xref: /OK3568_Linux_fs/kernel/mm/swapfile.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46 #include <trace/hooks/mm.h>
47 
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 				 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52 
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57  * Some modules use swappable objects and may try to swap them out under
58  * memory pressure (via the shrinker). Before doing so, they may wish to
59  * check to see if any swap space is available.
60  */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65 
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70 
71 /*
72  * all active swap_info_structs
73  * protected with swap_lock, and ordered by priority.
74  */
75 PLIST_HEAD(swap_active_head);
76 
77 /*
78  * all available (active, not full) swap_info_structs
79  * protected with swap_avail_lock, ordered by priority.
80  * This is used by get_swap_page() instead of swap_active_head
81  * because swap_active_head includes all swap_info_structs,
82  * but get_swap_page() doesn't need to look at full ones.
83  * This uses its own lock instead of swap_lock because when a
84  * swap_info_struct changes between not-full/full, it needs to
85  * add/remove itself to/from this list, but the swap_info_struct->lock
86  * is held and the locking order requires swap_lock to be taken
87  * before any swap_info_struct->lock.
88  */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91 
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93 
94 static DEFINE_MUTEX(swapon_mutex);
95 
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99 
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101 
swap_type_to_swap_info(int type)102 struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104 	if (type >= READ_ONCE(nr_swapfiles))
105 		return NULL;
106 
107 	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */
108 	return READ_ONCE(swap_info[type]);
109 }
110 EXPORT_SYMBOL_GPL(swap_type_to_swap_info);
111 
swap_count(unsigned char ent)112 static inline unsigned char swap_count(unsigned char ent)
113 {
114 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
115 }
116 
117 /* Reclaim the swap entry anyway if possible */
118 #define TTRS_ANYWAY		0x1
119 /*
120  * Reclaim the swap entry if there are no more mappings of the
121  * corresponding page
122  */
123 #define TTRS_UNMAPPED		0x2
124 /* Reclaim the swap entry if swap is getting full*/
125 #define TTRS_FULL		0x4
126 
127 /* returns 1 if swap entry is freed */
__try_to_reclaim_swap(struct swap_info_struct * si,unsigned long offset,unsigned long flags)128 static int __try_to_reclaim_swap(struct swap_info_struct *si,
129 				 unsigned long offset, unsigned long flags)
130 {
131 	swp_entry_t entry = swp_entry(si->type, offset);
132 	struct page *page;
133 	int ret = 0;
134 
135 	page = find_get_page(swap_address_space(entry), offset);
136 	if (!page)
137 		return 0;
138 	/*
139 	 * When this function is called from scan_swap_map_slots() and it's
140 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
141 	 * here. We have to use trylock for avoiding deadlock. This is a special
142 	 * case and you should use try_to_free_swap() with explicit lock_page()
143 	 * in usual operations.
144 	 */
145 	if (trylock_page(page)) {
146 		if ((flags & TTRS_ANYWAY) ||
147 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
148 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
149 			ret = try_to_free_swap(page);
150 		unlock_page(page);
151 	}
152 	put_page(page);
153 	return ret;
154 }
155 
first_se(struct swap_info_struct * sis)156 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
157 {
158 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
159 	return rb_entry(rb, struct swap_extent, rb_node);
160 }
161 
next_se(struct swap_extent * se)162 static inline struct swap_extent *next_se(struct swap_extent *se)
163 {
164 	struct rb_node *rb = rb_next(&se->rb_node);
165 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
166 }
167 
168 /*
169  * swapon tell device that all the old swap contents can be discarded,
170  * to allow the swap device to optimize its wear-levelling.
171  */
discard_swap(struct swap_info_struct * si)172 static int discard_swap(struct swap_info_struct *si)
173 {
174 	struct swap_extent *se;
175 	sector_t start_block;
176 	sector_t nr_blocks;
177 	int err = 0;
178 
179 	/* Do not discard the swap header page! */
180 	se = first_se(si);
181 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
182 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
183 	if (nr_blocks) {
184 		err = blkdev_issue_discard(si->bdev, start_block,
185 				nr_blocks, GFP_KERNEL, 0);
186 		if (err)
187 			return err;
188 		cond_resched();
189 	}
190 
191 	for (se = next_se(se); se; se = next_se(se)) {
192 		start_block = se->start_block << (PAGE_SHIFT - 9);
193 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
194 
195 		err = blkdev_issue_discard(si->bdev, start_block,
196 				nr_blocks, GFP_KERNEL, 0);
197 		if (err)
198 			break;
199 
200 		cond_resched();
201 	}
202 	return err;		/* That will often be -EOPNOTSUPP */
203 }
204 
205 static struct swap_extent *
offset_to_swap_extent(struct swap_info_struct * sis,unsigned long offset)206 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
207 {
208 	struct swap_extent *se;
209 	struct rb_node *rb;
210 
211 	rb = sis->swap_extent_root.rb_node;
212 	while (rb) {
213 		se = rb_entry(rb, struct swap_extent, rb_node);
214 		if (offset < se->start_page)
215 			rb = rb->rb_left;
216 		else if (offset >= se->start_page + se->nr_pages)
217 			rb = rb->rb_right;
218 		else
219 			return se;
220 	}
221 	/* It *must* be present */
222 	BUG();
223 }
224 
swap_page_sector(struct page * page)225 sector_t swap_page_sector(struct page *page)
226 {
227 	struct swap_info_struct *sis = page_swap_info(page);
228 	struct swap_extent *se;
229 	sector_t sector;
230 	pgoff_t offset;
231 
232 	offset = __page_file_index(page);
233 	se = offset_to_swap_extent(sis, offset);
234 	sector = se->start_block + (offset - se->start_page);
235 	return sector << (PAGE_SHIFT - 9);
236 }
237 
238 /*
239  * swap allocation tell device that a cluster of swap can now be discarded,
240  * to allow the swap device to optimize its wear-levelling.
241  */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)242 static void discard_swap_cluster(struct swap_info_struct *si,
243 				 pgoff_t start_page, pgoff_t nr_pages)
244 {
245 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
246 
247 	while (nr_pages) {
248 		pgoff_t offset = start_page - se->start_page;
249 		sector_t start_block = se->start_block + offset;
250 		sector_t nr_blocks = se->nr_pages - offset;
251 
252 		if (nr_blocks > nr_pages)
253 			nr_blocks = nr_pages;
254 		start_page += nr_blocks;
255 		nr_pages -= nr_blocks;
256 
257 		start_block <<= PAGE_SHIFT - 9;
258 		nr_blocks <<= PAGE_SHIFT - 9;
259 		if (blkdev_issue_discard(si->bdev, start_block,
260 					nr_blocks, GFP_NOIO, 0))
261 			break;
262 
263 		se = next_se(se);
264 	}
265 }
266 
267 #ifdef CONFIG_THP_SWAP
268 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
269 
270 #define swap_entry_size(size)	(size)
271 #else
272 #define SWAPFILE_CLUSTER	256
273 
274 /*
275  * Define swap_entry_size() as constant to let compiler to optimize
276  * out some code if !CONFIG_THP_SWAP
277  */
278 #define swap_entry_size(size)	1
279 #endif
280 #define LATENCY_LIMIT		256
281 
cluster_set_flag(struct swap_cluster_info * info,unsigned int flag)282 static inline void cluster_set_flag(struct swap_cluster_info *info,
283 	unsigned int flag)
284 {
285 	info->flags = flag;
286 }
287 
cluster_count(struct swap_cluster_info * info)288 static inline unsigned int cluster_count(struct swap_cluster_info *info)
289 {
290 	return info->data;
291 }
292 
cluster_set_count(struct swap_cluster_info * info,unsigned int c)293 static inline void cluster_set_count(struct swap_cluster_info *info,
294 				     unsigned int c)
295 {
296 	info->data = c;
297 }
298 
cluster_set_count_flag(struct swap_cluster_info * info,unsigned int c,unsigned int f)299 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
300 					 unsigned int c, unsigned int f)
301 {
302 	info->flags = f;
303 	info->data = c;
304 }
305 
cluster_next(struct swap_cluster_info * info)306 static inline unsigned int cluster_next(struct swap_cluster_info *info)
307 {
308 	return info->data;
309 }
310 
cluster_set_next(struct swap_cluster_info * info,unsigned int n)311 static inline void cluster_set_next(struct swap_cluster_info *info,
312 				    unsigned int n)
313 {
314 	info->data = n;
315 }
316 
cluster_set_next_flag(struct swap_cluster_info * info,unsigned int n,unsigned int f)317 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
318 					 unsigned int n, unsigned int f)
319 {
320 	info->flags = f;
321 	info->data = n;
322 }
323 
cluster_is_free(struct swap_cluster_info * info)324 static inline bool cluster_is_free(struct swap_cluster_info *info)
325 {
326 	return info->flags & CLUSTER_FLAG_FREE;
327 }
328 
cluster_is_null(struct swap_cluster_info * info)329 static inline bool cluster_is_null(struct swap_cluster_info *info)
330 {
331 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
332 }
333 
cluster_set_null(struct swap_cluster_info * info)334 static inline void cluster_set_null(struct swap_cluster_info *info)
335 {
336 	info->flags = CLUSTER_FLAG_NEXT_NULL;
337 	info->data = 0;
338 }
339 
cluster_is_huge(struct swap_cluster_info * info)340 static inline bool cluster_is_huge(struct swap_cluster_info *info)
341 {
342 	if (IS_ENABLED(CONFIG_THP_SWAP))
343 		return info->flags & CLUSTER_FLAG_HUGE;
344 	return false;
345 }
346 
cluster_clear_huge(struct swap_cluster_info * info)347 static inline void cluster_clear_huge(struct swap_cluster_info *info)
348 {
349 	info->flags &= ~CLUSTER_FLAG_HUGE;
350 }
351 
lock_cluster(struct swap_info_struct * si,unsigned long offset)352 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
353 						     unsigned long offset)
354 {
355 	struct swap_cluster_info *ci;
356 
357 	ci = si->cluster_info;
358 	if (ci) {
359 		ci += offset / SWAPFILE_CLUSTER;
360 		spin_lock(&ci->lock);
361 	}
362 	return ci;
363 }
364 
unlock_cluster(struct swap_cluster_info * ci)365 static inline void unlock_cluster(struct swap_cluster_info *ci)
366 {
367 	if (ci)
368 		spin_unlock(&ci->lock);
369 }
370 
371 /*
372  * Determine the locking method in use for this device.  Return
373  * swap_cluster_info if SSD-style cluster-based locking is in place.
374  */
lock_cluster_or_swap_info(struct swap_info_struct * si,unsigned long offset)375 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
376 		struct swap_info_struct *si, unsigned long offset)
377 {
378 	struct swap_cluster_info *ci;
379 
380 	/* Try to use fine-grained SSD-style locking if available: */
381 	ci = lock_cluster(si, offset);
382 	/* Otherwise, fall back to traditional, coarse locking: */
383 	if (!ci)
384 		spin_lock(&si->lock);
385 
386 	return ci;
387 }
388 
unlock_cluster_or_swap_info(struct swap_info_struct * si,struct swap_cluster_info * ci)389 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
390 					       struct swap_cluster_info *ci)
391 {
392 	if (ci)
393 		unlock_cluster(ci);
394 	else
395 		spin_unlock(&si->lock);
396 }
397 
cluster_list_empty(struct swap_cluster_list * list)398 static inline bool cluster_list_empty(struct swap_cluster_list *list)
399 {
400 	return cluster_is_null(&list->head);
401 }
402 
cluster_list_first(struct swap_cluster_list * list)403 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
404 {
405 	return cluster_next(&list->head);
406 }
407 
cluster_list_init(struct swap_cluster_list * list)408 static void cluster_list_init(struct swap_cluster_list *list)
409 {
410 	cluster_set_null(&list->head);
411 	cluster_set_null(&list->tail);
412 }
413 
cluster_list_add_tail(struct swap_cluster_list * list,struct swap_cluster_info * ci,unsigned int idx)414 static void cluster_list_add_tail(struct swap_cluster_list *list,
415 				  struct swap_cluster_info *ci,
416 				  unsigned int idx)
417 {
418 	if (cluster_list_empty(list)) {
419 		cluster_set_next_flag(&list->head, idx, 0);
420 		cluster_set_next_flag(&list->tail, idx, 0);
421 	} else {
422 		struct swap_cluster_info *ci_tail;
423 		unsigned int tail = cluster_next(&list->tail);
424 
425 		/*
426 		 * Nested cluster lock, but both cluster locks are
427 		 * only acquired when we held swap_info_struct->lock
428 		 */
429 		ci_tail = ci + tail;
430 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
431 		cluster_set_next(ci_tail, idx);
432 		spin_unlock(&ci_tail->lock);
433 		cluster_set_next_flag(&list->tail, idx, 0);
434 	}
435 }
436 
cluster_list_del_first(struct swap_cluster_list * list,struct swap_cluster_info * ci)437 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
438 					   struct swap_cluster_info *ci)
439 {
440 	unsigned int idx;
441 
442 	idx = cluster_next(&list->head);
443 	if (cluster_next(&list->tail) == idx) {
444 		cluster_set_null(&list->head);
445 		cluster_set_null(&list->tail);
446 	} else
447 		cluster_set_next_flag(&list->head,
448 				      cluster_next(&ci[idx]), 0);
449 
450 	return idx;
451 }
452 
453 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct * si,unsigned int idx)454 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
455 		unsigned int idx)
456 {
457 	/*
458 	 * If scan_swap_map() can't find a free cluster, it will check
459 	 * si->swap_map directly. To make sure the discarding cluster isn't
460 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
461 	 * will be cleared after discard
462 	 */
463 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
464 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
465 
466 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
467 
468 	schedule_work(&si->discard_work);
469 }
470 
__free_cluster(struct swap_info_struct * si,unsigned long idx)471 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
472 {
473 	struct swap_cluster_info *ci = si->cluster_info;
474 
475 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
476 	cluster_list_add_tail(&si->free_clusters, ci, idx);
477 }
478 
479 /*
480  * Doing discard actually. After a cluster discard is finished, the cluster
481  * will be added to free cluster list. caller should hold si->lock.
482 */
swap_do_scheduled_discard(struct swap_info_struct * si)483 static void swap_do_scheduled_discard(struct swap_info_struct *si)
484 {
485 	struct swap_cluster_info *info, *ci;
486 	unsigned int idx;
487 
488 	info = si->cluster_info;
489 
490 	while (!cluster_list_empty(&si->discard_clusters)) {
491 		idx = cluster_list_del_first(&si->discard_clusters, info);
492 		spin_unlock(&si->lock);
493 
494 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
495 				SWAPFILE_CLUSTER);
496 
497 		spin_lock(&si->lock);
498 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
499 		__free_cluster(si, idx);
500 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
501 				0, SWAPFILE_CLUSTER);
502 		unlock_cluster(ci);
503 	}
504 }
505 
swap_discard_work(struct work_struct * work)506 static void swap_discard_work(struct work_struct *work)
507 {
508 	struct swap_info_struct *si;
509 
510 	si = container_of(work, struct swap_info_struct, discard_work);
511 
512 	spin_lock(&si->lock);
513 	swap_do_scheduled_discard(si);
514 	spin_unlock(&si->lock);
515 }
516 
alloc_cluster(struct swap_info_struct * si,unsigned long idx)517 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
518 {
519 	struct swap_cluster_info *ci = si->cluster_info;
520 
521 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
522 	cluster_list_del_first(&si->free_clusters, ci);
523 	cluster_set_count_flag(ci + idx, 0, 0);
524 }
525 
free_cluster(struct swap_info_struct * si,unsigned long idx)526 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
527 {
528 	struct swap_cluster_info *ci = si->cluster_info + idx;
529 
530 	VM_BUG_ON(cluster_count(ci) != 0);
531 	/*
532 	 * If the swap is discardable, prepare discard the cluster
533 	 * instead of free it immediately. The cluster will be freed
534 	 * after discard.
535 	 */
536 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
537 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
538 		swap_cluster_schedule_discard(si, idx);
539 		return;
540 	}
541 
542 	__free_cluster(si, idx);
543 }
544 
545 /*
546  * The cluster corresponding to page_nr will be used. The cluster will be
547  * removed from free cluster list and its usage counter will be increased.
548  */
inc_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)549 static void inc_cluster_info_page(struct swap_info_struct *p,
550 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
551 {
552 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
553 
554 	if (!cluster_info)
555 		return;
556 	if (cluster_is_free(&cluster_info[idx]))
557 		alloc_cluster(p, idx);
558 
559 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
560 	cluster_set_count(&cluster_info[idx],
561 		cluster_count(&cluster_info[idx]) + 1);
562 }
563 
564 /*
565  * The cluster corresponding to page_nr decreases one usage. If the usage
566  * counter becomes 0, which means no page in the cluster is in using, we can
567  * optionally discard the cluster and add it to free cluster list.
568  */
dec_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)569 static void dec_cluster_info_page(struct swap_info_struct *p,
570 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
571 {
572 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
573 
574 	if (!cluster_info)
575 		return;
576 
577 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
578 	cluster_set_count(&cluster_info[idx],
579 		cluster_count(&cluster_info[idx]) - 1);
580 
581 	if (cluster_count(&cluster_info[idx]) == 0)
582 		free_cluster(p, idx);
583 }
584 
585 /*
586  * It's possible scan_swap_map() uses a free cluster in the middle of free
587  * cluster list. Avoiding such abuse to avoid list corruption.
588  */
589 static bool
scan_swap_map_ssd_cluster_conflict(struct swap_info_struct * si,unsigned long offset)590 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
591 	unsigned long offset)
592 {
593 	struct percpu_cluster *percpu_cluster;
594 	bool conflict;
595 
596 	offset /= SWAPFILE_CLUSTER;
597 	conflict = !cluster_list_empty(&si->free_clusters) &&
598 		offset != cluster_list_first(&si->free_clusters) &&
599 		cluster_is_free(&si->cluster_info[offset]);
600 
601 	if (!conflict)
602 		return false;
603 
604 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
605 	cluster_set_null(&percpu_cluster->index);
606 	return true;
607 }
608 
609 /*
610  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
611  * might involve allocating a new cluster for current CPU too.
612  */
scan_swap_map_try_ssd_cluster(struct swap_info_struct * si,unsigned long * offset,unsigned long * scan_base)613 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
614 	unsigned long *offset, unsigned long *scan_base)
615 {
616 	struct percpu_cluster *cluster;
617 	struct swap_cluster_info *ci;
618 	unsigned long tmp, max;
619 
620 new_cluster:
621 	cluster = this_cpu_ptr(si->percpu_cluster);
622 	if (cluster_is_null(&cluster->index)) {
623 		if (!cluster_list_empty(&si->free_clusters)) {
624 			cluster->index = si->free_clusters.head;
625 			cluster->next = cluster_next(&cluster->index) *
626 					SWAPFILE_CLUSTER;
627 		} else if (!cluster_list_empty(&si->discard_clusters)) {
628 			/*
629 			 * we don't have free cluster but have some clusters in
630 			 * discarding, do discard now and reclaim them, then
631 			 * reread cluster_next_cpu since we dropped si->lock
632 			 */
633 			swap_do_scheduled_discard(si);
634 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
635 			*offset = *scan_base;
636 			goto new_cluster;
637 		} else
638 			return false;
639 	}
640 
641 	/*
642 	 * Other CPUs can use our cluster if they can't find a free cluster,
643 	 * check if there is still free entry in the cluster
644 	 */
645 	tmp = cluster->next;
646 	max = min_t(unsigned long, si->max,
647 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
648 	if (tmp < max) {
649 		ci = lock_cluster(si, tmp);
650 		while (tmp < max) {
651 			if (!si->swap_map[tmp])
652 				break;
653 			tmp++;
654 		}
655 		unlock_cluster(ci);
656 	}
657 	if (tmp >= max) {
658 		cluster_set_null(&cluster->index);
659 		goto new_cluster;
660 	}
661 	cluster->next = tmp + 1;
662 	*offset = tmp;
663 	*scan_base = tmp;
664 	return true;
665 }
666 
__del_from_avail_list(struct swap_info_struct * p)667 static void __del_from_avail_list(struct swap_info_struct *p)
668 {
669 	int nid;
670 
671 	for_each_node(nid)
672 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
673 }
674 
del_from_avail_list(struct swap_info_struct * p)675 static void del_from_avail_list(struct swap_info_struct *p)
676 {
677 	spin_lock(&swap_avail_lock);
678 	__del_from_avail_list(p);
679 	spin_unlock(&swap_avail_lock);
680 }
681 
swap_range_alloc(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)682 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
683 			     unsigned int nr_entries)
684 {
685 	unsigned int end = offset + nr_entries - 1;
686 
687 	if (offset == si->lowest_bit)
688 		si->lowest_bit += nr_entries;
689 	if (end == si->highest_bit)
690 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
691 	si->inuse_pages += nr_entries;
692 	if (si->inuse_pages == si->pages) {
693 		si->lowest_bit = si->max;
694 		si->highest_bit = 0;
695 		del_from_avail_list(si);
696 	}
697 }
698 
add_to_avail_list(struct swap_info_struct * p)699 static void add_to_avail_list(struct swap_info_struct *p)
700 {
701 	int nid;
702 
703 	spin_lock(&swap_avail_lock);
704 	for_each_node(nid) {
705 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
706 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
707 	}
708 	spin_unlock(&swap_avail_lock);
709 }
710 
swap_range_free(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)711 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
712 			    unsigned int nr_entries)
713 {
714 	unsigned long begin = offset;
715 	unsigned long end = offset + nr_entries - 1;
716 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
717 	bool skip = false;
718 
719 	if (offset < si->lowest_bit)
720 		si->lowest_bit = offset;
721 	if (end > si->highest_bit) {
722 		bool was_full = !si->highest_bit;
723 
724 		WRITE_ONCE(si->highest_bit, end);
725 		if (was_full && (si->flags & SWP_WRITEOK))
726 			add_to_avail_list(si);
727 	}
728 	trace_android_vh_account_swap_pages(si, &skip);
729 	if (!skip)
730 		atomic_long_add(nr_entries, &nr_swap_pages);
731 	si->inuse_pages -= nr_entries;
732 	if (si->flags & SWP_BLKDEV)
733 		swap_slot_free_notify =
734 			si->bdev->bd_disk->fops->swap_slot_free_notify;
735 	else
736 		swap_slot_free_notify = NULL;
737 	while (offset <= end) {
738 		arch_swap_invalidate_page(si->type, offset);
739 		frontswap_invalidate_page(si->type, offset);
740 		if (swap_slot_free_notify)
741 			swap_slot_free_notify(si->bdev, offset);
742 		offset++;
743 	}
744 	clear_shadow_from_swap_cache(si->type, begin, end);
745 }
746 
set_cluster_next(struct swap_info_struct * si,unsigned long next)747 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
748 {
749 	unsigned long prev;
750 
751 	if (!(si->flags & SWP_SOLIDSTATE)) {
752 		si->cluster_next = next;
753 		return;
754 	}
755 
756 	prev = this_cpu_read(*si->cluster_next_cpu);
757 	/*
758 	 * Cross the swap address space size aligned trunk, choose
759 	 * another trunk randomly to avoid lock contention on swap
760 	 * address space if possible.
761 	 */
762 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
763 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
764 		/* No free swap slots available */
765 		if (si->highest_bit <= si->lowest_bit)
766 			return;
767 		next = si->lowest_bit +
768 			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
769 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
770 		next = max_t(unsigned int, next, si->lowest_bit);
771 	}
772 	this_cpu_write(*si->cluster_next_cpu, next);
773 }
774 
scan_swap_map_slots(struct swap_info_struct * si,unsigned char usage,int nr,swp_entry_t slots[])775 int scan_swap_map_slots(struct swap_info_struct *si,
776 			       unsigned char usage, int nr,
777 			       swp_entry_t slots[])
778 {
779 	struct swap_cluster_info *ci;
780 	unsigned long offset;
781 	unsigned long scan_base;
782 	unsigned long last_in_cluster = 0;
783 	int latency_ration = LATENCY_LIMIT;
784 	int n_ret = 0;
785 	bool scanned_many = false;
786 
787 	/*
788 	 * We try to cluster swap pages by allocating them sequentially
789 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
790 	 * way, however, we resort to first-free allocation, starting
791 	 * a new cluster.  This prevents us from scattering swap pages
792 	 * all over the entire swap partition, so that we reduce
793 	 * overall disk seek times between swap pages.  -- sct
794 	 * But we do now try to find an empty cluster.  -Andrea
795 	 * And we let swap pages go all over an SSD partition.  Hugh
796 	 */
797 
798 	si->flags += SWP_SCANNING;
799 	/*
800 	 * Use percpu scan base for SSD to reduce lock contention on
801 	 * cluster and swap cache.  For HDD, sequential access is more
802 	 * important.
803 	 */
804 	if (si->flags & SWP_SOLIDSTATE)
805 		scan_base = this_cpu_read(*si->cluster_next_cpu);
806 	else
807 		scan_base = si->cluster_next;
808 	offset = scan_base;
809 
810 	/* SSD algorithm */
811 	if (si->cluster_info) {
812 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
813 			goto scan;
814 	} else if (unlikely(!si->cluster_nr--)) {
815 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
816 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
817 			goto checks;
818 		}
819 
820 		spin_unlock(&si->lock);
821 
822 		/*
823 		 * If seek is expensive, start searching for new cluster from
824 		 * start of partition, to minimize the span of allocated swap.
825 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
826 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
827 		 */
828 		scan_base = offset = si->lowest_bit;
829 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
830 
831 		/* Locate the first empty (unaligned) cluster */
832 		for (; last_in_cluster <= si->highest_bit; offset++) {
833 			if (si->swap_map[offset])
834 				last_in_cluster = offset + SWAPFILE_CLUSTER;
835 			else if (offset == last_in_cluster) {
836 				spin_lock(&si->lock);
837 				offset -= SWAPFILE_CLUSTER - 1;
838 				si->cluster_next = offset;
839 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
840 				goto checks;
841 			}
842 			if (unlikely(--latency_ration < 0)) {
843 				cond_resched();
844 				latency_ration = LATENCY_LIMIT;
845 			}
846 		}
847 
848 		offset = scan_base;
849 		spin_lock(&si->lock);
850 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
851 	}
852 
853 checks:
854 	if (si->cluster_info) {
855 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
856 		/* take a break if we already got some slots */
857 			if (n_ret)
858 				goto done;
859 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
860 							&scan_base))
861 				goto scan;
862 		}
863 	}
864 	if (!(si->flags & SWP_WRITEOK))
865 		goto no_page;
866 	if (!si->highest_bit)
867 		goto no_page;
868 	if (offset > si->highest_bit)
869 		scan_base = offset = si->lowest_bit;
870 
871 	ci = lock_cluster(si, offset);
872 	/* reuse swap entry of cache-only swap if not busy. */
873 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
874 		int swap_was_freed;
875 		unlock_cluster(ci);
876 		spin_unlock(&si->lock);
877 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
878 		spin_lock(&si->lock);
879 		/* entry was freed successfully, try to use this again */
880 		if (swap_was_freed)
881 			goto checks;
882 		goto scan; /* check next one */
883 	}
884 
885 	if (si->swap_map[offset]) {
886 		unlock_cluster(ci);
887 		if (!n_ret)
888 			goto scan;
889 		else
890 			goto done;
891 	}
892 	WRITE_ONCE(si->swap_map[offset], usage);
893 	inc_cluster_info_page(si, si->cluster_info, offset);
894 	unlock_cluster(ci);
895 
896 	swap_range_alloc(si, offset, 1);
897 	slots[n_ret++] = swp_entry(si->type, offset);
898 
899 	/* got enough slots or reach max slots? */
900 	if ((n_ret == nr) || (offset >= si->highest_bit))
901 		goto done;
902 
903 	/* search for next available slot */
904 
905 	/* time to take a break? */
906 	if (unlikely(--latency_ration < 0)) {
907 		if (n_ret)
908 			goto done;
909 		spin_unlock(&si->lock);
910 		cond_resched();
911 		spin_lock(&si->lock);
912 		latency_ration = LATENCY_LIMIT;
913 	}
914 
915 	/* try to get more slots in cluster */
916 	if (si->cluster_info) {
917 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
918 			goto checks;
919 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
920 		/* non-ssd case, still more slots in cluster? */
921 		--si->cluster_nr;
922 		goto checks;
923 	}
924 
925 	/*
926 	 * Even if there's no free clusters available (fragmented),
927 	 * try to scan a little more quickly with lock held unless we
928 	 * have scanned too many slots already.
929 	 */
930 	if (!scanned_many) {
931 		unsigned long scan_limit;
932 
933 		if (offset < scan_base)
934 			scan_limit = scan_base;
935 		else
936 			scan_limit = si->highest_bit;
937 		for (; offset <= scan_limit && --latency_ration > 0;
938 		     offset++) {
939 			if (!si->swap_map[offset])
940 				goto checks;
941 		}
942 	}
943 
944 done:
945 	set_cluster_next(si, offset + 1);
946 	si->flags -= SWP_SCANNING;
947 	return n_ret;
948 
949 scan:
950 	spin_unlock(&si->lock);
951 	while (++offset <= READ_ONCE(si->highest_bit)) {
952 		if (data_race(!si->swap_map[offset])) {
953 			spin_lock(&si->lock);
954 			goto checks;
955 		}
956 		if (vm_swap_full() &&
957 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
958 			spin_lock(&si->lock);
959 			goto checks;
960 		}
961 		if (unlikely(--latency_ration < 0)) {
962 			cond_resched();
963 			latency_ration = LATENCY_LIMIT;
964 			scanned_many = true;
965 		}
966 	}
967 	offset = si->lowest_bit;
968 	while (offset < scan_base) {
969 		if (data_race(!si->swap_map[offset])) {
970 			spin_lock(&si->lock);
971 			goto checks;
972 		}
973 		if (vm_swap_full() &&
974 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
975 			spin_lock(&si->lock);
976 			goto checks;
977 		}
978 		if (unlikely(--latency_ration < 0)) {
979 			cond_resched();
980 			latency_ration = LATENCY_LIMIT;
981 			scanned_many = true;
982 		}
983 		offset++;
984 	}
985 	spin_lock(&si->lock);
986 
987 no_page:
988 	si->flags -= SWP_SCANNING;
989 	return n_ret;
990 }
991 EXPORT_SYMBOL_GPL(scan_swap_map_slots);
992 
swap_alloc_cluster(struct swap_info_struct * si,swp_entry_t * slot)993 int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
994 {
995 	unsigned long idx;
996 	struct swap_cluster_info *ci;
997 	unsigned long offset, i;
998 	unsigned char *map;
999 
1000 	/*
1001 	 * Should not even be attempting cluster allocations when huge
1002 	 * page swap is disabled.  Warn and fail the allocation.
1003 	 */
1004 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1005 		VM_WARN_ON_ONCE(1);
1006 		return 0;
1007 	}
1008 
1009 	if (cluster_list_empty(&si->free_clusters))
1010 		return 0;
1011 
1012 	idx = cluster_list_first(&si->free_clusters);
1013 	offset = idx * SWAPFILE_CLUSTER;
1014 	ci = lock_cluster(si, offset);
1015 	alloc_cluster(si, idx);
1016 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1017 
1018 	map = si->swap_map + offset;
1019 	for (i = 0; i < SWAPFILE_CLUSTER; i++)
1020 		map[i] = SWAP_HAS_CACHE;
1021 	unlock_cluster(ci);
1022 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1023 	*slot = swp_entry(si->type, offset);
1024 
1025 	return 1;
1026 }
1027 EXPORT_SYMBOL_GPL(swap_alloc_cluster);
1028 
swap_free_cluster(struct swap_info_struct * si,unsigned long idx)1029 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1030 {
1031 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1032 	struct swap_cluster_info *ci;
1033 
1034 	ci = lock_cluster(si, offset);
1035 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1036 	cluster_set_count_flag(ci, 0, 0);
1037 	free_cluster(si, idx);
1038 	unlock_cluster(ci);
1039 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1040 }
1041 
scan_swap_map(struct swap_info_struct * si,unsigned char usage)1042 static unsigned long scan_swap_map(struct swap_info_struct *si,
1043 				   unsigned char usage)
1044 {
1045 	swp_entry_t entry;
1046 	int n_ret;
1047 
1048 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1049 
1050 	if (n_ret)
1051 		return swp_offset(entry);
1052 	else
1053 		return 0;
1054 
1055 }
1056 
get_swap_pages(int n_goal,swp_entry_t swp_entries[],int entry_size)1057 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1058 {
1059 	unsigned long size = swap_entry_size(entry_size);
1060 	struct swap_info_struct *si, *next;
1061 	long avail_pgs;
1062 	int n_ret = 0;
1063 	int node;
1064 
1065 	/* Only single cluster request supported */
1066 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1067 
1068 	spin_lock(&swap_avail_lock);
1069 
1070 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1071 	if (avail_pgs <= 0) {
1072 		spin_unlock(&swap_avail_lock);
1073 		goto noswap;
1074 	}
1075 
1076 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1077 
1078 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1079 
1080 start_over:
1081 	node = numa_node_id();
1082 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1083 		/* requeue si to after same-priority siblings */
1084 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1085 		spin_unlock(&swap_avail_lock);
1086 		spin_lock(&si->lock);
1087 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1088 			spin_lock(&swap_avail_lock);
1089 			if (plist_node_empty(&si->avail_lists[node])) {
1090 				spin_unlock(&si->lock);
1091 				goto nextsi;
1092 			}
1093 			WARN(!si->highest_bit,
1094 			     "swap_info %d in list but !highest_bit\n",
1095 			     si->type);
1096 			WARN(!(si->flags & SWP_WRITEOK),
1097 			     "swap_info %d in list but !SWP_WRITEOK\n",
1098 			     si->type);
1099 			__del_from_avail_list(si);
1100 			spin_unlock(&si->lock);
1101 			goto nextsi;
1102 		}
1103 		if (size == SWAPFILE_CLUSTER) {
1104 			if (si->flags & SWP_BLKDEV)
1105 				n_ret = swap_alloc_cluster(si, swp_entries);
1106 		} else
1107 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1108 						    n_goal, swp_entries);
1109 		spin_unlock(&si->lock);
1110 		if (n_ret || size == SWAPFILE_CLUSTER)
1111 			goto check_out;
1112 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1113 			si->type);
1114 
1115 		spin_lock(&swap_avail_lock);
1116 nextsi:
1117 		/*
1118 		 * if we got here, it's likely that si was almost full before,
1119 		 * and since scan_swap_map() can drop the si->lock, multiple
1120 		 * callers probably all tried to get a page from the same si
1121 		 * and it filled up before we could get one; or, the si filled
1122 		 * up between us dropping swap_avail_lock and taking si->lock.
1123 		 * Since we dropped the swap_avail_lock, the swap_avail_head
1124 		 * list may have been modified; so if next is still in the
1125 		 * swap_avail_head list then try it, otherwise start over
1126 		 * if we have not gotten any slots.
1127 		 */
1128 		if (plist_node_empty(&next->avail_lists[node]))
1129 			goto start_over;
1130 	}
1131 
1132 	spin_unlock(&swap_avail_lock);
1133 
1134 check_out:
1135 	if (n_ret < n_goal)
1136 		atomic_long_add((long)(n_goal - n_ret) * size,
1137 				&nr_swap_pages);
1138 noswap:
1139 	return n_ret;
1140 }
1141 
1142 /* The only caller of this function is now suspend routine */
get_swap_page_of_type(int type)1143 swp_entry_t get_swap_page_of_type(int type)
1144 {
1145 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1146 	pgoff_t offset;
1147 	bool skip = false;
1148 
1149 	if (!si)
1150 		goto fail;
1151 
1152 	spin_lock(&si->lock);
1153 	if (si->flags & SWP_WRITEOK) {
1154 		/* This is called for allocating swap entry, not cache */
1155 		offset = scan_swap_map(si, 1);
1156 		if (offset) {
1157 			trace_android_vh_account_swap_pages(si, &skip);
1158 			if (!skip)
1159 				atomic_long_dec(&nr_swap_pages);
1160 			spin_unlock(&si->lock);
1161 			return swp_entry(type, offset);
1162 		}
1163 	}
1164 	spin_unlock(&si->lock);
1165 fail:
1166 	return (swp_entry_t) {0};
1167 }
1168 
__swap_info_get(swp_entry_t entry)1169 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1170 {
1171 	struct swap_info_struct *p;
1172 	unsigned long offset;
1173 
1174 	if (!entry.val)
1175 		goto out;
1176 	p = swp_swap_info(entry);
1177 	if (!p)
1178 		goto bad_nofile;
1179 	if (data_race(!(p->flags & SWP_USED)))
1180 		goto bad_device;
1181 	offset = swp_offset(entry);
1182 	if (offset >= p->max)
1183 		goto bad_offset;
1184 	return p;
1185 
1186 bad_offset:
1187 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1188 	goto out;
1189 bad_device:
1190 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1191 	goto out;
1192 bad_nofile:
1193 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1194 out:
1195 	return NULL;
1196 }
1197 
_swap_info_get(swp_entry_t entry)1198 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1199 {
1200 	struct swap_info_struct *p;
1201 
1202 	p = __swap_info_get(entry);
1203 	if (!p)
1204 		goto out;
1205 	if (data_race(!p->swap_map[swp_offset(entry)]))
1206 		goto bad_free;
1207 	return p;
1208 
1209 bad_free:
1210 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1211 out:
1212 	return NULL;
1213 }
1214 
swap_info_get(swp_entry_t entry)1215 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1216 {
1217 	struct swap_info_struct *p;
1218 
1219 	p = _swap_info_get(entry);
1220 	if (p)
1221 		spin_lock(&p->lock);
1222 	return p;
1223 }
1224 
swap_info_get_cont(swp_entry_t entry,struct swap_info_struct * q)1225 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1226 					struct swap_info_struct *q)
1227 {
1228 	struct swap_info_struct *p;
1229 
1230 	p = _swap_info_get(entry);
1231 
1232 	if (p != q) {
1233 		if (q != NULL)
1234 			spin_unlock(&q->lock);
1235 		if (p != NULL)
1236 			spin_lock(&p->lock);
1237 	}
1238 	return p;
1239 }
1240 
__swap_entry_free_locked(struct swap_info_struct * p,unsigned long offset,unsigned char usage)1241 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1242 					      unsigned long offset,
1243 					      unsigned char usage)
1244 {
1245 	unsigned char count;
1246 	unsigned char has_cache;
1247 
1248 	count = p->swap_map[offset];
1249 
1250 	has_cache = count & SWAP_HAS_CACHE;
1251 	count &= ~SWAP_HAS_CACHE;
1252 
1253 	if (usage == SWAP_HAS_CACHE) {
1254 		VM_BUG_ON(!has_cache);
1255 		has_cache = 0;
1256 	} else if (count == SWAP_MAP_SHMEM) {
1257 		/*
1258 		 * Or we could insist on shmem.c using a special
1259 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1260 		 */
1261 		count = 0;
1262 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1263 		if (count == COUNT_CONTINUED) {
1264 			if (swap_count_continued(p, offset, count))
1265 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1266 			else
1267 				count = SWAP_MAP_MAX;
1268 		} else
1269 			count--;
1270 	}
1271 
1272 	usage = count | has_cache;
1273 	if (usage)
1274 		WRITE_ONCE(p->swap_map[offset], usage);
1275 	else
1276 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1277 
1278 	return usage;
1279 }
1280 
1281 /*
1282  * Check whether swap entry is valid in the swap device.  If so,
1283  * return pointer to swap_info_struct, and keep the swap entry valid
1284  * via preventing the swap device from being swapoff, until
1285  * put_swap_device() is called.  Otherwise return NULL.
1286  *
1287  * The entirety of the RCU read critical section must come before the
1288  * return from or after the call to synchronize_rcu() in
1289  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1290  * true, the si->map, si->cluster_info, etc. must be valid in the
1291  * critical section.
1292  *
1293  * Notice that swapoff or swapoff+swapon can still happen before the
1294  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1295  * in put_swap_device() if there isn't any other way to prevent
1296  * swapoff, such as page lock, page table lock, etc.  The caller must
1297  * be prepared for that.  For example, the following situation is
1298  * possible.
1299  *
1300  *   CPU1				CPU2
1301  *   do_swap_page()
1302  *     ...				swapoff+swapon
1303  *     __read_swap_cache_async()
1304  *       swapcache_prepare()
1305  *         __swap_duplicate()
1306  *           // check swap_map
1307  *     // verify PTE not changed
1308  *
1309  * In __swap_duplicate(), the swap_map need to be checked before
1310  * changing partly because the specified swap entry may be for another
1311  * swap device which has been swapoff.  And in do_swap_page(), after
1312  * the page is read from the swap device, the PTE is verified not
1313  * changed with the page table locked to check whether the swap device
1314  * has been swapoff or swapoff+swapon.
1315  */
get_swap_device(swp_entry_t entry)1316 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1317 {
1318 	struct swap_info_struct *si;
1319 	unsigned long offset;
1320 
1321 	if (!entry.val)
1322 		goto out;
1323 	si = swp_swap_info(entry);
1324 	if (!si)
1325 		goto bad_nofile;
1326 
1327 	rcu_read_lock();
1328 	if (data_race(!(si->flags & SWP_VALID)))
1329 		goto unlock_out;
1330 	offset = swp_offset(entry);
1331 	if (offset >= si->max)
1332 		goto unlock_out;
1333 
1334 	return si;
1335 bad_nofile:
1336 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1337 out:
1338 	return NULL;
1339 unlock_out:
1340 	rcu_read_unlock();
1341 	return NULL;
1342 }
1343 
__swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1344 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1345 				       swp_entry_t entry)
1346 {
1347 	struct swap_cluster_info *ci;
1348 	unsigned long offset = swp_offset(entry);
1349 	unsigned char usage;
1350 
1351 	ci = lock_cluster_or_swap_info(p, offset);
1352 	usage = __swap_entry_free_locked(p, offset, 1);
1353 	unlock_cluster_or_swap_info(p, ci);
1354 	if (!usage)
1355 		free_swap_slot(entry);
1356 
1357 	return usage;
1358 }
1359 
swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1360 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1361 {
1362 	struct swap_cluster_info *ci;
1363 	unsigned long offset = swp_offset(entry);
1364 	unsigned char count;
1365 
1366 	ci = lock_cluster(p, offset);
1367 	count = p->swap_map[offset];
1368 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1369 	p->swap_map[offset] = 0;
1370 	dec_cluster_info_page(p, p->cluster_info, offset);
1371 	unlock_cluster(ci);
1372 
1373 	mem_cgroup_uncharge_swap(entry, 1);
1374 	swap_range_free(p, offset, 1);
1375 }
1376 
1377 /*
1378  * Caller has made sure that the swap device corresponding to entry
1379  * is still around or has not been recycled.
1380  */
swap_free(swp_entry_t entry)1381 void swap_free(swp_entry_t entry)
1382 {
1383 	struct swap_info_struct *p;
1384 
1385 	p = _swap_info_get(entry);
1386 	if (p)
1387 		__swap_entry_free(p, entry);
1388 }
1389 
1390 /*
1391  * Called after dropping swapcache to decrease refcnt to swap entries.
1392  */
put_swap_page(struct page * page,swp_entry_t entry)1393 void put_swap_page(struct page *page, swp_entry_t entry)
1394 {
1395 	unsigned long offset = swp_offset(entry);
1396 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1397 	struct swap_cluster_info *ci;
1398 	struct swap_info_struct *si;
1399 	unsigned char *map;
1400 	unsigned int i, free_entries = 0;
1401 	unsigned char val;
1402 	int size = swap_entry_size(thp_nr_pages(page));
1403 
1404 	si = _swap_info_get(entry);
1405 	if (!si)
1406 		return;
1407 
1408 	ci = lock_cluster_or_swap_info(si, offset);
1409 	if (size == SWAPFILE_CLUSTER) {
1410 		VM_BUG_ON(!cluster_is_huge(ci));
1411 		map = si->swap_map + offset;
1412 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1413 			val = map[i];
1414 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1415 			if (val == SWAP_HAS_CACHE)
1416 				free_entries++;
1417 		}
1418 		cluster_clear_huge(ci);
1419 		if (free_entries == SWAPFILE_CLUSTER) {
1420 			unlock_cluster_or_swap_info(si, ci);
1421 			spin_lock(&si->lock);
1422 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1423 			swap_free_cluster(si, idx);
1424 			spin_unlock(&si->lock);
1425 			return;
1426 		}
1427 	}
1428 	for (i = 0; i < size; i++, entry.val++) {
1429 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1430 			unlock_cluster_or_swap_info(si, ci);
1431 			free_swap_slot(entry);
1432 			if (i == size - 1)
1433 				return;
1434 			lock_cluster_or_swap_info(si, offset);
1435 		}
1436 	}
1437 	unlock_cluster_or_swap_info(si, ci);
1438 }
1439 
1440 #ifdef CONFIG_THP_SWAP
split_swap_cluster(swp_entry_t entry)1441 int split_swap_cluster(swp_entry_t entry)
1442 {
1443 	struct swap_info_struct *si;
1444 	struct swap_cluster_info *ci;
1445 	unsigned long offset = swp_offset(entry);
1446 
1447 	si = _swap_info_get(entry);
1448 	if (!si)
1449 		return -EBUSY;
1450 	ci = lock_cluster(si, offset);
1451 	cluster_clear_huge(ci);
1452 	unlock_cluster(ci);
1453 	return 0;
1454 }
1455 #endif
1456 
swp_entry_cmp(const void * ent1,const void * ent2)1457 static int swp_entry_cmp(const void *ent1, const void *ent2)
1458 {
1459 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1460 
1461 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1462 }
1463 
swapcache_free_entries(swp_entry_t * entries,int n)1464 void swapcache_free_entries(swp_entry_t *entries, int n)
1465 {
1466 	struct swap_info_struct *p, *prev;
1467 	int i;
1468 
1469 	if (n <= 0)
1470 		return;
1471 
1472 	prev = NULL;
1473 	p = NULL;
1474 
1475 	/*
1476 	 * Sort swap entries by swap device, so each lock is only taken once.
1477 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1478 	 * so low that it isn't necessary to optimize further.
1479 	 */
1480 	if (nr_swapfiles > 1)
1481 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1482 	for (i = 0; i < n; ++i) {
1483 		p = swap_info_get_cont(entries[i], prev);
1484 		if (p)
1485 			swap_entry_free(p, entries[i]);
1486 		prev = p;
1487 	}
1488 	if (p)
1489 		spin_unlock(&p->lock);
1490 }
1491 EXPORT_SYMBOL_GPL(swapcache_free_entries);
1492 
1493 /*
1494  * How many references to page are currently swapped out?
1495  * This does not give an exact answer when swap count is continued,
1496  * but does include the high COUNT_CONTINUED flag to allow for that.
1497  */
page_swapcount(struct page * page)1498 int page_swapcount(struct page *page)
1499 {
1500 	int count = 0;
1501 	struct swap_info_struct *p;
1502 	struct swap_cluster_info *ci;
1503 	swp_entry_t entry;
1504 	unsigned long offset;
1505 
1506 	entry.val = page_private(page);
1507 	p = _swap_info_get(entry);
1508 	if (p) {
1509 		offset = swp_offset(entry);
1510 		ci = lock_cluster_or_swap_info(p, offset);
1511 		count = swap_count(p->swap_map[offset]);
1512 		unlock_cluster_or_swap_info(p, ci);
1513 	}
1514 	return count;
1515 }
1516 
__swap_count(swp_entry_t entry)1517 int __swap_count(swp_entry_t entry)
1518 {
1519 	struct swap_info_struct *si;
1520 	pgoff_t offset = swp_offset(entry);
1521 	int count = 0;
1522 
1523 	si = get_swap_device(entry);
1524 	if (si) {
1525 		count = swap_count(si->swap_map[offset]);
1526 		put_swap_device(si);
1527 	}
1528 	return count;
1529 }
1530 
swap_swapcount(struct swap_info_struct * si,swp_entry_t entry)1531 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1532 {
1533 	int count = 0;
1534 	pgoff_t offset = swp_offset(entry);
1535 	struct swap_cluster_info *ci;
1536 
1537 	ci = lock_cluster_or_swap_info(si, offset);
1538 	count = swap_count(si->swap_map[offset]);
1539 	unlock_cluster_or_swap_info(si, ci);
1540 	return count;
1541 }
1542 
1543 /*
1544  * How many references to @entry are currently swapped out?
1545  * This does not give an exact answer when swap count is continued,
1546  * but does include the high COUNT_CONTINUED flag to allow for that.
1547  */
__swp_swapcount(swp_entry_t entry)1548 int __swp_swapcount(swp_entry_t entry)
1549 {
1550 	int count = 0;
1551 	struct swap_info_struct *si;
1552 
1553 	si = get_swap_device(entry);
1554 	if (si) {
1555 		count = swap_swapcount(si, entry);
1556 		put_swap_device(si);
1557 	}
1558 	return count;
1559 }
1560 
1561 /*
1562  * How many references to @entry are currently swapped out?
1563  * This considers COUNT_CONTINUED so it returns exact answer.
1564  */
swp_swapcount(swp_entry_t entry)1565 int swp_swapcount(swp_entry_t entry)
1566 {
1567 	int count, tmp_count, n;
1568 	struct swap_info_struct *p;
1569 	struct swap_cluster_info *ci;
1570 	struct page *page;
1571 	pgoff_t offset;
1572 	unsigned char *map;
1573 
1574 	p = _swap_info_get(entry);
1575 	if (!p)
1576 		return 0;
1577 
1578 	offset = swp_offset(entry);
1579 
1580 	ci = lock_cluster_or_swap_info(p, offset);
1581 
1582 	count = swap_count(p->swap_map[offset]);
1583 	if (!(count & COUNT_CONTINUED))
1584 		goto out;
1585 
1586 	count &= ~COUNT_CONTINUED;
1587 	n = SWAP_MAP_MAX + 1;
1588 
1589 	page = vmalloc_to_page(p->swap_map + offset);
1590 	offset &= ~PAGE_MASK;
1591 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1592 
1593 	do {
1594 		page = list_next_entry(page, lru);
1595 		map = kmap_atomic(page);
1596 		tmp_count = map[offset];
1597 		kunmap_atomic(map);
1598 
1599 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1600 		n *= (SWAP_CONT_MAX + 1);
1601 	} while (tmp_count & COUNT_CONTINUED);
1602 out:
1603 	unlock_cluster_or_swap_info(p, ci);
1604 	return count;
1605 }
1606 
swap_page_trans_huge_swapped(struct swap_info_struct * si,swp_entry_t entry)1607 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1608 					 swp_entry_t entry)
1609 {
1610 	struct swap_cluster_info *ci;
1611 	unsigned char *map = si->swap_map;
1612 	unsigned long roffset = swp_offset(entry);
1613 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1614 	int i;
1615 	bool ret = false;
1616 
1617 	ci = lock_cluster_or_swap_info(si, offset);
1618 	if (!ci || !cluster_is_huge(ci)) {
1619 		if (swap_count(map[roffset]))
1620 			ret = true;
1621 		goto unlock_out;
1622 	}
1623 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1624 		if (swap_count(map[offset + i])) {
1625 			ret = true;
1626 			break;
1627 		}
1628 	}
1629 unlock_out:
1630 	unlock_cluster_or_swap_info(si, ci);
1631 	return ret;
1632 }
1633 
page_swapped(struct page * page)1634 static bool page_swapped(struct page *page)
1635 {
1636 	swp_entry_t entry;
1637 	struct swap_info_struct *si;
1638 
1639 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1640 		return page_swapcount(page) != 0;
1641 
1642 	page = compound_head(page);
1643 	entry.val = page_private(page);
1644 	si = _swap_info_get(entry);
1645 	if (si)
1646 		return swap_page_trans_huge_swapped(si, entry);
1647 	return false;
1648 }
1649 
page_trans_huge_map_swapcount(struct page * page,int * total_mapcount,int * total_swapcount)1650 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1651 					 int *total_swapcount)
1652 {
1653 	int i, map_swapcount, _total_mapcount, _total_swapcount;
1654 	unsigned long offset = 0;
1655 	struct swap_info_struct *si;
1656 	struct swap_cluster_info *ci = NULL;
1657 	unsigned char *map = NULL;
1658 	int mapcount, swapcount = 0;
1659 
1660 	/* hugetlbfs shouldn't call it */
1661 	VM_BUG_ON_PAGE(PageHuge(page), page);
1662 
1663 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1664 		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1665 		if (PageSwapCache(page))
1666 			swapcount = page_swapcount(page);
1667 		if (total_swapcount)
1668 			*total_swapcount = swapcount;
1669 		return mapcount + swapcount;
1670 	}
1671 
1672 	page = compound_head(page);
1673 
1674 	_total_mapcount = _total_swapcount = map_swapcount = 0;
1675 	if (PageSwapCache(page)) {
1676 		swp_entry_t entry;
1677 
1678 		entry.val = page_private(page);
1679 		si = _swap_info_get(entry);
1680 		if (si) {
1681 			map = si->swap_map;
1682 			offset = swp_offset(entry);
1683 		}
1684 	}
1685 	if (map)
1686 		ci = lock_cluster(si, offset);
1687 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1688 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1689 		_total_mapcount += mapcount;
1690 		if (map) {
1691 			swapcount = swap_count(map[offset + i]);
1692 			_total_swapcount += swapcount;
1693 		}
1694 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1695 	}
1696 	unlock_cluster(ci);
1697 	if (PageDoubleMap(page)) {
1698 		map_swapcount -= 1;
1699 		_total_mapcount -= HPAGE_PMD_NR;
1700 	}
1701 	mapcount = compound_mapcount(page);
1702 	map_swapcount += mapcount;
1703 	_total_mapcount += mapcount;
1704 	if (total_mapcount)
1705 		*total_mapcount = _total_mapcount;
1706 	if (total_swapcount)
1707 		*total_swapcount = _total_swapcount;
1708 
1709 	return map_swapcount;
1710 }
1711 
1712 /*
1713  * We can write to an anon page without COW if there are no other references
1714  * to it.  And as a side-effect, free up its swap: because the old content
1715  * on disk will never be read, and seeking back there to write new content
1716  * later would only waste time away from clustering.
1717  *
1718  * NOTE: total_map_swapcount should not be relied upon by the caller if
1719  * reuse_swap_page() returns false, but it may be always overwritten
1720  * (see the other implementation for CONFIG_SWAP=n).
1721  */
reuse_swap_page(struct page * page,int * total_map_swapcount)1722 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1723 {
1724 	int count, total_mapcount, total_swapcount;
1725 
1726 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1727 	if (unlikely(PageKsm(page)))
1728 		return false;
1729 	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1730 					      &total_swapcount);
1731 	if (total_map_swapcount)
1732 		*total_map_swapcount = total_mapcount + total_swapcount;
1733 	if (count == 1 && PageSwapCache(page) &&
1734 	    (likely(!PageTransCompound(page)) ||
1735 	     /* The remaining swap count will be freed soon */
1736 	     total_swapcount == page_swapcount(page))) {
1737 		if (!PageWriteback(page)) {
1738 			page = compound_head(page);
1739 			delete_from_swap_cache(page);
1740 			SetPageDirty(page);
1741 		} else {
1742 			swp_entry_t entry;
1743 			struct swap_info_struct *p;
1744 
1745 			entry.val = page_private(page);
1746 			p = swap_info_get(entry);
1747 			if (p->flags & SWP_STABLE_WRITES) {
1748 				spin_unlock(&p->lock);
1749 				return false;
1750 			}
1751 			spin_unlock(&p->lock);
1752 		}
1753 	}
1754 
1755 	return count <= 1;
1756 }
1757 
1758 /*
1759  * If swap is getting full, or if there are no more mappings of this page,
1760  * then try_to_free_swap is called to free its swap space.
1761  */
try_to_free_swap(struct page * page)1762 int try_to_free_swap(struct page *page)
1763 {
1764 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1765 
1766 	if (!PageSwapCache(page))
1767 		return 0;
1768 	if (PageWriteback(page))
1769 		return 0;
1770 	if (page_swapped(page))
1771 		return 0;
1772 
1773 	/*
1774 	 * Once hibernation has begun to create its image of memory,
1775 	 * there's a danger that one of the calls to try_to_free_swap()
1776 	 * - most probably a call from __try_to_reclaim_swap() while
1777 	 * hibernation is allocating its own swap pages for the image,
1778 	 * but conceivably even a call from memory reclaim - will free
1779 	 * the swap from a page which has already been recorded in the
1780 	 * image as a clean swapcache page, and then reuse its swap for
1781 	 * another page of the image.  On waking from hibernation, the
1782 	 * original page might be freed under memory pressure, then
1783 	 * later read back in from swap, now with the wrong data.
1784 	 *
1785 	 * Hibernation suspends storage while it is writing the image
1786 	 * to disk so check that here.
1787 	 */
1788 	if (pm_suspended_storage())
1789 		return 0;
1790 
1791 	page = compound_head(page);
1792 	delete_from_swap_cache(page);
1793 	SetPageDirty(page);
1794 	return 1;
1795 }
1796 
1797 /*
1798  * Free the swap entry like above, but also try to
1799  * free the page cache entry if it is the last user.
1800  */
free_swap_and_cache(swp_entry_t entry)1801 int free_swap_and_cache(swp_entry_t entry)
1802 {
1803 	struct swap_info_struct *p;
1804 	unsigned char count;
1805 
1806 	if (non_swap_entry(entry))
1807 		return 1;
1808 
1809 	p = _swap_info_get(entry);
1810 	if (p) {
1811 		count = __swap_entry_free(p, entry);
1812 		if (count == SWAP_HAS_CACHE &&
1813 		    !swap_page_trans_huge_swapped(p, entry))
1814 			__try_to_reclaim_swap(p, swp_offset(entry),
1815 					      TTRS_UNMAPPED | TTRS_FULL);
1816 	}
1817 	return p != NULL;
1818 }
1819 
1820 #ifdef CONFIG_HIBERNATION
1821 /*
1822  * Find the swap type that corresponds to given device (if any).
1823  *
1824  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1825  * from 0, in which the swap header is expected to be located.
1826  *
1827  * This is needed for the suspend to disk (aka swsusp).
1828  */
swap_type_of(dev_t device,sector_t offset)1829 int swap_type_of(dev_t device, sector_t offset)
1830 {
1831 	int type;
1832 
1833 	if (!device)
1834 		return -1;
1835 
1836 	spin_lock(&swap_lock);
1837 	for (type = 0; type < nr_swapfiles; type++) {
1838 		struct swap_info_struct *sis = swap_info[type];
1839 
1840 		if (!(sis->flags & SWP_WRITEOK))
1841 			continue;
1842 
1843 		if (device == sis->bdev->bd_dev) {
1844 			struct swap_extent *se = first_se(sis);
1845 
1846 			if (se->start_block == offset) {
1847 				spin_unlock(&swap_lock);
1848 				return type;
1849 			}
1850 		}
1851 	}
1852 	spin_unlock(&swap_lock);
1853 	return -ENODEV;
1854 }
1855 
find_first_swap(dev_t * device)1856 int find_first_swap(dev_t *device)
1857 {
1858 	int type;
1859 
1860 	spin_lock(&swap_lock);
1861 	for (type = 0; type < nr_swapfiles; type++) {
1862 		struct swap_info_struct *sis = swap_info[type];
1863 
1864 		if (!(sis->flags & SWP_WRITEOK))
1865 			continue;
1866 		*device = sis->bdev->bd_dev;
1867 		spin_unlock(&swap_lock);
1868 		return type;
1869 	}
1870 	spin_unlock(&swap_lock);
1871 	return -ENODEV;
1872 }
1873 
1874 /*
1875  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1876  * corresponding to given index in swap_info (swap type).
1877  */
swapdev_block(int type,pgoff_t offset)1878 sector_t swapdev_block(int type, pgoff_t offset)
1879 {
1880 	struct block_device *bdev;
1881 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1882 
1883 	if (!si || !(si->flags & SWP_WRITEOK))
1884 		return 0;
1885 	return map_swap_entry(swp_entry(type, offset), &bdev);
1886 }
1887 
1888 /*
1889  * Return either the total number of swap pages of given type, or the number
1890  * of free pages of that type (depending on @free)
1891  *
1892  * This is needed for software suspend
1893  */
count_swap_pages(int type,int free)1894 unsigned int count_swap_pages(int type, int free)
1895 {
1896 	unsigned int n = 0;
1897 
1898 	spin_lock(&swap_lock);
1899 	if ((unsigned int)type < nr_swapfiles) {
1900 		struct swap_info_struct *sis = swap_info[type];
1901 
1902 		spin_lock(&sis->lock);
1903 		if (sis->flags & SWP_WRITEOK) {
1904 			n = sis->pages;
1905 			if (free)
1906 				n -= sis->inuse_pages;
1907 		}
1908 		spin_unlock(&sis->lock);
1909 	}
1910 	spin_unlock(&swap_lock);
1911 	return n;
1912 }
1913 #endif /* CONFIG_HIBERNATION */
1914 
pte_same_as_swp(pte_t pte,pte_t swp_pte)1915 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1916 {
1917 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1918 }
1919 
1920 /*
1921  * No need to decide whether this PTE shares the swap entry with others,
1922  * just let do_wp_page work it out if a write is requested later - to
1923  * force COW, vm_page_prot omits write permission from any private vma.
1924  */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct page * page)1925 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1926 		unsigned long addr, swp_entry_t entry, struct page *page)
1927 {
1928 	struct page *swapcache;
1929 	spinlock_t *ptl;
1930 	pte_t *pte;
1931 	int ret = 1;
1932 
1933 	swapcache = page;
1934 	page = ksm_might_need_to_copy(page, vma, addr);
1935 	if (unlikely(!page))
1936 		return -ENOMEM;
1937 
1938 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1939 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1940 		ret = 0;
1941 		goto out;
1942 	}
1943 
1944 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1945 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1946 	get_page(page);
1947 	set_pte_at(vma->vm_mm, addr, pte,
1948 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1949 	if (page == swapcache) {
1950 		page_add_anon_rmap(page, vma, addr, false);
1951 	} else { /* ksm created a completely new copy */
1952 		page_add_new_anon_rmap(page, vma, addr, false);
1953 		lru_cache_add_inactive_or_unevictable(page, vma);
1954 	}
1955 	swap_free(entry);
1956 out:
1957 	pte_unmap_unlock(pte, ptl);
1958 	if (page != swapcache) {
1959 		unlock_page(page);
1960 		put_page(page);
1961 	}
1962 	return ret;
1963 }
1964 
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1965 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1966 			unsigned long addr, unsigned long end,
1967 			unsigned int type, bool frontswap,
1968 			unsigned long *fs_pages_to_unuse)
1969 {
1970 	struct page *page;
1971 	swp_entry_t entry;
1972 	pte_t *pte;
1973 	struct swap_info_struct *si;
1974 	unsigned long offset;
1975 	int ret = 0;
1976 	volatile unsigned char *swap_map;
1977 
1978 	si = swap_info[type];
1979 	pte = pte_offset_map(pmd, addr);
1980 	do {
1981 		if (!is_swap_pte(*pte))
1982 			continue;
1983 
1984 		entry = pte_to_swp_entry(*pte);
1985 		if (swp_type(entry) != type)
1986 			continue;
1987 
1988 		offset = swp_offset(entry);
1989 		if (frontswap && !frontswap_test(si, offset))
1990 			continue;
1991 
1992 		pte_unmap(pte);
1993 		swap_map = &si->swap_map[offset];
1994 		page = lookup_swap_cache(entry, vma, addr);
1995 		if (!page) {
1996 			struct vm_fault vmf = {
1997 				.vma = vma,
1998 				.address = addr,
1999 				.pmd = pmd,
2000 			};
2001 
2002 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2003 						&vmf);
2004 		}
2005 		if (!page) {
2006 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
2007 				goto try_next;
2008 			return -ENOMEM;
2009 		}
2010 
2011 		lock_page(page);
2012 		wait_on_page_writeback(page);
2013 		ret = unuse_pte(vma, pmd, addr, entry, page);
2014 		if (ret < 0) {
2015 			unlock_page(page);
2016 			put_page(page);
2017 			goto out;
2018 		}
2019 
2020 		try_to_free_swap(page);
2021 		trace_android_vh_unuse_swap_page(si, page);
2022 		unlock_page(page);
2023 		put_page(page);
2024 
2025 		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2026 			ret = FRONTSWAP_PAGES_UNUSED;
2027 			goto out;
2028 		}
2029 try_next:
2030 		pte = pte_offset_map(pmd, addr);
2031 	} while (pte++, addr += PAGE_SIZE, addr != end);
2032 	pte_unmap(pte - 1);
2033 
2034 	ret = 0;
2035 out:
2036 	return ret;
2037 }
2038 
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2039 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2040 				unsigned long addr, unsigned long end,
2041 				unsigned int type, bool frontswap,
2042 				unsigned long *fs_pages_to_unuse)
2043 {
2044 	pmd_t *pmd;
2045 	unsigned long next;
2046 	int ret;
2047 
2048 	pmd = pmd_offset(pud, addr);
2049 	do {
2050 		cond_resched();
2051 		next = pmd_addr_end(addr, end);
2052 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2053 			continue;
2054 		ret = unuse_pte_range(vma, pmd, addr, next, type,
2055 				      frontswap, fs_pages_to_unuse);
2056 		if (ret)
2057 			return ret;
2058 	} while (pmd++, addr = next, addr != end);
2059 	return 0;
2060 }
2061 
unuse_pud_range(struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2062 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2063 				unsigned long addr, unsigned long end,
2064 				unsigned int type, bool frontswap,
2065 				unsigned long *fs_pages_to_unuse)
2066 {
2067 	pud_t *pud;
2068 	unsigned long next;
2069 	int ret;
2070 
2071 	pud = pud_offset(p4d, addr);
2072 	do {
2073 		next = pud_addr_end(addr, end);
2074 		if (pud_none_or_clear_bad(pud))
2075 			continue;
2076 		ret = unuse_pmd_range(vma, pud, addr, next, type,
2077 				      frontswap, fs_pages_to_unuse);
2078 		if (ret)
2079 			return ret;
2080 	} while (pud++, addr = next, addr != end);
2081 	return 0;
2082 }
2083 
unuse_p4d_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2084 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2085 				unsigned long addr, unsigned long end,
2086 				unsigned int type, bool frontswap,
2087 				unsigned long *fs_pages_to_unuse)
2088 {
2089 	p4d_t *p4d;
2090 	unsigned long next;
2091 	int ret;
2092 
2093 	p4d = p4d_offset(pgd, addr);
2094 	do {
2095 		next = p4d_addr_end(addr, end);
2096 		if (p4d_none_or_clear_bad(p4d))
2097 			continue;
2098 		ret = unuse_pud_range(vma, p4d, addr, next, type,
2099 				      frontswap, fs_pages_to_unuse);
2100 		if (ret)
2101 			return ret;
2102 	} while (p4d++, addr = next, addr != end);
2103 	return 0;
2104 }
2105 
unuse_vma(struct vm_area_struct * vma,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2106 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2107 		     bool frontswap, unsigned long *fs_pages_to_unuse)
2108 {
2109 	pgd_t *pgd;
2110 	unsigned long addr, end, next;
2111 	int ret;
2112 
2113 	addr = vma->vm_start;
2114 	end = vma->vm_end;
2115 
2116 	pgd = pgd_offset(vma->vm_mm, addr);
2117 	do {
2118 		next = pgd_addr_end(addr, end);
2119 		if (pgd_none_or_clear_bad(pgd))
2120 			continue;
2121 		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2122 				      frontswap, fs_pages_to_unuse);
2123 		if (ret)
2124 			return ret;
2125 	} while (pgd++, addr = next, addr != end);
2126 	return 0;
2127 }
2128 
unuse_mm(struct mm_struct * mm,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2129 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2130 		    bool frontswap, unsigned long *fs_pages_to_unuse)
2131 {
2132 	struct vm_area_struct *vma;
2133 	int ret = 0;
2134 
2135 	mmap_read_lock(mm);
2136 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2137 		if (vma->anon_vma) {
2138 			ret = unuse_vma(vma, type, frontswap,
2139 					fs_pages_to_unuse);
2140 			if (ret)
2141 				break;
2142 		}
2143 		cond_resched();
2144 	}
2145 	mmap_read_unlock(mm);
2146 	return ret;
2147 }
2148 
2149 /*
2150  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2151  * from current position to next entry still in use. Return 0
2152  * if there are no inuse entries after prev till end of the map.
2153  */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev,bool frontswap)2154 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2155 					unsigned int prev, bool frontswap)
2156 {
2157 	unsigned int i;
2158 	unsigned char count;
2159 
2160 	/*
2161 	 * No need for swap_lock here: we're just looking
2162 	 * for whether an entry is in use, not modifying it; false
2163 	 * hits are okay, and sys_swapoff() has already prevented new
2164 	 * allocations from this area (while holding swap_lock).
2165 	 */
2166 	for (i = prev + 1; i < si->max; i++) {
2167 		count = READ_ONCE(si->swap_map[i]);
2168 		if (count && swap_count(count) != SWAP_MAP_BAD)
2169 			if (!frontswap || frontswap_test(si, i))
2170 				break;
2171 		if ((i % LATENCY_LIMIT) == 0)
2172 			cond_resched();
2173 	}
2174 
2175 	if (i == si->max)
2176 		i = 0;
2177 
2178 	return i;
2179 }
2180 
2181 /*
2182  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2183  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2184  */
try_to_unuse(unsigned int type,bool frontswap,unsigned long pages_to_unuse)2185 int try_to_unuse(unsigned int type, bool frontswap,
2186 		 unsigned long pages_to_unuse)
2187 {
2188 	struct mm_struct *prev_mm;
2189 	struct mm_struct *mm;
2190 	struct list_head *p;
2191 	int retval = 0;
2192 	struct swap_info_struct *si = swap_info[type];
2193 	struct page *page;
2194 	swp_entry_t entry;
2195 	unsigned int i;
2196 
2197 	if (!READ_ONCE(si->inuse_pages))
2198 		return 0;
2199 
2200 	if (!frontswap)
2201 		pages_to_unuse = 0;
2202 
2203 retry:
2204 	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2205 	if (retval)
2206 		goto out;
2207 
2208 	prev_mm = &init_mm;
2209 	mmget(prev_mm);
2210 
2211 	spin_lock(&mmlist_lock);
2212 	p = &init_mm.mmlist;
2213 	while (READ_ONCE(si->inuse_pages) &&
2214 	       !signal_pending(current) &&
2215 	       (p = p->next) != &init_mm.mmlist) {
2216 
2217 		mm = list_entry(p, struct mm_struct, mmlist);
2218 		if (!mmget_not_zero(mm))
2219 			continue;
2220 		spin_unlock(&mmlist_lock);
2221 		mmput(prev_mm);
2222 		prev_mm = mm;
2223 		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2224 
2225 		if (retval) {
2226 			mmput(prev_mm);
2227 			goto out;
2228 		}
2229 
2230 		/*
2231 		 * Make sure that we aren't completely killing
2232 		 * interactive performance.
2233 		 */
2234 		cond_resched();
2235 		spin_lock(&mmlist_lock);
2236 	}
2237 	spin_unlock(&mmlist_lock);
2238 
2239 	mmput(prev_mm);
2240 
2241 	i = 0;
2242 	while (READ_ONCE(si->inuse_pages) &&
2243 	       !signal_pending(current) &&
2244 	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2245 
2246 		entry = swp_entry(type, i);
2247 		page = find_get_page(swap_address_space(entry), i);
2248 		if (!page)
2249 			continue;
2250 
2251 		/*
2252 		 * It is conceivable that a racing task removed this page from
2253 		 * swap cache just before we acquired the page lock. The page
2254 		 * might even be back in swap cache on another swap area. But
2255 		 * that is okay, try_to_free_swap() only removes stale pages.
2256 		 */
2257 		lock_page(page);
2258 		wait_on_page_writeback(page);
2259 		try_to_free_swap(page);
2260 		trace_android_vh_unuse_swap_page(si, page);
2261 		unlock_page(page);
2262 		put_page(page);
2263 
2264 		/*
2265 		 * For frontswap, we just need to unuse pages_to_unuse, if
2266 		 * it was specified. Need not check frontswap again here as
2267 		 * we already zeroed out pages_to_unuse if not frontswap.
2268 		 */
2269 		if (pages_to_unuse && --pages_to_unuse == 0)
2270 			goto out;
2271 	}
2272 
2273 	/*
2274 	 * Lets check again to see if there are still swap entries in the map.
2275 	 * If yes, we would need to do retry the unuse logic again.
2276 	 * Under global memory pressure, swap entries can be reinserted back
2277 	 * into process space after the mmlist loop above passes over them.
2278 	 *
2279 	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2280 	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2281 	 * at its own independent pace; and even shmem_writepage() could have
2282 	 * been preempted after get_swap_page(), temporarily hiding that swap.
2283 	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2284 	 */
2285 	if (READ_ONCE(si->inuse_pages)) {
2286 		if (!signal_pending(current))
2287 			goto retry;
2288 		retval = -EINTR;
2289 	}
2290 out:
2291 	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2292 }
2293 
2294 /*
2295  * After a successful try_to_unuse, if no swap is now in use, we know
2296  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2297  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2298  * added to the mmlist just after page_duplicate - before would be racy.
2299  */
drain_mmlist(void)2300 static void drain_mmlist(void)
2301 {
2302 	struct list_head *p, *next;
2303 	unsigned int type;
2304 
2305 	for (type = 0; type < nr_swapfiles; type++)
2306 		if (swap_info[type]->inuse_pages)
2307 			return;
2308 	spin_lock(&mmlist_lock);
2309 	list_for_each_safe(p, next, &init_mm.mmlist)
2310 		list_del_init(p);
2311 	spin_unlock(&mmlist_lock);
2312 }
2313 
2314 /*
2315  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2316  * corresponds to page offset for the specified swap entry.
2317  * Note that the type of this function is sector_t, but it returns page offset
2318  * into the bdev, not sector offset.
2319  */
map_swap_entry(swp_entry_t entry,struct block_device ** bdev)2320 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2321 {
2322 	struct swap_info_struct *sis;
2323 	struct swap_extent *se;
2324 	pgoff_t offset;
2325 
2326 	sis = swp_swap_info(entry);
2327 	*bdev = sis->bdev;
2328 
2329 	offset = swp_offset(entry);
2330 	se = offset_to_swap_extent(sis, offset);
2331 	return se->start_block + (offset - se->start_page);
2332 }
2333 
2334 /*
2335  * Returns the page offset into bdev for the specified page's swap entry.
2336  */
map_swap_page(struct page * page,struct block_device ** bdev)2337 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2338 {
2339 	swp_entry_t entry;
2340 	entry.val = page_private(page);
2341 	return map_swap_entry(entry, bdev);
2342 }
2343 
2344 /*
2345  * Free all of a swapdev's extent information
2346  */
destroy_swap_extents(struct swap_info_struct * sis)2347 static void destroy_swap_extents(struct swap_info_struct *sis)
2348 {
2349 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2350 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2351 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2352 
2353 		rb_erase(rb, &sis->swap_extent_root);
2354 		kfree(se);
2355 	}
2356 
2357 	if (sis->flags & SWP_ACTIVATED) {
2358 		struct file *swap_file = sis->swap_file;
2359 		struct address_space *mapping = swap_file->f_mapping;
2360 
2361 		sis->flags &= ~SWP_ACTIVATED;
2362 		if (mapping->a_ops->swap_deactivate)
2363 			mapping->a_ops->swap_deactivate(swap_file);
2364 	}
2365 }
2366 
2367 /*
2368  * Add a block range (and the corresponding page range) into this swapdev's
2369  * extent tree.
2370  *
2371  * This function rather assumes that it is called in ascending page order.
2372  */
2373 int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)2374 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2375 		unsigned long nr_pages, sector_t start_block)
2376 {
2377 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2378 	struct swap_extent *se;
2379 	struct swap_extent *new_se;
2380 
2381 	/*
2382 	 * place the new node at the right most since the
2383 	 * function is called in ascending page order.
2384 	 */
2385 	while (*link) {
2386 		parent = *link;
2387 		link = &parent->rb_right;
2388 	}
2389 
2390 	if (parent) {
2391 		se = rb_entry(parent, struct swap_extent, rb_node);
2392 		BUG_ON(se->start_page + se->nr_pages != start_page);
2393 		if (se->start_block + se->nr_pages == start_block) {
2394 			/* Merge it */
2395 			se->nr_pages += nr_pages;
2396 			return 0;
2397 		}
2398 	}
2399 
2400 	/* No merge, insert a new extent. */
2401 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2402 	if (new_se == NULL)
2403 		return -ENOMEM;
2404 	new_se->start_page = start_page;
2405 	new_se->nr_pages = nr_pages;
2406 	new_se->start_block = start_block;
2407 
2408 	rb_link_node(&new_se->rb_node, parent, link);
2409 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2410 	return 1;
2411 }
2412 EXPORT_SYMBOL_GPL(add_swap_extent);
2413 
2414 /*
2415  * A `swap extent' is a simple thing which maps a contiguous range of pages
2416  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2417  * is built at swapon time and is then used at swap_writepage/swap_readpage
2418  * time for locating where on disk a page belongs.
2419  *
2420  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2421  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2422  * swap files identically.
2423  *
2424  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2425  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2426  * swapfiles are handled *identically* after swapon time.
2427  *
2428  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2429  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2430  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2431  * requirements, they are simply tossed out - we will never use those blocks
2432  * for swapping.
2433  *
2434  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2435  * prevents users from writing to the swap device, which will corrupt memory.
2436  *
2437  * The amount of disk space which a single swap extent represents varies.
2438  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2439  * extents in the list.  To avoid much list walking, we cache the previous
2440  * search location in `curr_swap_extent', and start new searches from there.
2441  * This is extremely effective.  The average number of iterations in
2442  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2443  */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)2444 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2445 {
2446 	struct file *swap_file = sis->swap_file;
2447 	struct address_space *mapping = swap_file->f_mapping;
2448 	struct inode *inode = mapping->host;
2449 	int ret;
2450 
2451 	if (S_ISBLK(inode->i_mode)) {
2452 		ret = add_swap_extent(sis, 0, sis->max, 0);
2453 		*span = sis->pages;
2454 		return ret;
2455 	}
2456 
2457 	if (mapping->a_ops->swap_activate) {
2458 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2459 		if (ret >= 0)
2460 			sis->flags |= SWP_ACTIVATED;
2461 		if (!ret) {
2462 			sis->flags |= SWP_FS_OPS;
2463 			ret = add_swap_extent(sis, 0, sis->max, 0);
2464 			*span = sis->pages;
2465 		}
2466 		return ret;
2467 	}
2468 
2469 	return generic_swapfile_activate(sis, swap_file, span);
2470 }
2471 
swap_node(struct swap_info_struct * p)2472 static int swap_node(struct swap_info_struct *p)
2473 {
2474 	struct block_device *bdev;
2475 
2476 	if (p->bdev)
2477 		bdev = p->bdev;
2478 	else
2479 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2480 
2481 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2482 }
2483 
setup_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info)2484 static void setup_swap_info(struct swap_info_struct *p, int prio,
2485 			    unsigned char *swap_map,
2486 			    struct swap_cluster_info *cluster_info)
2487 {
2488 	int i;
2489 
2490 	if (prio >= 0)
2491 		p->prio = prio;
2492 	else
2493 		p->prio = --least_priority;
2494 	/*
2495 	 * the plist prio is negated because plist ordering is
2496 	 * low-to-high, while swap ordering is high-to-low
2497 	 */
2498 	p->list.prio = -p->prio;
2499 	for_each_node(i) {
2500 		if (p->prio >= 0)
2501 			p->avail_lists[i].prio = -p->prio;
2502 		else {
2503 			if (swap_node(p) == i)
2504 				p->avail_lists[i].prio = 1;
2505 			else
2506 				p->avail_lists[i].prio = -p->prio;
2507 		}
2508 	}
2509 	p->swap_map = swap_map;
2510 	p->cluster_info = cluster_info;
2511 }
2512 
_enable_swap_info(struct swap_info_struct * p)2513 static void _enable_swap_info(struct swap_info_struct *p)
2514 {
2515 	bool skip = false;
2516 
2517 	p->flags |= SWP_WRITEOK | SWP_VALID;
2518 	trace_android_vh_account_swap_pages(p, &skip);
2519 	if (!skip) {
2520 		atomic_long_add(p->pages, &nr_swap_pages);
2521 		total_swap_pages += p->pages;
2522 	}
2523 	assert_spin_locked(&swap_lock);
2524 	/*
2525 	 * both lists are plists, and thus priority ordered.
2526 	 * swap_active_head needs to be priority ordered for swapoff(),
2527 	 * which on removal of any swap_info_struct with an auto-assigned
2528 	 * (i.e. negative) priority increments the auto-assigned priority
2529 	 * of any lower-priority swap_info_structs.
2530 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2531 	 * which allocates swap pages from the highest available priority
2532 	 * swap_info_struct.
2533 	 */
2534 	plist_add(&p->list, &swap_active_head);
2535 	add_to_avail_list(p);
2536 }
2537 
enable_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * frontswap_map)2538 static void enable_swap_info(struct swap_info_struct *p, int prio,
2539 				unsigned char *swap_map,
2540 				struct swap_cluster_info *cluster_info,
2541 				unsigned long *frontswap_map)
2542 {
2543 	frontswap_init(p->type, frontswap_map);
2544 	spin_lock(&swap_lock);
2545 	spin_lock(&p->lock);
2546 	setup_swap_info(p, prio, swap_map, cluster_info);
2547 	spin_unlock(&p->lock);
2548 	spin_unlock(&swap_lock);
2549 	/*
2550 	 * Guarantee swap_map, cluster_info, etc. fields are valid
2551 	 * between get/put_swap_device() if SWP_VALID bit is set
2552 	 */
2553 	synchronize_rcu();
2554 	spin_lock(&swap_lock);
2555 	spin_lock(&p->lock);
2556 	_enable_swap_info(p);
2557 	spin_unlock(&p->lock);
2558 	spin_unlock(&swap_lock);
2559 }
2560 
reinsert_swap_info(struct swap_info_struct * p)2561 static void reinsert_swap_info(struct swap_info_struct *p)
2562 {
2563 	spin_lock(&swap_lock);
2564 	spin_lock(&p->lock);
2565 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2566 	_enable_swap_info(p);
2567 	spin_unlock(&p->lock);
2568 	spin_unlock(&swap_lock);
2569 }
2570 
has_usable_swap(void)2571 bool has_usable_swap(void)
2572 {
2573 	bool ret = true;
2574 
2575 	spin_lock(&swap_lock);
2576 	if (plist_head_empty(&swap_active_head))
2577 		ret = false;
2578 	spin_unlock(&swap_lock);
2579 	return ret;
2580 }
2581 
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)2582 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2583 {
2584 	struct swap_info_struct *p = NULL;
2585 	unsigned char *swap_map;
2586 	struct swap_cluster_info *cluster_info;
2587 	unsigned long *frontswap_map;
2588 	struct file *swap_file, *victim;
2589 	struct address_space *mapping;
2590 	struct inode *inode;
2591 	struct filename *pathname;
2592 	int err, found = 0;
2593 	unsigned int old_block_size;
2594 	bool skip = false;
2595 
2596 	if (!capable(CAP_SYS_ADMIN))
2597 		return -EPERM;
2598 
2599 	BUG_ON(!current->mm);
2600 
2601 	pathname = getname(specialfile);
2602 	if (IS_ERR(pathname))
2603 		return PTR_ERR(pathname);
2604 
2605 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2606 	err = PTR_ERR(victim);
2607 	if (IS_ERR(victim))
2608 		goto out;
2609 
2610 	mapping = victim->f_mapping;
2611 	spin_lock(&swap_lock);
2612 	plist_for_each_entry(p, &swap_active_head, list) {
2613 		if (p->flags & SWP_WRITEOK) {
2614 			if (p->swap_file->f_mapping == mapping) {
2615 				found = 1;
2616 				break;
2617 			}
2618 		}
2619 	}
2620 	if (!found) {
2621 		err = -EINVAL;
2622 		spin_unlock(&swap_lock);
2623 		goto out_dput;
2624 	}
2625 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2626 		vm_unacct_memory(p->pages);
2627 	else {
2628 		err = -ENOMEM;
2629 		spin_unlock(&swap_lock);
2630 		goto out_dput;
2631 	}
2632 	del_from_avail_list(p);
2633 	spin_lock(&p->lock);
2634 	if (p->prio < 0) {
2635 		struct swap_info_struct *si = p;
2636 		int nid;
2637 
2638 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2639 			si->prio++;
2640 			si->list.prio--;
2641 			for_each_node(nid) {
2642 				if (si->avail_lists[nid].prio != 1)
2643 					si->avail_lists[nid].prio--;
2644 			}
2645 		}
2646 		least_priority++;
2647 	}
2648 	plist_del(&p->list, &swap_active_head);
2649 	trace_android_vh_account_swap_pages(p, &skip);
2650 	if (!skip) {
2651 		atomic_long_sub(p->pages, &nr_swap_pages);
2652 		total_swap_pages -= p->pages;
2653 	}
2654 	p->flags &= ~SWP_WRITEOK;
2655 	spin_unlock(&p->lock);
2656 	spin_unlock(&swap_lock);
2657 
2658 	disable_swap_slots_cache_lock();
2659 
2660 	set_current_oom_origin();
2661 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2662 	clear_current_oom_origin();
2663 
2664 	if (err) {
2665 		/* re-insert swap space back into swap_list */
2666 		reinsert_swap_info(p);
2667 		reenable_swap_slots_cache_unlock();
2668 		goto out_dput;
2669 	}
2670 
2671 	reenable_swap_slots_cache_unlock();
2672 
2673 	spin_lock(&swap_lock);
2674 	spin_lock(&p->lock);
2675 	p->flags &= ~SWP_VALID;		/* mark swap device as invalid */
2676 	spin_unlock(&p->lock);
2677 	spin_unlock(&swap_lock);
2678 	/*
2679 	 * wait for swap operations protected by get/put_swap_device()
2680 	 * to complete
2681 	 */
2682 	synchronize_rcu();
2683 
2684 	flush_work(&p->discard_work);
2685 
2686 	destroy_swap_extents(p);
2687 	if (p->flags & SWP_CONTINUED)
2688 		free_swap_count_continuations(p);
2689 
2690 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2691 		atomic_dec(&nr_rotate_swap);
2692 
2693 	mutex_lock(&swapon_mutex);
2694 	spin_lock(&swap_lock);
2695 	spin_lock(&p->lock);
2696 	drain_mmlist();
2697 
2698 	/* wait for anyone still in scan_swap_map */
2699 	p->highest_bit = 0;		/* cuts scans short */
2700 	while (p->flags >= SWP_SCANNING) {
2701 		spin_unlock(&p->lock);
2702 		spin_unlock(&swap_lock);
2703 		schedule_timeout_uninterruptible(1);
2704 		spin_lock(&swap_lock);
2705 		spin_lock(&p->lock);
2706 	}
2707 
2708 	swap_file = p->swap_file;
2709 	old_block_size = p->old_block_size;
2710 	p->swap_file = NULL;
2711 	p->max = 0;
2712 	swap_map = p->swap_map;
2713 	p->swap_map = NULL;
2714 	cluster_info = p->cluster_info;
2715 	p->cluster_info = NULL;
2716 	frontswap_map = frontswap_map_get(p);
2717 	spin_unlock(&p->lock);
2718 	spin_unlock(&swap_lock);
2719 	arch_swap_invalidate_area(p->type);
2720 	frontswap_invalidate_area(p->type);
2721 	frontswap_map_set(p, NULL);
2722 	mutex_unlock(&swapon_mutex);
2723 	free_percpu(p->percpu_cluster);
2724 	p->percpu_cluster = NULL;
2725 	free_percpu(p->cluster_next_cpu);
2726 	p->cluster_next_cpu = NULL;
2727 	vfree(swap_map);
2728 	kvfree(cluster_info);
2729 	kvfree(frontswap_map);
2730 	/* Destroy swap account information */
2731 	swap_cgroup_swapoff(p->type);
2732 	exit_swap_address_space(p->type);
2733 
2734 	inode = mapping->host;
2735 	if (S_ISBLK(inode->i_mode)) {
2736 		struct block_device *bdev = I_BDEV(inode);
2737 
2738 		set_blocksize(bdev, old_block_size);
2739 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2740 	}
2741 
2742 	inode_lock(inode);
2743 	inode->i_flags &= ~S_SWAPFILE;
2744 	inode_unlock(inode);
2745 	filp_close(swap_file, NULL);
2746 
2747 	/*
2748 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2749 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2750 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2751 	 */
2752 	spin_lock(&swap_lock);
2753 	p->flags = 0;
2754 	spin_unlock(&swap_lock);
2755 
2756 	err = 0;
2757 	atomic_inc(&proc_poll_event);
2758 	wake_up_interruptible(&proc_poll_wait);
2759 
2760 out_dput:
2761 	filp_close(victim, NULL);
2762 out:
2763 	putname(pathname);
2764 	return err;
2765 }
2766 
2767 #ifdef CONFIG_PROC_FS
swaps_poll(struct file * file,poll_table * wait)2768 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2769 {
2770 	struct seq_file *seq = file->private_data;
2771 
2772 	poll_wait(file, &proc_poll_wait, wait);
2773 
2774 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2775 		seq->poll_event = atomic_read(&proc_poll_event);
2776 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2777 	}
2778 
2779 	return EPOLLIN | EPOLLRDNORM;
2780 }
2781 
2782 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)2783 static void *swap_start(struct seq_file *swap, loff_t *pos)
2784 {
2785 	struct swap_info_struct *si;
2786 	int type;
2787 	loff_t l = *pos;
2788 
2789 	mutex_lock(&swapon_mutex);
2790 
2791 	if (!l)
2792 		return SEQ_START_TOKEN;
2793 
2794 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2795 		if (!(si->flags & SWP_USED) || !si->swap_map)
2796 			continue;
2797 		if (!--l)
2798 			return si;
2799 	}
2800 
2801 	return NULL;
2802 }
2803 
swap_next(struct seq_file * swap,void * v,loff_t * pos)2804 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2805 {
2806 	struct swap_info_struct *si = v;
2807 	int type;
2808 
2809 	if (v == SEQ_START_TOKEN)
2810 		type = 0;
2811 	else
2812 		type = si->type + 1;
2813 
2814 	++(*pos);
2815 	for (; (si = swap_type_to_swap_info(type)); type++) {
2816 		if (!(si->flags & SWP_USED) || !si->swap_map)
2817 			continue;
2818 		return si;
2819 	}
2820 
2821 	return NULL;
2822 }
2823 
swap_stop(struct seq_file * swap,void * v)2824 static void swap_stop(struct seq_file *swap, void *v)
2825 {
2826 	mutex_unlock(&swapon_mutex);
2827 }
2828 
swap_show(struct seq_file * swap,void * v)2829 static int swap_show(struct seq_file *swap, void *v)
2830 {
2831 	struct swap_info_struct *si = v;
2832 	struct file *file;
2833 	int len;
2834 	unsigned int bytes, inuse;
2835 
2836 	if (si == SEQ_START_TOKEN) {
2837 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2838 		return 0;
2839 	}
2840 
2841 	bytes = si->pages << (PAGE_SHIFT - 10);
2842 	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2843 
2844 	file = si->swap_file;
2845 	len = seq_file_path(swap, file, " \t\n\\");
2846 	seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2847 			len < 40 ? 40 - len : 1, " ",
2848 			S_ISBLK(file_inode(file)->i_mode) ?
2849 				"partition" : "file\t",
2850 			bytes, bytes < 10000000 ? "\t" : "",
2851 			inuse, inuse < 10000000 ? "\t" : "",
2852 			si->prio);
2853 	return 0;
2854 }
2855 
2856 static const struct seq_operations swaps_op = {
2857 	.start =	swap_start,
2858 	.next =		swap_next,
2859 	.stop =		swap_stop,
2860 	.show =		swap_show
2861 };
2862 
swaps_open(struct inode * inode,struct file * file)2863 static int swaps_open(struct inode *inode, struct file *file)
2864 {
2865 	struct seq_file *seq;
2866 	int ret;
2867 
2868 	ret = seq_open(file, &swaps_op);
2869 	if (ret)
2870 		return ret;
2871 
2872 	seq = file->private_data;
2873 	seq->poll_event = atomic_read(&proc_poll_event);
2874 	return 0;
2875 }
2876 
2877 static const struct proc_ops swaps_proc_ops = {
2878 	.proc_flags	= PROC_ENTRY_PERMANENT,
2879 	.proc_open	= swaps_open,
2880 	.proc_read	= seq_read,
2881 	.proc_lseek	= seq_lseek,
2882 	.proc_release	= seq_release,
2883 	.proc_poll	= swaps_poll,
2884 };
2885 
procswaps_init(void)2886 static int __init procswaps_init(void)
2887 {
2888 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2889 	return 0;
2890 }
2891 __initcall(procswaps_init);
2892 #endif /* CONFIG_PROC_FS */
2893 
2894 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)2895 static int __init max_swapfiles_check(void)
2896 {
2897 	MAX_SWAPFILES_CHECK();
2898 	return 0;
2899 }
2900 late_initcall(max_swapfiles_check);
2901 #endif
2902 
alloc_swap_info(void)2903 static struct swap_info_struct *alloc_swap_info(void)
2904 {
2905 	struct swap_info_struct *p = NULL;
2906 	struct swap_info_struct *defer = NULL;
2907 	unsigned int type;
2908 	int i;
2909 	bool skip = false;
2910 
2911 	trace_android_rvh_alloc_si(&p, &skip);
2912 	trace_android_vh_alloc_si(&p, &skip);
2913 	if (!skip)
2914 		p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2915 	if (!p)
2916 		return ERR_PTR(-ENOMEM);
2917 
2918 	spin_lock(&swap_lock);
2919 	for (type = 0; type < nr_swapfiles; type++) {
2920 		if (!(swap_info[type]->flags & SWP_USED))
2921 			break;
2922 	}
2923 	if (type >= MAX_SWAPFILES) {
2924 		spin_unlock(&swap_lock);
2925 		kvfree(p);
2926 		return ERR_PTR(-EPERM);
2927 	}
2928 	if (type >= nr_swapfiles) {
2929 		p->type = type;
2930 		WRITE_ONCE(swap_info[type], p);
2931 		/*
2932 		 * Write swap_info[type] before nr_swapfiles, in case a
2933 		 * racing procfs swap_start() or swap_next() is reading them.
2934 		 * (We never shrink nr_swapfiles, we never free this entry.)
2935 		 */
2936 		smp_wmb();
2937 		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2938 	} else {
2939 		defer = p;
2940 		p = swap_info[type];
2941 		/*
2942 		 * Do not memset this entry: a racing procfs swap_next()
2943 		 * would be relying on p->type to remain valid.
2944 		 */
2945 	}
2946 	p->swap_extent_root = RB_ROOT;
2947 	plist_node_init(&p->list, 0);
2948 	for_each_node(i)
2949 		plist_node_init(&p->avail_lists[i], 0);
2950 	p->flags = SWP_USED;
2951 	spin_unlock(&swap_lock);
2952 	kvfree(defer);
2953 	spin_lock_init(&p->lock);
2954 	spin_lock_init(&p->cont_lock);
2955 
2956 	return p;
2957 }
2958 
claim_swapfile(struct swap_info_struct * p,struct inode * inode)2959 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2960 {
2961 	int error;
2962 
2963 	if (S_ISBLK(inode->i_mode)) {
2964 		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2965 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2966 		if (IS_ERR(p->bdev)) {
2967 			error = PTR_ERR(p->bdev);
2968 			p->bdev = NULL;
2969 			return error;
2970 		}
2971 		p->old_block_size = block_size(p->bdev);
2972 		error = set_blocksize(p->bdev, PAGE_SIZE);
2973 		if (error < 0)
2974 			return error;
2975 		/*
2976 		 * Zoned block devices contain zones that have a sequential
2977 		 * write only restriction.  Hence zoned block devices are not
2978 		 * suitable for swapping.  Disallow them here.
2979 		 */
2980 		if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2981 			return -EINVAL;
2982 		p->flags |= SWP_BLKDEV;
2983 	} else if (S_ISREG(inode->i_mode)) {
2984 		p->bdev = inode->i_sb->s_bdev;
2985 	}
2986 
2987 	return 0;
2988 }
2989 
2990 
2991 /*
2992  * Find out how many pages are allowed for a single swap device. There
2993  * are two limiting factors:
2994  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2995  * 2) the number of bits in the swap pte, as defined by the different
2996  * architectures.
2997  *
2998  * In order to find the largest possible bit mask, a swap entry with
2999  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3000  * decoded to a swp_entry_t again, and finally the swap offset is
3001  * extracted.
3002  *
3003  * This will mask all the bits from the initial ~0UL mask that can't
3004  * be encoded in either the swp_entry_t or the architecture definition
3005  * of a swap pte.
3006  */
generic_max_swapfile_size(void)3007 unsigned long generic_max_swapfile_size(void)
3008 {
3009 	return swp_offset(pte_to_swp_entry(
3010 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3011 }
3012 
3013 /* Can be overridden by an architecture for additional checks. */
max_swapfile_size(void)3014 __weak unsigned long max_swapfile_size(void)
3015 {
3016 	return generic_max_swapfile_size();
3017 }
3018 
read_swap_header(struct swap_info_struct * p,union swap_header * swap_header,struct inode * inode)3019 static unsigned long read_swap_header(struct swap_info_struct *p,
3020 					union swap_header *swap_header,
3021 					struct inode *inode)
3022 {
3023 	int i;
3024 	unsigned long maxpages;
3025 	unsigned long swapfilepages;
3026 	unsigned long last_page;
3027 
3028 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3029 		pr_err("Unable to find swap-space signature\n");
3030 		return 0;
3031 	}
3032 
3033 	/* swap partition endianess hack... */
3034 	if (swab32(swap_header->info.version) == 1) {
3035 		swab32s(&swap_header->info.version);
3036 		swab32s(&swap_header->info.last_page);
3037 		swab32s(&swap_header->info.nr_badpages);
3038 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3039 			return 0;
3040 		for (i = 0; i < swap_header->info.nr_badpages; i++)
3041 			swab32s(&swap_header->info.badpages[i]);
3042 	}
3043 	/* Check the swap header's sub-version */
3044 	if (swap_header->info.version != 1) {
3045 		pr_warn("Unable to handle swap header version %d\n",
3046 			swap_header->info.version);
3047 		return 0;
3048 	}
3049 
3050 	p->lowest_bit  = 1;
3051 	p->cluster_next = 1;
3052 	p->cluster_nr = 0;
3053 
3054 	maxpages = max_swapfile_size();
3055 	last_page = swap_header->info.last_page;
3056 	if (!last_page) {
3057 		pr_warn("Empty swap-file\n");
3058 		return 0;
3059 	}
3060 	if (last_page > maxpages) {
3061 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3062 			maxpages << (PAGE_SHIFT - 10),
3063 			last_page << (PAGE_SHIFT - 10));
3064 	}
3065 	if (maxpages > last_page) {
3066 		maxpages = last_page + 1;
3067 		/* p->max is an unsigned int: don't overflow it */
3068 		if ((unsigned int)maxpages == 0)
3069 			maxpages = UINT_MAX;
3070 	}
3071 	p->highest_bit = maxpages - 1;
3072 
3073 	if (!maxpages)
3074 		return 0;
3075 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3076 	if (swapfilepages && maxpages > swapfilepages) {
3077 		pr_warn("Swap area shorter than signature indicates\n");
3078 		return 0;
3079 	}
3080 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3081 		return 0;
3082 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3083 		return 0;
3084 
3085 	return maxpages;
3086 }
3087 
3088 #define SWAP_CLUSTER_INFO_COLS						\
3089 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3090 #define SWAP_CLUSTER_SPACE_COLS						\
3091 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3092 #define SWAP_CLUSTER_COLS						\
3093 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3094 
setup_swap_map_and_extents(struct swap_info_struct * p,union swap_header * swap_header,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long maxpages,sector_t * span)3095 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3096 					union swap_header *swap_header,
3097 					unsigned char *swap_map,
3098 					struct swap_cluster_info *cluster_info,
3099 					unsigned long maxpages,
3100 					sector_t *span)
3101 {
3102 	unsigned int j, k;
3103 	unsigned int nr_good_pages;
3104 	int nr_extents;
3105 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3106 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3107 	unsigned long i, idx;
3108 
3109 	nr_good_pages = maxpages - 1;	/* omit header page */
3110 
3111 	cluster_list_init(&p->free_clusters);
3112 	cluster_list_init(&p->discard_clusters);
3113 
3114 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3115 		unsigned int page_nr = swap_header->info.badpages[i];
3116 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3117 			return -EINVAL;
3118 		if (page_nr < maxpages) {
3119 			swap_map[page_nr] = SWAP_MAP_BAD;
3120 			nr_good_pages--;
3121 			/*
3122 			 * Haven't marked the cluster free yet, no list
3123 			 * operation involved
3124 			 */
3125 			inc_cluster_info_page(p, cluster_info, page_nr);
3126 		}
3127 	}
3128 
3129 	/* Haven't marked the cluster free yet, no list operation involved */
3130 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3131 		inc_cluster_info_page(p, cluster_info, i);
3132 
3133 	if (nr_good_pages) {
3134 		swap_map[0] = SWAP_MAP_BAD;
3135 		/*
3136 		 * Not mark the cluster free yet, no list
3137 		 * operation involved
3138 		 */
3139 		inc_cluster_info_page(p, cluster_info, 0);
3140 		p->max = maxpages;
3141 		p->pages = nr_good_pages;
3142 		nr_extents = setup_swap_extents(p, span);
3143 		if (nr_extents < 0)
3144 			return nr_extents;
3145 		nr_good_pages = p->pages;
3146 	}
3147 	if (!nr_good_pages) {
3148 		pr_warn("Empty swap-file\n");
3149 		return -EINVAL;
3150 	}
3151 
3152 	if (!cluster_info)
3153 		return nr_extents;
3154 
3155 
3156 	/*
3157 	 * Reduce false cache line sharing between cluster_info and
3158 	 * sharing same address space.
3159 	 */
3160 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3161 		j = (k + col) % SWAP_CLUSTER_COLS;
3162 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3163 			idx = i * SWAP_CLUSTER_COLS + j;
3164 			if (idx >= nr_clusters)
3165 				continue;
3166 			if (cluster_count(&cluster_info[idx]))
3167 				continue;
3168 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3169 			cluster_list_add_tail(&p->free_clusters, cluster_info,
3170 					      idx);
3171 		}
3172 	}
3173 	return nr_extents;
3174 }
3175 
3176 /*
3177  * Helper to sys_swapon determining if a given swap
3178  * backing device queue supports DISCARD operations.
3179  */
swap_discardable(struct swap_info_struct * si)3180 static bool swap_discardable(struct swap_info_struct *si)
3181 {
3182 	struct request_queue *q = bdev_get_queue(si->bdev);
3183 
3184 	if (!q || !blk_queue_discard(q))
3185 		return false;
3186 
3187 	return true;
3188 }
3189 
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)3190 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3191 {
3192 	struct swap_info_struct *p;
3193 	struct filename *name;
3194 	struct file *swap_file = NULL;
3195 	struct address_space *mapping;
3196 	int prio;
3197 	int error;
3198 	union swap_header *swap_header;
3199 	int nr_extents;
3200 	sector_t span;
3201 	unsigned long maxpages;
3202 	unsigned char *swap_map = NULL;
3203 	struct swap_cluster_info *cluster_info = NULL;
3204 	unsigned long *frontswap_map = NULL;
3205 	struct page *page = NULL;
3206 	struct inode *inode = NULL;
3207 	bool inced_nr_rotate_swap = false;
3208 
3209 	if (swap_flags & ~SWAP_FLAGS_VALID)
3210 		return -EINVAL;
3211 
3212 	if (!capable(CAP_SYS_ADMIN))
3213 		return -EPERM;
3214 
3215 	if (!swap_avail_heads)
3216 		return -ENOMEM;
3217 
3218 	p = alloc_swap_info();
3219 	if (IS_ERR(p))
3220 		return PTR_ERR(p);
3221 
3222 	INIT_WORK(&p->discard_work, swap_discard_work);
3223 
3224 	name = getname(specialfile);
3225 	if (IS_ERR(name)) {
3226 		error = PTR_ERR(name);
3227 		name = NULL;
3228 		goto bad_swap;
3229 	}
3230 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3231 	if (IS_ERR(swap_file)) {
3232 		error = PTR_ERR(swap_file);
3233 		swap_file = NULL;
3234 		goto bad_swap;
3235 	}
3236 
3237 	p->swap_file = swap_file;
3238 	mapping = swap_file->f_mapping;
3239 	inode = mapping->host;
3240 
3241 	error = claim_swapfile(p, inode);
3242 	if (unlikely(error))
3243 		goto bad_swap;
3244 
3245 	inode_lock(inode);
3246 	if (IS_SWAPFILE(inode)) {
3247 		error = -EBUSY;
3248 		goto bad_swap_unlock_inode;
3249 	}
3250 
3251 	/*
3252 	 * Read the swap header.
3253 	 */
3254 	if (!mapping->a_ops->readpage) {
3255 		error = -EINVAL;
3256 		goto bad_swap_unlock_inode;
3257 	}
3258 	page = read_mapping_page(mapping, 0, swap_file);
3259 	if (IS_ERR(page)) {
3260 		error = PTR_ERR(page);
3261 		goto bad_swap_unlock_inode;
3262 	}
3263 	swap_header = kmap(page);
3264 
3265 	maxpages = read_swap_header(p, swap_header, inode);
3266 	if (unlikely(!maxpages)) {
3267 		error = -EINVAL;
3268 		goto bad_swap_unlock_inode;
3269 	}
3270 
3271 	/* OK, set up the swap map and apply the bad block list */
3272 	swap_map = vzalloc(maxpages);
3273 	if (!swap_map) {
3274 		error = -ENOMEM;
3275 		goto bad_swap_unlock_inode;
3276 	}
3277 
3278 	if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3279 		p->flags |= SWP_STABLE_WRITES;
3280 
3281 	if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3282 		p->flags |= SWP_SYNCHRONOUS_IO;
3283 
3284 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3285 		int cpu;
3286 		unsigned long ci, nr_cluster;
3287 
3288 		p->flags |= SWP_SOLIDSTATE;
3289 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3290 		if (!p->cluster_next_cpu) {
3291 			error = -ENOMEM;
3292 			goto bad_swap_unlock_inode;
3293 		}
3294 		/*
3295 		 * select a random position to start with to help wear leveling
3296 		 * SSD
3297 		 */
3298 		for_each_possible_cpu(cpu) {
3299 			per_cpu(*p->cluster_next_cpu, cpu) =
3300 				1 + prandom_u32_max(p->highest_bit);
3301 		}
3302 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3303 
3304 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3305 					GFP_KERNEL);
3306 		if (!cluster_info) {
3307 			error = -ENOMEM;
3308 			goto bad_swap_unlock_inode;
3309 		}
3310 
3311 		for (ci = 0; ci < nr_cluster; ci++)
3312 			spin_lock_init(&((cluster_info + ci)->lock));
3313 
3314 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3315 		if (!p->percpu_cluster) {
3316 			error = -ENOMEM;
3317 			goto bad_swap_unlock_inode;
3318 		}
3319 		for_each_possible_cpu(cpu) {
3320 			struct percpu_cluster *cluster;
3321 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3322 			cluster_set_null(&cluster->index);
3323 		}
3324 	} else {
3325 		atomic_inc(&nr_rotate_swap);
3326 		inced_nr_rotate_swap = true;
3327 	}
3328 
3329 	error = swap_cgroup_swapon(p->type, maxpages);
3330 	if (error)
3331 		goto bad_swap_unlock_inode;
3332 
3333 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3334 		cluster_info, maxpages, &span);
3335 	if (unlikely(nr_extents < 0)) {
3336 		error = nr_extents;
3337 		goto bad_swap_unlock_inode;
3338 	}
3339 	/* frontswap enabled? set up bit-per-page map for frontswap */
3340 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3341 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3342 					 sizeof(long),
3343 					 GFP_KERNEL);
3344 
3345 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3346 		/*
3347 		 * When discard is enabled for swap with no particular
3348 		 * policy flagged, we set all swap discard flags here in
3349 		 * order to sustain backward compatibility with older
3350 		 * swapon(8) releases.
3351 		 */
3352 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3353 			     SWP_PAGE_DISCARD);
3354 
3355 		/*
3356 		 * By flagging sys_swapon, a sysadmin can tell us to
3357 		 * either do single-time area discards only, or to just
3358 		 * perform discards for released swap page-clusters.
3359 		 * Now it's time to adjust the p->flags accordingly.
3360 		 */
3361 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3362 			p->flags &= ~SWP_PAGE_DISCARD;
3363 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3364 			p->flags &= ~SWP_AREA_DISCARD;
3365 
3366 		/* issue a swapon-time discard if it's still required */
3367 		if (p->flags & SWP_AREA_DISCARD) {
3368 			int err = discard_swap(p);
3369 			if (unlikely(err))
3370 				pr_err("swapon: discard_swap(%p): %d\n",
3371 					p, err);
3372 		}
3373 	}
3374 
3375 	error = init_swap_address_space(p->type, maxpages);
3376 	if (error)
3377 		goto bad_swap_unlock_inode;
3378 
3379 	/*
3380 	 * Flush any pending IO and dirty mappings before we start using this
3381 	 * swap device.
3382 	 */
3383 	inode->i_flags |= S_SWAPFILE;
3384 	error = inode_drain_writes(inode);
3385 	if (error) {
3386 		inode->i_flags &= ~S_SWAPFILE;
3387 		goto free_swap_address_space;
3388 	}
3389 
3390 	mutex_lock(&swapon_mutex);
3391 	prio = -1;
3392 	if (swap_flags & SWAP_FLAG_PREFER)
3393 		prio =
3394 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3395 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3396 
3397 	trace_android_vh_init_swap_info_struct(p, swap_avail_heads);
3398 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3399 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3400 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3401 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3402 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3403 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3404 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3405 		(frontswap_map) ? "FS" : "");
3406 
3407 	mutex_unlock(&swapon_mutex);
3408 	atomic_inc(&proc_poll_event);
3409 	wake_up_interruptible(&proc_poll_wait);
3410 
3411 	error = 0;
3412 	goto out;
3413 free_swap_address_space:
3414 	exit_swap_address_space(p->type);
3415 bad_swap_unlock_inode:
3416 	inode_unlock(inode);
3417 bad_swap:
3418 	free_percpu(p->percpu_cluster);
3419 	p->percpu_cluster = NULL;
3420 	free_percpu(p->cluster_next_cpu);
3421 	p->cluster_next_cpu = NULL;
3422 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3423 		set_blocksize(p->bdev, p->old_block_size);
3424 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3425 	}
3426 	inode = NULL;
3427 	destroy_swap_extents(p);
3428 	swap_cgroup_swapoff(p->type);
3429 	spin_lock(&swap_lock);
3430 	p->swap_file = NULL;
3431 	p->flags = 0;
3432 	spin_unlock(&swap_lock);
3433 	vfree(swap_map);
3434 	kvfree(cluster_info);
3435 	kvfree(frontswap_map);
3436 	if (inced_nr_rotate_swap)
3437 		atomic_dec(&nr_rotate_swap);
3438 	if (swap_file)
3439 		filp_close(swap_file, NULL);
3440 out:
3441 	if (page && !IS_ERR(page)) {
3442 		kunmap(page);
3443 		put_page(page);
3444 	}
3445 	if (name)
3446 		putname(name);
3447 	if (inode)
3448 		inode_unlock(inode);
3449 	if (!error)
3450 		enable_swap_slots_cache();
3451 	return error;
3452 }
3453 
si_swapinfo(struct sysinfo * val)3454 void si_swapinfo(struct sysinfo *val)
3455 {
3456 	unsigned int type;
3457 	unsigned long nr_to_be_unused = 0;
3458 
3459 	spin_lock(&swap_lock);
3460 	for (type = 0; type < nr_swapfiles; type++) {
3461 		struct swap_info_struct *si = swap_info[type];
3462 		bool skip = false;
3463 
3464 		trace_android_vh_si_swapinfo(si, &skip);
3465 		if (!skip && (si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3466 			nr_to_be_unused += si->inuse_pages;
3467 	}
3468 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3469 	val->totalswap = total_swap_pages + nr_to_be_unused;
3470 	spin_unlock(&swap_lock);
3471 }
3472 EXPORT_SYMBOL_GPL(si_swapinfo);
3473 
3474 /*
3475  * Verify that a swap entry is valid and increment its swap map count.
3476  *
3477  * Returns error code in following case.
3478  * - success -> 0
3479  * - swp_entry is invalid -> EINVAL
3480  * - swp_entry is migration entry -> EINVAL
3481  * - swap-cache reference is requested but there is already one. -> EEXIST
3482  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3483  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3484  */
__swap_duplicate(swp_entry_t entry,unsigned char usage)3485 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3486 {
3487 	struct swap_info_struct *p;
3488 	struct swap_cluster_info *ci;
3489 	unsigned long offset;
3490 	unsigned char count;
3491 	unsigned char has_cache;
3492 	int err = -EINVAL;
3493 
3494 	p = get_swap_device(entry);
3495 	if (!p)
3496 		goto out;
3497 
3498 	offset = swp_offset(entry);
3499 	ci = lock_cluster_or_swap_info(p, offset);
3500 
3501 	count = p->swap_map[offset];
3502 
3503 	/*
3504 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3505 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3506 	 */
3507 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3508 		err = -ENOENT;
3509 		goto unlock_out;
3510 	}
3511 
3512 	has_cache = count & SWAP_HAS_CACHE;
3513 	count &= ~SWAP_HAS_CACHE;
3514 	err = 0;
3515 
3516 	if (usage == SWAP_HAS_CACHE) {
3517 
3518 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3519 		if (!has_cache && count)
3520 			has_cache = SWAP_HAS_CACHE;
3521 		else if (has_cache)		/* someone else added cache */
3522 			err = -EEXIST;
3523 		else				/* no users remaining */
3524 			err = -ENOENT;
3525 
3526 	} else if (count || has_cache) {
3527 
3528 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3529 			count += usage;
3530 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3531 			err = -EINVAL;
3532 		else if (swap_count_continued(p, offset, count))
3533 			count = COUNT_CONTINUED;
3534 		else
3535 			err = -ENOMEM;
3536 	} else
3537 		err = -ENOENT;			/* unused swap entry */
3538 
3539 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3540 
3541 unlock_out:
3542 	unlock_cluster_or_swap_info(p, ci);
3543 out:
3544 	if (p)
3545 		put_swap_device(p);
3546 	return err;
3547 }
3548 
3549 /*
3550  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3551  * (in which case its reference count is never incremented).
3552  */
swap_shmem_alloc(swp_entry_t entry)3553 void swap_shmem_alloc(swp_entry_t entry)
3554 {
3555 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3556 }
3557 
3558 /*
3559  * Increase reference count of swap entry by 1.
3560  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3561  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3562  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3563  * might occur if a page table entry has got corrupted.
3564  */
swap_duplicate(swp_entry_t entry)3565 int swap_duplicate(swp_entry_t entry)
3566 {
3567 	int err = 0;
3568 
3569 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3570 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3571 	return err;
3572 }
3573 
3574 /*
3575  * @entry: swap entry for which we allocate swap cache.
3576  *
3577  * Called when allocating swap cache for existing swap entry,
3578  * This can return error codes. Returns 0 at success.
3579  * -EEXIST means there is a swap cache.
3580  * Note: return code is different from swap_duplicate().
3581  */
swapcache_prepare(swp_entry_t entry)3582 int swapcache_prepare(swp_entry_t entry)
3583 {
3584 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3585 }
3586 
swp_swap_info(swp_entry_t entry)3587 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3588 {
3589 	return swap_type_to_swap_info(swp_type(entry));
3590 }
3591 EXPORT_SYMBOL_GPL(swp_swap_info);
3592 
page_swap_info(struct page * page)3593 struct swap_info_struct *page_swap_info(struct page *page)
3594 {
3595 	swp_entry_t entry = { .val = page_private(page) };
3596 	return swp_swap_info(entry);
3597 }
3598 
3599 /*
3600  * out-of-line __page_file_ methods to avoid include hell.
3601  */
__page_file_mapping(struct page * page)3602 struct address_space *__page_file_mapping(struct page *page)
3603 {
3604 	return page_swap_info(page)->swap_file->f_mapping;
3605 }
3606 EXPORT_SYMBOL_GPL(__page_file_mapping);
3607 
__page_file_index(struct page * page)3608 pgoff_t __page_file_index(struct page *page)
3609 {
3610 	swp_entry_t swap = { .val = page_private(page) };
3611 	return swp_offset(swap);
3612 }
3613 EXPORT_SYMBOL_GPL(__page_file_index);
3614 
3615 /*
3616  * add_swap_count_continuation - called when a swap count is duplicated
3617  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3618  * page of the original vmalloc'ed swap_map, to hold the continuation count
3619  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3620  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3621  *
3622  * These continuation pages are seldom referenced: the common paths all work
3623  * on the original swap_map, only referring to a continuation page when the
3624  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3625  *
3626  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3627  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3628  * can be called after dropping locks.
3629  */
add_swap_count_continuation(swp_entry_t entry,gfp_t gfp_mask)3630 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3631 {
3632 	struct swap_info_struct *si;
3633 	struct swap_cluster_info *ci;
3634 	struct page *head;
3635 	struct page *page;
3636 	struct page *list_page;
3637 	pgoff_t offset;
3638 	unsigned char count;
3639 	int ret = 0;
3640 
3641 	/*
3642 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3643 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3644 	 */
3645 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3646 
3647 	si = get_swap_device(entry);
3648 	if (!si) {
3649 		/*
3650 		 * An acceptable race has occurred since the failing
3651 		 * __swap_duplicate(): the swap device may be swapoff
3652 		 */
3653 		goto outer;
3654 	}
3655 	spin_lock(&si->lock);
3656 
3657 	offset = swp_offset(entry);
3658 
3659 	ci = lock_cluster(si, offset);
3660 
3661 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3662 
3663 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3664 		/*
3665 		 * The higher the swap count, the more likely it is that tasks
3666 		 * will race to add swap count continuation: we need to avoid
3667 		 * over-provisioning.
3668 		 */
3669 		goto out;
3670 	}
3671 
3672 	if (!page) {
3673 		ret = -ENOMEM;
3674 		goto out;
3675 	}
3676 
3677 	/*
3678 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3679 	 * no architecture is using highmem pages for kernel page tables: so it
3680 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3681 	 */
3682 	head = vmalloc_to_page(si->swap_map + offset);
3683 	offset &= ~PAGE_MASK;
3684 
3685 	spin_lock(&si->cont_lock);
3686 	/*
3687 	 * Page allocation does not initialize the page's lru field,
3688 	 * but it does always reset its private field.
3689 	 */
3690 	if (!page_private(head)) {
3691 		BUG_ON(count & COUNT_CONTINUED);
3692 		INIT_LIST_HEAD(&head->lru);
3693 		set_page_private(head, SWP_CONTINUED);
3694 		si->flags |= SWP_CONTINUED;
3695 	}
3696 
3697 	list_for_each_entry(list_page, &head->lru, lru) {
3698 		unsigned char *map;
3699 
3700 		/*
3701 		 * If the previous map said no continuation, but we've found
3702 		 * a continuation page, free our allocation and use this one.
3703 		 */
3704 		if (!(count & COUNT_CONTINUED))
3705 			goto out_unlock_cont;
3706 
3707 		map = kmap_atomic(list_page) + offset;
3708 		count = *map;
3709 		kunmap_atomic(map);
3710 
3711 		/*
3712 		 * If this continuation count now has some space in it,
3713 		 * free our allocation and use this one.
3714 		 */
3715 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3716 			goto out_unlock_cont;
3717 	}
3718 
3719 	list_add_tail(&page->lru, &head->lru);
3720 	page = NULL;			/* now it's attached, don't free it */
3721 out_unlock_cont:
3722 	spin_unlock(&si->cont_lock);
3723 out:
3724 	unlock_cluster(ci);
3725 	spin_unlock(&si->lock);
3726 	put_swap_device(si);
3727 outer:
3728 	if (page)
3729 		__free_page(page);
3730 	return ret;
3731 }
3732 
3733 /*
3734  * swap_count_continued - when the original swap_map count is incremented
3735  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3736  * into, carry if so, or else fail until a new continuation page is allocated;
3737  * when the original swap_map count is decremented from 0 with continuation,
3738  * borrow from the continuation and report whether it still holds more.
3739  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3740  * lock.
3741  */
swap_count_continued(struct swap_info_struct * si,pgoff_t offset,unsigned char count)3742 static bool swap_count_continued(struct swap_info_struct *si,
3743 				 pgoff_t offset, unsigned char count)
3744 {
3745 	struct page *head;
3746 	struct page *page;
3747 	unsigned char *map;
3748 	bool ret;
3749 
3750 	head = vmalloc_to_page(si->swap_map + offset);
3751 	if (page_private(head) != SWP_CONTINUED) {
3752 		BUG_ON(count & COUNT_CONTINUED);
3753 		return false;		/* need to add count continuation */
3754 	}
3755 
3756 	spin_lock(&si->cont_lock);
3757 	offset &= ~PAGE_MASK;
3758 	page = list_next_entry(head, lru);
3759 	map = kmap_atomic(page) + offset;
3760 
3761 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3762 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3763 
3764 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3765 		/*
3766 		 * Think of how you add 1 to 999
3767 		 */
3768 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3769 			kunmap_atomic(map);
3770 			page = list_next_entry(page, lru);
3771 			BUG_ON(page == head);
3772 			map = kmap_atomic(page) + offset;
3773 		}
3774 		if (*map == SWAP_CONT_MAX) {
3775 			kunmap_atomic(map);
3776 			page = list_next_entry(page, lru);
3777 			if (page == head) {
3778 				ret = false;	/* add count continuation */
3779 				goto out;
3780 			}
3781 			map = kmap_atomic(page) + offset;
3782 init_map:		*map = 0;		/* we didn't zero the page */
3783 		}
3784 		*map += 1;
3785 		kunmap_atomic(map);
3786 		while ((page = list_prev_entry(page, lru)) != head) {
3787 			map = kmap_atomic(page) + offset;
3788 			*map = COUNT_CONTINUED;
3789 			kunmap_atomic(map);
3790 		}
3791 		ret = true;			/* incremented */
3792 
3793 	} else {				/* decrementing */
3794 		/*
3795 		 * Think of how you subtract 1 from 1000
3796 		 */
3797 		BUG_ON(count != COUNT_CONTINUED);
3798 		while (*map == COUNT_CONTINUED) {
3799 			kunmap_atomic(map);
3800 			page = list_next_entry(page, lru);
3801 			BUG_ON(page == head);
3802 			map = kmap_atomic(page) + offset;
3803 		}
3804 		BUG_ON(*map == 0);
3805 		*map -= 1;
3806 		if (*map == 0)
3807 			count = 0;
3808 		kunmap_atomic(map);
3809 		while ((page = list_prev_entry(page, lru)) != head) {
3810 			map = kmap_atomic(page) + offset;
3811 			*map = SWAP_CONT_MAX | count;
3812 			count = COUNT_CONTINUED;
3813 			kunmap_atomic(map);
3814 		}
3815 		ret = count == COUNT_CONTINUED;
3816 	}
3817 out:
3818 	spin_unlock(&si->cont_lock);
3819 	return ret;
3820 }
3821 
3822 /*
3823  * free_swap_count_continuations - swapoff free all the continuation pages
3824  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3825  */
free_swap_count_continuations(struct swap_info_struct * si)3826 static void free_swap_count_continuations(struct swap_info_struct *si)
3827 {
3828 	pgoff_t offset;
3829 
3830 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3831 		struct page *head;
3832 		head = vmalloc_to_page(si->swap_map + offset);
3833 		if (page_private(head)) {
3834 			struct page *page, *next;
3835 
3836 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3837 				list_del(&page->lru);
3838 				__free_page(page);
3839 			}
3840 		}
3841 	}
3842 }
3843 
3844 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
__cgroup_throttle_swaprate(struct page * page,gfp_t gfp_mask)3845 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3846 {
3847 	struct swap_info_struct *si, *next;
3848 	int nid = page_to_nid(page);
3849 
3850 	if (!(gfp_mask & __GFP_IO))
3851 		return;
3852 
3853 	if (!blk_cgroup_congested())
3854 		return;
3855 
3856 	/*
3857 	 * We've already scheduled a throttle, avoid taking the global swap
3858 	 * lock.
3859 	 */
3860 	if (current->throttle_queue)
3861 		return;
3862 
3863 	spin_lock(&swap_avail_lock);
3864 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3865 				  avail_lists[nid]) {
3866 		if (si->bdev) {
3867 			blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3868 			break;
3869 		}
3870 	}
3871 	spin_unlock(&swap_avail_lock);
3872 }
3873 #endif
3874 
swapfile_init(void)3875 static int __init swapfile_init(void)
3876 {
3877 	int nid;
3878 
3879 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3880 					 GFP_KERNEL);
3881 	if (!swap_avail_heads) {
3882 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3883 		return -ENOMEM;
3884 	}
3885 
3886 	for_each_node(nid)
3887 		plist_head_init(&swap_avail_heads[nid]);
3888 
3889 	return 0;
3890 }
3891 subsys_initcall(swapfile_init);
3892