xref: /OK3568_Linux_fs/u-boot/drivers/mtd/nand/raw/mxc_nand.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2  * Copyright 2004-2007 Freescale Semiconductor, Inc.
3  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4  * Copyright 2009 Ilya Yanok, <yanok@emcraft.com>
5  *
6  * SPDX-License-Identifier:	GPL-2.0+
7  */
8 
9 #include <common.h>
10 #include <nand.h>
11 #include <linux/err.h>
12 #include <asm/io.h>
13 #if defined(CONFIG_MX25) || defined(CONFIG_MX27) || defined(CONFIG_MX35) || \
14 	defined(CONFIG_MX51) || defined(CONFIG_MX53)
15 #include <asm/arch/imx-regs.h>
16 #endif
17 #include "mxc_nand.h"
18 
19 #define DRIVER_NAME "mxc_nand"
20 
21 struct mxc_nand_host {
22 	struct nand_chip		*nand;
23 
24 	struct mxc_nand_regs __iomem	*regs;
25 #ifdef MXC_NFC_V3_2
26 	struct mxc_nand_ip_regs __iomem	*ip_regs;
27 #endif
28 	int				spare_only;
29 	int				status_request;
30 	int				pagesize_2k;
31 	int				clk_act;
32 	uint16_t			col_addr;
33 	unsigned int			page_addr;
34 };
35 
36 static struct mxc_nand_host mxc_host;
37 static struct mxc_nand_host *host = &mxc_host;
38 
39 /* Define delays in microsec for NAND device operations */
40 #define TROP_US_DELAY   2000
41 /* Macros to get byte and bit positions of ECC */
42 #define COLPOS(x)  ((x) >> 3)
43 #define BITPOS(x) ((x) & 0xf)
44 
45 /* Define single bit Error positions in Main & Spare area */
46 #define MAIN_SINGLEBIT_ERROR 0x4
47 #define SPARE_SINGLEBIT_ERROR 0x1
48 
49 /* OOB placement block for use with hardware ecc generation */
50 #if defined(MXC_NFC_V1)
51 #ifndef CONFIG_SYS_NAND_LARGEPAGE
52 static struct nand_ecclayout nand_hw_eccoob = {
53 	.eccbytes = 5,
54 	.eccpos = {6, 7, 8, 9, 10},
55 	.oobfree = { {0, 5}, {11, 5}, }
56 };
57 #else
58 static struct nand_ecclayout nand_hw_eccoob2k = {
59 	.eccbytes = 20,
60 	.eccpos = {
61 		6, 7, 8, 9, 10,
62 		22, 23, 24, 25, 26,
63 		38, 39, 40, 41, 42,
64 		54, 55, 56, 57, 58,
65 	},
66 	.oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} },
67 };
68 #endif
69 #elif defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
70 #ifndef CONFIG_SYS_NAND_LARGEPAGE
71 static struct nand_ecclayout nand_hw_eccoob = {
72 	.eccbytes = 9,
73 	.eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
74 	.oobfree = { {2, 5} }
75 };
76 #else
77 static struct nand_ecclayout nand_hw_eccoob2k = {
78 	.eccbytes = 36,
79 	.eccpos = {
80 		7, 8, 9, 10, 11, 12, 13, 14, 15,
81 		23, 24, 25, 26, 27, 28, 29, 30, 31,
82 		39, 40, 41, 42, 43, 44, 45, 46, 47,
83 		55, 56, 57, 58, 59, 60, 61, 62, 63,
84 	},
85 	.oobfree = { {2, 5}, {16, 7}, {32, 7}, {48, 7} },
86 };
87 #endif
88 #endif
89 
is_16bit_nand(void)90 static int is_16bit_nand(void)
91 {
92 #if defined(CONFIG_SYS_NAND_BUSWIDTH_16BIT)
93 	return 1;
94 #else
95 	return 0;
96 #endif
97 }
98 
mxc_nand_memcpy32(uint32_t * dest,uint32_t * source,size_t size)99 static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size)
100 {
101 	uint32_t *d = dest;
102 
103 	size >>= 2;
104 	while (size--)
105 		__raw_writel(__raw_readl(source++), d++);
106 	return dest;
107 }
108 
109 /*
110  * This function polls the NANDFC to wait for the basic operation to
111  * complete by checking the INT bit.
112  */
wait_op_done(struct mxc_nand_host * host,int max_retries,uint16_t param)113 static void wait_op_done(struct mxc_nand_host *host, int max_retries,
114 				uint16_t param)
115 {
116 	uint32_t tmp;
117 
118 	while (max_retries-- > 0) {
119 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
120 		tmp = readnfc(&host->regs->config2);
121 		if (tmp & NFC_V1_V2_CONFIG2_INT) {
122 			tmp &= ~NFC_V1_V2_CONFIG2_INT;
123 			writenfc(tmp, &host->regs->config2);
124 #elif defined(MXC_NFC_V3_2)
125 		tmp = readnfc(&host->ip_regs->ipc);
126 		if (tmp & NFC_V3_IPC_INT) {
127 			tmp &= ~NFC_V3_IPC_INT;
128 			writenfc(tmp, &host->ip_regs->ipc);
129 #endif
130 			break;
131 		}
132 		udelay(1);
133 	}
134 	if (max_retries < 0) {
135 		pr_debug("%s(%d): INT not set\n",
136 				__func__, param);
137 	}
138 }
139 
140 /*
141  * This function issues the specified command to the NAND device and
142  * waits for completion.
143  */
144 static void send_cmd(struct mxc_nand_host *host, uint16_t cmd)
145 {
146 	pr_debug("send_cmd(host, 0x%x)\n", cmd);
147 
148 	writenfc(cmd, &host->regs->flash_cmd);
149 	writenfc(NFC_CMD, &host->regs->operation);
150 
151 	/* Wait for operation to complete */
152 	wait_op_done(host, TROP_US_DELAY, cmd);
153 }
154 
155 /*
156  * This function sends an address (or partial address) to the
157  * NAND device. The address is used to select the source/destination for
158  * a NAND command.
159  */
160 static void send_addr(struct mxc_nand_host *host, uint16_t addr)
161 {
162 	pr_debug("send_addr(host, 0x%x)\n", addr);
163 
164 	writenfc(addr, &host->regs->flash_addr);
165 	writenfc(NFC_ADDR, &host->regs->operation);
166 
167 	/* Wait for operation to complete */
168 	wait_op_done(host, TROP_US_DELAY, addr);
169 }
170 
171 /*
172  * This function requests the NANDFC to initiate the transfer
173  * of data currently in the NANDFC RAM buffer to the NAND device.
174  */
175 static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
176 			int spare_only)
177 {
178 	if (spare_only)
179 		pr_debug("send_prog_page (%d)\n", spare_only);
180 
181 	if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
182 		int i;
183 		/*
184 		 *  The controller copies the 64 bytes of spare data from
185 		 *  the first 16 bytes of each of the 4 64 byte spare buffers.
186 		 *  Copy the contiguous data starting in spare_area[0] to
187 		 *  the four spare area buffers.
188 		 */
189 		for (i = 1; i < 4; i++) {
190 			void __iomem *src = &host->regs->spare_area[0][i * 16];
191 			void __iomem *dst = &host->regs->spare_area[i][0];
192 
193 			mxc_nand_memcpy32(dst, src, 16);
194 		}
195 	}
196 
197 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
198 	writenfc(buf_id, &host->regs->buf_addr);
199 #elif defined(MXC_NFC_V3_2)
200 	uint32_t tmp = readnfc(&host->regs->config1);
201 	tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
202 	tmp |= NFC_V3_CONFIG1_RBA(buf_id);
203 	writenfc(tmp, &host->regs->config1);
204 #endif
205 
206 	/* Configure spare or page+spare access */
207 	if (!host->pagesize_2k) {
208 		uint32_t config1 = readnfc(&host->regs->config1);
209 		if (spare_only)
210 			config1 |= NFC_CONFIG1_SP_EN;
211 		else
212 			config1 &= ~NFC_CONFIG1_SP_EN;
213 		writenfc(config1, &host->regs->config1);
214 	}
215 
216 	writenfc(NFC_INPUT, &host->regs->operation);
217 
218 	/* Wait for operation to complete */
219 	wait_op_done(host, TROP_US_DELAY, spare_only);
220 }
221 
222 /*
223  * Requests NANDFC to initiate the transfer of data from the
224  * NAND device into in the NANDFC ram buffer.
225  */
226 static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
227 		int spare_only)
228 {
229 	pr_debug("send_read_page (%d)\n", spare_only);
230 
231 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
232 	writenfc(buf_id, &host->regs->buf_addr);
233 #elif defined(MXC_NFC_V3_2)
234 	uint32_t tmp = readnfc(&host->regs->config1);
235 	tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
236 	tmp |= NFC_V3_CONFIG1_RBA(buf_id);
237 	writenfc(tmp, &host->regs->config1);
238 #endif
239 
240 	/* Configure spare or page+spare access */
241 	if (!host->pagesize_2k) {
242 		uint32_t config1 = readnfc(&host->regs->config1);
243 		if (spare_only)
244 			config1 |= NFC_CONFIG1_SP_EN;
245 		else
246 			config1 &= ~NFC_CONFIG1_SP_EN;
247 		writenfc(config1, &host->regs->config1);
248 	}
249 
250 	writenfc(NFC_OUTPUT, &host->regs->operation);
251 
252 	/* Wait for operation to complete */
253 	wait_op_done(host, TROP_US_DELAY, spare_only);
254 
255 	if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
256 		int i;
257 
258 		/*
259 		 *  The controller copies the 64 bytes of spare data to
260 		 *  the first 16 bytes of each of the 4 spare buffers.
261 		 *  Make the data contiguous starting in spare_area[0].
262 		 */
263 		for (i = 1; i < 4; i++) {
264 			void __iomem *src = &host->regs->spare_area[i][0];
265 			void __iomem *dst = &host->regs->spare_area[0][i * 16];
266 
267 			mxc_nand_memcpy32(dst, src, 16);
268 		}
269 	}
270 }
271 
272 /* Request the NANDFC to perform a read of the NAND device ID. */
273 static void send_read_id(struct mxc_nand_host *host)
274 {
275 	uint32_t tmp;
276 
277 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
278 	/* NANDFC buffer 0 is used for device ID output */
279 	writenfc(0x0, &host->regs->buf_addr);
280 #elif defined(MXC_NFC_V3_2)
281 	tmp = readnfc(&host->regs->config1);
282 	tmp &= ~NFC_V3_CONFIG1_RBA_MASK;
283 	writenfc(tmp, &host->regs->config1);
284 #endif
285 
286 	/* Read ID into main buffer */
287 	tmp = readnfc(&host->regs->config1);
288 	tmp &= ~NFC_CONFIG1_SP_EN;
289 	writenfc(tmp, &host->regs->config1);
290 
291 	writenfc(NFC_ID, &host->regs->operation);
292 
293 	/* Wait for operation to complete */
294 	wait_op_done(host, TROP_US_DELAY, 0);
295 }
296 
297 /*
298  * This function requests the NANDFC to perform a read of the
299  * NAND device status and returns the current status.
300  */
301 static uint16_t get_dev_status(struct mxc_nand_host *host)
302 {
303 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
304 	void __iomem *main_buf = host->regs->main_area[1];
305 	uint32_t store;
306 #endif
307 	uint32_t ret, tmp;
308 	/* Issue status request to NAND device */
309 
310 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
311 	/* store the main area1 first word, later do recovery */
312 	store = readl(main_buf);
313 	/* NANDFC buffer 1 is used for device status */
314 	writenfc(1, &host->regs->buf_addr);
315 #endif
316 
317 	/* Read status into main buffer */
318 	tmp = readnfc(&host->regs->config1);
319 	tmp &= ~NFC_CONFIG1_SP_EN;
320 	writenfc(tmp, &host->regs->config1);
321 
322 	writenfc(NFC_STATUS, &host->regs->operation);
323 
324 	/* Wait for operation to complete */
325 	wait_op_done(host, TROP_US_DELAY, 0);
326 
327 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
328 	/*
329 	 *  Status is placed in first word of main buffer
330 	 * get status, then recovery area 1 data
331 	 */
332 	ret = readw(main_buf);
333 	writel(store, main_buf);
334 #elif defined(MXC_NFC_V3_2)
335 	ret = readnfc(&host->regs->config1) >> 16;
336 #endif
337 
338 	return ret;
339 }
340 
341 /* This function is used by upper layer to checks if device is ready */
342 static int mxc_nand_dev_ready(struct mtd_info *mtd)
343 {
344 	/*
345 	 * NFC handles R/B internally. Therefore, this function
346 	 * always returns status as ready.
347 	 */
348 	return 1;
349 }
350 
351 static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on)
352 {
353 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
354 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
355 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
356 	uint16_t tmp = readnfc(&host->regs->config1);
357 
358 	if (on)
359 		tmp |= NFC_V1_V2_CONFIG1_ECC_EN;
360 	else
361 		tmp &= ~NFC_V1_V2_CONFIG1_ECC_EN;
362 	writenfc(tmp, &host->regs->config1);
363 #elif defined(MXC_NFC_V3_2)
364 	uint32_t tmp = readnfc(&host->ip_regs->config2);
365 
366 	if (on)
367 		tmp |= NFC_V3_CONFIG2_ECC_EN;
368 	else
369 		tmp &= ~NFC_V3_CONFIG2_ECC_EN;
370 	writenfc(tmp, &host->ip_regs->config2);
371 #endif
372 }
373 
374 #ifdef CONFIG_MXC_NAND_HWECC
375 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
376 {
377 	/*
378 	 * If HW ECC is enabled, we turn it on during init. There is
379 	 * no need to enable again here.
380 	 */
381 }
382 
383 #if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
384 static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd,
385 				      struct nand_chip *chip,
386 				      int page)
387 {
388 	struct mxc_nand_host *host = nand_get_controller_data(chip);
389 	uint8_t *buf = chip->oob_poi;
390 	int length = mtd->oobsize;
391 	int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
392 	uint8_t *bufpoi = buf;
393 	int i, toread;
394 
395 	pr_debug("%s: Reading OOB area of page %u to oob %p\n",
396 			 __func__, page, buf);
397 
398 	chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
399 	for (i = 0; i < chip->ecc.steps; i++) {
400 		toread = min_t(int, length, chip->ecc.prepad);
401 		if (toread) {
402 			chip->read_buf(mtd, bufpoi, toread);
403 			bufpoi += toread;
404 			length -= toread;
405 		}
406 		bufpoi += chip->ecc.bytes;
407 		host->col_addr += chip->ecc.bytes;
408 		length -= chip->ecc.bytes;
409 
410 		toread = min_t(int, length, chip->ecc.postpad);
411 		if (toread) {
412 			chip->read_buf(mtd, bufpoi, toread);
413 			bufpoi += toread;
414 			length -= toread;
415 		}
416 	}
417 	if (length > 0)
418 		chip->read_buf(mtd, bufpoi, length);
419 
420 	_mxc_nand_enable_hwecc(mtd, 0);
421 	chip->cmdfunc(mtd, NAND_CMD_READOOB,
422 			mtd->writesize + chip->ecc.prepad, page);
423 	bufpoi = buf + chip->ecc.prepad;
424 	length = mtd->oobsize - chip->ecc.prepad;
425 	for (i = 0; i < chip->ecc.steps; i++) {
426 		toread = min_t(int, length, chip->ecc.bytes);
427 		chip->read_buf(mtd, bufpoi, toread);
428 		bufpoi += eccpitch;
429 		length -= eccpitch;
430 		host->col_addr += chip->ecc.postpad + chip->ecc.prepad;
431 	}
432 	_mxc_nand_enable_hwecc(mtd, 1);
433 	return 1;
434 }
435 
436 static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd,
437 					   struct nand_chip *chip,
438 					   uint8_t *buf,
439 					   int oob_required,
440 					   int page)
441 {
442 	struct mxc_nand_host *host = nand_get_controller_data(chip);
443 	int eccsize = chip->ecc.size;
444 	int eccbytes = chip->ecc.bytes;
445 	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
446 	uint8_t *oob = chip->oob_poi;
447 	int steps, size;
448 	int n;
449 
450 	_mxc_nand_enable_hwecc(mtd, 0);
451 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
452 
453 	for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
454 		host->col_addr = n * eccsize;
455 		chip->read_buf(mtd, buf, eccsize);
456 		buf += eccsize;
457 
458 		host->col_addr = mtd->writesize + n * eccpitch;
459 		if (chip->ecc.prepad) {
460 			chip->read_buf(mtd, oob, chip->ecc.prepad);
461 			oob += chip->ecc.prepad;
462 		}
463 
464 		chip->read_buf(mtd, oob, eccbytes);
465 		oob += eccbytes;
466 
467 		if (chip->ecc.postpad) {
468 			chip->read_buf(mtd, oob, chip->ecc.postpad);
469 			oob += chip->ecc.postpad;
470 		}
471 	}
472 
473 	size = mtd->oobsize - (oob - chip->oob_poi);
474 	if (size)
475 		chip->read_buf(mtd, oob, size);
476 	_mxc_nand_enable_hwecc(mtd, 1);
477 
478 	return 0;
479 }
480 
481 static int mxc_nand_read_page_syndrome(struct mtd_info *mtd,
482 				       struct nand_chip *chip,
483 				       uint8_t *buf,
484 				       int oob_required,
485 				       int page)
486 {
487 	struct mxc_nand_host *host = nand_get_controller_data(chip);
488 	int n, eccsize = chip->ecc.size;
489 	int eccbytes = chip->ecc.bytes;
490 	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
491 	int eccsteps = chip->ecc.steps;
492 	uint8_t *p = buf;
493 	uint8_t *oob = chip->oob_poi;
494 
495 	pr_debug("Reading page %u to buf %p oob %p\n",
496 		 page, buf, oob);
497 
498 	/* first read the data area and the available portion of OOB */
499 	for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
500 		int stat;
501 
502 		host->col_addr = n * eccsize;
503 
504 		chip->read_buf(mtd, p, eccsize);
505 
506 		host->col_addr = mtd->writesize + n * eccpitch;
507 
508 		if (chip->ecc.prepad) {
509 			chip->read_buf(mtd, oob, chip->ecc.prepad);
510 			oob += chip->ecc.prepad;
511 		}
512 
513 		stat = chip->ecc.correct(mtd, p, oob, NULL);
514 
515 		if (stat < 0)
516 			mtd->ecc_stats.failed++;
517 		else
518 			mtd->ecc_stats.corrected += stat;
519 		oob += eccbytes;
520 
521 		if (chip->ecc.postpad) {
522 			chip->read_buf(mtd, oob, chip->ecc.postpad);
523 			oob += chip->ecc.postpad;
524 		}
525 	}
526 
527 	/* Calculate remaining oob bytes */
528 	n = mtd->oobsize - (oob - chip->oob_poi);
529 	if (n)
530 		chip->read_buf(mtd, oob, n);
531 
532 	/* Then switch ECC off and read the OOB area to get the ECC code */
533 	_mxc_nand_enable_hwecc(mtd, 0);
534 	chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
535 	eccsteps = chip->ecc.steps;
536 	oob = chip->oob_poi + chip->ecc.prepad;
537 	for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
538 		host->col_addr = mtd->writesize +
539 				 n * eccpitch +
540 				 chip->ecc.prepad;
541 		chip->read_buf(mtd, oob, eccbytes);
542 		oob += eccbytes + chip->ecc.postpad;
543 	}
544 	_mxc_nand_enable_hwecc(mtd, 1);
545 	return 0;
546 }
547 
548 static int mxc_nand_write_oob_syndrome(struct mtd_info *mtd,
549 				       struct nand_chip *chip, int page)
550 {
551 	struct mxc_nand_host *host = nand_get_controller_data(chip);
552 	int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
553 	int length = mtd->oobsize;
554 	int i, len, status, steps = chip->ecc.steps;
555 	const uint8_t *bufpoi = chip->oob_poi;
556 
557 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
558 	for (i = 0; i < steps; i++) {
559 		len = min_t(int, length, eccpitch);
560 
561 		chip->write_buf(mtd, bufpoi, len);
562 		bufpoi += len;
563 		length -= len;
564 		host->col_addr += chip->ecc.prepad + chip->ecc.postpad;
565 	}
566 	if (length > 0)
567 		chip->write_buf(mtd, bufpoi, length);
568 
569 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
570 	status = chip->waitfunc(mtd, chip);
571 	return status & NAND_STATUS_FAIL ? -EIO : 0;
572 }
573 
574 static int mxc_nand_write_page_raw_syndrome(struct mtd_info *mtd,
575 					     struct nand_chip *chip,
576 					     const uint8_t *buf,
577 					     int oob_required, int page)
578 {
579 	struct mxc_nand_host *host = nand_get_controller_data(chip);
580 	int eccsize = chip->ecc.size;
581 	int eccbytes = chip->ecc.bytes;
582 	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
583 	uint8_t *oob = chip->oob_poi;
584 	int steps, size;
585 	int n;
586 
587 	for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
588 		host->col_addr = n * eccsize;
589 		chip->write_buf(mtd, buf, eccsize);
590 		buf += eccsize;
591 
592 		host->col_addr = mtd->writesize + n * eccpitch;
593 
594 		if (chip->ecc.prepad) {
595 			chip->write_buf(mtd, oob, chip->ecc.prepad);
596 			oob += chip->ecc.prepad;
597 		}
598 
599 		host->col_addr += eccbytes;
600 		oob += eccbytes;
601 
602 		if (chip->ecc.postpad) {
603 			chip->write_buf(mtd, oob, chip->ecc.postpad);
604 			oob += chip->ecc.postpad;
605 		}
606 	}
607 
608 	size = mtd->oobsize - (oob - chip->oob_poi);
609 	if (size)
610 		chip->write_buf(mtd, oob, size);
611 	return 0;
612 }
613 
614 static int mxc_nand_write_page_syndrome(struct mtd_info *mtd,
615 					 struct nand_chip *chip,
616 					 const uint8_t *buf,
617 					 int oob_required, int page)
618 {
619 	struct mxc_nand_host *host = nand_get_controller_data(chip);
620 	int i, n, eccsize = chip->ecc.size;
621 	int eccbytes = chip->ecc.bytes;
622 	int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
623 	int eccsteps = chip->ecc.steps;
624 	const uint8_t *p = buf;
625 	uint8_t *oob = chip->oob_poi;
626 
627 	chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
628 
629 	for (i = n = 0;
630 	     eccsteps;
631 	     n++, eccsteps--, i += eccbytes, p += eccsize) {
632 		host->col_addr = n * eccsize;
633 
634 		chip->write_buf(mtd, p, eccsize);
635 
636 		host->col_addr = mtd->writesize + n * eccpitch;
637 
638 		if (chip->ecc.prepad) {
639 			chip->write_buf(mtd, oob, chip->ecc.prepad);
640 			oob += chip->ecc.prepad;
641 		}
642 
643 		chip->write_buf(mtd, oob, eccbytes);
644 		oob += eccbytes;
645 
646 		if (chip->ecc.postpad) {
647 			chip->write_buf(mtd, oob, chip->ecc.postpad);
648 			oob += chip->ecc.postpad;
649 		}
650 	}
651 
652 	/* Calculate remaining oob bytes */
653 	i = mtd->oobsize - (oob - chip->oob_poi);
654 	if (i)
655 		chip->write_buf(mtd, oob, i);
656 	return 0;
657 }
658 
659 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
660 				 u_char *read_ecc, u_char *calc_ecc)
661 {
662 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
663 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
664 	uint32_t ecc_status = readl(&host->regs->ecc_status_result);
665 	int subpages = mtd->writesize / nand_chip->subpagesize;
666 	int pg2blk_shift = nand_chip->phys_erase_shift -
667 			   nand_chip->page_shift;
668 
669 	do {
670 		if ((ecc_status & 0xf) > 4) {
671 			static int last_bad = -1;
672 
673 			if (last_bad != host->page_addr >> pg2blk_shift) {
674 				last_bad = host->page_addr >> pg2blk_shift;
675 				printk(KERN_DEBUG
676 				       "MXC_NAND: HWECC uncorrectable ECC error"
677 				       " in block %u page %u subpage %d\n",
678 				       last_bad, host->page_addr,
679 				       mtd->writesize / nand_chip->subpagesize
680 					    - subpages);
681 			}
682 			return -EBADMSG;
683 		}
684 		ecc_status >>= 4;
685 		subpages--;
686 	} while (subpages > 0);
687 
688 	return 0;
689 }
690 #else
691 #define mxc_nand_read_page_syndrome NULL
692 #define mxc_nand_read_page_raw_syndrome NULL
693 #define mxc_nand_read_oob_syndrome NULL
694 #define mxc_nand_write_page_syndrome NULL
695 #define mxc_nand_write_page_raw_syndrome NULL
696 #define mxc_nand_write_oob_syndrome NULL
697 
698 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
699 				 u_char *read_ecc, u_char *calc_ecc)
700 {
701 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
702 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
703 
704 	/*
705 	 * 1-Bit errors are automatically corrected in HW.  No need for
706 	 * additional correction.  2-Bit errors cannot be corrected by
707 	 * HW ECC, so we need to return failure
708 	 */
709 	uint16_t ecc_status = readnfc(&host->regs->ecc_status_result);
710 
711 	if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
712 		pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
713 		return -EBADMSG;
714 	}
715 
716 	return 0;
717 }
718 #endif
719 
720 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
721 				  u_char *ecc_code)
722 {
723 	return 0;
724 }
725 #endif
726 
727 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
728 {
729 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
730 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
731 	uint8_t ret = 0;
732 	uint16_t col;
733 	uint16_t __iomem *main_buf =
734 		(uint16_t __iomem *)host->regs->main_area[0];
735 	uint16_t __iomem *spare_buf =
736 		(uint16_t __iomem *)host->regs->spare_area[0];
737 	union {
738 		uint16_t word;
739 		uint8_t bytes[2];
740 	} nfc_word;
741 
742 	/* Check for status request */
743 	if (host->status_request)
744 		return get_dev_status(host) & 0xFF;
745 
746 	/* Get column for 16-bit access */
747 	col = host->col_addr >> 1;
748 
749 	/* If we are accessing the spare region */
750 	if (host->spare_only)
751 		nfc_word.word = readw(&spare_buf[col]);
752 	else
753 		nfc_word.word = readw(&main_buf[col]);
754 
755 	/* Pick upper/lower byte of word from RAM buffer */
756 	ret = nfc_word.bytes[host->col_addr & 0x1];
757 
758 	/* Update saved column address */
759 	if (nand_chip->options & NAND_BUSWIDTH_16)
760 		host->col_addr += 2;
761 	else
762 		host->col_addr++;
763 
764 	return ret;
765 }
766 
767 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
768 {
769 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
770 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
771 	uint16_t col, ret;
772 	uint16_t __iomem *p;
773 
774 	pr_debug("mxc_nand_read_word(col = %d)\n", host->col_addr);
775 
776 	col = host->col_addr;
777 	/* Adjust saved column address */
778 	if (col < mtd->writesize && host->spare_only)
779 		col += mtd->writesize;
780 
781 	if (col < mtd->writesize) {
782 		p = (uint16_t __iomem *)(host->regs->main_area[0] +
783 				(col >> 1));
784 	} else {
785 		p = (uint16_t __iomem *)(host->regs->spare_area[0] +
786 				((col - mtd->writesize) >> 1));
787 	}
788 
789 	if (col & 1) {
790 		union {
791 			uint16_t word;
792 			uint8_t bytes[2];
793 		} nfc_word[3];
794 
795 		nfc_word[0].word = readw(p);
796 		nfc_word[1].word = readw(p + 1);
797 
798 		nfc_word[2].bytes[0] = nfc_word[0].bytes[1];
799 		nfc_word[2].bytes[1] = nfc_word[1].bytes[0];
800 
801 		ret = nfc_word[2].word;
802 	} else {
803 		ret = readw(p);
804 	}
805 
806 	/* Update saved column address */
807 	host->col_addr = col + 2;
808 
809 	return ret;
810 }
811 
812 /*
813  * Write data of length len to buffer buf. The data to be
814  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
815  * Operation by the NFC, the data is written to NAND Flash
816  */
817 static void mxc_nand_write_buf(struct mtd_info *mtd,
818 				const u_char *buf, int len)
819 {
820 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
821 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
822 	int n, col, i = 0;
823 
824 	pr_debug("mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
825 		 len);
826 
827 	col = host->col_addr;
828 
829 	/* Adjust saved column address */
830 	if (col < mtd->writesize && host->spare_only)
831 		col += mtd->writesize;
832 
833 	n = mtd->writesize + mtd->oobsize - col;
834 	n = min(len, n);
835 
836 	pr_debug("%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
837 
838 	while (n > 0) {
839 		void __iomem *p;
840 
841 		if (col < mtd->writesize) {
842 			p = host->regs->main_area[0] + (col & ~3);
843 		} else {
844 			p = host->regs->spare_area[0] -
845 						mtd->writesize + (col & ~3);
846 		}
847 
848 		pr_debug("%s:%d: p = %p\n", __func__,
849 			 __LINE__, p);
850 
851 		if (((col | (unsigned long)&buf[i]) & 3) || n < 4) {
852 			union {
853 				uint32_t word;
854 				uint8_t bytes[4];
855 			} nfc_word;
856 
857 			nfc_word.word = readl(p);
858 			nfc_word.bytes[col & 3] = buf[i++];
859 			n--;
860 			col++;
861 
862 			writel(nfc_word.word, p);
863 		} else {
864 			int m = mtd->writesize - col;
865 
866 			if (col >= mtd->writesize)
867 				m += mtd->oobsize;
868 
869 			m = min(n, m) & ~3;
870 
871 			pr_debug("%s:%d: n = %d, m = %d, i = %d, col = %d\n",
872 				 __func__,  __LINE__, n, m, i, col);
873 
874 			mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m);
875 			col += m;
876 			i += m;
877 			n -= m;
878 		}
879 	}
880 	/* Update saved column address */
881 	host->col_addr = col;
882 }
883 
884 /*
885  * Read the data buffer from the NAND Flash. To read the data from NAND
886  * Flash first the data output cycle is initiated by the NFC, which copies
887  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
888  */
889 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
890 {
891 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
892 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
893 	int n, col, i = 0;
894 
895 	pr_debug("mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr,
896 		 len);
897 
898 	col = host->col_addr;
899 
900 	/* Adjust saved column address */
901 	if (col < mtd->writesize && host->spare_only)
902 		col += mtd->writesize;
903 
904 	n = mtd->writesize + mtd->oobsize - col;
905 	n = min(len, n);
906 
907 	while (n > 0) {
908 		void __iomem *p;
909 
910 		if (col < mtd->writesize) {
911 			p = host->regs->main_area[0] + (col & ~3);
912 		} else {
913 			p = host->regs->spare_area[0] -
914 					mtd->writesize + (col & ~3);
915 		}
916 
917 		if (((col | (int)&buf[i]) & 3) || n < 4) {
918 			union {
919 				uint32_t word;
920 				uint8_t bytes[4];
921 			} nfc_word;
922 
923 			nfc_word.word = readl(p);
924 			buf[i++] = nfc_word.bytes[col & 3];
925 			n--;
926 			col++;
927 		} else {
928 			int m = mtd->writesize - col;
929 
930 			if (col >= mtd->writesize)
931 				m += mtd->oobsize;
932 
933 			m = min(n, m) & ~3;
934 			mxc_nand_memcpy32((uint32_t *)&buf[i], p, m);
935 
936 			col += m;
937 			i += m;
938 			n -= m;
939 		}
940 	}
941 	/* Update saved column address */
942 	host->col_addr = col;
943 }
944 
945 /*
946  * This function is used by upper layer for select and
947  * deselect of the NAND chip
948  */
949 static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
950 {
951 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
952 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
953 
954 	switch (chip) {
955 	case -1:
956 		/* TODO: Disable the NFC clock */
957 		if (host->clk_act)
958 			host->clk_act = 0;
959 		break;
960 	case 0:
961 		/* TODO: Enable the NFC clock */
962 		if (!host->clk_act)
963 			host->clk_act = 1;
964 		break;
965 
966 	default:
967 		break;
968 	}
969 }
970 
971 /*
972  * Used by the upper layer to write command to NAND Flash for
973  * different operations to be carried out on NAND Flash
974  */
975 void mxc_nand_command(struct mtd_info *mtd, unsigned command,
976 				int column, int page_addr)
977 {
978 	struct nand_chip *nand_chip = mtd_to_nand(mtd);
979 	struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
980 
981 	pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
982 		 command, column, page_addr);
983 
984 	/* Reset command state information */
985 	host->status_request = false;
986 
987 	/* Command pre-processing step */
988 	switch (command) {
989 
990 	case NAND_CMD_STATUS:
991 		host->col_addr = 0;
992 		host->status_request = true;
993 		break;
994 
995 	case NAND_CMD_READ0:
996 		host->page_addr = page_addr;
997 		host->col_addr = column;
998 		host->spare_only = false;
999 		break;
1000 
1001 	case NAND_CMD_READOOB:
1002 		host->col_addr = column;
1003 		host->spare_only = true;
1004 		if (host->pagesize_2k)
1005 			command = NAND_CMD_READ0; /* only READ0 is valid */
1006 		break;
1007 
1008 	case NAND_CMD_SEQIN:
1009 		if (column >= mtd->writesize) {
1010 			/*
1011 			 * before sending SEQIN command for partial write,
1012 			 * we need read one page out. FSL NFC does not support
1013 			 * partial write. It always sends out 512+ecc+512+ecc
1014 			 * for large page nand flash. But for small page nand
1015 			 * flash, it does support SPARE ONLY operation.
1016 			 */
1017 			if (host->pagesize_2k) {
1018 				/* call ourself to read a page */
1019 				mxc_nand_command(mtd, NAND_CMD_READ0, 0,
1020 						page_addr);
1021 			}
1022 
1023 			host->col_addr = column - mtd->writesize;
1024 			host->spare_only = true;
1025 
1026 			/* Set program pointer to spare region */
1027 			if (!host->pagesize_2k)
1028 				send_cmd(host, NAND_CMD_READOOB);
1029 		} else {
1030 			host->spare_only = false;
1031 			host->col_addr = column;
1032 
1033 			/* Set program pointer to page start */
1034 			if (!host->pagesize_2k)
1035 				send_cmd(host, NAND_CMD_READ0);
1036 		}
1037 		break;
1038 
1039 	case NAND_CMD_PAGEPROG:
1040 		send_prog_page(host, 0, host->spare_only);
1041 
1042 		if (host->pagesize_2k && is_mxc_nfc_1()) {
1043 			/* data in 4 areas */
1044 			send_prog_page(host, 1, host->spare_only);
1045 			send_prog_page(host, 2, host->spare_only);
1046 			send_prog_page(host, 3, host->spare_only);
1047 		}
1048 
1049 		break;
1050 	}
1051 
1052 	/* Write out the command to the device. */
1053 	send_cmd(host, command);
1054 
1055 	/* Write out column address, if necessary */
1056 	if (column != -1) {
1057 		/*
1058 		 * MXC NANDFC can only perform full page+spare or
1059 		 * spare-only read/write. When the upper layers perform
1060 		 * a read/write buffer operation, we will use the saved
1061 		 * column address to index into the full page.
1062 		 */
1063 		send_addr(host, 0);
1064 		if (host->pagesize_2k)
1065 			/* another col addr cycle for 2k page */
1066 			send_addr(host, 0);
1067 	}
1068 
1069 	/* Write out page address, if necessary */
1070 	if (page_addr != -1) {
1071 		u32 page_mask = nand_chip->pagemask;
1072 		do {
1073 			send_addr(host, page_addr & 0xFF);
1074 			page_addr >>= 8;
1075 			page_mask >>= 8;
1076 		} while (page_mask);
1077 	}
1078 
1079 	/* Command post-processing step */
1080 	switch (command) {
1081 
1082 	case NAND_CMD_RESET:
1083 		break;
1084 
1085 	case NAND_CMD_READOOB:
1086 	case NAND_CMD_READ0:
1087 		if (host->pagesize_2k) {
1088 			/* send read confirm command */
1089 			send_cmd(host, NAND_CMD_READSTART);
1090 			/* read for each AREA */
1091 			send_read_page(host, 0, host->spare_only);
1092 			if (is_mxc_nfc_1()) {
1093 				send_read_page(host, 1, host->spare_only);
1094 				send_read_page(host, 2, host->spare_only);
1095 				send_read_page(host, 3, host->spare_only);
1096 			}
1097 		} else {
1098 			send_read_page(host, 0, host->spare_only);
1099 		}
1100 		break;
1101 
1102 	case NAND_CMD_READID:
1103 		host->col_addr = 0;
1104 		send_read_id(host);
1105 		break;
1106 
1107 	case NAND_CMD_PAGEPROG:
1108 		break;
1109 
1110 	case NAND_CMD_STATUS:
1111 		break;
1112 
1113 	case NAND_CMD_ERASE2:
1114 		break;
1115 	}
1116 }
1117 
1118 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1119 
1120 static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
1121 static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
1122 
1123 static struct nand_bbt_descr bbt_main_descr = {
1124 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
1125 		   NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1126 	.offs =	0,
1127 	.len = 4,
1128 	.veroffs = 4,
1129 	.maxblocks = 4,
1130 	.pattern = bbt_pattern,
1131 };
1132 
1133 static struct nand_bbt_descr bbt_mirror_descr = {
1134 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
1135 		   NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1136 	.offs =	0,
1137 	.len = 4,
1138 	.veroffs = 4,
1139 	.maxblocks = 4,
1140 	.pattern = mirror_pattern,
1141 };
1142 
1143 #endif
1144 
1145 int board_nand_init(struct nand_chip *this)
1146 {
1147 	struct mtd_info *mtd;
1148 #if defined(MXC_NFC_V2_1) || defined(MXC_NFC_V3_2)
1149 	uint32_t tmp;
1150 #endif
1151 
1152 #ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
1153 	this->bbt_options |= NAND_BBT_USE_FLASH;
1154 	this->bbt_td = &bbt_main_descr;
1155 	this->bbt_md = &bbt_mirror_descr;
1156 #endif
1157 
1158 	/* structures must be linked */
1159 	mtd = &this->mtd;
1160 	host->nand = this;
1161 
1162 	/* 5 us command delay time */
1163 	this->chip_delay = 5;
1164 
1165 	nand_set_controller_data(this, host);
1166 	this->dev_ready = mxc_nand_dev_ready;
1167 	this->cmdfunc = mxc_nand_command;
1168 	this->select_chip = mxc_nand_select_chip;
1169 	this->read_byte = mxc_nand_read_byte;
1170 	this->read_word = mxc_nand_read_word;
1171 	this->write_buf = mxc_nand_write_buf;
1172 	this->read_buf = mxc_nand_read_buf;
1173 
1174 	host->regs = (struct mxc_nand_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE;
1175 #ifdef MXC_NFC_V3_2
1176 	host->ip_regs =
1177 		(struct mxc_nand_ip_regs __iomem *)CONFIG_MXC_NAND_IP_REGS_BASE;
1178 #endif
1179 	host->clk_act = 1;
1180 
1181 #ifdef CONFIG_MXC_NAND_HWECC
1182 	this->ecc.calculate = mxc_nand_calculate_ecc;
1183 	this->ecc.hwctl = mxc_nand_enable_hwecc;
1184 	this->ecc.correct = mxc_nand_correct_data;
1185 	if (is_mxc_nfc_21() || is_mxc_nfc_32()) {
1186 		this->ecc.mode = NAND_ECC_HW_SYNDROME;
1187 		this->ecc.read_page = mxc_nand_read_page_syndrome;
1188 		this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome;
1189 		this->ecc.read_oob = mxc_nand_read_oob_syndrome;
1190 		this->ecc.write_page = mxc_nand_write_page_syndrome;
1191 		this->ecc.write_page_raw = mxc_nand_write_page_raw_syndrome;
1192 		this->ecc.write_oob = mxc_nand_write_oob_syndrome;
1193 		this->ecc.bytes = 9;
1194 		this->ecc.prepad = 7;
1195 	} else {
1196 		this->ecc.mode = NAND_ECC_HW;
1197 	}
1198 
1199 	if (is_mxc_nfc_1())
1200 		this->ecc.strength = 1;
1201 	else
1202 		this->ecc.strength = 4;
1203 
1204 	host->pagesize_2k = 0;
1205 
1206 	this->ecc.size = 512;
1207 	_mxc_nand_enable_hwecc(mtd, 1);
1208 #else
1209 	this->ecc.layout = &nand_soft_eccoob;
1210 	this->ecc.mode = NAND_ECC_SOFT;
1211 	_mxc_nand_enable_hwecc(mtd, 0);
1212 #endif
1213 	/* Reset NAND */
1214 	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1215 
1216 	/* NAND bus width determines access functions used by upper layer */
1217 	if (is_16bit_nand())
1218 		this->options |= NAND_BUSWIDTH_16;
1219 
1220 #ifdef CONFIG_SYS_NAND_LARGEPAGE
1221 	host->pagesize_2k = 1;
1222 	this->ecc.layout = &nand_hw_eccoob2k;
1223 #else
1224 	host->pagesize_2k = 0;
1225 	this->ecc.layout = &nand_hw_eccoob;
1226 #endif
1227 
1228 #if defined(MXC_NFC_V1) || defined(MXC_NFC_V2_1)
1229 #ifdef MXC_NFC_V2_1
1230 	tmp = readnfc(&host->regs->config1);
1231 	tmp |= NFC_V2_CONFIG1_ONE_CYCLE;
1232 	tmp |= NFC_V2_CONFIG1_ECC_MODE_4;
1233 	writenfc(tmp, &host->regs->config1);
1234 	if (host->pagesize_2k)
1235 		writenfc(64/2, &host->regs->spare_area_size);
1236 	else
1237 		writenfc(16/2, &host->regs->spare_area_size);
1238 #endif
1239 
1240 	/*
1241 	 * preset operation
1242 	 * Unlock the internal RAM Buffer
1243 	 */
1244 	writenfc(0x2, &host->regs->config);
1245 
1246 	/* Blocks to be unlocked */
1247 	writenfc(0x0, &host->regs->unlockstart_blkaddr);
1248 	/* Originally (Freescale LTIB 2.6.21) 0x4000 was written to the
1249 	 * unlockend_blkaddr, but the magic 0x4000 does not always work
1250 	 * when writing more than some 32 megabytes (on 2k page nands)
1251 	 * However 0xFFFF doesn't seem to have this kind
1252 	 * of limitation (tried it back and forth several times).
1253 	 * The linux kernel driver sets this to 0xFFFF for the v2 controller
1254 	 * only, but probably this was not tested there for v1.
1255 	 * The very same limitation seems to apply to this kernel driver.
1256 	 * This might be NAND chip specific and the i.MX31 datasheet is
1257 	 * extremely vague about the semantics of this register.
1258 	 */
1259 	writenfc(0xFFFF, &host->regs->unlockend_blkaddr);
1260 
1261 	/* Unlock Block Command for given address range */
1262 	writenfc(0x4, &host->regs->wrprot);
1263 #elif defined(MXC_NFC_V3_2)
1264 	writenfc(NFC_V3_CONFIG1_RBA(0), &host->regs->config1);
1265 	writenfc(NFC_V3_IPC_CREQ, &host->ip_regs->ipc);
1266 
1267 	/* Unlock the internal RAM Buffer */
1268 	writenfc(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1269 			&host->ip_regs->wrprot);
1270 
1271 	/* Blocks to be unlocked */
1272 	for (tmp = 0; tmp < CONFIG_SYS_NAND_MAX_CHIPS; tmp++)
1273 		writenfc(0x0 | 0xFFFF << 16,
1274 				&host->ip_regs->wrprot_unlock_blkaddr[tmp]);
1275 
1276 	writenfc(0, &host->ip_regs->ipc);
1277 
1278 	tmp = readnfc(&host->ip_regs->config2);
1279 	tmp &= ~(NFC_V3_CONFIG2_SPAS_MASK | NFC_V3_CONFIG2_EDC_MASK |
1280 			NFC_V3_CONFIG2_ECC_MODE_8 | NFC_V3_CONFIG2_PS_MASK);
1281 	tmp |= NFC_V3_CONFIG2_ONE_CYCLE;
1282 
1283 	if (host->pagesize_2k) {
1284 		tmp |= NFC_V3_CONFIG2_SPAS(64/2);
1285 		tmp |= NFC_V3_CONFIG2_PS_2048;
1286 	} else {
1287 		tmp |= NFC_V3_CONFIG2_SPAS(16/2);
1288 		tmp |= NFC_V3_CONFIG2_PS_512;
1289 	}
1290 
1291 	writenfc(tmp, &host->ip_regs->config2);
1292 
1293 	tmp = NFC_V3_CONFIG3_NUM_OF_DEVS(0) |
1294 			NFC_V3_CONFIG3_NO_SDMA |
1295 			NFC_V3_CONFIG3_RBB_MODE |
1296 			NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1297 			NFC_V3_CONFIG3_ADD_OP(0);
1298 
1299 	if (!(this->options & NAND_BUSWIDTH_16))
1300 		tmp |= NFC_V3_CONFIG3_FW8;
1301 
1302 	writenfc(tmp, &host->ip_regs->config3);
1303 
1304 	writenfc(0, &host->ip_regs->delay_line);
1305 #endif
1306 
1307 	return 0;
1308 }
1309