xref: /OK3568_Linux_fs/u-boot/drivers/mtd/mtdcore.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2  * Core registration and callback routines for MTD
3  * drivers and users.
4  *
5  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6  * Copyright © 2006      Red Hat UK Limited
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  *
10  */
11 
12 #ifndef __UBOOT__
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/ptrace.h>
16 #include <linux/seq_file.h>
17 #include <linux/string.h>
18 #include <linux/timer.h>
19 #include <linux/major.h>
20 #include <linux/fs.h>
21 #include <linux/err.h>
22 #include <linux/ioctl.h>
23 #include <linux/init.h>
24 #include <linux/proc_fs.h>
25 #include <linux/idr.h>
26 #include <linux/backing-dev.h>
27 #include <linux/gfp.h>
28 #include <linux/slab.h>
29 #else
30 #include <linux/err.h>
31 #include <ubi_uboot.h>
32 #endif
33 
34 #include <linux/log2.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/partitions.h>
37 
38 #include "mtdcore.h"
39 
40 #ifndef __UBOOT__
41 /*
42  * backing device capabilities for non-mappable devices (such as NAND flash)
43  * - permits private mappings, copies are taken of the data
44  */
45 static struct backing_dev_info mtd_bdi_unmappable = {
46 	.capabilities	= BDI_CAP_MAP_COPY,
47 };
48 
49 /*
50  * backing device capabilities for R/O mappable devices (such as ROM)
51  * - permits private mappings, copies are taken of the data
52  * - permits non-writable shared mappings
53  */
54 static struct backing_dev_info mtd_bdi_ro_mappable = {
55 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
56 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
57 };
58 
59 /*
60  * backing device capabilities for writable mappable devices (such as RAM)
61  * - permits private mappings, copies are taken of the data
62  * - permits non-writable shared mappings
63  */
64 static struct backing_dev_info mtd_bdi_rw_mappable = {
65 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
66 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
67 			   BDI_CAP_WRITE_MAP),
68 };
69 
70 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
71 static int mtd_cls_resume(struct device *dev);
72 
73 static struct class mtd_class = {
74 	.name = "mtd",
75 	.owner = THIS_MODULE,
76 	.suspend = mtd_cls_suspend,
77 	.resume = mtd_cls_resume,
78 };
79 #else
80 struct mtd_info *mtd_table[MAX_MTD_DEVICES];
81 
82 #define MAX_IDR_ID	64
83 
84 struct idr_layer {
85 	int	used;
86 	void	*ptr;
87 };
88 
89 struct idr {
90 	struct idr_layer id[MAX_IDR_ID];
91 	bool updated;
92 };
93 
94 #define DEFINE_IDR(name)	struct idr name;
95 
idr_remove(struct idr * idp,int id)96 void idr_remove(struct idr *idp, int id)
97 {
98 	if (idp->id[id].used) {
99 		idp->id[id].used = 0;
100 		idp->updated = true;
101 	}
102 
103 	return;
104 }
idr_find(struct idr * idp,int id)105 void *idr_find(struct idr *idp, int id)
106 {
107 	if (idp->id[id].used)
108 		return idp->id[id].ptr;
109 
110 	return NULL;
111 }
112 
idr_get_next(struct idr * idp,int * next)113 void *idr_get_next(struct idr *idp, int *next)
114 {
115 	void *ret;
116 	int id = *next;
117 
118 	ret = idr_find(idp, id);
119 	if (ret) {
120 		id ++;
121 		if (!idp->id[id].used)
122 			id = 0;
123 		*next = id;
124 	} else {
125 		*next = 0;
126 	}
127 
128 	return ret;
129 }
130 
idr_alloc(struct idr * idp,void * ptr,int start,int end,gfp_t gfp_mask)131 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask)
132 {
133 	struct idr_layer *idl;
134 	int i = 0;
135 
136 	while (i < MAX_IDR_ID) {
137 		idl = &idp->id[i];
138 		if (idl->used == 0) {
139 			idl->used = 1;
140 			idl->ptr = ptr;
141 			idp->updated = true;
142 			return i;
143 		}
144 		i++;
145 	}
146 	return -ENOSPC;
147 }
148 #endif
149 
150 static DEFINE_IDR(mtd_idr);
151 
152 /* These are exported solely for the purpose of mtd_blkdevs.c. You
153    should not use them for _anything_ else */
154 DEFINE_MUTEX(mtd_table_mutex);
155 EXPORT_SYMBOL_GPL(mtd_table_mutex);
156 
__mtd_next_device(int i)157 struct mtd_info *__mtd_next_device(int i)
158 {
159 	return idr_get_next(&mtd_idr, &i);
160 }
161 EXPORT_SYMBOL_GPL(__mtd_next_device);
162 
mtd_dev_list_updated(void)163 bool mtd_dev_list_updated(void)
164 {
165 	if (mtd_idr.updated) {
166 		mtd_idr.updated = false;
167 		return true;
168 	}
169 
170 	return false;
171 }
172 
173 #ifndef __UBOOT__
174 static LIST_HEAD(mtd_notifiers);
175 
176 
177 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
178 
179 /* REVISIT once MTD uses the driver model better, whoever allocates
180  * the mtd_info will probably want to use the release() hook...
181  */
mtd_release(struct device * dev)182 static void mtd_release(struct device *dev)
183 {
184 	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
185 	dev_t index = MTD_DEVT(mtd->index);
186 
187 	/* remove /dev/mtdXro node if needed */
188 	if (index)
189 		device_destroy(&mtd_class, index + 1);
190 }
191 
mtd_cls_suspend(struct device * dev,pm_message_t state)192 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
193 {
194 	struct mtd_info *mtd = dev_get_drvdata(dev);
195 
196 	return mtd ? mtd_suspend(mtd) : 0;
197 }
198 
mtd_cls_resume(struct device * dev)199 static int mtd_cls_resume(struct device *dev)
200 {
201 	struct mtd_info *mtd = dev_get_drvdata(dev);
202 
203 	if (mtd)
204 		mtd_resume(mtd);
205 	return 0;
206 }
207 
mtd_type_show(struct device * dev,struct device_attribute * attr,char * buf)208 static ssize_t mtd_type_show(struct device *dev,
209 		struct device_attribute *attr, char *buf)
210 {
211 	struct mtd_info *mtd = dev_get_drvdata(dev);
212 	char *type;
213 
214 	switch (mtd->type) {
215 	case MTD_ABSENT:
216 		type = "absent";
217 		break;
218 	case MTD_RAM:
219 		type = "ram";
220 		break;
221 	case MTD_ROM:
222 		type = "rom";
223 		break;
224 	case MTD_NORFLASH:
225 		type = "nor";
226 		break;
227 	case MTD_NANDFLASH:
228 		type = "nand";
229 		break;
230 	case MTD_DATAFLASH:
231 		type = "dataflash";
232 		break;
233 	case MTD_UBIVOLUME:
234 		type = "ubi";
235 		break;
236 	case MTD_MLCNANDFLASH:
237 		type = "mlc-nand";
238 		break;
239 	default:
240 		type = "unknown";
241 	}
242 
243 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
244 }
245 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
246 
mtd_flags_show(struct device * dev,struct device_attribute * attr,char * buf)247 static ssize_t mtd_flags_show(struct device *dev,
248 		struct device_attribute *attr, char *buf)
249 {
250 	struct mtd_info *mtd = dev_get_drvdata(dev);
251 
252 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
253 
254 }
255 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
256 
mtd_size_show(struct device * dev,struct device_attribute * attr,char * buf)257 static ssize_t mtd_size_show(struct device *dev,
258 		struct device_attribute *attr, char *buf)
259 {
260 	struct mtd_info *mtd = dev_get_drvdata(dev);
261 
262 	return snprintf(buf, PAGE_SIZE, "%llu\n",
263 		(unsigned long long)mtd->size);
264 
265 }
266 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
267 
mtd_erasesize_show(struct device * dev,struct device_attribute * attr,char * buf)268 static ssize_t mtd_erasesize_show(struct device *dev,
269 		struct device_attribute *attr, char *buf)
270 {
271 	struct mtd_info *mtd = dev_get_drvdata(dev);
272 
273 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
274 
275 }
276 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
277 
mtd_writesize_show(struct device * dev,struct device_attribute * attr,char * buf)278 static ssize_t mtd_writesize_show(struct device *dev,
279 		struct device_attribute *attr, char *buf)
280 {
281 	struct mtd_info *mtd = dev_get_drvdata(dev);
282 
283 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
284 
285 }
286 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
287 
mtd_subpagesize_show(struct device * dev,struct device_attribute * attr,char * buf)288 static ssize_t mtd_subpagesize_show(struct device *dev,
289 		struct device_attribute *attr, char *buf)
290 {
291 	struct mtd_info *mtd = dev_get_drvdata(dev);
292 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
293 
294 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
295 
296 }
297 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
298 
mtd_oobsize_show(struct device * dev,struct device_attribute * attr,char * buf)299 static ssize_t mtd_oobsize_show(struct device *dev,
300 		struct device_attribute *attr, char *buf)
301 {
302 	struct mtd_info *mtd = dev_get_drvdata(dev);
303 
304 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
305 
306 }
307 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
308 
mtd_numeraseregions_show(struct device * dev,struct device_attribute * attr,char * buf)309 static ssize_t mtd_numeraseregions_show(struct device *dev,
310 		struct device_attribute *attr, char *buf)
311 {
312 	struct mtd_info *mtd = dev_get_drvdata(dev);
313 
314 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
315 
316 }
317 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
318 	NULL);
319 
mtd_name_show(struct device * dev,struct device_attribute * attr,char * buf)320 static ssize_t mtd_name_show(struct device *dev,
321 		struct device_attribute *attr, char *buf)
322 {
323 	struct mtd_info *mtd = dev_get_drvdata(dev);
324 
325 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
326 
327 }
328 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
329 
mtd_ecc_strength_show(struct device * dev,struct device_attribute * attr,char * buf)330 static ssize_t mtd_ecc_strength_show(struct device *dev,
331 				     struct device_attribute *attr, char *buf)
332 {
333 	struct mtd_info *mtd = dev_get_drvdata(dev);
334 
335 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
336 }
337 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
338 
mtd_bitflip_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)339 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
340 					  struct device_attribute *attr,
341 					  char *buf)
342 {
343 	struct mtd_info *mtd = dev_get_drvdata(dev);
344 
345 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
346 }
347 
mtd_bitflip_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)348 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
349 					   struct device_attribute *attr,
350 					   const char *buf, size_t count)
351 {
352 	struct mtd_info *mtd = dev_get_drvdata(dev);
353 	unsigned int bitflip_threshold;
354 	int retval;
355 
356 	retval = kstrtouint(buf, 0, &bitflip_threshold);
357 	if (retval)
358 		return retval;
359 
360 	mtd->bitflip_threshold = bitflip_threshold;
361 	return count;
362 }
363 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
364 		   mtd_bitflip_threshold_show,
365 		   mtd_bitflip_threshold_store);
366 
mtd_ecc_step_size_show(struct device * dev,struct device_attribute * attr,char * buf)367 static ssize_t mtd_ecc_step_size_show(struct device *dev,
368 		struct device_attribute *attr, char *buf)
369 {
370 	struct mtd_info *mtd = dev_get_drvdata(dev);
371 
372 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
373 
374 }
375 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
376 
377 static struct attribute *mtd_attrs[] = {
378 	&dev_attr_type.attr,
379 	&dev_attr_flags.attr,
380 	&dev_attr_size.attr,
381 	&dev_attr_erasesize.attr,
382 	&dev_attr_writesize.attr,
383 	&dev_attr_subpagesize.attr,
384 	&dev_attr_oobsize.attr,
385 	&dev_attr_numeraseregions.attr,
386 	&dev_attr_name.attr,
387 	&dev_attr_ecc_strength.attr,
388 	&dev_attr_ecc_step_size.attr,
389 	&dev_attr_bitflip_threshold.attr,
390 	NULL,
391 };
392 ATTRIBUTE_GROUPS(mtd);
393 
394 static struct device_type mtd_devtype = {
395 	.name		= "mtd",
396 	.groups		= mtd_groups,
397 	.release	= mtd_release,
398 };
399 #endif
400 
401 /**
402  *	add_mtd_device - register an MTD device
403  *	@mtd: pointer to new MTD device info structure
404  *
405  *	Add a device to the list of MTD devices present in the system, and
406  *	notify each currently active MTD 'user' of its arrival. Returns
407  *	zero on success or 1 on failure, which currently will only happen
408  *	if there is insufficient memory or a sysfs error.
409  */
410 
add_mtd_device(struct mtd_info * mtd)411 int add_mtd_device(struct mtd_info *mtd)
412 {
413 #ifndef __UBOOT__
414 	struct mtd_notifier *not;
415 #endif
416 	int i, error;
417 
418 #ifndef __UBOOT__
419 	if (!mtd->backing_dev_info) {
420 		switch (mtd->type) {
421 		case MTD_RAM:
422 			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
423 			break;
424 		case MTD_ROM:
425 			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
426 			break;
427 		default:
428 			mtd->backing_dev_info = &mtd_bdi_unmappable;
429 			break;
430 		}
431 	}
432 #endif
433 
434 	BUG_ON(mtd->writesize == 0);
435 	mutex_lock(&mtd_table_mutex);
436 
437 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
438 	if (i < 0)
439 		goto fail_locked;
440 
441 	mtd->index = i;
442 	mtd->usecount = 0;
443 
444 	INIT_LIST_HEAD(&mtd->partitions);
445 
446 	/* default value if not set by driver */
447 	if (mtd->bitflip_threshold == 0)
448 		mtd->bitflip_threshold = mtd->ecc_strength;
449 
450 	if (is_power_of_2(mtd->erasesize))
451 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
452 	else
453 		mtd->erasesize_shift = 0;
454 
455 	if (is_power_of_2(mtd->writesize))
456 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
457 	else
458 		mtd->writesize_shift = 0;
459 
460 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
461 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
462 
463 	/* Some chips always power up locked. Unlock them now */
464 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
465 		error = mtd_unlock(mtd, 0, mtd->size);
466 		if (error && error != -EOPNOTSUPP)
467 			printk(KERN_WARNING
468 			       "%s: unlock failed, writes may not work\n",
469 			       mtd->name);
470 	}
471 
472 #ifndef __UBOOT__
473 	/* Caller should have set dev.parent to match the
474 	 * physical device.
475 	 */
476 	mtd->dev.type = &mtd_devtype;
477 	mtd->dev.class = &mtd_class;
478 	mtd->dev.devt = MTD_DEVT(i);
479 	dev_set_name(&mtd->dev, "mtd%d", i);
480 	dev_set_drvdata(&mtd->dev, mtd);
481 	if (device_register(&mtd->dev) != 0)
482 		goto fail_added;
483 
484 	if (MTD_DEVT(i))
485 		device_create(&mtd_class, mtd->dev.parent,
486 			      MTD_DEVT(i) + 1,
487 			      NULL, "mtd%dro", i);
488 
489 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
490 	/* No need to get a refcount on the module containing
491 	   the notifier, since we hold the mtd_table_mutex */
492 	list_for_each_entry(not, &mtd_notifiers, list)
493 		not->add(mtd);
494 #else
495 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
496 #endif
497 
498 	mutex_unlock(&mtd_table_mutex);
499 	/* We _know_ we aren't being removed, because
500 	   our caller is still holding us here. So none
501 	   of this try_ nonsense, and no bitching about it
502 	   either. :) */
503 	__module_get(THIS_MODULE);
504 	return 0;
505 
506 #ifndef __UBOOT__
507 fail_added:
508 	idr_remove(&mtd_idr, i);
509 #endif
510 fail_locked:
511 	mutex_unlock(&mtd_table_mutex);
512 	return 1;
513 }
514 
515 /**
516  *	del_mtd_device - unregister an MTD device
517  *	@mtd: pointer to MTD device info structure
518  *
519  *	Remove a device from the list of MTD devices present in the system,
520  *	and notify each currently active MTD 'user' of its departure.
521  *	Returns zero on success or 1 on failure, which currently will happen
522  *	if the requested device does not appear to be present in the list.
523  */
524 
del_mtd_device(struct mtd_info * mtd)525 int del_mtd_device(struct mtd_info *mtd)
526 {
527 	int ret;
528 #ifndef __UBOOT__
529 	struct mtd_notifier *not;
530 #endif
531 
532 	ret = del_mtd_partitions(mtd);
533 	if (ret) {
534 		debug("Failed to delete MTD partitions attached to %s (err %d)\n",
535 		      mtd->name, ret);
536 		return ret;
537 	}
538 
539 	mutex_lock(&mtd_table_mutex);
540 
541 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
542 		ret = -ENODEV;
543 		goto out_error;
544 	}
545 
546 #ifndef __UBOOT__
547 	/* No need to get a refcount on the module containing
548 		the notifier, since we hold the mtd_table_mutex */
549 	list_for_each_entry(not, &mtd_notifiers, list)
550 		not->remove(mtd);
551 #endif
552 
553 	if (mtd->usecount) {
554 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
555 		       mtd->index, mtd->name, mtd->usecount);
556 		ret = -EBUSY;
557 	} else {
558 #ifndef __UBOOT__
559 		device_unregister(&mtd->dev);
560 #endif
561 
562 		idr_remove(&mtd_idr, mtd->index);
563 
564 		module_put(THIS_MODULE);
565 		ret = 0;
566 	}
567 
568 out_error:
569 	mutex_unlock(&mtd_table_mutex);
570 	return ret;
571 }
572 
573 #ifndef __UBOOT__
574 /**
575  * mtd_device_parse_register - parse partitions and register an MTD device.
576  *
577  * @mtd: the MTD device to register
578  * @types: the list of MTD partition probes to try, see
579  *         'parse_mtd_partitions()' for more information
580  * @parser_data: MTD partition parser-specific data
581  * @parts: fallback partition information to register, if parsing fails;
582  *         only valid if %nr_parts > %0
583  * @nr_parts: the number of partitions in parts, if zero then the full
584  *            MTD device is registered if no partition info is found
585  *
586  * This function aggregates MTD partitions parsing (done by
587  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
588  * basically follows the most common pattern found in many MTD drivers:
589  *
590  * * It first tries to probe partitions on MTD device @mtd using parsers
591  *   specified in @types (if @types is %NULL, then the default list of parsers
592  *   is used, see 'parse_mtd_partitions()' for more information). If none are
593  *   found this functions tries to fallback to information specified in
594  *   @parts/@nr_parts.
595  * * If any partitioning info was found, this function registers the found
596  *   partitions.
597  * * If no partitions were found this function just registers the MTD device
598  *   @mtd and exits.
599  *
600  * Returns zero in case of success and a negative error code in case of failure.
601  */
mtd_device_parse_register(struct mtd_info * mtd,const char * const * types,struct mtd_part_parser_data * parser_data,const struct mtd_partition * parts,int nr_parts)602 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
603 			      struct mtd_part_parser_data *parser_data,
604 			      const struct mtd_partition *parts,
605 			      int nr_parts)
606 {
607 	int err;
608 	struct mtd_partition *real_parts;
609 
610 	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
611 	if (err <= 0 && nr_parts && parts) {
612 		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
613 				     GFP_KERNEL);
614 		if (!real_parts)
615 			err = -ENOMEM;
616 		else
617 			err = nr_parts;
618 	}
619 
620 	if (err > 0) {
621 		err = add_mtd_partitions(mtd, real_parts, err);
622 		kfree(real_parts);
623 	} else if (err == 0) {
624 		err = add_mtd_device(mtd);
625 		if (err == 1)
626 			err = -ENODEV;
627 	}
628 
629 	return err;
630 }
631 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
632 
633 /**
634  * mtd_device_unregister - unregister an existing MTD device.
635  *
636  * @master: the MTD device to unregister.  This will unregister both the master
637  *          and any partitions if registered.
638  */
mtd_device_unregister(struct mtd_info * master)639 int mtd_device_unregister(struct mtd_info *master)
640 {
641 	int err;
642 
643 	err = del_mtd_partitions(master);
644 	if (err)
645 		return err;
646 
647 	if (!device_is_registered(&master->dev))
648 		return 0;
649 
650 	return del_mtd_device(master);
651 }
652 EXPORT_SYMBOL_GPL(mtd_device_unregister);
653 
654 /**
655  *	register_mtd_user - register a 'user' of MTD devices.
656  *	@new: pointer to notifier info structure
657  *
658  *	Registers a pair of callbacks function to be called upon addition
659  *	or removal of MTD devices. Causes the 'add' callback to be immediately
660  *	invoked for each MTD device currently present in the system.
661  */
register_mtd_user(struct mtd_notifier * new)662 void register_mtd_user (struct mtd_notifier *new)
663 {
664 	struct mtd_info *mtd;
665 
666 	mutex_lock(&mtd_table_mutex);
667 
668 	list_add(&new->list, &mtd_notifiers);
669 
670 	__module_get(THIS_MODULE);
671 
672 	mtd_for_each_device(mtd)
673 		new->add(mtd);
674 
675 	mutex_unlock(&mtd_table_mutex);
676 }
677 EXPORT_SYMBOL_GPL(register_mtd_user);
678 
679 /**
680  *	unregister_mtd_user - unregister a 'user' of MTD devices.
681  *	@old: pointer to notifier info structure
682  *
683  *	Removes a callback function pair from the list of 'users' to be
684  *	notified upon addition or removal of MTD devices. Causes the
685  *	'remove' callback to be immediately invoked for each MTD device
686  *	currently present in the system.
687  */
unregister_mtd_user(struct mtd_notifier * old)688 int unregister_mtd_user (struct mtd_notifier *old)
689 {
690 	struct mtd_info *mtd;
691 
692 	mutex_lock(&mtd_table_mutex);
693 
694 	module_put(THIS_MODULE);
695 
696 	mtd_for_each_device(mtd)
697 		old->remove(mtd);
698 
699 	list_del(&old->list);
700 	mutex_unlock(&mtd_table_mutex);
701 	return 0;
702 }
703 EXPORT_SYMBOL_GPL(unregister_mtd_user);
704 #endif
705 
706 /**
707  *	get_mtd_device - obtain a validated handle for an MTD device
708  *	@mtd: last known address of the required MTD device
709  *	@num: internal device number of the required MTD device
710  *
711  *	Given a number and NULL address, return the num'th entry in the device
712  *	table, if any.	Given an address and num == -1, search the device table
713  *	for a device with that address and return if it's still present. Given
714  *	both, return the num'th driver only if its address matches. Return
715  *	error code if not.
716  */
get_mtd_device(struct mtd_info * mtd,int num)717 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
718 {
719 	struct mtd_info *ret = NULL, *other;
720 	int err = -ENODEV;
721 
722 	mutex_lock(&mtd_table_mutex);
723 
724 	if (num == -1) {
725 		mtd_for_each_device(other) {
726 			if (other == mtd) {
727 				ret = mtd;
728 				break;
729 			}
730 		}
731 	} else if (num >= 0) {
732 		ret = idr_find(&mtd_idr, num);
733 		if (mtd && mtd != ret)
734 			ret = NULL;
735 	}
736 
737 	if (!ret) {
738 		ret = ERR_PTR(err);
739 		goto out;
740 	}
741 
742 	err = __get_mtd_device(ret);
743 	if (err)
744 		ret = ERR_PTR(err);
745 out:
746 	mutex_unlock(&mtd_table_mutex);
747 	return ret;
748 }
749 EXPORT_SYMBOL_GPL(get_mtd_device);
750 
751 
__get_mtd_device(struct mtd_info * mtd)752 int __get_mtd_device(struct mtd_info *mtd)
753 {
754 	int err;
755 
756 	if (!try_module_get(mtd->owner))
757 		return -ENODEV;
758 
759 	if (mtd->_get_device) {
760 		err = mtd->_get_device(mtd);
761 
762 		if (err) {
763 			module_put(mtd->owner);
764 			return err;
765 		}
766 	}
767 	mtd->usecount++;
768 	return 0;
769 }
770 EXPORT_SYMBOL_GPL(__get_mtd_device);
771 
772 /**
773  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
774  *	device name
775  *	@name: MTD device name to open
776  *
777  * 	This function returns MTD device description structure in case of
778  * 	success and an error code in case of failure.
779  */
get_mtd_device_nm(const char * name)780 struct mtd_info *get_mtd_device_nm(const char *name)
781 {
782 	int err = -ENODEV;
783 	struct mtd_info *mtd = NULL, *other;
784 
785 	mutex_lock(&mtd_table_mutex);
786 
787 	mtd_for_each_device(other) {
788 		if (!strcmp(name, other->name)) {
789 			mtd = other;
790 			break;
791 		}
792 	}
793 
794 	if (!mtd)
795 		goto out_unlock;
796 
797 	err = __get_mtd_device(mtd);
798 	if (err)
799 		goto out_unlock;
800 
801 	mutex_unlock(&mtd_table_mutex);
802 	return mtd;
803 
804 out_unlock:
805 	mutex_unlock(&mtd_table_mutex);
806 	return ERR_PTR(err);
807 }
808 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
809 
810 #if defined(CONFIG_CMD_MTDPARTS_SPREAD)
811 /**
812  * mtd_get_len_incl_bad
813  *
814  * Check if length including bad blocks fits into device.
815  *
816  * @param mtd an MTD device
817  * @param offset offset in flash
818  * @param length image length
819  * @return image length including bad blocks in *len_incl_bad and whether or not
820  *         the length returned was truncated in *truncated
821  */
mtd_get_len_incl_bad(struct mtd_info * mtd,uint64_t offset,const uint64_t length,uint64_t * len_incl_bad,int * truncated)822 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset,
823 			  const uint64_t length, uint64_t *len_incl_bad,
824 			  int *truncated)
825 {
826 	*truncated = 0;
827 	*len_incl_bad = 0;
828 
829 	if (!mtd->_block_isbad) {
830 		*len_incl_bad = length;
831 		return;
832 	}
833 
834 	uint64_t len_excl_bad = 0;
835 	uint64_t block_len;
836 
837 	while (len_excl_bad < length) {
838 		if (offset >= mtd->size) {
839 			*truncated = 1;
840 			return;
841 		}
842 
843 		block_len = mtd->erasesize - (offset & (mtd->erasesize - 1));
844 
845 		if (!mtd->_block_isbad(mtd, offset & ~(mtd->erasesize - 1)))
846 			len_excl_bad += block_len;
847 
848 		*len_incl_bad += block_len;
849 		offset       += block_len;
850 	}
851 }
852 #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */
853 
put_mtd_device(struct mtd_info * mtd)854 void put_mtd_device(struct mtd_info *mtd)
855 {
856 	mutex_lock(&mtd_table_mutex);
857 	__put_mtd_device(mtd);
858 	mutex_unlock(&mtd_table_mutex);
859 
860 }
861 EXPORT_SYMBOL_GPL(put_mtd_device);
862 
__put_mtd_device(struct mtd_info * mtd)863 void __put_mtd_device(struct mtd_info *mtd)
864 {
865 	--mtd->usecount;
866 	BUG_ON(mtd->usecount < 0);
867 
868 	if (mtd->_put_device)
869 		mtd->_put_device(mtd);
870 
871 	module_put(mtd->owner);
872 }
873 EXPORT_SYMBOL_GPL(__put_mtd_device);
874 
875 /*
876  * Erase is an asynchronous operation.  Device drivers are supposed
877  * to call instr->callback() whenever the operation completes, even
878  * if it completes with a failure.
879  * Callers are supposed to pass a callback function and wait for it
880  * to be called before writing to the block.
881  */
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)882 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
883 {
884 	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
885 		return -EINVAL;
886 	if (!(mtd->flags & MTD_WRITEABLE))
887 		return -EROFS;
888 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
889 	if (!instr->len) {
890 		instr->state = MTD_ERASE_DONE;
891 		mtd_erase_callback(instr);
892 		return 0;
893 	}
894 	return mtd->_erase(mtd, instr);
895 }
896 EXPORT_SYMBOL_GPL(mtd_erase);
897 
898 #ifndef __UBOOT__
899 /*
900  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
901  */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)902 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
903 	      void **virt, resource_size_t *phys)
904 {
905 	*retlen = 0;
906 	*virt = NULL;
907 	if (phys)
908 		*phys = 0;
909 	if (!mtd->_point)
910 		return -EOPNOTSUPP;
911 	if (from < 0 || from > mtd->size || len > mtd->size - from)
912 		return -EINVAL;
913 	if (!len)
914 		return 0;
915 	return mtd->_point(mtd, from, len, retlen, virt, phys);
916 }
917 EXPORT_SYMBOL_GPL(mtd_point);
918 
919 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)920 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
921 {
922 	if (!mtd->_point)
923 		return -EOPNOTSUPP;
924 	if (from < 0 || from > mtd->size || len > mtd->size - from)
925 		return -EINVAL;
926 	if (!len)
927 		return 0;
928 	return mtd->_unpoint(mtd, from, len);
929 }
930 EXPORT_SYMBOL_GPL(mtd_unpoint);
931 #endif
932 
933 /*
934  * Allow NOMMU mmap() to directly map the device (if not NULL)
935  * - return the address to which the offset maps
936  * - return -ENOSYS to indicate refusal to do the mapping
937  */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)938 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
939 				    unsigned long offset, unsigned long flags)
940 {
941 	if (!mtd->_get_unmapped_area)
942 		return -EOPNOTSUPP;
943 	if (offset > mtd->size || len > mtd->size - offset)
944 		return -EINVAL;
945 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
946 }
947 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
948 
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)949 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
950 	     u_char *buf)
951 {
952 	int ret_code;
953 	*retlen = 0;
954 	if (from < 0 || from > mtd->size || len > mtd->size - from)
955 		return -EINVAL;
956 	if (!len)
957 		return 0;
958 
959 	/*
960 	 * In the absence of an error, drivers return a non-negative integer
961 	 * representing the maximum number of bitflips that were corrected on
962 	 * any one ecc region (if applicable; zero otherwise).
963 	 */
964 	if (mtd->_read) {
965 		ret_code = mtd->_read(mtd, from, len, retlen, buf);
966 	} else if (mtd->_read_oob) {
967 		struct mtd_oob_ops ops = {
968 			.len = len,
969 			.datbuf = buf,
970 		};
971 
972 		ret_code = mtd->_read_oob(mtd, from, &ops);
973 		*retlen = ops.retlen;
974 	} else {
975 		return -ENOTSUPP;
976 	}
977 
978 	if (unlikely(ret_code < 0))
979 		return ret_code;
980 	if (mtd->ecc_strength == 0)
981 		return 0;	/* device lacks ecc */
982 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
983 }
984 EXPORT_SYMBOL_GPL(mtd_read);
985 
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)986 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
987 	      const u_char *buf)
988 {
989 	*retlen = 0;
990 	if (to < 0 || to > mtd->size || len > mtd->size - to)
991 		return -EINVAL;
992 	if ((!mtd->_write && !mtd->_write_oob) ||
993 	    !(mtd->flags & MTD_WRITEABLE))
994 		return -EROFS;
995 	if (!len)
996 		return 0;
997 
998 	if (!mtd->_write) {
999 		struct mtd_oob_ops ops = {
1000 			.len = len,
1001 			.datbuf = (u8 *)buf,
1002 		};
1003 		int ret;
1004 
1005 		ret = mtd->_write_oob(mtd, to, &ops);
1006 		*retlen = ops.retlen;
1007 		return ret;
1008 	}
1009 
1010 	return mtd->_write(mtd, to, len, retlen, buf);
1011 }
1012 EXPORT_SYMBOL_GPL(mtd_write);
1013 
1014 /*
1015  * In blackbox flight recorder like scenarios we want to make successful writes
1016  * in interrupt context. panic_write() is only intended to be called when its
1017  * known the kernel is about to panic and we need the write to succeed. Since
1018  * the kernel is not going to be running for much longer, this function can
1019  * break locks and delay to ensure the write succeeds (but not sleep).
1020  */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1021 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1022 		    const u_char *buf)
1023 {
1024 	*retlen = 0;
1025 	if (!mtd->_panic_write)
1026 		return -EOPNOTSUPP;
1027 	if (to < 0 || to > mtd->size || len > mtd->size - to)
1028 		return -EINVAL;
1029 	if (!(mtd->flags & MTD_WRITEABLE))
1030 		return -EROFS;
1031 	if (!len)
1032 		return 0;
1033 	return mtd->_panic_write(mtd, to, len, retlen, buf);
1034 }
1035 EXPORT_SYMBOL_GPL(mtd_panic_write);
1036 
mtd_check_oob_ops(struct mtd_info * mtd,loff_t offs,struct mtd_oob_ops * ops)1037 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1038 			     struct mtd_oob_ops *ops)
1039 {
1040 	/*
1041 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1042 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1043 	 *  this case.
1044 	 */
1045 	if (!ops->datbuf)
1046 		ops->len = 0;
1047 
1048 	if (!ops->oobbuf)
1049 		ops->ooblen = 0;
1050 
1051 	if (offs < 0 || offs + ops->len > mtd->size)
1052 		return -EINVAL;
1053 
1054 	if (ops->ooblen) {
1055 		size_t maxooblen;
1056 
1057 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1058 			return -EINVAL;
1059 
1060 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1061 				      mtd_div_by_ws(offs, mtd)) *
1062 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1063 		if (ops->ooblen > maxooblen)
1064 			return -EINVAL;
1065 	}
1066 
1067 	return 0;
1068 }
1069 
mtd_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1070 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1071 {
1072 	int ret_code;
1073 	ops->retlen = ops->oobretlen = 0;
1074 
1075 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1076 	if (ret_code)
1077 		return ret_code;
1078 
1079 	/* Check the validity of a potential fallback on mtd->_read */
1080 	if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1081 		return -EOPNOTSUPP;
1082 
1083 	if (mtd->_read_oob)
1084 		ret_code = mtd->_read_oob(mtd, from, ops);
1085 	else
1086 		ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1087 				      ops->datbuf);
1088 
1089 	/*
1090 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1091 	 * similar to mtd->_read(), returning a non-negative integer
1092 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1093 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1094 	 */
1095 	if (unlikely(ret_code < 0))
1096 		return ret_code;
1097 	if (mtd->ecc_strength == 0)
1098 		return 0;	/* device lacks ecc */
1099 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1100 }
1101 EXPORT_SYMBOL_GPL(mtd_read_oob);
1102 
mtd_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1103 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1104 				struct mtd_oob_ops *ops)
1105 {
1106 	int ret;
1107 
1108 	ops->retlen = ops->oobretlen = 0;
1109 
1110 	if (!(mtd->flags & MTD_WRITEABLE))
1111 		return -EROFS;
1112 
1113 	ret = mtd_check_oob_ops(mtd, to, ops);
1114 	if (ret)
1115 		return ret;
1116 
1117 	/* Check the validity of a potential fallback on mtd->_write */
1118 	if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1119 		return -EOPNOTSUPP;
1120 
1121 	if (mtd->_write_oob)
1122 		return mtd->_write_oob(mtd, to, ops);
1123 	else
1124 		return mtd->_write(mtd, to, ops->len, &ops->retlen,
1125 				   ops->datbuf);
1126 }
1127 EXPORT_SYMBOL_GPL(mtd_write_oob);
1128 
1129 /**
1130  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1131  * @mtd: MTD device structure
1132  * @section: ECC section. Depending on the layout you may have all the ECC
1133  *	     bytes stored in a single contiguous section, or one section
1134  *	     per ECC chunk (and sometime several sections for a single ECC
1135  *	     ECC chunk)
1136  * @oobecc: OOB region struct filled with the appropriate ECC position
1137  *	    information
1138  *
1139  * This function returns ECC section information in the OOB area. If you want
1140  * to get all the ECC bytes information, then you should call
1141  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1142  *
1143  * Returns zero on success, a negative error code otherwise.
1144  */
mtd_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobecc)1145 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1146 		      struct mtd_oob_region *oobecc)
1147 {
1148 	memset(oobecc, 0, sizeof(*oobecc));
1149 
1150 	if (!mtd || section < 0)
1151 		return -EINVAL;
1152 
1153 	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1154 		return -ENOTSUPP;
1155 
1156 	return mtd->ooblayout->ecc(mtd, section, oobecc);
1157 }
1158 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1159 
1160 /**
1161  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1162  *			section
1163  * @mtd: MTD device structure
1164  * @section: Free section you are interested in. Depending on the layout
1165  *	     you may have all the free bytes stored in a single contiguous
1166  *	     section, or one section per ECC chunk plus an extra section
1167  *	     for the remaining bytes (or other funky layout).
1168  * @oobfree: OOB region struct filled with the appropriate free position
1169  *	     information
1170  *
1171  * This function returns free bytes position in the OOB area. If you want
1172  * to get all the free bytes information, then you should call
1173  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1174  *
1175  * Returns zero on success, a negative error code otherwise.
1176  */
mtd_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobfree)1177 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1178 		       struct mtd_oob_region *oobfree)
1179 {
1180 	memset(oobfree, 0, sizeof(*oobfree));
1181 
1182 	if (!mtd || section < 0)
1183 		return -EINVAL;
1184 
1185 	if (!mtd->ooblayout || !mtd->ooblayout->rfree)
1186 		return -ENOTSUPP;
1187 
1188 	return mtd->ooblayout->rfree(mtd, section, oobfree);
1189 }
1190 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1191 
1192 /**
1193  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1194  * @mtd: mtd info structure
1195  * @byte: the byte we are searching for
1196  * @sectionp: pointer where the section id will be stored
1197  * @oobregion: used to retrieve the ECC position
1198  * @iter: iterator function. Should be either mtd_ooblayout_free or
1199  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1200  *
1201  * This function returns the section id and oobregion information of a
1202  * specific byte. For example, say you want to know where the 4th ECC byte is
1203  * stored, you'll use:
1204  *
1205  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1206  *
1207  * Returns zero on success, a negative error code otherwise.
1208  */
mtd_ooblayout_find_region(struct mtd_info * mtd,int byte,int * sectionp,struct mtd_oob_region * oobregion,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1209 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1210 				int *sectionp, struct mtd_oob_region *oobregion,
1211 				int (*iter)(struct mtd_info *,
1212 					    int section,
1213 					    struct mtd_oob_region *oobregion))
1214 {
1215 	int pos = 0, ret, section = 0;
1216 
1217 	memset(oobregion, 0, sizeof(*oobregion));
1218 
1219 	while (1) {
1220 		ret = iter(mtd, section, oobregion);
1221 		if (ret)
1222 			return ret;
1223 
1224 		if (pos + oobregion->length > byte)
1225 			break;
1226 
1227 		pos += oobregion->length;
1228 		section++;
1229 	}
1230 
1231 	/*
1232 	 * Adjust region info to make it start at the beginning at the
1233 	 * 'start' ECC byte.
1234 	 */
1235 	oobregion->offset += byte - pos;
1236 	oobregion->length -= byte - pos;
1237 	*sectionp = section;
1238 
1239 	return 0;
1240 }
1241 
1242 /**
1243  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1244  *				  ECC byte
1245  * @mtd: mtd info structure
1246  * @eccbyte: the byte we are searching for
1247  * @sectionp: pointer where the section id will be stored
1248  * @oobregion: OOB region information
1249  *
1250  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1251  * byte.
1252  *
1253  * Returns zero on success, a negative error code otherwise.
1254  */
mtd_ooblayout_find_eccregion(struct mtd_info * mtd,int eccbyte,int * section,struct mtd_oob_region * oobregion)1255 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1256 				 int *section,
1257 				 struct mtd_oob_region *oobregion)
1258 {
1259 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1260 					 mtd_ooblayout_ecc);
1261 }
1262 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1263 
1264 /**
1265  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1266  * @mtd: mtd info structure
1267  * @buf: destination buffer to store OOB bytes
1268  * @oobbuf: OOB buffer
1269  * @start: first byte to retrieve
1270  * @nbytes: number of bytes to retrieve
1271  * @iter: section iterator
1272  *
1273  * Extract bytes attached to a specific category (ECC or free)
1274  * from the OOB buffer and copy them into buf.
1275  *
1276  * Returns zero on success, a negative error code otherwise.
1277  */
mtd_ooblayout_get_bytes(struct mtd_info * mtd,u8 * buf,const u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1278 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1279 				const u8 *oobbuf, int start, int nbytes,
1280 				int (*iter)(struct mtd_info *,
1281 					    int section,
1282 					    struct mtd_oob_region *oobregion))
1283 {
1284 	struct mtd_oob_region oobregion;
1285 	int section, ret;
1286 
1287 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1288 					&oobregion, iter);
1289 
1290 	while (!ret) {
1291 		int cnt;
1292 
1293 		cnt = min_t(int, nbytes, oobregion.length);
1294 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1295 		buf += cnt;
1296 		nbytes -= cnt;
1297 
1298 		if (!nbytes)
1299 			break;
1300 
1301 		ret = iter(mtd, ++section, &oobregion);
1302 	}
1303 
1304 	return ret;
1305 }
1306 
1307 /**
1308  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1309  * @mtd: mtd info structure
1310  * @buf: source buffer to get OOB bytes from
1311  * @oobbuf: OOB buffer
1312  * @start: first OOB byte to set
1313  * @nbytes: number of OOB bytes to set
1314  * @iter: section iterator
1315  *
1316  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1317  * is selected by passing the appropriate iterator.
1318  *
1319  * Returns zero on success, a negative error code otherwise.
1320  */
mtd_ooblayout_set_bytes(struct mtd_info * mtd,const u8 * buf,u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1321 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1322 				u8 *oobbuf, int start, int nbytes,
1323 				int (*iter)(struct mtd_info *,
1324 					    int section,
1325 					    struct mtd_oob_region *oobregion))
1326 {
1327 	struct mtd_oob_region oobregion;
1328 	int section, ret;
1329 
1330 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1331 					&oobregion, iter);
1332 
1333 	while (!ret) {
1334 		int cnt;
1335 
1336 		cnt = min_t(int, nbytes, oobregion.length);
1337 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1338 		buf += cnt;
1339 		nbytes -= cnt;
1340 
1341 		if (!nbytes)
1342 			break;
1343 
1344 		ret = iter(mtd, ++section, &oobregion);
1345 	}
1346 
1347 	return ret;
1348 }
1349 
1350 /**
1351  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1352  * @mtd: mtd info structure
1353  * @iter: category iterator
1354  *
1355  * Count the number of bytes in a given category.
1356  *
1357  * Returns a positive value on success, a negative error code otherwise.
1358  */
mtd_ooblayout_count_bytes(struct mtd_info * mtd,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1359 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1360 				int (*iter)(struct mtd_info *,
1361 					    int section,
1362 					    struct mtd_oob_region *oobregion))
1363 {
1364 	struct mtd_oob_region oobregion;
1365 	int section = 0, ret, nbytes = 0;
1366 
1367 	while (1) {
1368 		ret = iter(mtd, section++, &oobregion);
1369 		if (ret) {
1370 			if (ret == -ERANGE)
1371 				ret = nbytes;
1372 			break;
1373 		}
1374 
1375 		nbytes += oobregion.length;
1376 	}
1377 
1378 	return ret;
1379 }
1380 
1381 /**
1382  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1383  * @mtd: mtd info structure
1384  * @eccbuf: destination buffer to store ECC bytes
1385  * @oobbuf: OOB buffer
1386  * @start: first ECC byte to retrieve
1387  * @nbytes: number of ECC bytes to retrieve
1388  *
1389  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1390  *
1391  * Returns zero on success, a negative error code otherwise.
1392  */
mtd_ooblayout_get_eccbytes(struct mtd_info * mtd,u8 * eccbuf,const u8 * oobbuf,int start,int nbytes)1393 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1394 			       const u8 *oobbuf, int start, int nbytes)
1395 {
1396 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1397 				       mtd_ooblayout_ecc);
1398 }
1399 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1400 
1401 /**
1402  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1403  * @mtd: mtd info structure
1404  * @eccbuf: source buffer to get ECC bytes from
1405  * @oobbuf: OOB buffer
1406  * @start: first ECC byte to set
1407  * @nbytes: number of ECC bytes to set
1408  *
1409  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1410  *
1411  * Returns zero on success, a negative error code otherwise.
1412  */
mtd_ooblayout_set_eccbytes(struct mtd_info * mtd,const u8 * eccbuf,u8 * oobbuf,int start,int nbytes)1413 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1414 			       u8 *oobbuf, int start, int nbytes)
1415 {
1416 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1417 				       mtd_ooblayout_ecc);
1418 }
1419 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1420 
1421 /**
1422  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1423  * @mtd: mtd info structure
1424  * @databuf: destination buffer to store ECC bytes
1425  * @oobbuf: OOB buffer
1426  * @start: first ECC byte to retrieve
1427  * @nbytes: number of ECC bytes to retrieve
1428  *
1429  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1430  *
1431  * Returns zero on success, a negative error code otherwise.
1432  */
mtd_ooblayout_get_databytes(struct mtd_info * mtd,u8 * databuf,const u8 * oobbuf,int start,int nbytes)1433 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1434 				const u8 *oobbuf, int start, int nbytes)
1435 {
1436 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1437 				       mtd_ooblayout_free);
1438 }
1439 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1440 
1441 /**
1442  * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1443  * @mtd: mtd info structure
1444  * @eccbuf: source buffer to get data bytes from
1445  * @oobbuf: OOB buffer
1446  * @start: first ECC byte to set
1447  * @nbytes: number of ECC bytes to set
1448  *
1449  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1450  *
1451  * Returns zero on success, a negative error code otherwise.
1452  */
mtd_ooblayout_set_databytes(struct mtd_info * mtd,const u8 * databuf,u8 * oobbuf,int start,int nbytes)1453 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1454 				u8 *oobbuf, int start, int nbytes)
1455 {
1456 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1457 				       mtd_ooblayout_free);
1458 }
1459 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1460 
1461 /**
1462  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1463  * @mtd: mtd info structure
1464  *
1465  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1466  *
1467  * Returns zero on success, a negative error code otherwise.
1468  */
mtd_ooblayout_count_freebytes(struct mtd_info * mtd)1469 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1470 {
1471 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1472 }
1473 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1474 
1475 /**
1476  * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1477  * @mtd: mtd info structure
1478  *
1479  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1480  *
1481  * Returns zero on success, a negative error code otherwise.
1482  */
mtd_ooblayout_count_eccbytes(struct mtd_info * mtd)1483 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1484 {
1485 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1486 }
1487 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1488 
1489 /*
1490  * Method to access the protection register area, present in some flash
1491  * devices. The user data is one time programmable but the factory data is read
1492  * only.
1493  */
mtd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1494 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1495 			   struct otp_info *buf)
1496 {
1497 	if (!mtd->_get_fact_prot_info)
1498 		return -EOPNOTSUPP;
1499 	if (!len)
1500 		return 0;
1501 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1502 }
1503 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1504 
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1505 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1506 			   size_t *retlen, u_char *buf)
1507 {
1508 	*retlen = 0;
1509 	if (!mtd->_read_fact_prot_reg)
1510 		return -EOPNOTSUPP;
1511 	if (!len)
1512 		return 0;
1513 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1514 }
1515 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1516 
mtd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1517 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1518 			   struct otp_info *buf)
1519 {
1520 	if (!mtd->_get_user_prot_info)
1521 		return -EOPNOTSUPP;
1522 	if (!len)
1523 		return 0;
1524 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1525 }
1526 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1527 
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1528 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1529 			   size_t *retlen, u_char *buf)
1530 {
1531 	*retlen = 0;
1532 	if (!mtd->_read_user_prot_reg)
1533 		return -EOPNOTSUPP;
1534 	if (!len)
1535 		return 0;
1536 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1537 }
1538 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1539 
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,u_char * buf)1540 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1541 			    size_t *retlen, u_char *buf)
1542 {
1543 	int ret;
1544 
1545 	*retlen = 0;
1546 	if (!mtd->_write_user_prot_reg)
1547 		return -EOPNOTSUPP;
1548 	if (!len)
1549 		return 0;
1550 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1551 	if (ret)
1552 		return ret;
1553 
1554 	/*
1555 	 * If no data could be written at all, we are out of memory and
1556 	 * must return -ENOSPC.
1557 	 */
1558 	return (*retlen) ? 0 : -ENOSPC;
1559 }
1560 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1561 
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)1562 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1563 {
1564 	if (!mtd->_lock_user_prot_reg)
1565 		return -EOPNOTSUPP;
1566 	if (!len)
1567 		return 0;
1568 	return mtd->_lock_user_prot_reg(mtd, from, len);
1569 }
1570 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1571 
1572 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1573 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1574 {
1575 	if (!mtd->_lock)
1576 		return -EOPNOTSUPP;
1577 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1578 		return -EINVAL;
1579 	if (!len)
1580 		return 0;
1581 	return mtd->_lock(mtd, ofs, len);
1582 }
1583 EXPORT_SYMBOL_GPL(mtd_lock);
1584 
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1585 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1586 {
1587 	if (!mtd->_unlock)
1588 		return -EOPNOTSUPP;
1589 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1590 		return -EINVAL;
1591 	if (!len)
1592 		return 0;
1593 	return mtd->_unlock(mtd, ofs, len);
1594 }
1595 EXPORT_SYMBOL_GPL(mtd_unlock);
1596 
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)1597 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1598 {
1599 	if (!mtd->_is_locked)
1600 		return -EOPNOTSUPP;
1601 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1602 		return -EINVAL;
1603 	if (!len)
1604 		return 0;
1605 	return mtd->_is_locked(mtd, ofs, len);
1606 }
1607 EXPORT_SYMBOL_GPL(mtd_is_locked);
1608 
mtd_block_isreserved(struct mtd_info * mtd,loff_t ofs)1609 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1610 {
1611 	if (ofs < 0 || ofs > mtd->size)
1612 		return -EINVAL;
1613 	if (!mtd->_block_isreserved)
1614 		return 0;
1615 	return mtd->_block_isreserved(mtd, ofs);
1616 }
1617 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1618 
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)1619 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1620 {
1621 	if (ofs < 0 || ofs > mtd->size)
1622 		return -EINVAL;
1623 	if (!mtd->_block_isbad)
1624 		return 0;
1625 	return mtd->_block_isbad(mtd, ofs);
1626 }
1627 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1628 
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)1629 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1630 {
1631 	if (!mtd->_block_markbad)
1632 		return -EOPNOTSUPP;
1633 	if (ofs < 0 || ofs > mtd->size)
1634 		return -EINVAL;
1635 	if (!(mtd->flags & MTD_WRITEABLE))
1636 		return -EROFS;
1637 	return mtd->_block_markbad(mtd, ofs);
1638 }
1639 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1640 
1641 #ifndef __UBOOT__
1642 /*
1643  * default_mtd_writev - the default writev method
1644  * @mtd: mtd device description object pointer
1645  * @vecs: the vectors to write
1646  * @count: count of vectors in @vecs
1647  * @to: the MTD device offset to write to
1648  * @retlen: on exit contains the count of bytes written to the MTD device.
1649  *
1650  * This function returns zero in case of success and a negative error code in
1651  * case of failure.
1652  */
default_mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)1653 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1654 			      unsigned long count, loff_t to, size_t *retlen)
1655 {
1656 	unsigned long i;
1657 	size_t totlen = 0, thislen;
1658 	int ret = 0;
1659 
1660 	for (i = 0; i < count; i++) {
1661 		if (!vecs[i].iov_len)
1662 			continue;
1663 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1664 				vecs[i].iov_base);
1665 		totlen += thislen;
1666 		if (ret || thislen != vecs[i].iov_len)
1667 			break;
1668 		to += vecs[i].iov_len;
1669 	}
1670 	*retlen = totlen;
1671 	return ret;
1672 }
1673 
1674 /*
1675  * mtd_writev - the vector-based MTD write method
1676  * @mtd: mtd device description object pointer
1677  * @vecs: the vectors to write
1678  * @count: count of vectors in @vecs
1679  * @to: the MTD device offset to write to
1680  * @retlen: on exit contains the count of bytes written to the MTD device.
1681  *
1682  * This function returns zero in case of success and a negative error code in
1683  * case of failure.
1684  */
mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)1685 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1686 	       unsigned long count, loff_t to, size_t *retlen)
1687 {
1688 	*retlen = 0;
1689 	if (!(mtd->flags & MTD_WRITEABLE))
1690 		return -EROFS;
1691 	if (!mtd->_writev)
1692 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1693 	return mtd->_writev(mtd, vecs, count, to, retlen);
1694 }
1695 EXPORT_SYMBOL_GPL(mtd_writev);
1696 
1697 /**
1698  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1699  * @mtd: mtd device description object pointer
1700  * @size: a pointer to the ideal or maximum size of the allocation, points
1701  *        to the actual allocation size on success.
1702  *
1703  * This routine attempts to allocate a contiguous kernel buffer up to
1704  * the specified size, backing off the size of the request exponentially
1705  * until the request succeeds or until the allocation size falls below
1706  * the system page size. This attempts to make sure it does not adversely
1707  * impact system performance, so when allocating more than one page, we
1708  * ask the memory allocator to avoid re-trying, swapping, writing back
1709  * or performing I/O.
1710  *
1711  * Note, this function also makes sure that the allocated buffer is aligned to
1712  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1713  *
1714  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1715  * to handle smaller (i.e. degraded) buffer allocations under low- or
1716  * fragmented-memory situations where such reduced allocations, from a
1717  * requested ideal, are allowed.
1718  *
1719  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1720  */
mtd_kmalloc_up_to(const struct mtd_info * mtd,size_t * size)1721 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1722 {
1723 	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1724 		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1725 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1726 	void *kbuf;
1727 
1728 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1729 
1730 	while (*size > min_alloc) {
1731 		kbuf = kmalloc(*size, flags);
1732 		if (kbuf)
1733 			return kbuf;
1734 
1735 		*size >>= 1;
1736 		*size = ALIGN(*size, mtd->writesize);
1737 	}
1738 
1739 	/*
1740 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1741 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1742 	 */
1743 	return kmalloc(*size, GFP_KERNEL);
1744 }
1745 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1746 #endif
1747 
1748 #ifdef CONFIG_PROC_FS
1749 
1750 /*====================================================================*/
1751 /* Support for /proc/mtd */
1752 
mtd_proc_show(struct seq_file * m,void * v)1753 static int mtd_proc_show(struct seq_file *m, void *v)
1754 {
1755 	struct mtd_info *mtd;
1756 
1757 	seq_puts(m, "dev:    size   erasesize  name\n");
1758 	mutex_lock(&mtd_table_mutex);
1759 	mtd_for_each_device(mtd) {
1760 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1761 			   mtd->index, (unsigned long long)mtd->size,
1762 			   mtd->erasesize, mtd->name);
1763 	}
1764 	mutex_unlock(&mtd_table_mutex);
1765 	return 0;
1766 }
1767 
mtd_proc_open(struct inode * inode,struct file * file)1768 static int mtd_proc_open(struct inode *inode, struct file *file)
1769 {
1770 	return single_open(file, mtd_proc_show, NULL);
1771 }
1772 
1773 static const struct file_operations mtd_proc_ops = {
1774 	.open		= mtd_proc_open,
1775 	.read		= seq_read,
1776 	.llseek		= seq_lseek,
1777 	.release	= single_release,
1778 };
1779 #endif /* CONFIG_PROC_FS */
1780 
1781 /*====================================================================*/
1782 /* Init code */
1783 
1784 #ifndef __UBOOT__
mtd_bdi_init(struct backing_dev_info * bdi,const char * name)1785 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1786 {
1787 	int ret;
1788 
1789 	ret = bdi_init(bdi);
1790 	if (!ret)
1791 		ret = bdi_register(bdi, NULL, "%s", name);
1792 
1793 	if (ret)
1794 		bdi_destroy(bdi);
1795 
1796 	return ret;
1797 }
1798 
1799 static struct proc_dir_entry *proc_mtd;
1800 
init_mtd(void)1801 static int __init init_mtd(void)
1802 {
1803 	int ret;
1804 
1805 	ret = class_register(&mtd_class);
1806 	if (ret)
1807 		goto err_reg;
1808 
1809 	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1810 	if (ret)
1811 		goto err_bdi1;
1812 
1813 	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1814 	if (ret)
1815 		goto err_bdi2;
1816 
1817 	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1818 	if (ret)
1819 		goto err_bdi3;
1820 
1821 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1822 
1823 	ret = init_mtdchar();
1824 	if (ret)
1825 		goto out_procfs;
1826 
1827 	return 0;
1828 
1829 out_procfs:
1830 	if (proc_mtd)
1831 		remove_proc_entry("mtd", NULL);
1832 err_bdi3:
1833 	bdi_destroy(&mtd_bdi_ro_mappable);
1834 err_bdi2:
1835 	bdi_destroy(&mtd_bdi_unmappable);
1836 err_bdi1:
1837 	class_unregister(&mtd_class);
1838 err_reg:
1839 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1840 	return ret;
1841 }
1842 
cleanup_mtd(void)1843 static void __exit cleanup_mtd(void)
1844 {
1845 	cleanup_mtdchar();
1846 	if (proc_mtd)
1847 		remove_proc_entry("mtd", NULL);
1848 	class_unregister(&mtd_class);
1849 	bdi_destroy(&mtd_bdi_unmappable);
1850 	bdi_destroy(&mtd_bdi_ro_mappable);
1851 	bdi_destroy(&mtd_bdi_rw_mappable);
1852 }
1853 
1854 module_init(init_mtd);
1855 module_exit(cleanup_mtd);
1856 #endif
1857 
1858 MODULE_LICENSE("GPL");
1859 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1860 MODULE_DESCRIPTION("Core MTD registration and access routines");
1861