xref: /optee_os/core/arch/arm/mm/tee_pager.c (revision 60e3671460429e85d61334da126e1294e985f20b)
1 // SPDX-License-Identifier: BSD-2-Clause
2 /*
3  * Copyright (c) 2016-2021, Linaro Limited
4  * Copyright (c) 2014, STMicroelectronics International N.V.
5  */
6 
7 #include <arm.h>
8 #include <assert.h>
9 #include <io.h>
10 #include <keep.h>
11 #include <kernel/abort.h>
12 #include <kernel/asan.h>
13 #include <kernel/cache_helpers.h>
14 #include <kernel/linker.h>
15 #include <kernel/panic.h>
16 #include <kernel/spinlock.h>
17 #include <kernel/tee_misc.h>
18 #include <kernel/tee_ta_manager.h>
19 #include <kernel/thread.h>
20 #include <kernel/tlb_helpers.h>
21 #include <kernel/user_mode_ctx.h>
22 #include <mm/core_memprot.h>
23 #include <mm/fobj.h>
24 #include <mm/tee_mm.h>
25 #include <mm/tee_pager.h>
26 #include <stdlib.h>
27 #include <sys/queue.h>
28 #include <tee_api_defines.h>
29 #include <trace.h>
30 #include <types_ext.h>
31 #include <utee_defines.h>
32 #include <util.h>
33 
34 
35 static struct vm_paged_region_head core_vm_regions =
36 	TAILQ_HEAD_INITIALIZER(core_vm_regions);
37 
38 #define INVALID_PGIDX		UINT_MAX
39 #define PMEM_FLAG_DIRTY		BIT(0)
40 #define PMEM_FLAG_HIDDEN	BIT(1)
41 
42 /*
43  * struct tee_pager_pmem - Represents a physical page used for paging.
44  *
45  * @flags	flags defined by PMEM_FLAG_* above
46  * @fobj_pgidx	index of the page in the @fobj
47  * @fobj	File object of which a page is made visible.
48  * @va_alias	Virtual address where the physical page always is aliased.
49  *		Used during remapping of the page when the content need to
50  *		be updated before it's available at the new location.
51  */
52 struct tee_pager_pmem {
53 	unsigned int flags;
54 	unsigned int fobj_pgidx;
55 	struct fobj *fobj;
56 	void *va_alias;
57 	TAILQ_ENTRY(tee_pager_pmem) link;
58 };
59 
60 struct tblidx {
61 	struct pgt *pgt;
62 	unsigned int idx;
63 };
64 
65 /* The list of physical pages. The first page in the list is the oldest */
66 TAILQ_HEAD(tee_pager_pmem_head, tee_pager_pmem);
67 
68 static struct tee_pager_pmem_head tee_pager_pmem_head =
69 	TAILQ_HEAD_INITIALIZER(tee_pager_pmem_head);
70 
71 static struct tee_pager_pmem_head tee_pager_lock_pmem_head =
72 	TAILQ_HEAD_INITIALIZER(tee_pager_lock_pmem_head);
73 
74 /* number of pages hidden */
75 #define TEE_PAGER_NHIDE (tee_pager_npages / 3)
76 
77 /* Number of registered physical pages, used hiding pages. */
78 static size_t tee_pager_npages;
79 
80 /* This area covers the IVs for all fobjs with paged IVs */
81 static struct vm_paged_region *pager_iv_region;
82 /* Used by make_iv_available(), see make_iv_available() for details. */
83 static struct tee_pager_pmem *pager_spare_pmem;
84 
85 #ifdef CFG_WITH_STATS
86 static struct tee_pager_stats pager_stats;
87 
88 static inline void incr_ro_hits(void)
89 {
90 	pager_stats.ro_hits++;
91 }
92 
93 static inline void incr_rw_hits(void)
94 {
95 	pager_stats.rw_hits++;
96 }
97 
98 static inline void incr_hidden_hits(void)
99 {
100 	pager_stats.hidden_hits++;
101 }
102 
103 static inline void incr_zi_released(void)
104 {
105 	pager_stats.zi_released++;
106 }
107 
108 static inline void incr_npages_all(void)
109 {
110 	pager_stats.npages_all++;
111 }
112 
113 static inline void set_npages(void)
114 {
115 	pager_stats.npages = tee_pager_npages;
116 }
117 
118 void tee_pager_get_stats(struct tee_pager_stats *stats)
119 {
120 	*stats = pager_stats;
121 
122 	pager_stats.hidden_hits = 0;
123 	pager_stats.ro_hits = 0;
124 	pager_stats.rw_hits = 0;
125 	pager_stats.zi_released = 0;
126 }
127 
128 #else /* CFG_WITH_STATS */
129 static inline void incr_ro_hits(void) { }
130 static inline void incr_rw_hits(void) { }
131 static inline void incr_hidden_hits(void) { }
132 static inline void incr_zi_released(void) { }
133 static inline void incr_npages_all(void) { }
134 static inline void set_npages(void) { }
135 
136 void tee_pager_get_stats(struct tee_pager_stats *stats)
137 {
138 	memset(stats, 0, sizeof(struct tee_pager_stats));
139 }
140 #endif /* CFG_WITH_STATS */
141 
142 #define TBL_NUM_ENTRIES	(CORE_MMU_PGDIR_SIZE / SMALL_PAGE_SIZE)
143 #define TBL_LEVEL	CORE_MMU_PGDIR_LEVEL
144 #define TBL_SHIFT	SMALL_PAGE_SHIFT
145 
146 #define EFFECTIVE_VA_SIZE \
147 	(ROUNDUP(VCORE_START_VA + TEE_RAM_VA_SIZE, CORE_MMU_PGDIR_SIZE) - \
148 	 ROUNDDOWN(VCORE_START_VA, CORE_MMU_PGDIR_SIZE))
149 
150 static struct pager_table {
151 	struct pgt pgt;
152 	struct core_mmu_table_info tbl_info;
153 } *pager_tables;
154 static unsigned int num_pager_tables;
155 
156 static unsigned pager_spinlock = SPINLOCK_UNLOCK;
157 
158 /* Defines the range of the alias area */
159 static tee_mm_entry_t *pager_alias_area;
160 /*
161  * Physical pages are added in a stack like fashion to the alias area,
162  * @pager_alias_next_free gives the address of next free entry if
163  * @pager_alias_next_free is != 0
164  */
165 static uintptr_t pager_alias_next_free;
166 
167 #ifdef CFG_TEE_CORE_DEBUG
168 #define pager_lock(ai) pager_lock_dldetect(__func__, __LINE__, ai)
169 
170 static uint32_t pager_lock_dldetect(const char *func, const int line,
171 				    struct abort_info *ai)
172 {
173 	uint32_t exceptions = thread_mask_exceptions(THREAD_EXCP_ALL);
174 	unsigned int retries = 0;
175 	unsigned int reminder = 0;
176 
177 	while (!cpu_spin_trylock(&pager_spinlock)) {
178 		retries++;
179 		if (!retries) {
180 			/* wrapped, time to report */
181 			trace_printf(func, line, TRACE_ERROR, true,
182 				     "possible spinlock deadlock reminder %u",
183 				     reminder);
184 			if (reminder < UINT_MAX)
185 				reminder++;
186 			if (ai)
187 				abort_print(ai);
188 		}
189 	}
190 
191 	return exceptions;
192 }
193 #else
194 static uint32_t pager_lock(struct abort_info __unused *ai)
195 {
196 	return cpu_spin_lock_xsave(&pager_spinlock);
197 }
198 #endif
199 
200 static uint32_t pager_lock_check_stack(size_t stack_size)
201 {
202 	if (stack_size) {
203 		int8_t buf[stack_size];
204 		size_t n;
205 
206 		/*
207 		 * Make sure to touch all pages of the stack that we expect
208 		 * to use with this lock held. We need to take eventual
209 		 * page faults before the lock is taken or we'll deadlock
210 		 * the pager. The pages that are populated in this way will
211 		 * eventually be released at certain save transitions of
212 		 * the thread.
213 		 */
214 		for (n = 0; n < stack_size; n += SMALL_PAGE_SIZE)
215 			io_write8((vaddr_t)buf + n, 1);
216 		io_write8((vaddr_t)buf + stack_size - 1, 1);
217 	}
218 
219 	return pager_lock(NULL);
220 }
221 
222 static void pager_unlock(uint32_t exceptions)
223 {
224 	cpu_spin_unlock_xrestore(&pager_spinlock, exceptions);
225 }
226 
227 void *tee_pager_phys_to_virt(paddr_t pa)
228 {
229 	struct core_mmu_table_info ti;
230 	unsigned idx;
231 	uint32_t a;
232 	paddr_t p;
233 	vaddr_t v;
234 	size_t n;
235 
236 	/*
237 	 * Most addresses are mapped lineary, try that first if possible.
238 	 */
239 	if (!tee_pager_get_table_info(pa, &ti))
240 		return NULL; /* impossible pa */
241 	idx = core_mmu_va2idx(&ti, pa);
242 	core_mmu_get_entry(&ti, idx, &p, &a);
243 	if ((a & TEE_MATTR_VALID_BLOCK) && p == pa)
244 		return (void *)core_mmu_idx2va(&ti, idx);
245 
246 	n = 0;
247 	idx = core_mmu_va2idx(&pager_tables[n].tbl_info, TEE_RAM_VA_START);
248 	while (true) {
249 		while (idx < TBL_NUM_ENTRIES) {
250 			v = core_mmu_idx2va(&pager_tables[n].tbl_info, idx);
251 			if (v >= (TEE_RAM_VA_START + TEE_RAM_VA_SIZE))
252 				return NULL;
253 
254 			core_mmu_get_entry(&pager_tables[n].tbl_info,
255 					   idx, &p, &a);
256 			if ((a & TEE_MATTR_VALID_BLOCK) && p == pa)
257 				return (void *)v;
258 			idx++;
259 		}
260 
261 		n++;
262 		if (n >= num_pager_tables)
263 			return NULL;
264 		idx = 0;
265 	}
266 
267 	return NULL;
268 }
269 
270 static bool pmem_is_hidden(struct tee_pager_pmem *pmem)
271 {
272 	return pmem->flags & PMEM_FLAG_HIDDEN;
273 }
274 
275 static bool pmem_is_dirty(struct tee_pager_pmem *pmem)
276 {
277 	return pmem->flags & PMEM_FLAG_DIRTY;
278 }
279 
280 static bool pmem_is_covered_by_region(struct tee_pager_pmem *pmem,
281 				      struct vm_paged_region *reg)
282 {
283 	if (pmem->fobj != reg->fobj)
284 		return false;
285 	if (pmem->fobj_pgidx < reg->fobj_pgoffs)
286 		return false;
287 	if ((pmem->fobj_pgidx - reg->fobj_pgoffs) >=
288 	    (reg->size >> SMALL_PAGE_SHIFT))
289 		return false;
290 
291 	return true;
292 }
293 
294 static size_t get_pgt_count(vaddr_t base, size_t size)
295 {
296 	assert(size);
297 
298 	return (base + size - 1) / CORE_MMU_PGDIR_SIZE + 1 -
299 	       base / CORE_MMU_PGDIR_SIZE;
300 }
301 
302 static bool region_have_pgt(struct vm_paged_region *reg, struct pgt *pgt)
303 {
304 	size_t n = 0;
305 
306 	for (n = 0; n < get_pgt_count(reg->base, reg->size); n++)
307 		if (reg->pgt_array[n] == pgt)
308 			return true;
309 
310 	return false;
311 }
312 
313 static struct tblidx pmem_get_region_tblidx(struct tee_pager_pmem *pmem,
314 					    struct vm_paged_region *reg)
315 {
316 	size_t tbloffs = (reg->base & CORE_MMU_PGDIR_MASK) >> SMALL_PAGE_SHIFT;
317 	size_t idx = pmem->fobj_pgidx - reg->fobj_pgoffs + tbloffs;
318 
319 	assert(pmem->fobj && pmem->fobj_pgidx != INVALID_PGIDX);
320 	assert(idx / TBL_NUM_ENTRIES < get_pgt_count(reg->base, reg->size));
321 
322 	return (struct tblidx){
323 		.idx = idx % TBL_NUM_ENTRIES,
324 		.pgt = reg->pgt_array[idx / TBL_NUM_ENTRIES],
325 	};
326 }
327 
328 static struct pager_table *find_pager_table_may_fail(vaddr_t va)
329 {
330 	size_t n;
331 	const vaddr_t mask = CORE_MMU_PGDIR_MASK;
332 
333 	if (!pager_tables)
334 		return NULL;
335 
336 	n = ((va & ~mask) - pager_tables[0].tbl_info.va_base) >>
337 	    CORE_MMU_PGDIR_SHIFT;
338 	if (n >= num_pager_tables)
339 		return NULL;
340 
341 	assert(va >= pager_tables[n].tbl_info.va_base &&
342 	       va <= (pager_tables[n].tbl_info.va_base | mask));
343 
344 	return pager_tables + n;
345 }
346 
347 static struct pager_table *find_pager_table(vaddr_t va)
348 {
349 	struct pager_table *pt = find_pager_table_may_fail(va);
350 
351 	assert(pt);
352 	return pt;
353 }
354 
355 bool tee_pager_get_table_info(vaddr_t va, struct core_mmu_table_info *ti)
356 {
357 	struct pager_table *pt = find_pager_table_may_fail(va);
358 
359 	if (!pt)
360 		return false;
361 
362 	*ti = pt->tbl_info;
363 	return true;
364 }
365 
366 static struct core_mmu_table_info *find_table_info(vaddr_t va)
367 {
368 	return &find_pager_table(va)->tbl_info;
369 }
370 
371 static struct pgt *find_core_pgt(vaddr_t va)
372 {
373 	return &find_pager_table(va)->pgt;
374 }
375 
376 void tee_pager_set_alias_area(tee_mm_entry_t *mm)
377 {
378 	struct pager_table *pt;
379 	unsigned idx;
380 	vaddr_t smem = tee_mm_get_smem(mm);
381 	size_t nbytes = tee_mm_get_bytes(mm);
382 	vaddr_t v;
383 	uint32_t a = 0;
384 
385 	DMSG("0x%" PRIxVA " - 0x%" PRIxVA, smem, smem + nbytes);
386 
387 	assert(!pager_alias_area);
388 	pager_alias_area = mm;
389 	pager_alias_next_free = smem;
390 
391 	/* Clear all mapping in the alias area */
392 	pt = find_pager_table(smem);
393 	idx = core_mmu_va2idx(&pt->tbl_info, smem);
394 	while (pt <= (pager_tables + num_pager_tables - 1)) {
395 		while (idx < TBL_NUM_ENTRIES) {
396 			v = core_mmu_idx2va(&pt->tbl_info, idx);
397 			if (v >= (smem + nbytes))
398 				goto out;
399 
400 			core_mmu_get_entry(&pt->tbl_info, idx, NULL, &a);
401 			core_mmu_set_entry(&pt->tbl_info, idx, 0, 0);
402 			if (a & TEE_MATTR_VALID_BLOCK)
403 				pgt_dec_used_entries(&pt->pgt);
404 			idx++;
405 		}
406 
407 		pt++;
408 		idx = 0;
409 	}
410 
411 out:
412 	tlbi_mva_range(smem, nbytes, SMALL_PAGE_SIZE);
413 }
414 
415 static size_t tbl_usage_count(struct core_mmu_table_info *ti)
416 {
417 	size_t n;
418 	uint32_t a = 0;
419 	size_t usage = 0;
420 
421 	for (n = 0; n < ti->num_entries; n++) {
422 		core_mmu_get_entry(ti, n, NULL, &a);
423 		if (a & TEE_MATTR_VALID_BLOCK)
424 			usage++;
425 	}
426 	return usage;
427 }
428 
429 static void tblidx_get_entry(struct tblidx tblidx, paddr_t *pa, uint32_t *attr)
430 {
431 	assert(tblidx.pgt && tblidx.idx < TBL_NUM_ENTRIES);
432 	core_mmu_get_entry_primitive(tblidx.pgt->tbl, TBL_LEVEL, tblidx.idx,
433 				     pa, attr);
434 }
435 
436 static void tblidx_set_entry(struct tblidx tblidx, paddr_t pa, uint32_t attr)
437 {
438 	assert(tblidx.pgt && tblidx.idx < TBL_NUM_ENTRIES);
439 	core_mmu_set_entry_primitive(tblidx.pgt->tbl, TBL_LEVEL, tblidx.idx,
440 				     pa, attr);
441 }
442 
443 static struct tblidx region_va2tblidx(struct vm_paged_region *reg, vaddr_t va)
444 {
445 	paddr_t mask = CORE_MMU_PGDIR_MASK;
446 	size_t n = 0;
447 
448 	assert(va >= reg->base && va < (reg->base + reg->size));
449 	n = (va - (reg->base & ~mask)) / CORE_MMU_PGDIR_SIZE;
450 
451 	return (struct tblidx){
452 		.idx = (va & mask) / SMALL_PAGE_SIZE,
453 		.pgt = reg->pgt_array[n],
454 	};
455 }
456 
457 static vaddr_t tblidx2va(struct tblidx tblidx)
458 {
459 	return tblidx.pgt->vabase + (tblidx.idx << SMALL_PAGE_SHIFT);
460 }
461 
462 static void tblidx_tlbi_entry(struct tblidx tblidx)
463 {
464 	vaddr_t va = tblidx2va(tblidx);
465 
466 #if defined(CFG_PAGED_USER_TA)
467 	if (tblidx.pgt->ctx) {
468 		uint32_t asid = to_user_mode_ctx(tblidx.pgt->ctx)->vm_info.asid;
469 
470 		tlbi_mva_asid(va, asid);
471 		return;
472 	}
473 #endif
474 	tlbi_mva_allasid(va);
475 }
476 
477 static void pmem_assign_fobj_page(struct tee_pager_pmem *pmem,
478 				  struct vm_paged_region *reg, vaddr_t va)
479 {
480 	struct tee_pager_pmem *p = NULL;
481 	unsigned int fobj_pgidx = 0;
482 
483 	assert(!pmem->fobj && pmem->fobj_pgidx == INVALID_PGIDX);
484 
485 	assert(va >= reg->base && va < (reg->base + reg->size));
486 	fobj_pgidx = (va - reg->base) / SMALL_PAGE_SIZE + reg->fobj_pgoffs;
487 
488 	TAILQ_FOREACH(p, &tee_pager_pmem_head, link)
489 		assert(p->fobj != reg->fobj || p->fobj_pgidx != fobj_pgidx);
490 
491 	pmem->fobj = reg->fobj;
492 	pmem->fobj_pgidx = fobj_pgidx;
493 }
494 
495 static void pmem_clear(struct tee_pager_pmem *pmem)
496 {
497 	pmem->fobj = NULL;
498 	pmem->fobj_pgidx = INVALID_PGIDX;
499 	pmem->flags = 0;
500 }
501 
502 static void pmem_unmap(struct tee_pager_pmem *pmem, struct pgt *only_this_pgt)
503 {
504 	struct vm_paged_region *reg = NULL;
505 	struct tblidx tblidx = { };
506 	uint32_t a = 0;
507 
508 	TAILQ_FOREACH(reg, &pmem->fobj->regions, fobj_link) {
509 		/*
510 		 * If only_this_pgt points to a pgt then the pgt of this
511 		 * region has to match or we'll skip over it.
512 		 */
513 		if (only_this_pgt && !region_have_pgt(reg, only_this_pgt))
514 			continue;
515 		if (!pmem_is_covered_by_region(pmem, reg))
516 			continue;
517 		tblidx = pmem_get_region_tblidx(pmem, reg);
518 		if (!tblidx.pgt)
519 			continue;
520 		tblidx_get_entry(tblidx, NULL, &a);
521 		if (a & TEE_MATTR_VALID_BLOCK) {
522 			tblidx_set_entry(tblidx, 0, 0);
523 			pgt_dec_used_entries(tblidx.pgt);
524 			tblidx_tlbi_entry(tblidx);
525 		}
526 	}
527 }
528 
529 void tee_pager_early_init(void)
530 {
531 	size_t n = 0;
532 
533 	num_pager_tables = EFFECTIVE_VA_SIZE / CORE_MMU_PGDIR_SIZE;
534 	pager_tables = calloc(num_pager_tables, sizeof(*pager_tables));
535 	if (!pager_tables)
536 		panic("Cannot allocate pager_tables");
537 
538 	/*
539 	 * Note that this depends on add_pager_vaspace() adding vaspace
540 	 * after end of memory.
541 	 */
542 	for (n = 0; n < num_pager_tables; n++) {
543 		if (!core_mmu_find_table(NULL, VCORE_START_VA +
544 					 n * CORE_MMU_PGDIR_SIZE, UINT_MAX,
545 					 &pager_tables[n].tbl_info))
546 			panic("can't find mmu tables");
547 
548 		if (pager_tables[n].tbl_info.shift != TBL_SHIFT)
549 			panic("Unsupported page size in translation table");
550 		assert(pager_tables[n].tbl_info.num_entries == TBL_NUM_ENTRIES);
551 		assert(pager_tables[n].tbl_info.level == TBL_LEVEL);
552 
553 		pager_tables[n].pgt.tbl = pager_tables[n].tbl_info.table;
554 		pager_tables[n].pgt.vabase = pager_tables[n].tbl_info.va_base;
555 		pgt_set_used_entries(&pager_tables[n].pgt,
556 				tbl_usage_count(&pager_tables[n].tbl_info));
557 	}
558 }
559 
560 static void *pager_add_alias_page(paddr_t pa)
561 {
562 	unsigned idx;
563 	struct core_mmu_table_info *ti;
564 	/* Alias pages mapped without write permission: runtime will care */
565 	uint32_t attr = TEE_MATTR_VALID_BLOCK |
566 			(TEE_MATTR_CACHE_CACHED << TEE_MATTR_CACHE_SHIFT) |
567 			TEE_MATTR_SECURE | TEE_MATTR_PR;
568 
569 	DMSG("0x%" PRIxPA, pa);
570 
571 	ti = find_table_info(pager_alias_next_free);
572 	idx = core_mmu_va2idx(ti, pager_alias_next_free);
573 	core_mmu_set_entry(ti, idx, pa, attr);
574 	pgt_inc_used_entries(find_core_pgt(pager_alias_next_free));
575 	pager_alias_next_free += SMALL_PAGE_SIZE;
576 	if (pager_alias_next_free >= (tee_mm_get_smem(pager_alias_area) +
577 				      tee_mm_get_bytes(pager_alias_area)))
578 		pager_alias_next_free = 0;
579 	return (void *)core_mmu_idx2va(ti, idx);
580 }
581 
582 static void region_insert(struct vm_paged_region_head *regions,
583 			  struct vm_paged_region *reg,
584 			  struct vm_paged_region *r_prev)
585 {
586 	uint32_t exceptions = pager_lock_check_stack(8);
587 
588 	if (r_prev)
589 		TAILQ_INSERT_AFTER(regions, r_prev, reg, link);
590 	else
591 		TAILQ_INSERT_HEAD(regions, reg, link);
592 	TAILQ_INSERT_TAIL(&reg->fobj->regions, reg, fobj_link);
593 
594 	pager_unlock(exceptions);
595 }
596 DECLARE_KEEP_PAGER(region_insert);
597 
598 static struct vm_paged_region *alloc_region(vaddr_t base, size_t size)
599 {
600 	struct vm_paged_region *reg = NULL;
601 
602 	if ((base & SMALL_PAGE_MASK) || !size) {
603 		EMSG("invalid pager region [%" PRIxVA " +0x%zx]", base, size);
604 		panic();
605 	}
606 
607 	reg = calloc(1, sizeof(*reg));
608 	if (!reg)
609 		return NULL;
610 	reg->pgt_array = calloc(get_pgt_count(base, size),
611 				sizeof(struct pgt *));
612 	if (!reg->pgt_array) {
613 		free(reg);
614 		return NULL;
615 	}
616 
617 	reg->base = base;
618 	reg->size = size;
619 	return reg;
620 }
621 
622 void tee_pager_add_core_region(vaddr_t base, enum vm_paged_region_type type,
623 			       struct fobj *fobj)
624 {
625 	struct vm_paged_region *reg = NULL;
626 	size_t n = 0;
627 
628 	assert(fobj);
629 
630 	DMSG("0x%" PRIxPTR " - 0x%" PRIxPTR " : type %d",
631 	     base, base + fobj->num_pages * SMALL_PAGE_SIZE, type);
632 
633 	reg = alloc_region(base, fobj->num_pages * SMALL_PAGE_SIZE);
634 	if (!reg)
635 		panic("alloc_region");
636 
637 	reg->fobj = fobj_get(fobj);
638 	reg->fobj_pgoffs = 0;
639 	reg->type = type;
640 
641 	switch (type) {
642 	case PAGED_REGION_TYPE_RO:
643 		reg->flags = TEE_MATTR_PRX;
644 		break;
645 	case PAGED_REGION_TYPE_RW:
646 	case PAGED_REGION_TYPE_LOCK:
647 		reg->flags = TEE_MATTR_PRW;
648 		break;
649 	default:
650 		panic();
651 	}
652 
653 	for (n = 0; n < get_pgt_count(reg->base, reg->size); n++)
654 		reg->pgt_array[n] = find_core_pgt(base +
655 						  n * CORE_MMU_PGDIR_SIZE);
656 	region_insert(&core_vm_regions, reg, NULL);
657 }
658 
659 static struct vm_paged_region *find_region(struct vm_paged_region_head *regions,
660 					   vaddr_t va)
661 {
662 	struct vm_paged_region *reg;
663 
664 	if (!regions)
665 		return NULL;
666 
667 	TAILQ_FOREACH(reg, regions, link) {
668 		if (core_is_buffer_inside(va, 1, reg->base, reg->size))
669 			return reg;
670 	}
671 	return NULL;
672 }
673 
674 #ifdef CFG_PAGED_USER_TA
675 static struct vm_paged_region *find_uta_region(vaddr_t va)
676 {
677 	struct ts_ctx *ctx = thread_get_tsd()->ctx;
678 
679 	if (!is_user_mode_ctx(ctx))
680 		return NULL;
681 	return find_region(to_user_mode_ctx(ctx)->regions, va);
682 }
683 #else
684 static struct vm_paged_region *find_uta_region(vaddr_t va __unused)
685 {
686 	return NULL;
687 }
688 #endif /*CFG_PAGED_USER_TA*/
689 
690 
691 static uint32_t get_region_mattr(uint32_t reg_flags)
692 {
693 	uint32_t attr = TEE_MATTR_VALID_BLOCK | TEE_MATTR_SECURE |
694 			TEE_MATTR_CACHE_CACHED << TEE_MATTR_CACHE_SHIFT |
695 			(reg_flags & (TEE_MATTR_PRWX | TEE_MATTR_URWX));
696 
697 	return attr;
698 }
699 
700 static paddr_t get_pmem_pa(struct tee_pager_pmem *pmem)
701 {
702 	struct core_mmu_table_info *ti;
703 	paddr_t pa;
704 	unsigned idx;
705 
706 	ti = find_table_info((vaddr_t)pmem->va_alias);
707 	idx = core_mmu_va2idx(ti, (vaddr_t)pmem->va_alias);
708 	core_mmu_get_entry(ti, idx, &pa, NULL);
709 	return pa;
710 }
711 
712 #ifdef CFG_PAGED_USER_TA
713 static void unlink_region(struct vm_paged_region_head *regions,
714 			  struct vm_paged_region *reg)
715 {
716 	uint32_t exceptions = pager_lock_check_stack(64);
717 
718 	TAILQ_REMOVE(regions, reg, link);
719 	TAILQ_REMOVE(&reg->fobj->regions, reg, fobj_link);
720 
721 	pager_unlock(exceptions);
722 }
723 DECLARE_KEEP_PAGER(unlink_region);
724 
725 static void free_region(struct vm_paged_region *reg)
726 {
727 	fobj_put(reg->fobj);
728 	free(reg->pgt_array);
729 	free(reg);
730 }
731 
732 static TEE_Result pager_add_um_region(struct user_mode_ctx *uctx, vaddr_t base,
733 				      struct fobj *fobj, uint32_t prot)
734 {
735 	struct vm_paged_region *r_prev = NULL;
736 	struct vm_paged_region *reg = NULL;
737 	vaddr_t b = base;
738 	size_t fobj_pgoffs = 0;
739 	size_t s = fobj->num_pages * SMALL_PAGE_SIZE;
740 
741 	if (!uctx->regions) {
742 		uctx->regions = malloc(sizeof(*uctx->regions));
743 		if (!uctx->regions)
744 			return TEE_ERROR_OUT_OF_MEMORY;
745 		TAILQ_INIT(uctx->regions);
746 	}
747 
748 	reg = TAILQ_FIRST(uctx->regions);
749 	while (reg) {
750 		if (core_is_buffer_intersect(b, s, reg->base, reg->size))
751 			return TEE_ERROR_BAD_PARAMETERS;
752 		if (b < reg->base)
753 			break;
754 		r_prev = reg;
755 		reg = TAILQ_NEXT(reg, link);
756 	}
757 
758 	reg = alloc_region(b, s);
759 	if (!reg)
760 		return TEE_ERROR_OUT_OF_MEMORY;
761 
762 	/* Table info will be set when the context is activated. */
763 	reg->fobj = fobj_get(fobj);
764 	reg->fobj_pgoffs = fobj_pgoffs;
765 	reg->type = PAGED_REGION_TYPE_RW;
766 	reg->flags = prot;
767 
768 	region_insert(uctx->regions, reg, r_prev);
769 
770 	return TEE_SUCCESS;
771 }
772 
773 static void map_pgts(struct vm_paged_region *reg)
774 {
775 	struct core_mmu_table_info dir_info = { NULL };
776 	size_t n = 0;
777 
778 	core_mmu_get_user_pgdir(&dir_info);
779 
780 	for (n = 0; n < get_pgt_count(reg->base, reg->size); n++) {
781 		struct pgt *pgt = reg->pgt_array[n];
782 		uint32_t attr = 0;
783 		paddr_t pa = 0;
784 		size_t idx = 0;
785 
786 		idx = core_mmu_va2idx(&dir_info, pgt->vabase);
787 		core_mmu_get_entry(&dir_info, idx, &pa, &attr);
788 
789 		/*
790 		 * Check if the page table already is used, if it is, it's
791 		 * already registered.
792 		 */
793 		if (pgt->num_used_entries) {
794 			assert(attr & TEE_MATTR_TABLE);
795 			assert(pa == virt_to_phys(pgt->tbl));
796 			continue;
797 		}
798 
799 		attr = TEE_MATTR_SECURE | TEE_MATTR_TABLE;
800 		pa = virt_to_phys(pgt->tbl);
801 		assert(pa);
802 		/*
803 		 * Note that the update of the table entry is guaranteed to
804 		 * be atomic.
805 		 */
806 		core_mmu_set_entry(&dir_info, idx, pa, attr);
807 	}
808 }
809 
810 TEE_Result tee_pager_add_um_region(struct user_mode_ctx *uctx, vaddr_t base,
811 				   struct fobj *fobj, uint32_t prot)
812 {
813 	TEE_Result res = TEE_SUCCESS;
814 	struct thread_specific_data *tsd = thread_get_tsd();
815 	struct vm_paged_region *reg = NULL;
816 
817 	res = pager_add_um_region(uctx, base, fobj, prot);
818 	if (res)
819 		return res;
820 
821 	if (uctx->ts_ctx == tsd->ctx) {
822 		/*
823 		 * We're chaning the currently active utc. Assign page
824 		 * tables to the new regions and make sure that the page
825 		 * tables are registered in the upper table.
826 		 */
827 		tee_pager_assign_um_tables(uctx);
828 		TAILQ_FOREACH(reg, uctx->regions, link)
829 			map_pgts(reg);
830 	}
831 
832 	return TEE_SUCCESS;
833 }
834 
835 static void split_region(struct vm_paged_region_head *regions,
836 			 struct vm_paged_region *reg,
837 			 struct vm_paged_region *r2, vaddr_t va)
838 {
839 	uint32_t exceptions = pager_lock_check_stack(64);
840 	size_t diff = va - reg->base;
841 	size_t r2_pgt_count = 0;
842 	size_t reg_pgt_count = 0;
843 	size_t n0 = 0;
844 	size_t n = 0;
845 
846 	assert(r2->base == va);
847 	assert(r2->size == reg->size - diff);
848 
849 	r2->fobj = fobj_get(reg->fobj);
850 	r2->fobj_pgoffs = reg->fobj_pgoffs + diff / SMALL_PAGE_SIZE;
851 	r2->type = reg->type;
852 	r2->flags = reg->flags;
853 
854 	r2_pgt_count = get_pgt_count(r2->base, r2->size);
855 	reg_pgt_count = get_pgt_count(reg->base, reg->size);
856 	n0 = reg_pgt_count - r2_pgt_count;
857 	for (n = n0; n < reg_pgt_count; n++)
858 		r2->pgt_array[n - n0] = reg->pgt_array[n];
859 	reg->size = diff;
860 
861 	TAILQ_INSERT_AFTER(regions, reg, r2, link);
862 	TAILQ_INSERT_AFTER(&reg->fobj->regions, reg, r2, fobj_link);
863 
864 	pager_unlock(exceptions);
865 }
866 DECLARE_KEEP_PAGER(split_region);
867 
868 TEE_Result tee_pager_split_um_region(struct user_mode_ctx *uctx, vaddr_t va)
869 {
870 	struct vm_paged_region *reg = NULL;
871 	struct vm_paged_region *r2 = NULL;
872 
873 	if (va & SMALL_PAGE_MASK)
874 		return TEE_ERROR_BAD_PARAMETERS;
875 
876 	TAILQ_FOREACH(reg, uctx->regions, link) {
877 		if (va == reg->base || va == reg->base + reg->size)
878 			return TEE_SUCCESS;
879 		if (va > reg->base && va < reg->base + reg->size) {
880 			size_t diff = va - reg->base;
881 
882 			r2 = alloc_region(va, reg->size - diff);
883 			if (!r2)
884 				return TEE_ERROR_OUT_OF_MEMORY;
885 			split_region(uctx->regions, reg, r2, va);
886 			return TEE_SUCCESS;
887 		}
888 	}
889 
890 	return TEE_SUCCESS;
891 }
892 
893 static struct pgt **
894 merge_region_with_next(struct vm_paged_region_head *regions,
895 		       struct vm_paged_region *reg,
896 		       struct vm_paged_region *r_next, struct pgt **pgt_array)
897 {
898 	uint32_t exceptions = pager_lock_check_stack(64);
899 	struct pgt **old_pgt_array = reg->pgt_array;
900 
901 	reg->pgt_array = pgt_array;
902 	TAILQ_REMOVE(regions, r_next, link);
903 	TAILQ_REMOVE(&r_next->fobj->regions, r_next, fobj_link);
904 
905 	pager_unlock(exceptions);
906 	return old_pgt_array;
907 }
908 DECLARE_KEEP_PAGER(merge_region_with_next);
909 
910 static struct pgt **alloc_merged_pgt_array(struct vm_paged_region *a,
911 					   struct vm_paged_region *a_next)
912 {
913 	size_t a_next_pgt_count = get_pgt_count(a_next->base, a_next->size);
914 	size_t a_pgt_count = get_pgt_count(a->base, a->size);
915 	size_t pgt_count = get_pgt_count(a->base, a->size + a_next->size);
916 	struct pgt **pgt_array = NULL;
917 	bool have_shared_pgt = false;
918 
919 	have_shared_pgt = ((a->base + a->size) & ~CORE_MMU_PGDIR_MASK) ==
920 			  (a_next->base & ~CORE_MMU_PGDIR_MASK);
921 
922 	if (have_shared_pgt)
923 		assert(pgt_count == a_pgt_count + a_next_pgt_count - 1);
924 	else
925 		assert(pgt_count == a_pgt_count + a_next_pgt_count);
926 
927 	/* In case there's a shared pgt they must match */
928 	if (have_shared_pgt &&
929 	    a->pgt_array[a_pgt_count - 1] != a_next->pgt_array[0])
930 		return NULL;
931 
932 	pgt_array = calloc(sizeof(struct pgt *), pgt_count);
933 	if (!pgt_array)
934 		return NULL;
935 
936 	/*
937 	 * Copy and merge the two pgt_arrays, note the special case
938 	 * where a pgt is shared.
939 	 */
940 	memcpy(pgt_array, a->pgt_array, a_pgt_count * sizeof(struct pgt *));
941 	if (have_shared_pgt)
942 		memcpy(pgt_array + a_pgt_count, a_next->pgt_array + 1,
943 		       (a_next_pgt_count - 1) * sizeof(struct pgt *));
944 	else
945 		memcpy(pgt_array + a_pgt_count, a_next->pgt_array,
946 		       a_next_pgt_count * sizeof(struct pgt *));
947 
948 	return pgt_array;
949 }
950 
951 void tee_pager_merge_um_region(struct user_mode_ctx *uctx, vaddr_t va,
952 			       size_t len)
953 {
954 	struct vm_paged_region *r_next = NULL;
955 	struct vm_paged_region *reg = NULL;
956 	struct pgt **pgt_array = NULL;
957 	vaddr_t end_va = 0;
958 
959 	if ((va | len) & SMALL_PAGE_MASK)
960 		return;
961 	if (ADD_OVERFLOW(va, len, &end_va))
962 		return;
963 
964 	for (reg = TAILQ_FIRST(uctx->regions);; reg = r_next) {
965 		r_next = TAILQ_NEXT(reg, link);
966 		if (!r_next)
967 			return;
968 
969 		/* Try merging with the area just before va */
970 		if (reg->base + reg->size < va)
971 			continue;
972 
973 		/*
974 		 * If reg->base is well past our range we're done.
975 		 * Note that if it's just the page after our range we'll
976 		 * try to merge.
977 		 */
978 		if (reg->base > end_va)
979 			return;
980 
981 		if (reg->base + reg->size != r_next->base)
982 			continue;
983 		if (reg->fobj != r_next->fobj || reg->type != r_next->type ||
984 		    reg->flags != r_next->flags)
985 			continue;
986 		if (reg->fobj_pgoffs + reg->size / SMALL_PAGE_SIZE !=
987 		    r_next->fobj_pgoffs)
988 			continue;
989 
990 		pgt_array = alloc_merged_pgt_array(reg, r_next);
991 		if (!pgt_array)
992 			continue;
993 
994 		/*
995 		 * merge_region_with_next() returns the old pgt array which
996 		 * was replaced in reg. We don't want to call free()
997 		 * directly from merge_region_with_next() that would pull
998 		 * free() and its dependencies into the unpaged area.
999 		 */
1000 		free(merge_region_with_next(uctx->regions, reg, r_next,
1001 					    pgt_array));
1002 		free_region(r_next);
1003 		r_next = reg;
1004 	}
1005 }
1006 
1007 static void rem_region(struct vm_paged_region_head *regions,
1008 		       struct vm_paged_region *reg)
1009 {
1010 	struct tee_pager_pmem *pmem;
1011 	size_t last_pgoffs = reg->fobj_pgoffs +
1012 			     (reg->size >> SMALL_PAGE_SHIFT) - 1;
1013 	uint32_t exceptions;
1014 	struct tblidx tblidx = { };
1015 	uint32_t a = 0;
1016 
1017 	exceptions = pager_lock_check_stack(64);
1018 
1019 	TAILQ_REMOVE(regions, reg, link);
1020 	TAILQ_REMOVE(&reg->fobj->regions, reg, fobj_link);
1021 
1022 	TAILQ_FOREACH(pmem, &tee_pager_pmem_head, link) {
1023 		if (pmem->fobj != reg->fobj ||
1024 		    pmem->fobj_pgidx < reg->fobj_pgoffs ||
1025 		    pmem->fobj_pgidx > last_pgoffs)
1026 			continue;
1027 
1028 		tblidx = pmem_get_region_tblidx(pmem, reg);
1029 		tblidx_get_entry(tblidx, NULL, &a);
1030 		if (!(a & TEE_MATTR_VALID_BLOCK))
1031 			continue;
1032 
1033 		tblidx_set_entry(tblidx, 0, 0);
1034 		tblidx_tlbi_entry(tblidx);
1035 		pgt_dec_used_entries(tblidx.pgt);
1036 	}
1037 
1038 	pager_unlock(exceptions);
1039 
1040 	free_region(reg);
1041 }
1042 DECLARE_KEEP_PAGER(rem_region);
1043 
1044 void tee_pager_rem_um_region(struct user_mode_ctx *uctx, vaddr_t base,
1045 			     size_t size)
1046 {
1047 	struct vm_paged_region *reg;
1048 	struct vm_paged_region *r_next;
1049 	size_t s = ROUNDUP(size, SMALL_PAGE_SIZE);
1050 
1051 	TAILQ_FOREACH_SAFE(reg, uctx->regions, link, r_next) {
1052 		if (core_is_buffer_inside(reg->base, reg->size, base, s))
1053 			rem_region(uctx->regions, reg);
1054 	}
1055 	tlbi_asid(uctx->vm_info.asid);
1056 }
1057 
1058 void tee_pager_rem_um_regions(struct user_mode_ctx *uctx)
1059 {
1060 	struct vm_paged_region *reg = NULL;
1061 
1062 	if (!uctx->regions)
1063 		return;
1064 
1065 	while (true) {
1066 		reg = TAILQ_FIRST(uctx->regions);
1067 		if (!reg)
1068 			break;
1069 		unlink_region(uctx->regions, reg);
1070 		free_region(reg);
1071 	}
1072 
1073 	free(uctx->regions);
1074 }
1075 
1076 static bool __maybe_unused same_context(struct tee_pager_pmem *pmem)
1077 {
1078 	struct vm_paged_region *reg = TAILQ_FIRST(&pmem->fobj->regions);
1079 	void *ctx = reg->pgt_array[0]->ctx;
1080 
1081 	do {
1082 		reg = TAILQ_NEXT(reg, fobj_link);
1083 		if (!reg)
1084 			return true;
1085 	} while (reg->pgt_array[0]->ctx == ctx);
1086 
1087 	return false;
1088 }
1089 
1090 bool tee_pager_set_um_region_attr(struct user_mode_ctx *uctx, vaddr_t base,
1091 				  size_t size, uint32_t flags)
1092 {
1093 	bool ret = false;
1094 	vaddr_t b = base;
1095 	size_t s = size;
1096 	size_t s2 = 0;
1097 	struct vm_paged_region *reg = find_region(uctx->regions, b);
1098 	uint32_t exceptions = 0;
1099 	struct tee_pager_pmem *pmem = NULL;
1100 	uint32_t a = 0;
1101 	uint32_t f = 0;
1102 	uint32_t mattr = 0;
1103 	uint32_t f2 = 0;
1104 	struct tblidx tblidx = { };
1105 
1106 	f = (flags & TEE_MATTR_URWX) | TEE_MATTR_UR | TEE_MATTR_PR;
1107 	if (f & TEE_MATTR_UW)
1108 		f |= TEE_MATTR_PW;
1109 	mattr = get_region_mattr(f);
1110 
1111 	exceptions = pager_lock_check_stack(SMALL_PAGE_SIZE);
1112 
1113 	while (s) {
1114 		if (!reg) {
1115 			ret = false;
1116 			goto out;
1117 		}
1118 		s2 = MIN(reg->size, s);
1119 		b += s2;
1120 		s -= s2;
1121 
1122 		if (reg->flags == f)
1123 			goto next_region;
1124 
1125 		TAILQ_FOREACH(pmem, &tee_pager_pmem_head, link) {
1126 			if (!pmem_is_covered_by_region(pmem, reg))
1127 				continue;
1128 
1129 			tblidx = pmem_get_region_tblidx(pmem, reg);
1130 			tblidx_get_entry(tblidx, NULL, &a);
1131 			if (a == f)
1132 				continue;
1133 			tblidx_set_entry(tblidx, 0, 0);
1134 			tblidx_tlbi_entry(tblidx);
1135 
1136 			pmem->flags &= ~PMEM_FLAG_HIDDEN;
1137 			if (pmem_is_dirty(pmem))
1138 				f2 = mattr;
1139 			else
1140 				f2 = mattr & ~(TEE_MATTR_UW | TEE_MATTR_PW);
1141 			tblidx_set_entry(tblidx, get_pmem_pa(pmem), f2);
1142 			if (!(a & TEE_MATTR_VALID_BLOCK))
1143 				pgt_inc_used_entries(tblidx.pgt);
1144 			/*
1145 			 * Make sure the table update is visible before
1146 			 * continuing.
1147 			 */
1148 			dsb_ishst();
1149 
1150 			/*
1151 			 * Here's a problem if this page already is shared.
1152 			 * We need do icache invalidate for each context
1153 			 * in which it is shared. In practice this will
1154 			 * never happen.
1155 			 */
1156 			if (flags & TEE_MATTR_UX) {
1157 				void *va = (void *)tblidx2va(tblidx);
1158 
1159 				/* Assert that the pmem isn't shared. */
1160 				assert(same_context(pmem));
1161 
1162 				dcache_clean_range_pou(va, SMALL_PAGE_SIZE);
1163 				icache_inv_user_range(va, SMALL_PAGE_SIZE);
1164 			}
1165 		}
1166 
1167 		reg->flags = f;
1168 next_region:
1169 		reg = TAILQ_NEXT(reg, link);
1170 	}
1171 
1172 	ret = true;
1173 out:
1174 	pager_unlock(exceptions);
1175 	return ret;
1176 }
1177 
1178 DECLARE_KEEP_PAGER(tee_pager_set_um_region_attr);
1179 #endif /*CFG_PAGED_USER_TA*/
1180 
1181 void tee_pager_invalidate_fobj(struct fobj *fobj)
1182 {
1183 	struct tee_pager_pmem *pmem;
1184 	uint32_t exceptions;
1185 
1186 	exceptions = pager_lock_check_stack(64);
1187 
1188 	TAILQ_FOREACH(pmem, &tee_pager_pmem_head, link)
1189 		if (pmem->fobj == fobj)
1190 			pmem_clear(pmem);
1191 
1192 	pager_unlock(exceptions);
1193 }
1194 DECLARE_KEEP_PAGER(tee_pager_invalidate_fobj);
1195 
1196 static struct tee_pager_pmem *pmem_find(struct vm_paged_region *reg, vaddr_t va)
1197 {
1198 	struct tee_pager_pmem *pmem = NULL;
1199 	size_t fobj_pgidx = 0;
1200 
1201 	assert(va >= reg->base && va < (reg->base + reg->size));
1202 	fobj_pgidx = (va - reg->base) / SMALL_PAGE_SIZE + reg->fobj_pgoffs;
1203 
1204 	TAILQ_FOREACH(pmem, &tee_pager_pmem_head, link)
1205 		if (pmem->fobj == reg->fobj && pmem->fobj_pgidx == fobj_pgidx)
1206 			return pmem;
1207 
1208 	return NULL;
1209 }
1210 
1211 static bool tee_pager_unhide_page(struct vm_paged_region *reg, vaddr_t page_va)
1212 {
1213 	struct tblidx tblidx = region_va2tblidx(reg, page_va);
1214 	struct tee_pager_pmem *pmem = pmem_find(reg, page_va);
1215 	uint32_t a = get_region_mattr(reg->flags);
1216 	uint32_t attr = 0;
1217 	paddr_t pa = 0;
1218 
1219 	if (!pmem)
1220 		return false;
1221 
1222 	tblidx_get_entry(tblidx, NULL, &attr);
1223 	if (attr & TEE_MATTR_VALID_BLOCK)
1224 		return false;
1225 
1226 	/*
1227 	 * The page is hidden, or not not mapped yet. Unhide the page and
1228 	 * move it to the tail.
1229 	 *
1230 	 * Since the page isn't mapped there doesn't exist a valid TLB entry
1231 	 * for this address, so no TLB invalidation is required after setting
1232 	 * the new entry. A DSB is needed though, to make the write visible.
1233 	 *
1234 	 * For user executable pages it's more complicated. Those pages can
1235 	 * be shared between multiple TA mappings and thus populated by
1236 	 * another TA. The reference manual states that:
1237 	 *
1238 	 * "instruction cache maintenance is required only after writing
1239 	 * new data to a physical address that holds an instruction."
1240 	 *
1241 	 * So for hidden pages we would not need to invalidate i-cache, but
1242 	 * for newly populated pages we do. Since we don't know which we
1243 	 * have to assume the worst and always invalidate the i-cache. We
1244 	 * don't need to clean the d-cache though, since that has already
1245 	 * been done earlier.
1246 	 *
1247 	 * Additional bookkeeping to tell if the i-cache invalidation is
1248 	 * needed or not is left as a future optimization.
1249 	 */
1250 
1251 	/* If it's not a dirty block, then it should be read only. */
1252 	if (!pmem_is_dirty(pmem))
1253 		a &= ~(TEE_MATTR_PW | TEE_MATTR_UW);
1254 
1255 	pa = get_pmem_pa(pmem);
1256 	pmem->flags &= ~PMEM_FLAG_HIDDEN;
1257 	if (reg->flags & TEE_MATTR_UX) {
1258 		void *va = (void *)tblidx2va(tblidx);
1259 
1260 		/* Set a temporary read-only mapping */
1261 		assert(!(a & (TEE_MATTR_UW | TEE_MATTR_PW)));
1262 		tblidx_set_entry(tblidx, pa, a & ~TEE_MATTR_UX);
1263 		dsb_ishst();
1264 
1265 		icache_inv_user_range(va, SMALL_PAGE_SIZE);
1266 
1267 		/* Set the final mapping */
1268 		tblidx_set_entry(tblidx, pa, a);
1269 		tblidx_tlbi_entry(tblidx);
1270 	} else {
1271 		tblidx_set_entry(tblidx, pa, a);
1272 		dsb_ishst();
1273 	}
1274 	pgt_inc_used_entries(tblidx.pgt);
1275 
1276 	TAILQ_REMOVE(&tee_pager_pmem_head, pmem, link);
1277 	TAILQ_INSERT_TAIL(&tee_pager_pmem_head, pmem, link);
1278 	incr_hidden_hits();
1279 	return true;
1280 }
1281 
1282 static void tee_pager_hide_pages(void)
1283 {
1284 	struct tee_pager_pmem *pmem = NULL;
1285 	size_t n = 0;
1286 
1287 	TAILQ_FOREACH(pmem, &tee_pager_pmem_head, link) {
1288 		if (n >= TEE_PAGER_NHIDE)
1289 			break;
1290 		n++;
1291 
1292 		/* we cannot hide pages when pmem->fobj is not defined. */
1293 		if (!pmem->fobj)
1294 			continue;
1295 
1296 		if (pmem_is_hidden(pmem))
1297 			continue;
1298 
1299 		pmem->flags |= PMEM_FLAG_HIDDEN;
1300 		pmem_unmap(pmem, NULL);
1301 	}
1302 }
1303 
1304 static unsigned int __maybe_unused
1305 num_regions_with_pmem(struct tee_pager_pmem *pmem)
1306 {
1307 	struct vm_paged_region *reg = NULL;
1308 	unsigned int num_matches = 0;
1309 
1310 	TAILQ_FOREACH(reg, &pmem->fobj->regions, fobj_link)
1311 		if (pmem_is_covered_by_region(pmem, reg))
1312 			num_matches++;
1313 
1314 	return num_matches;
1315 }
1316 
1317 /*
1318  * Find mapped pmem, hide and move to pageble pmem.
1319  * Return false if page was not mapped, and true if page was mapped.
1320  */
1321 static bool tee_pager_release_one_phys(struct vm_paged_region *reg,
1322 				       vaddr_t page_va)
1323 {
1324 	struct tee_pager_pmem *pmem = NULL;
1325 	struct tblidx tblidx = { };
1326 	size_t fobj_pgidx = 0;
1327 
1328 	assert(page_va >= reg->base && page_va < (reg->base + reg->size));
1329 	fobj_pgidx = (page_va - reg->base) / SMALL_PAGE_SIZE +
1330 		     reg->fobj_pgoffs;
1331 
1332 	TAILQ_FOREACH(pmem, &tee_pager_lock_pmem_head, link) {
1333 		if (pmem->fobj != reg->fobj || pmem->fobj_pgidx != fobj_pgidx)
1334 			continue;
1335 
1336 		/*
1337 		 * Locked pages may not be shared. We're asserting that the
1338 		 * number of regions using this pmem is one and only one as
1339 		 * we're about to unmap it.
1340 		 */
1341 		assert(num_regions_with_pmem(pmem) == 1);
1342 
1343 		tblidx = pmem_get_region_tblidx(pmem, reg);
1344 		tblidx_set_entry(tblidx, 0, 0);
1345 		pgt_dec_used_entries(tblidx.pgt);
1346 		TAILQ_REMOVE(&tee_pager_lock_pmem_head, pmem, link);
1347 		pmem_clear(pmem);
1348 		tee_pager_npages++;
1349 		set_npages();
1350 		TAILQ_INSERT_HEAD(&tee_pager_pmem_head, pmem, link);
1351 		incr_zi_released();
1352 		return true;
1353 	}
1354 
1355 	return false;
1356 }
1357 
1358 static void pager_deploy_page(struct tee_pager_pmem *pmem,
1359 			      struct vm_paged_region *reg, vaddr_t page_va,
1360 			      bool clean_user_cache, bool writable)
1361 {
1362 	struct tblidx tblidx = region_va2tblidx(reg, page_va);
1363 	uint32_t attr = get_region_mattr(reg->flags);
1364 	struct core_mmu_table_info *ti = NULL;
1365 	uint8_t *va_alias = pmem->va_alias;
1366 	paddr_t pa = get_pmem_pa(pmem);
1367 	unsigned int idx_alias = 0;
1368 	uint32_t attr_alias = 0;
1369 	paddr_t pa_alias = 0;
1370 
1371 	/* Ensure we are allowed to write to aliased virtual page */
1372 	ti = find_table_info((vaddr_t)va_alias);
1373 	idx_alias = core_mmu_va2idx(ti, (vaddr_t)va_alias);
1374 	core_mmu_get_entry(ti, idx_alias, &pa_alias, &attr_alias);
1375 	if (!(attr_alias & TEE_MATTR_PW)) {
1376 		attr_alias |= TEE_MATTR_PW;
1377 		core_mmu_set_entry(ti, idx_alias, pa_alias, attr_alias);
1378 		tlbi_mva_allasid((vaddr_t)va_alias);
1379 	}
1380 
1381 	asan_tag_access(va_alias, va_alias + SMALL_PAGE_SIZE);
1382 	if (fobj_load_page(pmem->fobj, pmem->fobj_pgidx, va_alias)) {
1383 		EMSG("PH 0x%" PRIxVA " failed", page_va);
1384 		panic();
1385 	}
1386 	switch (reg->type) {
1387 	case PAGED_REGION_TYPE_RO:
1388 		TAILQ_INSERT_TAIL(&tee_pager_pmem_head, pmem, link);
1389 		incr_ro_hits();
1390 		/* Forbid write to aliases for read-only (maybe exec) pages */
1391 		attr_alias &= ~TEE_MATTR_PW;
1392 		core_mmu_set_entry(ti, idx_alias, pa_alias, attr_alias);
1393 		tlbi_mva_allasid((vaddr_t)va_alias);
1394 		break;
1395 	case PAGED_REGION_TYPE_RW:
1396 		TAILQ_INSERT_TAIL(&tee_pager_pmem_head, pmem, link);
1397 		if (writable && (attr & (TEE_MATTR_PW | TEE_MATTR_UW)))
1398 			pmem->flags |= PMEM_FLAG_DIRTY;
1399 		incr_rw_hits();
1400 		break;
1401 	case PAGED_REGION_TYPE_LOCK:
1402 		/* Move page to lock list */
1403 		if (tee_pager_npages <= 0)
1404 			panic("Running out of pages");
1405 		tee_pager_npages--;
1406 		set_npages();
1407 		TAILQ_INSERT_TAIL(&tee_pager_lock_pmem_head, pmem, link);
1408 		break;
1409 	default:
1410 		panic();
1411 	}
1412 	asan_tag_no_access(va_alias, va_alias + SMALL_PAGE_SIZE);
1413 
1414 	if (!writable)
1415 		attr &= ~(TEE_MATTR_PW | TEE_MATTR_UW);
1416 
1417 	/*
1418 	 * We've updated the page using the aliased mapping and
1419 	 * some cache maintenance is now needed if it's an
1420 	 * executable page.
1421 	 *
1422 	 * Since the d-cache is a Physically-indexed,
1423 	 * physically-tagged (PIPT) cache we can clean either the
1424 	 * aliased address or the real virtual address. In this
1425 	 * case we choose the real virtual address.
1426 	 *
1427 	 * The i-cache can also be PIPT, but may be something else
1428 	 * too like VIPT. The current code requires the caches to
1429 	 * implement the IVIPT extension, that is:
1430 	 * "instruction cache maintenance is required only after
1431 	 * writing new data to a physical address that holds an
1432 	 * instruction."
1433 	 *
1434 	 * To portably invalidate the icache the page has to
1435 	 * be mapped at the final virtual address but not
1436 	 * executable.
1437 	 */
1438 	if (reg->flags & (TEE_MATTR_PX | TEE_MATTR_UX)) {
1439 		uint32_t mask = TEE_MATTR_PX | TEE_MATTR_UX |
1440 				TEE_MATTR_PW | TEE_MATTR_UW;
1441 		void *va = (void *)page_va;
1442 
1443 		/* Set a temporary read-only mapping */
1444 		tblidx_set_entry(tblidx, pa, attr & ~mask);
1445 		tblidx_tlbi_entry(tblidx);
1446 
1447 		dcache_clean_range_pou(va, SMALL_PAGE_SIZE);
1448 		if (clean_user_cache)
1449 			icache_inv_user_range(va, SMALL_PAGE_SIZE);
1450 		else
1451 			icache_inv_range(va, SMALL_PAGE_SIZE);
1452 
1453 		/* Set the final mapping */
1454 		tblidx_set_entry(tblidx, pa, attr);
1455 		tblidx_tlbi_entry(tblidx);
1456 	} else {
1457 		tblidx_set_entry(tblidx, pa, attr);
1458 		/*
1459 		 * No need to flush TLB for this entry, it was
1460 		 * invalid. We should use a barrier though, to make
1461 		 * sure that the change is visible.
1462 		 */
1463 		dsb_ishst();
1464 	}
1465 	pgt_inc_used_entries(tblidx.pgt);
1466 
1467 	FMSG("Mapped 0x%" PRIxVA " -> 0x%" PRIxPA, page_va, pa);
1468 }
1469 
1470 static void make_dirty_page(struct tee_pager_pmem *pmem,
1471 			    struct vm_paged_region *reg, struct tblidx tblidx,
1472 			    paddr_t pa)
1473 {
1474 	assert(reg->flags & (TEE_MATTR_UW | TEE_MATTR_PW));
1475 	assert(!(pmem->flags & PMEM_FLAG_DIRTY));
1476 
1477 	FMSG("Dirty %#"PRIxVA, tblidx2va(tblidx));
1478 	pmem->flags |= PMEM_FLAG_DIRTY;
1479 	tblidx_set_entry(tblidx, pa, get_region_mattr(reg->flags));
1480 	tblidx_tlbi_entry(tblidx);
1481 }
1482 
1483 /*
1484  * This function takes a reference to a page (@fobj + fobj_pgidx) and makes
1485  * the corresponding IV available.
1486  *
1487  * In case the page needs to be saved the IV must be writable, consequently
1488  * is the page holding the IV made dirty. If the page instead only is to
1489  * be verified it's enough that the page holding the IV is readonly and
1490  * thus doesn't have to be made dirty too.
1491  *
1492  * This function depends on pager_spare_pmem pointing to a free pmem when
1493  * entered. In case the page holding the needed IV isn't mapped this spare
1494  * pmem is used to map the page. If this function has used pager_spare_pmem
1495  * and assigned it to NULL it must be reassigned with a new free pmem
1496  * before this function can be called again.
1497  */
1498 static void make_iv_available(struct fobj *fobj, unsigned int fobj_pgidx,
1499 			      bool writable)
1500 {
1501 	struct vm_paged_region *reg = pager_iv_region;
1502 	struct tee_pager_pmem *pmem = NULL;
1503 	struct tblidx tblidx = { };
1504 	vaddr_t page_va = 0;
1505 	uint32_t attr = 0;
1506 	paddr_t pa = 0;
1507 
1508 	page_va = fobj_get_iv_vaddr(fobj, fobj_pgidx) & ~SMALL_PAGE_MASK;
1509 	if (!IS_ENABLED(CFG_CORE_PAGE_TAG_AND_IV) || !page_va) {
1510 		assert(!page_va);
1511 		return;
1512 	}
1513 
1514 	assert(reg && reg->type == PAGED_REGION_TYPE_RW);
1515 	assert(pager_spare_pmem);
1516 	assert(core_is_buffer_inside(page_va, 1, reg->base, reg->size));
1517 
1518 	tblidx = region_va2tblidx(reg, page_va);
1519 	/*
1520 	 * We don't care if tee_pager_unhide_page() succeeds or not, we're
1521 	 * still checking the attributes afterwards.
1522 	 */
1523 	tee_pager_unhide_page(reg, page_va);
1524 	tblidx_get_entry(tblidx, &pa, &attr);
1525 	if (!(attr & TEE_MATTR_VALID_BLOCK)) {
1526 		/*
1527 		 * We're using the spare pmem to map the IV corresponding
1528 		 * to another page.
1529 		 */
1530 		pmem = pager_spare_pmem;
1531 		pager_spare_pmem = NULL;
1532 		pmem_assign_fobj_page(pmem, reg, page_va);
1533 
1534 		if (writable)
1535 			pmem->flags |= PMEM_FLAG_DIRTY;
1536 
1537 		pager_deploy_page(pmem, reg, page_va,
1538 				  false /*!clean_user_cache*/, writable);
1539 	} else if (writable && !(attr & TEE_MATTR_PW)) {
1540 		pmem = pmem_find(reg, page_va);
1541 		/* Note that pa is valid since TEE_MATTR_VALID_BLOCK is set */
1542 		make_dirty_page(pmem, reg, tblidx, pa);
1543 	}
1544 }
1545 
1546 static void pager_get_page(struct vm_paged_region *reg, struct abort_info *ai,
1547 			   bool clean_user_cache)
1548 {
1549 	vaddr_t page_va = ai->va & ~SMALL_PAGE_MASK;
1550 	struct tblidx tblidx = region_va2tblidx(reg, page_va);
1551 	struct tee_pager_pmem *pmem = NULL;
1552 	bool writable = false;
1553 	uint32_t attr = 0;
1554 
1555 	/*
1556 	 * Get a pmem to load code and data into, also make sure
1557 	 * the corresponding IV page is available.
1558 	 */
1559 	while (true) {
1560 		pmem = TAILQ_FIRST(&tee_pager_pmem_head);
1561 		if (!pmem) {
1562 			EMSG("No pmem entries");
1563 			abort_print(ai);
1564 			panic();
1565 		}
1566 
1567 		if (pmem->fobj) {
1568 			pmem_unmap(pmem, NULL);
1569 			if (pmem_is_dirty(pmem)) {
1570 				uint8_t *va = pmem->va_alias;
1571 
1572 				make_iv_available(pmem->fobj, pmem->fobj_pgidx,
1573 						  true /*writable*/);
1574 				asan_tag_access(va, va + SMALL_PAGE_SIZE);
1575 				if (fobj_save_page(pmem->fobj, pmem->fobj_pgidx,
1576 						   pmem->va_alias))
1577 					panic("fobj_save_page");
1578 				asan_tag_no_access(va, va + SMALL_PAGE_SIZE);
1579 
1580 				pmem_clear(pmem);
1581 
1582 				/*
1583 				 * If the spare pmem was used by
1584 				 * make_iv_available() we need to replace
1585 				 * it with the just freed pmem.
1586 				 *
1587 				 * See make_iv_available() for details.
1588 				 */
1589 				if (IS_ENABLED(CFG_CORE_PAGE_TAG_AND_IV) &&
1590 				    !pager_spare_pmem) {
1591 					TAILQ_REMOVE(&tee_pager_pmem_head,
1592 						     pmem, link);
1593 					pager_spare_pmem = pmem;
1594 					pmem = NULL;
1595 				}
1596 
1597 				/*
1598 				 * Check if the needed virtual page was
1599 				 * made available as a side effect of the
1600 				 * call to make_iv_available() above. If so
1601 				 * we're done.
1602 				 */
1603 				tblidx_get_entry(tblidx, NULL, &attr);
1604 				if (attr & TEE_MATTR_VALID_BLOCK)
1605 					return;
1606 
1607 				/*
1608 				 * The freed pmem was used to replace the
1609 				 * consumed pager_spare_pmem above. Restart
1610 				 * to find another pmem.
1611 				 */
1612 				if (!pmem)
1613 					continue;
1614 			}
1615 		}
1616 
1617 		TAILQ_REMOVE(&tee_pager_pmem_head, pmem, link);
1618 		pmem_clear(pmem);
1619 
1620 		pmem_assign_fobj_page(pmem, reg, page_va);
1621 		make_iv_available(pmem->fobj, pmem->fobj_pgidx,
1622 				  false /*!writable*/);
1623 		if (!IS_ENABLED(CFG_CORE_PAGE_TAG_AND_IV) || pager_spare_pmem)
1624 			break;
1625 
1626 		/*
1627 		 * The spare pmem was used by make_iv_available(). We need
1628 		 * to replace it with the just freed pmem. And get another
1629 		 * pmem.
1630 		 *
1631 		 * See make_iv_available() for details.
1632 		 */
1633 		pmem_clear(pmem);
1634 		pager_spare_pmem = pmem;
1635 	}
1636 
1637 	/*
1638 	 * PAGED_REGION_TYPE_LOCK are always writable while PAGED_REGION_TYPE_RO
1639 	 * are never writable.
1640 	 *
1641 	 * Pages from PAGED_REGION_TYPE_RW starts read-only to be
1642 	 * able to tell when they are updated and should be tagged
1643 	 * as dirty.
1644 	 */
1645 	if (reg->type == PAGED_REGION_TYPE_LOCK ||
1646 	    (reg->type == PAGED_REGION_TYPE_RW && abort_is_write_fault(ai)))
1647 		writable = true;
1648 	else
1649 		writable = false;
1650 
1651 	pager_deploy_page(pmem, reg, page_va, clean_user_cache, writable);
1652 }
1653 
1654 static bool pager_update_permissions(struct vm_paged_region *reg,
1655 				     struct abort_info *ai, bool *handled)
1656 {
1657 	struct tblidx tblidx = region_va2tblidx(reg, ai->va);
1658 	struct tee_pager_pmem *pmem = NULL;
1659 	uint32_t attr = 0;
1660 	paddr_t pa = 0;
1661 
1662 	*handled = false;
1663 
1664 	tblidx_get_entry(tblidx, &pa, &attr);
1665 
1666 	/* Not mapped */
1667 	if (!(attr & TEE_MATTR_VALID_BLOCK))
1668 		return false;
1669 
1670 	/* Not readable, should not happen */
1671 	if (abort_is_user_exception(ai)) {
1672 		if (!(attr & TEE_MATTR_UR))
1673 			return true;
1674 	} else {
1675 		if (!(attr & TEE_MATTR_PR)) {
1676 			abort_print_error(ai);
1677 			panic();
1678 		}
1679 	}
1680 
1681 	switch (core_mmu_get_fault_type(ai->fault_descr)) {
1682 	case CORE_MMU_FAULT_TRANSLATION:
1683 	case CORE_MMU_FAULT_READ_PERMISSION:
1684 		if (ai->abort_type == ABORT_TYPE_PREFETCH) {
1685 			/* Check attempting to execute from an NOX page */
1686 			if (abort_is_user_exception(ai)) {
1687 				if (!(attr & TEE_MATTR_UX))
1688 					return true;
1689 			} else {
1690 				if (!(attr & TEE_MATTR_PX)) {
1691 					abort_print_error(ai);
1692 					panic();
1693 				}
1694 			}
1695 		}
1696 		/* Since the page is mapped now it's OK */
1697 		break;
1698 	case CORE_MMU_FAULT_WRITE_PERMISSION:
1699 		/* Check attempting to write to an RO page */
1700 		pmem = pmem_find(reg, ai->va);
1701 		if (!pmem)
1702 			panic();
1703 		if (abort_is_user_exception(ai)) {
1704 			if (!(reg->flags & TEE_MATTR_UW))
1705 				return true;
1706 			if (!(attr & TEE_MATTR_UW))
1707 				make_dirty_page(pmem, reg, tblidx, pa);
1708 		} else {
1709 			if (!(reg->flags & TEE_MATTR_PW)) {
1710 				abort_print_error(ai);
1711 				panic();
1712 			}
1713 			if (!(attr & TEE_MATTR_PW))
1714 				make_dirty_page(pmem, reg, tblidx, pa);
1715 		}
1716 		/* Since permissions has been updated now it's OK */
1717 		break;
1718 	default:
1719 		/* Some fault we can't deal with */
1720 		if (abort_is_user_exception(ai))
1721 			return true;
1722 		abort_print_error(ai);
1723 		panic();
1724 	}
1725 	*handled = true;
1726 	return true;
1727 }
1728 
1729 #ifdef CFG_TEE_CORE_DEBUG
1730 static void stat_handle_fault(void)
1731 {
1732 	static size_t num_faults;
1733 	static size_t min_npages = SIZE_MAX;
1734 	static size_t total_min_npages = SIZE_MAX;
1735 
1736 	num_faults++;
1737 	if ((num_faults % 1024) == 0 || tee_pager_npages < total_min_npages) {
1738 		DMSG("nfaults %zu npages %zu (min %zu)",
1739 		     num_faults, tee_pager_npages, min_npages);
1740 		min_npages = tee_pager_npages; /* reset */
1741 	}
1742 	if (tee_pager_npages < min_npages)
1743 		min_npages = tee_pager_npages;
1744 	if (tee_pager_npages < total_min_npages)
1745 		total_min_npages = tee_pager_npages;
1746 }
1747 #else
1748 static void stat_handle_fault(void)
1749 {
1750 }
1751 #endif
1752 
1753 bool tee_pager_handle_fault(struct abort_info *ai)
1754 {
1755 	struct vm_paged_region *reg;
1756 	vaddr_t page_va = ai->va & ~SMALL_PAGE_MASK;
1757 	uint32_t exceptions;
1758 	bool ret;
1759 	bool clean_user_cache = false;
1760 
1761 #ifdef TEE_PAGER_DEBUG_PRINT
1762 	if (!abort_is_user_exception(ai))
1763 		abort_print(ai);
1764 #endif
1765 
1766 	/*
1767 	 * We're updating pages that can affect several active CPUs at a
1768 	 * time below. We end up here because a thread tries to access some
1769 	 * memory that isn't available. We have to be careful when making
1770 	 * that memory available as other threads may succeed in accessing
1771 	 * that address the moment after we've made it available.
1772 	 *
1773 	 * That means that we can't just map the memory and populate the
1774 	 * page, instead we use the aliased mapping to populate the page
1775 	 * and once everything is ready we map it.
1776 	 */
1777 	exceptions = pager_lock(ai);
1778 
1779 	stat_handle_fault();
1780 
1781 	/* check if the access is valid */
1782 	if (abort_is_user_exception(ai)) {
1783 		reg = find_uta_region(ai->va);
1784 		clean_user_cache = true;
1785 	} else {
1786 		reg = find_region(&core_vm_regions, ai->va);
1787 		if (!reg) {
1788 			reg = find_uta_region(ai->va);
1789 			clean_user_cache = true;
1790 		}
1791 	}
1792 	if (!reg || !reg->pgt_array[0]) {
1793 		ret = false;
1794 		goto out;
1795 	}
1796 
1797 	if (tee_pager_unhide_page(reg, page_va))
1798 		goto out_success;
1799 
1800 	/*
1801 	 * The page wasn't hidden, but some other core may have
1802 	 * updated the table entry before we got here or we need
1803 	 * to make a read-only page read-write (dirty).
1804 	 */
1805 	if (pager_update_permissions(reg, ai, &ret)) {
1806 		/*
1807 		 * Nothing more to do with the abort. The problem
1808 		 * could already have been dealt with from another
1809 		 * core or if ret is false the TA will be paniced.
1810 		 */
1811 		goto out;
1812 	}
1813 
1814 	pager_get_page(reg, ai, clean_user_cache);
1815 
1816 out_success:
1817 	tee_pager_hide_pages();
1818 	ret = true;
1819 out:
1820 	pager_unlock(exceptions);
1821 	return ret;
1822 }
1823 
1824 void tee_pager_add_pages(vaddr_t vaddr, size_t npages, bool unmap)
1825 {
1826 	size_t n = 0;
1827 
1828 	DMSG("0x%" PRIxVA " - 0x%" PRIxVA " : %d",
1829 	     vaddr, vaddr + npages * SMALL_PAGE_SIZE, (int)unmap);
1830 
1831 	/* setup memory */
1832 	for (n = 0; n < npages; n++) {
1833 		struct core_mmu_table_info *ti = NULL;
1834 		struct tee_pager_pmem *pmem = NULL;
1835 		vaddr_t va = vaddr + n * SMALL_PAGE_SIZE;
1836 		struct tblidx tblidx = { };
1837 		unsigned int pgidx = 0;
1838 		paddr_t pa = 0;
1839 		uint32_t attr = 0;
1840 
1841 		ti = find_table_info(va);
1842 		pgidx = core_mmu_va2idx(ti, va);
1843 		/*
1844 		 * Note that we can only support adding pages in the
1845 		 * valid range of this table info, currently not a problem.
1846 		 */
1847 		core_mmu_get_entry(ti, pgidx, &pa, &attr);
1848 
1849 		/* Ignore unmapped pages/blocks */
1850 		if (!(attr & TEE_MATTR_VALID_BLOCK))
1851 			continue;
1852 
1853 		pmem = calloc(1, sizeof(struct tee_pager_pmem));
1854 		if (!pmem)
1855 			panic("out of mem");
1856 		pmem_clear(pmem);
1857 
1858 		pmem->va_alias = pager_add_alias_page(pa);
1859 
1860 		if (unmap) {
1861 			core_mmu_set_entry(ti, pgidx, 0, 0);
1862 			pgt_dec_used_entries(find_core_pgt(va));
1863 		} else {
1864 			struct vm_paged_region *reg = NULL;
1865 
1866 			/*
1867 			 * The page is still mapped, let's assign the region
1868 			 * and update the protection bits accordingly.
1869 			 */
1870 			reg = find_region(&core_vm_regions, va);
1871 			assert(reg);
1872 			pmem_assign_fobj_page(pmem, reg, va);
1873 			tblidx = pmem_get_region_tblidx(pmem, reg);
1874 			assert(tblidx.pgt == find_core_pgt(va));
1875 			assert(pa == get_pmem_pa(pmem));
1876 			tblidx_set_entry(tblidx, pa,
1877 					 get_region_mattr(reg->flags));
1878 		}
1879 
1880 		if (unmap && IS_ENABLED(CFG_CORE_PAGE_TAG_AND_IV) &&
1881 		    !pager_spare_pmem) {
1882 			pager_spare_pmem = pmem;
1883 		} else {
1884 			tee_pager_npages++;
1885 			incr_npages_all();
1886 			set_npages();
1887 			TAILQ_INSERT_TAIL(&tee_pager_pmem_head, pmem, link);
1888 		}
1889 	}
1890 
1891 	/*
1892 	 * As this is done at inits, invalidate all TLBs once instead of
1893 	 * targeting only the modified entries.
1894 	 */
1895 	tlbi_all();
1896 }
1897 
1898 #ifdef CFG_PAGED_USER_TA
1899 static struct pgt *find_pgt(struct pgt *pgt, vaddr_t va)
1900 {
1901 	struct pgt *p = pgt;
1902 
1903 	while (p && (va & ~CORE_MMU_PGDIR_MASK) != p->vabase)
1904 		p = SLIST_NEXT(p, link);
1905 	return p;
1906 }
1907 
1908 void tee_pager_assign_um_tables(struct user_mode_ctx *uctx)
1909 {
1910 	struct vm_paged_region *reg = NULL;
1911 	struct pgt *pgt = NULL;
1912 	size_t n = 0;
1913 
1914 	if (!uctx->regions)
1915 		return;
1916 
1917 	pgt = SLIST_FIRST(&thread_get_tsd()->pgt_cache);
1918 	TAILQ_FOREACH(reg, uctx->regions, link) {
1919 		for (n = 0; n < get_pgt_count(reg->base, reg->size); n++) {
1920 			vaddr_t va = reg->base + CORE_MMU_PGDIR_SIZE * n;
1921 			struct pgt *p __maybe_unused = find_pgt(pgt, va);
1922 
1923 			if (!reg->pgt_array[n])
1924 				reg->pgt_array[n] = p;
1925 			else
1926 				assert(reg->pgt_array[n] == p);
1927 		}
1928 	}
1929 }
1930 
1931 void tee_pager_pgt_save_and_release_entries(struct pgt *pgt)
1932 {
1933 	struct tee_pager_pmem *pmem = NULL;
1934 	struct vm_paged_region *reg = NULL;
1935 	struct vm_paged_region_head *regions = NULL;
1936 	uint32_t exceptions = pager_lock_check_stack(SMALL_PAGE_SIZE);
1937 	size_t n = 0;
1938 
1939 	if (!pgt->num_used_entries)
1940 		goto out;
1941 
1942 	TAILQ_FOREACH(pmem, &tee_pager_pmem_head, link) {
1943 		if (pmem->fobj)
1944 			pmem_unmap(pmem, pgt);
1945 	}
1946 	assert(!pgt->num_used_entries);
1947 
1948 out:
1949 	regions = to_user_mode_ctx(pgt->ctx)->regions;
1950 	if (regions) {
1951 		TAILQ_FOREACH(reg, regions, link) {
1952 			for (n = 0; n < get_pgt_count(reg->base, reg->size);
1953 			     n++) {
1954 				if (reg->pgt_array[n] == pgt) {
1955 					reg->pgt_array[n] = NULL;
1956 					break;
1957 				}
1958 			}
1959 		}
1960 	}
1961 
1962 	pager_unlock(exceptions);
1963 }
1964 DECLARE_KEEP_PAGER(tee_pager_pgt_save_and_release_entries);
1965 #endif /*CFG_PAGED_USER_TA*/
1966 
1967 void tee_pager_release_phys(void *addr, size_t size)
1968 {
1969 	bool unmaped = false;
1970 	vaddr_t va = (vaddr_t)addr;
1971 	vaddr_t begin = ROUNDUP(va, SMALL_PAGE_SIZE);
1972 	vaddr_t end = ROUNDDOWN(va + size, SMALL_PAGE_SIZE);
1973 	struct vm_paged_region *reg;
1974 	uint32_t exceptions;
1975 
1976 	if (end <= begin)
1977 		return;
1978 
1979 	exceptions = pager_lock_check_stack(128);
1980 
1981 	for (va = begin; va < end; va += SMALL_PAGE_SIZE) {
1982 		reg = find_region(&core_vm_regions, va);
1983 		if (!reg)
1984 			panic();
1985 		unmaped |= tee_pager_release_one_phys(reg, va);
1986 	}
1987 
1988 	if (unmaped)
1989 		tlbi_mva_range(begin, end - begin, SMALL_PAGE_SIZE);
1990 
1991 	pager_unlock(exceptions);
1992 }
1993 DECLARE_KEEP_PAGER(tee_pager_release_phys);
1994 
1995 void *tee_pager_alloc(size_t size)
1996 {
1997 	tee_mm_entry_t *mm = NULL;
1998 	uint8_t *smem = NULL;
1999 	size_t num_pages = 0;
2000 	struct fobj *fobj = NULL;
2001 
2002 	if (!size)
2003 		return NULL;
2004 
2005 	mm = tee_mm_alloc(&tee_mm_vcore, ROUNDUP(size, SMALL_PAGE_SIZE));
2006 	if (!mm)
2007 		return NULL;
2008 
2009 	smem = (uint8_t *)tee_mm_get_smem(mm);
2010 	num_pages = tee_mm_get_bytes(mm) / SMALL_PAGE_SIZE;
2011 	fobj = fobj_locked_paged_alloc(num_pages);
2012 	if (!fobj) {
2013 		tee_mm_free(mm);
2014 		return NULL;
2015 	}
2016 
2017 	tee_pager_add_core_region((vaddr_t)smem, PAGED_REGION_TYPE_LOCK, fobj);
2018 	fobj_put(fobj);
2019 
2020 	asan_tag_access(smem, smem + num_pages * SMALL_PAGE_SIZE);
2021 
2022 	return smem;
2023 }
2024 
2025 vaddr_t tee_pager_init_iv_region(struct fobj *fobj)
2026 {
2027 	tee_mm_entry_t *mm = NULL;
2028 	uint8_t *smem = NULL;
2029 
2030 	assert(!pager_iv_region);
2031 
2032 	mm = tee_mm_alloc(&tee_mm_vcore, fobj->num_pages * SMALL_PAGE_SIZE);
2033 	if (!mm)
2034 		panic();
2035 
2036 	smem = (uint8_t *)tee_mm_get_smem(mm);
2037 	tee_pager_add_core_region((vaddr_t)smem, PAGED_REGION_TYPE_RW, fobj);
2038 	fobj_put(fobj);
2039 
2040 	asan_tag_access(smem, smem + fobj->num_pages * SMALL_PAGE_SIZE);
2041 
2042 	pager_iv_region = find_region(&core_vm_regions, (vaddr_t)smem);
2043 	assert(pager_iv_region && pager_iv_region->fobj == fobj);
2044 
2045 	return (vaddr_t)smem;
2046 }
2047