_stack_va_end) {
221 va = thread_core_local[n].tmp_stack_va_end +
222 STACK_TMP_OFFS;
223 check_stack_canary("tmp_stack", n,
224 STACK_TMP_SIZE, va);
225 }
226
227 va = thread_core_local[n].abt_stack_va_end;
228 if (va)
229 check_stack_canary("abt_stack", n,
230 STACK_ABT_SIZE, va);
231 }
232 }
233
234 if (IS_ENABLED(CFG_WITH_STACK_CANARIES) &&
235 !IS_ENABLED(CFG_WITH_PAGER) && !IS_ENABLED(CFG_NS_VIRTUALIZATION)) {
236 for (n = 0; n < thread_count; n++) {
237 va = threads[n].stack_va_end;
238 if (va)
239 check_stack_canary("thread_stack", n,
240 STACK_THREAD_SIZE, va);
241 }
242 }
243 }
244
thread_lock_global(void)245 void thread_lock_global(void)
246 {
247 cpu_spin_lock(&thread_global_lock);
248 }
249
thread_unlock_global(void)250 void thread_unlock_global(void)
251 {
252 cpu_spin_unlock(&thread_global_lock);
253 }
254
255 static struct thread_core_local * __nostackcheck
get_core_local(unsigned int pos)256 get_core_local(unsigned int pos)
257 {
258 /*
259 * Foreign interrupts must be disabled before playing with core_local
260 * since we otherwise may be rescheduled to a different core in the
261 * middle of this function.
262 */
263 assert(thread_get_exceptions() & THREAD_EXCP_FOREIGN_INTR);
264
265 /*
266 * We boot on a single core and have allocated only one struct
267 * thread_core_local so we return that regardless of pos.
268 */
269 if (IS_ENABLED(CFG_DYN_CONFIG) &&
270 thread_core_local != __thread_core_local_new)
271 return thread_core_local;
272
273 assert(pos < thread_core_count);
274 return &thread_core_local[pos];
275 }
276
thread_get_core_local(void)277 struct thread_core_local * __nostackcheck thread_get_core_local(void)
278 {
279 unsigned int pos = get_core_pos();
280
281 return get_core_local(pos);
282 }
283
284 #ifdef CFG_CORE_DEBUG_CHECK_STACKS
print_stack_limits(void)285 static void print_stack_limits(void)
286 {
287 size_t n = 0;
288 vaddr_t __maybe_unused start = 0;
289 vaddr_t __maybe_unused end = 0;
290 vaddr_t va = 0;
291
292 for (n = 0; n < thread_core_count; n++) {
293 va = thread_core_local[n].tmp_stack_va_end + STACK_TMP_OFFS;
294 start = stack_end_va_to_top_soft(STACK_TMP_SIZE, va);
295 end = stack_end_va_to_bottom(STACK_TMP_SIZE, va);
296 DMSG("tmp [%zu] 0x%" PRIxVA "..0x%" PRIxVA, n, start, end);
297
298 va = thread_core_local[n].abt_stack_va_end;
299 start = stack_end_va_to_top_soft(STACK_ABT_SIZE, va);
300 end = stack_end_va_to_bottom(STACK_ABT_SIZE, va);
301 DMSG("abt [%zu] 0x%" PRIxVA "..0x%" PRIxVA, n, start, end);
302 }
303
304 for (n = 0; n < thread_count; n++) {
305 va = threads[n].stack_va_end;
306 start = stack_end_va_to_top_soft(STACK_THREAD_SIZE, va);
307 end = stack_end_va_to_bottom(STACK_THREAD_SIZE, va);
308 DMSG("thr [%zu] 0x%" PRIxVA "..0x%" PRIxVA, n, start, end);
309 }
310 }
311
check_stack_limits(void)312 static void check_stack_limits(void)
313 {
314 vaddr_t stack_start = 0;
315 vaddr_t stack_end = 0;
316 /* Any value in the current stack frame will do */
317 vaddr_t current_sp = (vaddr_t)&stack_start;
318
319 if (!get_stack_soft_limits(&stack_start, &stack_end))
320 panic("Unknown stack limits");
321 if (current_sp < stack_start || current_sp > stack_end) {
322 EMSG("Stack pointer out of range: 0x%" PRIxVA " not in [0x%"
323 PRIxVA " .. 0x%" PRIxVA "]", current_sp, stack_start,
324 stack_end);
325 print_stack_limits();
326 panic();
327 }
328 }
329
get_stackcheck_recursion_flag(void)330 static bool * __nostackcheck get_stackcheck_recursion_flag(void)
331 {
332 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
333 unsigned int pos = get_core_pos();
334 struct thread_core_local *l = get_core_local(pos);
335 int ct = l->curr_thread;
336 bool *p = NULL;
337
338 if (l->flags & (THREAD_CLF_ABORT | THREAD_CLF_TMP))
339 p = &l->stackcheck_recursion;
340 else if (!l->flags)
341 p = &threads[ct].tsd.stackcheck_recursion;
342
343 thread_unmask_exceptions(exceptions);
344 return p;
345 }
346
347 void __cyg_profile_func_enter(void *this_fn, void *call_site);
__cyg_profile_func_enter(void * this_fn __unused,void * call_site __unused)348 void __nostackcheck __cyg_profile_func_enter(void *this_fn __unused,
349 void *call_site __unused)
350 {
351 bool *p = get_stackcheck_recursion_flag();
352
353 assert(p);
354 if (*p)
355 return;
356 *p = true;
357 check_stack_limits();
358 *p = false;
359 }
360
361 void __cyg_profile_func_exit(void *this_fn, void *call_site);
__cyg_profile_func_exit(void * this_fn __unused,void * call_site __unused)362 void __nostackcheck __cyg_profile_func_exit(void *this_fn __unused,
363 void *call_site __unused)
364 {
365 }
366 #else
print_stack_limits(void)367 static void print_stack_limits(void)
368 {
369 }
370 #endif
371
thread_init_boot_thread(void)372 void thread_init_boot_thread(void)
373 {
374 struct thread_core_local *l = thread_get_core_local();
375
376 l->curr_thread = 0;
377 threads[0].state = THREAD_STATE_ACTIVE;
378 }
379
thread_clr_boot_thread(void)380 void __nostackcheck thread_clr_boot_thread(void)
381 {
382 struct thread_core_local *l = thread_get_core_local();
383
384 assert(l->curr_thread >= 0 && l->curr_thread < CFG_NUM_THREADS);
385 assert(threads[l->curr_thread].state == THREAD_STATE_ACTIVE);
386 threads[l->curr_thread].state = THREAD_STATE_FREE;
387 l->curr_thread = THREAD_ID_INVALID;
388 print_stack_limits();
389 }
390
thread_get_tmp_sp(void)391 void __nostackcheck *thread_get_tmp_sp(void)
392 {
393 struct thread_core_local *l = thread_get_core_local();
394
395 /*
396 * Called from assembly when switching to the temporary stack, so flags
397 * need updating
398 */
399 l->flags |= THREAD_CLF_TMP;
400
401 return (void *)l->tmp_stack_va_end;
402 }
403
thread_stack_start(void)404 vaddr_t thread_stack_start(void)
405 {
406 struct thread_ctx *thr;
407 int ct = thread_get_id_may_fail();
408
409 if (ct == THREAD_ID_INVALID)
410 return 0;
411
412 thr = threads + ct;
413 return stack_end_va_to_top_soft(STACK_THREAD_SIZE, thr->stack_va_end);
414 }
415
thread_stack_size(void)416 size_t thread_stack_size(void)
417 {
418 return STACK_THREAD_SIZE;
419 }
420
get_stack_limits(vaddr_t * start,vaddr_t * end,bool hard)421 bool get_stack_limits(vaddr_t *start, vaddr_t *end, bool hard)
422 {
423 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
424 unsigned int pos = get_core_pos();
425 struct thread_core_local *l = get_core_local(pos);
426 int ct = l->curr_thread;
427 size_t stack_size = 0;
428 bool ret = true;
429 vaddr_t va = 0;
430
431 if (l->flags & THREAD_CLF_TMP) {
432 va = l->tmp_stack_va_end + STACK_TMP_OFFS;
433 stack_size = STACK_TMP_SIZE;
434 } else if (l->flags & THREAD_CLF_ABORT) {
435 va = l->abt_stack_va_end;
436 stack_size = STACK_ABT_SIZE;
437 } else if (!l->flags && ct >= 0 && (size_t)ct < thread_count) {
438 va = threads[ct].stack_va_end;
439 stack_size = STACK_THREAD_SIZE;
440 } else {
441 ret = false;
442 goto out;
443 }
444
445 *end = stack_end_va_to_bottom(stack_size, va);
446 if (hard)
447 *start = stack_end_va_to_top_hard(stack_size, va);
448 else
449 *start = stack_end_va_to_top_soft(stack_size, va);
450 out:
451 thread_unmask_exceptions(exceptions);
452 return ret;
453 }
454
thread_is_from_abort_mode(void)455 bool thread_is_from_abort_mode(void)
456 {
457 struct thread_core_local *l = thread_get_core_local();
458
459 return (l->flags >> THREAD_CLF_SAVED_SHIFT) & THREAD_CLF_ABORT;
460 }
461
462 /*
463 * This function should always be accurate, but it might be possible to
464 * implement a more efficient depending on cpu architecture.
465 */
thread_is_in_normal_mode(void)466 bool __weak __noprof thread_is_in_normal_mode(void)
467 {
468 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
469 struct thread_core_local *l = thread_get_core_local();
470 bool ret;
471
472 /*
473 * If any bit in l->flags is set aside from THREAD_CLF_TMP we're
474 * handling some exception.
475 */
476 ret = (l->curr_thread != THREAD_ID_INVALID) &&
477 !(l->flags & ~THREAD_CLF_TMP);
478 thread_unmask_exceptions(exceptions);
479
480 return ret;
481 }
482
thread_get_id_may_fail(void)483 short int __noprof thread_get_id_may_fail(void)
484 {
485 /*
486 * thread_get_core_local() requires foreign interrupts to be disabled
487 */
488 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
489 struct thread_core_local *l = thread_get_core_local();
490 short int ct = l->curr_thread;
491
492 thread_unmask_exceptions(exceptions);
493 return ct;
494 }
495
thread_get_id(void)496 short int __noprof thread_get_id(void)
497 {
498 short int ct = thread_get_id_may_fail();
499
500 /* Thread ID has to fit in a short int */
501 COMPILE_TIME_ASSERT(CFG_NUM_THREADS <= SHRT_MAX);
502 assert(ct >= 0 && ct < CFG_NUM_THREADS);
503 return ct;
504 }
505
alloc_stack(size_t stack_size,bool nex)506 static vaddr_t alloc_stack(size_t stack_size, bool nex)
507 {
508 size_t l = stack_size_to_alloc_size(stack_size);
509 size_t rl = ROUNDUP(l, SMALL_PAGE_SIZE);
510 uint32_t flags = MAF_GUARD_HEAD;
511 vaddr_t end_va = 0;
512 vaddr_t va = 0;
513
514 if (nex)
515 flags |= MAF_NEX;
516 va = virt_page_alloc(rl / SMALL_PAGE_SIZE, flags);
517 if (!va)
518 panic();
519
520 end_va = va + l - STACK_CANARY_SIZE / 2;
521 if (IS_ENABLED(CFG_WITH_STACK_CANARIES))
522 init_canaries(stack_size, end_va);
523
524 return end_va;
525 }
526
527 #ifdef CFG_WITH_PAGER
init_thread_stacks(void)528 static void init_thread_stacks(void)
529 {
530 size_t n = 0;
531
532 /*
533 * Allocate virtual memory for thread stacks.
534 */
535 for (n = 0; n < thread_count; n++) {
536 tee_mm_entry_t *mm = NULL;
537 vaddr_t sp = 0;
538 size_t num_pages = 0;
539 struct fobj *fobj = NULL;
540
541 /* Find vmem for thread stack and its protection gap */
542 mm = tee_mm_alloc(&core_virt_mem_pool,
543 SMALL_PAGE_SIZE + STACK_THREAD_SIZE);
544 assert(mm);
545
546 /* Claim eventual physical page */
547 tee_pager_add_pages(tee_mm_get_smem(mm), tee_mm_get_size(mm),
548 true);
549
550 num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE - 1;
551 fobj = fobj_locked_paged_alloc(num_pages);
552
553 /* Add the region to the pager */
554 tee_pager_add_core_region(tee_mm_get_smem(mm) + SMALL_PAGE_SIZE,
555 PAGED_REGION_TYPE_LOCK, fobj);
556 fobj_put(fobj);
557
558 /* init effective stack */
559 sp = tee_mm_get_smem(mm) + tee_mm_get_bytes(mm);
560 asan_tag_access((void *)tee_mm_get_smem(mm), (void *)sp);
561 threads[n].stack_va_end = sp;
562 }
563 }
564 #else
init_thread_stacks(void)565 static void init_thread_stacks(void)
566 {
567 vaddr_t va = 0;
568 size_t n = 0;
569
570 /* Assign the thread stacks */
571 for (n = 0; n < thread_count; n++) {
572 if (IS_ENABLED(CFG_DYN_CONFIG))
573 va = alloc_stack(STACK_THREAD_SIZE, false);
574 else
575 va = GET_STACK_THREAD_BOTTOM(n);
576 threads[n].stack_va_end = va;
577 if (IS_ENABLED(CFG_WITH_STACK_CANARIES))
578 init_canaries(STACK_THREAD_SIZE, va);
579 }
580 }
581 #endif /*CFG_WITH_PAGER*/
582
thread_init_threads(size_t count)583 void thread_init_threads(size_t count)
584 {
585 size_t n = 0;
586
587 if (IS_ENABLED(CFG_DYN_CONFIG)) {
588 assert(count <= CFG_NUM_THREADS);
589 threads = calloc(count, sizeof(*threads));
590 if (!threads)
591 panic();
592 thread_count = count;
593 } else {
594 assert(count == CFG_NUM_THREADS);
595 }
596
597 init_thread_stacks();
598 print_stack_limits();
599 pgt_init();
600
601 mutex_lockdep_init();
602
603 for (n = 0; n < thread_count; n++)
604 TAILQ_INIT(&threads[n].tsd.sess_stack);
605 }
606
607 #ifndef CFG_DYN_CONFIG
thread_get_abt_stack(void)608 vaddr_t __nostackcheck thread_get_abt_stack(void)
609 {
610 return GET_STACK_BOTTOM(stack_abt, get_core_pos());
611 }
612 #endif
613
thread_init_thread_core_local(size_t core_count)614 void thread_init_thread_core_local(size_t core_count)
615 {
616 struct thread_core_local *tcl = NULL;
617 const size_t core_pos = get_core_pos();
618 vaddr_t va = 0;
619 size_t n = 0;
620
621 if (IS_ENABLED(CFG_DYN_CONFIG)) {
622 assert(core_count <= CFG_TEE_CORE_NB_CORE);
623 tcl = nex_calloc(core_count, sizeof(*tcl));
624 if (!tcl)
625 panic();
626 __thread_core_local_new = tcl;
627 __thread_core_count_new = core_count;
628 } else {
629 tcl = thread_core_local;
630 assert(core_count == CFG_TEE_CORE_NB_CORE);
631
632 for (n = 0; n < thread_core_count; n++) {
633 init_canaries(STACK_TMP_SIZE,
634 GET_STACK_BOTTOM(stack_tmp, n));
635 init_canaries(STACK_ABT_SIZE,
636 GET_STACK_BOTTOM(stack_abt, n));
637 }
638 }
639
640 for (n = 0; n < core_count; n++) {
641 if (n == core_pos) {
642 if (IS_ENABLED(CFG_DYN_CONFIG))
643 tcl[n] = thread_core_local[0];
644 else
645 continue;
646 } else {
647 tcl[n].curr_thread = THREAD_ID_INVALID;
648 tcl[n].flags = THREAD_CLF_TMP;
649 }
650
651 if (IS_ENABLED(CFG_DYN_CONFIG))
652 va = alloc_stack(STACK_TMP_SIZE, true);
653 else
654 va = GET_STACK_BOTTOM(stack_tmp, n);
655 tcl[n].tmp_stack_va_end = va - STACK_TMP_OFFS;
656 #ifdef ARM32
657 tcl[n].tmp_stack_pa_end =
658 vaddr_to_phys(tcl[n].tmp_stack_va_end);
659 #endif
660
661 if (IS_ENABLED(CFG_DYN_CONFIG))
662 va = alloc_stack(STACK_ABT_SIZE, true);
663 else
664 va = GET_STACK_BOTTOM(stack_abt, n);
665 tcl[n].abt_stack_va_end = va;
666 }
667 }
668
669 #if defined(CFG_CORE_PAUTH)
thread_init_thread_pauth_keys(void)670 void thread_init_thread_pauth_keys(void)
671 {
672 size_t n = 0;
673
674 for (n = 0; n < thread_count; n++)
675 if (crypto_rng_read(&threads[n].keys, sizeof(threads[n].keys)))
676 panic("Failed to init thread pauth keys");
677 }
678
thread_init_core_local_pauth_keys(void)679 void thread_init_core_local_pauth_keys(void)
680 {
681 struct thread_core_local *tcl = thread_core_local;
682 size_t n = 0;
683
684 for (n = 0; n < thread_core_count; n++)
685 if (crypto_rng_read(&tcl[n].keys, sizeof(tcl[n].keys)))
686 panic("Failed to init core local pauth keys");
687 }
688 #endif
689
thread_get_tsd(void)690 struct thread_specific_data * __noprof thread_get_tsd(void)
691 {
692 return &threads[thread_get_id()].tsd;
693 }
694
thread_get_ctx_regs(void)695 struct thread_ctx_regs * __nostackcheck thread_get_ctx_regs(void)
696 {
697 struct thread_core_local *l = thread_get_core_local();
698
699 assert(l->curr_thread != THREAD_ID_INVALID);
700 return &threads[l->curr_thread].regs;
701 }
702
thread_set_foreign_intr(bool enable)703 void thread_set_foreign_intr(bool enable)
704 {
705 /* thread_get_core_local() requires foreign interrupts to be disabled */
706 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
707 struct thread_core_local *l;
708
709 l = thread_get_core_local();
710
711 assert(l->curr_thread != THREAD_ID_INVALID);
712
713 if (enable) {
714 threads[l->curr_thread].flags |=
715 THREAD_FLAGS_FOREIGN_INTR_ENABLE;
716 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR);
717 } else {
718 /*
719 * No need to disable foreign interrupts here since they're
720 * already disabled above.
721 */
722 threads[l->curr_thread].flags &=
723 ~THREAD_FLAGS_FOREIGN_INTR_ENABLE;
724 }
725 }
726
thread_restore_foreign_intr(void)727 void thread_restore_foreign_intr(void)
728 {
729 /* thread_get_core_local() requires foreign interrupts to be disabled */
730 uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_FOREIGN_INTR);
731 struct thread_core_local *l;
732
733 l = thread_get_core_local();
734
735 assert(l->curr_thread != THREAD_ID_INVALID);
736
737 if (threads[l->curr_thread].flags & THREAD_FLAGS_FOREIGN_INTR_ENABLE)
738 thread_set_exceptions(exceptions & ~THREAD_EXCP_FOREIGN_INTR);
739 }
740
alloc_shm(enum thread_shm_type shm_type,size_t size)741 static struct mobj *alloc_shm(enum thread_shm_type shm_type, size_t size)
742 {
743 switch (shm_type) {
744 case THREAD_SHM_TYPE_APPLICATION:
745 return thread_rpc_alloc_payload(size);
746 case THREAD_SHM_TYPE_KERNEL_PRIVATE:
747 return thread_rpc_alloc_kernel_payload(size);
748 case THREAD_SHM_TYPE_GLOBAL:
749 return thread_rpc_alloc_global_payload(size);
750 default:
751 return NULL;
752 }
753 }
754
clear_shm_cache_entry(struct thread_shm_cache_entry * ce)755 static void clear_shm_cache_entry(struct thread_shm_cache_entry *ce)
756 {
757 if (ce->mobj) {
758 switch (ce->type) {
759 case THREAD_SHM_TYPE_APPLICATION:
760 thread_rpc_free_payload(ce->mobj);
761 break;
762 case THREAD_SHM_TYPE_KERNEL_PRIVATE:
763 thread_rpc_free_kernel_payload(ce->mobj);
764 break;
765 case THREAD_SHM_TYPE_GLOBAL:
766 thread_rpc_free_global_payload(ce->mobj);
767 break;
768 default:
769 assert(0); /* "can't happen" */
770 break;
771 }
772 }
773 ce->mobj = NULL;
774 ce->size = 0;
775 }
776
777 static struct thread_shm_cache_entry *
get_shm_cache_entry(enum thread_shm_cache_user user)778 get_shm_cache_entry(enum thread_shm_cache_user user)
779 {
780 struct thread_shm_cache *cache = &threads[thread_get_id()].shm_cache;
781 struct thread_shm_cache_entry *ce = NULL;
782
783 SLIST_FOREACH(ce, cache, link)
784 if (ce->user == user)
785 return ce;
786
787 ce = calloc(1, sizeof(*ce));
788 if (ce) {
789 ce->user = user;
790 SLIST_INSERT_HEAD(cache, ce, link);
791 }
792
793 return ce;
794 }
795
thread_rpc_shm_cache_alloc(enum thread_shm_cache_user user,enum thread_shm_type shm_type,size_t size,struct mobj ** mobj)796 void *thread_rpc_shm_cache_alloc(enum thread_shm_cache_user user,
797 enum thread_shm_type shm_type,
798 size_t size, struct mobj **mobj)
799 {
800 struct thread_shm_cache_entry *ce = NULL;
801 size_t sz = size;
802 paddr_t p = 0;
803 void *va = NULL;
804
805 if (!size)
806 return NULL;
807
808 ce = get_shm_cache_entry(user);
809 if (!ce)
810 return NULL;
811
812 /*
813 * Always allocate in page chunks as normal world allocates payload
814 * memory as complete pages.
815 */
816 sz = ROUNDUP(size, SMALL_PAGE_SIZE);
817
818 if (ce->type != shm_type || sz > ce->size) {
819 clear_shm_cache_entry(ce);
820
821 ce->mobj = alloc_shm(shm_type, sz);
822 if (!ce->mobj)
823 return NULL;
824
825 if (mobj_get_pa(ce->mobj, 0, 0, &p))
826 goto err;
827
828 if (!IS_ALIGNED_WITH_TYPE(p, uint64_t))
829 goto err;
830
831 va = mobj_get_va(ce->mobj, 0, sz);
832 if (!va)
833 goto err;
834
835 ce->size = sz;
836 ce->type = shm_type;
837 } else {
838 va = mobj_get_va(ce->mobj, 0, sz);
839 if (!va)
840 goto err;
841 }
842 *mobj = ce->mobj;
843
844 return va;
845 err:
846 clear_shm_cache_entry(ce);
847 return NULL;
848 }
849
thread_rpc_shm_cache_clear(struct thread_shm_cache * cache)850 void thread_rpc_shm_cache_clear(struct thread_shm_cache *cache)
851 {
852 while (true) {
853 struct thread_shm_cache_entry *ce = SLIST_FIRST(cache);
854
855 if (!ce)
856 break;
857 SLIST_REMOVE_HEAD(cache, link);
858 clear_shm_cache_entry(ce);
859 free(ce);
860 }
861 }
862