1 /*
2 * This file contains an ECC algorithm from Toshiba that detects and
3 * corrects 1 bit errors in a 256 byte block of data.
4 *
5 * drivers/mtd/nand/raw/nand_ecc.c
6 *
7 * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com)
8 * Toshiba America Electronics Components, Inc.
9 *
10 * Copyright (C) 2006 Thomas Gleixner <tglx@linutronix.de>
11 *
12 * SPDX-License-Identifier: GPL-2.0+
13 *
14 * As a special exception, if other files instantiate templates or use
15 * macros or inline functions from these files, or you compile these
16 * files and link them with other works to produce a work based on these
17 * files, these files do not by themselves cause the resulting work to be
18 * covered by the GNU General Public License. However the source code for
19 * these files must still be made available in accordance with section (3)
20 * of the GNU General Public License.
21 *
22 * This exception does not invalidate any other reasons why a work based on
23 * this file might be covered by the GNU General Public License.
24 */
25
26 #include <common.h>
27
28 #include <linux/errno.h>
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand_ecc.h>
31
32 /*
33 * NAND-SPL has no sofware ECC for now, so don't include nand_calculate_ecc(),
34 * only nand_correct_data() is needed
35 */
36
37 #if !defined(CONFIG_NAND_SPL) || defined(CONFIG_SPL_NAND_SOFTECC)
38 /*
39 * Pre-calculated 256-way 1 byte column parity
40 */
41 static const u_char nand_ecc_precalc_table[] = {
42 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
43 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
44 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
45 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
46 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
47 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
48 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
49 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
50 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
51 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
52 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
53 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
54 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
55 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
56 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
57 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
58 };
59
60 /**
61 * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256-byte block
62 * @mtd: MTD block structure
63 * @dat: raw data
64 * @ecc_code: buffer for ECC
65 */
nand_calculate_ecc(struct mtd_info * mtd,const u_char * dat,u_char * ecc_code)66 int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
67 u_char *ecc_code)
68 {
69 uint8_t idx, reg1, reg2, reg3, tmp1, tmp2;
70 int i;
71
72 /* Initialize variables */
73 reg1 = reg2 = reg3 = 0;
74
75 /* Build up column parity */
76 for(i = 0; i < 256; i++) {
77 /* Get CP0 - CP5 from table */
78 idx = nand_ecc_precalc_table[*dat++];
79 reg1 ^= (idx & 0x3f);
80
81 /* All bit XOR = 1 ? */
82 if (idx & 0x40) {
83 reg3 ^= (uint8_t) i;
84 reg2 ^= ~((uint8_t) i);
85 }
86 }
87
88 /* Create non-inverted ECC code from line parity */
89 tmp1 = (reg3 & 0x80) >> 0; /* B7 -> B7 */
90 tmp1 |= (reg2 & 0x80) >> 1; /* B7 -> B6 */
91 tmp1 |= (reg3 & 0x40) >> 1; /* B6 -> B5 */
92 tmp1 |= (reg2 & 0x40) >> 2; /* B6 -> B4 */
93 tmp1 |= (reg3 & 0x20) >> 2; /* B5 -> B3 */
94 tmp1 |= (reg2 & 0x20) >> 3; /* B5 -> B2 */
95 tmp1 |= (reg3 & 0x10) >> 3; /* B4 -> B1 */
96 tmp1 |= (reg2 & 0x10) >> 4; /* B4 -> B0 */
97
98 tmp2 = (reg3 & 0x08) << 4; /* B3 -> B7 */
99 tmp2 |= (reg2 & 0x08) << 3; /* B3 -> B6 */
100 tmp2 |= (reg3 & 0x04) << 3; /* B2 -> B5 */
101 tmp2 |= (reg2 & 0x04) << 2; /* B2 -> B4 */
102 tmp2 |= (reg3 & 0x02) << 2; /* B1 -> B3 */
103 tmp2 |= (reg2 & 0x02) << 1; /* B1 -> B2 */
104 tmp2 |= (reg3 & 0x01) << 1; /* B0 -> B1 */
105 tmp2 |= (reg2 & 0x01) << 0; /* B7 -> B0 */
106
107 /* Calculate final ECC code */
108 ecc_code[0] = ~tmp1;
109 ecc_code[1] = ~tmp2;
110 ecc_code[2] = ((~reg1) << 2) | 0x03;
111
112 return 0;
113 }
114 #endif /* CONFIG_NAND_SPL */
115
countbits(uint32_t byte)116 static inline int countbits(uint32_t byte)
117 {
118 int res = 0;
119
120 for (;byte; byte >>= 1)
121 res += byte & 0x01;
122 return res;
123 }
124
125 /**
126 * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
127 * @mtd: MTD block structure
128 * @dat: raw data read from the chip
129 * @read_ecc: ECC from the chip
130 * @calc_ecc: the ECC calculated from raw data
131 *
132 * Detect and correct a 1 bit error for 256 byte block
133 */
nand_correct_data(struct mtd_info * mtd,u_char * dat,u_char * read_ecc,u_char * calc_ecc)134 int nand_correct_data(struct mtd_info *mtd, u_char *dat,
135 u_char *read_ecc, u_char *calc_ecc)
136 {
137 uint8_t s0, s1, s2;
138
139 s1 = calc_ecc[0] ^ read_ecc[0];
140 s0 = calc_ecc[1] ^ read_ecc[1];
141 s2 = calc_ecc[2] ^ read_ecc[2];
142 if ((s0 | s1 | s2) == 0)
143 return 0;
144
145 /* Check for a single bit error */
146 if( ((s0 ^ (s0 >> 1)) & 0x55) == 0x55 &&
147 ((s1 ^ (s1 >> 1)) & 0x55) == 0x55 &&
148 ((s2 ^ (s2 >> 1)) & 0x54) == 0x54) {
149
150 uint32_t byteoffs, bitnum;
151
152 byteoffs = (s1 << 0) & 0x80;
153 byteoffs |= (s1 << 1) & 0x40;
154 byteoffs |= (s1 << 2) & 0x20;
155 byteoffs |= (s1 << 3) & 0x10;
156
157 byteoffs |= (s0 >> 4) & 0x08;
158 byteoffs |= (s0 >> 3) & 0x04;
159 byteoffs |= (s0 >> 2) & 0x02;
160 byteoffs |= (s0 >> 1) & 0x01;
161
162 bitnum = (s2 >> 5) & 0x04;
163 bitnum |= (s2 >> 4) & 0x02;
164 bitnum |= (s2 >> 3) & 0x01;
165
166 dat[byteoffs] ^= (1 << bitnum);
167
168 return 1;
169 }
170
171 if(countbits(s0 | ((uint32_t)s1 << 8) | ((uint32_t)s2 <<16)) == 1)
172 return 1;
173
174 return -EBADMSG;
175 }
176