xref: /OK3568_Linux_fs/u-boot/drivers/input/spl_adc_key.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2  * (C) Copyright 2020 Rockchip Electronics Co., Ltd
3  *
4  * SPDX-License-Identifier:     GPL-2.0+
5  */
6 
7 #include <common.h>
8 #include <adc.h>
9 #include <div64.h>
10 #include <fdtdec.h>
11 #include <dm/uclass.h>
12 
13 DECLARE_GLOBAL_DATA_PTR;
14 
adc_raw_to_mV(struct udevice * dev,unsigned int raw,int * mV)15 static int adc_raw_to_mV(struct udevice *dev, unsigned int raw, int *mV)
16 {
17 	unsigned int data_mask;
18 	int ret, vref = 1800000;
19 	u64 raw64 = raw;
20 
21 	ret = adc_data_mask(dev, &data_mask);
22 	if (ret)
23 		return ret;
24 
25 	raw64 *= vref;
26 	do_div(raw64, data_mask);
27 	*mV = raw64;
28 
29 	return 0;
30 }
31 
key_read(int code)32 int key_read(int code)
33 {
34 	const void *fdt_blob = gd->fdt_blob;
35 	struct udevice *dev;
36 	int adc_node, offset;
37 	int t, down_threshold = -1, up_threshold;
38 	int ret, num = 0, volt_margin = 150000;	/* will be div 2 */
39 	int mV, cd, voltage = -1;
40 	int min, max;
41 	u32 chn[2], adc;
42 
43 	ret = uclass_get_device_by_name(UCLASS_ADC, "saradc", &dev);
44 	if (ret) {
45 		debug("No saradc device, ret=%d\n", ret);
46 		return 0;
47 	}
48 
49 	adc_node = fdt_node_offset_by_compatible(fdt_blob, 0, "adc-keys");
50 	if (adc_node < 0) {
51 		debug("No 'adc-keys' node, ret=%d\n", adc_node);
52 		return 0;
53 	}
54 
55 	ret = fdtdec_get_int_array(fdt_blob, adc_node, "io-channels",
56 				   chn, ARRAY_SIZE(chn));
57 	if (ret) {
58 		debug("Can't read 'io-channels', ret=%d\n", ret);
59 		return 0;
60 	}
61 
62 	up_threshold = fdtdec_get_int(fdt_blob, adc_node,
63 				      "keyup-threshold-microvolt", -ENODATA);
64 	if (up_threshold < 0) {
65 		debug("Can't read 'keyup-threshold-microvolt'\n");
66 		return 0;
67 	}
68 
69 	/* find the expected key-code */
70 	for (offset = fdt_first_subnode(fdt_blob, adc_node);
71 	     offset >= 0;
72 	     offset = fdt_next_subnode(fdt_blob, offset)) {
73 		cd = fdtdec_get_int(fdt_blob, offset, "linux,code", -ENODATA);
74 		if (cd < 0) {
75 			debug("Can't read 'linux,code', ret=%d\n", cd);
76 			return 0;
77 		}
78 
79 		if (cd == code) {
80 			voltage = fdtdec_get_int(fdt_blob, offset,
81 					"press-threshold-microvolt", -ENODATA);
82 			if (voltage < 0) {
83 				debug("Can't read 'press-threshold-microvolt'\n");
84 				return 0;
85 			}
86 			break;
87 		}
88 	}
89 
90 	if (voltage < 0)
91 		return 0;
92 
93 	for (offset = fdt_first_subnode(fdt_blob, adc_node);
94 	     offset >= 0;
95 	     offset = fdt_next_subnode(fdt_blob, offset)) {
96 		t = fdtdec_get_int(fdt_blob, offset,
97 				   "press-threshold-microvolt", -ENODATA);
98 		if (t < 0) {
99 			debug("Can't read 'press-threshold-microvolt'\n");
100 			return 0;
101 		}
102 
103 		if (t > voltage && t < up_threshold)
104 			up_threshold = t;
105 		else if (t < voltage && t > down_threshold)
106 			down_threshold = t;
107 		num++;
108 	}
109 
110 	/* although one node only, it doesn't mean only one key on hardware */
111 	if (num == 1) {
112 		down_threshold = voltage - volt_margin;
113 		up_threshold = voltage + volt_margin;
114 	}
115 
116 	/*
117 	 * Define the voltage range such that the button is only pressed
118 	 * when the voltage is closest to its own press-threshold-microvolt
119 	 */
120 	if (down_threshold < 0)
121 		min = 0;
122 	else
123 		min = down_threshold + (voltage - down_threshold) / 2;
124 
125 	max = voltage + (up_threshold - voltage) / 2;
126 
127 	/* now, read key status */
128 	ret = adc_channel_single_shot("saradc", chn[1], &adc);
129 	if (ret) {
130 		debug("Failed to read adc%d, ret=%d\n", chn[1], ret);
131 		return 0;
132 	}
133 
134 	ret = adc_raw_to_mV(dev, adc, &mV);
135 	if (ret) {
136 		debug("Failed to convert adc to mV, ret=%d\n", ret);
137 		return 0;
138 	}
139 
140 	debug("key[%d] <%d, %d, %d>: adc=%d -> mV=%d\n",
141 	      code, min, voltage, max, adc, mV);
142 
143 	return (mV <= max && mV >= min);
144 }
145 
146