xref: /OK3568_Linux_fs/u-boot/drivers/mtd/nand/raw/nand_ecc.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2  * This file contains an ECC algorithm from Toshiba that detects and
3  * corrects 1 bit errors in a 256 byte block of data.
4  *
5  * drivers/mtd/nand/raw/nand_ecc.c
6  *
7  * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com)
8  *                         Toshiba America Electronics Components, Inc.
9  *
10  * Copyright (C) 2006 Thomas Gleixner <tglx@linutronix.de>
11  *
12  * SPDX-License-Identifier:	GPL-2.0+
13  *
14  * As a special exception, if other files instantiate templates or use
15  * macros or inline functions from these files, or you compile these
16  * files and link them with other works to produce a work based on these
17  * files, these files do not by themselves cause the resulting work to be
18  * covered by the GNU General Public License. However the source code for
19  * these files must still be made available in accordance with section (3)
20  * of the GNU General Public License.
21  *
22  * This exception does not invalidate any other reasons why a work based on
23  * this file might be covered by the GNU General Public License.
24  */
25 
26 #include <common.h>
27 
28 #include <linux/errno.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand_ecc.h>
31 
32 /*
33  * NAND-SPL has no sofware ECC for now, so don't include nand_calculate_ecc(),
34  * only nand_correct_data() is needed
35  */
36 
37 #if !defined(CONFIG_NAND_SPL) || defined(CONFIG_SPL_NAND_SOFTECC)
38 /*
39  * Pre-calculated 256-way 1 byte column parity
40  */
41 static const u_char nand_ecc_precalc_table[] = {
42 	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
43 	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
44 	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
45 	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
46 	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
47 	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
48 	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
49 	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
50 	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
51 	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
52 	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
53 	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
54 	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
55 	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
56 	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
57 	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
58 };
59 
60 /**
61  * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256-byte block
62  * @mtd:	MTD block structure
63  * @dat:	raw data
64  * @ecc_code:	buffer for ECC
65  */
nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)66 int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
67 		       u_char *ecc_code)
68 {
69 	uint8_t idx, reg1, reg2, reg3, tmp1, tmp2;
70 	int i;
71 
72 	/* Initialize variables */
73 	reg1 = reg2 = reg3 = 0;
74 
75 	/* Build up column parity */
76 	for(i = 0; i < 256; i++) {
77 		/* Get CP0 - CP5 from table */
78 		idx = nand_ecc_precalc_table[*dat++];
79 		reg1 ^= (idx & 0x3f);
80 
81 		/* All bit XOR = 1 ? */
82 		if (idx & 0x40) {
83 			reg3 ^= (uint8_t) i;
84 			reg2 ^= ~((uint8_t) i);
85 		}
86 	}
87 
88 	/* Create non-inverted ECC code from line parity */
89 	tmp1  = (reg3 & 0x80) >> 0; /* B7 -> B7 */
90 	tmp1 |= (reg2 & 0x80) >> 1; /* B7 -> B6 */
91 	tmp1 |= (reg3 & 0x40) >> 1; /* B6 -> B5 */
92 	tmp1 |= (reg2 & 0x40) >> 2; /* B6 -> B4 */
93 	tmp1 |= (reg3 & 0x20) >> 2; /* B5 -> B3 */
94 	tmp1 |= (reg2 & 0x20) >> 3; /* B5 -> B2 */
95 	tmp1 |= (reg3 & 0x10) >> 3; /* B4 -> B1 */
96 	tmp1 |= (reg2 & 0x10) >> 4; /* B4 -> B0 */
97 
98 	tmp2  = (reg3 & 0x08) << 4; /* B3 -> B7 */
99 	tmp2 |= (reg2 & 0x08) << 3; /* B3 -> B6 */
100 	tmp2 |= (reg3 & 0x04) << 3; /* B2 -> B5 */
101 	tmp2 |= (reg2 & 0x04) << 2; /* B2 -> B4 */
102 	tmp2 |= (reg3 & 0x02) << 2; /* B1 -> B3 */
103 	tmp2 |= (reg2 & 0x02) << 1; /* B1 -> B2 */
104 	tmp2 |= (reg3 & 0x01) << 1; /* B0 -> B1 */
105 	tmp2 |= (reg2 & 0x01) << 0; /* B7 -> B0 */
106 
107 	/* Calculate final ECC code */
108 	ecc_code[0] = ~tmp1;
109 	ecc_code[1] = ~tmp2;
110 	ecc_code[2] = ((~reg1) << 2) | 0x03;
111 
112 	return 0;
113 }
114 #endif /* CONFIG_NAND_SPL */
115 
countbits(uint32_t byte)116 static inline int countbits(uint32_t byte)
117 {
118 	int res = 0;
119 
120 	for (;byte; byte >>= 1)
121 		res += byte & 0x01;
122 	return res;
123 }
124 
125 /**
126  * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
127  * @mtd:	MTD block structure
128  * @dat:	raw data read from the chip
129  * @read_ecc:	ECC from the chip
130  * @calc_ecc:	the ECC calculated from raw data
131  *
132  * Detect and correct a 1 bit error for 256 byte block
133  */
nand_correct_data(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)134 int nand_correct_data(struct mtd_info *mtd, u_char *dat,
135 		      u_char *read_ecc, u_char *calc_ecc)
136 {
137 	uint8_t s0, s1, s2;
138 
139 	s1 = calc_ecc[0] ^ read_ecc[0];
140 	s0 = calc_ecc[1] ^ read_ecc[1];
141 	s2 = calc_ecc[2] ^ read_ecc[2];
142 	if ((s0 | s1 | s2) == 0)
143 		return 0;
144 
145 	/* Check for a single bit error */
146 	if( ((s0 ^ (s0 >> 1)) & 0x55) == 0x55 &&
147 	    ((s1 ^ (s1 >> 1)) & 0x55) == 0x55 &&
148 	    ((s2 ^ (s2 >> 1)) & 0x54) == 0x54) {
149 
150 		uint32_t byteoffs, bitnum;
151 
152 		byteoffs = (s1 << 0) & 0x80;
153 		byteoffs |= (s1 << 1) & 0x40;
154 		byteoffs |= (s1 << 2) & 0x20;
155 		byteoffs |= (s1 << 3) & 0x10;
156 
157 		byteoffs |= (s0 >> 4) & 0x08;
158 		byteoffs |= (s0 >> 3) & 0x04;
159 		byteoffs |= (s0 >> 2) & 0x02;
160 		byteoffs |= (s0 >> 1) & 0x01;
161 
162 		bitnum = (s2 >> 5) & 0x04;
163 		bitnum |= (s2 >> 4) & 0x02;
164 		bitnum |= (s2 >> 3) & 0x01;
165 
166 		dat[byteoffs] ^= (1 << bitnum);
167 
168 		return 1;
169 	}
170 
171 	if(countbits(s0 | ((uint32_t)s1 << 8) | ((uint32_t)s2 <<16)) == 1)
172 		return 1;
173 
174 	return -EBADMSG;
175 }
176