xref: /optee_os/core/arch/arm/mm/tee_pager.c (revision 7901324d9530594155991c8b283023d567741cc7)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016-2021, Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  */
6 
7 #include <arm.h>
8 #include <assert.h>
9 #include <io.h>
10 #include <keep.h>
11 #include <kernel/abort.h>
12 #include <kernel/asan.h>
13 #include <kernel/cache_helpers.h>
14 #include <kernel/linker.h>
15 #include <kernel/panic.h>
16 #include <kernel/spinlock.h>
17 #include <kernel/tee_misc.h>
18 #include <kernel/tee_ta_manager.h>
19 #include <kernel/thread.h>
20 #include <kernel/tlb_helpers.h>
21 #include <kernel/user_mode_ctx.h>
22 #include <mm/core_memprot.h>
23 #include <mm/fobj.h>
24 #include <mm/tee_mm.h>
25 #include <mm/tee_pager.h>
26 #include <stdlib.h>
27 #include <sys/queue.h>
28 #include <tee_api_defines.h>
29 #include <trace.h>
30 #include <types_ext.h>
31 #include <utee_defines.h>
32 #include <util.h>
33 
34 
35 static struct vm_paged_region_head core_vm_regions =
36 	TAILQ_HEAD_INITIALIZER(core_vm_regions);
37 
38 #define INVALID_PGIDX		UINT_MAX
39 #define PMEM_FLAG_DIRTY		BIT(0)
40 #define PMEM_FLAG_HIDDEN	BIT(1)
41 
42 /*
43  * struct tee_pager_pmem - Represents a physical page used for paging.
44  *
45  * @flags	flags defined by PMEM_FLAG_* above
46  * @fobj_pgidx	index of the page in the @fobj
47  * @fobj	File object of which a page is made visible.
48  * @va_alias	Virtual address where the physical page always is aliased.
49  *		Used during remapping of the page when the content need to
50  *		be updated before it's available at the new location.
51  */
52 struct tee_pager_pmem {
53 	unsigned int flags;
54 	unsigned int fobj_pgidx;
55 	struct fobj *fobj;
56 	void *va_alias;
57 	TAILQ_ENTRY(tee_pager_pmem) link;
58 };
59 
60 struct tblidx {
61 	struct pgt *pgt;
62 	unsigned int idx;
63 };
64 
65 /* The list of physical pages. The first page in the list is the oldest */
66 TAILQ_HEAD(tee_pager_pmem_head, tee_pager_pmem);
67 
68 static struct tee_pager_pmem_head tee_pager_pmem_head =
69 	TAILQ_HEAD_INITIALIZER(tee_pager_pmem_head);
70 
71 static struct tee_pager_pmem_head tee_pager_lock_pmem_head =
72 	TAILQ_HEAD_INITIALIZER(tee_pager_lock_pmem_head);
73 
74 /* number of pages hidden */
75 #define TEE_PAGER_NHIDE (tee_pager_npages / 3)
76 
77 /* Number of registered physical pages, used hiding pages. */
78 static size_t tee_pager_npages;
79 
80 /* This area covers the IVs for all fobjs with paged IVs */
81 static struct vm_paged_region *pager_iv_region;
82 /* Used by make_iv_available(), see make_iv_available() for details. */
83 static struct tee_pager_pmem *pager_spare_pmem;
84 
85 #ifdef CFG_WITH_STATS
86 static struct tee_pager_stats pager_stats;
87 
88 static inline void incr_ro_hits(void)
89 {
90 	pager_stats.ro_hits++;
91 }
92 
93 static inline void incr_rw_hits(void)
94 {
95 	pager_stats.rw_hits++;
96 }
97 
98 static inline void incr_hidden_hits(void)
99 {
100 	pager_stats.hidden_hits++;
101 }
102 
103 static inline void incr_zi_released(void)
104 {
105 	pager_stats.zi_released++;
106 }
107 
108 static inline void incr_npages_all(void)
109 {
110 	pager_stats.npages_all++;
111 }
112 
113 static inline void set_npages(void)
114 {
115 	pager_stats.npages = tee_pager_npages;
116 }
117 
118 void tee_pager_get_stats(struct tee_pager_stats *stats)
119 {
120 	*stats = pager_stats;
121 
122 	pager_stats.hidden_hits = 0;
123 	pager_stats.ro_hits = 0;
124 	pager_stats.rw_hits = 0;
125 	pager_stats.zi_released = 0;
126 }
127 
128 #else /* CFG_WITH_STATS */
129 static inline void incr_ro_hits(void) { }
130 static inline void incr_rw_hits(void) { }
131 static inline void incr_hidden_hits(void) { }
132 static inline void incr_zi_released(void) { }
133 static inline void incr_npages_all(void) { }
134 static inline void set_npages(void) { }
135 
136 void tee_pager_get_stats(struct tee_pager_stats *stats)
137 {
138 	memset(stats, 0, sizeof(struct tee_pager_stats));
139 }
140 #endif /* CFG_WITH_STATS */
141 
142 #define TBL_NUM_ENTRIES	(CORE_MMU_PGDIR_SIZE / SMALL_PAGE_SIZE)
143 #define TBL_LEVEL	CORE_MMU_PGDIR_LEVEL
144 #define TBL_SHIFT	SMALL_PAGE_SHIFT
145 
146 #define EFFECTIVE_VA_SIZE \
147 	(ROUNDUP(VCORE_START_VA + TEE_RAM_VA_SIZE, CORE_MMU_PGDIR_SIZE) - \
148 	 ROUNDDOWN(VCORE_START_VA, CORE_MMU_PGDIR_SIZE))
149 
150 static struct pager_table {
151 	struct pgt pgt;
152 	struct core_mmu_table_info tbl_info;
153 } *pager_tables;
154 static unsigned int num_pager_tables;
155 
156 static unsigned pager_spinlock = SPINLOCK_UNLOCK;
157 
158 /* Defines the range of the alias area */
159 static tee_mm_entry_t *pager_alias_area;
160 /*
161  * Physical pages are added in a stack like fashion to the alias area,
162  * @pager_alias_next_free gives the address of next free entry if
163  * @pager_alias_next_free is != 0
164  */
165 static uintptr_t pager_alias_next_free;
166 
167 #ifdef CFG_TEE_CORE_DEBUG
168 #define pager_lock(ai) pager_lock_dldetect(__func__, __LINE__, ai)
169 
170 static uint32_t pager_lock_dldetect(const char *func, const int line,
171 				    struct abort_info *ai)
172 {
173 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
174 	unsigned int retries = 0;
175 	unsigned int reminder = 0;
176 
177 	while (!cpu_spin_trylock(&pager_spinlock)) {
178 		retries++;
179 		if (!retries) {
180 			/* wrapped, time to report */
181 			trace_printf(func, line, TRACE_ERROR, true,
182 				     "possible spinlock deadlock reminder %u",
183 				     reminder);
184 			if (reminder < UINT_MAX)
185 				reminder++;
186 			if (ai)
187 				abort_print(ai);
188 		}
189 	}
190 
191 	return exceptions;
192 }
193 #else
194 static uint32_t pager_lock(struct abort_info __unused *ai)
195 {
196 	return cpu_spin_lock_xsave(&pager_spinlock);
197 }
198 #endif
199 
200 static uint32_t pager_lock_check_stack(size_t stack_size)
201 {
202 	if (stack_size) {
203 		int8_t buf[stack_size];
204 		size_t n;
205 
206 		/*
207 		 * Make sure to touch all pages of the stack that we expect
208 		 * to use with this lock held. We need to take eventual
209 		 * page faults before the lock is taken or we'll deadlock
210 		 * the pager. The pages that are populated in this way will
211 		 * eventually be released at certain save transitions of
212 		 * the thread.
213 		 */
214 		for (n = 0; n < stack_size; n += SMALL_PAGE_SIZE)
215 			io_write8((vaddr_t)buf + n, 1);
216 		io_write8((vaddr_t)buf + stack_size - 1, 1);
217 	}
218 
219 	return pager_lock(NULL);
220 }
221 
222 static void pager_unlock(uint32_t exceptions)
223 {
224 	cpu_spin_unlock_xrestore(&pager_spinlock, exceptions);
225 }
226 
227 void *tee_pager_phys_to_virt(paddr_t pa)
228 {
229 	struct core_mmu_table_info ti;
230 	unsigned idx;
231 	uint32_t a;
232 	paddr_t p;
233 	vaddr_t v;
234 	size_t n;
235 
236 	/*
237 	 * Most addresses are mapped lineary, try that first if possible.
238 	 */
239 	if (!tee_pager_get_table_info(pa, &ti))
240 		return NULL; /* impossible pa */
241 	idx = core_mmu_va2idx(&ti, pa);
242 	core_mmu_get_entry(&ti, idx, &p, &a);
243 	if ((a & TEE_MATTR_VALID_BLOCK) && p == pa)
244 		return (void *)core_mmu_idx2va(&ti, idx);
245 
246 	n = 0;
247 	idx = core_mmu_va2idx(&pager_tables[n].tbl_info, TEE_RAM_VA_START);
248 	while (true) {
249 		while (idx < TBL_NUM_ENTRIES) {
250 			v = core_mmu_idx2va(&pager_tables[n].tbl_info, idx);
251 			if (v >= (TEE_RAM_VA_START + TEE_RAM_VA_SIZE))
252 				return NULL;
253 
254 			core_mmu_get_entry(&pager_tables[n].tbl_info,
255 					   idx, &p, &a);
256 			if ((a & TEE_MATTR_VALID_BLOCK) && p == pa)
257 				return (void *)v;
258 			idx++;
259 		}
260 
261 		n++;
262 		if (n >= num_pager_tables)
263 			return NULL;
264 		idx = 0;
265 	}
266 
267 	return NULL;
268 }
269 
270 static bool pmem_is_hidden(struct tee_pager_pmem *pmem)
271 {
272 	return pmem->flags & PMEM_FLAG_HIDDEN;
273 }
274 
275 static bool pmem_is_dirty(struct tee_pager_pmem *pmem)
276 {
277 	return pmem->flags & PMEM_FLAG_DIRTY;
278 }
279 
280 static bool pmem_is_covered_by_region(struct tee_pager_pmem *pmem,
281 				      struct vm_paged_region *reg)
282 {
283 	if (pmem->fobj != reg->fobj)
284 		return false;
285 	if (pmem->fobj_pgidx < reg->fobj_pgoffs)
286 		return false;
287 	if ((pmem->fobj_pgidx - reg->fobj_pgoffs) >=
288 	    (reg->size >> SMALL_PAGE_SHIFT))
289 		return false;
290 
291 	return true;
292 }
293 
294 static size_t get_pgt_count(vaddr_t base, size_t size)
295 {
296 	assert(size);
297 
298 	return (base + size - 1) / CORE_MMU_PGDIR_SIZE + 1 -
299 	       base / CORE_MMU_PGDIR_SIZE;
300 }
301 
302 static bool region_have_pgt(struct vm_paged_region *reg, struct pgt *pgt)
303 {
304 	size_t n = 0;
305 
306 	for (n = 0; n < get_pgt_count(reg->base, reg->size); n++)
307 		if (reg->pgt_array[n] == pgt)
308 			return true;
309 
310 	return false;
311 }
312 
313 static struct tblidx pmem_get_region_tblidx(struct tee_pager_pmem *pmem,
314 					    struct vm_paged_region *reg)
315 {
316 	size_t tbloffs = (reg->base & CORE_MMU_PGDIR_MASK) >> SMALL_PAGE_SHIFT;
317 	size_t idx = pmem->fobj_pgidx - reg->fobj_pgoffs + tbloffs;
318 
319 	assert(pmem->fobj && pmem->fobj_pgidx != INVALID_PGIDX);
320 	assert(idx / TBL_NUM_ENTRIES < get_pgt_count(reg->base, reg->size));
321 
322 	return (struct tblidx){
323 		.idx = idx % TBL_NUM_ENTRIES,
324 		.pgt = reg->pgt_array[idx / TBL_NUM_ENTRIES],
325 	};
326 }
327 
328 static struct pager_table *find_pager_table_may_fail(vaddr_t va)
329 {
330 	size_t n;
331 	const vaddr_t mask = CORE_MMU_PGDIR_MASK;
332 
333 	if (!pager_tables)
334 		return NULL;
335 
336 	n = ((va & ~mask) - pager_tables[0].tbl_info.va_base) >>
337 	    CORE_MMU_PGDIR_SHIFT;
338 	if (n >= num_pager_tables)
339 		return NULL;
340 
341 	assert(va >= pager_tables[n].tbl_info.va_base &&
342 	       va <= (pager_tables[n].tbl_info.va_base | mask));
343 
344 	return pager_tables + n;
345 }
346 
347 static struct pager_table *find_pager_table(vaddr_t va)
348 {
349 	struct pager_table *pt = find_pager_table_may_fail(va);
350 
351 	assert(pt);
352 	return pt;
353 }
354 
355 bool tee_pager_get_table_info(vaddr_t va, struct core_mmu_table_info *ti)
356 {
357 	struct pager_table *pt = find_pager_table_may_fail(va);
358 
359 	if (!pt)
360 		return false;
361 
362 	*ti = pt->tbl_info;
363 	return true;
364 }
365 
366 static struct core_mmu_table_info *find_table_info(vaddr_t va)
367 {
368 	return &find_pager_table(va)->tbl_info;
369 }
370 
371 static struct pgt *find_core_pgt(vaddr_t va)
372 {
373 	return &find_pager_table(va)->pgt;
374 }
375 
376 void tee_pager_set_alias_area(tee_mm_entry_t *mm)
377 {
378 	struct pager_table *pt;
379 	unsigned idx;
380 	vaddr_t smem = tee_mm_get_smem(mm);
381 	size_t nbytes = tee_mm_get_bytes(mm);
382 	vaddr_t v;
383 	uint32_t a = 0;
384 
385 	DMSG("0x%" PRIxVA " - 0x%" PRIxVA, smem, smem + nbytes);
386 
387 	assert(!pager_alias_area);
388 	pager_alias_area = mm;
389 	pager_alias_next_free = smem;
390 
391 	/* Clear all mapping in the alias area */
392 	pt = find_pager_table(smem);
393 	idx = core_mmu_va2idx(&pt->tbl_info, smem);
394 	while (pt <= (pager_tables + num_pager_tables - 1)) {
395 		while (idx < TBL_NUM_ENTRIES) {
396 			v = core_mmu_idx2va(&pt->tbl_info, idx);
397 			if (v >= (smem + nbytes))
398 				goto out;
399 
400 			core_mmu_get_entry(&pt->tbl_info, idx, NULL, &a);
401 			core_mmu_set_entry(&pt->tbl_info, idx, 0, 0);
402 			if (a & TEE_MATTR_VALID_BLOCK)
403 				pgt_dec_used_entries(&pt->pgt);
404 			idx++;
405 		}
406 
407 		pt++;
408 		idx = 0;
409 	}
410 
411 out:
412 	tlbi_mva_range(smem, nbytes, SMALL_PAGE_SIZE);
413 }
414 
415 static size_t tbl_usage_count(struct core_mmu_table_info *ti)
416 {
417 	size_t n;
418 	uint32_t a = 0;
419 	size_t usage = 0;
420 
421 	for (n = 0; n < ti->num_entries; n++) {
422 		core_mmu_get_entry(ti, n, NULL, &a);
423 		if (a & TEE_MATTR_VALID_BLOCK)
424 			usage++;
425 	}
426 	return usage;
427 }
428 
429 static void tblidx_get_entry(struct tblidx tblidx, paddr_t *pa, uint32_t *attr)
430 {
431 	assert(tblidx.pgt && tblidx.idx < TBL_NUM_ENTRIES);
432 	core_mmu_get_entry_primitive(tblidx.pgt->tbl, TBL_LEVEL, tblidx.idx,
433 				     pa, attr);
434 }
435 
436 static void tblidx_set_entry(struct tblidx tblidx, paddr_t pa, uint32_t attr)
437 {
438 	assert(tblidx.pgt && tblidx.idx < TBL_NUM_ENTRIES);
439 	core_mmu_set_entry_primitive(tblidx.pgt->tbl, TBL_LEVEL, tblidx.idx,
440 				     pa, attr);
441 }
442 
443 static struct tblidx region_va2tblidx(struct vm_paged_region *reg, vaddr_t va)
444 {
445 	paddr_t mask = CORE_MMU_PGDIR_MASK;
446 	size_t n = 0;
447 
448 	assert(va >= reg->base && va < (reg->base + reg->size));
449 	n = (va - (reg->base & ~mask)) / CORE_MMU_PGDIR_SIZE;
450 
451 	return (struct tblidx){
452 		.idx = (va & mask) / SMALL_PAGE_SIZE,
453 		.pgt = reg->pgt_array[n],
454 	};
455 }
456 
457 static vaddr_t tblidx2va(struct tblidx tblidx)
458 {
459 	return tblidx.pgt->vabase + (tblidx.idx << SMALL_PAGE_SHIFT);
460 }
461 
462 static void tblidx_tlbi_entry(struct tblidx tblidx)
463 {
464 	vaddr_t va = tblidx2va(tblidx);
465 
466 #if defined(CFG_PAGED_USER_TA)
467 	if (tblidx.pgt->ctx) {
468 		uint32_t asid = to_user_mode_ctx(tblidx.pgt->ctx)->vm_info.asid;
469 
470 		tlbi_mva_asid(va, asid);
471 		return;
472 	}
473 #endif
474 	tlbi_mva_allasid(va);
475 }
476 
477 static void pmem_assign_fobj_page(struct tee_pager_pmem *pmem,
478 				  struct vm_paged_region *reg, vaddr_t va)
479 {
480 	struct tee_pager_pmem *p = NULL;
481 	unsigned int fobj_pgidx = 0;
482 
483 	assert(!pmem->fobj && pmem->fobj_pgidx == INVALID_PGIDX);
484 
485 	assert(va >= reg->base && va < (reg->base + reg->size));
486 	fobj_pgidx = (va - reg->base) / SMALL_PAGE_SIZE + reg->fobj_pgoffs;
487 
488 	TAILQ_FOREACH(p, &tee_pager_pmem_head, link)
489 		assert(p->fobj != reg->fobj || p->fobj_pgidx != fobj_pgidx);
490 
491 	pmem->fobj = reg->fobj;
492 	pmem->fobj_pgidx = fobj_pgidx;
493 }
494 
495 static void pmem_clear(struct tee_pager_pmem *pmem)
496 {
497 	pmem->fobj = NULL;
498 	pmem->fobj_pgidx = INVALID_PGIDX;
499 	pmem->flags = 0;
500 }
501 
502 static void pmem_unmap(struct tee_pager_pmem *pmem, struct pgt *only_this_pgt)
503 {
504 	struct vm_paged_region *reg = NULL;
505 	struct tblidx tblidx = { };
506 	uint32_t a = 0;
507 
508 	TAILQ_FOREACH(reg, &pmem->fobj->regions, fobj_link) {
509 		/*
510 		 * If only_this_pgt points to a pgt then the pgt of this
511 		 * region has to match or we'll skip over it.
512 		 */
513 		if (only_this_pgt && !region_have_pgt(reg, only_this_pgt))
514 			continue;
515 		if (!pmem_is_covered_by_region(pmem, reg))
516 			continue;
517 		tblidx = pmem_get_region_tblidx(pmem, reg);
518 		if (!tblidx.pgt)
519 			continue;
520 		tblidx_get_entry(tblidx, NULL, &a);
521 		if (a & TEE_MATTR_VALID_BLOCK) {
522 			tblidx_set_entry(tblidx, 0, 0);
523 			pgt_dec_used_entries(tblidx.pgt);
524 			tblidx_tlbi_entry(tblidx);
525 		}
526 	}
527 }
528 
529 void tee_pager_early_init(void)
530 {
531 	size_t n = 0;
532 
533 	num_pager_tables = EFFECTIVE_VA_SIZE / CORE_MMU_PGDIR_SIZE;
534 	pager_tables = calloc(num_pager_tables, sizeof(*pager_tables));
535 	if (!pager_tables)
536 		panic("Cannot allocate pager_tables");
537 
538 	/*
539 	 * Note that this depends on add_pager_vaspace() adding vaspace
540 	 * after end of memory.
541 	 */
542 	for (n = 0; n < num_pager_tables; n++) {
543 		if (!core_mmu_find_table(NULL, VCORE_START_VA +
544 					 n * CORE_MMU_PGDIR_SIZE, UINT_MAX,
545 					 &pager_tables[n].tbl_info))
546 			panic("can't find mmu tables");
547 
548 		if (pager_tables[n].tbl_info.shift != TBL_SHIFT)
549 			panic("Unsupported page size in translation table");
550 		assert(pager_tables[n].tbl_info.num_entries == TBL_NUM_ENTRIES);
551 		assert(pager_tables[n].tbl_info.level == TBL_LEVEL);
552 
553 		pager_tables[n].pgt.tbl = pager_tables[n].tbl_info.table;
554 		pager_tables[n].pgt.vabase = pager_tables[n].tbl_info.va_base;
555 		pgt_set_used_entries(&pager_tables[n].pgt,
556 				tbl_usage_count(&pager_tables[n].tbl_info));
557 	}
558 }
559 
560 static void *pager_add_alias_page(paddr_t pa)
561 {
562 	unsigned idx;
563 	struct core_mmu_table_info *ti;
564 	/* Alias pages mapped without write permission: runtime will care */
565 	uint32_t attr = TEE_MATTR_VALID_BLOCK |
566 			(TEE_MATTR_CACHE_CACHED << TEE_MATTR_CACHE_SHIFT) |
567 			TEE_MATTR_SECURE | TEE_MATTR_PR;
568 
569 	DMSG("0x%" PRIxPA, pa);
570 
571 	ti = find_table_info(pager_alias_next_free);
572 	idx = core_mmu_va2idx(ti, pager_alias_next_free);
573 	core_mmu_set_entry(ti, idx, pa, attr);
574 	pgt_inc_used_entries(find_core_pgt(pager_alias_next_free));
575 	pager_alias_next_free += SMALL_PAGE_SIZE;
576 	if (pager_alias_next_free >= (tee_mm_get_smem(pager_alias_area) +
577 				      tee_mm_get_bytes(pager_alias_area)))
578 		pager_alias_next_free = 0;
579 	return (void *)core_mmu_idx2va(ti, idx);
580 }
581 
582 static void region_insert(struct vm_paged_region_head *regions,
583 			  struct vm_paged_region *reg,
584 			  struct vm_paged_region *r_prev)
585 {
586 	uint32_t exceptions = pager_lock_check_stack(8);
587 
588 	if (r_prev)
589 		TAILQ_INSERT_AFTER(regions, r_prev, reg, link);
590 	else
591 		TAILQ_INSERT_HEAD(regions, reg, link);
592 	TAILQ_INSERT_TAIL(&reg->fobj->regions, reg, fobj_link);
593 
594 	pager_unlock(exceptions);
595 }
596 DECLARE_KEEP_PAGER(region_insert);
597 
598 static struct vm_paged_region *alloc_region(vaddr_t base, size_t size)
599 {
600 	struct vm_paged_region *reg = NULL;
601 
602 	if ((base & SMALL_PAGE_MASK) || !size) {
603 		EMSG("invalid pager region [%" PRIxVA " +0x%zx]", base, size);
604 		panic();
605 	}
606 
607 	reg = calloc(1, sizeof(*reg));
608 	if (!reg)
609 		return NULL;
610 	reg->pgt_array = calloc(get_pgt_count(base, size),
611 				sizeof(struct pgt *));
612 	if (!reg->pgt_array) {
613 		free(reg);
614 		return NULL;
615 	}
616 
617 	reg->base = base;
618 	reg->size = size;
619 	return reg;
620 }
621 
622 void tee_pager_add_core_region(vaddr_t base, enum vm_paged_region_type type,
623 			       struct fobj *fobj)
624 {
625 	struct vm_paged_region *reg = NULL;
626 	size_t n = 0;
627 
628 	assert(fobj);
629 
630 	DMSG("0x%" PRIxPTR " - 0x%" PRIxPTR " : type %d",
631 	     base, base + fobj->num_pages * SMALL_PAGE_SIZE, type);
632 
633 	reg = alloc_region(base, fobj->num_pages * SMALL_PAGE_SIZE);
634 	if (!reg)
635 		panic("alloc_region");
636 
637 	reg->fobj = fobj_get(fobj);
638 	reg->fobj_pgoffs = 0;
639 	reg->type = type;
640 
641 	switch (type) {
642 	case PAGED_REGION_TYPE_RO:
643 		reg->flags = TEE_MATTR_PRX;
644 		break;
645 	case PAGED_REGION_TYPE_RW:
646 	case PAGED_REGION_TYPE_LOCK:
647 		reg->flags = TEE_MATTR_PRW;
648 		break;
649 	default:
650 		panic();
651 	}
652 
653 	for (n = 0; n < get_pgt_count(reg->base, reg->size); n++)
654 		reg->pgt_array[n] = find_core_pgt(base +
655 						  n * CORE_MMU_PGDIR_SIZE);
656 	region_insert(&core_vm_regions, reg, NULL);
657 }
658 
659 static struct vm_paged_region *find_region(struct vm_paged_region_head *regions,
660 					   vaddr_t va)
661 {
662 	struct vm_paged_region *reg;
663 
664 	if (!regions)
665 		return NULL;
666 
667 	TAILQ_FOREACH(reg, regions, link) {
668 		if (core_is_buffer_inside(va, 1, reg->base, reg->size))
669 			return reg;
670 	}
671 	return NULL;
672 }
673 
674 #ifdef CFG_PAGED_USER_TA
675 static struct vm_paged_region *find_uta_region(vaddr_t va)
676 {
677 	struct ts_ctx *ctx = thread_get_tsd()->ctx;
678 
679 	if (!is_user_mode_ctx(ctx))
680 		return NULL;
681 	return find_region(to_user_mode_ctx(ctx)->regions, va);
682 }
683 #else
684 static struct vm_paged_region *find_uta_region(vaddr_t va __unused)
685 {
686 	return NULL;
687 }
688 #endif /*CFG_PAGED_USER_TA*/
689 
690 
691 static uint32_t get_region_mattr(uint32_t reg_flags)
692 {
693 	uint32_t attr = TEE_MATTR_VALID_BLOCK | TEE_MATTR_SECURE |
694 			TEE_MATTR_CACHE_CACHED << TEE_MATTR_CACHE_SHIFT |
695 			(reg_flags & (TEE_MATTR_PRWX | TEE_MATTR_URWX));
696 
697 	return attr;
698 }
699 
700 static paddr_t get_pmem_pa(struct tee_pager_pmem *pmem)
701 {
702 	struct core_mmu_table_info *ti;
703 	paddr_t pa;
704 	unsigned idx;
705 
706 	ti = find_table_info((vaddr_t)pmem->va_alias);
707 	idx = core_mmu_va2idx(ti, (vaddr_t)pmem->va_alias);
708 	core_mmu_get_entry(ti, idx, &pa, NULL);
709 	return pa;
710 }
711 
712 #ifdef CFG_PAGED_USER_TA
713 static void unlink_region(struct vm_paged_region_head *regions,
714 			  struct vm_paged_region *reg)
715 {
716 	uint32_t exceptions = pager_lock_check_stack(64);
717 
718 	TAILQ_REMOVE(regions, reg, link);
719 	TAILQ_REMOVE(&reg->fobj->regions, reg, fobj_link);
720 
721 	pager_unlock(exceptions);
722 }
723 DECLARE_KEEP_PAGER(unlink_region);
724 
725 static void free_region(struct vm_paged_region *reg)
726 {
727 	fobj_put(reg->fobj);
728 	free(reg->pgt_array);
729 	free(reg);
730 }
731 
732 static TEE_Result pager_add_um_region(struct user_mode_ctx *uctx, vaddr_t base,
733 				      struct fobj *fobj, uint32_t prot)
734 {
735 	struct vm_paged_region *r_prev = NULL;
736 	struct vm_paged_region *reg = NULL;
737 	vaddr_t b = base;
738 	size_t fobj_pgoffs = 0;
739 	size_t s = fobj->num_pages * SMALL_PAGE_SIZE;
740 
741 	if (!uctx->regions) {
742 		uctx->regions = malloc(sizeof(*uctx->regions));
743 		if (!uctx->regions)
744 			return TEE_ERROR_OUT_OF_MEMORY;
745 		TAILQ_INIT(uctx->regions);
746 	}
747 
748 	reg = TAILQ_FIRST(uctx->regions);
749 	while (reg) {
750 		if (core_is_buffer_intersect(b, s, reg->base, reg->size))
751 			return TEE_ERROR_BAD_PARAMETERS;
752 		if (b < reg->base)
753 			break;
754 		r_prev = reg;
755 		reg = TAILQ_NEXT(reg, link);
756 	}
757 
758 	reg = alloc_region(b, s);
759 	if (!reg)
760 		return TEE_ERROR_OUT_OF_MEMORY;
761 
762 	/* Table info will be set when the context is activated. */
763 	reg->fobj = fobj_get(fobj);
764 	reg->fobj_pgoffs = fobj_pgoffs;
765 	reg->type = PAGED_REGION_TYPE_RW;
766 	reg->flags = prot;
767 
768 	region_insert(uctx->regions, reg, r_prev);
769 
770 	return TEE_SUCCESS;
771 }
772 
773 static void map_pgts(struct vm_paged_region *reg)
774 {
775 	struct core_mmu_table_info dir_info = { NULL };
776 	size_t n = 0;
777 
778 	core_mmu_get_user_pgdir(&dir_info);
779 
780 	for (n = 0; n < get_pgt_count(reg->base, reg->size); n++) {
781 		struct pgt *pgt = reg->pgt_array[n];
782 		uint32_t attr = 0;
783 		paddr_t pa = 0;
784 		size_t idx = 0;
785 
786 		idx = core_mmu_va2idx(&dir_info, pgt->vabase);
787 		core_mmu_get_entry(&dir_info, idx, &pa, &attr);
788 
789 		/*
790 		 * Check if the page table already is used, if it is, it's
791 		 * already registered.
792 		 */
793 		if (pgt->num_used_entries) {
794 			assert(attr & TEE_MATTR_TABLE);
795 			assert(pa == virt_to_phys(pgt->tbl));
796 			continue;
797 		}
798 
799 		attr = TEE_MATTR_SECURE | TEE_MATTR_TABLE;
800 		pa = virt_to_phys(pgt->tbl);
801 		assert(pa);
802 		/*
803 		 * Note that the update of the table entry is guaranteed to
804 		 * be atomic.
805 		 */
806 		core_mmu_set_entry(&dir_info, idx, pa, attr);
807 	}
808 }
809 
810 TEE_Result tee_pager_add_um_region(struct user_mode_ctx *uctx, vaddr_t base,
811 				   struct fobj *fobj, uint32_t prot)
812 {
813 	TEE_Result res = TEE_SUCCESS;
814 	struct thread_specific_data *tsd = thread_get_tsd();
815 	struct vm_paged_region *reg = NULL;
816 
817 	res = pager_add_um_region(uctx, base, fobj, prot);
818 	if (res)
819 		return res;
820 
821 	if (uctx->ts_ctx == tsd->ctx) {
822 		/*
823 		 * We're chaning the currently active utc. Assign page
824 		 * tables to the new regions and make sure that the page
825 		 * tables are registered in the upper table.
826 		 */
827 		tee_pager_assign_um_tables(uctx);
828 		TAILQ_FOREACH(reg, uctx->regions, link)
829 			map_pgts(reg);
830 	}
831 
832 	return TEE_SUCCESS;
833 }
834 
835 static void split_region(struct vm_paged_region *reg,
836 			 struct vm_paged_region *r2, vaddr_t va)
837 {
838 	uint32_t exceptions = pager_lock_check_stack(64);
839 	size_t diff = va - reg->base;
840 	size_t r2_pgt_count = 0;
841 	size_t reg_pgt_count = 0;
842 	size_t n0 = 0;
843 	size_t n = 0;
844 
845 	assert(r2->base == va);
846 	assert(r2->size == reg->size - diff);
847 
848 	r2->fobj = fobj_get(reg->fobj);
849 	r2->fobj_pgoffs = reg->fobj_pgoffs + diff / SMALL_PAGE_SIZE;
850 	r2->type = reg->type;
851 	r2->flags = reg->flags;
852 
853 	r2_pgt_count = get_pgt_count(r2->base, r2->size);
854 	reg_pgt_count = get_pgt_count(reg->base, reg->size);
855 	n0 = reg_pgt_count - r2_pgt_count;
856 	for (n = n0; n < reg_pgt_count; n++)
857 		r2->pgt_array[n - n0] = reg->pgt_array[n];
858 	reg->size = diff;
859 
860 	TAILQ_INSERT_BEFORE(reg, r2, link);
861 	TAILQ_INSERT_AFTER(&reg->fobj->regions, reg, r2, fobj_link);
862 
863 	pager_unlock(exceptions);
864 }
865 DECLARE_KEEP_PAGER(split_region);
866 
867 TEE_Result tee_pager_split_um_region(struct user_mode_ctx *uctx, vaddr_t va)
868 {
869 	struct vm_paged_region *reg = NULL;
870 	struct vm_paged_region *r2 = NULL;
871 
872 	if (va & SMALL_PAGE_MASK)
873 		return TEE_ERROR_BAD_PARAMETERS;
874 
875 	TAILQ_FOREACH(reg, uctx->regions, link) {
876 		if (va == reg->base || va == reg->base + reg->size)
877 			return TEE_SUCCESS;
878 		if (va > reg->base && va < reg->base + reg->size) {
879 			size_t diff = va - reg->base;
880 
881 			r2 = alloc_region(va, reg->size - diff);
882 			if (!r2)
883 				return TEE_ERROR_OUT_OF_MEMORY;
884 			split_region(reg, r2, va);
885 			return TEE_SUCCESS;
886 		}
887 	}
888 
889 	return TEE_SUCCESS;
890 }
891 
892 static struct pgt **
893 merge_region_with_next(struct vm_paged_region_head *regions,
894 		       struct vm_paged_region *reg,
895 		       struct vm_paged_region *r_next, struct pgt **pgt_array)
896 {
897 	uint32_t exceptions = pager_lock_check_stack(64);
898 	struct pgt **old_pgt_array = reg->pgt_array;
899 
900 	reg->pgt_array = pgt_array;
901 	TAILQ_REMOVE(regions, r_next, link);
902 	TAILQ_REMOVE(&r_next->fobj->regions, r_next, fobj_link);
903 
904 	pager_unlock(exceptions);
905 	return old_pgt_array;
906 }
907 DECLARE_KEEP_PAGER(merge_region_with_next);
908 
909 static struct pgt **alloc_merged_pgt_array(struct vm_paged_region *a,
910 					   struct vm_paged_region *a_next)
911 {
912 	size_t a_next_pgt_count = get_pgt_count(a_next->base, a_next->size);
913 	size_t a_pgt_count = get_pgt_count(a->base, a->size);
914 	size_t pgt_count = get_pgt_count(a->base, a->size + a_next->size);
915 	struct pgt **pgt_array = NULL;
916 	bool have_shared_pgt = false;
917 
918 	have_shared_pgt = ((a->base + a->size) & ~CORE_MMU_PGDIR_MASK) ==
919 			  (a_next->base & ~CORE_MMU_PGDIR_MASK);
920 
921 	if (have_shared_pgt)
922 		assert(pgt_count == a_pgt_count + a_next_pgt_count - 1);
923 	else
924 		assert(pgt_count == a_pgt_count + a_next_pgt_count);
925 
926 	/* In case there's a shared pgt they must match */
927 	if (have_shared_pgt &&
928 	    a->pgt_array[a_pgt_count - 1] != a_next->pgt_array[0])
929 		return NULL;
930 
931 	pgt_array = calloc(sizeof(struct pgt *), pgt_count);
932 	if (!pgt_array)
933 		return NULL;
934 
935 	/*
936 	 * Copy and merge the two pgt_arrays, note the special case
937 	 * where a pgt is shared.
938 	 */
939 	memcpy(pgt_array, a->pgt_array, a_pgt_count * sizeof(struct pgt *));
940 	if (have_shared_pgt)
941 		memcpy(pgt_array + a_pgt_count, a_next->pgt_array + 1,
942 		       (a_next_pgt_count - 1) * sizeof(struct pgt *));
943 	else
944 		memcpy(pgt_array + a_pgt_count, a_next->pgt_array,
945 		       a_next_pgt_count * sizeof(struct pgt *));
946 
947 	return pgt_array;
948 }
949 
950 void tee_pager_merge_um_region(struct user_mode_ctx *uctx, vaddr_t va,
951 			       size_t len)
952 {
953 	struct vm_paged_region *r_next = NULL;
954 	struct vm_paged_region *reg = NULL;
955 	struct pgt **pgt_array = NULL;
956 	vaddr_t end_va = 0;
957 
958 	if ((va | len) & SMALL_PAGE_MASK)
959 		return;
960 	if (ADD_OVERFLOW(va, len, &end_va))
961 		return;
962 
963 	for (reg = TAILQ_FIRST(uctx->regions);; reg = r_next) {
964 		r_next = TAILQ_NEXT(reg, link);
965 		if (!r_next)
966 			return;
967 
968 		/* Try merging with the area just before va */
969 		if (reg->base + reg->size < va)
970 			continue;
971 
972 		/*
973 		 * If reg->base is well past our range we're done.
974 		 * Note that if it's just the page after our range we'll
975 		 * try to merge.
976 		 */
977 		if (reg->base > end_va)
978 			return;
979 
980 		if (reg->base + reg->size != r_next->base)
981 			continue;
982 		if (reg->fobj != r_next->fobj || reg->type != r_next->type ||
983 		    reg->flags != r_next->flags)
984 			continue;
985 		if (reg->fobj_pgoffs + reg->size / SMALL_PAGE_SIZE !=
986 		    r_next->fobj_pgoffs)
987 			continue;
988 
989 		pgt_array = alloc_merged_pgt_array(reg, r_next);
990 		if (!pgt_array)
991 			continue;
992 
993 		/*
994 		 * merge_region_with_next() returns the old pgt array which
995 		 * was replaced in reg. We don't want to call free()
996 		 * directly from merge_region_with_next() that would pull
997 		 * free() and its dependencies into the unpaged area.
998 		 */
999 		free(merge_region_with_next(uctx->regions, reg, r_next,
1000 					    pgt_array));
1001 		free_region(r_next);
1002 		r_next = reg;
1003 	}
1004 }
1005 
1006 static void rem_region(struct vm_paged_region_head *regions,
1007 		       struct vm_paged_region *reg)
1008 {
1009 	struct tee_pager_pmem *pmem;
1010 	size_t last_pgoffs = reg->fobj_pgoffs +
1011 			     (reg->size >> SMALL_PAGE_SHIFT) - 1;
1012 	uint32_t exceptions;
1013 	struct tblidx tblidx = { };
1014 	uint32_t a = 0;
1015 
1016 	exceptions = pager_lock_check_stack(64);
1017 
1018 	TAILQ_REMOVE(regions, reg, link);
1019 	TAILQ_REMOVE(&reg->fobj->regions, reg, fobj_link);
1020 
1021 	TAILQ_FOREACH(pmem, &tee_pager_pmem_head, link) {
1022 		if (pmem->fobj != reg->fobj ||
1023 		    pmem->fobj_pgidx < reg->fobj_pgoffs ||
1024 		    pmem->fobj_pgidx > last_pgoffs)
1025 			continue;
1026 
1027 		tblidx = pmem_get_region_tblidx(pmem, reg);
1028 		tblidx_get_entry(tblidx, NULL, &a);
1029 		if (!(a & TEE_MATTR_VALID_BLOCK))
1030 			continue;
1031 
1032 		tblidx_set_entry(tblidx, 0, 0);
1033 		tblidx_tlbi_entry(tblidx);
1034 		pgt_dec_used_entries(tblidx.pgt);
1035 	}
1036 
1037 	pager_unlock(exceptions);
1038 }
1039 DECLARE_KEEP_PAGER(rem_region);
1040 
1041 void tee_pager_rem_um_region(struct user_mode_ctx *uctx, vaddr_t base,
1042 			     size_t size)
1043 {
1044 	struct vm_paged_region *reg;
1045 	struct vm_paged_region *r_next;
1046 	size_t s = ROUNDUP(size, SMALL_PAGE_SIZE);
1047 
1048 	TAILQ_FOREACH_SAFE(reg, uctx->regions, link, r_next) {
1049 		if (core_is_buffer_inside(reg->base, reg->size, base, s)) {
1050 			rem_region(uctx->regions, reg);
1051 			free_region(reg);
1052 		}
1053 	}
1054 	tlbi_asid(uctx->vm_info.asid);
1055 }
1056 
1057 void tee_pager_rem_um_regions(struct user_mode_ctx *uctx)
1058 {
1059 	struct vm_paged_region *reg = NULL;
1060 
1061 	if (!uctx->regions)
1062 		return;
1063 
1064 	while (true) {
1065 		reg = TAILQ_FIRST(uctx->regions);
1066 		if (!reg)
1067 			break;
1068 		unlink_region(uctx->regions, reg);
1069 		free_region(reg);
1070 	}
1071 
1072 	free(uctx->regions);
1073 }
1074 
1075 static bool __maybe_unused same_context(struct tee_pager_pmem *pmem)
1076 {
1077 	struct vm_paged_region *reg = TAILQ_FIRST(&pmem->fobj->regions);
1078 	void *ctx = reg->pgt_array[0]->ctx;
1079 
1080 	do {
1081 		reg = TAILQ_NEXT(reg, fobj_link);
1082 		if (!reg)
1083 			return true;
1084 	} while (reg->pgt_array[0]->ctx == ctx);
1085 
1086 	return false;
1087 }
1088 
1089 bool tee_pager_set_um_region_attr(struct user_mode_ctx *uctx, vaddr_t base,
1090 				  size_t size, uint32_t flags)
1091 {
1092 	bool ret = false;
1093 	vaddr_t b = base;
1094 	size_t s = size;
1095 	size_t s2 = 0;
1096 	struct vm_paged_region *reg = find_region(uctx->regions, b);
1097 	uint32_t exceptions = 0;
1098 	struct tee_pager_pmem *pmem = NULL;
1099 	uint32_t a = 0;
1100 	uint32_t f = 0;
1101 	uint32_t mattr = 0;
1102 	uint32_t f2 = 0;
1103 	struct tblidx tblidx = { };
1104 
1105 	f = (flags & TEE_MATTR_URWX) | TEE_MATTR_UR | TEE_MATTR_PR;
1106 	if (f & TEE_MATTR_UW)
1107 		f |= TEE_MATTR_PW;
1108 	mattr = get_region_mattr(f);
1109 
1110 	exceptions = pager_lock_check_stack(SMALL_PAGE_SIZE);
1111 
1112 	while (s) {
1113 		if (!reg) {
1114 			ret = false;
1115 			goto out;
1116 		}
1117 		s2 = MIN(reg->size, s);
1118 		b += s2;
1119 		s -= s2;
1120 
1121 		if (reg->flags == f)
1122 			goto next_region;
1123 
1124 		TAILQ_FOREACH(pmem, &tee_pager_pmem_head, link) {
1125 			if (!pmem_is_covered_by_region(pmem, reg))
1126 				continue;
1127 
1128 			tblidx = pmem_get_region_tblidx(pmem, reg);
1129 			tblidx_get_entry(tblidx, NULL, &a);
1130 			if (a == f)
1131 				continue;
1132 			tblidx_set_entry(tblidx, 0, 0);
1133 			tblidx_tlbi_entry(tblidx);
1134 
1135 			pmem->flags &= ~PMEM_FLAG_HIDDEN;
1136 			if (pmem_is_dirty(pmem))
1137 				f2 = mattr;
1138 			else
1139 				f2 = mattr & ~(TEE_MATTR_UW | TEE_MATTR_PW);
1140 			tblidx_set_entry(tblidx, get_pmem_pa(pmem), f2);
1141 			if (!(a & TEE_MATTR_VALID_BLOCK))
1142 				pgt_inc_used_entries(tblidx.pgt);
1143 			/*
1144 			 * Make sure the table update is visible before
1145 			 * continuing.
1146 			 */
1147 			dsb_ishst();
1148 
1149 			/*
1150 			 * Here's a problem if this page already is shared.
1151 			 * We need do icache invalidate for each context
1152 			 * in which it is shared. In practice this will
1153 			 * never happen.
1154 			 */
1155 			if (flags & TEE_MATTR_UX) {
1156 				void *va = (void *)tblidx2va(tblidx);
1157 
1158 				/* Assert that the pmem isn't shared. */
1159 				assert(same_context(pmem));
1160 
1161 				dcache_clean_range_pou(va, SMALL_PAGE_SIZE);
1162 				icache_inv_user_range(va, SMALL_PAGE_SIZE);
1163 			}
1164 		}
1165 
1166 		reg->flags = f;
1167 next_region:
1168 		reg = TAILQ_NEXT(reg, link);
1169 	}
1170 
1171 	ret = true;
1172 out:
1173 	pager_unlock(exceptions);
1174 	return ret;
1175 }
1176 
1177 DECLARE_KEEP_PAGER(tee_pager_set_um_region_attr);
1178 #endif /*CFG_PAGED_USER_TA*/
1179 
1180 void tee_pager_invalidate_fobj(struct fobj *fobj)
1181 {
1182 	struct tee_pager_pmem *pmem;
1183 	uint32_t exceptions;
1184 
1185 	exceptions = pager_lock_check_stack(64);
1186 
1187 	TAILQ_FOREACH(pmem, &tee_pager_pmem_head, link)
1188 		if (pmem->fobj == fobj)
1189 			pmem_clear(pmem);
1190 
1191 	pager_unlock(exceptions);
1192 }
1193 DECLARE_KEEP_PAGER(tee_pager_invalidate_fobj);
1194 
1195 static struct tee_pager_pmem *pmem_find(struct vm_paged_region *reg, vaddr_t va)
1196 {
1197 	struct tee_pager_pmem *pmem = NULL;
1198 	size_t fobj_pgidx = 0;
1199 
1200 	assert(va >= reg->base && va < (reg->base + reg->size));
1201 	fobj_pgidx = (va - reg->base) / SMALL_PAGE_SIZE + reg->fobj_pgoffs;
1202 
1203 	TAILQ_FOREACH(pmem, &tee_pager_pmem_head, link)
1204 		if (pmem->fobj == reg->fobj && pmem->fobj_pgidx == fobj_pgidx)
1205 			return pmem;
1206 
1207 	return NULL;
1208 }
1209 
1210 static bool tee_pager_unhide_page(struct vm_paged_region *reg, vaddr_t page_va)
1211 {
1212 	struct tblidx tblidx = region_va2tblidx(reg, page_va);
1213 	struct tee_pager_pmem *pmem = pmem_find(reg, page_va);
1214 	uint32_t a = get_region_mattr(reg->flags);
1215 	uint32_t attr = 0;
1216 	paddr_t pa = 0;
1217 
1218 	if (!pmem)
1219 		return false;
1220 
1221 	tblidx_get_entry(tblidx, NULL, &attr);
1222 	if (attr & TEE_MATTR_VALID_BLOCK)
1223 		return false;
1224 
1225 	/*
1226 	 * The page is hidden, or not not mapped yet. Unhide the page and
1227 	 * move it to the tail.
1228 	 *
1229 	 * Since the page isn't mapped there doesn't exist a valid TLB entry
1230 	 * for this address, so no TLB invalidation is required after setting
1231 	 * the new entry. A DSB is needed though, to make the write visible.
1232 	 *
1233 	 * For user executable pages it's more complicated. Those pages can
1234 	 * be shared between multiple TA mappings and thus populated by
1235 	 * another TA. The reference manual states that:
1236 	 *
1237 	 * "instruction cache maintenance is required only after writing
1238 	 * new data to a physical address that holds an instruction."
1239 	 *
1240 	 * So for hidden pages we would not need to invalidate i-cache, but
1241 	 * for newly populated pages we do. Since we don't know which we
1242 	 * have to assume the worst and always invalidate the i-cache. We
1243 	 * don't need to clean the d-cache though, since that has already
1244 	 * been done earlier.
1245 	 *
1246 	 * Additional bookkeeping to tell if the i-cache invalidation is
1247 	 * needed or not is left as a future optimization.
1248 	 */
1249 
1250 	/* If it's not a dirty block, then it should be read only. */
1251 	if (!pmem_is_dirty(pmem))
1252 		a &= ~(TEE_MATTR_PW | TEE_MATTR_UW);
1253 
1254 	pa = get_pmem_pa(pmem);
1255 	pmem->flags &= ~PMEM_FLAG_HIDDEN;
1256 	if (reg->flags & TEE_MATTR_UX) {
1257 		void *va = (void *)tblidx2va(tblidx);
1258 
1259 		/* Set a temporary read-only mapping */
1260 		assert(!(a & (TEE_MATTR_UW | TEE_MATTR_PW)));
1261 		tblidx_set_entry(tblidx, pa, a & ~TEE_MATTR_UX);
1262 		dsb_ishst();
1263 
1264 		icache_inv_user_range(va, SMALL_PAGE_SIZE);
1265 
1266 		/* Set the final mapping */
1267 		tblidx_set_entry(tblidx, pa, a);
1268 		tblidx_tlbi_entry(tblidx);
1269 	} else {
1270 		tblidx_set_entry(tblidx, pa, a);
1271 		dsb_ishst();
1272 	}
1273 	pgt_inc_used_entries(tblidx.pgt);
1274 
1275 	TAILQ_REMOVE(&tee_pager_pmem_head, pmem, link);
1276 	TAILQ_INSERT_TAIL(&tee_pager_pmem_head, pmem, link);
1277 	incr_hidden_hits();
1278 	return true;
1279 }
1280 
1281 static void tee_pager_hide_pages(void)
1282 {
1283 	struct tee_pager_pmem *pmem = NULL;
1284 	size_t n = 0;
1285 
1286 	TAILQ_FOREACH(pmem, &tee_pager_pmem_head, link) {
1287 		if (n >= TEE_PAGER_NHIDE)
1288 			break;
1289 		n++;
1290 
1291 		/* we cannot hide pages when pmem->fobj is not defined. */
1292 		if (!pmem->fobj)
1293 			continue;
1294 
1295 		if (pmem_is_hidden(pmem))
1296 			continue;
1297 
1298 		pmem->flags |= PMEM_FLAG_HIDDEN;
1299 		pmem_unmap(pmem, NULL);
1300 	}
1301 }
1302 
1303 static unsigned int __maybe_unused
1304 num_regions_with_pmem(struct tee_pager_pmem *pmem)
1305 {
1306 	struct vm_paged_region *reg = NULL;
1307 	unsigned int num_matches = 0;
1308 
1309 	TAILQ_FOREACH(reg, &pmem->fobj->regions, fobj_link)
1310 		if (pmem_is_covered_by_region(pmem, reg))
1311 			num_matches++;
1312 
1313 	return num_matches;
1314 }
1315 
1316 /*
1317  * Find mapped pmem, hide and move to pageble pmem.
1318  * Return false if page was not mapped, and true if page was mapped.
1319  */
1320 static bool tee_pager_release_one_phys(struct vm_paged_region *reg,
1321 				       vaddr_t page_va)
1322 {
1323 	struct tee_pager_pmem *pmem = NULL;
1324 	struct tblidx tblidx = { };
1325 	size_t fobj_pgidx = 0;
1326 
1327 	assert(page_va >= reg->base && page_va < (reg->base + reg->size));
1328 	fobj_pgidx = (page_va - reg->base) / SMALL_PAGE_SIZE +
1329 		     reg->fobj_pgoffs;
1330 
1331 	TAILQ_FOREACH(pmem, &tee_pager_lock_pmem_head, link) {
1332 		if (pmem->fobj != reg->fobj || pmem->fobj_pgidx != fobj_pgidx)
1333 			continue;
1334 
1335 		/*
1336 		 * Locked pages may not be shared. We're asserting that the
1337 		 * number of regions using this pmem is one and only one as
1338 		 * we're about to unmap it.
1339 		 */
1340 		assert(num_regions_with_pmem(pmem) == 1);
1341 
1342 		tblidx = pmem_get_region_tblidx(pmem, reg);
1343 		tblidx_set_entry(tblidx, 0, 0);
1344 		pgt_dec_used_entries(tblidx.pgt);
1345 		TAILQ_REMOVE(&tee_pager_lock_pmem_head, pmem, link);
1346 		pmem_clear(pmem);
1347 		tee_pager_npages++;
1348 		set_npages();
1349 		TAILQ_INSERT_HEAD(&tee_pager_pmem_head, pmem, link);
1350 		incr_zi_released();
1351 		return true;
1352 	}
1353 
1354 	return false;
1355 }
1356 
1357 static void pager_deploy_page(struct tee_pager_pmem *pmem,
1358 			      struct vm_paged_region *reg, vaddr_t page_va,
1359 			      bool clean_user_cache, bool writable)
1360 {
1361 	struct tblidx tblidx = region_va2tblidx(reg, page_va);
1362 	uint32_t attr = get_region_mattr(reg->flags);
1363 	struct core_mmu_table_info *ti = NULL;
1364 	uint8_t *va_alias = pmem->va_alias;
1365 	paddr_t pa = get_pmem_pa(pmem);
1366 	unsigned int idx_alias = 0;
1367 	uint32_t attr_alias = 0;
1368 	paddr_t pa_alias = 0;
1369 
1370 	/* Ensure we are allowed to write to aliased virtual page */
1371 	ti = find_table_info((vaddr_t)va_alias);
1372 	idx_alias = core_mmu_va2idx(ti, (vaddr_t)va_alias);
1373 	core_mmu_get_entry(ti, idx_alias, &pa_alias, &attr_alias);
1374 	if (!(attr_alias & TEE_MATTR_PW)) {
1375 		attr_alias |= TEE_MATTR_PW;
1376 		core_mmu_set_entry(ti, idx_alias, pa_alias, attr_alias);
1377 		tlbi_mva_allasid((vaddr_t)va_alias);
1378 	}
1379 
1380 	asan_tag_access(va_alias, va_alias + SMALL_PAGE_SIZE);
1381 	if (fobj_load_page(pmem->fobj, pmem->fobj_pgidx, va_alias)) {
1382 		EMSG("PH 0x%" PRIxVA " failed", page_va);
1383 		panic();
1384 	}
1385 	switch (reg->type) {
1386 	case PAGED_REGION_TYPE_RO:
1387 		TAILQ_INSERT_TAIL(&tee_pager_pmem_head, pmem, link);
1388 		incr_ro_hits();
1389 		/* Forbid write to aliases for read-only (maybe exec) pages */
1390 		attr_alias &= ~TEE_MATTR_PW;
1391 		core_mmu_set_entry(ti, idx_alias, pa_alias, attr_alias);
1392 		tlbi_mva_allasid((vaddr_t)va_alias);
1393 		break;
1394 	case PAGED_REGION_TYPE_RW:
1395 		TAILQ_INSERT_TAIL(&tee_pager_pmem_head, pmem, link);
1396 		if (writable && (attr & (TEE_MATTR_PW | TEE_MATTR_UW)))
1397 			pmem->flags |= PMEM_FLAG_DIRTY;
1398 		incr_rw_hits();
1399 		break;
1400 	case PAGED_REGION_TYPE_LOCK:
1401 		/* Move page to lock list */
1402 		if (tee_pager_npages <= 0)
1403 			panic("Running out of pages");
1404 		tee_pager_npages--;
1405 		set_npages();
1406 		TAILQ_INSERT_TAIL(&tee_pager_lock_pmem_head, pmem, link);
1407 		break;
1408 	default:
1409 		panic();
1410 	}
1411 	asan_tag_no_access(va_alias, va_alias + SMALL_PAGE_SIZE);
1412 
1413 	if (!writable)
1414 		attr &= ~(TEE_MATTR_PW | TEE_MATTR_UW);
1415 
1416 	/*
1417 	 * We've updated the page using the aliased mapping and
1418 	 * some cache maintenance is now needed if it's an
1419 	 * executable page.
1420 	 *
1421 	 * Since the d-cache is a Physically-indexed,
1422 	 * physically-tagged (PIPT) cache we can clean either the
1423 	 * aliased address or the real virtual address. In this
1424 	 * case we choose the real virtual address.
1425 	 *
1426 	 * The i-cache can also be PIPT, but may be something else
1427 	 * too like VIPT. The current code requires the caches to
1428 	 * implement the IVIPT extension, that is:
1429 	 * "instruction cache maintenance is required only after
1430 	 * writing new data to a physical address that holds an
1431 	 * instruction."
1432 	 *
1433 	 * To portably invalidate the icache the page has to
1434 	 * be mapped at the final virtual address but not
1435 	 * executable.
1436 	 */
1437 	if (reg->flags & (TEE_MATTR_PX | TEE_MATTR_UX)) {
1438 		uint32_t mask = TEE_MATTR_PX | TEE_MATTR_UX |
1439 				TEE_MATTR_PW | TEE_MATTR_UW;
1440 		void *va = (void *)page_va;
1441 
1442 		/* Set a temporary read-only mapping */
1443 		tblidx_set_entry(tblidx, pa, attr & ~mask);
1444 		tblidx_tlbi_entry(tblidx);
1445 
1446 		dcache_clean_range_pou(va, SMALL_PAGE_SIZE);
1447 		if (clean_user_cache)
1448 			icache_inv_user_range(va, SMALL_PAGE_SIZE);
1449 		else
1450 			icache_inv_range(va, SMALL_PAGE_SIZE);
1451 
1452 		/* Set the final mapping */
1453 		tblidx_set_entry(tblidx, pa, attr);
1454 		tblidx_tlbi_entry(tblidx);
1455 	} else {
1456 		tblidx_set_entry(tblidx, pa, attr);
1457 		/*
1458 		 * No need to flush TLB for this entry, it was
1459 		 * invalid. We should use a barrier though, to make
1460 		 * sure that the change is visible.
1461 		 */
1462 		dsb_ishst();
1463 	}
1464 	pgt_inc_used_entries(tblidx.pgt);
1465 
1466 	FMSG("Mapped 0x%" PRIxVA " -> 0x%" PRIxPA, page_va, pa);
1467 }
1468 
1469 static void make_dirty_page(struct tee_pager_pmem *pmem,
1470 			    struct vm_paged_region *reg, struct tblidx tblidx,
1471 			    paddr_t pa)
1472 {
1473 	assert(reg->flags & (TEE_MATTR_UW | TEE_MATTR_PW));
1474 	assert(!(pmem->flags & PMEM_FLAG_DIRTY));
1475 
1476 	FMSG("Dirty %#"PRIxVA, tblidx2va(tblidx));
1477 	pmem->flags |= PMEM_FLAG_DIRTY;
1478 	tblidx_set_entry(tblidx, pa, get_region_mattr(reg->flags));
1479 	tblidx_tlbi_entry(tblidx);
1480 }
1481 
1482 /*
1483  * This function takes a reference to a page (@fobj + fobj_pgidx) and makes
1484  * the corresponding IV available.
1485  *
1486  * In case the page needs to be saved the IV must be writable, consequently
1487  * is the page holding the IV made dirty. If the page instead only is to
1488  * be verified it's enough that the page holding the IV is readonly and
1489  * thus doesn't have to be made dirty too.
1490  *
1491  * This function depends on pager_spare_pmem pointing to a free pmem when
1492  * entered. In case the page holding the needed IV isn't mapped this spare
1493  * pmem is used to map the page. If this function has used pager_spare_pmem
1494  * and assigned it to NULL it must be reassigned with a new free pmem
1495  * before this function can be called again.
1496  */
1497 static void make_iv_available(struct fobj *fobj, unsigned int fobj_pgidx,
1498 			      bool writable)
1499 {
1500 	struct vm_paged_region *reg = pager_iv_region;
1501 	struct tee_pager_pmem *pmem = NULL;
1502 	struct tblidx tblidx = { };
1503 	vaddr_t page_va = 0;
1504 	uint32_t attr = 0;
1505 	paddr_t pa = 0;
1506 
1507 	page_va = fobj_get_iv_vaddr(fobj, fobj_pgidx) & ~SMALL_PAGE_MASK;
1508 	if (!IS_ENABLED(CFG_CORE_PAGE_TAG_AND_IV) || !page_va) {
1509 		assert(!page_va);
1510 		return;
1511 	}
1512 
1513 	assert(reg && reg->type == PAGED_REGION_TYPE_RW);
1514 	assert(pager_spare_pmem);
1515 	assert(core_is_buffer_inside(page_va, 1, reg->base, reg->size));
1516 
1517 	tblidx = region_va2tblidx(reg, page_va);
1518 	/*
1519 	 * We don't care if tee_pager_unhide_page() succeeds or not, we're
1520 	 * still checking the attributes afterwards.
1521 	 */
1522 	tee_pager_unhide_page(reg, page_va);
1523 	tblidx_get_entry(tblidx, &pa, &attr);
1524 	if (!(attr & TEE_MATTR_VALID_BLOCK)) {
1525 		/*
1526 		 * We're using the spare pmem to map the IV corresponding
1527 		 * to another page.
1528 		 */
1529 		pmem = pager_spare_pmem;
1530 		pager_spare_pmem = NULL;
1531 		pmem_assign_fobj_page(pmem, reg, page_va);
1532 
1533 		if (writable)
1534 			pmem->flags |= PMEM_FLAG_DIRTY;
1535 
1536 		pager_deploy_page(pmem, reg, page_va,
1537 				  false /*!clean_user_cache*/, writable);
1538 	} else if (writable && !(attr & TEE_MATTR_PW)) {
1539 		pmem = pmem_find(reg, page_va);
1540 		/* Note that pa is valid since TEE_MATTR_VALID_BLOCK is set */
1541 		make_dirty_page(pmem, reg, tblidx, pa);
1542 	}
1543 }
1544 
1545 static void pager_get_page(struct vm_paged_region *reg, struct abort_info *ai,
1546 			   bool clean_user_cache)
1547 {
1548 	vaddr_t page_va = ai->va & ~SMALL_PAGE_MASK;
1549 	struct tblidx tblidx = region_va2tblidx(reg, page_va);
1550 	struct tee_pager_pmem *pmem = NULL;
1551 	bool writable = false;
1552 	uint32_t attr = 0;
1553 
1554 	/*
1555 	 * Get a pmem to load code and data into, also make sure
1556 	 * the corresponding IV page is available.
1557 	 */
1558 	while (true) {
1559 		pmem = TAILQ_FIRST(&tee_pager_pmem_head);
1560 		if (!pmem) {
1561 			EMSG("No pmem entries");
1562 			abort_print(ai);
1563 			panic();
1564 		}
1565 
1566 		if (pmem->fobj) {
1567 			pmem_unmap(pmem, NULL);
1568 			if (pmem_is_dirty(pmem)) {
1569 				uint8_t *va = pmem->va_alias;
1570 
1571 				make_iv_available(pmem->fobj, pmem->fobj_pgidx,
1572 						  true /*writable*/);
1573 				asan_tag_access(va, va + SMALL_PAGE_SIZE);
1574 				if (fobj_save_page(pmem->fobj, pmem->fobj_pgidx,
1575 						   pmem->va_alias))
1576 					panic("fobj_save_page");
1577 				asan_tag_no_access(va, va + SMALL_PAGE_SIZE);
1578 
1579 				pmem_clear(pmem);
1580 
1581 				/*
1582 				 * If the spare pmem was used by
1583 				 * make_iv_available() we need to replace
1584 				 * it with the just freed pmem.
1585 				 *
1586 				 * See make_iv_available() for details.
1587 				 */
1588 				if (IS_ENABLED(CFG_CORE_PAGE_TAG_AND_IV) &&
1589 				    !pager_spare_pmem) {
1590 					TAILQ_REMOVE(&tee_pager_pmem_head,
1591 						     pmem, link);
1592 					pager_spare_pmem = pmem;
1593 					pmem = NULL;
1594 				}
1595 
1596 				/*
1597 				 * Check if the needed virtual page was
1598 				 * made available as a side effect of the
1599 				 * call to make_iv_available() above. If so
1600 				 * we're done.
1601 				 */
1602 				tblidx_get_entry(tblidx, NULL, &attr);
1603 				if (attr & TEE_MATTR_VALID_BLOCK)
1604 					return;
1605 
1606 				/*
1607 				 * The freed pmem was used to replace the
1608 				 * consumed pager_spare_pmem above. Restart
1609 				 * to find another pmem.
1610 				 */
1611 				if (!pmem)
1612 					continue;
1613 			}
1614 		}
1615 
1616 		TAILQ_REMOVE(&tee_pager_pmem_head, pmem, link);
1617 		pmem_clear(pmem);
1618 
1619 		pmem_assign_fobj_page(pmem, reg, page_va);
1620 		make_iv_available(pmem->fobj, pmem->fobj_pgidx,
1621 				  false /*!writable*/);
1622 		if (!IS_ENABLED(CFG_CORE_PAGE_TAG_AND_IV) || pager_spare_pmem)
1623 			break;
1624 
1625 		/*
1626 		 * The spare pmem was used by make_iv_available(). We need
1627 		 * to replace it with the just freed pmem. And get another
1628 		 * pmem.
1629 		 *
1630 		 * See make_iv_available() for details.
1631 		 */
1632 		pmem_clear(pmem);
1633 		pager_spare_pmem = pmem;
1634 	}
1635 
1636 	/*
1637 	 * PAGED_REGION_TYPE_LOCK are always writable while PAGED_REGION_TYPE_RO
1638 	 * are never writable.
1639 	 *
1640 	 * Pages from PAGED_REGION_TYPE_RW starts read-only to be
1641 	 * able to tell when they are updated and should be tagged
1642 	 * as dirty.
1643 	 */
1644 	if (reg->type == PAGED_REGION_TYPE_LOCK ||
1645 	    (reg->type == PAGED_REGION_TYPE_RW && abort_is_write_fault(ai)))
1646 		writable = true;
1647 	else
1648 		writable = false;
1649 
1650 	pager_deploy_page(pmem, reg, page_va, clean_user_cache, writable);
1651 }
1652 
1653 static bool pager_update_permissions(struct vm_paged_region *reg,
1654 				     struct abort_info *ai, bool *handled)
1655 {
1656 	struct tblidx tblidx = region_va2tblidx(reg, ai->va);
1657 	struct tee_pager_pmem *pmem = NULL;
1658 	uint32_t attr = 0;
1659 	paddr_t pa = 0;
1660 
1661 	*handled = false;
1662 
1663 	tblidx_get_entry(tblidx, &pa, &attr);
1664 
1665 	/* Not mapped */
1666 	if (!(attr & TEE_MATTR_VALID_BLOCK))
1667 		return false;
1668 
1669 	/* Not readable, should not happen */
1670 	if (abort_is_user_exception(ai)) {
1671 		if (!(attr & TEE_MATTR_UR))
1672 			return true;
1673 	} else {
1674 		if (!(attr & TEE_MATTR_PR)) {
1675 			abort_print_error(ai);
1676 			panic();
1677 		}
1678 	}
1679 
1680 	switch (core_mmu_get_fault_type(ai->fault_descr)) {
1681 	case CORE_MMU_FAULT_TRANSLATION:
1682 	case CORE_MMU_FAULT_READ_PERMISSION:
1683 		if (ai->abort_type == ABORT_TYPE_PREFETCH) {
1684 			/* Check attempting to execute from an NOX page */
1685 			if (abort_is_user_exception(ai)) {
1686 				if (!(attr & TEE_MATTR_UX))
1687 					return true;
1688 			} else {
1689 				if (!(attr & TEE_MATTR_PX)) {
1690 					abort_print_error(ai);
1691 					panic();
1692 				}
1693 			}
1694 		}
1695 		/* Since the page is mapped now it's OK */
1696 		break;
1697 	case CORE_MMU_FAULT_WRITE_PERMISSION:
1698 		/* Check attempting to write to an RO page */
1699 		pmem = pmem_find(reg, ai->va);
1700 		if (!pmem)
1701 			panic();
1702 		if (abort_is_user_exception(ai)) {
1703 			if (!(reg->flags & TEE_MATTR_UW))
1704 				return true;
1705 			if (!(attr & TEE_MATTR_UW))
1706 				make_dirty_page(pmem, reg, tblidx, pa);
1707 		} else {
1708 			if (!(reg->flags & TEE_MATTR_PW)) {
1709 				abort_print_error(ai);
1710 				panic();
1711 			}
1712 			if (!(attr & TEE_MATTR_PW))
1713 				make_dirty_page(pmem, reg, tblidx, pa);
1714 		}
1715 		/* Since permissions has been updated now it's OK */
1716 		break;
1717 	default:
1718 		/* Some fault we can't deal with */
1719 		if (abort_is_user_exception(ai))
1720 			return true;
1721 		abort_print_error(ai);
1722 		panic();
1723 	}
1724 	*handled = true;
1725 	return true;
1726 }
1727 
1728 #ifdef CFG_TEE_CORE_DEBUG
1729 static void stat_handle_fault(void)
1730 {
1731 	static size_t num_faults;
1732 	static size_t min_npages = SIZE_MAX;
1733 	static size_t total_min_npages = SIZE_MAX;
1734 
1735 	num_faults++;
1736 	if ((num_faults % 1024) == 0 || tee_pager_npages < total_min_npages) {
1737 		DMSG("nfaults %zu npages %zu (min %zu)",
1738 		     num_faults, tee_pager_npages, min_npages);
1739 		min_npages = tee_pager_npages; /* reset */
1740 	}
1741 	if (tee_pager_npages < min_npages)
1742 		min_npages = tee_pager_npages;
1743 	if (tee_pager_npages < total_min_npages)
1744 		total_min_npages = tee_pager_npages;
1745 }
1746 #else
1747 static void stat_handle_fault(void)
1748 {
1749 }
1750 #endif
1751 
1752 bool tee_pager_handle_fault(struct abort_info *ai)
1753 {
1754 	struct vm_paged_region *reg;
1755 	vaddr_t page_va = ai->va & ~SMALL_PAGE_MASK;
1756 	uint32_t exceptions;
1757 	bool ret;
1758 	bool clean_user_cache = false;
1759 
1760 #ifdef TEE_PAGER_DEBUG_PRINT
1761 	if (!abort_is_user_exception(ai))
1762 		abort_print(ai);
1763 #endif
1764 
1765 	/*
1766 	 * We're updating pages that can affect several active CPUs at a
1767 	 * time below. We end up here because a thread tries to access some
1768 	 * memory that isn't available. We have to be careful when making
1769 	 * that memory available as other threads may succeed in accessing
1770 	 * that address the moment after we've made it available.
1771 	 *
1772 	 * That means that we can't just map the memory and populate the
1773 	 * page, instead we use the aliased mapping to populate the page
1774 	 * and once everything is ready we map it.
1775 	 */
1776 	exceptions = pager_lock(ai);
1777 
1778 	stat_handle_fault();
1779 
1780 	/* check if the access is valid */
1781 	if (abort_is_user_exception(ai)) {
1782 		reg = find_uta_region(ai->va);
1783 		clean_user_cache = true;
1784 	} else {
1785 		reg = find_region(&core_vm_regions, ai->va);
1786 		if (!reg) {
1787 			reg = find_uta_region(ai->va);
1788 			clean_user_cache = true;
1789 		}
1790 	}
1791 	if (!reg || !reg->pgt_array[0]) {
1792 		ret = false;
1793 		goto out;
1794 	}
1795 
1796 	if (tee_pager_unhide_page(reg, page_va))
1797 		goto out_success;
1798 
1799 	/*
1800 	 * The page wasn't hidden, but some other core may have
1801 	 * updated the table entry before we got here or we need
1802 	 * to make a read-only page read-write (dirty).
1803 	 */
1804 	if (pager_update_permissions(reg, ai, &ret)) {
1805 		/*
1806 		 * Nothing more to do with the abort. The problem
1807 		 * could already have been dealt with from another
1808 		 * core or if ret is false the TA will be paniced.
1809 		 */
1810 		goto out;
1811 	}
1812 
1813 	pager_get_page(reg, ai, clean_user_cache);
1814 
1815 out_success:
1816 	tee_pager_hide_pages();
1817 	ret = true;
1818 out:
1819 	pager_unlock(exceptions);
1820 	return ret;
1821 }
1822 
1823 void tee_pager_add_pages(vaddr_t vaddr, size_t npages, bool unmap)
1824 {
1825 	size_t n = 0;
1826 
1827 	DMSG("0x%" PRIxVA " - 0x%" PRIxVA " : %d",
1828 	     vaddr, vaddr + npages * SMALL_PAGE_SIZE, (int)unmap);
1829 
1830 	/* setup memory */
1831 	for (n = 0; n < npages; n++) {
1832 		struct core_mmu_table_info *ti = NULL;
1833 		struct tee_pager_pmem *pmem = NULL;
1834 		vaddr_t va = vaddr + n * SMALL_PAGE_SIZE;
1835 		struct tblidx tblidx = { };
1836 		unsigned int pgidx = 0;
1837 		paddr_t pa = 0;
1838 		uint32_t attr = 0;
1839 
1840 		ti = find_table_info(va);
1841 		pgidx = core_mmu_va2idx(ti, va);
1842 		/*
1843 		 * Note that we can only support adding pages in the
1844 		 * valid range of this table info, currently not a problem.
1845 		 */
1846 		core_mmu_get_entry(ti, pgidx, &pa, &attr);
1847 
1848 		/* Ignore unmapped pages/blocks */
1849 		if (!(attr & TEE_MATTR_VALID_BLOCK))
1850 			continue;
1851 
1852 		pmem = calloc(1, sizeof(struct tee_pager_pmem));
1853 		if (!pmem)
1854 			panic("out of mem");
1855 		pmem_clear(pmem);
1856 
1857 		pmem->va_alias = pager_add_alias_page(pa);
1858 
1859 		if (unmap) {
1860 			core_mmu_set_entry(ti, pgidx, 0, 0);
1861 			pgt_dec_used_entries(find_core_pgt(va));
1862 		} else {
1863 			struct vm_paged_region *reg = NULL;
1864 
1865 			/*
1866 			 * The page is still mapped, let's assign the region
1867 			 * and update the protection bits accordingly.
1868 			 */
1869 			reg = find_region(&core_vm_regions, va);
1870 			assert(reg);
1871 			pmem_assign_fobj_page(pmem, reg, va);
1872 			tblidx = pmem_get_region_tblidx(pmem, reg);
1873 			assert(tblidx.pgt == find_core_pgt(va));
1874 			assert(pa == get_pmem_pa(pmem));
1875 			tblidx_set_entry(tblidx, pa,
1876 					 get_region_mattr(reg->flags));
1877 		}
1878 
1879 		if (unmap && IS_ENABLED(CFG_CORE_PAGE_TAG_AND_IV) &&
1880 		    !pager_spare_pmem) {
1881 			pager_spare_pmem = pmem;
1882 		} else {
1883 			tee_pager_npages++;
1884 			incr_npages_all();
1885 			set_npages();
1886 			TAILQ_INSERT_TAIL(&tee_pager_pmem_head, pmem, link);
1887 		}
1888 	}
1889 
1890 	/*
1891 	 * As this is done at inits, invalidate all TLBs once instead of
1892 	 * targeting only the modified entries.
1893 	 */
1894 	tlbi_all();
1895 }
1896 
1897 #ifdef CFG_PAGED_USER_TA
1898 static struct pgt *find_pgt(struct pgt *pgt, vaddr_t va)
1899 {
1900 	struct pgt *p = pgt;
1901 
1902 	while (p && (va & ~CORE_MMU_PGDIR_MASK) != p->vabase)
1903 		p = SLIST_NEXT(p, link);
1904 	return p;
1905 }
1906 
1907 void tee_pager_assign_um_tables(struct user_mode_ctx *uctx)
1908 {
1909 	struct vm_paged_region *reg = NULL;
1910 	struct pgt *pgt = NULL;
1911 	size_t n = 0;
1912 
1913 	if (!uctx->regions)
1914 		return;
1915 
1916 	pgt = SLIST_FIRST(&thread_get_tsd()->pgt_cache);
1917 	TAILQ_FOREACH(reg, uctx->regions, link) {
1918 		for (n = 0; n < get_pgt_count(reg->base, reg->size); n++) {
1919 			vaddr_t va = reg->base + CORE_MMU_PGDIR_SIZE * n;
1920 			struct pgt *p __maybe_unused = find_pgt(pgt, va);
1921 
1922 			if (!reg->pgt_array[n])
1923 				reg->pgt_array[n] = p;
1924 			else
1925 				assert(reg->pgt_array[n] == p);
1926 		}
1927 	}
1928 }
1929 
1930 void tee_pager_pgt_save_and_release_entries(struct pgt *pgt)
1931 {
1932 	struct tee_pager_pmem *pmem = NULL;
1933 	struct vm_paged_region *reg = NULL;
1934 	struct vm_paged_region_head *regions = NULL;
1935 	uint32_t exceptions = pager_lock_check_stack(SMALL_PAGE_SIZE);
1936 	size_t n = 0;
1937 
1938 	if (!pgt->num_used_entries)
1939 		goto out;
1940 
1941 	TAILQ_FOREACH(pmem, &tee_pager_pmem_head, link) {
1942 		if (pmem->fobj)
1943 			pmem_unmap(pmem, pgt);
1944 	}
1945 	assert(!pgt->num_used_entries);
1946 
1947 out:
1948 	regions = to_user_mode_ctx(pgt->ctx)->regions;
1949 	if (regions) {
1950 		TAILQ_FOREACH(reg, regions, link) {
1951 			for (n = 0; n < get_pgt_count(reg->base, reg->size);
1952 			     n++) {
1953 				if (reg->pgt_array[n] == pgt) {
1954 					reg->pgt_array[n] = NULL;
1955 					break;
1956 				}
1957 			}
1958 		}
1959 	}
1960 
1961 	pager_unlock(exceptions);
1962 }
1963 DECLARE_KEEP_PAGER(tee_pager_pgt_save_and_release_entries);
1964 #endif /*CFG_PAGED_USER_TA*/
1965 
1966 void tee_pager_release_phys(void *addr, size_t size)
1967 {
1968 	bool unmaped = false;
1969 	vaddr_t va = (vaddr_t)addr;
1970 	vaddr_t begin = ROUNDUP(va, SMALL_PAGE_SIZE);
1971 	vaddr_t end = ROUNDDOWN(va + size, SMALL_PAGE_SIZE);
1972 	struct vm_paged_region *reg;
1973 	uint32_t exceptions;
1974 
1975 	if (end <= begin)
1976 		return;
1977 
1978 	exceptions = pager_lock_check_stack(128);
1979 
1980 	for (va = begin; va < end; va += SMALL_PAGE_SIZE) {
1981 		reg = find_region(&core_vm_regions, va);
1982 		if (!reg)
1983 			panic();
1984 		unmaped |= tee_pager_release_one_phys(reg, va);
1985 	}
1986 
1987 	if (unmaped)
1988 		tlbi_mva_range(begin, end - begin, SMALL_PAGE_SIZE);
1989 
1990 	pager_unlock(exceptions);
1991 }
1992 DECLARE_KEEP_PAGER(tee_pager_release_phys);
1993 
1994 void *tee_pager_alloc(size_t size)
1995 {
1996 	tee_mm_entry_t *mm = NULL;
1997 	uint8_t *smem = NULL;
1998 	size_t num_pages = 0;
1999 	struct fobj *fobj = NULL;
2000 
2001 	if (!size)
2002 		return NULL;
2003 
2004 	mm = tee_mm_alloc(&tee_mm_vcore, ROUNDUP(size, SMALL_PAGE_SIZE));
2005 	if (!mm)
2006 		return NULL;
2007 
2008 	smem = (uint8_t *)tee_mm_get_smem(mm);
2009 	num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE;
2010 	fobj = fobj_locked_paged_alloc(num_pages);
2011 	if (!fobj) {
2012 		tee_mm_free(mm);
2013 		return NULL;
2014 	}
2015 
2016 	tee_pager_add_core_region((vaddr_t)smem, PAGED_REGION_TYPE_LOCK, fobj);
2017 	fobj_put(fobj);
2018 
2019 	asan_tag_access(smem, smem + num_pages * SMALL_PAGE_SIZE);
2020 
2021 	return smem;
2022 }
2023 
2024 vaddr_t tee_pager_init_iv_region(struct fobj *fobj)
2025 {
2026 	tee_mm_entry_t *mm = NULL;
2027 	uint8_t *smem = NULL;
2028 
2029 	assert(!pager_iv_region);
2030 
2031 	mm = tee_mm_alloc(&tee_mm_vcore, fobj->num_pages * SMALL_PAGE_SIZE);
2032 	if (!mm)
2033 		panic();
2034 
2035 	smem = (uint8_t *)tee_mm_get_smem(mm);
2036 	tee_pager_add_core_region((vaddr_t)smem, PAGED_REGION_TYPE_RW, fobj);
2037 	fobj_put(fobj);
2038 
2039 	asan_tag_access(smem, smem + fobj->num_pages * SMALL_PAGE_SIZE);
2040 
2041 	pager_iv_region = find_region(&core_vm_regions, (vaddr_t)smem);
2042 	assert(pager_iv_region && pager_iv_region->fobj == fobj);
2043 
2044 	return (vaddr_t)smem;
2045 }
2046