xref: /OK3568_Linux_fs/u-boot/drivers/mtd/nand/raw/fsl_ifc_spl.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2  * NAND boot for Freescale Integrated Flash Controller, NAND FCM
3  *
4  * Copyright 2011 Freescale Semiconductor, Inc.
5  * Author: Dipen Dudhat <dipen.dudhat@freescale.com>
6  *
7  * SPDX-License-Identifier:	GPL-2.0+
8  */
9 
10 #include <common.h>
11 #include <asm/io.h>
12 #include <fsl_ifc.h>
13 #include <linux/mtd/rawnand.h>
14 #ifdef CONFIG_CHAIN_OF_TRUST
15 #include <fsl_validate.h>
16 #endif
17 
is_blank(uchar * addr,int page_size)18 static inline int is_blank(uchar *addr, int page_size)
19 {
20 	int i;
21 
22 	for (i = 0; i < page_size; i++) {
23 		if (__raw_readb(&addr[i]) != 0xff)
24 			return 0;
25 	}
26 
27 	/*
28 	 * For the SPL, don't worry about uncorrectable errors
29 	 * where the main area is all FFs but shouldn't be.
30 	 */
31 	return 1;
32 }
33 
34 /* returns nonzero if entire page is blank */
check_read_ecc(uchar * buf,u32 * eccstat,unsigned int bufnum,int page_size)35 static inline int check_read_ecc(uchar *buf, u32 *eccstat,
36 				 unsigned int bufnum, int page_size)
37 {
38 	u32 reg = eccstat[bufnum / 4];
39 	int errors = (reg >> ((3 - bufnum % 4) * 8)) & 0xf;
40 
41 	if (errors == 0xf) { /* uncorrectable */
42 		/* Blank pages fail hw ECC checks */
43 		if (is_blank(buf, page_size))
44 			return 1;
45 
46 		puts("ecc error\n");
47 		for (;;)
48 			;
49 	}
50 
51 	return 0;
52 }
53 
runtime_regs_address(void)54 static inline struct fsl_ifc_runtime *runtime_regs_address(void)
55 {
56 	struct fsl_ifc regs = {(void *)CONFIG_SYS_IFC_ADDR, NULL};
57 	int ver = 0;
58 
59 	ver = ifc_in32(&regs.gregs->ifc_rev);
60 	if (ver >= FSL_IFC_V2_0_0)
61 		regs.rregs = (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_64KOFFSET;
62 	else
63 		regs.rregs = (void *)CONFIG_SYS_IFC_ADDR + IFC_RREGS_4KOFFSET;
64 
65 	return regs.rregs;
66 }
67 
nand_wait(uchar * buf,int bufnum,int page_size)68 static inline void nand_wait(uchar *buf, int bufnum, int page_size)
69 {
70 	struct fsl_ifc_runtime *ifc = runtime_regs_address();
71 	u32 status;
72 	u32 eccstat[8];
73 	int bufperpage = page_size / 512;
74 	int bufnum_end, i;
75 
76 	bufnum *= bufperpage;
77 	bufnum_end = bufnum + bufperpage - 1;
78 
79 	do {
80 		status = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
81 	} while (!(status & IFC_NAND_EVTER_STAT_OPC));
82 
83 	if (status & IFC_NAND_EVTER_STAT_FTOER) {
84 		puts("flash time out error\n");
85 		for (;;)
86 			;
87 	}
88 
89 	for (i = bufnum / 4; i <= bufnum_end / 4; i++)
90 		eccstat[i] = ifc_in32(&ifc->ifc_nand.nand_eccstat[i]);
91 
92 	for (i = bufnum; i <= bufnum_end; i++) {
93 		if (check_read_ecc(buf, eccstat, i, page_size))
94 			break;
95 	}
96 
97 	ifc_out32(&ifc->ifc_nand.nand_evter_stat, status);
98 }
99 
bad_block(uchar * marker,int port_size)100 static inline int bad_block(uchar *marker, int port_size)
101 {
102 	if (port_size == 8)
103 		return __raw_readb(marker) != 0xff;
104 	else
105 		return __raw_readw((u16 *)marker) != 0xffff;
106 }
107 
nand_spl_load_image(uint32_t offs,unsigned int uboot_size,void * vdst)108 int nand_spl_load_image(uint32_t offs, unsigned int uboot_size, void *vdst)
109 {
110 	struct fsl_ifc_fcm *gregs = (void *)CONFIG_SYS_IFC_ADDR;
111 	struct fsl_ifc_runtime *ifc = NULL;
112 	uchar *buf = (uchar *)CONFIG_SYS_NAND_BASE;
113 	int page_size;
114 	int port_size;
115 	int pages_per_blk;
116 	int blk_size;
117 	int bad_marker = 0;
118 	int bufnum_mask, bufnum, ver = 0;
119 
120 	int csor, cspr;
121 	int pos = 0;
122 	int j = 0;
123 
124 	int sram_addr;
125 	int pg_no;
126 	uchar *dst = vdst;
127 
128 	ifc = runtime_regs_address();
129 
130 	/* Get NAND Flash configuration */
131 	csor = CONFIG_SYS_NAND_CSOR;
132 	cspr = CONFIG_SYS_NAND_CSPR;
133 
134 	port_size = (cspr & CSPR_PORT_SIZE_16) ? 16 : 8;
135 
136 	if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_8K) {
137 		page_size = 8192;
138 		bufnum_mask = 0x0;
139 	} else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_4K) {
140 		page_size = 4096;
141 		bufnum_mask = 0x1;
142 	} else if ((csor & CSOR_NAND_PGS_MASK) == CSOR_NAND_PGS_2K) {
143 		page_size = 2048;
144 		bufnum_mask = 0x3;
145 	} else {
146 		page_size = 512;
147 		bufnum_mask = 0xf;
148 
149 		if (port_size == 8)
150 			bad_marker = 5;
151 	}
152 
153 	ver = ifc_in32(&gregs->ifc_rev);
154 	if (ver >= FSL_IFC_V2_0_0)
155 		bufnum_mask = (bufnum_mask * 2) + 1;
156 
157 	pages_per_blk =
158 		32 << ((csor & CSOR_NAND_PB_MASK) >> CSOR_NAND_PB_SHIFT);
159 
160 	blk_size = pages_per_blk * page_size;
161 
162 	/* Open Full SRAM mapping for spare are access */
163 	ifc_out32(&ifc->ifc_nand.ncfgr, 0x0);
164 
165 	/* Clear Boot events */
166 	ifc_out32(&ifc->ifc_nand.nand_evter_stat, 0xffffffff);
167 
168 	/* Program FIR/FCR for Large/Small page */
169 	if (page_size > 512) {
170 		ifc_out32(&ifc->ifc_nand.nand_fir0,
171 			  (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
172 			  (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
173 			  (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
174 			  (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
175 			  (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP4_SHIFT));
176 		ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
177 
178 		ifc_out32(&ifc->ifc_nand.nand_fcr0,
179 			  (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
180 			  (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
181 	} else {
182 		ifc_out32(&ifc->ifc_nand.nand_fir0,
183 			  (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
184 			  (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
185 			  (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) |
186 			  (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP3_SHIFT));
187 		ifc_out32(&ifc->ifc_nand.nand_fir1, 0x0);
188 
189 		ifc_out32(&ifc->ifc_nand.nand_fcr0,
190 			  NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
191 	}
192 
193 	/* Program FBCR = 0 for full page read */
194 	ifc_out32(&ifc->ifc_nand.nand_fbcr, 0);
195 
196 	/* Read and copy u-boot on SDRAM from NAND device, In parallel
197 	 * check for Bad block if found skip it and read continue to
198 	 * next Block
199 	 */
200 	while (pos < uboot_size) {
201 		int i = 0;
202 		do {
203 			pg_no = offs / page_size;
204 			bufnum = pg_no & bufnum_mask;
205 			sram_addr = bufnum * page_size * 2;
206 
207 			ifc_out32(&ifc->ifc_nand.row0, pg_no);
208 			ifc_out32(&ifc->ifc_nand.col0, 0);
209 			/* start read */
210 			ifc_out32(&ifc->ifc_nand.nandseq_strt,
211 				  IFC_NAND_SEQ_STRT_FIR_STRT);
212 
213 			/* wait for read to complete */
214 			nand_wait(&buf[sram_addr], bufnum, page_size);
215 
216 			/*
217 			 * If either of the first two pages are marked bad,
218 			 * continue to the next block.
219 			 */
220 			if (i++ < 2 &&
221 			    bad_block(&buf[sram_addr + page_size + bad_marker],
222 				      port_size)) {
223 				puts("skipping\n");
224 				offs = (offs + blk_size) & ~(blk_size - 1);
225 				pos &= ~(blk_size - 1);
226 				break;
227 			}
228 
229 			for (j = 0; j < page_size; j++)
230 				dst[pos + j] = __raw_readb(&buf[sram_addr + j]);
231 
232 			pos += page_size;
233 			offs += page_size;
234 		} while ((offs & (blk_size - 1)) && (pos < uboot_size));
235 	}
236 
237 	return 0;
238 }
239 
240 /*
241  * Main entrypoint for NAND Boot. It's necessary that SDRAM is already
242  * configured and available since this code loads the main U-Boot image
243  * from NAND into SDRAM and starts from there.
244  */
nand_boot(void)245 void nand_boot(void)
246 {
247 	__attribute__((noreturn)) void (*uboot)(void);
248 	/*
249 	 * Load U-Boot image from NAND into RAM
250 	 */
251 	nand_spl_load_image(CONFIG_SYS_NAND_U_BOOT_OFFS,
252 			    CONFIG_SYS_NAND_U_BOOT_SIZE,
253 			    (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
254 
255 #ifdef CONFIG_NAND_ENV_DST
256 	nand_spl_load_image(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
257 			    (uchar *)CONFIG_NAND_ENV_DST);
258 
259 #ifdef CONFIG_ENV_OFFSET_REDUND
260 	nand_spl_load_image(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
261 			    (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
262 #endif
263 #endif
264 	/*
265 	 * Jump to U-Boot image
266 	 */
267 #ifdef CONFIG_SPL_FLUSH_IMAGE
268 	/*
269 	 * Clean d-cache and invalidate i-cache, to
270 	 * make sure that no stale data is executed.
271 	 */
272 	flush_cache(CONFIG_SYS_NAND_U_BOOT_DST, CONFIG_SYS_NAND_U_BOOT_SIZE);
273 #endif
274 
275 #ifdef CONFIG_CHAIN_OF_TRUST
276 	/*
277 	 * U-Boot header is appended at end of U-boot image, so
278 	 * calculate U-boot header address using U-boot header size.
279 	 */
280 #define CONFIG_U_BOOT_HDR_ADDR \
281 		((CONFIG_SYS_NAND_U_BOOT_START + \
282 		  CONFIG_SYS_NAND_U_BOOT_SIZE) - \
283 		 CONFIG_U_BOOT_HDR_SIZE)
284 	spl_validate_uboot(CONFIG_U_BOOT_HDR_ADDR,
285 			   CONFIG_SYS_NAND_U_BOOT_START);
286 	/*
287 	 * In case of failure in validation, spl_validate_uboot would
288 	 * not return back in case of Production environment with ITS=1.
289 	 * Thus U-Boot will not start.
290 	 * In Development environment (ITS=0 and SB_EN=1), the function
291 	 * may return back in case of non-fatal failures.
292 	 */
293 #endif
294 
295 	uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
296 	uboot();
297 }
298 
299 #ifndef CONFIG_SPL_NAND_INIT
nand_init(void)300 void nand_init(void)
301 {
302 }
303 
nand_deselect(void)304 void nand_deselect(void)
305 {
306 }
307 #endif
308