1 /*
2 * Copyright (C) 2017 NXP Semiconductors
3 * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com>
4 *
5 * SPDX-License-Identifier: GPL-2.0+
6 */
7
8 #include <common.h>
9 #include <bouncebuf.h>
10 #include <dm.h>
11 #include <errno.h>
12 #include <memalign.h>
13 #include <pci.h>
14 #include <dm/device-internal.h>
15 #include "nvme.h"
16
17 #define NVME_Q_DEPTH 2
18 #define NVME_AQ_DEPTH 2
19 #define NVME_SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
20 #define NVME_CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
21 #define NVME_CQ_ALLOCATION ALIGN(NVME_CQ_SIZE(NVME_Q_DEPTH), \
22 ARCH_DMA_MINALIGN)
23 #define ADMIN_TIMEOUT 60
24 #define IO_TIMEOUT 30
25 #define MAX_PRP_POOL 512
26
27 enum nvme_queue_id {
28 NVME_ADMIN_Q,
29 NVME_IO_Q,
30 NVME_Q_NUM,
31 };
32
33 /*
34 * An NVM Express queue. Each device has at least two (one for admin
35 * commands and one for I/O commands).
36 */
37 struct nvme_queue {
38 struct nvme_dev *dev;
39 struct nvme_command *sq_cmds;
40 struct nvme_completion *cqes;
41 wait_queue_head_t sq_full;
42 u32 __iomem *q_db;
43 u16 q_depth;
44 s16 cq_vector;
45 u16 sq_head;
46 u16 sq_tail;
47 u16 cq_head;
48 u16 qid;
49 u8 cq_phase;
50 u8 cqe_seen;
51 unsigned long cmdid_data[];
52 };
53
nvme_wait_ready(struct nvme_dev * dev,bool enabled)54 static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
55 {
56 u32 bit = enabled ? NVME_CSTS_RDY : 0;
57 int timeout;
58 ulong start;
59
60 /* Timeout field in the CAP register is in 500 millisecond units */
61 timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
62
63 start = get_timer(0);
64 while (get_timer(start) < timeout) {
65 if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit)
66 return 0;
67 }
68
69 return -ETIME;
70 }
71
nvme_setup_prps(struct nvme_dev * dev,u64 * prp2,int total_len,u64 dma_addr)72 static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
73 int total_len, u64 dma_addr)
74 {
75 u32 page_size = dev->page_size;
76 int offset = dma_addr & (page_size - 1);
77 u64 *prp_pool;
78 int length = total_len;
79 int i, nprps;
80 u32 prps_per_page = page_size >> 3;
81 u32 num_pages;
82
83 length -= (page_size - offset);
84
85 if (length <= 0) {
86 *prp2 = 0;
87 return 0;
88 }
89
90 if (length)
91 dma_addr += (page_size - offset);
92
93 if (length <= page_size) {
94 *prp2 = dma_addr;
95 return 0;
96 }
97
98 nprps = DIV_ROUND_UP(length, page_size);
99 num_pages = DIV_ROUND_UP(nprps + 1, prps_per_page);
100
101 if (nprps > dev->prp_entry_num) {
102 free(dev->prp_pool);
103 /*
104 * Always increase in increments of pages. It doesn't waste
105 * much memory and reduces the number of allocations.
106 */
107 dev->prp_pool = memalign(page_size, num_pages * page_size);
108 if (!dev->prp_pool) {
109 printf("Error: malloc prp_pool fail\n");
110 return -ENOMEM;
111 }
112 dev->prp_entry_num = prps_per_page * num_pages;
113 }
114
115 prp_pool = dev->prp_pool;
116 i = 0;
117 while (nprps) {
118 if (i == prps_per_page) {
119 *(prp_pool + i) = *(prp_pool + i - 1);
120 *(prp_pool + i - 1) = cpu_to_le64((ulong)prp_pool +
121 page_size);
122 i = 1;
123 prp_pool += page_size;
124 }
125 *(prp_pool + i++) = cpu_to_le64(dma_addr);
126 dma_addr += page_size;
127 nprps--;
128 }
129 *prp2 = (ulong)dev->prp_pool;
130
131 flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool +
132 dev->prp_entry_num * sizeof(u64));
133
134 return 0;
135 }
136
nvme_get_cmd_id(void)137 static __le16 nvme_get_cmd_id(void)
138 {
139 static unsigned short cmdid;
140
141 return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
142 }
143
nvme_read_completion_status(struct nvme_queue * nvmeq,u16 index)144 static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
145 {
146 /*
147 * Single CQ entries are always smaller than a cache line, so we
148 * can't invalidate them individually. However CQ entries are
149 * read only by the CPU, so it's safe to always invalidate all of them,
150 * as the cache line should never become dirty.
151 */
152 ulong start = (ulong)&nvmeq->cqes[0];
153 ulong stop = start + NVME_CQ_ALLOCATION;
154
155 invalidate_dcache_range(start, stop);
156
157 return readw(&(nvmeq->cqes[index].status));
158 }
159
160 /**
161 * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
162 *
163 * @nvmeq: The queue to use
164 * @cmd: The command to send
165 */
nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd)166 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
167 {
168 u16 tail = nvmeq->sq_tail;
169
170 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
171 flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
172 (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
173
174 if (++tail == nvmeq->q_depth)
175 tail = 0;
176 writel(tail, nvmeq->q_db);
177 nvmeq->sq_tail = tail;
178 }
179
nvme_submit_sync_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd,u32 * result,unsigned timeout)180 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
181 struct nvme_command *cmd,
182 u32 *result, unsigned timeout)
183 {
184 u16 head = nvmeq->cq_head;
185 u16 phase = nvmeq->cq_phase;
186 u16 status;
187 ulong start_time;
188 ulong timeout_us = timeout * 100000;
189
190 cmd->common.command_id = nvme_get_cmd_id();
191 nvme_submit_cmd(nvmeq, cmd);
192
193 start_time = timer_get_us();
194
195 for (;;) {
196 status = nvme_read_completion_status(nvmeq, head);
197 if ((status & 0x01) == phase)
198 break;
199 if (timeout_us > 0 && (timer_get_us() - start_time)
200 >= timeout_us)
201 return -ETIMEDOUT;
202 }
203
204 status >>= 1;
205 if (status) {
206 printf("ERROR: status = %x, phase = %d, head = %d\n",
207 status, phase, head);
208 status = 0;
209 if (++head == nvmeq->q_depth) {
210 head = 0;
211 phase = !phase;
212 }
213 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
214 nvmeq->cq_head = head;
215 nvmeq->cq_phase = phase;
216
217 return -EIO;
218 }
219
220 if (result)
221 *result = readl(&(nvmeq->cqes[head].result));
222
223 if (++head == nvmeq->q_depth) {
224 head = 0;
225 phase = !phase;
226 }
227 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
228 nvmeq->cq_head = head;
229 nvmeq->cq_phase = phase;
230
231 return status;
232 }
233
nvme_submit_admin_cmd(struct nvme_dev * dev,struct nvme_command * cmd,u32 * result)234 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
235 u32 *result)
236 {
237 return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
238 result, ADMIN_TIMEOUT);
239 }
240
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)241 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
242 int qid, int depth)
243 {
244 struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
245 if (!nvmeq)
246 return NULL;
247 memset(nvmeq, 0, sizeof(*nvmeq));
248
249 nvmeq->cqes = (void *)memalign(4096, NVME_CQ_ALLOCATION);
250 if (!nvmeq->cqes)
251 goto free_nvmeq;
252 memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
253
254 nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
255 if (!nvmeq->sq_cmds)
256 goto free_queue;
257 memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
258
259 nvmeq->dev = dev;
260
261 nvmeq->cq_head = 0;
262 nvmeq->cq_phase = 1;
263 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
264 nvmeq->q_depth = depth;
265 nvmeq->qid = qid;
266 dev->queue_count++;
267 dev->queues[qid] = nvmeq;
268
269 return nvmeq;
270
271 free_queue:
272 free((void *)nvmeq->cqes);
273 free_nvmeq:
274 free(nvmeq);
275
276 return NULL;
277 }
278
nvme_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)279 static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
280 {
281 struct nvme_command c;
282
283 memset(&c, 0, sizeof(c));
284 c.delete_queue.opcode = opcode;
285 c.delete_queue.qid = cpu_to_le16(id);
286
287 return nvme_submit_admin_cmd(dev, &c, NULL);
288 }
289
nvme_delete_sq(struct nvme_dev * dev,u16 sqid)290 static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
291 {
292 return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
293 }
294
nvme_delete_cq(struct nvme_dev * dev,u16 cqid)295 static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
296 {
297 return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
298 }
299
nvme_enable_ctrl(struct nvme_dev * dev)300 static int nvme_enable_ctrl(struct nvme_dev *dev)
301 {
302 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
303 dev->ctrl_config |= NVME_CC_ENABLE;
304 writel(dev->ctrl_config, &dev->bar->cc);
305
306 return nvme_wait_ready(dev, true);
307 }
308
nvme_disable_ctrl(struct nvme_dev * dev)309 static int nvme_disable_ctrl(struct nvme_dev *dev)
310 {
311 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
312 dev->ctrl_config &= ~NVME_CC_ENABLE;
313 writel(dev->ctrl_config, &dev->bar->cc);
314
315 return nvme_wait_ready(dev, false);
316 }
317
nvme_free_queue(struct nvme_queue * nvmeq)318 static void nvme_free_queue(struct nvme_queue *nvmeq)
319 {
320 free((void *)nvmeq->cqes);
321 free(nvmeq->sq_cmds);
322 free(nvmeq);
323 }
324
nvme_free_queues(struct nvme_dev * dev,int lowest)325 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
326 {
327 int i;
328
329 for (i = dev->queue_count - 1; i >= lowest; i--) {
330 struct nvme_queue *nvmeq = dev->queues[i];
331 dev->queue_count--;
332 dev->queues[i] = NULL;
333 nvme_free_queue(nvmeq);
334 }
335 }
336
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)337 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
338 {
339 struct nvme_dev *dev = nvmeq->dev;
340
341 nvmeq->sq_tail = 0;
342 nvmeq->cq_head = 0;
343 nvmeq->cq_phase = 1;
344 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
345 memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
346 flush_dcache_range((ulong)nvmeq->cqes,
347 (ulong)nvmeq->cqes + NVME_CQ_ALLOCATION);
348 dev->online_queues++;
349 }
350
nvme_configure_admin_queue(struct nvme_dev * dev)351 static int nvme_configure_admin_queue(struct nvme_dev *dev)
352 {
353 int result;
354 u32 aqa;
355 u64 cap = dev->cap;
356 struct nvme_queue *nvmeq;
357 /* most architectures use 4KB as the page size */
358 unsigned page_shift = 12;
359 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
360 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
361
362 if (page_shift < dev_page_min) {
363 debug("Device minimum page size (%u) too large for host (%u)\n",
364 1 << dev_page_min, 1 << page_shift);
365 return -ENODEV;
366 }
367
368 if (page_shift > dev_page_max) {
369 debug("Device maximum page size (%u) smaller than host (%u)\n",
370 1 << dev_page_max, 1 << page_shift);
371 page_shift = dev_page_max;
372 }
373
374 result = nvme_disable_ctrl(dev);
375 if (result < 0)
376 return result;
377
378 nvmeq = dev->queues[NVME_ADMIN_Q];
379 if (!nvmeq) {
380 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
381 if (!nvmeq)
382 return -ENOMEM;
383 }
384
385 aqa = nvmeq->q_depth - 1;
386 aqa |= aqa << 16;
387
388 dev->page_size = 1 << page_shift;
389
390 dev->ctrl_config = NVME_CC_CSS_NVM;
391 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
392 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
393 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
394
395 writel(aqa, &dev->bar->aqa);
396 nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
397 nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
398
399 result = nvme_enable_ctrl(dev);
400 if (result)
401 goto free_nvmeq;
402
403 nvmeq->cq_vector = 0;
404
405 nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
406
407 return result;
408
409 free_nvmeq:
410 nvme_free_queues(dev, 0);
411
412 return result;
413 }
414
nvme_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)415 static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
416 struct nvme_queue *nvmeq)
417 {
418 struct nvme_command c;
419 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
420
421 memset(&c, 0, sizeof(c));
422 c.create_cq.opcode = nvme_admin_create_cq;
423 c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
424 c.create_cq.cqid = cpu_to_le16(qid);
425 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
426 c.create_cq.cq_flags = cpu_to_le16(flags);
427 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
428
429 return nvme_submit_admin_cmd(dev, &c, NULL);
430 }
431
nvme_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)432 static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
433 struct nvme_queue *nvmeq)
434 {
435 struct nvme_command c;
436 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
437
438 memset(&c, 0, sizeof(c));
439 c.create_sq.opcode = nvme_admin_create_sq;
440 c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
441 c.create_sq.sqid = cpu_to_le16(qid);
442 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
443 c.create_sq.sq_flags = cpu_to_le16(flags);
444 c.create_sq.cqid = cpu_to_le16(qid);
445
446 return nvme_submit_admin_cmd(dev, &c, NULL);
447 }
448
nvme_identify(struct nvme_dev * dev,unsigned nsid,unsigned cns,dma_addr_t dma_addr)449 int nvme_identify(struct nvme_dev *dev, unsigned nsid,
450 unsigned cns, dma_addr_t dma_addr)
451 {
452 struct nvme_command c;
453 u32 page_size = dev->page_size;
454 int offset = dma_addr & (page_size - 1);
455 int length = sizeof(struct nvme_id_ctrl);
456 int ret;
457
458 memset(&c, 0, sizeof(c));
459 c.identify.opcode = nvme_admin_identify;
460 c.identify.nsid = cpu_to_le32(nsid);
461 c.identify.prp1 = cpu_to_le64(dma_addr);
462
463 length -= (page_size - offset);
464 if (length <= 0) {
465 c.identify.prp2 = 0;
466 } else {
467 dma_addr += (page_size - offset);
468 c.identify.prp2 = cpu_to_le64(dma_addr);
469 }
470
471 c.identify.cns = cpu_to_le32(cns);
472
473 invalidate_dcache_range(dma_addr,
474 dma_addr + sizeof(struct nvme_id_ctrl));
475
476 ret = nvme_submit_admin_cmd(dev, &c, NULL);
477 if (!ret)
478 invalidate_dcache_range(dma_addr,
479 dma_addr + sizeof(struct nvme_id_ctrl));
480
481 return ret;
482 }
483
nvme_get_features(struct nvme_dev * dev,unsigned fid,unsigned nsid,dma_addr_t dma_addr,u32 * result)484 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
485 dma_addr_t dma_addr, u32 *result)
486 {
487 struct nvme_command c;
488 int ret;
489
490 memset(&c, 0, sizeof(c));
491 c.features.opcode = nvme_admin_get_features;
492 c.features.nsid = cpu_to_le32(nsid);
493 c.features.prp1 = cpu_to_le64(dma_addr);
494 c.features.fid = cpu_to_le32(fid);
495
496 ret = nvme_submit_admin_cmd(dev, &c, result);
497
498 /*
499 * TODO: Add some cache invalidation when a DMA buffer is involved
500 * in the request, here and before the command gets submitted. The
501 * buffer size varies by feature, also some features use a different
502 * field in the command packet to hold the buffer address.
503 * Section 5.21.1 (Set Features command) in the NVMe specification
504 * details the buffer requirements for each feature.
505 *
506 * At the moment there is no user of this function.
507 */
508
509 return ret;
510 }
511
nvme_set_features(struct nvme_dev * dev,unsigned fid,unsigned dword11,dma_addr_t dma_addr,u32 * result)512 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
513 dma_addr_t dma_addr, u32 *result)
514 {
515 struct nvme_command c;
516
517 memset(&c, 0, sizeof(c));
518 c.features.opcode = nvme_admin_set_features;
519 c.features.prp1 = cpu_to_le64(dma_addr);
520 c.features.fid = cpu_to_le32(fid);
521 c.features.dword11 = cpu_to_le32(dword11);
522
523 /*
524 * TODO: Add a cache clean (aka flush) operation when a DMA buffer is
525 * involved in the request. The buffer size varies by feature, also
526 * some features use a different field in the command packet to hold
527 * the buffer address. Section 5.21.1 (Set Features command) in the
528 * NVMe specification details the buffer requirements for each
529 * feature.
530 * At the moment the only user of this function is not using
531 * any DMA buffer at all.
532 */
533
534 return nvme_submit_admin_cmd(dev, &c, result);
535 }
536
nvme_create_queue(struct nvme_queue * nvmeq,int qid)537 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
538 {
539 struct nvme_dev *dev = nvmeq->dev;
540 int result;
541
542 nvmeq->cq_vector = qid - 1;
543 result = nvme_alloc_cq(dev, qid, nvmeq);
544 if (result < 0)
545 goto release_cq;
546
547 result = nvme_alloc_sq(dev, qid, nvmeq);
548 if (result < 0)
549 goto release_sq;
550
551 nvme_init_queue(nvmeq, qid);
552
553 return result;
554
555 release_sq:
556 nvme_delete_sq(dev, qid);
557 release_cq:
558 nvme_delete_cq(dev, qid);
559
560 return result;
561 }
562
nvme_set_queue_count(struct nvme_dev * dev,int count)563 static int nvme_set_queue_count(struct nvme_dev *dev, int count)
564 {
565 int status;
566 u32 result;
567 u32 q_count = (count - 1) | ((count - 1) << 16);
568
569 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
570 q_count, 0, &result);
571
572 if (status < 0)
573 return status;
574 if (status > 1)
575 return 0;
576
577 return min(result & 0xffff, result >> 16) + 1;
578 }
579
nvme_create_io_queues(struct nvme_dev * dev)580 static void nvme_create_io_queues(struct nvme_dev *dev)
581 {
582 unsigned int i;
583
584 for (i = dev->queue_count; i <= dev->max_qid; i++)
585 if (!nvme_alloc_queue(dev, i, dev->q_depth))
586 break;
587
588 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
589 if (nvme_create_queue(dev->queues[i], i))
590 break;
591 }
592
nvme_setup_io_queues(struct nvme_dev * dev)593 static int nvme_setup_io_queues(struct nvme_dev *dev)
594 {
595 int nr_io_queues;
596 int result;
597
598 nr_io_queues = 1;
599 result = nvme_set_queue_count(dev, nr_io_queues);
600 if (result <= 0)
601 return result;
602
603 dev->max_qid = nr_io_queues;
604
605 /* Free previously allocated queues */
606 nvme_free_queues(dev, nr_io_queues + 1);
607 nvme_create_io_queues(dev);
608
609 return 0;
610 }
611
nvme_get_info_from_identify(struct nvme_dev * dev)612 static int nvme_get_info_from_identify(struct nvme_dev *dev)
613 {
614 struct nvme_id_ctrl *ctrl;
615 int ret;
616 int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
617
618 ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl));
619 if (!ctrl)
620 return -ENOMEM;
621
622 ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl);
623 if (ret) {
624 free(ctrl);
625 return -EIO;
626 }
627
628 dev->nn = le32_to_cpu(ctrl->nn);
629 dev->vwc = ctrl->vwc;
630 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
631 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
632 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
633 if (ctrl->mdts)
634 dev->max_transfer_shift = (ctrl->mdts + shift);
635 else {
636 /*
637 * Maximum Data Transfer Size (MDTS) field indicates the maximum
638 * data transfer size between the host and the controller. The
639 * host should not submit a command that exceeds this transfer
640 * size. The value is in units of the minimum memory page size
641 * and is reported as a power of two (2^n).
642 *
643 * The spec also says: a value of 0h indicates no restrictions
644 * on transfer size. But in nvme_blk_read/write() below we have
645 * the following algorithm for maximum number of logic blocks
646 * per transfer:
647 *
648 * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
649 *
650 * In order for lbas not to overflow, the maximum number is 15
651 * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
652 * Let's use 20 which provides 1MB size.
653 */
654 dev->max_transfer_shift = 20;
655 }
656
657 free(ctrl);
658 return 0;
659 }
660
nvme_get_namespace_id(struct udevice * udev,u32 * ns_id,u8 * eui64)661 int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64)
662 {
663 struct nvme_ns *ns = dev_get_priv(udev);
664
665 if (ns_id)
666 *ns_id = ns->ns_id;
667 if (eui64)
668 memcpy(eui64, ns->eui64, sizeof(ns->eui64));
669
670 return 0;
671 }
672
nvme_scan_namespace(void)673 int nvme_scan_namespace(void)
674 {
675 struct uclass *uc;
676 struct udevice *dev;
677 int ret;
678
679 ret = uclass_get(UCLASS_NVME, &uc);
680 if (ret)
681 return ret;
682
683 uclass_foreach_dev(dev, uc) {
684 ret = device_probe(dev);
685 if (ret)
686 return ret;
687 }
688
689 return 0;
690 }
691
nvme_blk_probe(struct udevice * udev)692 static int nvme_blk_probe(struct udevice *udev)
693 {
694 struct nvme_dev *ndev = dev_get_priv(udev->parent);
695 struct blk_desc *desc = dev_get_uclass_platdata(udev);
696 struct nvme_ns *ns = dev_get_priv(udev);
697 u8 flbas;
698 struct pci_child_platdata *pplat;
699 struct nvme_id_ns *id;
700
701 id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
702 if (!id)
703 return -ENOMEM;
704
705 ns->dev = ndev;
706 /* extract the namespace id from the block device name */
707 ns->ns_id = trailing_strtol(udev->name);
708 if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) {
709 free(id);
710 return -EIO;
711 }
712
713 memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64));
714 flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
715 ns->flbas = flbas;
716 ns->lba_shift = id->lbaf[flbas].ds;
717 list_add(&ns->list, &ndev->namespaces);
718
719 desc->lba = le64_to_cpu(id->nsze);
720 desc->log2blksz = ns->lba_shift;
721 desc->blksz = 1 << ns->lba_shift;
722 desc->bdev = udev;
723 pplat = dev_get_parent_platdata(udev->parent);
724 sprintf(desc->vendor, "0x%.4x", pplat->vendor);
725 memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
726 memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
727 part_init(desc);
728
729 free(id);
730 return 0;
731 }
732
nvme_blk_rw(struct udevice * udev,lbaint_t blknr,lbaint_t blkcnt,void * buffer,bool read)733 static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
734 lbaint_t blkcnt, void *buffer, bool read)
735 {
736 struct nvme_ns *ns = dev_get_priv(udev);
737 struct nvme_dev *dev = ns->dev;
738 struct nvme_command c;
739 struct blk_desc *desc = dev_get_uclass_platdata(udev);
740 int status;
741 u64 prp2;
742 u64 total_len = blkcnt << desc->log2blksz;
743 u64 temp_len = total_len;
744 uintptr_t temp_buffer;
745
746 u64 slba = blknr;
747 u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
748 u64 total_lbas = blkcnt;
749
750 struct bounce_buffer bb;
751 unsigned int bb_flags;
752 int ret;
753
754 if (read)
755 bb_flags = GEN_BB_WRITE;
756 else
757 bb_flags = GEN_BB_READ;
758
759 ret = bounce_buffer_start(&bb, buffer, total_len, bb_flags);
760 if (ret)
761 return -ENOMEM;
762 temp_buffer = (unsigned long)bb.bounce_buffer;
763
764 c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
765 c.rw.flags = 0;
766 c.rw.nsid = cpu_to_le32(ns->ns_id);
767 c.rw.control = 0;
768 c.rw.dsmgmt = 0;
769 c.rw.reftag = 0;
770 c.rw.apptag = 0;
771 c.rw.appmask = 0;
772 c.rw.metadata = 0;
773
774 /* Enable FUA for data integrity if vwc is enabled */
775 if (dev->vwc)
776 c.rw.control |= NVME_RW_FUA;
777
778 while (total_lbas) {
779 if (total_lbas < lbas) {
780 lbas = (u16)total_lbas;
781 total_lbas = 0;
782 } else {
783 total_lbas -= lbas;
784 }
785
786 if (nvme_setup_prps(dev, &prp2,
787 lbas << ns->lba_shift, temp_buffer))
788 return -EIO;
789 c.rw.slba = cpu_to_le64(slba);
790 slba += lbas;
791 c.rw.length = cpu_to_le16(lbas - 1);
792 c.rw.prp1 = cpu_to_le64(temp_buffer);
793 c.rw.prp2 = cpu_to_le64(prp2);
794 status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
795 &c, NULL, IO_TIMEOUT);
796 if (status)
797 break;
798 temp_len -= (u32)lbas << ns->lba_shift;
799 temp_buffer += lbas << ns->lba_shift;
800 }
801
802 bounce_buffer_stop(&bb);
803
804 return (total_len - temp_len) >> desc->log2blksz;
805 }
806
nvme_blk_read(struct udevice * udev,lbaint_t blknr,lbaint_t blkcnt,void * buffer)807 static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
808 lbaint_t blkcnt, void *buffer)
809 {
810 return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
811 }
812
nvme_blk_write(struct udevice * udev,lbaint_t blknr,lbaint_t blkcnt,const void * buffer)813 static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
814 lbaint_t blkcnt, const void *buffer)
815 {
816 return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
817 }
818
819 static const struct blk_ops nvme_blk_ops = {
820 .read = nvme_blk_read,
821 .write = nvme_blk_write,
822 };
823
824 U_BOOT_DRIVER(nvme_blk) = {
825 .name = "nvme-blk",
826 .id = UCLASS_BLK,
827 .probe = nvme_blk_probe,
828 .ops = &nvme_blk_ops,
829 .priv_auto_alloc_size = sizeof(struct nvme_ns),
830 };
831
nvme_bind(struct udevice * udev)832 static int nvme_bind(struct udevice *udev)
833 {
834 static int ndev_num;
835 char name[20];
836
837 sprintf(name, "nvme#%d", ndev_num++);
838
839 return device_set_name(udev, name);
840 }
841
nvme_probe(struct udevice * udev)842 static int nvme_probe(struct udevice *udev)
843 {
844 int ret;
845 struct nvme_dev *ndev = dev_get_priv(udev);
846 struct nvme_id_ns *id;
847
848 ndev->instance = trailing_strtol(udev->name);
849
850 INIT_LIST_HEAD(&ndev->namespaces);
851 ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
852 PCI_REGION_MEM);
853 if (readl(&ndev->bar->csts) == -1) {
854 ret = -ENODEV;
855 printf("Error: %s: Out of memory!\n", udev->name);
856 goto free_nvme;
857 }
858
859 ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
860 if (!ndev->queues) {
861 ret = -ENOMEM;
862 printf("Error: %s: Out of memory!\n", udev->name);
863 goto free_nvme;
864 }
865 memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
866
867 ndev->cap = nvme_readq(&ndev->bar->cap);
868 ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
869 ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
870 ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
871
872 ret = nvme_configure_admin_queue(ndev);
873 if (ret)
874 goto free_queue;
875
876 /* Allocate after the page size is known */
877 ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
878 if (!ndev->prp_pool) {
879 ret = -ENOMEM;
880 printf("Error: %s: Out of memory!\n", udev->name);
881 goto free_nvme;
882 }
883 ndev->prp_entry_num = MAX_PRP_POOL >> 3;
884
885 ret = nvme_setup_io_queues(ndev);
886 if (ret)
887 goto free_queue;
888
889 nvme_get_info_from_identify(ndev);
890
891 /* Create a blk device for each namespace */
892
893 id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
894 if (!id) {
895 ret = -ENOMEM;
896 goto free_queue;
897 }
898
899 for (int i = 1; i <= ndev->nn; i++) {
900 struct udevice *ns_udev;
901 char name[20];
902
903 memset(id, 0, sizeof(*id));
904 if (nvme_identify(ndev, i, 0, (dma_addr_t)(long)id)) {
905 ret = -EIO;
906 goto free_id;
907 }
908
909 /* skip inactive namespace */
910 if (!id->nsze)
911 continue;
912
913 /*
914 * Encode the namespace id to the device name so that
915 * we can extract it when doing the probe.
916 */
917 sprintf(name, "blk#%d", i);
918
919 /* The real blksz and size will be set by nvme_blk_probe() */
920 ret = blk_create_devicef(udev, "nvme-blk", name, IF_TYPE_NVME,
921 -1, 512, 0, &ns_udev);
922 if (ret)
923 goto free_id;
924 }
925
926 free(id);
927 return 0;
928
929 free_id:
930 free(id);
931 free_queue:
932 free((void *)ndev->queues);
933 free_nvme:
934 return ret;
935 }
936
937 U_BOOT_DRIVER(nvme) = {
938 .name = "nvme",
939 .id = UCLASS_NVME,
940 .bind = nvme_bind,
941 .probe = nvme_probe,
942 .priv_auto_alloc_size = sizeof(struct nvme_dev),
943 };
944
945 struct pci_device_id nvme_supported[] = {
946 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) },
947 {}
948 };
949
950 U_BOOT_PCI_DEVICE(nvme, nvme_supported);
951