1 /*
2 * Copyright (c) 2012 The Chromium OS Authors.
3 *
4 * (C) Copyright 2010
5 * Petr Stetiar <ynezz@true.cz>
6 *
7 * SPDX-License-Identifier: GPL-2.0+
8 *
9 * Contains stolen code from ddcprobe project which is:
10 * Copyright (C) Nalin Dahyabhai <bigfun@pobox.com>
11 * (C) Copyright 2008-2017 Fuzhou Rockchip Electronics Co., Ltd
12 */
13
14 #include <common.h>
15 #include <compiler.h>
16 #include <div64.h>
17 #include <drm_modes.h>
18 #include <edid.h>
19 #include <errno.h>
20 #include <fdtdec.h>
21 #include <hexdump.h>
22 #include <malloc.h>
23 #include <linux/compat.h>
24 #include <linux/ctype.h>
25 #include <linux/fb.h>
26 #include <linux/hdmi.h>
27 #include <linux/string.h>
28
29 #define EDID_EST_TIMINGS 16
30 #define EDID_STD_TIMINGS 8
31 #define EDID_DETAILED_TIMINGS 4
32 #define BIT_WORD(nr) ((nr) / BITS_PER_LONG)
33 #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
34 #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
35 #define EDID_PRODUCT_ID(e) ((e)->prod_code[0] | ((e)->prod_code[1] << 8))
36 #define version_greater(edid, maj, min) \
37 (((edid)->version > (maj)) || \
38 ((edid)->version == (maj) && (edid)->revision > (min)))
39
40 /*
41 * EDID blocks out in the wild have a variety of bugs, try to collect
42 * them here (note that userspace may work around broken monitors first,
43 * but fixes should make their way here so that the kernel "just works"
44 * on as many displays as possible).
45 */
46
47 /* First detailed mode wrong, use largest 60Hz mode */
48 #define EDID_QUIRK_PREFER_LARGE_60 BIT(0)
49 /* Reported 135MHz pixel clock is too high, needs adjustment */
50 #define EDID_QUIRK_135_CLOCK_TOO_HIGH BIT(1)
51 /* Prefer the largest mode at 75 Hz */
52 #define EDID_QUIRK_PREFER_LARGE_75 BIT(2)
53 /* Detail timing is in cm not mm */
54 #define EDID_QUIRK_DETAILED_IN_CM BIT(3)
55 /* Detailed timing descriptors have bogus size values, so just take the
56 * maximum size and use that.
57 */
58 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE BIT(4)
59 /* Monitor forgot to set the first detailed is preferred bit. */
60 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED BIT(5)
61 /* use +hsync +vsync for detailed mode */
62 #define EDID_QUIRK_DETAILED_SYNC_PP BIT(6)
63 /* Force reduced-blanking timings for detailed modes */
64 #define EDID_QUIRK_FORCE_REDUCED_BLANKING BIT(7)
65 /* Force 8bpc */
66 #define EDID_QUIRK_FORCE_8BPC BIT(8)
67 /* Force 12bpc */
68 #define EDID_QUIRK_FORCE_12BPC BIT(9)
69 /* Force 6bpc */
70 #define EDID_QUIRK_FORCE_6BPC BIT(10)
71 /* Force 10bpc */
72 #define EDID_QUIRK_FORCE_10BPC BIT(11)
73
74 struct detailed_mode_closure {
75 struct edid *edid;
76 struct hdmi_edid_data *data;
77 bool preferred;
78 u32 quirks;
79 int modes;
80 };
81
82 #define LEVEL_DMT 0
83 #define LEVEL_GTF 1
84 #define LEVEL_GTF2 2
85 #define LEVEL_CVT 3
86
87 static struct edid_quirk {
88 char vendor[4];
89 int product_id;
90 u32 quirks;
91 } edid_quirk_list[] = {
92 /* Acer AL1706 */
93 { "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
94 /* Acer F51 */
95 { "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
96 /* Unknown Acer */
97 { "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
98
99 /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
100 { "AEO", 0, EDID_QUIRK_FORCE_6BPC },
101
102 /* Belinea 10 15 55 */
103 { "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
104 { "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
105
106 /* Envision Peripherals, Inc. EN-7100e */
107 { "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
108 /* Envision EN2028 */
109 { "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
110
111 /* Funai Electronics PM36B */
112 { "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
113 EDID_QUIRK_DETAILED_IN_CM },
114
115 /* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
116 { "LGD", 764, EDID_QUIRK_FORCE_10BPC },
117
118 /* LG Philips LCD LP154W01-A5 */
119 { "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
120 { "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
121
122 /* Philips 107p5 CRT */
123 { "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
124
125 /* Proview AY765C */
126 { "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
127
128 /* Samsung SyncMaster 205BW. Note: irony */
129 { "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
130 /* Samsung SyncMaster 22[5-6]BW */
131 { "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
132 { "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
133
134 /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
135 { "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
136
137 /* ViewSonic VA2026w */
138 { "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
139
140 /* Medion MD 30217 PG */
141 { "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
142
143 /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
144 { "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
145
146 /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
147 { "ETR", 13896, EDID_QUIRK_FORCE_8BPC },
148 };
149
150 /*
151 * Probably taken from CEA-861 spec.
152 * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
153 *
154 * Index using the VIC.
155 */
156 /*
157 * From CEA/CTA-861 spec.
158 * Do not access directly, instead always use cea_mode_for_vic().
159 */
160 static const struct drm_display_mode edid_cea_modes_1[] = {
161 /* 1 - 640x480@60Hz */
162 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
163 752, 800, 480, 490, 492, 525, 0,
164 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
165 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
166 /* 2 - 720x480@60Hz */
167 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
168 798, 858, 480, 489, 495, 525, 0,
169 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
170 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
171 /* 3 - 720x480@60Hz */
172 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
173 798, 858, 480, 489, 495, 525, 0,
174 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
175 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
176 /* 4 - 1280x720@60Hz */
177 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
178 1430, 1650, 720, 725, 730, 750, 0,
179 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
180 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
181 /* 5 - 1920x1080i@60Hz */
182 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
183 2052, 2200, 1080, 1084, 1094, 1125, 0,
184 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
185 DRM_MODE_FLAG_INTERLACE),
186 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
187 /* 6 - 720(1440)x480i@60Hz */
188 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
189 801, 858, 480, 488, 494, 525, 0,
190 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
191 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
192 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
193 /* 7 - 720(1440)x480i@60Hz */
194 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
195 801, 858, 480, 488, 494, 525, 0,
196 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
197 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
198 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
199 /* 8 - 720(1440)x240@60Hz */
200 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
201 801, 858, 240, 244, 247, 262, 0,
202 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
203 DRM_MODE_FLAG_DBLCLK),
204 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
205 /* 9 - 720(1440)x240@60Hz */
206 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
207 801, 858, 240, 244, 247, 262, 0,
208 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
209 DRM_MODE_FLAG_DBLCLK),
210 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
211 /* 10 - 2880x480i@60Hz */
212 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
213 3204, 3432, 480, 488, 494, 525, 0,
214 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
215 DRM_MODE_FLAG_INTERLACE),
216 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
217 /* 11 - 2880x480i@60Hz */
218 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
219 3204, 3432, 480, 488, 494, 525, 0,
220 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
221 DRM_MODE_FLAG_INTERLACE),
222 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
223 /* 12 - 2880x240@60Hz */
224 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
225 3204, 3432, 240, 244, 247, 262, 0,
226 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
227 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
228 /* 13 - 2880x240@60Hz */
229 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
230 3204, 3432, 240, 244, 247, 262, 0,
231 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
232 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
233 /* 14 - 1440x480@60Hz */
234 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
235 1596, 1716, 480, 489, 495, 525, 0,
236 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
237 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
238 /* 15 - 1440x480@60Hz */
239 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
240 1596, 1716, 480, 489, 495, 525, 0,
241 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
242 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
243 /* 16 - 1920x1080@60Hz */
244 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
245 2052, 2200, 1080, 1084, 1089, 1125, 0,
246 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
247 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
248 /* 17 - 720x576@50Hz */
249 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
250 796, 864, 576, 581, 586, 625, 0,
251 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
252 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
253 /* 18 - 720x576@50Hz */
254 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
255 796, 864, 576, 581, 586, 625, 0,
256 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
257 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
258 /* 19 - 1280x720@50Hz */
259 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
260 1760, 1980, 720, 725, 730, 750, 0,
261 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
262 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
263 /* 20 - 1920x1080i@50Hz */
264 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
265 2492, 2640, 1080, 1084, 1094, 1125, 0,
266 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
267 DRM_MODE_FLAG_INTERLACE),
268 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
269 /* 21 - 720(1440)x576i@50Hz */
270 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
271 795, 864, 576, 580, 586, 625, 0,
272 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
273 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
274 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
275 /* 22 - 720(1440)x576i@50Hz */
276 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
277 795, 864, 576, 580, 586, 625, 0,
278 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
279 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
280 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
281 /* 23 - 720(1440)x288@50Hz */
282 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
283 795, 864, 288, 290, 293, 312, 0,
284 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
285 DRM_MODE_FLAG_DBLCLK),
286 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
287 /* 24 - 720(1440)x288@50Hz */
288 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
289 795, 864, 288, 290, 293, 312, 0,
290 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
291 DRM_MODE_FLAG_DBLCLK),
292 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
293 /* 25 - 2880x576i@50Hz */
294 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
295 3180, 3456, 576, 580, 586, 625, 0,
296 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
297 DRM_MODE_FLAG_INTERLACE),
298 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
299 /* 26 - 2880x576i@50Hz */
300 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
301 3180, 3456, 576, 580, 586, 625, 0,
302 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
303 DRM_MODE_FLAG_INTERLACE),
304 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
305 /* 27 - 2880x288@50Hz */
306 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
307 3180, 3456, 288, 290, 293, 312, 0,
308 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
309 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
310 /* 28 - 2880x288@50Hz */
311 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
312 3180, 3456, 288, 290, 293, 312, 0,
313 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
314 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
315 /* 29 - 1440x576@50Hz */
316 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
317 1592, 1728, 576, 581, 586, 625, 0,
318 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
319 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
320 /* 30 - 1440x576@50Hz */
321 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
322 1592, 1728, 576, 581, 586, 625, 0,
323 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
324 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
325 /* 31 - 1920x1080@50Hz */
326 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
327 2492, 2640, 1080, 1084, 1089, 1125, 0,
328 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
329 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
330 /* 32 - 1920x1080@24Hz */
331 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
332 2602, 2750, 1080, 1084, 1089, 1125, 0,
333 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
334 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
335 /* 33 - 1920x1080@25Hz */
336 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
337 2492, 2640, 1080, 1084, 1089, 1125, 0,
338 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
339 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
340 /* 34 - 1920x1080@30Hz */
341 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
342 2052, 2200, 1080, 1084, 1089, 1125, 0,
343 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
344 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
345 /* 35 - 2880x480@60Hz */
346 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
347 3192, 3432, 480, 489, 495, 525, 0,
348 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
349 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
350 /* 36 - 2880x480@60Hz */
351 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
352 3192, 3432, 480, 489, 495, 525, 0,
353 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
354 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
355 /* 37 - 2880x576@50Hz */
356 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
357 3184, 3456, 576, 581, 586, 625, 0,
358 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
359 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
360 /* 38 - 2880x576@50Hz */
361 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
362 3184, 3456, 576, 581, 586, 625, 0,
363 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
364 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
365 /* 39 - 1920x1080i@50Hz */
366 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
367 2120, 2304, 1080, 1126, 1136, 1250, 0,
368 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
369 DRM_MODE_FLAG_INTERLACE),
370 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
371 /* 40 - 1920x1080i@100Hz */
372 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
373 2492, 2640, 1080, 1084, 1094, 1125, 0,
374 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
375 DRM_MODE_FLAG_INTERLACE),
376 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
377 /* 41 - 1280x720@100Hz */
378 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
379 1760, 1980, 720, 725, 730, 750, 0,
380 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
381 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
382 /* 42 - 720x576@100Hz */
383 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
384 796, 864, 576, 581, 586, 625, 0,
385 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
386 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
387 /* 43 - 720x576@100Hz */
388 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
389 796, 864, 576, 581, 586, 625, 0,
390 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
391 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
392 /* 44 - 720(1440)x576i@100Hz */
393 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
394 795, 864, 576, 580, 586, 625, 0,
395 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
396 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
397 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
398 /* 45 - 720(1440)x576i@100Hz */
399 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
400 795, 864, 576, 580, 586, 625, 0,
401 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
402 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
403 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
404 /* 46 - 1920x1080i@120Hz */
405 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
406 2052, 2200, 1080, 1084, 1094, 1125, 0,
407 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
408 DRM_MODE_FLAG_INTERLACE),
409 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
410 /* 47 - 1280x720@120Hz */
411 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
412 1430, 1650, 720, 725, 730, 750, 0,
413 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
414 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
415 /* 48 - 720x480@120Hz */
416 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
417 798, 858, 480, 489, 495, 525, 0,
418 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
419 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
420 /* 49 - 720x480@120Hz */
421 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
422 798, 858, 480, 489, 495, 525, 0,
423 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
424 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
425 /* 50 - 720(1440)x480i@120Hz */
426 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
427 801, 858, 480, 488, 494, 525, 0,
428 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
429 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
430 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
431 /* 51 - 720(1440)x480i@120Hz */
432 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
433 801, 858, 480, 488, 494, 525, 0,
434 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
435 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
436 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
437 /* 52 - 720x576@200Hz */
438 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
439 796, 864, 576, 581, 586, 625, 0,
440 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
441 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
442 /* 53 - 720x576@200Hz */
443 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
444 796, 864, 576, 581, 586, 625, 0,
445 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
446 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
447 /* 54 - 720(1440)x576i@200Hz */
448 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
449 795, 864, 576, 580, 586, 625, 0,
450 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
451 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
452 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
453 /* 55 - 720(1440)x576i@200Hz */
454 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
455 795, 864, 576, 580, 586, 625, 0,
456 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
457 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
458 .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
459 /* 56 - 720x480@240Hz */
460 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
461 798, 858, 480, 489, 495, 525, 0,
462 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
463 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
464 /* 57 - 720x480@240Hz */
465 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
466 798, 858, 480, 489, 495, 525, 0,
467 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
468 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
469 /* 58 - 720(1440)x480i@240 */
470 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
471 801, 858, 480, 488, 494, 525, 0,
472 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
473 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
474 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
475 /* 59 - 720(1440)x480i@240 */
476 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
477 801, 858, 480, 488, 494, 525, 0,
478 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
479 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
480 .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
481 /* 60 - 1280x720@24Hz */
482 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
483 3080, 3300, 720, 725, 730, 750, 0,
484 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
485 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
486 /* 61 - 1280x720@25Hz */
487 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
488 3740, 3960, 720, 725, 730, 750, 0,
489 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
490 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
491 /* 62 - 1280x720@30Hz */
492 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
493 3080, 3300, 720, 725, 730, 750, 0,
494 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
495 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
496 /* 63 - 1920x1080@120Hz */
497 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
498 2052, 2200, 1080, 1084, 1089, 1125, 0,
499 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
500 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
501 /* 64 - 1920x1080@100Hz */
502 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
503 2492, 2640, 1080, 1084, 1089, 1125, 0,
504 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
505 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
506 /* 65 - 1280x720@24Hz */
507 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
508 3080, 3300, 720, 725, 730, 750, 0,
509 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
510 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
511 /* 66 - 1280x720@25Hz */
512 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
513 3740, 3960, 720, 725, 730, 750, 0,
514 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
515 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
516 /* 67 - 1280x720@30Hz */
517 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
518 3080, 3300, 720, 725, 730, 750, 0,
519 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
520 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
521 /* 68 - 1280x720@50Hz */
522 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
523 1760, 1980, 720, 725, 730, 750, 0,
524 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
525 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
526 /* 69 - 1280x720@60Hz */
527 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
528 1430, 1650, 720, 725, 730, 750, 0,
529 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
530 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
531 /* 70 - 1280x720@100Hz */
532 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
533 1760, 1980, 720, 725, 730, 750, 0,
534 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
535 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
536 /* 71 - 1280x720@120Hz */
537 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
538 1430, 1650, 720, 725, 730, 750, 0,
539 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
540 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
541 /* 72 - 1920x1080@24Hz */
542 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
543 2602, 2750, 1080, 1084, 1089, 1125, 0,
544 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
545 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
546 /* 73 - 1920x1080@25Hz */
547 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
548 2492, 2640, 1080, 1084, 1089, 1125, 0,
549 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
550 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
551 /* 74 - 1920x1080@30Hz */
552 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
553 2052, 2200, 1080, 1084, 1089, 1125, 0,
554 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
555 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
556 /* 75 - 1920x1080@50Hz */
557 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
558 2492, 2640, 1080, 1084, 1089, 1125, 0,
559 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
560 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
561 /* 76 - 1920x1080@60Hz */
562 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
563 2052, 2200, 1080, 1084, 1089, 1125, 0,
564 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
565 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
566 /* 77 - 1920x1080@100Hz */
567 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
568 2492, 2640, 1080, 1084, 1089, 1125, 0,
569 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
570 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
571 /* 78 - 1920x1080@120Hz */
572 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
573 2052, 2200, 1080, 1084, 1089, 1125, 0,
574 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
575 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
576 /* 79 - 1680x720@24Hz */
577 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
578 3080, 3300, 720, 725, 730, 750, 0,
579 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
580 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
581 /* 80 - 1680x720@25Hz */
582 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
583 2948, 3168, 720, 725, 730, 750, 0,
584 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
585 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
586 /* 81 - 1680x720@30Hz */
587 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
588 2420, 2640, 720, 725, 730, 750, 0,
589 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
590 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
591 /* 82 - 1680x720@50Hz */
592 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
593 1980, 2200, 720, 725, 730, 750, 0,
594 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
595 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
596 /* 83 - 1680x720@60Hz */
597 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
598 1980, 2200, 720, 725, 730, 750, 0,
599 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
600 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
601 /* 84 - 1680x720@100Hz */
602 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
603 1780, 2000, 720, 725, 730, 825, 0,
604 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
605 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
606 /* 85 - 1680x720@120Hz */
607 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
608 1780, 2000, 720, 725, 730, 825, 0,
609 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
610 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
611 /* 86 - 2560x1080@24Hz */
612 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
613 3602, 3750, 1080, 1084, 1089, 1100, 0,
614 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
615 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
616 /* 87 - 2560x1080@25Hz */
617 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
618 3052, 3200, 1080, 1084, 1089, 1125, 0,
619 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
620 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
621 /* 88 - 2560x1080@30Hz */
622 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
623 3372, 3520, 1080, 1084, 1089, 1125, 0,
624 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
625 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
626 /* 89 - 2560x1080@50Hz */
627 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
628 3152, 3300, 1080, 1084, 1089, 1125, 0,
629 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
630 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
631 /* 90 - 2560x1080@60Hz */
632 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
633 2852, 3000, 1080, 1084, 1089, 1100, 0,
634 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
635 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
636 /* 91 - 2560x1080@100Hz */
637 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
638 2822, 2970, 1080, 1084, 1089, 1250, 0,
639 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
640 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
641 /* 92 - 2560x1080@120Hz */
642 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
643 3152, 3300, 1080, 1084, 1089, 1250, 0,
644 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
645 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
646 /* 93 - 3840x2160p@24Hz 16:9 */
647 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
648 5204, 5500, 2160, 2168, 2178, 2250, 0,
649 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
650 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
651 /* 94 - 3840x2160p@25Hz 16:9 */
652 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
653 4984, 5280, 2160, 2168, 2178, 2250, 0,
654 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
655 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
656 /* 95 - 3840x2160p@30Hz 16:9 */
657 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
658 4104, 4400, 2160, 2168, 2178, 2250, 0,
659 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
660 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
661 /* 96 - 3840x2160p@50Hz 16:9 */
662 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
663 4984, 5280, 2160, 2168, 2178, 2250, 0,
664 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
665 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
666 /* 97 - 3840x2160p@60Hz 16:9 */
667 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
668 4104, 4400, 2160, 2168, 2178, 2250, 0,
669 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
670 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
671 /* 98 - 4096x2160p@24Hz 256:135 */
672 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
673 5204, 5500, 2160, 2168, 2178, 2250, 0,
674 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
675 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
676 /* 99 - 4096x2160p@25Hz 256:135 */
677 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
678 5152, 5280, 2160, 2168, 2178, 2250, 0,
679 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
680 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
681 /* 100 - 4096x2160p@30Hz 256:135 */
682 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
683 4272, 4400, 2160, 2168, 2178, 2250, 0,
684 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
685 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
686 /* 101 - 4096x2160p@50Hz 256:135 */
687 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
688 5152, 5280, 2160, 2168, 2178, 2250, 0,
689 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
690 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
691 /* 102 - 4096x2160p@60Hz 256:135 */
692 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
693 4272, 4400, 2160, 2168, 2178, 2250, 0,
694 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
695 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
696 /* 103 - 3840x2160p@24Hz 64:27 */
697 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
698 5204, 5500, 2160, 2168, 2178, 2250, 0,
699 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
700 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
701 /* 104 - 3840x2160p@25Hz 64:27 */
702 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
703 4104, 4400, 2160, 2168, 2178, 2250, 0,
704 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
705 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
706 /* 105 - 3840x2160p@30Hz 64:27 */
707 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
708 4104, 4400, 2160, 2168, 2178, 2250, 0,
709 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
710 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
711 /* 106 - 3840x2160p@50Hz 64:27 */
712 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
713 4984, 5280, 2160, 2168, 2178, 2250, 0,
714 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
715 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
716 /* 107 - 3840x2160p@60Hz 64:27 */
717 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
718 4104, 4400, 2160, 2168, 2178, 2250, 0,
719 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
720 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
721 /* 108 - 1280x720@48Hz 16:9 */
722 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
723 2280, 2500, 720, 725, 730, 750, 0,
724 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
725 .vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
726 /* 109 - 1280x720@48Hz 64:27 */
727 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
728 2280, 2500, 720, 725, 730, 750, 0,
729 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
730 .vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
731 /* 110 - 1680x720@48Hz 64:27 */
732 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
733 2530, 2750, 720, 725, 730, 750, 0,
734 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
735 .vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
736 /* 111 - 1920x1080@48Hz 16:9 */
737 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
738 2602, 2750, 1080, 1084, 1089, 1125, 0,
739 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
740 .vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
741 /* 112 - 1920x1080@48Hz 64:27 */
742 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
743 2602, 2750, 1080, 1084, 1089, 1125, 0,
744 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
745 .vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
746 /* 113 - 2560x1080@48Hz 64:27 */
747 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
748 3602, 3750, 1080, 1084, 1089, 1100, 0,
749 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
750 .vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
751 /* 114 - 3840x2160@48Hz 16:9 */
752 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
753 5204, 5500, 2160, 2168, 2178, 2250, 0,
754 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
755 .vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
756 /* 115 - 4096x2160@48Hz 256:135 */
757 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
758 5204, 5500, 2160, 2168, 2178, 2250, 0,
759 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
760 .vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
761 /* 116 - 3840x2160@48Hz 64:27 */
762 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
763 5204, 5500, 2160, 2168, 2178, 2250, 0,
764 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
765 .vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
766 /* 117 - 3840x2160@100Hz 16:9 */
767 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
768 4984, 5280, 2160, 2168, 2178, 2250, 0,
769 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
770 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
771 /* 118 - 3840x2160@120Hz 16:9 */
772 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
773 4104, 4400, 2160, 2168, 2178, 2250, 0,
774 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
775 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
776 /* 119 - 3840x2160@100Hz 64:27 */
777 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
778 4984, 5280, 2160, 2168, 2178, 2250, 0,
779 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
780 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
781 /* 120 - 3840x2160@120Hz 64:27 */
782 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
783 4104, 4400, 2160, 2168, 2178, 2250, 0,
784 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
785 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
786 /* 121 - 5120x2160@24Hz 64:27 */
787 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
788 7204, 7500, 2160, 2168, 2178, 2200, 0,
789 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
790 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
791 /* 122 - 5120x2160@25Hz 64:27 */
792 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
793 6904, 7200, 2160, 2168, 2178, 2200, 0,
794 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
795 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
796 /* 123 - 5120x2160@30Hz 64:27 */
797 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
798 5872, 6000, 2160, 2168, 2178, 2200, 0,
799 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
800 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
801 /* 124 - 5120x2160@48Hz 64:27 */
802 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
803 5954, 6250, 2160, 2168, 2178, 2475, 0,
804 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
805 .vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
806 /* 125 - 5120x2160@50Hz 64:27 */
807 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
808 6304, 6600, 2160, 2168, 2178, 2250, 0,
809 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
810 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
811 /* 126 - 5120x2160@60Hz 64:27 */
812 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
813 5372, 5500, 2160, 2168, 2178, 2250, 0,
814 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
815 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
816 /* 127 - 5120x2160@100Hz 64:27 */
817 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
818 6304, 6600, 2160, 2168, 2178, 2250, 0,
819 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
820 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
821 };
822
823 static const struct drm_display_mode edid_cea_modes_193[] = {
824 /* 193 - 5120x2160@120Hz 64:27 */
825 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
826 5372, 5500, 2160, 2168, 2178, 2250, 0,
827 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
828 .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
829 /* 194 - 7680x4320@24Hz 16:9 */
830 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
831 10408, 11000, 4320, 4336, 4356, 4500, 0,
832 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
833 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
834 /* 195 - 7680x4320@25Hz 16:9 */
835 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
836 10208, 10800, 4320, 4336, 4356, 4400, 0,
837 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
838 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
839 /* 196 - 7680x4320@30Hz 16:9 */
840 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
841 8408, 9000, 4320, 4336, 4356, 4400, 0,
842 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
843 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
844 /* 197 - 7680x4320@48Hz 16:9 */
845 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
846 10408, 11000, 4320, 4336, 4356, 4500, 0,
847 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
848 .vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
849 /* 198 - 7680x4320@50Hz 16:9 */
850 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
851 10208, 10800, 4320, 4336, 4356, 4400, 0,
852 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
853 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
854 /* 199 - 7680x4320@60Hz 16:9 */
855 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
856 8408, 9000, 4320, 4336, 4356, 4400, 0,
857 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
858 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
859 /* 200 - 7680x4320@100Hz 16:9 */
860 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
861 9968, 10560, 4320, 4336, 4356, 4500, 0,
862 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
863 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
864 /* 201 - 7680x4320@120Hz 16:9 */
865 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
866 8208, 8800, 4320, 4336, 4356, 4500, 0,
867 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
868 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
869 /* 202 - 7680x4320@24Hz 64:27 */
870 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
871 10408, 11000, 4320, 4336, 4356, 4500, 0,
872 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
873 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
874 /* 203 - 7680x4320@25Hz 64:27 */
875 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
876 10208, 10800, 4320, 4336, 4356, 4400, 0,
877 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
878 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
879 /* 204 - 7680x4320@30Hz 64:27 */
880 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
881 8408, 9000, 4320, 4336, 4356, 4400, 0,
882 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
883 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
884 /* 205 - 7680x4320@48Hz 64:27 */
885 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
886 10408, 11000, 4320, 4336, 4356, 4500, 0,
887 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
888 .vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
889 /* 206 - 7680x4320@50Hz 64:27 */
890 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
891 10208, 10800, 4320, 4336, 4356, 4400, 0,
892 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
893 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
894 /* 207 - 7680x4320@60Hz 64:27 */
895 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
896 8408, 9000, 4320, 4336, 4356, 4400, 0,
897 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
898 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
899 /* 208 - 7680x4320@100Hz 64:27 */
900 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
901 9968, 10560, 4320, 4336, 4356, 4500, 0,
902 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
903 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
904 /* 209 - 7680x4320@120Hz 64:27 */
905 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
906 8208, 8800, 4320, 4336, 4356, 4500, 0,
907 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
908 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
909 /* 210 - 10240x4320@24Hz 64:27 */
910 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
911 11908, 12500, 4320, 4336, 4356, 4950, 0,
912 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
913 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
914 /* 211 - 10240x4320@25Hz 64:27 */
915 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
916 12908, 13500, 4320, 4336, 4356, 4400, 0,
917 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
918 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
919 /* 212 - 10240x4320@30Hz 64:27 */
920 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
921 10704, 11000, 4320, 4336, 4356, 4500, 0,
922 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
923 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
924 /* 213 - 10240x4320@48Hz 64:27 */
925 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
926 11908, 12500, 4320, 4336, 4356, 4950, 0,
927 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
928 .vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
929 /* 214 - 10240x4320@50Hz 64:27 */
930 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
931 12908, 13500, 4320, 4336, 4356, 4400, 0,
932 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
933 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
934 /* 215 - 10240x4320@60Hz 64:27 */
935 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
936 10704, 11000, 4320, 4336, 4356, 4500, 0,
937 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
938 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
939 /* 216 - 10240x4320@100Hz 64:27 */
940 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
941 12608, 13200, 4320, 4336, 4356, 4500, 0,
942 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
943 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
944 /* 217 - 10240x4320@120Hz 64:27 */
945 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
946 10704, 11000, 4320, 4336, 4356, 4500, 0,
947 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
948 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
949 /* 218 - 4096x2160@100Hz 256:135 */
950 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
951 4984, 5280, 2160, 2168, 2178, 2250, 0,
952 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
953 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
954 /* 219 - 4096x2160@120Hz 256:135 */
955 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
956 4272, 4400, 2160, 2168, 2178, 2250, 0,
957 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
958 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
959 };
960
961 /*
962 * HDMI 1.4 4k modes. Index using the VIC.
963 */
964 static const struct drm_display_mode edid_4k_modes[] = {
965 /* 0 - dummy, VICs start at 1 */
966 { },
967 /* 1 - 3840x2160@30Hz */
968 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
969 3840, 4016, 4104, 4400,
970 2160, 2168, 2178, 2250, 0,
971 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
972 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
973 /* 2 - 3840x2160@25Hz */
974 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
975 3840, 4896, 4984, 5280,
976 2160, 2168, 2178, 2250, 0,
977 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
978 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
979 /* 3 - 3840x2160@24Hz */
980 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
981 3840, 5116, 5204, 5500,
982 2160, 2168, 2178, 2250, 0,
983 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
984 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
985 /* 4 - 4096x2160@24Hz (SMPTE) */
986 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
987 4096, 5116, 5204, 5500,
988 2160, 2168, 2178, 2250, 0,
989 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
990 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
991 };
992
993 /*
994 * Autogenerated from the DMT spec.
995 * This table is copied from xfree86/modes/xf86EdidModes.c.
996 */
997 static const struct drm_display_mode drm_dmt_modes[] = {
998 /* 0x01 - 640x350@85Hz */
999 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
1000 736, 832, 350, 382, 385, 445, 0,
1001 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1002 /* 0x02 - 640x400@85Hz */
1003 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
1004 736, 832, 400, 401, 404, 445, 0,
1005 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1006 /* 0x03 - 720x400@85Hz */
1007 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
1008 828, 936, 400, 401, 404, 446, 0,
1009 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1010 /* 0x04 - 640x480@60Hz */
1011 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
1012 752, 800, 480, 490, 492, 525, 0,
1013 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1014 /* 0x05 - 640x480@72Hz */
1015 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
1016 704, 832, 480, 489, 492, 520, 0,
1017 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1018 /* 0x06 - 640x480@75Hz */
1019 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
1020 720, 840, 480, 481, 484, 500, 0,
1021 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1022 /* 0x07 - 640x480@85Hz */
1023 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
1024 752, 832, 480, 481, 484, 509, 0,
1025 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1026 /* 0x08 - 800x600@56Hz */
1027 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
1028 896, 1024, 600, 601, 603, 625, 0,
1029 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1030 /* 0x09 - 800x600@60Hz */
1031 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
1032 968, 1056, 600, 601, 605, 628, 0,
1033 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1034 /* 0x0a - 800x600@72Hz */
1035 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
1036 976, 1040, 600, 637, 643, 666, 0,
1037 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1038 /* 0x0b - 800x600@75Hz */
1039 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
1040 896, 1056, 600, 601, 604, 625, 0,
1041 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1042 /* 0x0c - 800x600@85Hz */
1043 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
1044 896, 1048, 600, 601, 604, 631, 0,
1045 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1046 /* 0x0d - 800x600@120Hz RB */
1047 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
1048 880, 960, 600, 603, 607, 636, 0,
1049 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1050 /* 0x0e - 848x480@60Hz */
1051 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
1052 976, 1088, 480, 486, 494, 517, 0,
1053 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1054 /* 0x0f - 1024x768@43Hz, interlace */
1055 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
1056 1208, 1264, 768, 768, 772, 817, 0,
1057 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
1058 DRM_MODE_FLAG_INTERLACE) },
1059 /* 0x10 - 1024x768@60Hz */
1060 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1061 1184, 1344, 768, 771, 777, 806, 0,
1062 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1063 /* 0x11 - 1024x768@70Hz */
1064 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
1065 1184, 1328, 768, 771, 777, 806, 0,
1066 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1067 /* 0x12 - 1024x768@75Hz */
1068 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
1069 1136, 1312, 768, 769, 772, 800, 0,
1070 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1071 /* 0x13 - 1024x768@85Hz */
1072 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
1073 1168, 1376, 768, 769, 772, 808, 0,
1074 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1075 /* 0x14 - 1024x768@120Hz RB */
1076 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
1077 1104, 1184, 768, 771, 775, 813, 0,
1078 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1079 /* 0x15 - 1152x864@75Hz */
1080 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1081 1344, 1600, 864, 865, 868, 900, 0,
1082 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1083 /* 0x55 - 1280x720@60Hz */
1084 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1085 1430, 1650, 720, 725, 730, 750, 0,
1086 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1087 /* 0x16 - 1280x768@60Hz RB */
1088 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
1089 1360, 1440, 768, 771, 778, 790, 0,
1090 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1091 /* 0x17 - 1280x768@60Hz */
1092 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
1093 1472, 1664, 768, 771, 778, 798, 0,
1094 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1095 /* 0x18 - 1280x768@75Hz */
1096 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
1097 1488, 1696, 768, 771, 778, 805, 0,
1098 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1099 /* 0x19 - 1280x768@85Hz */
1100 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
1101 1496, 1712, 768, 771, 778, 809, 0,
1102 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1103 /* 0x1a - 1280x768@120Hz RB */
1104 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
1105 1360, 1440, 768, 771, 778, 813, 0,
1106 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1107 /* 0x1b - 1280x800@60Hz RB */
1108 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
1109 1360, 1440, 800, 803, 809, 823, 0,
1110 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1111 /* 0x1c - 1280x800@60Hz */
1112 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
1113 1480, 1680, 800, 803, 809, 831, 0,
1114 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1115 /* 0x1d - 1280x800@75Hz */
1116 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
1117 1488, 1696, 800, 803, 809, 838, 0,
1118 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1119 /* 0x1e - 1280x800@85Hz */
1120 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
1121 1496, 1712, 800, 803, 809, 843, 0,
1122 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1123 /* 0x1f - 1280x800@120Hz RB */
1124 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
1125 1360, 1440, 800, 803, 809, 847, 0,
1126 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1127 /* 0x20 - 1280x960@60Hz */
1128 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
1129 1488, 1800, 960, 961, 964, 1000, 0,
1130 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1131 /* 0x21 - 1280x960@85Hz */
1132 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
1133 1504, 1728, 960, 961, 964, 1011, 0,
1134 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1135 /* 0x22 - 1280x960@120Hz RB */
1136 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
1137 1360, 1440, 960, 963, 967, 1017, 0,
1138 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1139 /* 0x23 - 1280x1024@60Hz */
1140 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
1141 1440, 1688, 1024, 1025, 1028, 1066, 0,
1142 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1143 /* 0x24 - 1280x1024@75Hz */
1144 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
1145 1440, 1688, 1024, 1025, 1028, 1066, 0,
1146 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1147 /* 0x25 - 1280x1024@85Hz */
1148 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
1149 1504, 1728, 1024, 1025, 1028, 1072, 0,
1150 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1151 /* 0x26 - 1280x1024@120Hz RB */
1152 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
1153 1360, 1440, 1024, 1027, 1034, 1084, 0,
1154 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1155 /* 0x27 - 1360x768@60Hz */
1156 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
1157 1536, 1792, 768, 771, 777, 795, 0,
1158 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1159 /* 0x28 - 1360x768@120Hz RB */
1160 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
1161 1440, 1520, 768, 771, 776, 813, 0,
1162 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1163 /* 0x51 - 1366x768@60Hz */
1164 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
1165 1579, 1792, 768, 771, 774, 798, 0,
1166 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1167 /* 0x56 - 1366x768@60Hz */
1168 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
1169 1436, 1500, 768, 769, 772, 800, 0,
1170 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1171 /* 0x29 - 1400x1050@60Hz RB */
1172 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
1173 1480, 1560, 1050, 1053, 1057, 1080, 0,
1174 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1175 /* 0x2a - 1400x1050@60Hz */
1176 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
1177 1632, 1864, 1050, 1053, 1057, 1089, 0,
1178 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1179 /* 0x2b - 1400x1050@75Hz */
1180 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
1181 1648, 1896, 1050, 1053, 1057, 1099, 0,
1182 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1183 /* 0x2c - 1400x1050@85Hz */
1184 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
1185 1656, 1912, 1050, 1053, 1057, 1105, 0,
1186 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1187 /* 0x2d - 1400x1050@120Hz RB */
1188 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
1189 1480, 1560, 1050, 1053, 1057, 1112, 0,
1190 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1191 /* 0x2e - 1440x900@60Hz RB */
1192 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
1193 1520, 1600, 900, 903, 909, 926, 0,
1194 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1195 /* 0x2f - 1440x900@60Hz */
1196 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
1197 1672, 1904, 900, 903, 909, 934, 0,
1198 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1199 /* 0x30 - 1440x900@75Hz */
1200 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
1201 1688, 1936, 900, 903, 909, 942, 0,
1202 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1203 /* 0x31 - 1440x900@85Hz */
1204 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
1205 1696, 1952, 900, 903, 909, 948, 0,
1206 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1207 /* 0x32 - 1440x900@120Hz RB */
1208 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
1209 1520, 1600, 900, 903, 909, 953, 0,
1210 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1211 /* 0x53 - 1600x900@60Hz */
1212 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
1213 1704, 1800, 900, 901, 904, 1000, 0,
1214 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1215 /* 0x33 - 1600x1200@60Hz */
1216 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
1217 1856, 2160, 1200, 1201, 1204, 1250, 0,
1218 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1219 /* 0x34 - 1600x1200@65Hz */
1220 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
1221 1856, 2160, 1200, 1201, 1204, 1250, 0,
1222 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1223 /* 0x35 - 1600x1200@70Hz */
1224 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
1225 1856, 2160, 1200, 1201, 1204, 1250, 0,
1226 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1227 /* 0x36 - 1600x1200@75Hz */
1228 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
1229 1856, 2160, 1200, 1201, 1204, 1250, 0,
1230 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1231 /* 0x37 - 1600x1200@85Hz */
1232 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
1233 1856, 2160, 1200, 1201, 1204, 1250, 0,
1234 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1235 /* 0x38 - 1600x1200@120Hz RB */
1236 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
1237 1680, 1760, 1200, 1203, 1207, 1271, 0,
1238 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1239 /* 0x39 - 1680x1050@60Hz RB */
1240 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
1241 1760, 1840, 1050, 1053, 1059, 1080, 0,
1242 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1243 /* 0x3a - 1680x1050@60Hz */
1244 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
1245 1960, 2240, 1050, 1053, 1059, 1089, 0,
1246 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1247 /* 0x3b - 1680x1050@75Hz */
1248 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
1249 1976, 2272, 1050, 1053, 1059, 1099, 0,
1250 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1251 /* 0x3c - 1680x1050@85Hz */
1252 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
1253 1984, 2288, 1050, 1053, 1059, 1105, 0,
1254 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1255 /* 0x3d - 1680x1050@120Hz RB */
1256 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
1257 1760, 1840, 1050, 1053, 1059, 1112, 0,
1258 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1259 /* 0x3e - 1792x1344@60Hz */
1260 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
1261 2120, 2448, 1344, 1345, 1348, 1394, 0,
1262 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1263 /* 0x3f - 1792x1344@75Hz */
1264 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
1265 2104, 2456, 1344, 1345, 1348, 1417, 0,
1266 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1267 /* 0x40 - 1792x1344@120Hz RB */
1268 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
1269 1872, 1952, 1344, 1347, 1351, 1423, 0,
1270 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1271 /* 0x41 - 1856x1392@60Hz */
1272 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
1273 2176, 2528, 1392, 1393, 1396, 1439, 0,
1274 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1275 /* 0x42 - 1856x1392@75Hz */
1276 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
1277 2208, 2560, 1392, 1393, 1396, 1500, 0,
1278 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1279 /* 0x43 - 1856x1392@120Hz RB */
1280 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
1281 1936, 2016, 1392, 1395, 1399, 1474, 0,
1282 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1283 /* 0x52 - 1920x1080@60Hz */
1284 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1285 2052, 2200, 1080, 1084, 1089, 1125, 0,
1286 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1287 /* 0x44 - 1920x1200@60Hz RB */
1288 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
1289 2000, 2080, 1200, 1203, 1209, 1235, 0,
1290 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1291 /* 0x45 - 1920x1200@60Hz */
1292 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
1293 2256, 2592, 1200, 1203, 1209, 1245, 0,
1294 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1295 /* 0x46 - 1920x1200@75Hz */
1296 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
1297 2264, 2608, 1200, 1203, 1209, 1255, 0,
1298 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1299 /* 0x47 - 1920x1200@85Hz */
1300 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
1301 2272, 2624, 1200, 1203, 1209, 1262, 0,
1302 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1303 /* 0x48 - 1920x1200@120Hz RB */
1304 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
1305 2000, 2080, 1200, 1203, 1209, 1271, 0,
1306 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1307 /* 0x49 - 1920x1440@60Hz */
1308 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
1309 2256, 2600, 1440, 1441, 1444, 1500, 0,
1310 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1311 /* 0x4a - 1920x1440@75Hz */
1312 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
1313 2288, 2640, 1440, 1441, 1444, 1500, 0,
1314 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1315 /* 0x4b - 1920x1440@120Hz RB */
1316 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
1317 2000, 2080, 1440, 1443, 1447, 1525, 0,
1318 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1319 /* 0x54 - 2048x1152@60Hz */
1320 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
1321 2154, 2250, 1152, 1153, 1156, 1200, 0,
1322 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1323 /* 0x4c - 2560x1600@60Hz RB */
1324 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
1325 2640, 2720, 1600, 1603, 1609, 1646, 0,
1326 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1327 /* 0x4d - 2560x1600@60Hz */
1328 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
1329 3032, 3504, 1600, 1603, 1609, 1658, 0,
1330 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1331 /* 0x4e - 2560x1600@75Hz */
1332 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
1333 3048, 3536, 1600, 1603, 1609, 1672, 0,
1334 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1335 /* 0x4f - 2560x1600@85Hz */
1336 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
1337 3048, 3536, 1600, 1603, 1609, 1682, 0,
1338 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1339 /* 0x50 - 2560x1600@120Hz RB */
1340 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
1341 2640, 2720, 1600, 1603, 1609, 1694, 0,
1342 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1343 /* 0x57 - 4096x2160@60Hz RB */
1344 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
1345 4136, 4176, 2160, 2208, 2216, 2222, 0,
1346 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1347 /* 0x58 - 4096x2160@59.94Hz RB */
1348 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
1349 4136, 4176, 2160, 2208, 2216, 2222, 0,
1350 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1351 };
1352
1353 /*
1354 * These more or less come from the DMT spec. The 720x400 modes are
1355 * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75
1356 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode
1357 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
1358 * mode.
1359 *
1360 * The DMT modes have been fact-checked; the rest are mild guesses.
1361 */
1362 static const struct drm_display_mode edid_est_modes[] = {
1363 /* 800x600@60Hz */
1364 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
1365 968, 1056, 600, 601, 605, 628, 0,
1366 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1367 /* 800x600@56Hz */
1368 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
1369 896, 1024, 600, 601, 603, 625, 0,
1370 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1371 /* 640x480@75Hz */
1372 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
1373 720, 840, 480, 481, 484, 500, 0,
1374 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1375 /* 640x480@72Hz */
1376 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
1377 704, 832, 480, 489, 492, 520, 0,
1378 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1379 /* 640x480@67Hz */
1380 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
1381 768, 864, 480, 483, 486, 525, 0,
1382 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1383 /* 640x480@60Hz */
1384 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
1385 752, 800, 480, 490, 492, 525, 0,
1386 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1387 /* 720x400@88Hz */
1388 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
1389 846, 900, 400, 421, 423, 449, 0,
1390 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1391 /* 720x400@70Hz */
1392 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
1393 846, 900, 400, 412, 414, 449, 0,
1394 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1395 /* 1280x1024@75Hz */
1396 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
1397 1440, 1688, 1024, 1025, 1028, 1066, 0,
1398 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1399 /* 1024x768@75Hz */
1400 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
1401 1136, 1312, 768, 769, 772, 800, 0,
1402 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1403 /* 1024x768@70Hz */
1404 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
1405 1184, 1328, 768, 771, 777, 806, 0,
1406 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1407 /* 1024x768@60Hz */
1408 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1409 1184, 1344, 768, 771, 777, 806, 0,
1410 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1411 /* 1024x768@43Hz */
1412 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
1413 1208, 1264, 768, 768, 776, 817, 0,
1414 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
1415 DRM_MODE_FLAG_INTERLACE) },
1416 /* 832x624@75Hz */
1417 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
1418 928, 1152, 624, 625, 628, 667, 0,
1419 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1420 /* 800x600@75Hz */
1421 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
1422 896, 1056, 600, 601, 604, 625, 0,
1423 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1424 /* 800x600@72Hz */
1425 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
1426 976, 1040, 600, 637, 643, 666, 0,
1427 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1428 /* 1152x864@75Hz */
1429 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1430 1344, 1600, 864, 865, 868, 900, 0,
1431 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1432 };
1433
1434 static const struct drm_display_mode resolution_white[] = {
1435 /* 0. vic:2 - 720x480@60Hz */
1436 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
1437 798, 858, 480, 489, 495, 525, 0,
1438 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1439 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1440 /* 1. vic:3 - 720x480@60Hz */
1441 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
1442 798, 858, 480, 489, 495, 525, 0,
1443 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1444 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1445 /* 1024x768@60Hz */
1446 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1447 1184, 1344, 768, 771, 777, 806, 0,
1448 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1449 /* 2. vic:4 - 1280x720@60Hz */
1450 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1451 1430, 1650, 720, 725, 730, 750, 0,
1452 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1453 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1454 /* 3. vic:5 - 1920x1080i@60Hz */
1455 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1456 2052, 2200, 1080, 1084, 1094, 1125, 0,
1457 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
1458 DRM_MODE_FLAG_INTERLACE),
1459 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1460 /* 4. vic:6 - 720(1440)x480i@60Hz */
1461 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
1462 801, 858, 480, 488, 494, 525, 0,
1463 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1464 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1465 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1466 /* 5. vic:16 - 1920x1080@60Hz */
1467 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1468 2052, 2200, 1080, 1084, 1089, 1125, 0,
1469 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1470 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1471 /* 6. vic:17 - 720x576@50Hz */
1472 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
1473 796, 864, 576, 581, 586, 625, 0,
1474 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1475 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1476 /* 7. vic:18 - 720x576@50Hz */
1477 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
1478 796, 864, 576, 581, 586, 625, 0,
1479 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1480 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1481 /* 8. vic:19 - 1280x720@50Hz */
1482 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1483 1760, 1980, 720, 725, 730, 750, 0,
1484 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1485 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1486 /* 9. vic:20 - 1920x1080i@50Hz */
1487 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1488 2492, 2640, 1080, 1084, 1094, 1125, 0,
1489 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
1490 DRM_MODE_FLAG_INTERLACE),
1491 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1492 /* 10. vic:21 - 720(1440)x576i@50Hz */
1493 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
1494 795, 864, 576, 580, 586, 625, 0,
1495 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1496 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1497 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1498 /* 11. vic:31 - 1920x1080@50Hz */
1499 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1500 2492, 2640, 1080, 1084, 1089, 1125, 0,
1501 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1502 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1503 /* 12. vic:32 - 1920x1080@24Hz */
1504 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1505 2602, 2750, 1080, 1084, 1089, 1125, 0,
1506 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1507 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1508 /* 13. vic:33 - 1920x1080@25Hz */
1509 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1510 2492, 2640, 1080, 1084, 1089, 1125, 0,
1511 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1512 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1513 /* 14. vic:34 - 1920x1080@30Hz */
1514 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1515 2052, 2200, 1080, 1084, 1089, 1125, 0,
1516 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1517 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1518 /* 15. vic:39 - 1920x1080i@50Hz */
1519 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
1520 2120, 2304, 1080, 1126, 1136, 1250, 0,
1521 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
1522 DRM_MODE_FLAG_INTERLACE),
1523 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1524 /* 16. vic:60 - 1280x720@24Hz */
1525 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1526 3080, 3300, 720, 725, 730, 750, 0,
1527 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1528 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1529 /* 17. vic:61 - 1280x720@25Hz */
1530 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1531 3740, 3960, 720, 725, 730, 750, 0,
1532 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1533 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1534 /* 18. vic:62 - 1280x720@30Hz */
1535 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1536 3080, 3300, 720, 725, 730, 750, 0,
1537 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1538 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1539 /* 19. vic:93 - 3840x2160p@24Hz 16:9 */
1540 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1541 5204, 5500, 2160, 2168, 2178, 2250, 0,
1542 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1543 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1544 /* 20. vic:94 - 3840x2160p@25Hz 16:9 */
1545 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1546 4984, 5280, 2160, 2168, 2178, 2250, 0,
1547 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1548 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1549 /* 21. vic:95 - 3840x2160p@30Hz 16:9 */
1550 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1551 4104, 4400, 2160, 2168, 2178, 2250, 0,
1552 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1553 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1554 /* 22. vic:96 - 3840x2160p@50Hz 16:9 */
1555 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1556 4984, 5280, 2160, 2168, 2178, 2250, 0,
1557 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1558 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1559 /* 23. vic:97 - 3840x2160p@60Hz 16:9 */
1560 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1561 4104, 4400, 2160, 2168, 2178, 2250, 0,
1562 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1563 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1564 /* 24. vic:98 - 4096x2160p@24Hz 256:135 */
1565 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1566 5204, 5500, 2160, 2168, 2178, 2250, 0,
1567 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1568 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1569 /* 25. vic:99 - 4096x2160p@25Hz 256:135 */
1570 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1571 5152, 5280, 2160, 2168, 2178, 2250, 0,
1572 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1573 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1574 /* 26. vic:100 - 4096x2160p@30Hz 256:135 */
1575 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1576 4272, 4400, 2160, 2168, 2178, 2250, 0,
1577 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1578 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1579 /* 27. vic:101 - 4096x2160p@50Hz 256:135 */
1580 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1581 5152, 5280, 2160, 2168, 2178, 2250, 0,
1582 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1583 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1584 /* 28. vic:102 - 4096x2160p@60Hz 256:135 */
1585 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1586 4272, 4400, 2160, 2168, 2178, 2250, 0,
1587 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1588 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1589 /* 29. vic:118 - 3840x2160@120Hz 16:9 */
1590 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1591 4104, 4400, 2160, 2168, 2178, 2250, 0,
1592 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1593 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1594 /* 30. vic:196 - 7680x4320@30Hz 16:9 */
1595 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1596 8408, 9000, 4320, 4336, 4356, 4400, 0,
1597 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1598 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1599 /* 31. vic:198 - 7680x4320@50Hz 16:9 */
1600 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1601 10208, 10800, 4320, 4336, 4356, 4400, 0,
1602 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1603 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1604 /* 32. vic:199 - 7680x4320@60Hz 16:9 */
1605 { DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1606 8408, 9000, 4320, 4336, 4356, 4400, 0,
1607 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1608 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1609 };
1610
1611 struct minimode {
1612 short w;
1613 short h;
1614 short r;
1615 short rb;
1616 };
1617
1618 static const struct minimode est3_modes[] = {
1619 /* byte 6 */
1620 { 640, 350, 85, 0 },
1621 { 640, 400, 85, 0 },
1622 { 720, 400, 85, 0 },
1623 { 640, 480, 85, 0 },
1624 { 848, 480, 60, 0 },
1625 { 800, 600, 85, 0 },
1626 { 1024, 768, 85, 0 },
1627 { 1152, 864, 75, 0 },
1628 /* byte 7 */
1629 { 1280, 768, 60, 1 },
1630 { 1280, 768, 60, 0 },
1631 { 1280, 768, 75, 0 },
1632 { 1280, 768, 85, 0 },
1633 { 1280, 960, 60, 0 },
1634 { 1280, 960, 85, 0 },
1635 { 1280, 1024, 60, 0 },
1636 { 1280, 1024, 85, 0 },
1637 /* byte 8 */
1638 { 1360, 768, 60, 0 },
1639 { 1440, 900, 60, 1 },
1640 { 1440, 900, 60, 0 },
1641 { 1440, 900, 75, 0 },
1642 { 1440, 900, 85, 0 },
1643 { 1400, 1050, 60, 1 },
1644 { 1400, 1050, 60, 0 },
1645 { 1400, 1050, 75, 0 },
1646 /* byte 9 */
1647 { 1400, 1050, 85, 0 },
1648 { 1680, 1050, 60, 1 },
1649 { 1680, 1050, 60, 0 },
1650 { 1680, 1050, 75, 0 },
1651 { 1680, 1050, 85, 0 },
1652 { 1600, 1200, 60, 0 },
1653 { 1600, 1200, 65, 0 },
1654 { 1600, 1200, 70, 0 },
1655 /* byte 10 */
1656 { 1600, 1200, 75, 0 },
1657 { 1600, 1200, 85, 0 },
1658 { 1792, 1344, 60, 0 },
1659 { 1792, 1344, 75, 0 },
1660 { 1856, 1392, 60, 0 },
1661 { 1856, 1392, 75, 0 },
1662 { 1920, 1200, 60, 1 },
1663 { 1920, 1200, 60, 0 },
1664 /* byte 11 */
1665 { 1920, 1200, 75, 0 },
1666 { 1920, 1200, 85, 0 },
1667 { 1920, 1440, 60, 0 },
1668 { 1920, 1440, 75, 0 },
1669 };
1670
1671 static const struct minimode extra_modes[] = {
1672 { 1024, 576, 60, 0 },
1673 { 1366, 768, 60, 0 },
1674 { 1600, 900, 60, 0 },
1675 { 1680, 945, 60, 0 },
1676 { 1920, 1080, 60, 0 },
1677 { 2048, 1152, 60, 0 },
1678 { 2048, 1536, 60, 0 },
1679 };
1680
cea_mode_for_vic(u8 vic)1681 static const struct drm_display_mode *cea_mode_for_vic(u8 vic)
1682 {
1683 if (!vic)
1684 return NULL;
1685 else if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
1686 return &edid_cea_modes_1[vic - 1];
1687 else if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
1688 return &edid_cea_modes_193[vic - 193];
1689
1690 return NULL;
1691 }
1692
cea_num_vics(void)1693 static u8 cea_num_vics(void)
1694 {
1695 return 193 + ARRAY_SIZE(edid_cea_modes_193);
1696 }
1697
cea_next_vic(u8 vic)1698 static u8 cea_next_vic(u8 vic)
1699 {
1700 if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
1701 vic = 193;
1702
1703 return vic;
1704 }
1705
edid_check_info(struct edid1_info * edid_info)1706 int edid_check_info(struct edid1_info *edid_info)
1707 {
1708 if ((edid_info == NULL) || (edid_info->version == 0))
1709 return -1;
1710
1711 if (memcmp(edid_info->header, "\x0\xff\xff\xff\xff\xff\xff\x0", 8))
1712 return -1;
1713
1714 if (edid_info->version == 0xff && edid_info->revision == 0xff)
1715 return -1;
1716
1717 return 0;
1718 }
1719
edid_check_checksum(u8 * edid_block)1720 int edid_check_checksum(u8 *edid_block)
1721 {
1722 u8 checksum = 0;
1723 int i;
1724
1725 for (i = 0; i < 128; i++)
1726 checksum += edid_block[i];
1727
1728 return (checksum == 0) ? 0 : -EINVAL;
1729 }
1730
edid_get_ranges(struct edid1_info * edid,unsigned int * hmin,unsigned int * hmax,unsigned int * vmin,unsigned int * vmax)1731 int edid_get_ranges(struct edid1_info *edid, unsigned int *hmin,
1732 unsigned int *hmax, unsigned int *vmin,
1733 unsigned int *vmax)
1734 {
1735 int i;
1736 struct edid_monitor_descriptor *monitor;
1737
1738 *hmin = *hmax = *vmin = *vmax = 0;
1739 if (edid_check_info(edid))
1740 return -1;
1741
1742 for (i = 0; i < ARRAY_SIZE(edid->monitor_details.descriptor); i++) {
1743 monitor = &edid->monitor_details.descriptor[i];
1744 if (monitor->type == EDID_MONITOR_DESCRIPTOR_RANGE) {
1745 *hmin = monitor->data.range_data.horizontal_min;
1746 *hmax = monitor->data.range_data.horizontal_max;
1747 *vmin = monitor->data.range_data.vertical_min;
1748 *vmax = monitor->data.range_data.vertical_max;
1749 return 0;
1750 }
1751 }
1752 return -1;
1753 }
1754
1755 /* Set all parts of a timing entry to the same value */
set_entry(struct timing_entry * entry,u32 value)1756 static void set_entry(struct timing_entry *entry, u32 value)
1757 {
1758 entry->min = value;
1759 entry->typ = value;
1760 entry->max = value;
1761 }
1762
1763 /**
1764 * decode_timing() - Decoding an 18-byte detailed timing record
1765 *
1766 * @buf: Pointer to EDID detailed timing record
1767 * @timing: Place to put timing
1768 */
decode_timing(u8 * buf,struct display_timing * timing)1769 static void decode_timing(u8 *buf, struct display_timing *timing)
1770 {
1771 uint x_mm, y_mm;
1772 unsigned int ha, hbl, hso, hspw, hborder;
1773 unsigned int va, vbl, vso, vspw, vborder;
1774 struct edid_detailed_timing *t = (struct edid_detailed_timing *)buf;
1775
1776 /* Edid contains pixel clock in terms of 10KHz */
1777 set_entry(&timing->pixelclock, (buf[0] + (buf[1] << 8)) * 10000);
1778 x_mm = (buf[12] + ((buf[14] & 0xf0) << 4));
1779 y_mm = (buf[13] + ((buf[14] & 0x0f) << 8));
1780 ha = (buf[2] + ((buf[4] & 0xf0) << 4));
1781 hbl = (buf[3] + ((buf[4] & 0x0f) << 8));
1782 hso = (buf[8] + ((buf[11] & 0xc0) << 2));
1783 hspw = (buf[9] + ((buf[11] & 0x30) << 4));
1784 hborder = buf[15];
1785 va = (buf[5] + ((buf[7] & 0xf0) << 4));
1786 vbl = (buf[6] + ((buf[7] & 0x0f) << 8));
1787 vso = ((buf[10] >> 4) + ((buf[11] & 0x0c) << 2));
1788 vspw = ((buf[10] & 0x0f) + ((buf[11] & 0x03) << 4));
1789 vborder = buf[16];
1790
1791 set_entry(&timing->hactive, ha);
1792 set_entry(&timing->hfront_porch, hso);
1793 set_entry(&timing->hback_porch, hbl - hso - hspw);
1794 set_entry(&timing->hsync_len, hspw);
1795
1796 set_entry(&timing->vactive, va);
1797 set_entry(&timing->vfront_porch, vso);
1798 set_entry(&timing->vback_porch, vbl - vso - vspw);
1799 set_entry(&timing->vsync_len, vspw);
1800
1801 timing->flags = 0;
1802 if (EDID_DETAILED_TIMING_FLAG_HSYNC_POLARITY(*t))
1803 timing->flags |= DISPLAY_FLAGS_HSYNC_HIGH;
1804 else
1805 timing->flags |= DISPLAY_FLAGS_HSYNC_LOW;
1806 if (EDID_DETAILED_TIMING_FLAG_VSYNC_POLARITY(*t))
1807 timing->flags |= DISPLAY_FLAGS_VSYNC_HIGH;
1808 else
1809 timing->flags |= DISPLAY_FLAGS_VSYNC_LOW;
1810
1811 if (EDID_DETAILED_TIMING_FLAG_INTERLACED(*t))
1812 timing->flags = DISPLAY_FLAGS_INTERLACED;
1813
1814 debug("Detailed mode clock %u Hz, %d mm x %d mm\n"
1815 " %04x %04x %04x %04x hborder %x\n"
1816 " %04x %04x %04x %04x vborder %x\n",
1817 timing->pixelclock.typ,
1818 x_mm, y_mm,
1819 ha, ha + hso, ha + hso + hspw,
1820 ha + hbl, hborder,
1821 va, va + vso, va + vso + vspw,
1822 va + vbl, vborder);
1823 }
1824
1825 /**
1826 * decode_mode() - Decoding an 18-byte detailed timing record
1827 *
1828 * @buf: Pointer to EDID detailed timing record
1829 * @timing: Place to put timing
1830 */
decode_mode(u8 * buf,struct drm_display_mode * mode)1831 static void decode_mode(u8 *buf, struct drm_display_mode *mode)
1832 {
1833 uint x_mm, y_mm;
1834 unsigned int ha, hbl, hso, hspw, hborder;
1835 unsigned int va, vbl, vso, vspw, vborder;
1836 struct edid_detailed_timing *t = (struct edid_detailed_timing *)buf;
1837
1838 x_mm = (buf[12] + ((buf[14] & 0xf0) << 4));
1839 y_mm = (buf[13] + ((buf[14] & 0x0f) << 8));
1840 ha = (buf[2] + ((buf[4] & 0xf0) << 4));
1841 hbl = (buf[3] + ((buf[4] & 0x0f) << 8));
1842 hso = (buf[8] + ((buf[11] & 0xc0) << 2));
1843 hspw = (buf[9] + ((buf[11] & 0x30) << 4));
1844 hborder = buf[15];
1845 va = (buf[5] + ((buf[7] & 0xf0) << 4));
1846 vbl = (buf[6] + ((buf[7] & 0x0f) << 8));
1847 vso = ((buf[10] >> 4) + ((buf[11] & 0x0c) << 2));
1848 vspw = ((buf[10] & 0x0f) + ((buf[11] & 0x03) << 4));
1849 vborder = buf[16];
1850
1851 /* Edid contains pixel clock in terms of 10KHz */
1852 mode->clock = (buf[0] + (buf[1] << 8)) * 10;
1853 mode->hdisplay = ha;
1854 mode->hsync_start = ha + hso;
1855 mode->hsync_end = ha + hso + hspw;
1856 mode->htotal = ha + hbl;
1857 mode->vdisplay = va;
1858 mode->vsync_start = va + vso;
1859 mode->vsync_end = va + vso + vspw;
1860 mode->vtotal = va + vbl;
1861
1862 mode->flags = EDID_DETAILED_TIMING_FLAG_HSYNC_POLARITY(*t) ?
1863 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1864 mode->flags |= EDID_DETAILED_TIMING_FLAG_VSYNC_POLARITY(*t) ?
1865 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1866
1867 if (EDID_DETAILED_TIMING_FLAG_INTERLACED(*t))
1868 mode->flags |= DRM_MODE_FLAG_INTERLACE;
1869
1870 debug("Detailed mode clock %u kHz, %d mm x %d mm, flags[%x]\n"
1871 " %04d %04d %04d %04d hborder %d\n"
1872 " %04d %04d %04d %04d vborder %d\n",
1873 mode->clock,
1874 x_mm, y_mm, mode->flags,
1875 mode->hdisplay, mode->hsync_start, mode->hsync_end,
1876 mode->htotal, hborder,
1877 mode->vdisplay, mode->vsync_start, mode->vsync_end,
1878 mode->vtotal, vborder);
1879 }
1880
1881 /**
1882 * edid_vendor - match a string against EDID's obfuscated vendor field
1883 * @edid: EDID to match
1884 * @vendor: vendor string
1885 *
1886 * Returns true if @vendor is in @edid, false otherwise
1887 */
edid_vendor(struct edid * edid,char * vendor)1888 static bool edid_vendor(struct edid *edid, char *vendor)
1889 {
1890 char edid_vendor[3];
1891
1892 edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1893 edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1894 ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1895 edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1896
1897 return !strncmp(edid_vendor, vendor, 3);
1898 }
1899
1900 /**
1901 * Check if HDMI vendor specific data block is present in CEA block
1902 * @param info CEA extension block
1903 * @return true if block is found
1904 */
cea_is_hdmi_vsdb_present(struct edid_cea861_info * info)1905 static bool cea_is_hdmi_vsdb_present(struct edid_cea861_info *info)
1906 {
1907 u8 end, i = 0;
1908
1909 /* check for end of data block */
1910 end = info->dtd_offset;
1911 if (end == 0)
1912 end = sizeof(info->data);
1913 if (end < 4 || end > sizeof(info->data))
1914 return false;
1915 end -= 4;
1916
1917 while (i < end) {
1918 /* Look for vendor specific data block of appropriate size */
1919 if ((EDID_CEA861_DB_TYPE(*info, i) == EDID_CEA861_DB_VENDOR) &&
1920 (EDID_CEA861_DB_LEN(*info, i) >= 5)) {
1921 u8 *db = &info->data[i + 1];
1922 u32 oui = db[0] | (db[1] << 8) | (db[2] << 16);
1923
1924 if (oui == HDMI_IEEE_OUI)
1925 return true;
1926 }
1927 i += EDID_CEA861_DB_LEN(*info, i) + 1;
1928 }
1929
1930 return false;
1931 }
1932
drm_get_vrefresh(const struct drm_display_mode * mode)1933 static int drm_get_vrefresh(const struct drm_display_mode *mode)
1934 {
1935 int refresh = 0;
1936 unsigned int calc_val;
1937
1938 if (mode->vrefresh > 0) {
1939 refresh = mode->vrefresh;
1940 } else if (mode->htotal > 0 && mode->vtotal > 0) {
1941 int vtotal;
1942
1943 vtotal = mode->vtotal;
1944 /* work out vrefresh the value will be x1000 */
1945 calc_val = (mode->clock * 1000);
1946 calc_val /= mode->htotal;
1947 refresh = (calc_val + vtotal / 2) / vtotal;
1948
1949 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1950 refresh *= 2;
1951 if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1952 refresh /= 2;
1953 if (mode->vscan > 1)
1954 refresh /= mode->vscan;
1955 }
1956 return refresh;
1957 }
1958
edid_get_drm_mode(u8 * buf,int buf_size,struct drm_display_mode * mode,int * panel_bits_per_colourp)1959 int edid_get_drm_mode(u8 *buf, int buf_size, struct drm_display_mode *mode,
1960 int *panel_bits_per_colourp)
1961 {
1962 struct edid1_info *edid = (struct edid1_info *)buf;
1963 bool timing_done;
1964 int i;
1965
1966 if (buf_size < sizeof(*edid) || edid_check_info(edid)) {
1967 debug("%s: Invalid buffer\n", __func__);
1968 return -EINVAL;
1969 }
1970
1971 if (!EDID1_INFO_FEATURE_PREFERRED_TIMING_MODE(*edid)) {
1972 debug("%s: No preferred timing\n", __func__);
1973 return -ENOENT;
1974 }
1975
1976 /* Look for detailed timing */
1977 timing_done = false;
1978 for (i = 0; i < 4; i++) {
1979 struct edid_monitor_descriptor *desc;
1980
1981 desc = &edid->monitor_details.descriptor[i];
1982 if (desc->zero_flag_1 != 0) {
1983 decode_mode((u8 *)desc, mode);
1984 timing_done = true;
1985 break;
1986 }
1987 }
1988 if (!timing_done)
1989 return -EINVAL;
1990
1991 if (!EDID1_INFO_VIDEO_INPUT_DIGITAL(*edid)) {
1992 debug("%s: Not a digital display\n", __func__);
1993 return -ENOSYS;
1994 }
1995 if (edid->version != 1 || edid->revision < 4) {
1996 debug("%s: EDID version %d.%d does not have required info\n",
1997 __func__, edid->version, edid->revision);
1998 *panel_bits_per_colourp = -1;
1999 } else {
2000 *panel_bits_per_colourp =
2001 ((edid->video_input_definition & 0x70) >> 3) + 4;
2002 }
2003
2004 return 0;
2005 }
2006
edid_get_timing(u8 * buf,int buf_size,struct display_timing * timing,int * panel_bits_per_colourp)2007 int edid_get_timing(u8 *buf, int buf_size, struct display_timing *timing,
2008 int *panel_bits_per_colourp)
2009 {
2010 struct edid1_info *edid = (struct edid1_info *)buf;
2011 bool timing_done;
2012 int i;
2013
2014 if (buf_size < sizeof(*edid) || edid_check_info(edid)) {
2015 debug("%s: Invalid buffer\n", __func__);
2016 return -EINVAL;
2017 }
2018
2019 if (!EDID1_INFO_FEATURE_PREFERRED_TIMING_MODE(*edid)) {
2020 debug("%s: No preferred timing\n", __func__);
2021 return -ENOENT;
2022 }
2023
2024 /* Look for detailed timing */
2025 timing_done = false;
2026 for (i = 0; i < 4; i++) {
2027 struct edid_monitor_descriptor *desc;
2028
2029 desc = &edid->monitor_details.descriptor[i];
2030 if (desc->zero_flag_1 != 0) {
2031 decode_timing((u8 *)desc, timing);
2032 timing_done = true;
2033 break;
2034 }
2035 }
2036 if (!timing_done)
2037 return -EINVAL;
2038
2039 if (!EDID1_INFO_VIDEO_INPUT_DIGITAL(*edid)) {
2040 debug("%s: Not a digital display\n", __func__);
2041 return -ENOSYS;
2042 }
2043 if (edid->version != 1 || edid->revision < 4) {
2044 debug("%s: EDID version %d.%d does not have required info\n",
2045 __func__, edid->version, edid->revision);
2046 *panel_bits_per_colourp = -1;
2047 } else {
2048 *panel_bits_per_colourp =
2049 ((edid->video_input_definition & 0x70) >> 3) + 4;
2050 }
2051
2052 timing->hdmi_monitor = false;
2053 if (edid->extension_flag && (buf_size >= EDID_EXT_SIZE)) {
2054 struct edid_cea861_info *info =
2055 (struct edid_cea861_info *)(buf + sizeof(*edid));
2056
2057 if (info->extension_tag == EDID_CEA861_EXTENSION_TAG)
2058 timing->hdmi_monitor = cea_is_hdmi_vsdb_present(info);
2059 }
2060
2061 return 0;
2062 }
2063
2064 /**
2065 * Snip the tailing whitespace/return of a string.
2066 *
2067 * @param string The string to be snipped
2068 * @return the snipped string
2069 */
snip(char * string)2070 static char *snip(char *string)
2071 {
2072 char *s;
2073
2074 /*
2075 * This is always a 13 character buffer
2076 * and it's not always terminated.
2077 */
2078 string[12] = '\0';
2079 s = &string[strlen(string) - 1];
2080
2081 while (s >= string && (isspace(*s) || *s == '\n' || *s == '\r' ||
2082 *s == '\0'))
2083 *(s--) = '\0';
2084
2085 return string;
2086 }
2087
2088 /**
2089 * Print an EDID monitor descriptor block
2090 *
2091 * @param monitor The EDID monitor descriptor block
2092 * @have_timing Modifies to 1 if the desciptor contains timing info
2093 */
edid_print_dtd(struct edid_monitor_descriptor * monitor,unsigned int * have_timing)2094 static void edid_print_dtd(struct edid_monitor_descriptor *monitor,
2095 unsigned int *have_timing)
2096 {
2097 unsigned char *bytes = (unsigned char *)monitor;
2098 struct edid_detailed_timing *timing =
2099 (struct edid_detailed_timing *)monitor;
2100
2101 if (bytes[0] == 0 && bytes[1] == 0) {
2102 if (monitor->type == EDID_MONITOR_DESCRIPTOR_SERIAL)
2103 printf("Monitor serial number: %s\n",
2104 snip(monitor->data.string));
2105 else if (monitor->type == EDID_MONITOR_DESCRIPTOR_ASCII)
2106 printf("Monitor ID: %s\n",
2107 snip(monitor->data.string));
2108 else if (monitor->type == EDID_MONITOR_DESCRIPTOR_NAME)
2109 printf("Monitor name: %s\n",
2110 snip(monitor->data.string));
2111 else if (monitor->type == EDID_MONITOR_DESCRIPTOR_RANGE)
2112 printf("Monitor range limits, horizontal sync: "
2113 "%d-%d kHz, vertical refresh: "
2114 "%d-%d Hz, max pixel clock: "
2115 "%d MHz\n",
2116 monitor->data.range_data.horizontal_min,
2117 monitor->data.range_data.horizontal_max,
2118 monitor->data.range_data.vertical_min,
2119 monitor->data.range_data.vertical_max,
2120 monitor->data.range_data.pixel_clock_max * 10);
2121 } else {
2122 u32 pixclock, h_active, h_blanking, v_active, v_blanking;
2123 u32 h_total, v_total, vfreq;
2124
2125 pixclock = EDID_DETAILED_TIMING_PIXEL_CLOCK(*timing);
2126 h_active = EDID_DETAILED_TIMING_HORIZONTAL_ACTIVE(*timing);
2127 h_blanking = EDID_DETAILED_TIMING_HORIZONTAL_BLANKING(*timing);
2128 v_active = EDID_DETAILED_TIMING_VERTICAL_ACTIVE(*timing);
2129 v_blanking = EDID_DETAILED_TIMING_VERTICAL_BLANKING(*timing);
2130
2131 h_total = h_active + h_blanking;
2132 v_total = v_active + v_blanking;
2133 if (v_total > 0 && h_total > 0)
2134 vfreq = pixclock / (v_total * h_total);
2135 else
2136 vfreq = 1; /* Error case */
2137 printf("\t%dx%d\%c\t%d Hz (detailed)\n", h_active,
2138 v_active, h_active > 1000 ? ' ' : '\t', vfreq);
2139 *have_timing = 1;
2140 }
2141 }
2142
2143 /**
2144 * Get the manufacturer name from an EDID info.
2145 *
2146 * @param edid_info The EDID info to be printed
2147 * @param name Returns the string of the manufacturer name
2148 */
edid_get_manufacturer_name(struct edid1_info * edid,char * name)2149 static void edid_get_manufacturer_name(struct edid1_info *edid, char *name)
2150 {
2151 name[0] = EDID1_INFO_MANUFACTURER_NAME_CHAR1(*edid) + 'A' - 1;
2152 name[1] = EDID1_INFO_MANUFACTURER_NAME_CHAR2(*edid) + 'A' - 1;
2153 name[2] = EDID1_INFO_MANUFACTURER_NAME_CHAR3(*edid) + 'A' - 1;
2154 name[3] = '\0';
2155 }
2156
edid_print_info(struct edid1_info * edid_info)2157 void edid_print_info(struct edid1_info *edid_info)
2158 {
2159 int i;
2160 char manufacturer[4];
2161 unsigned int have_timing = 0;
2162 u32 serial_number;
2163
2164 if (edid_check_info(edid_info)) {
2165 printf("Not a valid EDID\n");
2166 return;
2167 }
2168
2169 printf("EDID version: %d.%d\n",
2170 edid_info->version, edid_info->revision);
2171
2172 printf("Product ID code: %04x\n", EDID1_INFO_PRODUCT_CODE(*edid_info));
2173
2174 edid_get_manufacturer_name(edid_info, manufacturer);
2175 printf("Manufacturer: %s\n", manufacturer);
2176
2177 serial_number = EDID1_INFO_SERIAL_NUMBER(*edid_info);
2178 if (serial_number != 0xffffffff) {
2179 if (strcmp(manufacturer, "MAG") == 0)
2180 serial_number -= 0x7000000;
2181 if (strcmp(manufacturer, "OQI") == 0)
2182 serial_number -= 456150000;
2183 if (strcmp(manufacturer, "VSC") == 0)
2184 serial_number -= 640000000;
2185 }
2186 printf("Serial number: %08x\n", serial_number);
2187 printf("Manufactured in week: %d year: %d\n",
2188 edid_info->week, edid_info->year + 1990);
2189
2190 printf("Video input definition: %svoltage level %d%s%s%s%s%s\n",
2191 EDID1_INFO_VIDEO_INPUT_DIGITAL(*edid_info) ?
2192 "digital signal, " : "analog signal, ",
2193 EDID1_INFO_VIDEO_INPUT_VOLTAGE_LEVEL(*edid_info),
2194 EDID1_INFO_VIDEO_INPUT_BLANK_TO_BLACK(*edid_info) ?
2195 ", blank to black" : "",
2196 EDID1_INFO_VIDEO_INPUT_SEPARATE_SYNC(*edid_info) ?
2197 ", separate sync" : "",
2198 EDID1_INFO_VIDEO_INPUT_COMPOSITE_SYNC(*edid_info) ?
2199 ", composite sync" : "",
2200 EDID1_INFO_VIDEO_INPUT_SYNC_ON_GREEN(*edid_info) ?
2201 ", sync on green" : "",
2202 EDID1_INFO_VIDEO_INPUT_SERRATION_V(*edid_info) ?
2203 ", serration v" : "");
2204
2205 printf("Monitor is %s\n",
2206 EDID1_INFO_FEATURE_RGB(*edid_info) ? "RGB" : "non-RGB");
2207
2208 printf("Maximum visible display size: %d cm x %d cm\n",
2209 edid_info->max_size_horizontal,
2210 edid_info->max_size_vertical);
2211
2212 printf("Power management features: %s%s, %s%s, %s%s\n",
2213 EDID1_INFO_FEATURE_ACTIVE_OFF(*edid_info) ?
2214 "" : "no ", "active off",
2215 EDID1_INFO_FEATURE_SUSPEND(*edid_info) ? "" : "no ", "suspend",
2216 EDID1_INFO_FEATURE_STANDBY(*edid_info) ? "" : "no ", "standby");
2217
2218 printf("Estabilished timings:\n");
2219 if (EDID1_INFO_ESTABLISHED_TIMING_720X400_70(*edid_info))
2220 printf("\t720x400\t\t70 Hz (VGA 640x400, IBM)\n");
2221 if (EDID1_INFO_ESTABLISHED_TIMING_720X400_88(*edid_info))
2222 printf("\t720x400\t\t88 Hz (XGA2)\n");
2223 if (EDID1_INFO_ESTABLISHED_TIMING_640X480_60(*edid_info))
2224 printf("\t640x480\t\t60 Hz (VGA)\n");
2225 if (EDID1_INFO_ESTABLISHED_TIMING_640X480_67(*edid_info))
2226 printf("\t640x480\t\t67 Hz (Mac II, Apple)\n");
2227 if (EDID1_INFO_ESTABLISHED_TIMING_640X480_72(*edid_info))
2228 printf("\t640x480\t\t72 Hz (VESA)\n");
2229 if (EDID1_INFO_ESTABLISHED_TIMING_640X480_75(*edid_info))
2230 printf("\t640x480\t\t75 Hz (VESA)\n");
2231 if (EDID1_INFO_ESTABLISHED_TIMING_800X600_56(*edid_info))
2232 printf("\t800x600\t\t56 Hz (VESA)\n");
2233 if (EDID1_INFO_ESTABLISHED_TIMING_800X600_60(*edid_info))
2234 printf("\t800x600\t\t60 Hz (VESA)\n");
2235 if (EDID1_INFO_ESTABLISHED_TIMING_800X600_72(*edid_info))
2236 printf("\t800x600\t\t72 Hz (VESA)\n");
2237 if (EDID1_INFO_ESTABLISHED_TIMING_800X600_75(*edid_info))
2238 printf("\t800x600\t\t75 Hz (VESA)\n");
2239 if (EDID1_INFO_ESTABLISHED_TIMING_832X624_75(*edid_info))
2240 printf("\t832x624\t\t75 Hz (Mac II)\n");
2241 if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_87I(*edid_info))
2242 printf("\t1024x768\t87 Hz Interlaced (8514A)\n");
2243 if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_60(*edid_info))
2244 printf("\t1024x768\t60 Hz (VESA)\n");
2245 if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_70(*edid_info))
2246 printf("\t1024x768\t70 Hz (VESA)\n");
2247 if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_75(*edid_info))
2248 printf("\t1024x768\t75 Hz (VESA)\n");
2249 if (EDID1_INFO_ESTABLISHED_TIMING_1280X1024_75(*edid_info))
2250 printf("\t1280x1024\t75 (VESA)\n");
2251 if (EDID1_INFO_ESTABLISHED_TIMING_1152X870_75(*edid_info))
2252 printf("\t1152x870\t75 (Mac II)\n");
2253
2254 /* Standard timings. */
2255 printf("Standard timings:\n");
2256 for (i = 0; i < ARRAY_SIZE(edid_info->standard_timings); i++) {
2257 unsigned int aspect = 10000;
2258 unsigned int x, y;
2259 unsigned char xres, vfreq;
2260
2261 xres = EDID1_INFO_STANDARD_TIMING_XRESOLUTION(*edid_info, i);
2262 vfreq = EDID1_INFO_STANDARD_TIMING_VFREQ(*edid_info, i);
2263 if ((xres != vfreq) ||
2264 ((xres != 0) && (xres != 1)) ||
2265 ((vfreq != 0) && (vfreq != 1))) {
2266 switch (EDID1_INFO_STANDARD_TIMING_ASPECT(*edid_info,
2267 i)) {
2268 case ASPECT_625:
2269 aspect = 6250;
2270 break;
2271 case ASPECT_75:
2272 aspect = 7500;
2273 break;
2274 case ASPECT_8:
2275 aspect = 8000;
2276 break;
2277 case ASPECT_5625:
2278 aspect = 5625;
2279 break;
2280 }
2281 x = (xres + 31) * 8;
2282 y = x * aspect / 10000;
2283 printf("\t%dx%d%c\t%d Hz\n", x, y,
2284 x > 1000 ? ' ' : '\t', (vfreq & 0x3f) + 60);
2285 have_timing = 1;
2286 }
2287 }
2288
2289 /* Detailed timing information. */
2290 for (i = 0; i < ARRAY_SIZE(edid_info->monitor_details.descriptor);
2291 i++) {
2292 edid_print_dtd(&edid_info->monitor_details.descriptor[i],
2293 &have_timing);
2294 }
2295
2296 if (!have_timing)
2297 printf("\tNone\n");
2298 }
2299
2300 /**
2301 * drm_cvt_mode -create a modeline based on the CVT algorithm
2302 * @hdisplay: hdisplay size
2303 * @vdisplay: vdisplay size
2304 * @vrefresh: vrefresh rate
2305 * @reduced: whether to use reduced blanking
2306 * @interlaced: whether to compute an interlaced mode
2307 * @margins: whether to add margins (borders)
2308 *
2309 * This function is called to generate the modeline based on CVT algorithm
2310 * according to the hdisplay, vdisplay, vrefresh.
2311 * It is based from the VESA(TM) Coordinated Video Timing Generator by
2312 * Graham Loveridge April 9, 2003 available at
2313 * http://www.elo.utfsm.cl/~elo212/docs/CVTd6r1.xls
2314 *
2315 * And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c.
2316 * What I have done is to translate it by using integer calculation.
2317 *
2318 * Returns:
2319 * The modeline based on the CVT algorithm stored in a drm_display_mode object.
2320 * The display mode object is allocated with drm_mode_create(). Returns NULL
2321 * when no mode could be allocated.
2322 */
2323 static
drm_cvt_mode(int hdisplay,int vdisplay,int vrefresh,bool reduced,bool interlaced,bool margins)2324 struct drm_display_mode *drm_cvt_mode(int hdisplay, int vdisplay, int vrefresh,
2325 bool reduced, bool interlaced,
2326 bool margins)
2327 {
2328 #define HV_FACTOR 1000
2329 /* 1) top/bottom margin size (% of height) - default: 1.8, */
2330 #define CVT_MARGIN_PERCENTAGE 18
2331 /* 2) character cell horizontal granularity (pixels) - default 8 */
2332 #define CVT_H_GRANULARITY 8
2333 /* 3) Minimum vertical porch (lines) - default 3 */
2334 #define CVT_MIN_V_PORCH 3
2335 /* 4) Minimum number of vertical back porch lines - default 6 */
2336 #define CVT_MIN_V_BPORCH 6
2337 /* Pixel Clock step (kHz) */
2338 #define CVT_CLOCK_STEP 250
2339 struct drm_display_mode *drm_mode;
2340 unsigned int vfieldrate, hperiod;
2341 int hdisplay_rnd, hmargin, vdisplay_rnd, vmargin, vsync;
2342 int interlace;
2343
2344 /* allocate the drm_display_mode structure. If failure, we will
2345 * return directly
2346 */
2347 drm_mode = drm_mode_create();
2348 if (!drm_mode)
2349 return NULL;
2350
2351 /* the CVT default refresh rate is 60Hz */
2352 if (!vrefresh)
2353 vrefresh = 60;
2354
2355 /* the required field fresh rate */
2356 if (interlaced)
2357 vfieldrate = vrefresh * 2;
2358 else
2359 vfieldrate = vrefresh;
2360
2361 /* horizontal pixels */
2362 hdisplay_rnd = hdisplay - (hdisplay % CVT_H_GRANULARITY);
2363
2364 /* determine the left&right borders */
2365 hmargin = 0;
2366 if (margins) {
2367 hmargin = hdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
2368 hmargin -= hmargin % CVT_H_GRANULARITY;
2369 }
2370 /* find the total active pixels */
2371 drm_mode->hdisplay = hdisplay_rnd + 2 * hmargin;
2372
2373 /* find the number of lines per field */
2374 if (interlaced)
2375 vdisplay_rnd = vdisplay / 2;
2376 else
2377 vdisplay_rnd = vdisplay;
2378
2379 /* find the top & bottom borders */
2380 vmargin = 0;
2381 if (margins)
2382 vmargin = vdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
2383
2384 drm_mode->vdisplay = vdisplay + 2 * vmargin;
2385
2386 /* Interlaced */
2387 if (interlaced)
2388 interlace = 1;
2389 else
2390 interlace = 0;
2391
2392 /* Determine VSync Width from aspect ratio */
2393 if (!(vdisplay % 3) && ((vdisplay * 4 / 3) == hdisplay))
2394 vsync = 4;
2395 else if (!(vdisplay % 9) && ((vdisplay * 16 / 9) == hdisplay))
2396 vsync = 5;
2397 else if (!(vdisplay % 10) && ((vdisplay * 16 / 10) == hdisplay))
2398 vsync = 6;
2399 else if (!(vdisplay % 4) && ((vdisplay * 5 / 4) == hdisplay))
2400 vsync = 7;
2401 else if (!(vdisplay % 9) && ((vdisplay * 15 / 9) == hdisplay))
2402 vsync = 7;
2403 else /* custom */
2404 vsync = 10;
2405
2406 if (!reduced) {
2407 /* simplify the GTF calculation */
2408 /* 4) Minimum time of vertical sync + back porch interval
2409 * default 550.0
2410 */
2411 int tmp1, tmp2;
2412 #define CVT_MIN_VSYNC_BP 550
2413 /* 3) Nominal HSync width (% of line period) - default 8 */
2414 #define CVT_HSYNC_PERCENTAGE 8
2415 unsigned int hblank_percentage;
2416 int vsyncandback_porch, hblank;
2417
2418 /* estimated the horizontal period */
2419 tmp1 = HV_FACTOR * 1000000 -
2420 CVT_MIN_VSYNC_BP * HV_FACTOR * vfieldrate;
2421 tmp2 = (vdisplay_rnd + 2 * vmargin + CVT_MIN_V_PORCH) * 2 +
2422 interlace;
2423 hperiod = tmp1 * 2 / (tmp2 * vfieldrate);
2424
2425 tmp1 = CVT_MIN_VSYNC_BP * HV_FACTOR / hperiod + 1;
2426 /* 9. Find number of lines in sync + backporch */
2427 if (tmp1 < (vsync + CVT_MIN_V_PORCH))
2428 vsyncandback_porch = vsync + CVT_MIN_V_PORCH;
2429 else
2430 vsyncandback_porch = tmp1;
2431 /* 10. Find number of lines in back porch
2432 * vback_porch = vsyncandback_porch - vsync;
2433 */
2434 drm_mode->vtotal = vdisplay_rnd + 2 * vmargin +
2435 vsyncandback_porch + CVT_MIN_V_PORCH;
2436 /* 5) Definition of Horizontal blanking time limitation */
2437 /* Gradient (%/kHz) - default 600 */
2438 #define CVT_M_FACTOR 600
2439 /* Offset (%) - default 40 */
2440 #define CVT_C_FACTOR 40
2441 /* Blanking time scaling factor - default 128 */
2442 #define CVT_K_FACTOR 128
2443 /* Scaling factor weighting - default 20 */
2444 #define CVT_J_FACTOR 20
2445 #define CVT_M_PRIME (CVT_M_FACTOR * CVT_K_FACTOR / 256)
2446 #define CVT_C_PRIME ((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256 + \
2447 CVT_J_FACTOR)
2448 /* 12. Find ideal blanking duty cycle from formula */
2449 hblank_percentage = CVT_C_PRIME * HV_FACTOR - CVT_M_PRIME *
2450 hperiod / 1000;
2451 /* 13. Blanking time */
2452 if (hblank_percentage < 20 * HV_FACTOR)
2453 hblank_percentage = 20 * HV_FACTOR;
2454 hblank = drm_mode->hdisplay * hblank_percentage /
2455 (100 * HV_FACTOR - hblank_percentage);
2456 hblank -= hblank % (2 * CVT_H_GRANULARITY);
2457 /* 14. find the total pixels per line */
2458 drm_mode->htotal = drm_mode->hdisplay + hblank;
2459 drm_mode->hsync_end = drm_mode->hdisplay + hblank / 2;
2460 drm_mode->hsync_start = drm_mode->hsync_end -
2461 (drm_mode->htotal * CVT_HSYNC_PERCENTAGE) / 100;
2462 drm_mode->hsync_start += CVT_H_GRANULARITY -
2463 drm_mode->hsync_start % CVT_H_GRANULARITY;
2464 /* fill the Vsync values */
2465 drm_mode->vsync_start = drm_mode->vdisplay + CVT_MIN_V_PORCH;
2466 drm_mode->vsync_end = drm_mode->vsync_start + vsync;
2467 } else {
2468 /* Reduced blanking */
2469 /* Minimum vertical blanking interval time - default 460 */
2470 #define CVT_RB_MIN_VBLANK 460
2471 /* Fixed number of clocks for horizontal sync */
2472 #define CVT_RB_H_SYNC 32
2473 /* Fixed number of clocks for horizontal blanking */
2474 #define CVT_RB_H_BLANK 160
2475 /* Fixed number of lines for vertical front porch - default 3*/
2476 #define CVT_RB_VFPORCH 3
2477 int vbilines;
2478 int tmp1, tmp2;
2479 /* 8. Estimate Horizontal period. */
2480 tmp1 = HV_FACTOR * 1000000 -
2481 CVT_RB_MIN_VBLANK * HV_FACTOR * vfieldrate;
2482 tmp2 = vdisplay_rnd + 2 * vmargin;
2483 hperiod = tmp1 / (tmp2 * vfieldrate);
2484 /* 9. Find number of lines in vertical blanking */
2485 vbilines = CVT_RB_MIN_VBLANK * HV_FACTOR / hperiod + 1;
2486 /* 10. Check if vertical blanking is sufficient */
2487 if (vbilines < (CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH))
2488 vbilines = CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH;
2489 /* 11. Find total number of lines in vertical field */
2490 drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vbilines;
2491 /* 12. Find total number of pixels in a line */
2492 drm_mode->htotal = drm_mode->hdisplay + CVT_RB_H_BLANK;
2493 /* Fill in HSync values */
2494 drm_mode->hsync_end = drm_mode->hdisplay + CVT_RB_H_BLANK / 2;
2495 drm_mode->hsync_start = drm_mode->hsync_end - CVT_RB_H_SYNC;
2496 /* Fill in VSync values */
2497 drm_mode->vsync_start = drm_mode->vdisplay + CVT_RB_VFPORCH;
2498 drm_mode->vsync_end = drm_mode->vsync_start + vsync;
2499 }
2500 /* 15/13. Find pixel clock frequency (kHz for xf86) */
2501 drm_mode->clock = drm_mode->htotal * HV_FACTOR * 1000 / hperiod;
2502 drm_mode->clock -= drm_mode->clock % CVT_CLOCK_STEP;
2503 /* 18/16. Find actual vertical frame frequency */
2504 /* ignore - just set the mode flag for interlaced */
2505 if (interlaced) {
2506 drm_mode->vtotal *= 2;
2507 drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
2508 }
2509
2510 if (reduced)
2511 drm_mode->flags |= (DRM_MODE_FLAG_PHSYNC |
2512 DRM_MODE_FLAG_NVSYNC);
2513 else
2514 drm_mode->flags |= (DRM_MODE_FLAG_PVSYNC |
2515 DRM_MODE_FLAG_NHSYNC);
2516
2517 return drm_mode;
2518 }
2519
2520 static int
cea_db_payload_len(const u8 * db)2521 cea_db_payload_len(const u8 *db)
2522 {
2523 return db[0] & 0x1f;
2524 }
2525
2526 static int
cea_db_extended_tag(const u8 * db)2527 cea_db_extended_tag(const u8 *db)
2528 {
2529 return db[1];
2530 }
2531
2532 static int
cea_db_tag(const u8 * db)2533 cea_db_tag(const u8 *db)
2534 {
2535 return db[0] >> 5;
2536 }
2537
2538 #define for_each_cea_db(cea, i, start, end) \
2539 for ((i) = (start); (i) < (end) && (i) + \
2540 cea_db_payload_len(&(cea)[(i)]) < \
2541 (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
2542
2543 static int
cea_revision(const u8 * cea)2544 cea_revision(const u8 *cea)
2545 {
2546 return cea[1];
2547 }
2548
2549 static int
cea_db_offsets(const u8 * cea,int * start,int * end)2550 cea_db_offsets(const u8 *cea, int *start, int *end)
2551 {
2552 /* Data block offset in CEA extension block */
2553 *start = 4;
2554 *end = cea[2];
2555 if (*end == 0)
2556 *end = 127;
2557 if (*end < 4 || *end > 127)
2558 return -ERANGE;
2559
2560 /*
2561 * XXX: cea[2] is equal to the real value minus one in some sink edid.
2562 */
2563 if (*end != 4) {
2564 int i;
2565
2566 i = *start;
2567 while (i < (*end) &&
2568 i + cea_db_payload_len(&(cea)[i]) < (*end))
2569 i += cea_db_payload_len(&(cea)[i]) + 1;
2570
2571 if (cea_db_payload_len(&(cea)[i]) &&
2572 i + cea_db_payload_len(&(cea)[i]) == (*end))
2573 (*end)++;
2574 }
2575
2576 return 0;
2577 }
2578
cea_db_is_hdmi_vsdb(const u8 * db)2579 static bool cea_db_is_hdmi_vsdb(const u8 *db)
2580 {
2581 int hdmi_id;
2582
2583 if (cea_db_tag(db) != EDID_CEA861_DB_VENDOR)
2584 return false;
2585
2586 if (cea_db_payload_len(db) < 5)
2587 return false;
2588
2589 hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
2590
2591 return hdmi_id == HDMI_IEEE_OUI;
2592 }
2593
cea_db_is_hdmi_forum_vsdb(const u8 * db)2594 static bool cea_db_is_hdmi_forum_vsdb(const u8 *db)
2595 {
2596 unsigned int oui;
2597
2598 if (cea_db_tag(db) != EDID_CEA861_DB_VENDOR)
2599 return false;
2600
2601 if (cea_db_payload_len(db) < 7)
2602 return false;
2603
2604 oui = db[3] << 16 | db[2] << 8 | db[1];
2605
2606 return oui == HDMI_FORUM_IEEE_OUI;
2607 }
2608
cea_db_is_y420cmdb(const u8 * db)2609 static bool cea_db_is_y420cmdb(const u8 *db)
2610 {
2611 if (cea_db_tag(db) != EDID_CEA861_DB_USE_EXTENDED)
2612 return false;
2613
2614 if (!cea_db_payload_len(db))
2615 return false;
2616
2617 if (cea_db_extended_tag(db) != EXT_VIDEO_CAP_BLOCK_Y420CMDB)
2618 return false;
2619
2620 return true;
2621 }
2622
cea_db_is_y420vdb(const u8 * db)2623 static bool cea_db_is_y420vdb(const u8 *db)
2624 {
2625 if (cea_db_tag(db) != EDID_CEA861_DB_USE_EXTENDED)
2626 return false;
2627
2628 if (!cea_db_payload_len(db))
2629 return false;
2630
2631 if (cea_db_extended_tag(db) != EXT_VIDEO_DATA_BLOCK_420)
2632 return false;
2633
2634 return true;
2635 }
2636
drm_valid_hdmi_vic(u8 vic)2637 static bool drm_valid_hdmi_vic(u8 vic)
2638 {
2639 return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
2640 }
2641
drm_add_hdmi_modes(struct hdmi_edid_data * data,const struct drm_display_mode * mode)2642 static void drm_add_hdmi_modes(struct hdmi_edid_data *data,
2643 const struct drm_display_mode *mode)
2644 {
2645 struct drm_display_mode *mode_buf = data->mode_buf;
2646
2647 if (data->modes >= MODE_LEN)
2648 return;
2649 mode_buf[(data->modes)++] = *mode;
2650 }
2651
drm_valid_cea_vic(u8 vic)2652 static bool drm_valid_cea_vic(u8 vic)
2653 {
2654 return cea_mode_for_vic(vic) ? true : false;
2655 }
2656
svd_to_vic(u8 svd)2657 static u8 svd_to_vic(u8 svd)
2658 {
2659 /* 0-6 bit vic, 7th bit native mode indicator */
2660 if ((svd >= 1 && svd <= 64) || (svd >= 129 && svd <= 192))
2661 return svd & 127;
2662
2663 return svd;
2664 }
2665
2666 static struct drm_display_mode *
drm_display_mode_from_vic_index(const u8 * video_db,u8 video_len,u8 video_index)2667 drm_display_mode_from_vic_index(const u8 *video_db, u8 video_len,
2668 u8 video_index)
2669 {
2670 struct drm_display_mode *newmode;
2671 u8 vic;
2672
2673 if (!video_db || video_index >= video_len)
2674 return NULL;
2675
2676 /* CEA modes are numbered 1..127 */
2677 vic = svd_to_vic(video_db[video_index]);
2678 if (!drm_valid_cea_vic(vic))
2679 return NULL;
2680
2681 newmode = drm_mode_create();
2682 if (!newmode)
2683 return NULL;
2684
2685 *newmode = *cea_mode_for_vic(vic);
2686 newmode->vrefresh = 0;
2687
2688 return newmode;
2689 }
2690
bitmap_set(unsigned long * map,unsigned int start,int len)2691 static void bitmap_set(unsigned long *map, unsigned int start, int len)
2692 {
2693 unsigned long *p = map + BIT_WORD(start);
2694 const unsigned int size = start + len;
2695 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
2696 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
2697
2698 while (len - bits_to_set >= 0) {
2699 *p |= mask_to_set;
2700 len -= bits_to_set;
2701 bits_to_set = BITS_PER_LONG;
2702 mask_to_set = ~0UL;
2703 p++;
2704 }
2705 if (len) {
2706 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
2707 *p |= mask_to_set;
2708 }
2709 }
2710
2711 static void
drm_add_cmdb_modes(u8 svd,struct drm_hdmi_info * hdmi)2712 drm_add_cmdb_modes(u8 svd, struct drm_hdmi_info *hdmi)
2713 {
2714 u8 vic = svd_to_vic(svd);
2715
2716 if (!drm_valid_cea_vic(vic))
2717 return;
2718
2719 bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
2720 }
2721
do_cea_modes(struct hdmi_edid_data * data,const u8 * db,u8 len)2722 int do_cea_modes(struct hdmi_edid_data *data, const u8 *db, u8 len)
2723 {
2724 int i, modes = 0;
2725 struct drm_hdmi_info *hdmi = &data->display_info.hdmi;
2726
2727 for (i = 0; i < len; i++) {
2728 struct drm_display_mode *mode;
2729
2730 mode = drm_display_mode_from_vic_index(db, len, i);
2731 if (mode) {
2732 /*
2733 * YCBCR420 capability block contains a bitmap which
2734 * gives the index of CEA modes from CEA VDB, which
2735 * can support YCBCR 420 sampling output also (apart
2736 * from RGB/YCBCR444 etc).
2737 * For example, if the bit 0 in bitmap is set,
2738 * first mode in VDB can support YCBCR420 output too.
2739 * Add YCBCR420 modes only if sink is HDMI 2.0 capable.
2740 */
2741 if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
2742 drm_add_cmdb_modes(db[i], hdmi);
2743 drm_add_hdmi_modes(data, mode);
2744 drm_mode_destroy(mode);
2745 modes++;
2746 }
2747 }
2748
2749 return modes;
2750 }
2751
2752 /*
2753 * do_y420vdb_modes - Parse YCBCR 420 only modes
2754 * @data: the structure that save parsed hdmi edid data
2755 * @svds: start of the data block of CEA YCBCR 420 VDB
2756 * @svds_len: length of the CEA YCBCR 420 VDB
2757 * @hdmi: runtime information about the connected HDMI sink
2758 *
2759 * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
2760 * which contains modes which can be supported in YCBCR 420
2761 * output format only.
2762 */
2763 static int
do_y420vdb_modes(struct hdmi_edid_data * data,const u8 * svds,u8 svds_len)2764 do_y420vdb_modes(struct hdmi_edid_data *data, const u8 *svds, u8 svds_len)
2765 {
2766 int modes = 0, i;
2767 struct drm_hdmi_info *hdmi = &data->display_info.hdmi;
2768
2769 for (i = 0; i < svds_len; i++) {
2770 u8 vic = svd_to_vic(svds[i]);
2771
2772 if (!drm_valid_cea_vic(vic))
2773 continue;
2774
2775 bitmap_set(hdmi->y420_vdb_modes, vic, 1);
2776 drm_add_hdmi_modes(data, cea_mode_for_vic(vic));
2777 modes++;
2778 }
2779
2780 return modes;
2781 }
2782
2783 struct stereo_mandatory_mode {
2784 int width, height, vrefresh;
2785 unsigned int flags;
2786 };
2787
2788 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2789 { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2790 { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2791 { 1920, 1080, 50,
2792 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2793 { 1920, 1080, 60,
2794 DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2795 { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2796 { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2797 { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2798 { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2799 };
2800
2801 static bool
stereo_match_mandatory(const struct drm_display_mode * mode,const struct stereo_mandatory_mode * stereo_mode)2802 stereo_match_mandatory(const struct drm_display_mode *mode,
2803 const struct stereo_mandatory_mode *stereo_mode)
2804 {
2805 unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2806
2807 return mode->hdisplay == stereo_mode->width &&
2808 mode->vdisplay == stereo_mode->height &&
2809 interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2810 drm_get_vrefresh(mode) == stereo_mode->vrefresh;
2811 }
2812
add_hdmi_mandatory_stereo_modes(struct hdmi_edid_data * data)2813 static int add_hdmi_mandatory_stereo_modes(struct hdmi_edid_data *data)
2814 {
2815 const struct drm_display_mode *mode;
2816 int num = data->modes, modes = 0, i, k;
2817
2818 for (k = 0; k < num; k++) {
2819 mode = &data->mode_buf[k];
2820 for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2821 const struct stereo_mandatory_mode *mandatory;
2822 struct drm_display_mode *new_mode;
2823
2824 if (!stereo_match_mandatory(mode,
2825 &stereo_mandatory_modes[i]))
2826 continue;
2827
2828 mandatory = &stereo_mandatory_modes[i];
2829 new_mode = drm_mode_create();
2830 if (!new_mode)
2831 continue;
2832
2833 *new_mode = *mode;
2834 new_mode->flags |= mandatory->flags;
2835 drm_add_hdmi_modes(data, new_mode);
2836 drm_mode_destroy(new_mode);
2837 modes++;
2838 }
2839 }
2840
2841 return modes;
2842 }
2843
add_3d_struct_modes(struct hdmi_edid_data * data,u16 structure,const u8 * video_db,u8 video_len,u8 video_index)2844 static int add_3d_struct_modes(struct hdmi_edid_data *data, u16 structure,
2845 const u8 *video_db, u8 video_len, u8 video_index)
2846 {
2847 struct drm_display_mode *newmode;
2848 int modes = 0;
2849
2850 if (structure & (1 << 0)) {
2851 newmode = drm_display_mode_from_vic_index(video_db,
2852 video_len,
2853 video_index);
2854 if (newmode) {
2855 newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
2856 drm_add_hdmi_modes(data, newmode);
2857 modes++;
2858 drm_mode_destroy(newmode);
2859 }
2860 }
2861 if (structure & (1 << 6)) {
2862 newmode = drm_display_mode_from_vic_index(video_db,
2863 video_len,
2864 video_index);
2865 if (newmode) {
2866 newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2867 drm_add_hdmi_modes(data, newmode);
2868 modes++;
2869 drm_mode_destroy(newmode);
2870 }
2871 }
2872 if (structure & (1 << 8)) {
2873 newmode = drm_display_mode_from_vic_index(video_db,
2874 video_len,
2875 video_index);
2876 if (newmode) {
2877 newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2878 drm_add_hdmi_modes(data, newmode);
2879 modes++;
2880 drm_mode_destroy(newmode);
2881 }
2882 }
2883
2884 return modes;
2885 }
2886
add_hdmi_mode(struct hdmi_edid_data * data,u8 vic)2887 static int add_hdmi_mode(struct hdmi_edid_data *data, u8 vic)
2888 {
2889 if (!drm_valid_hdmi_vic(vic)) {
2890 debug("Unknown HDMI VIC: %d\n", vic);
2891 return 0;
2892 }
2893
2894 drm_add_hdmi_modes(data, &edid_4k_modes[vic]);
2895
2896 return 1;
2897 }
2898
2899 /*
2900 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
2901 * @db: start of the CEA vendor specific block
2902 * @len: length of the CEA block payload, ie. one can access up to db[len]
2903 *
2904 * Parses the HDMI VSDB looking for modes to add to @data. This function
2905 * also adds the stereo 3d modes when applicable.
2906 */
2907 static int
do_hdmi_vsdb_modes(const u8 * db,u8 len,const u8 * video_db,u8 video_len,struct hdmi_edid_data * data)2908 do_hdmi_vsdb_modes(const u8 *db, u8 len, const u8 *video_db, u8 video_len,
2909 struct hdmi_edid_data *data)
2910 {
2911 int modes = 0, offset = 0, i, multi_present = 0, multi_len;
2912 u8 vic_len, hdmi_3d_len = 0;
2913 u16 mask;
2914 u16 structure_all;
2915
2916 if (len < 8)
2917 goto out;
2918
2919 /* no HDMI_Video_Present */
2920 if (!(db[8] & (1 << 5)))
2921 goto out;
2922
2923 /* Latency_Fields_Present */
2924 if (db[8] & (1 << 7))
2925 offset += 2;
2926
2927 /* I_Latency_Fields_Present */
2928 if (db[8] & (1 << 6))
2929 offset += 2;
2930
2931 /* the declared length is not long enough for the 2 first bytes
2932 * of additional video format capabilities
2933 */
2934 if (len < (8 + offset + 2))
2935 goto out;
2936
2937 /* 3D_Present */
2938 offset++;
2939 if (db[8 + offset] & (1 << 7)) {
2940 modes += add_hdmi_mandatory_stereo_modes(data);
2941
2942 /* 3D_Multi_present */
2943 multi_present = (db[8 + offset] & 0x60) >> 5;
2944 }
2945
2946 offset++;
2947 vic_len = db[8 + offset] >> 5;
2948 hdmi_3d_len = db[8 + offset] & 0x1f;
2949
2950 for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
2951 u8 vic;
2952
2953 vic = db[9 + offset + i];
2954 modes += add_hdmi_mode(data, vic);
2955 }
2956
2957 offset += 1 + vic_len;
2958
2959 if (multi_present == 1)
2960 multi_len = 2;
2961 else if (multi_present == 2)
2962 multi_len = 4;
2963 else
2964 multi_len = 0;
2965
2966 if (len < (8 + offset + hdmi_3d_len - 1))
2967 goto out;
2968
2969 if (hdmi_3d_len < multi_len)
2970 goto out;
2971
2972 if (multi_present == 1 || multi_present == 2) {
2973 /* 3D_Structure_ALL */
2974 structure_all = (db[8 + offset] << 8) | db[9 + offset];
2975
2976 /* check if 3D_MASK is present */
2977 if (multi_present == 2)
2978 mask = (db[10 + offset] << 8) | db[11 + offset];
2979 else
2980 mask = 0xffff;
2981
2982 for (i = 0; i < 16; i++) {
2983 if (mask & (1 << i))
2984 modes += add_3d_struct_modes(data,
2985 structure_all,
2986 video_db,
2987 video_len, i);
2988 }
2989 }
2990
2991 offset += multi_len;
2992
2993 for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
2994 int vic_index;
2995 struct drm_display_mode *newmode = NULL;
2996 unsigned int newflag = 0;
2997 bool detail_present;
2998
2999 detail_present = ((db[8 + offset + i] & 0x0f) > 7);
3000
3001 if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
3002 break;
3003
3004 /* 2D_VIC_order_X */
3005 vic_index = db[8 + offset + i] >> 4;
3006
3007 /* 3D_Structure_X */
3008 switch (db[8 + offset + i] & 0x0f) {
3009 case 0:
3010 newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
3011 break;
3012 case 6:
3013 newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3014 break;
3015 case 8:
3016 /* 3D_Detail_X */
3017 if ((db[9 + offset + i] >> 4) == 1)
3018 newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3019 break;
3020 }
3021
3022 if (newflag != 0) {
3023 newmode = drm_display_mode_from_vic_index(
3024 video_db,
3025 video_len,
3026 vic_index);
3027
3028 if (newmode) {
3029 newmode->flags |= newflag;
3030 drm_add_hdmi_modes(data, newmode);
3031 modes++;
3032 drm_mode_destroy(newmode);
3033 }
3034 }
3035
3036 if (detail_present)
3037 i++;
3038 }
3039
3040 out:
3041 return modes;
3042 }
3043
3044 /**
3045 * edid_get_quirks - return quirk flags for a given EDID
3046 * @edid: EDID to process
3047 *
3048 * This tells subsequent routines what fixes they need to apply.
3049 */
edid_get_quirks(struct edid * edid)3050 static u32 edid_get_quirks(struct edid *edid)
3051 {
3052 struct edid_quirk *quirk;
3053 int i;
3054
3055 for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
3056 quirk = &edid_quirk_list[i];
3057
3058 if (edid_vendor(edid, quirk->vendor) &&
3059 (EDID_PRODUCT_ID(edid) == quirk->product_id))
3060 return quirk->quirks;
3061 }
3062
3063 return 0;
3064 }
3065
drm_parse_y420cmdb_bitmap(struct hdmi_edid_data * data,const u8 * db)3066 static void drm_parse_y420cmdb_bitmap(struct hdmi_edid_data *data,
3067 const u8 *db)
3068 {
3069 struct drm_display_info *info = &data->display_info;
3070 struct drm_hdmi_info *hdmi = &info->hdmi;
3071 u8 map_len = cea_db_payload_len(db) - 1;
3072 u8 count;
3073 u64 map = 0;
3074
3075 if (map_len == 0) {
3076 /* All CEA modes support ycbcr420 sampling also.*/
3077 hdmi->y420_cmdb_map = U64_MAX;
3078 info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3079 return;
3080 }
3081
3082 /*
3083 * This map indicates which of the existing CEA block modes
3084 * from VDB can support YCBCR420 output too. So if bit=0 is
3085 * set, first mode from VDB can support YCBCR420 output too.
3086 * We will parse and keep this map, before parsing VDB itself
3087 * to avoid going through the same block again and again.
3088 *
3089 * Spec is not clear about max possible size of this block.
3090 * Clamping max bitmap block size at 8 bytes. Every byte can
3091 * address 8 CEA modes, in this way this map can address
3092 * 8*8 = first 64 SVDs.
3093 */
3094 if (map_len > 8)
3095 map_len = 8;
3096
3097 for (count = 0; count < map_len; count++)
3098 map |= (u64)db[2 + count] << (8 * count);
3099
3100 if (map)
3101 info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3102
3103 hdmi->y420_cmdb_map = map;
3104 }
3105
3106 static
drm_get_max_frl_rate(int max_frl_rate,u8 * max_lanes,u8 * max_rate_per_lane)3107 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
3108 {
3109 switch (max_frl_rate) {
3110 case 1:
3111 *max_lanes = 3;
3112 *max_rate_per_lane = 3;
3113 break;
3114 case 2:
3115 *max_lanes = 3;
3116 *max_rate_per_lane = 6;
3117 break;
3118 case 3:
3119 *max_lanes = 4;
3120 *max_rate_per_lane = 6;
3121 break;
3122 case 4:
3123 *max_lanes = 4;
3124 *max_rate_per_lane = 8;
3125 break;
3126 case 5:
3127 *max_lanes = 4;
3128 *max_rate_per_lane = 10;
3129 break;
3130 case 6:
3131 *max_lanes = 4;
3132 *max_rate_per_lane = 12;
3133 break;
3134 case 0:
3135 default:
3136 *max_lanes = 0;
3137 *max_rate_per_lane = 0;
3138 }
3139 }
3140
drm_parse_ycbcr420_deep_color_info(struct hdmi_edid_data * data,const u8 * db)3141 static void drm_parse_ycbcr420_deep_color_info(struct hdmi_edid_data *data,
3142 const u8 *db)
3143 {
3144 u8 dc_mask;
3145 struct drm_hdmi_info *hdmi = &data->display_info.hdmi;
3146
3147 dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
3148 hdmi->y420_dc_modes |= dc_mask;
3149 }
3150
drm_parse_hdmi_forum_vsdb(struct hdmi_edid_data * data,const u8 * hf_vsdb)3151 static void drm_parse_hdmi_forum_vsdb(struct hdmi_edid_data *data,
3152 const u8 *hf_vsdb)
3153 {
3154 struct drm_display_info *display = &data->display_info;
3155 struct drm_hdmi_info *hdmi = &display->hdmi;
3156
3157 if (hf_vsdb[6] & 0x80) {
3158 hdmi->scdc.supported = true;
3159 if (hf_vsdb[6] & 0x40)
3160 hdmi->scdc.read_request = true;
3161 }
3162
3163 /*
3164 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
3165 * And as per the spec, three factors confirm this:
3166 * * Availability of a HF-VSDB block in EDID (check)
3167 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
3168 * * SCDC support available (let's check)
3169 * Lets check it out.
3170 */
3171
3172 if (hf_vsdb[5]) {
3173 /* max clock is 5000 KHz times block value */
3174 u32 max_tmds_clock = hf_vsdb[5] * 5000;
3175 struct drm_scdc *scdc = &hdmi->scdc;
3176
3177 if (max_tmds_clock > 340000) {
3178 display->max_tmds_clock = max_tmds_clock;
3179 debug("HF-VSDB: max TMDS clock %d kHz\n",
3180 display->max_tmds_clock);
3181 }
3182
3183 if (scdc->supported) {
3184 scdc->scrambling.supported = true;
3185
3186 /* Few sinks support scrambling for cloks < 340M */
3187 if ((hf_vsdb[6] & 0x8))
3188 scdc->scrambling.low_rates = true;
3189 }
3190 }
3191
3192 if (hf_vsdb[7]) {
3193 u8 max_frl_rate;
3194 u8 dsc_max_frl_rate;
3195 u8 dsc_max_slices;
3196 struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
3197
3198 debug("hdmi_21 sink detected. parsing edid\n");
3199 max_frl_rate = (hf_vsdb[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
3200 drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
3201 &hdmi->max_frl_rate_per_lane);
3202 hdmi->add_func = hf_vsdb[8];
3203 hdmi_dsc->v_1p2 = hf_vsdb[11] & DRM_EDID_DSC_1P2;
3204
3205 if (hdmi_dsc->v_1p2) {
3206 hdmi_dsc->native_420 = hf_vsdb[11] & DRM_EDID_DSC_NATIVE_420;
3207 hdmi_dsc->all_bpp = hf_vsdb[11] & DRM_EDID_DSC_ALL_BPP;
3208
3209 if (hf_vsdb[11] & DRM_EDID_DSC_16BPC)
3210 hdmi_dsc->bpc_supported = 16;
3211 else if (hf_vsdb[11] & DRM_EDID_DSC_12BPC)
3212 hdmi_dsc->bpc_supported = 12;
3213 else if (hf_vsdb[11] & DRM_EDID_DSC_10BPC)
3214 hdmi_dsc->bpc_supported = 10;
3215 else
3216 hdmi_dsc->bpc_supported = 0;
3217
3218 dsc_max_frl_rate = (hf_vsdb[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
3219 drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
3220 &hdmi_dsc->max_frl_rate_per_lane);
3221 hdmi_dsc->total_chunk_kbytes =
3222 hf_vsdb[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
3223
3224 dsc_max_slices = hf_vsdb[12] & DRM_EDID_DSC_MAX_SLICES;
3225 switch (dsc_max_slices) {
3226 case 1:
3227 hdmi_dsc->max_slices = 1;
3228 hdmi_dsc->clk_per_slice = 340;
3229 break;
3230 case 2:
3231 hdmi_dsc->max_slices = 2;
3232 hdmi_dsc->clk_per_slice = 340;
3233 break;
3234 case 3:
3235 hdmi_dsc->max_slices = 4;
3236 hdmi_dsc->clk_per_slice = 340;
3237 break;
3238 case 4:
3239 hdmi_dsc->max_slices = 8;
3240 hdmi_dsc->clk_per_slice = 340;
3241 break;
3242 case 5:
3243 hdmi_dsc->max_slices = 8;
3244 hdmi_dsc->clk_per_slice = 400;
3245 break;
3246 case 6:
3247 hdmi_dsc->max_slices = 12;
3248 hdmi_dsc->clk_per_slice = 400;
3249 break;
3250 case 7:
3251 hdmi_dsc->max_slices = 16;
3252 hdmi_dsc->clk_per_slice = 400;
3253 break;
3254 case 0:
3255 default:
3256 hdmi_dsc->max_slices = 0;
3257 hdmi_dsc->clk_per_slice = 0;
3258 }
3259 }
3260 }
3261
3262 drm_parse_ycbcr420_deep_color_info(data, hf_vsdb);
3263 }
3264
3265 /**
3266 * drm_default_rgb_quant_range - default RGB quantization range
3267 * @mode: display mode
3268 *
3269 * Determine the default RGB quantization range for the mode,
3270 * as specified in CEA-861.
3271 *
3272 * Return: The default RGB quantization range for the mode
3273 */
3274 enum hdmi_quantization_range
drm_default_rgb_quant_range(struct drm_display_mode * mode)3275 drm_default_rgb_quant_range(struct drm_display_mode *mode)
3276 {
3277 /* All CEA modes other than VIC 1 use limited quantization range. */
3278 return drm_match_cea_mode(mode) > 1 ?
3279 HDMI_QUANTIZATION_RANGE_LIMITED :
3280 HDMI_QUANTIZATION_RANGE_FULL;
3281 }
3282
drm_parse_hdmi_deep_color_info(struct hdmi_edid_data * data,const u8 * hdmi)3283 static void drm_parse_hdmi_deep_color_info(struct hdmi_edid_data *data,
3284 const u8 *hdmi)
3285 {
3286 struct drm_display_info *info = &data->display_info;
3287 unsigned int dc_bpc = 0;
3288
3289 /* HDMI supports at least 8 bpc */
3290 info->bpc = 8;
3291
3292 if (cea_db_payload_len(hdmi) < 6)
3293 return;
3294
3295 if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
3296 dc_bpc = 10;
3297 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
3298 debug("HDMI sink does deep color 30.\n");
3299 }
3300
3301 if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
3302 dc_bpc = 12;
3303 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
3304 debug("HDMI sink does deep color 36.\n");
3305 }
3306
3307 if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
3308 dc_bpc = 16;
3309 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
3310 debug("HDMI sink does deep color 48.\n");
3311 }
3312
3313 if (dc_bpc == 0) {
3314 debug("No deep color support on this HDMI sink.\n");
3315 return;
3316 }
3317
3318 debug("Assigning HDMI sink color depth as %d bpc.\n", dc_bpc);
3319 info->bpc = dc_bpc;
3320
3321 /* YCRCB444 is optional according to spec. */
3322 if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
3323 info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_Y444;
3324 debug("HDMI sink does YCRCB444 in deep color.\n");
3325 }
3326
3327 /*
3328 * Spec says that if any deep color mode is supported at all,
3329 * then deep color 36 bit must be supported.
3330 */
3331 if (!(hdmi[6] & DRM_EDID_HDMI_DC_36))
3332 debug("HDMI sink should do DC_36, but does not!\n");
3333 }
3334
3335 /*
3336 * Search EDID for CEA extension block.
3337 */
drm_find_edid_extension(struct edid * edid,int ext_id)3338 static u8 *drm_find_edid_extension(struct edid *edid, int ext_id)
3339 {
3340 u8 *edid_ext = NULL;
3341 int i;
3342
3343 /* No EDID or EDID extensions */
3344 if (!edid || !edid->extensions)
3345 return NULL;
3346
3347 /* Find CEA extension */
3348 for (i = 0; i < edid->extensions; i++) {
3349 edid_ext = (u8 *)edid + EDID_SIZE * (i + 1);
3350 if (edid_ext[0] == ext_id)
3351 break;
3352 }
3353
3354 if (i == edid->extensions)
3355 return NULL;
3356
3357 return edid_ext;
3358 }
3359
drm_find_cea_extension(struct edid * edid)3360 static u8 *drm_find_cea_extension(struct edid *edid)
3361 {
3362 return drm_find_edid_extension(edid, 0x02);
3363 }
3364
3365 #define AUDIO_BLOCK 0x01
3366 #define VIDEO_BLOCK 0x02
3367 #define VENDOR_BLOCK 0x03
3368 #define SPEAKER_BLOCK 0x04
3369 #define EDID_BASIC_AUDIO BIT(6)
3370
3371 /**
3372 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
3373 * @edid: monitor EDID information
3374 *
3375 * Parse the CEA extension according to CEA-861-B.
3376 *
3377 * Return: True if the monitor is HDMI, false if not or unknown.
3378 */
drm_detect_hdmi_monitor(struct edid * edid)3379 bool drm_detect_hdmi_monitor(struct edid *edid)
3380 {
3381 u8 *edid_ext;
3382 int i;
3383 int start_offset, end_offset;
3384
3385 edid_ext = drm_find_cea_extension(edid);
3386 if (!edid_ext)
3387 return false;
3388
3389 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3390 return false;
3391
3392 /*
3393 * Because HDMI identifier is in Vendor Specific Block,
3394 * search it from all data blocks of CEA extension.
3395 */
3396 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3397 if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3398 return true;
3399 }
3400
3401 return false;
3402 }
3403
3404 /**
3405 * drm_detect_monitor_audio - check monitor audio capability
3406 * @edid: EDID block to scan
3407 *
3408 * Monitor should have CEA extension block.
3409 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3410 * audio' only. If there is any audio extension block and supported
3411 * audio format, assume at least 'basic audio' support, even if 'basic
3412 * audio' is not defined in EDID.
3413 *
3414 * Return: True if the monitor supports audio, false otherwise.
3415 */
drm_detect_monitor_audio(struct edid * edid)3416 bool drm_detect_monitor_audio(struct edid *edid)
3417 {
3418 u8 *edid_ext;
3419 int i, j;
3420 bool has_audio = false;
3421 int start_offset, end_offset;
3422
3423 edid_ext = drm_find_cea_extension(edid);
3424 if (!edid_ext)
3425 goto end;
3426
3427 has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3428
3429 if (has_audio) {
3430 printf("Monitor has basic audio support\n");
3431 goto end;
3432 }
3433
3434 if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3435 goto end;
3436
3437 for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3438 if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3439 has_audio = true;
3440 for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1;
3441 j += 3)
3442 debug("CEA audio format %d\n",
3443 (edid_ext[i + j] >> 3) & 0xf);
3444 goto end;
3445 }
3446 }
3447 end:
3448 return has_audio;
3449 }
3450
3451 static void
drm_parse_hdmi_vsdb_video(struct hdmi_edid_data * data,const u8 * db)3452 drm_parse_hdmi_vsdb_video(struct hdmi_edid_data *data, const u8 *db)
3453 {
3454 struct drm_display_info *info = &data->display_info;
3455 u8 len = cea_db_payload_len(db);
3456
3457 if (len >= 6)
3458 info->dvi_dual = db[6] & 1;
3459 if (len >= 7)
3460 info->max_tmds_clock = db[7] * 5000;
3461
3462 drm_parse_hdmi_deep_color_info(data, db);
3463 }
3464
drm_parse_cea_ext(struct hdmi_edid_data * data,struct edid * edid)3465 static void drm_parse_cea_ext(struct hdmi_edid_data *data,
3466 struct edid *edid)
3467 {
3468 struct drm_display_info *info = &data->display_info;
3469 const u8 *edid_ext;
3470 int i, start, end;
3471
3472 edid_ext = drm_find_cea_extension(edid);
3473 if (!edid_ext)
3474 return;
3475
3476 info->cea_rev = edid_ext[1];
3477
3478 /* The existence of a CEA block should imply RGB support */
3479 info->color_formats = DRM_COLOR_FORMAT_RGB444;
3480 if (edid_ext[3] & EDID_CEA_YCRCB444)
3481 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3482 if (edid_ext[3] & EDID_CEA_YCRCB422)
3483 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3484
3485 if (cea_db_offsets(edid_ext, &start, &end))
3486 return;
3487
3488 for_each_cea_db(edid_ext, i, start, end) {
3489 const u8 *db = &edid_ext[i];
3490
3491 if (cea_db_is_hdmi_vsdb(db))
3492 drm_parse_hdmi_vsdb_video(data, db);
3493 if (cea_db_is_hdmi_forum_vsdb(db))
3494 drm_parse_hdmi_forum_vsdb(data, db);
3495 if (cea_db_is_y420cmdb(db))
3496 drm_parse_y420cmdb_bitmap(data, db);
3497 }
3498 }
3499
drm_add_display_info(struct hdmi_edid_data * data,struct edid * edid)3500 static void drm_add_display_info(struct hdmi_edid_data *data, struct edid *edid)
3501 {
3502 struct drm_display_info *info = &data->display_info;
3503
3504 info->width_mm = edid->width_cm * 10;
3505 info->height_mm = edid->height_cm * 10;
3506
3507 /* driver figures it out in this case */
3508 info->bpc = 0;
3509 info->color_formats = 0;
3510 info->cea_rev = 0;
3511 info->max_tmds_clock = 0;
3512 info->dvi_dual = false;
3513 info->edid_hdmi_dc_modes = 0;
3514
3515 memset(&info->hdmi, 0, sizeof(info->hdmi));
3516
3517 if (edid->revision < 3)
3518 return;
3519
3520 if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
3521 return;
3522
3523 drm_parse_cea_ext(data, edid);
3524
3525 /*
3526 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
3527 *
3528 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
3529 * tells us to assume 8 bpc color depth if the EDID doesn't have
3530 * extensions which tell otherwise.
3531 */
3532 if ((info->bpc == 0) && (edid->revision < 4) &&
3533 (edid->input & DRM_EDID_DIGITAL_TYPE_DVI)) {
3534 info->bpc = 8;
3535 debug("Assigning DFP sink color depth as %d bpc.\n", info->bpc);
3536 }
3537
3538 /* Only defined for 1.4 with digital displays */
3539 if (edid->revision < 4)
3540 return;
3541
3542 switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3543 case DRM_EDID_DIGITAL_DEPTH_6:
3544 info->bpc = 6;
3545 break;
3546 case DRM_EDID_DIGITAL_DEPTH_8:
3547 info->bpc = 8;
3548 break;
3549 case DRM_EDID_DIGITAL_DEPTH_10:
3550 info->bpc = 10;
3551 break;
3552 case DRM_EDID_DIGITAL_DEPTH_12:
3553 info->bpc = 12;
3554 break;
3555 case DRM_EDID_DIGITAL_DEPTH_14:
3556 info->bpc = 14;
3557 break;
3558 case DRM_EDID_DIGITAL_DEPTH_16:
3559 info->bpc = 16;
3560 break;
3561 case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3562 default:
3563 info->bpc = 0;
3564 break;
3565 }
3566
3567 debug("Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
3568 info->bpc);
3569
3570 info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3571 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3572 info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3573 if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3574 info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3575 }
3576
3577 static
add_cea_modes(struct hdmi_edid_data * data,struct edid * edid)3578 int add_cea_modes(struct hdmi_edid_data *data, struct edid *edid)
3579 {
3580 const u8 *cea = drm_find_cea_extension(edid);
3581 const u8 *db, *hdmi = NULL, *video = NULL;
3582 u8 dbl, hdmi_len, video_len = 0;
3583 int modes = 0;
3584
3585 if (cea && cea_revision(cea) >= 3) {
3586 int i, start, end;
3587
3588 if (cea_db_offsets(cea, &start, &end))
3589 return 0;
3590
3591 for_each_cea_db(cea, i, start, end) {
3592 db = &cea[i];
3593 dbl = cea_db_payload_len(db);
3594
3595 if (cea_db_tag(db) == EDID_CEA861_DB_VIDEO) {
3596 video = db + 1;
3597 video_len = dbl;
3598 modes += do_cea_modes(data, video, dbl);
3599 } else if (cea_db_is_hdmi_vsdb(db)) {
3600 hdmi = db;
3601 hdmi_len = dbl;
3602 } else if (cea_db_is_y420vdb(db)) {
3603 const u8 *vdb420 = &db[2];
3604
3605 /* Add 4:2:0(only) modes present in EDID */
3606 modes += do_y420vdb_modes(data, vdb420,
3607 dbl - 1);
3608 }
3609 }
3610 }
3611
3612 /*
3613 * We parse the HDMI VSDB after having added the cea modes as we will
3614 * be patching their flags when the sink supports stereo 3D.
3615 */
3616 if (hdmi)
3617 modes += do_hdmi_vsdb_modes(hdmi, hdmi_len, video,
3618 video_len, data);
3619
3620 return modes;
3621 }
3622
3623 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
3624
3625 static void
cea_for_each_detailed_block(u8 * ext,detailed_cb * cb,void * closure)3626 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
3627 {
3628 int i, n = 0;
3629 u8 d = ext[0x02];
3630 u8 *det_base = ext + d;
3631
3632 if (d < 4 || d > 127)
3633 return;
3634
3635 n = (127 - d) / 18;
3636 for (i = 0; i < n; i++)
3637 cb((struct detailed_timing *)(det_base + 18 * i), closure);
3638 }
3639
3640 static void
vtb_for_each_detailed_block(u8 * ext,detailed_cb * cb,void * closure)3641 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
3642 {
3643 unsigned int i, n = min((int)ext[0x02], 6);
3644 u8 *det_base = ext + 5;
3645
3646 if (ext[0x01] != 1)
3647 return; /* unknown version */
3648
3649 for (i = 0; i < n; i++)
3650 cb((struct detailed_timing *)(det_base + 18 * i), closure);
3651 }
3652
3653 static void
drm_for_each_detailed_block(u8 * raw_edid,detailed_cb * cb,void * closure)3654 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
3655 {
3656 int i;
3657 struct edid *edid = (struct edid *)raw_edid;
3658
3659 if (!edid)
3660 return;
3661
3662 for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3663 cb(&edid->detailed_timings[i], closure);
3664
3665 for (i = 1; i <= raw_edid[0x7e]; i++) {
3666 u8 *ext = raw_edid + (i * EDID_SIZE);
3667
3668 switch (*ext) {
3669 case CEA_EXT:
3670 cea_for_each_detailed_block(ext, cb, closure);
3671 break;
3672 case VTB_EXT:
3673 vtb_for_each_detailed_block(ext, cb, closure);
3674 break;
3675 default:
3676 break;
3677 }
3678 }
3679 }
3680
3681 /*
3682 * EDID is delightfully ambiguous about how interlaced modes are to be
3683 * encoded. Our internal representation is of frame height, but some
3684 * HDTV detailed timings are encoded as field height.
3685 *
3686 * The format list here is from CEA, in frame size. Technically we
3687 * should be checking refresh rate too. Whatever.
3688 */
3689 static void
drm_mode_do_interlace_quirk(struct drm_display_mode * mode,struct detailed_pixel_timing * pt)3690 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3691 struct detailed_pixel_timing *pt)
3692 {
3693 int i;
3694
3695 static const struct {
3696 int w, h;
3697 } cea_interlaced[] = {
3698 { 1920, 1080 },
3699 { 720, 480 },
3700 { 1440, 480 },
3701 { 2880, 480 },
3702 { 720, 576 },
3703 { 1440, 576 },
3704 { 2880, 576 },
3705 };
3706
3707 if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3708 return;
3709
3710 for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3711 if ((mode->hdisplay == cea_interlaced[i].w) &&
3712 (mode->vdisplay == cea_interlaced[i].h / 2)) {
3713 mode->vdisplay *= 2;
3714 mode->vsync_start *= 2;
3715 mode->vsync_end *= 2;
3716 mode->vtotal *= 2;
3717 mode->vtotal |= 1;
3718 }
3719 }
3720
3721 mode->flags |= DRM_MODE_FLAG_INTERLACE;
3722 }
3723
3724 /**
3725 * drm_mode_detailed - create a new mode from an EDID detailed timing section
3726 * @edid: EDID block
3727 * @timing: EDID detailed timing info
3728 * @quirks: quirks to apply
3729 *
3730 * An EDID detailed timing block contains enough info for us to create and
3731 * return a new struct drm_display_mode.
3732 */
3733 static
drm_mode_detailed(struct edid * edid,struct detailed_timing * timing,u32 quirks)3734 struct drm_display_mode *drm_mode_detailed(struct edid *edid,
3735 struct detailed_timing *timing,
3736 u32 quirks)
3737 {
3738 struct drm_display_mode *mode;
3739 struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3740 unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3741 unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3742 unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3743 unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3744 unsigned hsync_offset =
3745 (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 |
3746 pt->hsync_offset_lo;
3747 unsigned hsync_pulse_width =
3748 (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 |
3749 pt->hsync_pulse_width_lo;
3750 unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) <<
3751 2 | pt->vsync_offset_pulse_width_lo >> 4;
3752 unsigned vsync_pulse_width =
3753 (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 |
3754 (pt->vsync_offset_pulse_width_lo & 0xf);
3755
3756 /* ignore tiny modes */
3757 if (hactive < 64 || vactive < 64)
3758 return NULL;
3759
3760 if (pt->misc & DRM_EDID_PT_STEREO) {
3761 debug("stereo mode not supported\n");
3762 return NULL;
3763 }
3764 if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC))
3765 debug("composite sync not supported\n");
3766
3767 /* it is incorrect if hsync/vsync width is zero */
3768 if (!hsync_pulse_width || !vsync_pulse_width) {
3769 debug("Incorrect Detailed timing. ");
3770 debug("Wrong Hsync/Vsync pulse width\n");
3771 return NULL;
3772 }
3773
3774 if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3775 mode = drm_cvt_mode(hactive, vactive, 60, true, false, false);
3776 if (!mode)
3777 return NULL;
3778
3779 goto set_refresh;
3780 }
3781
3782 mode = drm_mode_create();
3783 if (!mode)
3784 return NULL;
3785
3786 if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3787 timing->pixel_clock = cpu_to_le16(1088);
3788
3789 mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3790
3791 mode->hdisplay = hactive;
3792 mode->hsync_start = mode->hdisplay + hsync_offset;
3793 mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3794 mode->htotal = mode->hdisplay + hblank;
3795
3796 mode->vdisplay = vactive;
3797 mode->vsync_start = mode->vdisplay + vsync_offset;
3798 mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3799 mode->vtotal = mode->vdisplay + vblank;
3800
3801 /* Some EDIDs have bogus h/vtotal values */
3802 if (mode->hsync_end > mode->htotal)
3803 mode->htotal = mode->hsync_end + 1;
3804 if (mode->vsync_end > mode->vtotal)
3805 mode->vtotal = mode->vsync_end + 1;
3806
3807 drm_mode_do_interlace_quirk(mode, pt);
3808
3809 if (quirks & EDID_QUIRK_DETAILED_SYNC_PP)
3810 pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE |
3811 DRM_EDID_PT_VSYNC_POSITIVE;
3812
3813 mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3814 DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3815 mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3816 DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3817
3818 set_refresh:
3819
3820 mode->type = DRM_MODE_TYPE_DRIVER;
3821 mode->vrefresh = drm_get_vrefresh(mode);
3822
3823 return mode;
3824 }
3825
3826 /*
3827 * Calculate the alternate clock for the CEA mode
3828 * (60Hz vs. 59.94Hz etc.)
3829 */
3830 static unsigned int
cea_mode_alternate_clock(const struct drm_display_mode * cea_mode)3831 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
3832 {
3833 unsigned int clock = cea_mode->clock;
3834
3835 if (cea_mode->vrefresh % 6 != 0)
3836 return clock;
3837
3838 /*
3839 * edid_cea_modes contains the 59.94Hz
3840 * variant for 240 and 480 line modes,
3841 * and the 60Hz variant otherwise.
3842 */
3843 if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
3844 clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
3845 else
3846 clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
3847
3848 return clock;
3849 }
3850
3851 /**
3852 * drm_mode_equal_no_clocks_no_stereo - test modes for equality
3853 * @mode1: first mode
3854 * @mode2: second mode
3855 *
3856 * Check to see if @mode1 and @mode2 are equivalent, but
3857 * don't check the pixel clocks nor the stereo layout.
3858 *
3859 * Returns:
3860 * True if the modes are equal, false otherwise.
3861 */
3862
3863 static
drm_mode_equal_no_clocks_no_stereo(const struct drm_display_mode * mode1,const struct drm_display_mode * mode2)3864 bool drm_mode_equal_no_clocks_no_stereo(const struct drm_display_mode *mode1,
3865 const struct drm_display_mode *mode2)
3866 {
3867 unsigned int flags_mask =
3868 ~(DRM_MODE_FLAG_3D_MASK | DRM_MODE_FLAG_420_MASK);
3869
3870 if (mode1->hdisplay == mode2->hdisplay &&
3871 mode1->hsync_start == mode2->hsync_start &&
3872 mode1->hsync_end == mode2->hsync_end &&
3873 mode1->htotal == mode2->htotal &&
3874 mode1->vdisplay == mode2->vdisplay &&
3875 mode1->vsync_start == mode2->vsync_start &&
3876 mode1->vsync_end == mode2->vsync_end &&
3877 mode1->vtotal == mode2->vtotal &&
3878 mode1->vscan == mode2->vscan &&
3879 (mode1->flags & flags_mask) == (mode2->flags & flags_mask))
3880 return true;
3881
3882 return false;
3883 }
3884
3885 /**
3886 * drm_mode_equal_no_clocks - test modes for equality
3887 * @mode1: first mode
3888 * @mode2: second mode
3889 *
3890 * Check to see if @mode1 and @mode2 are equivalent, but
3891 * don't check the pixel clocks.
3892 *
3893 * Returns:
3894 * True if the modes are equal, false otherwise.
3895 */
drm_mode_equal_no_clocks(const struct drm_display_mode * mode1,const struct drm_display_mode * mode2)3896 static bool drm_mode_equal_no_clocks(const struct drm_display_mode *mode1,
3897 const struct drm_display_mode *mode2)
3898 {
3899 if ((mode1->flags & DRM_MODE_FLAG_3D_MASK) !=
3900 (mode2->flags & DRM_MODE_FLAG_3D_MASK))
3901 return false;
3902
3903 return drm_mode_equal_no_clocks_no_stereo(mode1, mode2);
3904 }
3905
3906 static
drm_match_cea_mode_clock_tolerance(const struct drm_display_mode * to_match,unsigned int clock_tolerance)3907 u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
3908 unsigned int clock_tolerance)
3909 {
3910 u8 vic;
3911
3912 if (!to_match->clock)
3913 return 0;
3914
3915 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
3916 const struct drm_display_mode *cea_mode = cea_mode_for_vic(vic);
3917 unsigned int clock1, clock2;
3918
3919 /* Check both 60Hz and 59.94Hz */
3920 clock1 = cea_mode->clock;
3921 clock2 = cea_mode_alternate_clock(cea_mode);
3922
3923 if (abs(to_match->clock - clock1) > clock_tolerance &&
3924 abs(to_match->clock - clock2) > clock_tolerance)
3925 continue;
3926
3927 if (drm_mode_equal_no_clocks(to_match, cea_mode))
3928 return vic;
3929 }
3930
3931 return 0;
3932 }
3933
3934 static unsigned int
hdmi_mode_alternate_clock(const struct drm_display_mode * hdmi_mode)3935 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
3936 {
3937 if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
3938 return hdmi_mode->clock;
3939
3940 return cea_mode_alternate_clock(hdmi_mode);
3941 }
3942
3943 static
drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode * to_match,unsigned int clock_tolerance)3944 u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
3945 unsigned int clock_tolerance)
3946 {
3947 u8 vic;
3948
3949 if (!to_match->clock)
3950 return 0;
3951
3952 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3953 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3954 unsigned int clock1, clock2;
3955
3956 /* Make sure to also match alternate clocks */
3957 clock1 = hdmi_mode->clock;
3958 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3959
3960 if (abs(to_match->clock - clock1) > clock_tolerance &&
3961 abs(to_match->clock - clock2) > clock_tolerance)
3962 continue;
3963
3964 if (drm_mode_equal_no_clocks(to_match, hdmi_mode))
3965 return vic;
3966 }
3967
3968 return 0;
3969 }
3970
fixup_detailed_cea_mode_clock(struct drm_display_mode * mode)3971 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
3972 {
3973 const struct drm_display_mode *cea_mode;
3974 int clock1, clock2, clock;
3975 u8 vic;
3976 const char *type;
3977
3978 /*
3979 * allow 5kHz clock difference either way to account for
3980 * the 10kHz clock resolution limit of detailed timings.
3981 */
3982 vic = drm_match_cea_mode_clock_tolerance(mode, 5);
3983 if (drm_valid_cea_vic(vic)) {
3984 type = "CEA";
3985 cea_mode = cea_mode_for_vic(vic);
3986 clock1 = cea_mode->clock;
3987 clock2 = cea_mode_alternate_clock(cea_mode);
3988 } else {
3989 vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
3990 if (drm_valid_hdmi_vic(vic)) {
3991 type = "HDMI";
3992 cea_mode = &edid_4k_modes[vic];
3993 clock1 = cea_mode->clock;
3994 clock2 = hdmi_mode_alternate_clock(cea_mode);
3995 } else {
3996 return;
3997 }
3998 }
3999
4000 /* pick whichever is closest */
4001 if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
4002 clock = clock1;
4003 else
4004 clock = clock2;
4005
4006 if (mode->clock == clock)
4007 return;
4008
4009 debug("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
4010 type, vic, mode->clock, clock);
4011 mode->clock = clock;
4012 }
4013
4014 static void
do_detailed_mode(struct detailed_timing * timing,void * c)4015 do_detailed_mode(struct detailed_timing *timing, void *c)
4016 {
4017 struct detailed_mode_closure *closure = c;
4018 struct drm_display_mode *newmode;
4019
4020 if (timing->pixel_clock) {
4021 newmode = drm_mode_detailed(
4022 closure->edid, timing,
4023 closure->quirks);
4024 if (!newmode)
4025 return;
4026
4027 if (closure->preferred)
4028 newmode->type |= DRM_MODE_TYPE_PREFERRED;
4029
4030 /*
4031 * Detailed modes are limited to 10kHz pixel clock resolution,
4032 * so fix up anything that looks like CEA/HDMI mode,
4033 * but the clock is just slightly off.
4034 */
4035 fixup_detailed_cea_mode_clock(newmode);
4036 drm_add_hdmi_modes(closure->data, newmode);
4037 drm_mode_destroy(newmode);
4038 closure->modes++;
4039 closure->preferred = 0;
4040 }
4041 }
4042
4043 /*
4044 * add_detailed_modes - Add modes from detailed timings
4045 * @data: attached data
4046 * @edid: EDID block to scan
4047 * @quirks: quirks to apply
4048 */
4049 static int
add_detailed_modes(struct hdmi_edid_data * data,struct edid * edid,u32 quirks)4050 add_detailed_modes(struct hdmi_edid_data *data, struct edid *edid,
4051 u32 quirks)
4052 {
4053 struct detailed_mode_closure closure = {
4054 .data = data,
4055 .edid = edid,
4056 .preferred = 1,
4057 .quirks = quirks,
4058 };
4059
4060 if (closure.preferred && !version_greater(edid, 1, 3))
4061 closure.preferred =
4062 (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
4063
4064 drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
4065
4066 return closure.modes;
4067 }
4068
drm_cvt_modes(struct hdmi_edid_data * data,struct detailed_timing * timing)4069 static int drm_cvt_modes(struct hdmi_edid_data *data,
4070 struct detailed_timing *timing)
4071 {
4072 int i, j, modes = 0;
4073 struct drm_display_mode *newmode;
4074 struct cvt_timing *cvt;
4075 const int rates[] = { 60, 85, 75, 60, 50 };
4076 const u8 empty[3] = { 0, 0, 0 };
4077
4078 for (i = 0; i < 4; i++) {
4079 int uninitialized_var(width), height;
4080
4081 cvt = &timing->data.other_data.data.cvt[i];
4082
4083 if (!memcmp(cvt->code, empty, 3))
4084 continue;
4085
4086 height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
4087 switch (cvt->code[1] & 0x0c) {
4088 case 0x00:
4089 width = height * 4 / 3;
4090 break;
4091 case 0x04:
4092 width = height * 16 / 9;
4093 break;
4094 case 0x08:
4095 width = height * 16 / 10;
4096 break;
4097 case 0x0c:
4098 width = height * 15 / 9;
4099 break;
4100 }
4101
4102 for (j = 1; j < 5; j++) {
4103 if (cvt->code[2] & (1 << j)) {
4104 newmode = drm_cvt_mode(width, height,
4105 rates[j], j == 0,
4106 false, false);
4107 if (newmode) {
4108 drm_add_hdmi_modes(data, newmode);
4109 modes++;
4110 drm_mode_destroy(newmode);
4111 }
4112 }
4113 }
4114 }
4115
4116 return modes;
4117 }
4118
4119 static void
do_cvt_mode(struct detailed_timing * timing,void * c)4120 do_cvt_mode(struct detailed_timing *timing, void *c)
4121 {
4122 struct detailed_mode_closure *closure = c;
4123 struct detailed_non_pixel *data = &timing->data.other_data;
4124
4125 if (data->type == EDID_DETAIL_CVT_3BYTE)
4126 closure->modes += drm_cvt_modes(closure->data, timing);
4127 }
4128
4129 static int
add_cvt_modes(struct hdmi_edid_data * data,struct edid * edid)4130 add_cvt_modes(struct hdmi_edid_data *data, struct edid *edid)
4131 {
4132 struct detailed_mode_closure closure = {
4133 .data = data,
4134 .edid = edid,
4135 };
4136
4137 if (version_greater(edid, 1, 2))
4138 drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
4139
4140 /* XXX should also look for CVT codes in VTB blocks */
4141
4142 return closure.modes;
4143 }
4144
4145 static void
find_gtf2(struct detailed_timing * t,void * data)4146 find_gtf2(struct detailed_timing *t, void *data)
4147 {
4148 u8 *r = (u8 *)t;
4149
4150 if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
4151 *(u8 **)data = r;
4152 }
4153
4154 /* Secondary GTF curve kicks in above some break frequency */
4155 static int
drm_gtf2_hbreak(struct edid * edid)4156 drm_gtf2_hbreak(struct edid *edid)
4157 {
4158 u8 *r = NULL;
4159
4160 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4161 return r ? (r[12] * 2) : 0;
4162 }
4163
4164 static int
drm_gtf2_2c(struct edid * edid)4165 drm_gtf2_2c(struct edid *edid)
4166 {
4167 u8 *r = NULL;
4168
4169 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4170 return r ? r[13] : 0;
4171 }
4172
4173 static int
drm_gtf2_m(struct edid * edid)4174 drm_gtf2_m(struct edid *edid)
4175 {
4176 u8 *r = NULL;
4177
4178 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4179 return r ? (r[15] << 8) + r[14] : 0;
4180 }
4181
4182 static int
drm_gtf2_k(struct edid * edid)4183 drm_gtf2_k(struct edid *edid)
4184 {
4185 u8 *r = NULL;
4186
4187 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4188 return r ? r[16] : 0;
4189 }
4190
4191 static int
drm_gtf2_2j(struct edid * edid)4192 drm_gtf2_2j(struct edid *edid)
4193 {
4194 u8 *r = NULL;
4195
4196 drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4197 return r ? r[17] : 0;
4198 }
4199
4200 /**
4201 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
4202 * @edid: EDID block to scan
4203 */
standard_timing_level(struct edid * edid)4204 static int standard_timing_level(struct edid *edid)
4205 {
4206 if (edid->revision >= 2) {
4207 if (edid->revision >= 4 &&
4208 (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
4209 return LEVEL_CVT;
4210 if (drm_gtf2_hbreak(edid))
4211 return LEVEL_GTF2;
4212 return LEVEL_GTF;
4213 }
4214 return LEVEL_DMT;
4215 }
4216
4217 /*
4218 * 0 is reserved. The spec says 0x01 fill for unused timings. Some old
4219 * monitors fill with ascii space (0x20) instead.
4220 */
4221 static int
bad_std_timing(u8 a,u8 b)4222 bad_std_timing(u8 a, u8 b)
4223 {
4224 return (a == 0x00 && b == 0x00) ||
4225 (a == 0x01 && b == 0x01) ||
4226 (a == 0x20 && b == 0x20);
4227 }
4228
4229 static void
is_rb(struct detailed_timing * t,void * data)4230 is_rb(struct detailed_timing *t, void *data)
4231 {
4232 u8 *r = (u8 *)t;
4233
4234 if (r[3] == EDID_DETAIL_MONITOR_RANGE)
4235 if (r[15] & 0x10)
4236 *(bool *)data = true;
4237 }
4238
4239 /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */
4240 static bool
drm_monitor_supports_rb(struct edid * edid)4241 drm_monitor_supports_rb(struct edid *edid)
4242 {
4243 if (edid->revision >= 4) {
4244 bool ret = false;
4245
4246 drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
4247 return ret;
4248 }
4249
4250 return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
4251 }
4252
4253 static bool
mode_is_rb(const struct drm_display_mode * mode)4254 mode_is_rb(const struct drm_display_mode *mode)
4255 {
4256 return (mode->htotal - mode->hdisplay == 160) &&
4257 (mode->hsync_end - mode->hdisplay == 80) &&
4258 (mode->hsync_end - mode->hsync_start == 32) &&
4259 (mode->vsync_start - mode->vdisplay == 3);
4260 }
4261
4262 /*
4263 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
4264 * @hsize: Mode width
4265 * @vsize: Mode height
4266 * @fresh: Mode refresh rate
4267 * @rb: Mode reduced-blanking-ness
4268 *
4269 * Walk the DMT mode list looking for a match for the given parameters.
4270 *
4271 * Return: A newly allocated copy of the mode, or NULL if not found.
4272 */
drm_mode_find_dmt(int hsize,int vsize,int fresh,bool rb)4273 static struct drm_display_mode *drm_mode_find_dmt(
4274 int hsize, int vsize, int fresh,
4275 bool rb)
4276 {
4277 int i;
4278 struct drm_display_mode *newmode;
4279
4280 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
4281 const struct drm_display_mode *ptr = &drm_dmt_modes[i];
4282
4283 if (hsize != ptr->hdisplay)
4284 continue;
4285 if (vsize != ptr->vdisplay)
4286 continue;
4287 if (fresh != drm_get_vrefresh(ptr))
4288 continue;
4289 if (rb != mode_is_rb(ptr))
4290 continue;
4291
4292 newmode = drm_mode_create();
4293 *newmode = *ptr;
4294 return newmode;
4295 }
4296
4297 return NULL;
4298 }
4299
4300 static struct drm_display_mode *
drm_gtf_mode_complex(int hdisplay,int vdisplay,int vrefresh,bool interlaced,int margins,int GTF_M,int GTF_2C,int GTF_K,int GTF_2J)4301 drm_gtf_mode_complex(int hdisplay, int vdisplay,
4302 int vrefresh, bool interlaced, int margins,
4303 int GTF_M, int GTF_2C, int GTF_K, int GTF_2J)
4304 { /* 1) top/bottom margin size (% of height) - default: 1.8, */
4305 #define GTF_MARGIN_PERCENTAGE 18
4306 /* 2) character cell horizontal granularity (pixels) - default 8 */
4307 #define GTF_CELL_GRAN 8
4308 /* 3) Minimum vertical porch (lines) - default 3 */
4309 #define GTF_MIN_V_PORCH 1
4310 /* width of vsync in lines */
4311 #define V_SYNC_RQD 3
4312 /* width of hsync as % of total line */
4313 #define H_SYNC_PERCENT 8
4314 /* min time of vsync + back porch (microsec) */
4315 #define MIN_VSYNC_PLUS_BP 550
4316 /* C' and M' are part of the Blanking Duty Cycle computation */
4317 #define GTF_C_PRIME ((((GTF_2C - GTF_2J) * GTF_K / 256) + GTF_2J) / 2)
4318 #define GTF_M_PRIME (GTF_K * GTF_M / 256)
4319 struct drm_display_mode *drm_mode;
4320 unsigned int hdisplay_rnd, vdisplay_rnd, vfieldrate_rqd;
4321 int top_margin, bottom_margin;
4322 int interlace;
4323 unsigned int hfreq_est;
4324 int vsync_plus_bp;
4325 unsigned int vtotal_lines;
4326 int left_margin, right_margin;
4327 unsigned int total_active_pixels, ideal_duty_cycle;
4328 unsigned int hblank, total_pixels, pixel_freq;
4329 int hsync, hfront_porch, vodd_front_porch_lines;
4330 unsigned int tmp1, tmp2;
4331
4332 drm_mode = drm_mode_create();
4333 if (!drm_mode)
4334 return NULL;
4335
4336 /* 1. In order to give correct results, the number of horizontal
4337 * pixels requested is first processed to ensure that it is divisible
4338 * by the character size, by rounding it to the nearest character
4339 * cell boundary:
4340 */
4341 hdisplay_rnd = (hdisplay + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
4342 hdisplay_rnd = hdisplay_rnd * GTF_CELL_GRAN;
4343
4344 /* 2. If interlace is requested, the number of vertical lines assumed
4345 * by the calculation must be halved, as the computation calculates
4346 * the number of vertical lines per field.
4347 */
4348 if (interlaced)
4349 vdisplay_rnd = vdisplay / 2;
4350 else
4351 vdisplay_rnd = vdisplay;
4352
4353 /* 3. Find the frame rate required: */
4354 if (interlaced)
4355 vfieldrate_rqd = vrefresh * 2;
4356 else
4357 vfieldrate_rqd = vrefresh;
4358
4359 /* 4. Find number of lines in Top margin: */
4360 top_margin = 0;
4361 if (margins)
4362 top_margin = (vdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
4363 1000;
4364 /* 5. Find number of lines in bottom margin: */
4365 bottom_margin = top_margin;
4366
4367 /* 6. If interlace is required, then set variable interlace: */
4368 if (interlaced)
4369 interlace = 1;
4370 else
4371 interlace = 0;
4372
4373 /* 7. Estimate the Horizontal frequency */
4374 {
4375 tmp1 = (1000000 - MIN_VSYNC_PLUS_BP * vfieldrate_rqd) / 500;
4376 tmp2 = (vdisplay_rnd + 2 * top_margin + GTF_MIN_V_PORCH) *
4377 2 + interlace;
4378 hfreq_est = (tmp2 * 1000 * vfieldrate_rqd) / tmp1;
4379 }
4380
4381 /* 8. Find the number of lines in V sync + back porch */
4382 /* [V SYNC+BP] = RINT(([MIN VSYNC+BP] * hfreq_est / 1000000)) */
4383 vsync_plus_bp = MIN_VSYNC_PLUS_BP * hfreq_est / 1000;
4384 vsync_plus_bp = (vsync_plus_bp + 500) / 1000;
4385 /* 9. Find the number of lines in V back porch alone:
4386 * vback_porch = vsync_plus_bp - V_SYNC_RQD;
4387 */
4388 /* 10. Find the total number of lines in Vertical field period: */
4389 vtotal_lines = vdisplay_rnd + top_margin + bottom_margin +
4390 vsync_plus_bp + GTF_MIN_V_PORCH;
4391 /* 11. Estimate the Vertical field frequency:
4392 * vfieldrate_est = hfreq_est / vtotal_lines;
4393 */
4394
4395 /* 12. Find the actual horizontal period:
4396 * hperiod = 1000000 / (vfieldrate_rqd * vtotal_lines);
4397 */
4398 /* 13. Find the actual Vertical field frequency:
4399 * vfield_rate = hfreq_est / vtotal_lines;
4400 */
4401 /* 14. Find the Vertical frame frequency:
4402 * if (interlaced)
4403 * vframe_rate = vfield_rate / 2;
4404 * else
4405 * vframe_rate = vfield_rate;
4406 */
4407 /* 15. Find number of pixels in left margin: */
4408 if (margins)
4409 left_margin = (hdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
4410 1000;
4411 else
4412 left_margin = 0;
4413
4414 /* 16.Find number of pixels in right margin: */
4415 right_margin = left_margin;
4416 /* 17.Find total number of active pixels in image and left and right */
4417 total_active_pixels = hdisplay_rnd + left_margin + right_margin;
4418 /* 18.Find the ideal blanking duty cycle from blanking duty cycle */
4419 ideal_duty_cycle = GTF_C_PRIME * 1000 -
4420 (GTF_M_PRIME * 1000000 / hfreq_est);
4421 /* 19.Find the number of pixels in the blanking time to the nearest
4422 * double character cell:
4423 */
4424 hblank = total_active_pixels * ideal_duty_cycle /
4425 (100000 - ideal_duty_cycle);
4426 hblank = (hblank + GTF_CELL_GRAN) / (2 * GTF_CELL_GRAN);
4427 hblank = hblank * 2 * GTF_CELL_GRAN;
4428 /* 20.Find total number of pixels: */
4429 total_pixels = total_active_pixels + hblank;
4430 /* 21.Find pixel clock frequency: */
4431 pixel_freq = total_pixels * hfreq_est / 1000;
4432 /* Stage 1 computations are now complete; I should really pass
4433 * the results to another function and do the Stage 2 computations,
4434 * but I only need a few more values so I'll just append the
4435 * computations here for now
4436 */
4437
4438 /* 17. Find the number of pixels in the horizontal sync period: */
4439 hsync = H_SYNC_PERCENT * total_pixels / 100;
4440 hsync = (hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
4441 hsync = hsync * GTF_CELL_GRAN;
4442 /* 18. Find the number of pixels in horizontal front porch period */
4443 hfront_porch = hblank / 2 - hsync;
4444 /* 36. Find the number of lines in the odd front porch period: */
4445 vodd_front_porch_lines = GTF_MIN_V_PORCH;
4446
4447 /* finally, pack the results in the mode struct */
4448 drm_mode->hdisplay = hdisplay_rnd;
4449 drm_mode->hsync_start = hdisplay_rnd + hfront_porch;
4450 drm_mode->hsync_end = drm_mode->hsync_start + hsync;
4451 drm_mode->htotal = total_pixels;
4452 drm_mode->vdisplay = vdisplay_rnd;
4453 drm_mode->vsync_start = vdisplay_rnd + vodd_front_porch_lines;
4454 drm_mode->vsync_end = drm_mode->vsync_start + V_SYNC_RQD;
4455 drm_mode->vtotal = vtotal_lines;
4456
4457 drm_mode->clock = pixel_freq;
4458
4459 if (interlaced) {
4460 drm_mode->vtotal *= 2;
4461 drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
4462 }
4463
4464 if (GTF_M == 600 && GTF_2C == 80 && GTF_K == 128 && GTF_2J == 40)
4465 drm_mode->flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC;
4466 else
4467 drm_mode->flags = DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC;
4468
4469 return drm_mode;
4470 }
4471
4472 /**
4473 * drm_gtf_mode - create the mode based on the GTF algorithm
4474 * @hdisplay: hdisplay size
4475 * @vdisplay: vdisplay size
4476 * @vrefresh: vrefresh rate.
4477 * @interlaced: whether to compute an interlaced mode
4478 * @margins: desired margin (borders) size
4479 *
4480 * return the mode based on GTF algorithm
4481 *
4482 * This function is to create the mode based on the GTF algorithm.
4483 * Generalized Timing Formula is derived from:
4484 * GTF Spreadsheet by Andy Morrish (1/5/97)
4485 * available at http://www.vesa.org
4486 *
4487 * And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c.
4488 * What I have done is to translate it by using integer calculation.
4489 * I also refer to the function of fb_get_mode in the file of
4490 * drivers/video/fbmon.c
4491 *
4492 * Standard GTF parameters:
4493 * M = 600
4494 * C = 40
4495 * K = 128
4496 * J = 20
4497 *
4498 * Returns:
4499 * The modeline based on the GTF algorithm stored in a drm_display_mode object.
4500 * The display mode object is allocated with drm_mode_create(). Returns NULL
4501 * when no mode could be allocated.
4502 */
4503 static struct drm_display_mode *
drm_gtf_mode(int hdisplay,int vdisplay,int vrefresh,bool interlaced,int margins)4504 drm_gtf_mode(int hdisplay, int vdisplay, int vrefresh,
4505 bool interlaced, int margins)
4506 {
4507 return drm_gtf_mode_complex(hdisplay, vdisplay, vrefresh,
4508 interlaced, margins,
4509 600, 40 * 2, 128, 20 * 2);
4510 }
4511
4512 /** drm_mode_hsync - get the hsync of a mode
4513 * @mode: mode
4514 *
4515 * Returns:
4516 * @modes's hsync rate in kHz, rounded to the nearest integer. Calculates the
4517 * value first if it is not yet set.
4518 */
drm_mode_hsync(const struct drm_display_mode * mode)4519 static int drm_mode_hsync(const struct drm_display_mode *mode)
4520 {
4521 unsigned int calc_val;
4522
4523 if (mode->htotal < 0)
4524 return 0;
4525
4526 calc_val = (mode->clock * 1000) / mode->htotal; /* hsync in Hz */
4527 calc_val += 500; /* round to 1000Hz */
4528 calc_val /= 1000; /* truncate to kHz */
4529
4530 return calc_val;
4531 }
4532
4533 /**
4534 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
4535 * @data: the structure that save parsed hdmi edid data
4536 * @edid: EDID block to scan
4537 * @t: standard timing params
4538 *
4539 * Take the standard timing params (in this case width, aspect, and refresh)
4540 * and convert them into a real mode using CVT/GTF/DMT.
4541 */
4542 static struct drm_display_mode *
drm_mode_std(struct hdmi_edid_data * data,struct edid * edid,struct std_timing * t)4543 drm_mode_std(struct hdmi_edid_data *data, struct edid *edid,
4544 struct std_timing *t)
4545 {
4546 struct drm_display_mode *mode = NULL;
4547 int i, hsize, vsize;
4548 int vrefresh_rate;
4549 int num = data->modes;
4550 unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
4551 >> EDID_TIMING_ASPECT_SHIFT;
4552 unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
4553 >> EDID_TIMING_VFREQ_SHIFT;
4554 int timing_level = standard_timing_level(edid);
4555
4556 if (bad_std_timing(t->hsize, t->vfreq_aspect))
4557 return NULL;
4558
4559 /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
4560 hsize = t->hsize * 8 + 248;
4561 /* vrefresh_rate = vfreq + 60 */
4562 vrefresh_rate = vfreq + 60;
4563 /* the vdisplay is calculated based on the aspect ratio */
4564 if (aspect_ratio == 0) {
4565 if (edid->revision < 3)
4566 vsize = hsize;
4567 else
4568 vsize = (hsize * 10) / 16;
4569 } else if (aspect_ratio == 1) {
4570 vsize = (hsize * 3) / 4;
4571 } else if (aspect_ratio == 2) {
4572 vsize = (hsize * 4) / 5;
4573 } else {
4574 vsize = (hsize * 9) / 16;
4575 }
4576
4577 /* HDTV hack, part 1 */
4578 if (vrefresh_rate == 60 &&
4579 ((hsize == 1360 && vsize == 765) ||
4580 (hsize == 1368 && vsize == 769))) {
4581 hsize = 1366;
4582 vsize = 768;
4583 }
4584
4585 /*
4586 * If we already has a mode for this size and refresh
4587 * rate (because it came from detailed or CVT info), use that
4588 * instead. This way we don't have to guess at interlace or
4589 * reduced blanking.
4590 */
4591 for (i = 0; i < num; i++)
4592 if (data->mode_buf[i].hdisplay == hsize &&
4593 data->mode_buf[i].vdisplay == vsize &&
4594 drm_get_vrefresh(&data->mode_buf[i]) == vrefresh_rate)
4595 return NULL;
4596
4597 /* HDTV hack, part 2 */
4598 if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
4599 mode = drm_cvt_mode(1366, 768, vrefresh_rate, 0, 0,
4600 false);
4601 mode->hdisplay = 1366;
4602 mode->hsync_start = mode->hsync_start - 1;
4603 mode->hsync_end = mode->hsync_end - 1;
4604 return mode;
4605 }
4606
4607 /* check whether it can be found in default mode table */
4608 if (drm_monitor_supports_rb(edid)) {
4609 mode = drm_mode_find_dmt(hsize, vsize, vrefresh_rate,
4610 true);
4611 if (mode)
4612 return mode;
4613 }
4614
4615 mode = drm_mode_find_dmt(hsize, vsize, vrefresh_rate, false);
4616 if (mode)
4617 return mode;
4618
4619 /* okay, generate it */
4620 switch (timing_level) {
4621 case LEVEL_DMT:
4622 break;
4623 case LEVEL_GTF:
4624 mode = drm_gtf_mode(hsize, vsize, vrefresh_rate, 0, 0);
4625 break;
4626 case LEVEL_GTF2:
4627 /*
4628 * This is potentially wrong if there's ever a monitor with
4629 * more than one ranges section, each claiming a different
4630 * secondary GTF curve. Please don't do that.
4631 */
4632 mode = drm_gtf_mode(hsize, vsize, vrefresh_rate, 0, 0);
4633 if (!mode)
4634 return NULL;
4635 if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
4636 drm_mode_destroy(mode);
4637 mode = drm_gtf_mode_complex(hsize, vsize,
4638 vrefresh_rate, 0, 0,
4639 drm_gtf2_m(edid),
4640 drm_gtf2_2c(edid),
4641 drm_gtf2_k(edid),
4642 drm_gtf2_2j(edid));
4643 }
4644 break;
4645 case LEVEL_CVT:
4646 mode = drm_cvt_mode(hsize, vsize, vrefresh_rate, 0, 0,
4647 false);
4648 break;
4649 }
4650
4651 return mode;
4652 }
4653
4654 static void
do_standard_modes(struct detailed_timing * timing,void * c)4655 do_standard_modes(struct detailed_timing *timing, void *c)
4656 {
4657 struct detailed_mode_closure *closure = c;
4658 struct detailed_non_pixel *data = &timing->data.other_data;
4659 struct edid *edid = closure->edid;
4660
4661 if (data->type == EDID_DETAIL_STD_MODES) {
4662 int i;
4663
4664 for (i = 0; i < 6; i++) {
4665 struct std_timing *std;
4666 struct drm_display_mode *newmode;
4667
4668 std = &data->data.timings[i];
4669 newmode = drm_mode_std(closure->data, edid, std);
4670 if (newmode) {
4671 drm_add_hdmi_modes(closure->data, newmode);
4672 closure->modes++;
4673 drm_mode_destroy(newmode);
4674 }
4675 }
4676 }
4677 }
4678
4679 /**
4680 * add_standard_modes - get std. modes from EDID and add them
4681 * @data: data to add mode(s) to
4682 * @edid: EDID block to scan
4683 *
4684 * Standard modes can be calculated using the appropriate standard (DMT,
4685 * GTF or CVT. Grab them from @edid and add them to the list.
4686 */
4687 static int
add_standard_modes(struct hdmi_edid_data * data,struct edid * edid)4688 add_standard_modes(struct hdmi_edid_data *data, struct edid *edid)
4689 {
4690 int i, modes = 0;
4691 struct detailed_mode_closure closure = {
4692 .data = data,
4693 .edid = edid,
4694 };
4695
4696 for (i = 0; i < EDID_STD_TIMINGS; i++) {
4697 struct drm_display_mode *newmode;
4698
4699 newmode = drm_mode_std(data, edid,
4700 &edid->standard_timings[i]);
4701 if (newmode) {
4702 drm_add_hdmi_modes(data, newmode);
4703 modes++;
4704 drm_mode_destroy(newmode);
4705 }
4706 }
4707
4708 if (version_greater(edid, 1, 0))
4709 drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
4710 &closure);
4711
4712 /* XXX should also look for standard codes in VTB blocks */
4713
4714 return modes + closure.modes;
4715 }
4716
4717 static int
drm_est3_modes(struct hdmi_edid_data * data,struct detailed_timing * timing)4718 drm_est3_modes(struct hdmi_edid_data *data, struct detailed_timing *timing)
4719 {
4720 int i, j, m, modes = 0;
4721 struct drm_display_mode *mode;
4722 u8 *est = ((u8 *)timing) + 6;
4723
4724 for (i = 0; i < 6; i++) {
4725 for (j = 7; j >= 0; j--) {
4726 m = (i * 8) + (7 - j);
4727 if (m >= ARRAY_SIZE(est3_modes))
4728 break;
4729 if (est[i] & (1 << j)) {
4730 mode = drm_mode_find_dmt(
4731 est3_modes[m].w,
4732 est3_modes[m].h,
4733 est3_modes[m].r,
4734 est3_modes[m].rb);
4735 if (mode) {
4736 drm_add_hdmi_modes(data, mode);
4737 modes++;
4738 drm_mode_destroy(mode);
4739 }
4740 }
4741 }
4742 }
4743
4744 return modes;
4745 }
4746
4747 static void
do_established_modes(struct detailed_timing * timing,void * c)4748 do_established_modes(struct detailed_timing *timing, void *c)
4749 {
4750 struct detailed_mode_closure *closure = c;
4751 struct detailed_non_pixel *data = &timing->data.other_data;
4752
4753 if (data->type == EDID_DETAIL_EST_TIMINGS)
4754 closure->modes += drm_est3_modes(closure->data, timing);
4755 }
4756
4757 /**
4758 * add_established_modes - get est. modes from EDID and add them
4759 * @data: data to add mode(s) to
4760 * @edid: EDID block to scan
4761 *
4762 * Each EDID block contains a bitmap of the supported "established modes" list
4763 * (defined above). Tease them out and add them to the modes list.
4764 */
4765 static int
add_established_modes(struct hdmi_edid_data * data,struct edid * edid)4766 add_established_modes(struct hdmi_edid_data *data, struct edid *edid)
4767 {
4768 unsigned long est_bits = edid->established_timings.t1 |
4769 (edid->established_timings.t2 << 8) |
4770 ((edid->established_timings.mfg_rsvd & 0x80) << 9);
4771 int i, modes = 0;
4772 struct detailed_mode_closure closure = {
4773 .data = data,
4774 .edid = edid,
4775 };
4776
4777 for (i = 0; i <= EDID_EST_TIMINGS; i++) {
4778 if (est_bits & (1 << i)) {
4779 struct drm_display_mode *newmode = drm_mode_create();
4780 *newmode = edid_est_modes[i];
4781 if (newmode) {
4782 drm_add_hdmi_modes(data, newmode);
4783 modes++;
4784 drm_mode_destroy(newmode);
4785 }
4786 }
4787 }
4788
4789 if (version_greater(edid, 1, 0))
4790 drm_for_each_detailed_block((u8 *)edid,
4791 do_established_modes, &closure);
4792
4793 return modes + closure.modes;
4794 }
4795
drm_match_hdmi_mode(const struct drm_display_mode * to_match)4796 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4797 {
4798 u8 vic;
4799
4800 if (!to_match->clock)
4801 return 0;
4802
4803 for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4804 const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4805 unsigned int clock1, clock2;
4806
4807 /* Make sure to also match alternate clocks */
4808 clock1 = hdmi_mode->clock;
4809 clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4810
4811 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4812 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4813 drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
4814 return vic;
4815 }
4816 return 0;
4817 }
4818
4819 static int
add_alternate_cea_modes(struct hdmi_edid_data * data,struct edid * edid)4820 add_alternate_cea_modes(struct hdmi_edid_data *data, struct edid *edid)
4821 {
4822 struct drm_display_mode *mode;
4823 int i, num, modes = 0;
4824
4825 /* Don't add CEA modes if the CEA extension block is missing */
4826 if (!drm_find_cea_extension(edid))
4827 return 0;
4828
4829 /*
4830 * Go through all probed modes and create a new mode
4831 * with the alternate clock for certain CEA modes.
4832 */
4833 num = data->modes;
4834
4835 for (i = 0; i < num; i++) {
4836 const struct drm_display_mode *cea_mode = NULL;
4837 struct drm_display_mode *newmode;
4838 u8 vic;
4839 unsigned int clock1, clock2;
4840
4841 mode = &data->mode_buf[i];
4842 vic = drm_match_cea_mode(mode);
4843
4844 if (drm_valid_cea_vic(vic)) {
4845 cea_mode = cea_mode_for_vic(vic);
4846 clock2 = cea_mode_alternate_clock(cea_mode);
4847 } else {
4848 vic = drm_match_hdmi_mode(mode);
4849 if (drm_valid_hdmi_vic(vic)) {
4850 cea_mode = &edid_4k_modes[vic];
4851 clock2 = hdmi_mode_alternate_clock(cea_mode);
4852 }
4853 }
4854
4855 if (!cea_mode)
4856 continue;
4857
4858 clock1 = cea_mode->clock;
4859
4860 if (clock1 == clock2)
4861 continue;
4862
4863 if (mode->clock != clock1 && mode->clock != clock2)
4864 continue;
4865
4866 newmode = drm_mode_create();
4867 *newmode = *cea_mode;
4868 if (!newmode)
4869 continue;
4870
4871 /* Carry over the stereo flags */
4872 newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4873
4874 /*
4875 * The current mode could be either variant. Make
4876 * sure to pick the "other" clock for the new mode.
4877 */
4878 if (mode->clock != clock1)
4879 newmode->clock = clock1;
4880 else
4881 newmode->clock = clock2;
4882
4883 drm_add_hdmi_modes(data, newmode);
4884 modes++;
4885 drm_mode_destroy(newmode);
4886 }
4887
4888 return modes;
4889 }
4890
drm_find_displayid_extension(struct edid * edid)4891 static u8 *drm_find_displayid_extension(struct edid *edid)
4892 {
4893 return drm_find_edid_extension(edid, DISPLAYID_EXT);
4894 }
4895
validate_displayid(u8 * displayid,int length,int idx)4896 static int validate_displayid(u8 *displayid, int length, int idx)
4897 {
4898 int i;
4899 u8 csum = 0;
4900 struct displayid_hdr *base;
4901
4902 base = (struct displayid_hdr *)&displayid[idx];
4903
4904 debug("base revision 0x%x, length %d, %d %d\n",
4905 base->rev, base->bytes, base->prod_id, base->ext_count);
4906
4907 if (base->bytes + 5 > length - idx)
4908 return -EINVAL;
4909 for (i = idx; i <= base->bytes + 5; i++)
4910 csum += displayid[i];
4911 if (csum) {
4912 debug("DisplayID checksum invalid, remainder is %d\n", csum);
4913 return -EINVAL;
4914 }
4915 return 0;
4916 }
4917
4918 static struct
drm_displayid_detailed(struct displayid_detailed_timings_1 * timings)4919 drm_display_mode *drm_displayid_detailed(struct displayid_detailed_timings_1
4920 *timings)
4921 {
4922 struct drm_display_mode *mode;
4923 unsigned pixel_clock = (timings->pixel_clock[0] |
4924 (timings->pixel_clock[1] << 8) |
4925 (timings->pixel_clock[2] << 16));
4926 unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
4927 unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
4928 unsigned hsync = (timings->hsync[0] |
4929 (timings->hsync[1] & 0x7f) << 8) + 1;
4930 unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
4931 unsigned vactive = (timings->vactive[0] |
4932 timings->vactive[1] << 8) + 1;
4933 unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
4934 unsigned vsync = (timings->vsync[0] |
4935 (timings->vsync[1] & 0x7f) << 8) + 1;
4936 unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
4937 bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
4938 bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
4939
4940 mode = drm_mode_create();
4941 if (!mode)
4942 return NULL;
4943
4944 mode->clock = pixel_clock * 10;
4945 mode->hdisplay = hactive;
4946 mode->hsync_start = mode->hdisplay + hsync;
4947 mode->hsync_end = mode->hsync_start + hsync_width;
4948 mode->htotal = mode->hdisplay + hblank;
4949
4950 mode->vdisplay = vactive;
4951 mode->vsync_start = mode->vdisplay + vsync;
4952 mode->vsync_end = mode->vsync_start + vsync_width;
4953 mode->vtotal = mode->vdisplay + vblank;
4954
4955 mode->flags = 0;
4956 mode->flags |=
4957 hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
4958 mode->flags |=
4959 vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
4960 mode->type = DRM_MODE_TYPE_DRIVER;
4961
4962 if (timings->flags & 0x80)
4963 mode->type |= DRM_MODE_TYPE_PREFERRED;
4964 mode->vrefresh = drm_get_vrefresh(mode);
4965
4966 return mode;
4967 }
4968
add_displayid_detailed_1_modes(struct hdmi_edid_data * data,struct displayid_block * block)4969 static int add_displayid_detailed_1_modes(struct hdmi_edid_data *data,
4970 struct displayid_block *block)
4971 {
4972 struct displayid_detailed_timing_block *det;
4973 int i;
4974 int num_timings;
4975 struct drm_display_mode *newmode;
4976 int num_modes = 0;
4977
4978 det = (struct displayid_detailed_timing_block *)block;
4979 /* blocks must be multiple of 20 bytes length */
4980 if (block->num_bytes % 20)
4981 return 0;
4982
4983 num_timings = block->num_bytes / 20;
4984 for (i = 0; i < num_timings; i++) {
4985 struct displayid_detailed_timings_1 *timings =
4986 &det->timings[i];
4987
4988 newmode = drm_displayid_detailed(timings);
4989 if (!newmode)
4990 continue;
4991
4992 drm_add_hdmi_modes(data, newmode);
4993 num_modes++;
4994 drm_mode_destroy(newmode);
4995 }
4996 return num_modes;
4997 }
4998
add_displayid_detailed_modes(struct hdmi_edid_data * data,struct edid * edid)4999 static int add_displayid_detailed_modes(struct hdmi_edid_data *data,
5000 struct edid *edid)
5001 {
5002 u8 *displayid;
5003 int ret;
5004 int idx = 1;
5005 int length = EDID_SIZE;
5006 struct displayid_block *block;
5007 int num_modes = 0;
5008
5009 displayid = drm_find_displayid_extension(edid);
5010 if (!displayid)
5011 return 0;
5012
5013 ret = validate_displayid(displayid, length, idx);
5014 if (ret)
5015 return 0;
5016
5017 idx += sizeof(struct displayid_hdr);
5018 while (block = (struct displayid_block *)&displayid[idx],
5019 idx + sizeof(struct displayid_block) <= length &&
5020 idx + sizeof(struct displayid_block) + block->num_bytes <=
5021 length && block->num_bytes > 0) {
5022 idx += block->num_bytes + sizeof(struct displayid_block);
5023 switch (block->tag) {
5024 case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
5025 num_modes +=
5026 add_displayid_detailed_1_modes(data, block);
5027 break;
5028 }
5029 }
5030 return num_modes;
5031 }
5032
5033 static bool
mode_in_hsync_range(const struct drm_display_mode * mode,struct edid * edid,u8 * t)5034 mode_in_hsync_range(const struct drm_display_mode *mode,
5035 struct edid *edid, u8 *t)
5036 {
5037 int hsync, hmin, hmax;
5038
5039 hmin = t[7];
5040 if (edid->revision >= 4)
5041 hmin += ((t[4] & 0x04) ? 255 : 0);
5042 hmax = t[8];
5043 if (edid->revision >= 4)
5044 hmax += ((t[4] & 0x08) ? 255 : 0);
5045 hsync = drm_mode_hsync(mode);
5046
5047 return (hsync <= hmax && hsync >= hmin);
5048 }
5049
5050 static bool
mode_in_vsync_range(const struct drm_display_mode * mode,struct edid * edid,u8 * t)5051 mode_in_vsync_range(const struct drm_display_mode *mode,
5052 struct edid *edid, u8 *t)
5053 {
5054 int vsync, vmin, vmax;
5055
5056 vmin = t[5];
5057 if (edid->revision >= 4)
5058 vmin += ((t[4] & 0x01) ? 255 : 0);
5059 vmax = t[6];
5060 if (edid->revision >= 4)
5061 vmax += ((t[4] & 0x02) ? 255 : 0);
5062 vsync = drm_get_vrefresh(mode);
5063
5064 return (vsync <= vmax && vsync >= vmin);
5065 }
5066
5067 static u32
range_pixel_clock(struct edid * edid,u8 * t)5068 range_pixel_clock(struct edid *edid, u8 *t)
5069 {
5070 /* unspecified */
5071 if (t[9] == 0 || t[9] == 255)
5072 return 0;
5073
5074 /* 1.4 with CVT support gives us real precision, yay */
5075 if (edid->revision >= 4 && t[10] == 0x04)
5076 return (t[9] * 10000) - ((t[12] >> 2) * 250);
5077
5078 /* 1.3 is pathetic, so fuzz up a bit */
5079 return t[9] * 10000 + 5001;
5080 }
5081
5082 static bool
mode_in_range(const struct drm_display_mode * mode,struct edid * edid,struct detailed_timing * timing)5083 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
5084 struct detailed_timing *timing)
5085 {
5086 u32 max_clock;
5087 u8 *t = (u8 *)timing;
5088
5089 if (!mode_in_hsync_range(mode, edid, t))
5090 return false;
5091
5092 if (!mode_in_vsync_range(mode, edid, t))
5093 return false;
5094
5095 max_clock = range_pixel_clock(edid, t);
5096 if (max_clock)
5097 if (mode->clock > max_clock)
5098 return false;
5099
5100 /* 1.4 max horizontal check */
5101 if (edid->revision >= 4 && t[10] == 0x04)
5102 if (t[13] && mode->hdisplay > 8 *
5103 (t[13] + (256 * (t[12] & 0x3))))
5104 return false;
5105
5106 if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
5107 return false;
5108
5109 return true;
5110 }
5111
valid_inferred_mode(struct hdmi_edid_data * data,const struct drm_display_mode * mode)5112 static bool valid_inferred_mode(struct hdmi_edid_data *data,
5113 const struct drm_display_mode *mode)
5114 {
5115 const struct drm_display_mode *m;
5116 bool ok = false;
5117 int i;
5118
5119 for (i = 0; i < data->modes; i++) {
5120 m = &data->mode_buf[i];
5121 if (mode->hdisplay == m->hdisplay &&
5122 mode->vdisplay == m->vdisplay &&
5123 drm_get_vrefresh(mode) == drm_get_vrefresh(m))
5124 return false; /* duplicated */
5125 if (mode->hdisplay <= m->hdisplay &&
5126 mode->vdisplay <= m->vdisplay)
5127 ok = true;
5128 }
5129 return ok;
5130 }
5131
5132 static int
drm_dmt_modes_for_range(struct hdmi_edid_data * data,struct edid * edid,struct detailed_timing * timing)5133 drm_dmt_modes_for_range(struct hdmi_edid_data *data, struct edid *edid,
5134 struct detailed_timing *timing)
5135 {
5136 int i, modes = 0;
5137
5138 for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
5139 if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
5140 valid_inferred_mode(data, drm_dmt_modes + i)) {
5141 drm_add_hdmi_modes(data, &drm_dmt_modes[i]);
5142 modes++;
5143 }
5144 }
5145
5146 return modes;
5147 }
5148
5149 /* fix up 1366x768 mode from 1368x768;
5150 * GFT/CVT can't express 1366 width which isn't dividable by 8
5151 */
fixup_mode_1366x768(struct drm_display_mode * mode)5152 static void fixup_mode_1366x768(struct drm_display_mode *mode)
5153 {
5154 if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
5155 mode->hdisplay = 1366;
5156 mode->hsync_start--;
5157 mode->hsync_end--;
5158 }
5159 }
5160
5161 static int
drm_gtf_modes_for_range(struct hdmi_edid_data * data,struct edid * edid,struct detailed_timing * timing)5162 drm_gtf_modes_for_range(struct hdmi_edid_data *data, struct edid *edid,
5163 struct detailed_timing *timing)
5164 {
5165 int i, modes = 0;
5166 struct drm_display_mode *newmode;
5167
5168 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
5169 const struct minimode *m = &extra_modes[i];
5170
5171 newmode = drm_gtf_mode(m->w, m->h, m->r, 0, 0);
5172 if (!newmode)
5173 return modes;
5174
5175 fixup_mode_1366x768(newmode);
5176 if (!mode_in_range(newmode, edid, timing) ||
5177 !valid_inferred_mode(data, newmode)) {
5178 drm_mode_destroy(newmode);
5179 continue;
5180 }
5181
5182 drm_add_hdmi_modes(data, newmode);
5183 modes++;
5184 drm_mode_destroy(newmode);
5185 }
5186
5187 return modes;
5188 }
5189
5190 static int
drm_cvt_modes_for_range(struct hdmi_edid_data * data,struct edid * edid,struct detailed_timing * timing)5191 drm_cvt_modes_for_range(struct hdmi_edid_data *data, struct edid *edid,
5192 struct detailed_timing *timing)
5193 {
5194 int i, modes = 0;
5195 struct drm_display_mode *newmode;
5196 bool rb = drm_monitor_supports_rb(edid);
5197
5198 for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
5199 const struct minimode *m = &extra_modes[i];
5200
5201 newmode = drm_cvt_mode(m->w, m->h, m->r, rb, 0, 0);
5202 if (!newmode)
5203 return modes;
5204
5205 fixup_mode_1366x768(newmode);
5206 if (!mode_in_range(newmode, edid, timing) ||
5207 !valid_inferred_mode(data, newmode)) {
5208 drm_mode_destroy(newmode);
5209 continue;
5210 }
5211
5212 drm_add_hdmi_modes(data, newmode);
5213 modes++;
5214 drm_mode_destroy(newmode);
5215 }
5216
5217 return modes;
5218 }
5219
5220 static void
do_inferred_modes(struct detailed_timing * timing,void * c)5221 do_inferred_modes(struct detailed_timing *timing, void *c)
5222 {
5223 struct detailed_mode_closure *closure = c;
5224 struct detailed_non_pixel *data = &timing->data.other_data;
5225 struct detailed_data_monitor_range *range = &data->data.range;
5226
5227 if (data->type != EDID_DETAIL_MONITOR_RANGE)
5228 return;
5229
5230 closure->modes += drm_dmt_modes_for_range(closure->data,
5231 closure->edid,
5232 timing);
5233
5234 if (!version_greater(closure->edid, 1, 1))
5235 return; /* GTF not defined yet */
5236
5237 switch (range->flags) {
5238 case 0x02: /* secondary gtf, XXX could do more */
5239 case 0x00: /* default gtf */
5240 closure->modes += drm_gtf_modes_for_range(closure->data,
5241 closure->edid,
5242 timing);
5243 break;
5244 case 0x04: /* cvt, only in 1.4+ */
5245 if (!version_greater(closure->edid, 1, 3))
5246 break;
5247
5248 closure->modes += drm_cvt_modes_for_range(closure->data,
5249 closure->edid,
5250 timing);
5251 break;
5252 case 0x01: /* just the ranges, no formula */
5253 default:
5254 break;
5255 }
5256 }
5257
5258 static int
add_inferred_modes(struct hdmi_edid_data * data,struct edid * edid)5259 add_inferred_modes(struct hdmi_edid_data *data, struct edid *edid)
5260 {
5261 struct detailed_mode_closure closure = {
5262 .data = data,
5263 .edid = edid,
5264 };
5265
5266 if (version_greater(edid, 1, 0))
5267 drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
5268 &closure);
5269
5270 return closure.modes;
5271 }
5272
5273 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
5274 #define MODE_REFRESH_DIFF(c, t) (abs((c) - (t)))
5275
5276 /**
5277 * edid_fixup_preferred - set preferred modes based on quirk list
5278 * @data: the structure that save parsed hdmi edid data
5279 * @quirks: quirks list
5280 *
5281 * Walk the mode list, clearing the preferred status
5282 * on existing modes and setting it anew for the right mode ala @quirks.
5283 */
edid_fixup_preferred(struct hdmi_edid_data * data,u32 quirks)5284 static void edid_fixup_preferred(struct hdmi_edid_data *data,
5285 u32 quirks)
5286 {
5287 struct drm_display_mode *cur_mode, *preferred_mode;
5288 int i, target_refresh = 0;
5289 int num = data->modes;
5290 int cur_vrefresh, preferred_vrefresh;
5291
5292 if (!num)
5293 return;
5294
5295 preferred_mode = data->preferred_mode;
5296
5297 if (quirks & EDID_QUIRK_PREFER_LARGE_60)
5298 target_refresh = 60;
5299 if (quirks & EDID_QUIRK_PREFER_LARGE_75)
5300 target_refresh = 75;
5301
5302 for (i = 0; i < num; i++) {
5303 cur_mode = &data->mode_buf[i];
5304 cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
5305
5306 if (cur_mode == preferred_mode)
5307 continue;
5308
5309 /* Largest mode is preferred */
5310 if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
5311 preferred_mode = cur_mode;
5312
5313 cur_vrefresh = cur_mode->vrefresh ?
5314 cur_mode->vrefresh : drm_get_vrefresh(cur_mode);
5315 preferred_vrefresh = preferred_mode->vrefresh ?
5316 preferred_mode->vrefresh : drm_get_vrefresh(preferred_mode);
5317 /* At a given size, try to get closest to target refresh */
5318 if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
5319 MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
5320 MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
5321 preferred_mode = cur_mode;
5322 }
5323 }
5324 preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
5325 data->preferred_mode = preferred_mode;
5326 }
5327
5328 static const u8 edid_header[] = {
5329 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
5330 };
5331
5332 /**
5333 * drm_edid_header_is_valid - sanity check the header of the base EDID block
5334 * @raw_edid: pointer to raw base EDID block
5335 *
5336 * Sanity check the header of the base EDID block.
5337 *
5338 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
5339 */
drm_edid_header_is_valid(const u8 * raw_edid)5340 static int drm_edid_header_is_valid(const u8 *raw_edid)
5341 {
5342 int i, score = 0;
5343
5344 for (i = 0; i < sizeof(edid_header); i++)
5345 if (raw_edid[i] == edid_header[i])
5346 score++;
5347
5348 return score;
5349 }
5350
drm_edid_block_checksum(const u8 * raw_edid)5351 static int drm_edid_block_checksum(const u8 *raw_edid)
5352 {
5353 int i;
5354 u8 csum = 0;
5355
5356 for (i = 0; i < EDID_SIZE; i++)
5357 csum += raw_edid[i];
5358
5359 return csum;
5360 }
5361
drm_edid_is_zero(const u8 * in_edid,int length)5362 static bool drm_edid_is_zero(const u8 *in_edid, int length)
5363 {
5364 if (memchr_inv(in_edid, 0, length))
5365 return false;
5366
5367 return true;
5368 }
5369
5370 /**
5371 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
5372 * @raw_edid: pointer to raw EDID block
5373 * @block: type of block to validate (0 for base, extension otherwise)
5374 * @print_bad_edid: if true, dump bad EDID blocks to the console
5375 * @edid_corrupt: if true, the header or checksum is invalid
5376 *
5377 * Validate a base or extension EDID block and optionally dump bad blocks to
5378 * the console.
5379 *
5380 * Return: True if the block is valid, false otherwise.
5381 */
5382 static
drm_edid_block_valid(u8 * raw_edid,int block,bool print_bad_edid,bool * edid_corrupt)5383 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
5384 bool *edid_corrupt)
5385 {
5386 u8 csum;
5387 int edid_fixup = 6;
5388 struct edid *edid = (struct edid *)raw_edid;
5389
5390 if ((!raw_edid))
5391 return false;
5392
5393 if (block == 0) {
5394 int score = drm_edid_header_is_valid(raw_edid);
5395
5396 if (score == 8) {
5397 if (edid_corrupt)
5398 *edid_corrupt = false;
5399 } else if (score >= edid_fixup) {
5400 /* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
5401 * The corrupt flag needs to be set here otherwise, the
5402 * fix-up code here will correct the problem, the
5403 * checksum is correct and the test fails
5404 */
5405 if (edid_corrupt)
5406 *edid_corrupt = true;
5407 debug("Fixing header, your hardware may be failing\n");
5408 memcpy(raw_edid, edid_header, sizeof(edid_header));
5409 } else {
5410 if (edid_corrupt)
5411 *edid_corrupt = true;
5412 goto bad;
5413 }
5414 }
5415
5416 csum = drm_edid_block_checksum(raw_edid);
5417 if (csum) {
5418 if (print_bad_edid) {
5419 debug("EDID checksum is invalid, remainder is %d\n",
5420 csum);
5421 }
5422
5423 if (edid_corrupt)
5424 *edid_corrupt = true;
5425
5426 /* allow CEA to slide through, switches mangle this */
5427 if (raw_edid[0] != 0x02)
5428 goto bad;
5429 }
5430
5431 /* per-block-type checks */
5432 switch (raw_edid[0]) {
5433 case 0: /* base */
5434 if (edid->version != 1) {
5435 debug("EDID has major version %d, instead of 1\n",
5436 edid->version);
5437 goto bad;
5438 }
5439
5440 if (edid->revision > 4)
5441 debug("minor > 4, assuming backward compatibility\n");
5442 break;
5443
5444 default:
5445 break;
5446 }
5447
5448 return true;
5449
5450 bad:
5451 if (print_bad_edid) {
5452 if (drm_edid_is_zero(raw_edid, EDID_SIZE)) {
5453 debug("EDID block is all zeroes\n");
5454 } else {
5455 debug("Raw EDID:\n");
5456 print_hex_dump("", DUMP_PREFIX_NONE, 16, 1,
5457 raw_edid, EDID_SIZE, false);
5458 }
5459 }
5460 return false;
5461 }
5462
5463 /**
5464 * drm_edid_is_valid - sanity check EDID data
5465 * @edid: EDID data
5466 *
5467 * Sanity-check an entire EDID record (including extensions)
5468 *
5469 * Return: True if the EDID data is valid, false otherwise.
5470 */
drm_edid_is_valid(struct edid * edid)5471 static bool drm_edid_is_valid(struct edid *edid)
5472 {
5473 int i;
5474 u8 *raw = (u8 *)edid;
5475
5476 if (!edid)
5477 return false;
5478
5479 for (i = 0; i <= edid->extensions; i++)
5480 if (!drm_edid_block_valid(raw + i * EDID_SIZE, i, true, NULL))
5481 return false;
5482
5483 return true;
5484 }
5485
5486 /**
5487 * drm_add_edid_modes - add modes from EDID data, if available
5488 * @data: data we're probing
5489 * @edid: EDID data
5490 *
5491 * Add the specified modes to the data's mode list.
5492 *
5493 * Return: The number of modes added or 0 if we couldn't find any.
5494 */
drm_add_edid_modes(struct hdmi_edid_data * data,u8 * raw_edid)5495 int drm_add_edid_modes(struct hdmi_edid_data *data, u8 *raw_edid)
5496 {
5497 int num_modes = 0;
5498 u32 quirks;
5499 struct edid *edid = (struct edid *)raw_edid;
5500
5501 if (!edid) {
5502 debug("no edid\n");
5503 return 0;
5504 }
5505
5506 if (!drm_edid_is_valid(edid)) {
5507 debug("EDID invalid\n");
5508 return 0;
5509 }
5510
5511 if (!data->mode_buf) {
5512 debug("mode buff is null\n");
5513 return 0;
5514 }
5515
5516 quirks = edid_get_quirks(edid);
5517 /*
5518 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
5519 * To avoid multiple parsing of same block, lets parse that map
5520 * from sink info, before parsing CEA modes.
5521 */
5522 drm_add_display_info(data, edid);
5523
5524 /*
5525 * EDID spec says modes should be preferred in this order:
5526 * - preferred detailed mode
5527 * - other detailed modes from base block
5528 * - detailed modes from extension blocks
5529 * - CVT 3-byte code modes
5530 * - standard timing codes
5531 * - established timing codes
5532 * - modes inferred from GTF or CVT range information
5533 *
5534 * We get this pretty much right.
5535 *
5536 * XXX order for additional mode types in extension blocks?
5537 */
5538 num_modes += add_detailed_modes(data, edid, quirks);
5539 num_modes += add_cvt_modes(data, edid);
5540 num_modes += add_standard_modes(data, edid);
5541 num_modes += add_established_modes(data, edid);
5542 num_modes += add_cea_modes(data, edid);
5543 num_modes += add_alternate_cea_modes(data, edid);
5544 num_modes += add_displayid_detailed_modes(data, edid);
5545
5546 if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
5547 num_modes += add_inferred_modes(data, edid);
5548
5549 if (num_modes > 0)
5550 data->preferred_mode = &data->mode_buf[0];
5551
5552 if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
5553 edid_fixup_preferred(data, quirks);
5554
5555 if (quirks & EDID_QUIRK_FORCE_6BPC)
5556 data->display_info.bpc = 6;
5557
5558 if (quirks & EDID_QUIRK_FORCE_8BPC)
5559 data->display_info.bpc = 8;
5560
5561 if (quirks & EDID_QUIRK_FORCE_10BPC)
5562 data->display_info.bpc = 10;
5563
5564 if (quirks & EDID_QUIRK_FORCE_12BPC)
5565 data->display_info.bpc = 12;
5566
5567 return num_modes;
5568 }
5569
drm_match_cea_mode(struct drm_display_mode * to_match)5570 u8 drm_match_cea_mode(struct drm_display_mode *to_match)
5571 {
5572 u8 vic;
5573
5574 if (!to_match->clock) {
5575 printf("can't find to match\n");
5576 return 0;
5577 }
5578
5579 for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
5580 const struct drm_display_mode *cea_mode = cea_mode_for_vic(vic);
5581 unsigned int clock1, clock2;
5582
5583 /* Check both 60Hz and 59.94Hz */
5584 clock1 = cea_mode->clock;
5585 clock2 = cea_mode_alternate_clock(cea_mode);
5586 if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
5587 KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
5588 drm_mode_equal_no_clocks_no_stereo(to_match, cea_mode))
5589 return vic;
5590 }
5591
5592 return 0;
5593 }
5594
drm_get_cea_aspect_ratio(const u8 video_code)5595 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
5596 {
5597 const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
5598
5599 if (mode)
5600 return mode->picture_aspect_ratio;
5601
5602 return HDMI_PICTURE_ASPECT_NONE;
5603 }
5604
5605 int
drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe * frame,struct drm_display_mode * mode,bool is_hdmi2_sink)5606 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
5607 struct drm_display_mode *mode,
5608 bool is_hdmi2_sink)
5609 {
5610 int err;
5611
5612 if (!frame || !mode)
5613 return -EINVAL;
5614
5615 err = hdmi_avi_infoframe_init(frame);
5616 if (err < 0)
5617 return err;
5618
5619 if (mode->flags & DRM_MODE_FLAG_DBLCLK)
5620 frame->pixel_repeat = 1;
5621
5622 frame->video_code = drm_match_cea_mode(mode);
5623
5624 /*
5625 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
5626 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
5627 * have to make sure we dont break HDMI 1.4 sinks.
5628 */
5629 if (!is_hdmi2_sink && frame->video_code > 64)
5630 frame->video_code = 0;
5631
5632 /*
5633 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
5634 * we should send its VIC in vendor infoframes, else send the
5635 * VIC in AVI infoframes. Lets check if this mode is present in
5636 * HDMI 1.4b 4K modes
5637 */
5638 if (frame->video_code) {
5639 u8 vendor_if_vic = drm_match_hdmi_mode(mode);
5640 bool is_s3d = mode->flags & DRM_MODE_FLAG_3D_MASK;
5641
5642 if (drm_valid_hdmi_vic(vendor_if_vic) && !is_s3d)
5643 frame->video_code = 0;
5644 }
5645
5646 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
5647
5648 /*
5649 * Populate picture aspect ratio from either
5650 * user input (if specified) or from the CEA mode list.
5651 */
5652 if (mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_4_3 ||
5653 mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_16_9)
5654 frame->picture_aspect = mode->picture_aspect_ratio;
5655 else if (frame->video_code > 0)
5656 frame->picture_aspect = drm_get_cea_aspect_ratio(
5657 frame->video_code);
5658
5659 if (frame->picture_aspect > HDMI_PICTURE_ASPECT_16_9)
5660 frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
5661 frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
5662 frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
5663
5664 return 0;
5665 }
5666
5667 /**
5668 * hdmi_vendor_infoframe_init() - initialize an HDMI vendor infoframe
5669 * @frame: HDMI vendor infoframe
5670 *
5671 * Returns 0 on success or a negative error code on failure.
5672 */
hdmi_vendor_infoframe_init(struct hdmi_vendor_infoframe * frame)5673 int hdmi_vendor_infoframe_init(struct hdmi_vendor_infoframe *frame)
5674 {
5675 memset(frame, 0, sizeof(*frame));
5676
5677 frame->type = HDMI_INFOFRAME_TYPE_VENDOR;
5678 frame->version = 1;
5679
5680 frame->oui = HDMI_IEEE_OUI;
5681
5682 /*
5683 * 0 is a valid value for s3d_struct, so we use a special "not set"
5684 * value
5685 */
5686 frame->s3d_struct = HDMI_3D_STRUCTURE_INVALID;
5687
5688 return 0;
5689 }
5690
5691 /**
5692 * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
5693 * quantization range information
5694 * @frame: HDMI AVI infoframe
5695 * @rgb_quant_range: RGB quantization range (Q)
5696 * @rgb_quant_range_selectable: Sink support selectable RGB quantization range (QS)
5697 */
5698 void
drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe * frame,struct drm_display_mode * mode,enum hdmi_quantization_range rgb_quant_range,bool rgb_quant_range_selectable)5699 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
5700 struct drm_display_mode *mode,
5701 enum hdmi_quantization_range rgb_quant_range,
5702 bool rgb_quant_range_selectable)
5703 {
5704 /*
5705 * CEA-861:
5706 * "A Source shall not send a non-zero Q value that does not correspond
5707 * to the default RGB Quantization Range for the transmitted Picture
5708 * unless the Sink indicates support for the Q bit in a Video
5709 * Capabilities Data Block."
5710 *
5711 * HDMI 2.0 recommends sending non-zero Q when it does match the
5712 * default RGB quantization range for the mode, even when QS=0.
5713 */
5714 if (rgb_quant_range_selectable ||
5715 rgb_quant_range == drm_default_rgb_quant_range(mode))
5716 frame->quantization_range = rgb_quant_range;
5717 else
5718 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
5719
5720 /*
5721 * CEA-861-F:
5722 * "When transmitting any RGB colorimetry, the Source should set the
5723 * YQ-field to match the RGB Quantization Range being transmitted
5724 * (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
5725 * set YQ=1) and the Sink shall ignore the YQ-field."
5726 */
5727 if (rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
5728 frame->ycc_quantization_range =
5729 HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
5730 else
5731 frame->ycc_quantization_range =
5732 HDMI_YCC_QUANTIZATION_RANGE_FULL;
5733 }
5734
5735 static enum hdmi_3d_structure
s3d_structure_from_display_mode(const struct drm_display_mode * mode)5736 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
5737 {
5738 u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
5739
5740 switch (layout) {
5741 case DRM_MODE_FLAG_3D_FRAME_PACKING:
5742 return HDMI_3D_STRUCTURE_FRAME_PACKING;
5743 case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
5744 return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
5745 case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
5746 return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
5747 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
5748 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
5749 case DRM_MODE_FLAG_3D_L_DEPTH:
5750 return HDMI_3D_STRUCTURE_L_DEPTH;
5751 case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
5752 return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
5753 case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
5754 return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
5755 case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
5756 return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
5757 default:
5758 return HDMI_3D_STRUCTURE_INVALID;
5759 }
5760 }
5761
5762 int
drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe * frame,struct drm_display_mode * mode)5763 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
5764 struct drm_display_mode *mode)
5765 {
5766 int err;
5767 u32 s3d_flags;
5768 u8 vic;
5769
5770 if (!frame || !mode)
5771 return -EINVAL;
5772
5773 vic = drm_match_hdmi_mode(mode);
5774
5775 s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
5776
5777 if (!vic && !s3d_flags)
5778 return -EINVAL;
5779
5780 if (vic && s3d_flags)
5781 return -EINVAL;
5782
5783 err = hdmi_vendor_infoframe_init(frame);
5784 if (err < 0)
5785 return err;
5786
5787 if (vic)
5788 frame->vic = vic;
5789 else
5790 frame->s3d_struct = s3d_structure_from_display_mode(mode);
5791
5792 return 0;
5793 }
5794
hdmi_infoframe_checksum(u8 * ptr,size_t size)5795 static u8 hdmi_infoframe_checksum(u8 *ptr, size_t size)
5796 {
5797 u8 csum = 0;
5798 size_t i;
5799
5800 /* compute checksum */
5801 for (i = 0; i < size; i++)
5802 csum += ptr[i];
5803
5804 return 256 - csum;
5805 }
5806
hdmi_infoframe_set_checksum(void * buffer,size_t size)5807 static void hdmi_infoframe_set_checksum(void *buffer, size_t size)
5808 {
5809 u8 *ptr = buffer;
5810
5811 ptr[3] = hdmi_infoframe_checksum(buffer, size);
5812 }
5813
5814 /**
5815 * hdmi_avi_infoframe_init() - initialize an HDMI AVI infoframe
5816 * @frame: HDMI AVI infoframe
5817 *
5818 * Returns 0 on success or a negative error code on failure.
5819 */
hdmi_avi_infoframe_init(struct hdmi_avi_infoframe * frame)5820 int hdmi_avi_infoframe_init(struct hdmi_avi_infoframe *frame)
5821 {
5822 memset(frame, 0, sizeof(*frame));
5823
5824 frame->type = HDMI_INFOFRAME_TYPE_AVI;
5825 frame->version = 2;
5826 frame->length = HDMI_AVI_INFOFRAME_SIZE;
5827
5828 return 0;
5829 }
5830 EXPORT_SYMBOL(hdmi_avi_infoframe_init);
5831
5832 /**
5833 * hdmi_avi_infoframe_pack() - write HDMI AVI infoframe to binary buffer
5834 * @frame: HDMI AVI infoframe
5835 * @buffer: destination buffer
5836 * @size: size of buffer
5837 *
5838 * Packs the information contained in the @frame structure into a binary
5839 * representation that can be written into the corresponding controller
5840 * registers. Also computes the checksum as required by section 5.3.5 of
5841 * the HDMI 1.4 specification.
5842 *
5843 * Returns the number of bytes packed into the binary buffer or a negative
5844 * error code on failure.
5845 */
hdmi_avi_infoframe_pack(struct hdmi_avi_infoframe * frame,void * buffer,size_t size)5846 ssize_t hdmi_avi_infoframe_pack(struct hdmi_avi_infoframe *frame, void *buffer,
5847 size_t size)
5848 {
5849 u8 *ptr = buffer;
5850 size_t length;
5851
5852 length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
5853
5854 if (size < length)
5855 return -ENOSPC;
5856
5857 memset(buffer, 0, size);
5858
5859 ptr[0] = frame->type;
5860 ptr[1] = frame->version;
5861 ptr[2] = frame->length;
5862 ptr[3] = 0; /* checksum */
5863
5864 /* start infoframe payload */
5865 ptr += HDMI_INFOFRAME_HEADER_SIZE;
5866
5867 ptr[0] = ((frame->colorspace & 0x3) << 5) | (frame->scan_mode & 0x3);
5868
5869 /*
5870 * Data byte 1, bit 4 has to be set if we provide the active format
5871 * aspect ratio
5872 */
5873 if (frame->active_aspect & 0xf)
5874 ptr[0] |= BIT(4);
5875
5876 /* Bit 3 and 2 indicate if we transmit horizontal/vertical bar data */
5877 if (frame->top_bar || frame->bottom_bar)
5878 ptr[0] |= BIT(3);
5879
5880 if (frame->left_bar || frame->right_bar)
5881 ptr[0] |= BIT(2);
5882
5883 ptr[1] = ((frame->colorimetry & 0x3) << 6) |
5884 ((frame->picture_aspect & 0x3) << 4) |
5885 (frame->active_aspect & 0xf);
5886
5887 ptr[2] = ((frame->extended_colorimetry & 0x7) << 4) |
5888 ((frame->quantization_range & 0x3) << 2) |
5889 (frame->nups & 0x3);
5890
5891 if (frame->itc)
5892 ptr[2] |= BIT(7);
5893
5894 ptr[3] = frame->video_code & 0x7f;
5895
5896 ptr[4] = ((frame->ycc_quantization_range & 0x3) << 6) |
5897 ((frame->content_type & 0x3) << 4) |
5898 (frame->pixel_repeat & 0xf);
5899
5900 ptr[5] = frame->top_bar & 0xff;
5901 ptr[6] = (frame->top_bar >> 8) & 0xff;
5902 ptr[7] = frame->bottom_bar & 0xff;
5903 ptr[8] = (frame->bottom_bar >> 8) & 0xff;
5904 ptr[9] = frame->left_bar & 0xff;
5905 ptr[10] = (frame->left_bar >> 8) & 0xff;
5906 ptr[11] = frame->right_bar & 0xff;
5907 ptr[12] = (frame->right_bar >> 8) & 0xff;
5908
5909 hdmi_infoframe_set_checksum(buffer, length);
5910
5911 return length;
5912 }
5913 EXPORT_SYMBOL(hdmi_avi_infoframe_pack);
5914
hdmi_avi_infoframe_check_only(const struct hdmi_avi_infoframe * frame)5915 static int hdmi_avi_infoframe_check_only(const struct hdmi_avi_infoframe *frame)
5916 {
5917 if (frame->type != HDMI_INFOFRAME_TYPE_AVI ||
5918 frame->version != 2 ||
5919 frame->length != HDMI_AVI_INFOFRAME_SIZE)
5920 return -EINVAL;
5921
5922 if (frame->picture_aspect > HDMI_PICTURE_ASPECT_16_9)
5923 return -EINVAL;
5924
5925 return 0;
5926 }
5927
5928 /**
5929 * hdmi_avi_infoframe_check() - check a HDMI AVI infoframe
5930 * @frame: HDMI AVI infoframe
5931 *
5932 * Validates that the infoframe is consistent and updates derived fields
5933 * (eg. length) based on other fields.
5934 *
5935 * Returns 0 on success or a negative error code on failure.
5936 */
hdmi_avi_infoframe_check(struct hdmi_avi_infoframe * frame)5937 int hdmi_avi_infoframe_check(struct hdmi_avi_infoframe *frame)
5938 {
5939 return hdmi_avi_infoframe_check_only(frame);
5940 }
5941 EXPORT_SYMBOL(hdmi_avi_infoframe_check);
5942
5943 /**
5944 * hdmi_avi_infoframe_pack_only() - write HDMI AVI infoframe to binary buffer
5945 * @frame: HDMI AVI infoframe
5946 * @buffer: destination buffer
5947 * @size: size of buffer
5948 *
5949 * Packs the information contained in the @frame structure into a binary
5950 * representation that can be written into the corresponding controller
5951 * registers. Also computes the checksum as required by section 5.3.5 of
5952 * the HDMI 1.4 specification.
5953 *
5954 * Returns the number of bytes packed into the binary buffer or a negative
5955 * error code on failure.
5956 */
hdmi_avi_infoframe_pack_only(const struct hdmi_avi_infoframe * frame,void * buffer,size_t size)5957 ssize_t hdmi_avi_infoframe_pack_only(const struct hdmi_avi_infoframe *frame,
5958 void *buffer, size_t size)
5959 {
5960 u8 *ptr = buffer;
5961 size_t length;
5962 int ret;
5963
5964 ret = hdmi_avi_infoframe_check_only(frame);
5965 if (ret)
5966 return ret;
5967
5968 length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
5969
5970 if (size < length)
5971 return -ENOSPC;
5972
5973 memset(buffer, 0, size);
5974
5975 ptr[0] = frame->type;
5976 ptr[1] = frame->version;
5977 ptr[2] = frame->length;
5978 ptr[3] = 0; /* checksum */
5979
5980 /* start infoframe payload */
5981 ptr += HDMI_INFOFRAME_HEADER_SIZE;
5982
5983 ptr[0] = ((frame->colorspace & 0x3) << 5) | (frame->scan_mode & 0x3);
5984
5985 /*
5986 * Data byte 1, bit 4 has to be set if we provide the active format
5987 * aspect ratio
5988 */
5989 if (frame->active_aspect & 0xf)
5990 ptr[0] |= BIT(4);
5991
5992 /* Bit 3 and 2 indicate if we transmit horizontal/vertical bar data */
5993 if (frame->top_bar || frame->bottom_bar)
5994 ptr[0] |= BIT(3);
5995
5996 if (frame->left_bar || frame->right_bar)
5997 ptr[0] |= BIT(2);
5998
5999 ptr[1] = ((frame->colorimetry & 0x3) << 6) |
6000 ((frame->picture_aspect & 0x3) << 4) |
6001 (frame->active_aspect & 0xf);
6002
6003 ptr[2] = ((frame->extended_colorimetry & 0x7) << 4) |
6004 ((frame->quantization_range & 0x3) << 2) |
6005 (frame->nups & 0x3);
6006
6007 if (frame->itc)
6008 ptr[2] |= BIT(7);
6009
6010 ptr[3] = frame->video_code & 0xff;
6011
6012 ptr[4] = ((frame->ycc_quantization_range & 0x3) << 6) |
6013 ((frame->content_type & 0x3) << 4) |
6014 (frame->pixel_repeat & 0xf);
6015
6016 ptr[5] = frame->top_bar & 0xff;
6017 ptr[6] = (frame->top_bar >> 8) & 0xff;
6018 ptr[7] = frame->bottom_bar & 0xff;
6019 ptr[8] = (frame->bottom_bar >> 8) & 0xff;
6020 ptr[9] = frame->left_bar & 0xff;
6021 ptr[10] = (frame->left_bar >> 8) & 0xff;
6022 ptr[11] = frame->right_bar & 0xff;
6023 ptr[12] = (frame->right_bar >> 8) & 0xff;
6024
6025 hdmi_infoframe_set_checksum(buffer, length);
6026
6027 return length;
6028 }
6029 EXPORT_SYMBOL(hdmi_avi_infoframe_pack_only);
6030
6031 /**
6032 * hdmi_spd_infoframe_init() - initialize an HDMI SPD infoframe
6033 * @frame: HDMI SPD infoframe
6034 * @vendor: vendor string
6035 * @product: product string
6036 *
6037 * Returns 0 on success or a negative error code on failure.
6038 */
hdmi_spd_infoframe_init(struct hdmi_spd_infoframe * frame,const char * vendor,const char * product)6039 int hdmi_spd_infoframe_init(struct hdmi_spd_infoframe *frame,
6040 const char *vendor, const char *product)
6041 {
6042 memset(frame, 0, sizeof(*frame));
6043
6044 frame->type = HDMI_INFOFRAME_TYPE_SPD;
6045 frame->version = 1;
6046 frame->length = HDMI_SPD_INFOFRAME_SIZE;
6047
6048 strncpy(frame->vendor, vendor, sizeof(frame->vendor));
6049 strncpy(frame->product, product, sizeof(frame->product));
6050
6051 return 0;
6052 }
6053 EXPORT_SYMBOL(hdmi_spd_infoframe_init);
6054
6055 /**
6056 * hdmi_spd_infoframe_pack() - write HDMI SPD infoframe to binary buffer
6057 * @frame: HDMI SPD infoframe
6058 * @buffer: destination buffer
6059 * @size: size of buffer
6060 *
6061 * Packs the information contained in the @frame structure into a binary
6062 * representation that can be written into the corresponding controller
6063 * registers. Also computes the checksum as required by section 5.3.5 of
6064 * the HDMI 1.4 specification.
6065 *
6066 * Returns the number of bytes packed into the binary buffer or a negative
6067 * error code on failure.
6068 */
hdmi_spd_infoframe_pack(struct hdmi_spd_infoframe * frame,void * buffer,size_t size)6069 ssize_t hdmi_spd_infoframe_pack(struct hdmi_spd_infoframe *frame, void *buffer,
6070 size_t size)
6071 {
6072 u8 *ptr = buffer;
6073 size_t length;
6074
6075 length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6076
6077 if (size < length)
6078 return -ENOSPC;
6079
6080 memset(buffer, 0, size);
6081
6082 ptr[0] = frame->type;
6083 ptr[1] = frame->version;
6084 ptr[2] = frame->length;
6085 ptr[3] = 0; /* checksum */
6086
6087 /* start infoframe payload */
6088 ptr += HDMI_INFOFRAME_HEADER_SIZE;
6089
6090 memcpy(ptr, frame->vendor, sizeof(frame->vendor));
6091 memcpy(ptr + 8, frame->product, sizeof(frame->product));
6092
6093 ptr[24] = frame->sdi;
6094
6095 hdmi_infoframe_set_checksum(buffer, length);
6096
6097 return length;
6098 }
6099 EXPORT_SYMBOL(hdmi_spd_infoframe_pack);
6100
6101 /**
6102 * hdmi_audio_infoframe_init() - initialize an HDMI audio infoframe
6103 * @frame: HDMI audio infoframe
6104 *
6105 * Returns 0 on success or a negative error code on failure.
6106 */
hdmi_audio_infoframe_init(struct hdmi_audio_infoframe * frame)6107 int hdmi_audio_infoframe_init(struct hdmi_audio_infoframe *frame)
6108 {
6109 memset(frame, 0, sizeof(*frame));
6110
6111 frame->type = HDMI_INFOFRAME_TYPE_AUDIO;
6112 frame->version = 1;
6113 frame->length = HDMI_AUDIO_INFOFRAME_SIZE;
6114
6115 return 0;
6116 }
6117
6118 /**
6119 * hdmi_audio_infoframe_pack() - write HDMI audio infoframe to binary buffer
6120 * @frame: HDMI audio infoframe
6121 * @buffer: destination buffer
6122 * @size: size of buffer
6123 *
6124 * Packs the information contained in the @frame structure into a binary
6125 * representation that can be written into the corresponding controller
6126 * registers. Also computes the checksum as required by section 5.3.5 of
6127 * the HDMI 1.4 specification.
6128 *
6129 * Returns the number of bytes packed into the binary buffer or a negative
6130 * error code on failure.
6131 */
hdmi_audio_infoframe_pack(struct hdmi_audio_infoframe * frame,void * buffer,size_t size)6132 ssize_t hdmi_audio_infoframe_pack(struct hdmi_audio_infoframe *frame,
6133 void *buffer, size_t size)
6134 {
6135 unsigned char channels;
6136 char *ptr = buffer;
6137 size_t length;
6138
6139 length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6140
6141 if (size < length)
6142 return -ENOSPC;
6143
6144 memset(buffer, 0, size);
6145
6146 if (frame->channels >= 2)
6147 channels = frame->channels - 1;
6148 else
6149 channels = 0;
6150
6151 ptr[0] = frame->type;
6152 ptr[1] = frame->version;
6153 ptr[2] = frame->length;
6154 ptr[3] = 0; /* checksum */
6155
6156 /* start infoframe payload */
6157 ptr += HDMI_INFOFRAME_HEADER_SIZE;
6158
6159 ptr[0] = ((frame->coding_type & 0xf) << 4) | (channels & 0x7);
6160 ptr[1] = ((frame->sample_frequency & 0x7) << 2) |
6161 (frame->sample_size & 0x3);
6162 ptr[2] = frame->coding_type_ext & 0x1f;
6163 ptr[3] = frame->channel_allocation;
6164 ptr[4] = (frame->level_shift_value & 0xf) << 3;
6165
6166 if (frame->downmix_inhibit)
6167 ptr[4] |= BIT(7);
6168
6169 hdmi_infoframe_set_checksum(buffer, length);
6170
6171 return length;
6172 }
6173
6174 /**
6175 * hdmi_vendor_infoframe_pack() - write a HDMI vendor infoframe to binary buffer
6176 * @frame: HDMI infoframe
6177 * @buffer: destination buffer
6178 * @size: size of buffer
6179 *
6180 * Packs the information contained in the @frame structure into a binary
6181 * representation that can be written into the corresponding controller
6182 * registers. Also computes the checksum as required by section 5.3.5 of
6183 * the HDMI 1.4 specification.
6184 *
6185 * Returns the number of bytes packed into the binary buffer or a negative
6186 * error code on failure.
6187 */
hdmi_vendor_infoframe_pack(struct hdmi_vendor_infoframe * frame,void * buffer,size_t size)6188 ssize_t hdmi_vendor_infoframe_pack(struct hdmi_vendor_infoframe *frame,
6189 void *buffer, size_t size)
6190 {
6191 char *ptr = buffer;
6192 size_t length;
6193
6194 /* empty info frame */
6195 if (frame->vic == 0 && frame->s3d_struct == HDMI_3D_STRUCTURE_INVALID)
6196 return -EINVAL;
6197
6198 /* only one of those can be supplied */
6199 if (frame->vic != 0 && frame->s3d_struct != HDMI_3D_STRUCTURE_INVALID)
6200 return -EINVAL;
6201
6202 /* for side by side (half) we also need to provide 3D_Ext_Data */
6203 if (frame->s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF)
6204 frame->length = 6;
6205 else
6206 frame->length = 5;
6207
6208 length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6209
6210 if (size < length)
6211 return -ENOSPC;
6212
6213 memset(buffer, 0, size);
6214
6215 ptr[0] = frame->type;
6216 ptr[1] = frame->version;
6217 ptr[2] = frame->length;
6218 ptr[3] = 0; /* checksum */
6219
6220 /* HDMI OUI */
6221 ptr[4] = 0x03;
6222 ptr[5] = 0x0c;
6223 ptr[6] = 0x00;
6224
6225 if (frame->vic) {
6226 ptr[7] = 0x1 << 5; /* video format */
6227 ptr[8] = frame->vic;
6228 } else {
6229 ptr[7] = 0x2 << 5; /* video format */
6230 ptr[8] = (frame->s3d_struct & 0xf) << 4;
6231 if (frame->s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF)
6232 ptr[9] = (frame->s3d_ext_data & 0xf) << 4;
6233 }
6234
6235 hdmi_infoframe_set_checksum(buffer, length);
6236
6237 return length;
6238 }
6239
6240 /**
6241 * hdmi_drm_infoframe_init() - initialize an HDMI Dynaminc Range and
6242 * mastering infoframe
6243 * @frame: HDMI DRM infoframe
6244 *
6245 * Returns 0 on success or a negative error code on failure.
6246 */
hdmi_drm_infoframe_init(struct hdmi_drm_infoframe * frame)6247 int hdmi_drm_infoframe_init(struct hdmi_drm_infoframe *frame)
6248 {
6249 memset(frame, 0, sizeof(*frame));
6250
6251 frame->type = HDMI_INFOFRAME_TYPE_DRM;
6252 frame->version = 1;
6253
6254 return 0;
6255 }
6256
6257 /**
6258 * hdmi_drm_infoframe_pack() - write HDMI DRM infoframe to binary buffer
6259 * @frame: HDMI DRM infoframe
6260 * @buffer: destination buffer
6261 * @size: size of buffer
6262 *
6263 * Packs the information contained in the @frame structure into a binary
6264 * representation that can be written into the corresponding controller
6265 * registers. Also computes the checksum as required by section 5.3.5 of
6266 * the HDMI 1.4 specification.
6267 *
6268 * Returns the number of bytes packed into the binary buffer or a negative
6269 * error code on failure.
6270 */
hdmi_drm_infoframe_pack(struct hdmi_drm_infoframe * frame,void * buffer,size_t size)6271 ssize_t hdmi_drm_infoframe_pack(struct hdmi_drm_infoframe *frame, void *buffer,
6272 size_t size)
6273 {
6274 u8 *ptr = buffer;
6275 size_t length;
6276
6277 length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6278
6279 if (size < length)
6280 return -ENOSPC;
6281
6282 memset(buffer, 0, size);
6283
6284 ptr[0] = frame->type;
6285 ptr[1] = frame->version;
6286 ptr[2] = frame->length;
6287 ptr[3] = 0; /* checksum */
6288
6289 /* start infoframe payload */
6290 ptr += HDMI_INFOFRAME_HEADER_SIZE;
6291
6292 ptr[0] = frame->eotf;
6293 ptr[1] = frame->metadata_type;
6294
6295 ptr[2] = frame->display_primaries_x[0] & 0xff;
6296 ptr[3] = frame->display_primaries_x[0] >> 8;
6297
6298 ptr[4] = frame->display_primaries_x[1] & 0xff;
6299 ptr[5] = frame->display_primaries_x[1] >> 8;
6300
6301 ptr[6] = frame->display_primaries_x[2] & 0xff;
6302 ptr[7] = frame->display_primaries_x[2] >> 8;
6303
6304 ptr[9] = frame->display_primaries_y[0] & 0xff;
6305 ptr[10] = frame->display_primaries_y[0] >> 8;
6306
6307 ptr[11] = frame->display_primaries_y[1] & 0xff;
6308 ptr[12] = frame->display_primaries_y[1] >> 8;
6309
6310 ptr[13] = frame->display_primaries_y[2] & 0xff;
6311 ptr[14] = frame->display_primaries_y[2] >> 8;
6312
6313 ptr[15] = frame->white_point_x & 0xff;
6314 ptr[16] = frame->white_point_x >> 8;
6315
6316 ptr[17] = frame->white_point_y & 0xff;
6317 ptr[18] = frame->white_point_y >> 8;
6318
6319 ptr[19] = frame->max_mastering_display_luminance & 0xff;
6320 ptr[20] = frame->max_mastering_display_luminance >> 8;
6321
6322 ptr[21] = frame->min_mastering_display_luminance & 0xff;
6323 ptr[22] = frame->min_mastering_display_luminance >> 8;
6324
6325 ptr[23] = frame->max_cll & 0xff;
6326 ptr[24] = frame->max_cll >> 8;
6327
6328 ptr[25] = frame->max_fall & 0xff;
6329 ptr[26] = frame->max_fall >> 8;
6330
6331 hdmi_infoframe_set_checksum(buffer, length);
6332
6333 return length;
6334 }
6335
6336 /*
6337 * hdmi_vendor_any_infoframe_pack() - write a vendor infoframe to binary buffer
6338 */
6339 static ssize_t
hdmi_vendor_any_infoframe_pack(union hdmi_vendor_any_infoframe * frame,void * buffer,size_t size)6340 hdmi_vendor_any_infoframe_pack(union hdmi_vendor_any_infoframe *frame,
6341 void *buffer, size_t size)
6342 {
6343 /* we only know about HDMI vendor infoframes */
6344 if (frame->any.oui != HDMI_IEEE_OUI)
6345 return -EINVAL;
6346
6347 return hdmi_vendor_infoframe_pack(&frame->hdmi, buffer, size);
6348 }
6349
6350 /**
6351 * hdmi_infoframe_pack() - write a HDMI infoframe to binary buffer
6352 * @frame: HDMI infoframe
6353 * @buffer: destination buffer
6354 * @size: size of buffer
6355 *
6356 * Packs the information contained in the @frame structure into a binary
6357 * representation that can be written into the corresponding controller
6358 * registers. Also computes the checksum as required by section 5.3.5 of
6359 * the HDMI 1.4 specification.
6360 *
6361 * Returns the number of bytes packed into the binary buffer or a negative
6362 * error code on failure.
6363 */
6364 ssize_t
hdmi_infoframe_pack(union hdmi_infoframe * frame,void * buffer,size_t size)6365 hdmi_infoframe_pack(union hdmi_infoframe *frame, void *buffer, size_t size)
6366 {
6367 ssize_t length;
6368
6369 switch (frame->any.type) {
6370 case HDMI_INFOFRAME_TYPE_AVI:
6371 length = hdmi_avi_infoframe_pack(&frame->avi, buffer, size);
6372 break;
6373 case HDMI_INFOFRAME_TYPE_DRM:
6374 length = hdmi_drm_infoframe_pack(&frame->drm, buffer, size);
6375 break;
6376 case HDMI_INFOFRAME_TYPE_SPD:
6377 length = hdmi_spd_infoframe_pack(&frame->spd, buffer, size);
6378 break;
6379 case HDMI_INFOFRAME_TYPE_AUDIO:
6380 length = hdmi_audio_infoframe_pack(&frame->audio, buffer, size);
6381 break;
6382 case HDMI_INFOFRAME_TYPE_VENDOR:
6383 length = hdmi_vendor_any_infoframe_pack(&frame->vendor,
6384 buffer, size);
6385 break;
6386 default:
6387 printf("Bad infoframe type %d\n", frame->any.type);
6388 length = -EINVAL;
6389 }
6390
6391 return length;
6392 }
6393
6394 /**
6395 * hdmi_avi_infoframe_unpack() - unpack binary buffer to a HDMI AVI infoframe
6396 * @buffer: source buffer
6397 * @frame: HDMI AVI infoframe
6398 *
6399 * Unpacks the information contained in binary @buffer into a structured
6400 * @frame of the HDMI Auxiliary Video (AVI) information frame.
6401 * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6402 * specification.
6403 *
6404 * Returns 0 on success or a negative error code on failure.
6405 */
hdmi_avi_infoframe_unpack(struct hdmi_avi_infoframe * frame,void * buffer)6406 static int hdmi_avi_infoframe_unpack(struct hdmi_avi_infoframe *frame,
6407 void *buffer)
6408 {
6409 u8 *ptr = buffer;
6410 int ret;
6411
6412 if (ptr[0] != HDMI_INFOFRAME_TYPE_AVI ||
6413 ptr[1] != 2 ||
6414 ptr[2] != HDMI_AVI_INFOFRAME_SIZE)
6415 return -EINVAL;
6416
6417 if (hdmi_infoframe_checksum(buffer, HDMI_INFOFRAME_SIZE(AVI)) != 0)
6418 return -EINVAL;
6419
6420 ret = hdmi_avi_infoframe_init(frame);
6421 if (ret)
6422 return ret;
6423
6424 ptr += HDMI_INFOFRAME_HEADER_SIZE;
6425
6426 frame->colorspace = (ptr[0] >> 5) & 0x3;
6427 if (ptr[0] & 0x10)
6428 frame->active_aspect = ptr[1] & 0xf;
6429 if (ptr[0] & 0x8) {
6430 frame->top_bar = (ptr[5] << 8) + ptr[6];
6431 frame->bottom_bar = (ptr[7] << 8) + ptr[8];
6432 }
6433 if (ptr[0] & 0x4) {
6434 frame->left_bar = (ptr[9] << 8) + ptr[10];
6435 frame->right_bar = (ptr[11] << 8) + ptr[12];
6436 }
6437 frame->scan_mode = ptr[0] & 0x3;
6438
6439 frame->colorimetry = (ptr[1] >> 6) & 0x3;
6440 frame->picture_aspect = (ptr[1] >> 4) & 0x3;
6441 frame->active_aspect = ptr[1] & 0xf;
6442
6443 frame->itc = ptr[2] & 0x80 ? true : false;
6444 frame->extended_colorimetry = (ptr[2] >> 4) & 0x7;
6445 frame->quantization_range = (ptr[2] >> 2) & 0x3;
6446 frame->nups = ptr[2] & 0x3;
6447
6448 frame->video_code = ptr[3] & 0x7f;
6449 frame->ycc_quantization_range = (ptr[4] >> 6) & 0x3;
6450 frame->content_type = (ptr[4] >> 4) & 0x3;
6451
6452 frame->pixel_repeat = ptr[4] & 0xf;
6453
6454 return 0;
6455 }
6456
6457 /**
6458 * hdmi_spd_infoframe_unpack() - unpack binary buffer to a HDMI SPD infoframe
6459 * @buffer: source buffer
6460 * @frame: HDMI SPD infoframe
6461 *
6462 * Unpacks the information contained in binary @buffer into a structured
6463 * @frame of the HDMI Source Product Description (SPD) information frame.
6464 * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6465 * specification.
6466 *
6467 * Returns 0 on success or a negative error code on failure.
6468 */
hdmi_spd_infoframe_unpack(struct hdmi_spd_infoframe * frame,void * buffer)6469 static int hdmi_spd_infoframe_unpack(struct hdmi_spd_infoframe *frame,
6470 void *buffer)
6471 {
6472 char *ptr = buffer;
6473 int ret;
6474
6475 if (ptr[0] != HDMI_INFOFRAME_TYPE_SPD ||
6476 ptr[1] != 1 ||
6477 ptr[2] != HDMI_SPD_INFOFRAME_SIZE) {
6478 return -EINVAL;
6479 }
6480
6481 if (hdmi_infoframe_checksum(buffer, HDMI_INFOFRAME_SIZE(SPD)) != 0)
6482 return -EINVAL;
6483
6484 ptr += HDMI_INFOFRAME_HEADER_SIZE;
6485
6486 ret = hdmi_spd_infoframe_init(frame, ptr, ptr + 8);
6487 if (ret)
6488 return ret;
6489
6490 frame->sdi = ptr[24];
6491
6492 return 0;
6493 }
6494
6495 /**
6496 * hdmi_audio_infoframe_unpack() - unpack binary buffer to a HDMI AUDIO infoframe
6497 * @buffer: source buffer
6498 * @frame: HDMI Audio infoframe
6499 *
6500 * Unpacks the information contained in binary @buffer into a structured
6501 * @frame of the HDMI Audio information frame.
6502 * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6503 * specification.
6504 *
6505 * Returns 0 on success or a negative error code on failure.
6506 */
hdmi_audio_infoframe_unpack(struct hdmi_audio_infoframe * frame,void * buffer)6507 static int hdmi_audio_infoframe_unpack(struct hdmi_audio_infoframe *frame,
6508 void *buffer)
6509 {
6510 u8 *ptr = buffer;
6511 int ret;
6512
6513 if (ptr[0] != HDMI_INFOFRAME_TYPE_AUDIO ||
6514 ptr[1] != 1 ||
6515 ptr[2] != HDMI_AUDIO_INFOFRAME_SIZE) {
6516 return -EINVAL;
6517 }
6518
6519 if (hdmi_infoframe_checksum(buffer, HDMI_INFOFRAME_SIZE(AUDIO)) != 0)
6520 return -EINVAL;
6521
6522 ret = hdmi_audio_infoframe_init(frame);
6523 if (ret)
6524 return ret;
6525
6526 ptr += HDMI_INFOFRAME_HEADER_SIZE;
6527
6528 frame->channels = ptr[0] & 0x7;
6529 frame->coding_type = (ptr[0] >> 4) & 0xf;
6530 frame->sample_size = ptr[1] & 0x3;
6531 frame->sample_frequency = (ptr[1] >> 2) & 0x7;
6532 frame->coding_type_ext = ptr[2] & 0x1f;
6533 frame->channel_allocation = ptr[3];
6534 frame->level_shift_value = (ptr[4] >> 3) & 0xf;
6535 frame->downmix_inhibit = ptr[4] & 0x80 ? true : false;
6536
6537 return 0;
6538 }
6539
6540 /**
6541 * hdmi_vendor_infoframe_unpack() - unpack binary buffer to a HDMI vendor infoframe
6542 * @buffer: source buffer
6543 * @frame: HDMI Vendor infoframe
6544 *
6545 * Unpacks the information contained in binary @buffer into a structured
6546 * @frame of the HDMI Vendor information frame.
6547 * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6548 * specification.
6549 *
6550 * Returns 0 on success or a negative error code on failure.
6551 */
6552 static int
hdmi_vendor_any_infoframe_unpack(union hdmi_vendor_any_infoframe * frame,void * buffer)6553 hdmi_vendor_any_infoframe_unpack(union hdmi_vendor_any_infoframe *frame,
6554 void *buffer)
6555 {
6556 u8 *ptr = buffer;
6557 size_t length;
6558 int ret;
6559 u8 hdmi_video_format;
6560 struct hdmi_vendor_infoframe *hvf = &frame->hdmi;
6561
6562 if (ptr[0] != HDMI_INFOFRAME_TYPE_VENDOR ||
6563 ptr[1] != 1 ||
6564 (ptr[2] != 4 && ptr[2] != 5 && ptr[2] != 6))
6565 return -EINVAL;
6566
6567 length = ptr[2];
6568
6569 if (hdmi_infoframe_checksum(buffer,
6570 HDMI_INFOFRAME_HEADER_SIZE + length) != 0)
6571 return -EINVAL;
6572
6573 ptr += HDMI_INFOFRAME_HEADER_SIZE;
6574
6575 /* HDMI OUI */
6576 if (ptr[0] != 0x03 ||
6577 ptr[1] != 0x0c ||
6578 ptr[2] != 0x00)
6579 return -EINVAL;
6580
6581 hdmi_video_format = ptr[3] >> 5;
6582
6583 if (hdmi_video_format > 0x2)
6584 return -EINVAL;
6585
6586 ret = hdmi_vendor_infoframe_init(hvf);
6587 if (ret)
6588 return ret;
6589
6590 hvf->length = length;
6591
6592 if (hdmi_video_format == 0x2) {
6593 if (length != 5 && length != 6)
6594 return -EINVAL;
6595 hvf->s3d_struct = ptr[4] >> 4;
6596 if (hvf->s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF) {
6597 if (length != 6)
6598 return -EINVAL;
6599 hvf->s3d_ext_data = ptr[5] >> 4;
6600 }
6601 } else if (hdmi_video_format == 0x1) {
6602 if (length != 5)
6603 return -EINVAL;
6604 hvf->vic = ptr[4];
6605 } else {
6606 if (length != 4)
6607 return -EINVAL;
6608 }
6609
6610 return 0;
6611 }
6612
6613 /**
6614 * hdmi_infoframe_unpack() - unpack binary buffer to a HDMI infoframe
6615 * @buffer: source buffer
6616 * @frame: HDMI infoframe
6617 *
6618 * Unpacks the information contained in binary buffer @buffer into a structured
6619 * @frame of a HDMI infoframe.
6620 * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6621 * specification.
6622 *
6623 * Returns 0 on success or a negative error code on failure.
6624 */
hdmi_infoframe_unpack(union hdmi_infoframe * frame,void * buffer)6625 int hdmi_infoframe_unpack(union hdmi_infoframe *frame, void *buffer)
6626 {
6627 int ret;
6628 u8 *ptr = buffer;
6629
6630 switch (ptr[0]) {
6631 case HDMI_INFOFRAME_TYPE_AVI:
6632 ret = hdmi_avi_infoframe_unpack(&frame->avi, buffer);
6633 break;
6634 case HDMI_INFOFRAME_TYPE_SPD:
6635 ret = hdmi_spd_infoframe_unpack(&frame->spd, buffer);
6636 break;
6637 case HDMI_INFOFRAME_TYPE_AUDIO:
6638 ret = hdmi_audio_infoframe_unpack(&frame->audio, buffer);
6639 break;
6640 case HDMI_INFOFRAME_TYPE_VENDOR:
6641 ret = hdmi_vendor_any_infoframe_unpack(&frame->vendor, buffer);
6642 break;
6643 default:
6644 ret = -EINVAL;
6645 break;
6646 }
6647
6648 return ret;
6649 }
6650
6651 /**
6652 * drm_mode_sort - sort mode list
6653 * @edid_data: modes structures to sort
6654 *
6655 * Sort @edid_data by favorability, moving good modes to the head of the list.
6656 */
drm_mode_sort(struct hdmi_edid_data * edid_data)6657 void drm_mode_sort(struct hdmi_edid_data *edid_data)
6658 {
6659 struct drm_display_mode *a, *b;
6660 struct drm_display_mode c;
6661 int diff, i, j;
6662
6663 for (i = 0; i < (edid_data->modes - 1); i++) {
6664 a = &edid_data->mode_buf[i];
6665 for (j = i + 1; j < edid_data->modes; j++) {
6666 b = &edid_data->mode_buf[j];
6667 diff = ((b->type & DRM_MODE_TYPE_PREFERRED) != 0) -
6668 ((a->type & DRM_MODE_TYPE_PREFERRED) != 0);
6669 if (diff) {
6670 if (diff > 0) {
6671 c = *a;
6672 *a = *b;
6673 *b = c;
6674 }
6675 continue;
6676 }
6677
6678 diff = b->hdisplay * b->vdisplay
6679 - a->hdisplay * a->vdisplay;
6680 if (diff) {
6681 if (diff > 0) {
6682 c = *a;
6683 *a = *b;
6684 *b = c;
6685 }
6686 continue;
6687 }
6688
6689 diff = b->vrefresh - a->vrefresh;
6690 if (diff) {
6691 if (diff > 0) {
6692 c = *a;
6693 *a = *b;
6694 *b = c;
6695 }
6696 continue;
6697 }
6698
6699 diff = b->clock - a->clock;
6700 if (diff > 0) {
6701 c = *a;
6702 *a = *b;
6703 *b = c;
6704 }
6705 }
6706 }
6707 edid_data->preferred_mode = &edid_data->mode_buf[0];
6708 }
6709
6710 /**
6711 * drm_mode_prune_invalid - remove invalid modes from mode list
6712 * @edid_data: structure store mode list
6713 * Returns:
6714 * Number of valid modes.
6715 */
drm_mode_prune_invalid(struct hdmi_edid_data * edid_data)6716 int drm_mode_prune_invalid(struct hdmi_edid_data *edid_data)
6717 {
6718 int i, j;
6719 int num = edid_data->modes;
6720 int len = sizeof(struct drm_display_mode);
6721 struct drm_display_mode *mode_buf = edid_data->mode_buf;
6722
6723 for (i = 0; i < num; i++) {
6724 if (mode_buf[i].invalid) {
6725 /* If mode is invalid, delete it. */
6726 for (j = i; j < num - 1; j++)
6727 memcpy(&mode_buf[j], &mode_buf[j + 1], len);
6728
6729 num--;
6730 i--;
6731 }
6732 }
6733 /* Clear redundant modes of mode_buf. */
6734 memset(&mode_buf[num], 0, len * (edid_data->modes - num));
6735
6736 edid_data->modes = num;
6737 return num;
6738 }
6739
6740 /**
6741 * drm_rk_filter_whitelist - mark modes out of white list from mode list
6742 * @edid_data: structure store mode list
6743 */
drm_rk_filter_whitelist(struct hdmi_edid_data * edid_data)6744 void drm_rk_filter_whitelist(struct hdmi_edid_data *edid_data)
6745 {
6746 int i, j, white_len;
6747
6748 if (sizeof(resolution_white)) {
6749 white_len = sizeof(resolution_white) /
6750 sizeof(resolution_white[0]);
6751 for (i = 0; i < edid_data->modes; i++) {
6752 for (j = 0; j < white_len; j++) {
6753 if (drm_mode_match(&resolution_white[j],
6754 &edid_data->mode_buf[i],
6755 DRM_MODE_MATCH_TIMINGS |
6756 DRM_MODE_MATCH_CLOCK |
6757 DRM_MODE_MATCH_FLAGS))
6758 break;
6759 }
6760
6761 if (j == white_len)
6762 edid_data->mode_buf[i].invalid = true;
6763 }
6764 }
6765 }
6766
drm_display_mode_convert(struct drm_display_mode * mode,struct base_drm_display_mode * base_mode)6767 static void drm_display_mode_convert(struct drm_display_mode *mode,
6768 struct base_drm_display_mode *base_mode)
6769 {
6770 mode->clock = base_mode->clock;
6771 mode->hdisplay = base_mode->hdisplay;
6772 mode->hsync_start = base_mode->hsync_start;
6773 mode->hsync_end = base_mode->hsync_end;
6774 mode->htotal = base_mode->htotal;
6775 mode->vdisplay = base_mode->vdisplay;
6776 mode->vsync_start = base_mode->vsync_start;
6777 mode->vsync_end = base_mode->vsync_end;
6778 mode->vtotal = base_mode->vtotal;
6779 mode->vrefresh = base_mode->vrefresh;
6780 mode->vscan = base_mode->vscan;
6781 mode->flags = base_mode->flags;
6782 mode->picture_aspect_ratio = base_mode->picture_aspect_ratio;
6783 }
6784
drm_rk_select_mode(struct hdmi_edid_data * edid_data,struct base_screen_info * screen_info)6785 void drm_rk_select_mode(struct hdmi_edid_data *edid_data,
6786 struct base_screen_info *screen_info)
6787 {
6788 int i;
6789 struct drm_display_mode mode;
6790
6791 if (!screen_info) {
6792 /* define init resolution here */
6793 } else {
6794 memset(&mode, 0, sizeof(struct drm_display_mode));
6795
6796 drm_display_mode_convert(&mode, &screen_info->mode);
6797 for (i = 0; i < edid_data->modes; i++) {
6798 if (drm_mode_match(&mode,
6799 &edid_data->mode_buf[i],
6800 DRM_MODE_MATCH_TIMINGS |
6801 DRM_MODE_MATCH_CLOCK |
6802 DRM_MODE_MATCH_FLAGS)) {
6803 edid_data->preferred_mode =
6804 &edid_data->mode_buf[i];
6805
6806 if (edid_data->mode_buf[i].picture_aspect_ratio)
6807 break;
6808 }
6809 }
6810 }
6811 }
6812
6813 /**
6814 * drm_do_probe_ddc_edid() - get EDID information via I2C
6815 * @adap: ddc adapter
6816 * @buf: EDID data buffer to be filled
6817 * @block: 128 byte EDID block to start fetching from
6818 * @len: EDID data buffer length to fetch
6819 *
6820 * Try to fetch EDID information by calling I2C driver functions.
6821 *
6822 * Return: 0 on success or -1 on failure.
6823 */
6824 static int
drm_do_probe_ddc_edid(struct ddc_adapter * adap,u8 * buf,unsigned int block,size_t len)6825 drm_do_probe_ddc_edid(struct ddc_adapter *adap, u8 *buf, unsigned int block,
6826 size_t len)
6827 {
6828 unsigned char start = block * HDMI_EDID_BLOCK_SIZE;
6829 unsigned char segment = block >> 1;
6830 unsigned char xfers = segment ? 3 : 2;
6831 int ret, retries = 5;
6832
6833 do {
6834 struct i2c_msg msgs[] = {
6835 {
6836 .addr = DDC_SEGMENT_ADDR,
6837 .flags = 0,
6838 .len = 1,
6839 .buf = &segment,
6840 }, {
6841 .addr = DDC_ADDR,
6842 .flags = 0,
6843 .len = 1,
6844 .buf = &start,
6845 }, {
6846 .addr = DDC_ADDR,
6847 .flags = I2C_M_RD,
6848 .len = len,
6849 .buf = buf,
6850 }
6851 };
6852
6853 if (adap->ops) {
6854 ret = adap->ops->xfer(adap->i2c_bus, &msgs[3 - xfers],
6855 xfers);
6856 if (!ret)
6857 ret = xfers;
6858 } else {
6859 ret = adap->ddc_xfer(adap, &msgs[3 - xfers], xfers);
6860 }
6861 } while (ret != xfers && --retries);
6862
6863 /* All msg transfer successfully. */
6864 return ret == xfers ? 0 : -1;
6865 }
6866
drm_do_get_edid(struct ddc_adapter * adap,u8 * edid)6867 int drm_do_get_edid(struct ddc_adapter *adap, u8 *edid)
6868 {
6869 int i, j, block_num, block = 0;
6870 bool edid_corrupt;
6871 #ifdef DEBUG
6872 u8 *buff;
6873 #endif
6874
6875 /* base block fetch */
6876 for (i = 0; i < 4; i++) {
6877 if (drm_do_probe_ddc_edid(adap, edid, 0, HDMI_EDID_BLOCK_SIZE))
6878 goto err;
6879 if (drm_edid_block_valid(edid, 0, true,
6880 &edid_corrupt))
6881 break;
6882 if (i == 0 && drm_edid_is_zero(edid, HDMI_EDID_BLOCK_SIZE)) {
6883 printf("edid base block is 0, get edid failed\n");
6884 goto err;
6885 }
6886 }
6887
6888 if (i == 4)
6889 goto err;
6890
6891 block++;
6892 /* get the number of extensions */
6893 block_num = edid[0x7e];
6894
6895 for (j = 1; j <= block_num; j++) {
6896 for (i = 0; i < 4; i++) {
6897 if (drm_do_probe_ddc_edid(adap, &edid[0x80 * j], j,
6898 HDMI_EDID_BLOCK_SIZE))
6899 goto err;
6900 if (drm_edid_block_valid(&edid[0x80 * j], j,
6901 true, NULL))
6902 break;
6903 }
6904
6905 if (i == 4)
6906 goto err;
6907 block++;
6908 }
6909
6910 #ifdef DEBUG
6911 printf("RAW EDID:\n");
6912 for (i = 0; i < block_num + 1; i++) {
6913 buff = &edid[0x80 * i];
6914 for (j = 0; j < HDMI_EDID_BLOCK_SIZE; j++) {
6915 if (j % 16 == 0)
6916 printf("\n");
6917 printf("0x%02x, ", buff[j]);
6918 }
6919 printf("\n");
6920 }
6921 #endif
6922
6923 return 0;
6924
6925 err:
6926 printf("can't get edid block:%d\n", block);
6927 /* clear all read edid block, include invalid block */
6928 memset(edid, 0, HDMI_EDID_BLOCK_SIZE * (block + 1));
6929 return -EFAULT;
6930 }
6931
hdmi_ddc_read(struct ddc_adapter * adap,u16 addr,u8 offset,void * buffer,size_t size)6932 static ssize_t hdmi_ddc_read(struct ddc_adapter *adap, u16 addr, u8 offset,
6933 void *buffer, size_t size)
6934 {
6935 struct i2c_msg msgs[2] = {
6936 {
6937 .addr = addr,
6938 .flags = 0,
6939 .len = 1,
6940 .buf = &offset,
6941 }, {
6942 .addr = addr,
6943 .flags = I2C_M_RD,
6944 .len = size,
6945 .buf = buffer,
6946 }
6947 };
6948
6949 return adap->ddc_xfer(adap, msgs, ARRAY_SIZE(msgs));
6950 }
6951
hdmi_ddc_write(struct ddc_adapter * adap,u16 addr,u8 offset,const void * buffer,size_t size)6952 static ssize_t hdmi_ddc_write(struct ddc_adapter *adap, u16 addr, u8 offset,
6953 const void *buffer, size_t size)
6954 {
6955 struct i2c_msg msg = {
6956 .addr = addr,
6957 .flags = 0,
6958 .len = 1 + size,
6959 .buf = NULL,
6960 };
6961 void *data;
6962 int err;
6963
6964 data = malloc(1 + size);
6965 if (!data)
6966 return -ENOMEM;
6967
6968 msg.buf = data;
6969
6970 memcpy(data, &offset, sizeof(offset));
6971 memcpy(data + 1, buffer, size);
6972
6973 err = adap->ddc_xfer(adap, &msg, 1);
6974
6975 free(data);
6976
6977 return err;
6978 }
6979
6980 /**
6981 * drm_scdc_readb - read a single byte from SCDC
6982 * @adap: ddc adapter
6983 * @offset: offset of register to read
6984 * @value: return location for the register value
6985 *
6986 * Reads a single byte from SCDC. This is a convenience wrapper around the
6987 * drm_scdc_read() function.
6988 *
6989 * Returns:
6990 * 0 on success or a negative error code on failure.
6991 */
drm_scdc_readb(struct ddc_adapter * adap,u8 offset,u8 * value)6992 u8 drm_scdc_readb(struct ddc_adapter *adap, u8 offset,
6993 u8 *value)
6994 {
6995 return hdmi_ddc_read(adap, SCDC_I2C_SLAVE_ADDRESS, offset, value,
6996 sizeof(*value));
6997 }
6998
6999 /**
7000 * drm_scdc_writeb - write a single byte to SCDC
7001 * @adap: ddc adapter
7002 * @offset: offset of register to read
7003 * @value: return location for the register value
7004 *
7005 * Writes a single byte to SCDC. This is a convenience wrapper around the
7006 * drm_scdc_write() function.
7007 *
7008 * Returns:
7009 * 0 on success or a negative error code on failure.
7010 */
drm_scdc_writeb(struct ddc_adapter * adap,u8 offset,u8 value)7011 u8 drm_scdc_writeb(struct ddc_adapter *adap, u8 offset,
7012 u8 value)
7013 {
7014 return hdmi_ddc_write(adap, SCDC_I2C_SLAVE_ADDRESS, offset, &value,
7015 sizeof(value));
7016 }
7017
7018