1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * SPDX-License-Identifier: GPL-2.0+
9 *
10 */
11
12 #ifndef __UBOOT__
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/ptrace.h>
16 #include <linux/seq_file.h>
17 #include <linux/string.h>
18 #include <linux/timer.h>
19 #include <linux/major.h>
20 #include <linux/fs.h>
21 #include <linux/err.h>
22 #include <linux/ioctl.h>
23 #include <linux/init.h>
24 #include <linux/proc_fs.h>
25 #include <linux/idr.h>
26 #include <linux/backing-dev.h>
27 #include <linux/gfp.h>
28 #include <linux/slab.h>
29 #else
30 #include <linux/err.h>
31 #include <ubi_uboot.h>
32 #endif
33
34 #include <linux/log2.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/partitions.h>
37
38 #include "mtdcore.h"
39
40 #ifndef __UBOOT__
41 /*
42 * backing device capabilities for non-mappable devices (such as NAND flash)
43 * - permits private mappings, copies are taken of the data
44 */
45 static struct backing_dev_info mtd_bdi_unmappable = {
46 .capabilities = BDI_CAP_MAP_COPY,
47 };
48
49 /*
50 * backing device capabilities for R/O mappable devices (such as ROM)
51 * - permits private mappings, copies are taken of the data
52 * - permits non-writable shared mappings
53 */
54 static struct backing_dev_info mtd_bdi_ro_mappable = {
55 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
56 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
57 };
58
59 /*
60 * backing device capabilities for writable mappable devices (such as RAM)
61 * - permits private mappings, copies are taken of the data
62 * - permits non-writable shared mappings
63 */
64 static struct backing_dev_info mtd_bdi_rw_mappable = {
65 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
66 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
67 BDI_CAP_WRITE_MAP),
68 };
69
70 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
71 static int mtd_cls_resume(struct device *dev);
72
73 static struct class mtd_class = {
74 .name = "mtd",
75 .owner = THIS_MODULE,
76 .suspend = mtd_cls_suspend,
77 .resume = mtd_cls_resume,
78 };
79 #else
80 struct mtd_info *mtd_table[MAX_MTD_DEVICES];
81
82 #define MAX_IDR_ID 64
83
84 struct idr_layer {
85 int used;
86 void *ptr;
87 };
88
89 struct idr {
90 struct idr_layer id[MAX_IDR_ID];
91 bool updated;
92 };
93
94 #define DEFINE_IDR(name) struct idr name;
95
idr_remove(struct idr * idp,int id)96 void idr_remove(struct idr *idp, int id)
97 {
98 if (idp->id[id].used) {
99 idp->id[id].used = 0;
100 idp->updated = true;
101 }
102
103 return;
104 }
idr_find(struct idr * idp,int id)105 void *idr_find(struct idr *idp, int id)
106 {
107 if (idp->id[id].used)
108 return idp->id[id].ptr;
109
110 return NULL;
111 }
112
idr_get_next(struct idr * idp,int * next)113 void *idr_get_next(struct idr *idp, int *next)
114 {
115 void *ret;
116 int id = *next;
117
118 ret = idr_find(idp, id);
119 if (ret) {
120 id ++;
121 if (!idp->id[id].used)
122 id = 0;
123 *next = id;
124 } else {
125 *next = 0;
126 }
127
128 return ret;
129 }
130
idr_alloc(struct idr * idp,void * ptr,int start,int end,gfp_t gfp_mask)131 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask)
132 {
133 struct idr_layer *idl;
134 int i = 0;
135
136 while (i < MAX_IDR_ID) {
137 idl = &idp->id[i];
138 if (idl->used == 0) {
139 idl->used = 1;
140 idl->ptr = ptr;
141 idp->updated = true;
142 return i;
143 }
144 i++;
145 }
146 return -ENOSPC;
147 }
148 #endif
149
150 static DEFINE_IDR(mtd_idr);
151
152 /* These are exported solely for the purpose of mtd_blkdevs.c. You
153 should not use them for _anything_ else */
154 DEFINE_MUTEX(mtd_table_mutex);
155 EXPORT_SYMBOL_GPL(mtd_table_mutex);
156
__mtd_next_device(int i)157 struct mtd_info *__mtd_next_device(int i)
158 {
159 return idr_get_next(&mtd_idr, &i);
160 }
161 EXPORT_SYMBOL_GPL(__mtd_next_device);
162
mtd_dev_list_updated(void)163 bool mtd_dev_list_updated(void)
164 {
165 if (mtd_idr.updated) {
166 mtd_idr.updated = false;
167 return true;
168 }
169
170 return false;
171 }
172
173 #ifndef __UBOOT__
174 static LIST_HEAD(mtd_notifiers);
175
176
177 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
178
179 /* REVISIT once MTD uses the driver model better, whoever allocates
180 * the mtd_info will probably want to use the release() hook...
181 */
mtd_release(struct device * dev)182 static void mtd_release(struct device *dev)
183 {
184 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
185 dev_t index = MTD_DEVT(mtd->index);
186
187 /* remove /dev/mtdXro node if needed */
188 if (index)
189 device_destroy(&mtd_class, index + 1);
190 }
191
mtd_cls_suspend(struct device * dev,pm_message_t state)192 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
193 {
194 struct mtd_info *mtd = dev_get_drvdata(dev);
195
196 return mtd ? mtd_suspend(mtd) : 0;
197 }
198
mtd_cls_resume(struct device * dev)199 static int mtd_cls_resume(struct device *dev)
200 {
201 struct mtd_info *mtd = dev_get_drvdata(dev);
202
203 if (mtd)
204 mtd_resume(mtd);
205 return 0;
206 }
207
mtd_type_show(struct device * dev,struct device_attribute * attr,char * buf)208 static ssize_t mtd_type_show(struct device *dev,
209 struct device_attribute *attr, char *buf)
210 {
211 struct mtd_info *mtd = dev_get_drvdata(dev);
212 char *type;
213
214 switch (mtd->type) {
215 case MTD_ABSENT:
216 type = "absent";
217 break;
218 case MTD_RAM:
219 type = "ram";
220 break;
221 case MTD_ROM:
222 type = "rom";
223 break;
224 case MTD_NORFLASH:
225 type = "nor";
226 break;
227 case MTD_NANDFLASH:
228 type = "nand";
229 break;
230 case MTD_DATAFLASH:
231 type = "dataflash";
232 break;
233 case MTD_UBIVOLUME:
234 type = "ubi";
235 break;
236 case MTD_MLCNANDFLASH:
237 type = "mlc-nand";
238 break;
239 default:
240 type = "unknown";
241 }
242
243 return snprintf(buf, PAGE_SIZE, "%s\n", type);
244 }
245 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
246
mtd_flags_show(struct device * dev,struct device_attribute * attr,char * buf)247 static ssize_t mtd_flags_show(struct device *dev,
248 struct device_attribute *attr, char *buf)
249 {
250 struct mtd_info *mtd = dev_get_drvdata(dev);
251
252 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
253
254 }
255 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
256
mtd_size_show(struct device * dev,struct device_attribute * attr,char * buf)257 static ssize_t mtd_size_show(struct device *dev,
258 struct device_attribute *attr, char *buf)
259 {
260 struct mtd_info *mtd = dev_get_drvdata(dev);
261
262 return snprintf(buf, PAGE_SIZE, "%llu\n",
263 (unsigned long long)mtd->size);
264
265 }
266 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
267
mtd_erasesize_show(struct device * dev,struct device_attribute * attr,char * buf)268 static ssize_t mtd_erasesize_show(struct device *dev,
269 struct device_attribute *attr, char *buf)
270 {
271 struct mtd_info *mtd = dev_get_drvdata(dev);
272
273 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
274
275 }
276 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
277
mtd_writesize_show(struct device * dev,struct device_attribute * attr,char * buf)278 static ssize_t mtd_writesize_show(struct device *dev,
279 struct device_attribute *attr, char *buf)
280 {
281 struct mtd_info *mtd = dev_get_drvdata(dev);
282
283 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
284
285 }
286 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
287
mtd_subpagesize_show(struct device * dev,struct device_attribute * attr,char * buf)288 static ssize_t mtd_subpagesize_show(struct device *dev,
289 struct device_attribute *attr, char *buf)
290 {
291 struct mtd_info *mtd = dev_get_drvdata(dev);
292 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
293
294 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
295
296 }
297 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
298
mtd_oobsize_show(struct device * dev,struct device_attribute * attr,char * buf)299 static ssize_t mtd_oobsize_show(struct device *dev,
300 struct device_attribute *attr, char *buf)
301 {
302 struct mtd_info *mtd = dev_get_drvdata(dev);
303
304 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
305
306 }
307 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
308
mtd_numeraseregions_show(struct device * dev,struct device_attribute * attr,char * buf)309 static ssize_t mtd_numeraseregions_show(struct device *dev,
310 struct device_attribute *attr, char *buf)
311 {
312 struct mtd_info *mtd = dev_get_drvdata(dev);
313
314 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
315
316 }
317 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
318 NULL);
319
mtd_name_show(struct device * dev,struct device_attribute * attr,char * buf)320 static ssize_t mtd_name_show(struct device *dev,
321 struct device_attribute *attr, char *buf)
322 {
323 struct mtd_info *mtd = dev_get_drvdata(dev);
324
325 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
326
327 }
328 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
329
mtd_ecc_strength_show(struct device * dev,struct device_attribute * attr,char * buf)330 static ssize_t mtd_ecc_strength_show(struct device *dev,
331 struct device_attribute *attr, char *buf)
332 {
333 struct mtd_info *mtd = dev_get_drvdata(dev);
334
335 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
336 }
337 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
338
mtd_bitflip_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)339 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
340 struct device_attribute *attr,
341 char *buf)
342 {
343 struct mtd_info *mtd = dev_get_drvdata(dev);
344
345 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
346 }
347
mtd_bitflip_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)348 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
349 struct device_attribute *attr,
350 const char *buf, size_t count)
351 {
352 struct mtd_info *mtd = dev_get_drvdata(dev);
353 unsigned int bitflip_threshold;
354 int retval;
355
356 retval = kstrtouint(buf, 0, &bitflip_threshold);
357 if (retval)
358 return retval;
359
360 mtd->bitflip_threshold = bitflip_threshold;
361 return count;
362 }
363 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
364 mtd_bitflip_threshold_show,
365 mtd_bitflip_threshold_store);
366
mtd_ecc_step_size_show(struct device * dev,struct device_attribute * attr,char * buf)367 static ssize_t mtd_ecc_step_size_show(struct device *dev,
368 struct device_attribute *attr, char *buf)
369 {
370 struct mtd_info *mtd = dev_get_drvdata(dev);
371
372 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
373
374 }
375 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
376
377 static struct attribute *mtd_attrs[] = {
378 &dev_attr_type.attr,
379 &dev_attr_flags.attr,
380 &dev_attr_size.attr,
381 &dev_attr_erasesize.attr,
382 &dev_attr_writesize.attr,
383 &dev_attr_subpagesize.attr,
384 &dev_attr_oobsize.attr,
385 &dev_attr_numeraseregions.attr,
386 &dev_attr_name.attr,
387 &dev_attr_ecc_strength.attr,
388 &dev_attr_ecc_step_size.attr,
389 &dev_attr_bitflip_threshold.attr,
390 NULL,
391 };
392 ATTRIBUTE_GROUPS(mtd);
393
394 static struct device_type mtd_devtype = {
395 .name = "mtd",
396 .groups = mtd_groups,
397 .release = mtd_release,
398 };
399 #endif
400
401 /**
402 * add_mtd_device - register an MTD device
403 * @mtd: pointer to new MTD device info structure
404 *
405 * Add a device to the list of MTD devices present in the system, and
406 * notify each currently active MTD 'user' of its arrival. Returns
407 * zero on success or 1 on failure, which currently will only happen
408 * if there is insufficient memory or a sysfs error.
409 */
410
add_mtd_device(struct mtd_info * mtd)411 int add_mtd_device(struct mtd_info *mtd)
412 {
413 #ifndef __UBOOT__
414 struct mtd_notifier *not;
415 #endif
416 int i, error;
417
418 #ifndef __UBOOT__
419 if (!mtd->backing_dev_info) {
420 switch (mtd->type) {
421 case MTD_RAM:
422 mtd->backing_dev_info = &mtd_bdi_rw_mappable;
423 break;
424 case MTD_ROM:
425 mtd->backing_dev_info = &mtd_bdi_ro_mappable;
426 break;
427 default:
428 mtd->backing_dev_info = &mtd_bdi_unmappable;
429 break;
430 }
431 }
432 #endif
433
434 BUG_ON(mtd->writesize == 0);
435 mutex_lock(&mtd_table_mutex);
436
437 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
438 if (i < 0)
439 goto fail_locked;
440
441 mtd->index = i;
442 mtd->usecount = 0;
443
444 INIT_LIST_HEAD(&mtd->partitions);
445
446 /* default value if not set by driver */
447 if (mtd->bitflip_threshold == 0)
448 mtd->bitflip_threshold = mtd->ecc_strength;
449
450 if (is_power_of_2(mtd->erasesize))
451 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
452 else
453 mtd->erasesize_shift = 0;
454
455 if (is_power_of_2(mtd->writesize))
456 mtd->writesize_shift = ffs(mtd->writesize) - 1;
457 else
458 mtd->writesize_shift = 0;
459
460 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
461 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
462
463 /* Some chips always power up locked. Unlock them now */
464 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
465 error = mtd_unlock(mtd, 0, mtd->size);
466 if (error && error != -EOPNOTSUPP)
467 printk(KERN_WARNING
468 "%s: unlock failed, writes may not work\n",
469 mtd->name);
470 }
471
472 #ifndef __UBOOT__
473 /* Caller should have set dev.parent to match the
474 * physical device.
475 */
476 mtd->dev.type = &mtd_devtype;
477 mtd->dev.class = &mtd_class;
478 mtd->dev.devt = MTD_DEVT(i);
479 dev_set_name(&mtd->dev, "mtd%d", i);
480 dev_set_drvdata(&mtd->dev, mtd);
481 if (device_register(&mtd->dev) != 0)
482 goto fail_added;
483
484 if (MTD_DEVT(i))
485 device_create(&mtd_class, mtd->dev.parent,
486 MTD_DEVT(i) + 1,
487 NULL, "mtd%dro", i);
488
489 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
490 /* No need to get a refcount on the module containing
491 the notifier, since we hold the mtd_table_mutex */
492 list_for_each_entry(not, &mtd_notifiers, list)
493 not->add(mtd);
494 #else
495 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
496 #endif
497
498 mutex_unlock(&mtd_table_mutex);
499 /* We _know_ we aren't being removed, because
500 our caller is still holding us here. So none
501 of this try_ nonsense, and no bitching about it
502 either. :) */
503 __module_get(THIS_MODULE);
504 return 0;
505
506 #ifndef __UBOOT__
507 fail_added:
508 idr_remove(&mtd_idr, i);
509 #endif
510 fail_locked:
511 mutex_unlock(&mtd_table_mutex);
512 return 1;
513 }
514
515 /**
516 * del_mtd_device - unregister an MTD device
517 * @mtd: pointer to MTD device info structure
518 *
519 * Remove a device from the list of MTD devices present in the system,
520 * and notify each currently active MTD 'user' of its departure.
521 * Returns zero on success or 1 on failure, which currently will happen
522 * if the requested device does not appear to be present in the list.
523 */
524
del_mtd_device(struct mtd_info * mtd)525 int del_mtd_device(struct mtd_info *mtd)
526 {
527 int ret;
528 #ifndef __UBOOT__
529 struct mtd_notifier *not;
530 #endif
531
532 ret = del_mtd_partitions(mtd);
533 if (ret) {
534 debug("Failed to delete MTD partitions attached to %s (err %d)\n",
535 mtd->name, ret);
536 return ret;
537 }
538
539 mutex_lock(&mtd_table_mutex);
540
541 if (idr_find(&mtd_idr, mtd->index) != mtd) {
542 ret = -ENODEV;
543 goto out_error;
544 }
545
546 #ifndef __UBOOT__
547 /* No need to get a refcount on the module containing
548 the notifier, since we hold the mtd_table_mutex */
549 list_for_each_entry(not, &mtd_notifiers, list)
550 not->remove(mtd);
551 #endif
552
553 if (mtd->usecount) {
554 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
555 mtd->index, mtd->name, mtd->usecount);
556 ret = -EBUSY;
557 } else {
558 #ifndef __UBOOT__
559 device_unregister(&mtd->dev);
560 #endif
561
562 idr_remove(&mtd_idr, mtd->index);
563
564 module_put(THIS_MODULE);
565 ret = 0;
566 }
567
568 out_error:
569 mutex_unlock(&mtd_table_mutex);
570 return ret;
571 }
572
573 #ifndef __UBOOT__
574 /**
575 * mtd_device_parse_register - parse partitions and register an MTD device.
576 *
577 * @mtd: the MTD device to register
578 * @types: the list of MTD partition probes to try, see
579 * 'parse_mtd_partitions()' for more information
580 * @parser_data: MTD partition parser-specific data
581 * @parts: fallback partition information to register, if parsing fails;
582 * only valid if %nr_parts > %0
583 * @nr_parts: the number of partitions in parts, if zero then the full
584 * MTD device is registered if no partition info is found
585 *
586 * This function aggregates MTD partitions parsing (done by
587 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
588 * basically follows the most common pattern found in many MTD drivers:
589 *
590 * * It first tries to probe partitions on MTD device @mtd using parsers
591 * specified in @types (if @types is %NULL, then the default list of parsers
592 * is used, see 'parse_mtd_partitions()' for more information). If none are
593 * found this functions tries to fallback to information specified in
594 * @parts/@nr_parts.
595 * * If any partitioning info was found, this function registers the found
596 * partitions.
597 * * If no partitions were found this function just registers the MTD device
598 * @mtd and exits.
599 *
600 * Returns zero in case of success and a negative error code in case of failure.
601 */
mtd_device_parse_register(struct mtd_info * mtd,const char * const * types,struct mtd_part_parser_data * parser_data,const struct mtd_partition * parts,int nr_parts)602 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
603 struct mtd_part_parser_data *parser_data,
604 const struct mtd_partition *parts,
605 int nr_parts)
606 {
607 int err;
608 struct mtd_partition *real_parts;
609
610 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
611 if (err <= 0 && nr_parts && parts) {
612 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
613 GFP_KERNEL);
614 if (!real_parts)
615 err = -ENOMEM;
616 else
617 err = nr_parts;
618 }
619
620 if (err > 0) {
621 err = add_mtd_partitions(mtd, real_parts, err);
622 kfree(real_parts);
623 } else if (err == 0) {
624 err = add_mtd_device(mtd);
625 if (err == 1)
626 err = -ENODEV;
627 }
628
629 return err;
630 }
631 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
632
633 /**
634 * mtd_device_unregister - unregister an existing MTD device.
635 *
636 * @master: the MTD device to unregister. This will unregister both the master
637 * and any partitions if registered.
638 */
mtd_device_unregister(struct mtd_info * master)639 int mtd_device_unregister(struct mtd_info *master)
640 {
641 int err;
642
643 err = del_mtd_partitions(master);
644 if (err)
645 return err;
646
647 if (!device_is_registered(&master->dev))
648 return 0;
649
650 return del_mtd_device(master);
651 }
652 EXPORT_SYMBOL_GPL(mtd_device_unregister);
653
654 /**
655 * register_mtd_user - register a 'user' of MTD devices.
656 * @new: pointer to notifier info structure
657 *
658 * Registers a pair of callbacks function to be called upon addition
659 * or removal of MTD devices. Causes the 'add' callback to be immediately
660 * invoked for each MTD device currently present in the system.
661 */
register_mtd_user(struct mtd_notifier * new)662 void register_mtd_user (struct mtd_notifier *new)
663 {
664 struct mtd_info *mtd;
665
666 mutex_lock(&mtd_table_mutex);
667
668 list_add(&new->list, &mtd_notifiers);
669
670 __module_get(THIS_MODULE);
671
672 mtd_for_each_device(mtd)
673 new->add(mtd);
674
675 mutex_unlock(&mtd_table_mutex);
676 }
677 EXPORT_SYMBOL_GPL(register_mtd_user);
678
679 /**
680 * unregister_mtd_user - unregister a 'user' of MTD devices.
681 * @old: pointer to notifier info structure
682 *
683 * Removes a callback function pair from the list of 'users' to be
684 * notified upon addition or removal of MTD devices. Causes the
685 * 'remove' callback to be immediately invoked for each MTD device
686 * currently present in the system.
687 */
unregister_mtd_user(struct mtd_notifier * old)688 int unregister_mtd_user (struct mtd_notifier *old)
689 {
690 struct mtd_info *mtd;
691
692 mutex_lock(&mtd_table_mutex);
693
694 module_put(THIS_MODULE);
695
696 mtd_for_each_device(mtd)
697 old->remove(mtd);
698
699 list_del(&old->list);
700 mutex_unlock(&mtd_table_mutex);
701 return 0;
702 }
703 EXPORT_SYMBOL_GPL(unregister_mtd_user);
704 #endif
705
706 /**
707 * get_mtd_device - obtain a validated handle for an MTD device
708 * @mtd: last known address of the required MTD device
709 * @num: internal device number of the required MTD device
710 *
711 * Given a number and NULL address, return the num'th entry in the device
712 * table, if any. Given an address and num == -1, search the device table
713 * for a device with that address and return if it's still present. Given
714 * both, return the num'th driver only if its address matches. Return
715 * error code if not.
716 */
get_mtd_device(struct mtd_info * mtd,int num)717 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
718 {
719 struct mtd_info *ret = NULL, *other;
720 int err = -ENODEV;
721
722 mutex_lock(&mtd_table_mutex);
723
724 if (num == -1) {
725 mtd_for_each_device(other) {
726 if (other == mtd) {
727 ret = mtd;
728 break;
729 }
730 }
731 } else if (num >= 0) {
732 ret = idr_find(&mtd_idr, num);
733 if (mtd && mtd != ret)
734 ret = NULL;
735 }
736
737 if (!ret) {
738 ret = ERR_PTR(err);
739 goto out;
740 }
741
742 err = __get_mtd_device(ret);
743 if (err)
744 ret = ERR_PTR(err);
745 out:
746 mutex_unlock(&mtd_table_mutex);
747 return ret;
748 }
749 EXPORT_SYMBOL_GPL(get_mtd_device);
750
751
__get_mtd_device(struct mtd_info * mtd)752 int __get_mtd_device(struct mtd_info *mtd)
753 {
754 int err;
755
756 if (!try_module_get(mtd->owner))
757 return -ENODEV;
758
759 if (mtd->_get_device) {
760 err = mtd->_get_device(mtd);
761
762 if (err) {
763 module_put(mtd->owner);
764 return err;
765 }
766 }
767 mtd->usecount++;
768 return 0;
769 }
770 EXPORT_SYMBOL_GPL(__get_mtd_device);
771
772 /**
773 * get_mtd_device_nm - obtain a validated handle for an MTD device by
774 * device name
775 * @name: MTD device name to open
776 *
777 * This function returns MTD device description structure in case of
778 * success and an error code in case of failure.
779 */
get_mtd_device_nm(const char * name)780 struct mtd_info *get_mtd_device_nm(const char *name)
781 {
782 int err = -ENODEV;
783 struct mtd_info *mtd = NULL, *other;
784
785 mutex_lock(&mtd_table_mutex);
786
787 mtd_for_each_device(other) {
788 if (!strcmp(name, other->name)) {
789 mtd = other;
790 break;
791 }
792 }
793
794 if (!mtd)
795 goto out_unlock;
796
797 err = __get_mtd_device(mtd);
798 if (err)
799 goto out_unlock;
800
801 mutex_unlock(&mtd_table_mutex);
802 return mtd;
803
804 out_unlock:
805 mutex_unlock(&mtd_table_mutex);
806 return ERR_PTR(err);
807 }
808 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
809
810 #if defined(CONFIG_CMD_MTDPARTS_SPREAD)
811 /**
812 * mtd_get_len_incl_bad
813 *
814 * Check if length including bad blocks fits into device.
815 *
816 * @param mtd an MTD device
817 * @param offset offset in flash
818 * @param length image length
819 * @return image length including bad blocks in *len_incl_bad and whether or not
820 * the length returned was truncated in *truncated
821 */
mtd_get_len_incl_bad(struct mtd_info * mtd,uint64_t offset,const uint64_t length,uint64_t * len_incl_bad,int * truncated)822 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset,
823 const uint64_t length, uint64_t *len_incl_bad,
824 int *truncated)
825 {
826 *truncated = 0;
827 *len_incl_bad = 0;
828
829 if (!mtd->_block_isbad) {
830 *len_incl_bad = length;
831 return;
832 }
833
834 uint64_t len_excl_bad = 0;
835 uint64_t block_len;
836
837 while (len_excl_bad < length) {
838 if (offset >= mtd->size) {
839 *truncated = 1;
840 return;
841 }
842
843 block_len = mtd->erasesize - (offset & (mtd->erasesize - 1));
844
845 if (!mtd->_block_isbad(mtd, offset & ~(mtd->erasesize - 1)))
846 len_excl_bad += block_len;
847
848 *len_incl_bad += block_len;
849 offset += block_len;
850 }
851 }
852 #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */
853
put_mtd_device(struct mtd_info * mtd)854 void put_mtd_device(struct mtd_info *mtd)
855 {
856 mutex_lock(&mtd_table_mutex);
857 __put_mtd_device(mtd);
858 mutex_unlock(&mtd_table_mutex);
859
860 }
861 EXPORT_SYMBOL_GPL(put_mtd_device);
862
__put_mtd_device(struct mtd_info * mtd)863 void __put_mtd_device(struct mtd_info *mtd)
864 {
865 --mtd->usecount;
866 BUG_ON(mtd->usecount < 0);
867
868 if (mtd->_put_device)
869 mtd->_put_device(mtd);
870
871 module_put(mtd->owner);
872 }
873 EXPORT_SYMBOL_GPL(__put_mtd_device);
874
875 /*
876 * Erase is an asynchronous operation. Device drivers are supposed
877 * to call instr->callback() whenever the operation completes, even
878 * if it completes with a failure.
879 * Callers are supposed to pass a callback function and wait for it
880 * to be called before writing to the block.
881 */
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)882 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
883 {
884 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
885 return -EINVAL;
886 if (!(mtd->flags & MTD_WRITEABLE))
887 return -EROFS;
888 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
889 if (!instr->len) {
890 instr->state = MTD_ERASE_DONE;
891 mtd_erase_callback(instr);
892 return 0;
893 }
894 return mtd->_erase(mtd, instr);
895 }
896 EXPORT_SYMBOL_GPL(mtd_erase);
897
898 #ifndef __UBOOT__
899 /*
900 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
901 */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)902 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
903 void **virt, resource_size_t *phys)
904 {
905 *retlen = 0;
906 *virt = NULL;
907 if (phys)
908 *phys = 0;
909 if (!mtd->_point)
910 return -EOPNOTSUPP;
911 if (from < 0 || from > mtd->size || len > mtd->size - from)
912 return -EINVAL;
913 if (!len)
914 return 0;
915 return mtd->_point(mtd, from, len, retlen, virt, phys);
916 }
917 EXPORT_SYMBOL_GPL(mtd_point);
918
919 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)920 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
921 {
922 if (!mtd->_point)
923 return -EOPNOTSUPP;
924 if (from < 0 || from > mtd->size || len > mtd->size - from)
925 return -EINVAL;
926 if (!len)
927 return 0;
928 return mtd->_unpoint(mtd, from, len);
929 }
930 EXPORT_SYMBOL_GPL(mtd_unpoint);
931 #endif
932
933 /*
934 * Allow NOMMU mmap() to directly map the device (if not NULL)
935 * - return the address to which the offset maps
936 * - return -ENOSYS to indicate refusal to do the mapping
937 */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)938 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
939 unsigned long offset, unsigned long flags)
940 {
941 if (!mtd->_get_unmapped_area)
942 return -EOPNOTSUPP;
943 if (offset > mtd->size || len > mtd->size - offset)
944 return -EINVAL;
945 return mtd->_get_unmapped_area(mtd, len, offset, flags);
946 }
947 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
948
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)949 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
950 u_char *buf)
951 {
952 int ret_code;
953 *retlen = 0;
954 if (from < 0 || from > mtd->size || len > mtd->size - from)
955 return -EINVAL;
956 if (!len)
957 return 0;
958
959 /*
960 * In the absence of an error, drivers return a non-negative integer
961 * representing the maximum number of bitflips that were corrected on
962 * any one ecc region (if applicable; zero otherwise).
963 */
964 if (mtd->_read) {
965 ret_code = mtd->_read(mtd, from, len, retlen, buf);
966 } else if (mtd->_read_oob) {
967 struct mtd_oob_ops ops = {
968 .len = len,
969 .datbuf = buf,
970 };
971
972 ret_code = mtd->_read_oob(mtd, from, &ops);
973 *retlen = ops.retlen;
974 } else {
975 return -ENOTSUPP;
976 }
977
978 if (unlikely(ret_code < 0))
979 return ret_code;
980 if (mtd->ecc_strength == 0)
981 return 0; /* device lacks ecc */
982 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
983 }
984 EXPORT_SYMBOL_GPL(mtd_read);
985
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)986 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
987 const u_char *buf)
988 {
989 *retlen = 0;
990 if (to < 0 || to > mtd->size || len > mtd->size - to)
991 return -EINVAL;
992 if ((!mtd->_write && !mtd->_write_oob) ||
993 !(mtd->flags & MTD_WRITEABLE))
994 return -EROFS;
995 if (!len)
996 return 0;
997
998 if (!mtd->_write) {
999 struct mtd_oob_ops ops = {
1000 .len = len,
1001 .datbuf = (u8 *)buf,
1002 };
1003 int ret;
1004
1005 ret = mtd->_write_oob(mtd, to, &ops);
1006 *retlen = ops.retlen;
1007 return ret;
1008 }
1009
1010 return mtd->_write(mtd, to, len, retlen, buf);
1011 }
1012 EXPORT_SYMBOL_GPL(mtd_write);
1013
1014 /*
1015 * In blackbox flight recorder like scenarios we want to make successful writes
1016 * in interrupt context. panic_write() is only intended to be called when its
1017 * known the kernel is about to panic and we need the write to succeed. Since
1018 * the kernel is not going to be running for much longer, this function can
1019 * break locks and delay to ensure the write succeeds (but not sleep).
1020 */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1021 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1022 const u_char *buf)
1023 {
1024 *retlen = 0;
1025 if (!mtd->_panic_write)
1026 return -EOPNOTSUPP;
1027 if (to < 0 || to > mtd->size || len > mtd->size - to)
1028 return -EINVAL;
1029 if (!(mtd->flags & MTD_WRITEABLE))
1030 return -EROFS;
1031 if (!len)
1032 return 0;
1033 return mtd->_panic_write(mtd, to, len, retlen, buf);
1034 }
1035 EXPORT_SYMBOL_GPL(mtd_panic_write);
1036
mtd_check_oob_ops(struct mtd_info * mtd,loff_t offs,struct mtd_oob_ops * ops)1037 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1038 struct mtd_oob_ops *ops)
1039 {
1040 /*
1041 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1042 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1043 * this case.
1044 */
1045 if (!ops->datbuf)
1046 ops->len = 0;
1047
1048 if (!ops->oobbuf)
1049 ops->ooblen = 0;
1050
1051 if (offs < 0 || offs + ops->len > mtd->size)
1052 return -EINVAL;
1053
1054 if (ops->ooblen) {
1055 size_t maxooblen;
1056
1057 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1058 return -EINVAL;
1059
1060 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1061 mtd_div_by_ws(offs, mtd)) *
1062 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1063 if (ops->ooblen > maxooblen)
1064 return -EINVAL;
1065 }
1066
1067 return 0;
1068 }
1069
mtd_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1070 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1071 {
1072 int ret_code;
1073 ops->retlen = ops->oobretlen = 0;
1074
1075 ret_code = mtd_check_oob_ops(mtd, from, ops);
1076 if (ret_code)
1077 return ret_code;
1078
1079 /* Check the validity of a potential fallback on mtd->_read */
1080 if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1081 return -EOPNOTSUPP;
1082
1083 if (mtd->_read_oob)
1084 ret_code = mtd->_read_oob(mtd, from, ops);
1085 else
1086 ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1087 ops->datbuf);
1088
1089 /*
1090 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1091 * similar to mtd->_read(), returning a non-negative integer
1092 * representing max bitflips. In other cases, mtd->_read_oob() may
1093 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1094 */
1095 if (unlikely(ret_code < 0))
1096 return ret_code;
1097 if (mtd->ecc_strength == 0)
1098 return 0; /* device lacks ecc */
1099 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1100 }
1101 EXPORT_SYMBOL_GPL(mtd_read_oob);
1102
mtd_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1103 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1104 struct mtd_oob_ops *ops)
1105 {
1106 int ret;
1107
1108 ops->retlen = ops->oobretlen = 0;
1109
1110 if (!(mtd->flags & MTD_WRITEABLE))
1111 return -EROFS;
1112
1113 ret = mtd_check_oob_ops(mtd, to, ops);
1114 if (ret)
1115 return ret;
1116
1117 /* Check the validity of a potential fallback on mtd->_write */
1118 if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1119 return -EOPNOTSUPP;
1120
1121 if (mtd->_write_oob)
1122 return mtd->_write_oob(mtd, to, ops);
1123 else
1124 return mtd->_write(mtd, to, ops->len, &ops->retlen,
1125 ops->datbuf);
1126 }
1127 EXPORT_SYMBOL_GPL(mtd_write_oob);
1128
1129 /**
1130 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1131 * @mtd: MTD device structure
1132 * @section: ECC section. Depending on the layout you may have all the ECC
1133 * bytes stored in a single contiguous section, or one section
1134 * per ECC chunk (and sometime several sections for a single ECC
1135 * ECC chunk)
1136 * @oobecc: OOB region struct filled with the appropriate ECC position
1137 * information
1138 *
1139 * This function returns ECC section information in the OOB area. If you want
1140 * to get all the ECC bytes information, then you should call
1141 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1142 *
1143 * Returns zero on success, a negative error code otherwise.
1144 */
mtd_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobecc)1145 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1146 struct mtd_oob_region *oobecc)
1147 {
1148 memset(oobecc, 0, sizeof(*oobecc));
1149
1150 if (!mtd || section < 0)
1151 return -EINVAL;
1152
1153 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1154 return -ENOTSUPP;
1155
1156 return mtd->ooblayout->ecc(mtd, section, oobecc);
1157 }
1158 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1159
1160 /**
1161 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1162 * section
1163 * @mtd: MTD device structure
1164 * @section: Free section you are interested in. Depending on the layout
1165 * you may have all the free bytes stored in a single contiguous
1166 * section, or one section per ECC chunk plus an extra section
1167 * for the remaining bytes (or other funky layout).
1168 * @oobfree: OOB region struct filled with the appropriate free position
1169 * information
1170 *
1171 * This function returns free bytes position in the OOB area. If you want
1172 * to get all the free bytes information, then you should call
1173 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1174 *
1175 * Returns zero on success, a negative error code otherwise.
1176 */
mtd_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobfree)1177 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1178 struct mtd_oob_region *oobfree)
1179 {
1180 memset(oobfree, 0, sizeof(*oobfree));
1181
1182 if (!mtd || section < 0)
1183 return -EINVAL;
1184
1185 if (!mtd->ooblayout || !mtd->ooblayout->rfree)
1186 return -ENOTSUPP;
1187
1188 return mtd->ooblayout->rfree(mtd, section, oobfree);
1189 }
1190 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1191
1192 /**
1193 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1194 * @mtd: mtd info structure
1195 * @byte: the byte we are searching for
1196 * @sectionp: pointer where the section id will be stored
1197 * @oobregion: used to retrieve the ECC position
1198 * @iter: iterator function. Should be either mtd_ooblayout_free or
1199 * mtd_ooblayout_ecc depending on the region type you're searching for
1200 *
1201 * This function returns the section id and oobregion information of a
1202 * specific byte. For example, say you want to know where the 4th ECC byte is
1203 * stored, you'll use:
1204 *
1205 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1206 *
1207 * Returns zero on success, a negative error code otherwise.
1208 */
mtd_ooblayout_find_region(struct mtd_info * mtd,int byte,int * sectionp,struct mtd_oob_region * oobregion,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1209 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1210 int *sectionp, struct mtd_oob_region *oobregion,
1211 int (*iter)(struct mtd_info *,
1212 int section,
1213 struct mtd_oob_region *oobregion))
1214 {
1215 int pos = 0, ret, section = 0;
1216
1217 memset(oobregion, 0, sizeof(*oobregion));
1218
1219 while (1) {
1220 ret = iter(mtd, section, oobregion);
1221 if (ret)
1222 return ret;
1223
1224 if (pos + oobregion->length > byte)
1225 break;
1226
1227 pos += oobregion->length;
1228 section++;
1229 }
1230
1231 /*
1232 * Adjust region info to make it start at the beginning at the
1233 * 'start' ECC byte.
1234 */
1235 oobregion->offset += byte - pos;
1236 oobregion->length -= byte - pos;
1237 *sectionp = section;
1238
1239 return 0;
1240 }
1241
1242 /**
1243 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1244 * ECC byte
1245 * @mtd: mtd info structure
1246 * @eccbyte: the byte we are searching for
1247 * @sectionp: pointer where the section id will be stored
1248 * @oobregion: OOB region information
1249 *
1250 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1251 * byte.
1252 *
1253 * Returns zero on success, a negative error code otherwise.
1254 */
mtd_ooblayout_find_eccregion(struct mtd_info * mtd,int eccbyte,int * section,struct mtd_oob_region * oobregion)1255 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1256 int *section,
1257 struct mtd_oob_region *oobregion)
1258 {
1259 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1260 mtd_ooblayout_ecc);
1261 }
1262 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1263
1264 /**
1265 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1266 * @mtd: mtd info structure
1267 * @buf: destination buffer to store OOB bytes
1268 * @oobbuf: OOB buffer
1269 * @start: first byte to retrieve
1270 * @nbytes: number of bytes to retrieve
1271 * @iter: section iterator
1272 *
1273 * Extract bytes attached to a specific category (ECC or free)
1274 * from the OOB buffer and copy them into buf.
1275 *
1276 * Returns zero on success, a negative error code otherwise.
1277 */
mtd_ooblayout_get_bytes(struct mtd_info * mtd,u8 * buf,const u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1278 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1279 const u8 *oobbuf, int start, int nbytes,
1280 int (*iter)(struct mtd_info *,
1281 int section,
1282 struct mtd_oob_region *oobregion))
1283 {
1284 struct mtd_oob_region oobregion;
1285 int section, ret;
1286
1287 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1288 &oobregion, iter);
1289
1290 while (!ret) {
1291 int cnt;
1292
1293 cnt = min_t(int, nbytes, oobregion.length);
1294 memcpy(buf, oobbuf + oobregion.offset, cnt);
1295 buf += cnt;
1296 nbytes -= cnt;
1297
1298 if (!nbytes)
1299 break;
1300
1301 ret = iter(mtd, ++section, &oobregion);
1302 }
1303
1304 return ret;
1305 }
1306
1307 /**
1308 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1309 * @mtd: mtd info structure
1310 * @buf: source buffer to get OOB bytes from
1311 * @oobbuf: OOB buffer
1312 * @start: first OOB byte to set
1313 * @nbytes: number of OOB bytes to set
1314 * @iter: section iterator
1315 *
1316 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1317 * is selected by passing the appropriate iterator.
1318 *
1319 * Returns zero on success, a negative error code otherwise.
1320 */
mtd_ooblayout_set_bytes(struct mtd_info * mtd,const u8 * buf,u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1321 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1322 u8 *oobbuf, int start, int nbytes,
1323 int (*iter)(struct mtd_info *,
1324 int section,
1325 struct mtd_oob_region *oobregion))
1326 {
1327 struct mtd_oob_region oobregion;
1328 int section, ret;
1329
1330 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1331 &oobregion, iter);
1332
1333 while (!ret) {
1334 int cnt;
1335
1336 cnt = min_t(int, nbytes, oobregion.length);
1337 memcpy(oobbuf + oobregion.offset, buf, cnt);
1338 buf += cnt;
1339 nbytes -= cnt;
1340
1341 if (!nbytes)
1342 break;
1343
1344 ret = iter(mtd, ++section, &oobregion);
1345 }
1346
1347 return ret;
1348 }
1349
1350 /**
1351 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1352 * @mtd: mtd info structure
1353 * @iter: category iterator
1354 *
1355 * Count the number of bytes in a given category.
1356 *
1357 * Returns a positive value on success, a negative error code otherwise.
1358 */
mtd_ooblayout_count_bytes(struct mtd_info * mtd,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1359 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1360 int (*iter)(struct mtd_info *,
1361 int section,
1362 struct mtd_oob_region *oobregion))
1363 {
1364 struct mtd_oob_region oobregion;
1365 int section = 0, ret, nbytes = 0;
1366
1367 while (1) {
1368 ret = iter(mtd, section++, &oobregion);
1369 if (ret) {
1370 if (ret == -ERANGE)
1371 ret = nbytes;
1372 break;
1373 }
1374
1375 nbytes += oobregion.length;
1376 }
1377
1378 return ret;
1379 }
1380
1381 /**
1382 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1383 * @mtd: mtd info structure
1384 * @eccbuf: destination buffer to store ECC bytes
1385 * @oobbuf: OOB buffer
1386 * @start: first ECC byte to retrieve
1387 * @nbytes: number of ECC bytes to retrieve
1388 *
1389 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1390 *
1391 * Returns zero on success, a negative error code otherwise.
1392 */
mtd_ooblayout_get_eccbytes(struct mtd_info * mtd,u8 * eccbuf,const u8 * oobbuf,int start,int nbytes)1393 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1394 const u8 *oobbuf, int start, int nbytes)
1395 {
1396 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1397 mtd_ooblayout_ecc);
1398 }
1399 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1400
1401 /**
1402 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1403 * @mtd: mtd info structure
1404 * @eccbuf: source buffer to get ECC bytes from
1405 * @oobbuf: OOB buffer
1406 * @start: first ECC byte to set
1407 * @nbytes: number of ECC bytes to set
1408 *
1409 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1410 *
1411 * Returns zero on success, a negative error code otherwise.
1412 */
mtd_ooblayout_set_eccbytes(struct mtd_info * mtd,const u8 * eccbuf,u8 * oobbuf,int start,int nbytes)1413 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1414 u8 *oobbuf, int start, int nbytes)
1415 {
1416 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1417 mtd_ooblayout_ecc);
1418 }
1419 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1420
1421 /**
1422 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1423 * @mtd: mtd info structure
1424 * @databuf: destination buffer to store ECC bytes
1425 * @oobbuf: OOB buffer
1426 * @start: first ECC byte to retrieve
1427 * @nbytes: number of ECC bytes to retrieve
1428 *
1429 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1430 *
1431 * Returns zero on success, a negative error code otherwise.
1432 */
mtd_ooblayout_get_databytes(struct mtd_info * mtd,u8 * databuf,const u8 * oobbuf,int start,int nbytes)1433 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1434 const u8 *oobbuf, int start, int nbytes)
1435 {
1436 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1437 mtd_ooblayout_free);
1438 }
1439 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1440
1441 /**
1442 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1443 * @mtd: mtd info structure
1444 * @eccbuf: source buffer to get data bytes from
1445 * @oobbuf: OOB buffer
1446 * @start: first ECC byte to set
1447 * @nbytes: number of ECC bytes to set
1448 *
1449 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1450 *
1451 * Returns zero on success, a negative error code otherwise.
1452 */
mtd_ooblayout_set_databytes(struct mtd_info * mtd,const u8 * databuf,u8 * oobbuf,int start,int nbytes)1453 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1454 u8 *oobbuf, int start, int nbytes)
1455 {
1456 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1457 mtd_ooblayout_free);
1458 }
1459 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1460
1461 /**
1462 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1463 * @mtd: mtd info structure
1464 *
1465 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1466 *
1467 * Returns zero on success, a negative error code otherwise.
1468 */
mtd_ooblayout_count_freebytes(struct mtd_info * mtd)1469 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1470 {
1471 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1472 }
1473 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1474
1475 /**
1476 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1477 * @mtd: mtd info structure
1478 *
1479 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1480 *
1481 * Returns zero on success, a negative error code otherwise.
1482 */
mtd_ooblayout_count_eccbytes(struct mtd_info * mtd)1483 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1484 {
1485 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1486 }
1487 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1488
1489 /*
1490 * Method to access the protection register area, present in some flash
1491 * devices. The user data is one time programmable but the factory data is read
1492 * only.
1493 */
mtd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1494 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1495 struct otp_info *buf)
1496 {
1497 if (!mtd->_get_fact_prot_info)
1498 return -EOPNOTSUPP;
1499 if (!len)
1500 return 0;
1501 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1502 }
1503 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1504
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1505 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1506 size_t *retlen, u_char *buf)
1507 {
1508 *retlen = 0;
1509 if (!mtd->_read_fact_prot_reg)
1510 return -EOPNOTSUPP;
1511 if (!len)
1512 return 0;
1513 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1514 }
1515 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1516
mtd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1517 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1518 struct otp_info *buf)
1519 {
1520 if (!mtd->_get_user_prot_info)
1521 return -EOPNOTSUPP;
1522 if (!len)
1523 return 0;
1524 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1525 }
1526 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1527
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1528 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1529 size_t *retlen, u_char *buf)
1530 {
1531 *retlen = 0;
1532 if (!mtd->_read_user_prot_reg)
1533 return -EOPNOTSUPP;
1534 if (!len)
1535 return 0;
1536 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1537 }
1538 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1539
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,u_char * buf)1540 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1541 size_t *retlen, u_char *buf)
1542 {
1543 int ret;
1544
1545 *retlen = 0;
1546 if (!mtd->_write_user_prot_reg)
1547 return -EOPNOTSUPP;
1548 if (!len)
1549 return 0;
1550 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1551 if (ret)
1552 return ret;
1553
1554 /*
1555 * If no data could be written at all, we are out of memory and
1556 * must return -ENOSPC.
1557 */
1558 return (*retlen) ? 0 : -ENOSPC;
1559 }
1560 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1561
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)1562 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1563 {
1564 if (!mtd->_lock_user_prot_reg)
1565 return -EOPNOTSUPP;
1566 if (!len)
1567 return 0;
1568 return mtd->_lock_user_prot_reg(mtd, from, len);
1569 }
1570 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1571
1572 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1573 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1574 {
1575 if (!mtd->_lock)
1576 return -EOPNOTSUPP;
1577 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1578 return -EINVAL;
1579 if (!len)
1580 return 0;
1581 return mtd->_lock(mtd, ofs, len);
1582 }
1583 EXPORT_SYMBOL_GPL(mtd_lock);
1584
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1585 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1586 {
1587 if (!mtd->_unlock)
1588 return -EOPNOTSUPP;
1589 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1590 return -EINVAL;
1591 if (!len)
1592 return 0;
1593 return mtd->_unlock(mtd, ofs, len);
1594 }
1595 EXPORT_SYMBOL_GPL(mtd_unlock);
1596
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)1597 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1598 {
1599 if (!mtd->_is_locked)
1600 return -EOPNOTSUPP;
1601 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1602 return -EINVAL;
1603 if (!len)
1604 return 0;
1605 return mtd->_is_locked(mtd, ofs, len);
1606 }
1607 EXPORT_SYMBOL_GPL(mtd_is_locked);
1608
mtd_block_isreserved(struct mtd_info * mtd,loff_t ofs)1609 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1610 {
1611 if (ofs < 0 || ofs > mtd->size)
1612 return -EINVAL;
1613 if (!mtd->_block_isreserved)
1614 return 0;
1615 return mtd->_block_isreserved(mtd, ofs);
1616 }
1617 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1618
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)1619 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1620 {
1621 if (ofs < 0 || ofs > mtd->size)
1622 return -EINVAL;
1623 if (!mtd->_block_isbad)
1624 return 0;
1625 return mtd->_block_isbad(mtd, ofs);
1626 }
1627 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1628
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)1629 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1630 {
1631 if (!mtd->_block_markbad)
1632 return -EOPNOTSUPP;
1633 if (ofs < 0 || ofs > mtd->size)
1634 return -EINVAL;
1635 if (!(mtd->flags & MTD_WRITEABLE))
1636 return -EROFS;
1637 return mtd->_block_markbad(mtd, ofs);
1638 }
1639 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1640
1641 #ifndef __UBOOT__
1642 /*
1643 * default_mtd_writev - the default writev method
1644 * @mtd: mtd device description object pointer
1645 * @vecs: the vectors to write
1646 * @count: count of vectors in @vecs
1647 * @to: the MTD device offset to write to
1648 * @retlen: on exit contains the count of bytes written to the MTD device.
1649 *
1650 * This function returns zero in case of success and a negative error code in
1651 * case of failure.
1652 */
default_mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)1653 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1654 unsigned long count, loff_t to, size_t *retlen)
1655 {
1656 unsigned long i;
1657 size_t totlen = 0, thislen;
1658 int ret = 0;
1659
1660 for (i = 0; i < count; i++) {
1661 if (!vecs[i].iov_len)
1662 continue;
1663 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1664 vecs[i].iov_base);
1665 totlen += thislen;
1666 if (ret || thislen != vecs[i].iov_len)
1667 break;
1668 to += vecs[i].iov_len;
1669 }
1670 *retlen = totlen;
1671 return ret;
1672 }
1673
1674 /*
1675 * mtd_writev - the vector-based MTD write method
1676 * @mtd: mtd device description object pointer
1677 * @vecs: the vectors to write
1678 * @count: count of vectors in @vecs
1679 * @to: the MTD device offset to write to
1680 * @retlen: on exit contains the count of bytes written to the MTD device.
1681 *
1682 * This function returns zero in case of success and a negative error code in
1683 * case of failure.
1684 */
mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)1685 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1686 unsigned long count, loff_t to, size_t *retlen)
1687 {
1688 *retlen = 0;
1689 if (!(mtd->flags & MTD_WRITEABLE))
1690 return -EROFS;
1691 if (!mtd->_writev)
1692 return default_mtd_writev(mtd, vecs, count, to, retlen);
1693 return mtd->_writev(mtd, vecs, count, to, retlen);
1694 }
1695 EXPORT_SYMBOL_GPL(mtd_writev);
1696
1697 /**
1698 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1699 * @mtd: mtd device description object pointer
1700 * @size: a pointer to the ideal or maximum size of the allocation, points
1701 * to the actual allocation size on success.
1702 *
1703 * This routine attempts to allocate a contiguous kernel buffer up to
1704 * the specified size, backing off the size of the request exponentially
1705 * until the request succeeds or until the allocation size falls below
1706 * the system page size. This attempts to make sure it does not adversely
1707 * impact system performance, so when allocating more than one page, we
1708 * ask the memory allocator to avoid re-trying, swapping, writing back
1709 * or performing I/O.
1710 *
1711 * Note, this function also makes sure that the allocated buffer is aligned to
1712 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1713 *
1714 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1715 * to handle smaller (i.e. degraded) buffer allocations under low- or
1716 * fragmented-memory situations where such reduced allocations, from a
1717 * requested ideal, are allowed.
1718 *
1719 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1720 */
mtd_kmalloc_up_to(const struct mtd_info * mtd,size_t * size)1721 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1722 {
1723 gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1724 __GFP_NORETRY | __GFP_NO_KSWAPD;
1725 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1726 void *kbuf;
1727
1728 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1729
1730 while (*size > min_alloc) {
1731 kbuf = kmalloc(*size, flags);
1732 if (kbuf)
1733 return kbuf;
1734
1735 *size >>= 1;
1736 *size = ALIGN(*size, mtd->writesize);
1737 }
1738
1739 /*
1740 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1741 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1742 */
1743 return kmalloc(*size, GFP_KERNEL);
1744 }
1745 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1746 #endif
1747
1748 #ifdef CONFIG_PROC_FS
1749
1750 /*====================================================================*/
1751 /* Support for /proc/mtd */
1752
mtd_proc_show(struct seq_file * m,void * v)1753 static int mtd_proc_show(struct seq_file *m, void *v)
1754 {
1755 struct mtd_info *mtd;
1756
1757 seq_puts(m, "dev: size erasesize name\n");
1758 mutex_lock(&mtd_table_mutex);
1759 mtd_for_each_device(mtd) {
1760 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1761 mtd->index, (unsigned long long)mtd->size,
1762 mtd->erasesize, mtd->name);
1763 }
1764 mutex_unlock(&mtd_table_mutex);
1765 return 0;
1766 }
1767
mtd_proc_open(struct inode * inode,struct file * file)1768 static int mtd_proc_open(struct inode *inode, struct file *file)
1769 {
1770 return single_open(file, mtd_proc_show, NULL);
1771 }
1772
1773 static const struct file_operations mtd_proc_ops = {
1774 .open = mtd_proc_open,
1775 .read = seq_read,
1776 .llseek = seq_lseek,
1777 .release = single_release,
1778 };
1779 #endif /* CONFIG_PROC_FS */
1780
1781 /*====================================================================*/
1782 /* Init code */
1783
1784 #ifndef __UBOOT__
mtd_bdi_init(struct backing_dev_info * bdi,const char * name)1785 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1786 {
1787 int ret;
1788
1789 ret = bdi_init(bdi);
1790 if (!ret)
1791 ret = bdi_register(bdi, NULL, "%s", name);
1792
1793 if (ret)
1794 bdi_destroy(bdi);
1795
1796 return ret;
1797 }
1798
1799 static struct proc_dir_entry *proc_mtd;
1800
init_mtd(void)1801 static int __init init_mtd(void)
1802 {
1803 int ret;
1804
1805 ret = class_register(&mtd_class);
1806 if (ret)
1807 goto err_reg;
1808
1809 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1810 if (ret)
1811 goto err_bdi1;
1812
1813 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1814 if (ret)
1815 goto err_bdi2;
1816
1817 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1818 if (ret)
1819 goto err_bdi3;
1820
1821 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1822
1823 ret = init_mtdchar();
1824 if (ret)
1825 goto out_procfs;
1826
1827 return 0;
1828
1829 out_procfs:
1830 if (proc_mtd)
1831 remove_proc_entry("mtd", NULL);
1832 err_bdi3:
1833 bdi_destroy(&mtd_bdi_ro_mappable);
1834 err_bdi2:
1835 bdi_destroy(&mtd_bdi_unmappable);
1836 err_bdi1:
1837 class_unregister(&mtd_class);
1838 err_reg:
1839 pr_err("Error registering mtd class or bdi: %d\n", ret);
1840 return ret;
1841 }
1842
cleanup_mtd(void)1843 static void __exit cleanup_mtd(void)
1844 {
1845 cleanup_mtdchar();
1846 if (proc_mtd)
1847 remove_proc_entry("mtd", NULL);
1848 class_unregister(&mtd_class);
1849 bdi_destroy(&mtd_bdi_unmappable);
1850 bdi_destroy(&mtd_bdi_ro_mappable);
1851 bdi_destroy(&mtd_bdi_rw_mappable);
1852 }
1853
1854 module_init(init_mtd);
1855 module_exit(cleanup_mtd);
1856 #endif
1857
1858 MODULE_LICENSE("GPL");
1859 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1860 MODULE_DESCRIPTION("Core MTD registration and access routines");
1861