1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25
26 enum scan_result {
27 SCAN_FAIL,
28 SCAN_SUCCEED,
29 SCAN_PMD_NULL,
30 SCAN_EXCEED_NONE_PTE,
31 SCAN_EXCEED_SWAP_PTE,
32 SCAN_EXCEED_SHARED_PTE,
33 SCAN_PTE_NON_PRESENT,
34 SCAN_PTE_UFFD_WP,
35 SCAN_PAGE_RO,
36 SCAN_LACK_REFERENCED_PAGE,
37 SCAN_PAGE_NULL,
38 SCAN_SCAN_ABORT,
39 SCAN_PAGE_COUNT,
40 SCAN_PAGE_LRU,
41 SCAN_PAGE_LOCK,
42 SCAN_PAGE_ANON,
43 SCAN_PAGE_COMPOUND,
44 SCAN_ANY_PROCESS,
45 SCAN_VMA_NULL,
46 SCAN_VMA_CHECK,
47 SCAN_ADDRESS_RANGE,
48 SCAN_SWAP_CACHE_PAGE,
49 SCAN_DEL_PAGE_LRU,
50 SCAN_ALLOC_HUGE_PAGE_FAIL,
51 SCAN_CGROUP_CHARGE_FAIL,
52 SCAN_TRUNCATED,
53 SCAN_PAGE_HAS_PRIVATE,
54 };
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/huge_memory.h>
58
59 static struct task_struct *khugepaged_thread __read_mostly;
60 static DEFINE_MUTEX(khugepaged_mutex);
61
62 /* default scan 8*512 pte (or vmas) every 30 second */
63 static unsigned int khugepaged_pages_to_scan __read_mostly;
64 static unsigned int khugepaged_pages_collapsed;
65 static unsigned int khugepaged_full_scans;
66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
67 /* during fragmentation poll the hugepage allocator once every minute */
68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
69 static unsigned long khugepaged_sleep_expire;
70 static DEFINE_SPINLOCK(khugepaged_mm_lock);
71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
72 /*
73 * default collapse hugepages if there is at least one pte mapped like
74 * it would have happened if the vma was large enough during page
75 * fault.
76 */
77 static unsigned int khugepaged_max_ptes_none __read_mostly;
78 static unsigned int khugepaged_max_ptes_swap __read_mostly;
79 static unsigned int khugepaged_max_ptes_shared __read_mostly;
80
81 #define MM_SLOTS_HASH_BITS 10
82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
83
84 static struct kmem_cache *mm_slot_cache __read_mostly;
85
86 #define MAX_PTE_MAPPED_THP 8
87
88 /**
89 * struct mm_slot - hash lookup from mm to mm_slot
90 * @hash: hash collision list
91 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
92 * @mm: the mm that this information is valid for
93 */
94 struct mm_slot {
95 struct hlist_node hash;
96 struct list_head mm_node;
97 struct mm_struct *mm;
98
99 /* pte-mapped THP in this mm */
100 int nr_pte_mapped_thp;
101 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
102 };
103
104 /**
105 * struct khugepaged_scan - cursor for scanning
106 * @mm_head: the head of the mm list to scan
107 * @mm_slot: the current mm_slot we are scanning
108 * @address: the next address inside that to be scanned
109 *
110 * There is only the one khugepaged_scan instance of this cursor structure.
111 */
112 struct khugepaged_scan {
113 struct list_head mm_head;
114 struct mm_slot *mm_slot;
115 unsigned long address;
116 };
117
118 static struct khugepaged_scan khugepaged_scan = {
119 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
120 };
121
122 #ifdef CONFIG_SYSFS
scan_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)123 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
124 struct kobj_attribute *attr,
125 char *buf)
126 {
127 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
128 }
129
scan_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)130 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
131 struct kobj_attribute *attr,
132 const char *buf, size_t count)
133 {
134 unsigned long msecs;
135 int err;
136
137 err = kstrtoul(buf, 10, &msecs);
138 if (err || msecs > UINT_MAX)
139 return -EINVAL;
140
141 khugepaged_scan_sleep_millisecs = msecs;
142 khugepaged_sleep_expire = 0;
143 wake_up_interruptible(&khugepaged_wait);
144
145 return count;
146 }
147 static struct kobj_attribute scan_sleep_millisecs_attr =
148 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
149 scan_sleep_millisecs_store);
150
alloc_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)151 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
152 struct kobj_attribute *attr,
153 char *buf)
154 {
155 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
156 }
157
alloc_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)158 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
159 struct kobj_attribute *attr,
160 const char *buf, size_t count)
161 {
162 unsigned long msecs;
163 int err;
164
165 err = kstrtoul(buf, 10, &msecs);
166 if (err || msecs > UINT_MAX)
167 return -EINVAL;
168
169 khugepaged_alloc_sleep_millisecs = msecs;
170 khugepaged_sleep_expire = 0;
171 wake_up_interruptible(&khugepaged_wait);
172
173 return count;
174 }
175 static struct kobj_attribute alloc_sleep_millisecs_attr =
176 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
177 alloc_sleep_millisecs_store);
178
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)179 static ssize_t pages_to_scan_show(struct kobject *kobj,
180 struct kobj_attribute *attr,
181 char *buf)
182 {
183 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
184 }
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)185 static ssize_t pages_to_scan_store(struct kobject *kobj,
186 struct kobj_attribute *attr,
187 const char *buf, size_t count)
188 {
189 int err;
190 unsigned long pages;
191
192 err = kstrtoul(buf, 10, &pages);
193 if (err || !pages || pages > UINT_MAX)
194 return -EINVAL;
195
196 khugepaged_pages_to_scan = pages;
197
198 return count;
199 }
200 static struct kobj_attribute pages_to_scan_attr =
201 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
202 pages_to_scan_store);
203
pages_collapsed_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)204 static ssize_t pages_collapsed_show(struct kobject *kobj,
205 struct kobj_attribute *attr,
206 char *buf)
207 {
208 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
209 }
210 static struct kobj_attribute pages_collapsed_attr =
211 __ATTR_RO(pages_collapsed);
212
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)213 static ssize_t full_scans_show(struct kobject *kobj,
214 struct kobj_attribute *attr,
215 char *buf)
216 {
217 return sprintf(buf, "%u\n", khugepaged_full_scans);
218 }
219 static struct kobj_attribute full_scans_attr =
220 __ATTR_RO(full_scans);
221
khugepaged_defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)222 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
223 struct kobj_attribute *attr, char *buf)
224 {
225 return single_hugepage_flag_show(kobj, attr, buf,
226 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
227 }
khugepaged_defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)228 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
229 struct kobj_attribute *attr,
230 const char *buf, size_t count)
231 {
232 return single_hugepage_flag_store(kobj, attr, buf, count,
233 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
234 }
235 static struct kobj_attribute khugepaged_defrag_attr =
236 __ATTR(defrag, 0644, khugepaged_defrag_show,
237 khugepaged_defrag_store);
238
239 /*
240 * max_ptes_none controls if khugepaged should collapse hugepages over
241 * any unmapped ptes in turn potentially increasing the memory
242 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
243 * reduce the available free memory in the system as it
244 * runs. Increasing max_ptes_none will instead potentially reduce the
245 * free memory in the system during the khugepaged scan.
246 */
khugepaged_max_ptes_none_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)247 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
248 struct kobj_attribute *attr,
249 char *buf)
250 {
251 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
252 }
khugepaged_max_ptes_none_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)253 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
254 struct kobj_attribute *attr,
255 const char *buf, size_t count)
256 {
257 int err;
258 unsigned long max_ptes_none;
259
260 err = kstrtoul(buf, 10, &max_ptes_none);
261 if (err || max_ptes_none > HPAGE_PMD_NR-1)
262 return -EINVAL;
263
264 khugepaged_max_ptes_none = max_ptes_none;
265
266 return count;
267 }
268 static struct kobj_attribute khugepaged_max_ptes_none_attr =
269 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
270 khugepaged_max_ptes_none_store);
271
khugepaged_max_ptes_swap_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)272 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
273 struct kobj_attribute *attr,
274 char *buf)
275 {
276 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
277 }
278
khugepaged_max_ptes_swap_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)279 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
280 struct kobj_attribute *attr,
281 const char *buf, size_t count)
282 {
283 int err;
284 unsigned long max_ptes_swap;
285
286 err = kstrtoul(buf, 10, &max_ptes_swap);
287 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
288 return -EINVAL;
289
290 khugepaged_max_ptes_swap = max_ptes_swap;
291
292 return count;
293 }
294
295 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
296 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
297 khugepaged_max_ptes_swap_store);
298
khugepaged_max_ptes_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)299 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
300 struct kobj_attribute *attr,
301 char *buf)
302 {
303 return sprintf(buf, "%u\n", khugepaged_max_ptes_shared);
304 }
305
khugepaged_max_ptes_shared_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)306 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
307 struct kobj_attribute *attr,
308 const char *buf, size_t count)
309 {
310 int err;
311 unsigned long max_ptes_shared;
312
313 err = kstrtoul(buf, 10, &max_ptes_shared);
314 if (err || max_ptes_shared > HPAGE_PMD_NR-1)
315 return -EINVAL;
316
317 khugepaged_max_ptes_shared = max_ptes_shared;
318
319 return count;
320 }
321
322 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
323 __ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
324 khugepaged_max_ptes_shared_store);
325
326 static struct attribute *khugepaged_attr[] = {
327 &khugepaged_defrag_attr.attr,
328 &khugepaged_max_ptes_none_attr.attr,
329 &khugepaged_max_ptes_swap_attr.attr,
330 &khugepaged_max_ptes_shared_attr.attr,
331 &pages_to_scan_attr.attr,
332 &pages_collapsed_attr.attr,
333 &full_scans_attr.attr,
334 &scan_sleep_millisecs_attr.attr,
335 &alloc_sleep_millisecs_attr.attr,
336 NULL,
337 };
338
339 struct attribute_group khugepaged_attr_group = {
340 .attrs = khugepaged_attr,
341 .name = "khugepaged",
342 };
343 #endif /* CONFIG_SYSFS */
344
hugepage_madvise(struct vm_area_struct * vma,unsigned long * vm_flags,int advice)345 int hugepage_madvise(struct vm_area_struct *vma,
346 unsigned long *vm_flags, int advice)
347 {
348 switch (advice) {
349 case MADV_HUGEPAGE:
350 #ifdef CONFIG_S390
351 /*
352 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
353 * can't handle this properly after s390_enable_sie, so we simply
354 * ignore the madvise to prevent qemu from causing a SIGSEGV.
355 */
356 if (mm_has_pgste(vma->vm_mm))
357 return 0;
358 #endif
359 *vm_flags &= ~VM_NOHUGEPAGE;
360 *vm_flags |= VM_HUGEPAGE;
361 /*
362 * If the vma become good for khugepaged to scan,
363 * register it here without waiting a page fault that
364 * may not happen any time soon.
365 */
366 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
367 khugepaged_enter_vma_merge(vma, *vm_flags))
368 return -ENOMEM;
369 break;
370 case MADV_NOHUGEPAGE:
371 *vm_flags &= ~VM_HUGEPAGE;
372 *vm_flags |= VM_NOHUGEPAGE;
373 /*
374 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
375 * this vma even if we leave the mm registered in khugepaged if
376 * it got registered before VM_NOHUGEPAGE was set.
377 */
378 break;
379 }
380
381 return 0;
382 }
383
khugepaged_init(void)384 int __init khugepaged_init(void)
385 {
386 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
387 sizeof(struct mm_slot),
388 __alignof__(struct mm_slot), 0, NULL);
389 if (!mm_slot_cache)
390 return -ENOMEM;
391
392 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
393 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
394 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
395 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
396
397 return 0;
398 }
399
khugepaged_destroy(void)400 void __init khugepaged_destroy(void)
401 {
402 kmem_cache_destroy(mm_slot_cache);
403 }
404
alloc_mm_slot(void)405 static inline struct mm_slot *alloc_mm_slot(void)
406 {
407 if (!mm_slot_cache) /* initialization failed */
408 return NULL;
409 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
410 }
411
free_mm_slot(struct mm_slot * mm_slot)412 static inline void free_mm_slot(struct mm_slot *mm_slot)
413 {
414 kmem_cache_free(mm_slot_cache, mm_slot);
415 }
416
get_mm_slot(struct mm_struct * mm)417 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
418 {
419 struct mm_slot *mm_slot;
420
421 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
422 if (mm == mm_slot->mm)
423 return mm_slot;
424
425 return NULL;
426 }
427
insert_to_mm_slots_hash(struct mm_struct * mm,struct mm_slot * mm_slot)428 static void insert_to_mm_slots_hash(struct mm_struct *mm,
429 struct mm_slot *mm_slot)
430 {
431 mm_slot->mm = mm;
432 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
433 }
434
khugepaged_test_exit(struct mm_struct * mm)435 static inline int khugepaged_test_exit(struct mm_struct *mm)
436 {
437 return atomic_read(&mm->mm_users) == 0;
438 }
439
hugepage_vma_check(struct vm_area_struct * vma,unsigned long vm_flags)440 static bool hugepage_vma_check(struct vm_area_struct *vma,
441 unsigned long vm_flags)
442 {
443 if (!transhuge_vma_enabled(vma, vm_flags))
444 return false;
445
446 if (vma->vm_file && !IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) -
447 vma->vm_pgoff, HPAGE_PMD_NR))
448 return false;
449
450 /* Enabled via shmem mount options or sysfs settings. */
451 if (shmem_file(vma->vm_file))
452 return shmem_huge_enabled(vma);
453
454 /* THP settings require madvise. */
455 if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always())
456 return false;
457
458 /* Only regular file is valid */
459 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && vma->vm_file &&
460 !inode_is_open_for_write(vma->vm_file->f_inode) &&
461 (vm_flags & VM_EXEC)) {
462 struct inode *inode = vma->vm_file->f_inode;
463
464 return S_ISREG(inode->i_mode);
465 }
466
467 if (!vma->anon_vma || vma->vm_ops)
468 return false;
469 if (vma_is_temporary_stack(vma))
470 return false;
471 return !(vm_flags & VM_NO_KHUGEPAGED);
472 }
473
__khugepaged_enter(struct mm_struct * mm)474 int __khugepaged_enter(struct mm_struct *mm)
475 {
476 struct mm_slot *mm_slot;
477 int wakeup;
478
479 mm_slot = alloc_mm_slot();
480 if (!mm_slot)
481 return -ENOMEM;
482
483 /* __khugepaged_exit() must not run from under us */
484 VM_BUG_ON_MM(atomic_read(&mm->mm_users) == 0, mm);
485 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
486 free_mm_slot(mm_slot);
487 return 0;
488 }
489
490 spin_lock(&khugepaged_mm_lock);
491 insert_to_mm_slots_hash(mm, mm_slot);
492 /*
493 * Insert just behind the scanning cursor, to let the area settle
494 * down a little.
495 */
496 wakeup = list_empty(&khugepaged_scan.mm_head);
497 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
498 spin_unlock(&khugepaged_mm_lock);
499
500 mmgrab(mm);
501 if (wakeup)
502 wake_up_interruptible(&khugepaged_wait);
503
504 return 0;
505 }
506
khugepaged_enter_vma_merge(struct vm_area_struct * vma,unsigned long vm_flags)507 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
508 unsigned long vm_flags)
509 {
510 unsigned long hstart, hend;
511
512 /*
513 * khugepaged only supports read-only files for non-shmem files.
514 * khugepaged does not yet work on special mappings. And
515 * file-private shmem THP is not supported.
516 */
517 if (!hugepage_vma_check(vma, vm_flags))
518 return 0;
519
520 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
521 hend = vma->vm_end & HPAGE_PMD_MASK;
522 if (hstart < hend)
523 return khugepaged_enter(vma, vm_flags);
524 return 0;
525 }
526
__khugepaged_exit(struct mm_struct * mm)527 void __khugepaged_exit(struct mm_struct *mm)
528 {
529 struct mm_slot *mm_slot;
530 int free = 0;
531
532 spin_lock(&khugepaged_mm_lock);
533 mm_slot = get_mm_slot(mm);
534 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
535 hash_del(&mm_slot->hash);
536 list_del(&mm_slot->mm_node);
537 free = 1;
538 }
539 spin_unlock(&khugepaged_mm_lock);
540
541 if (free) {
542 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
543 free_mm_slot(mm_slot);
544 mmdrop(mm);
545 } else if (mm_slot) {
546 /*
547 * This is required to serialize against
548 * khugepaged_test_exit() (which is guaranteed to run
549 * under mmap sem read mode). Stop here (after we
550 * return all pagetables will be destroyed) until
551 * khugepaged has finished working on the pagetables
552 * under the mmap_lock.
553 */
554 mmap_write_lock(mm);
555 mmap_write_unlock(mm);
556 }
557 }
558
release_pte_page(struct page * page)559 static void release_pte_page(struct page *page)
560 {
561 mod_node_page_state(page_pgdat(page),
562 NR_ISOLATED_ANON + page_is_file_lru(page),
563 -compound_nr(page));
564 unlock_page(page);
565 putback_lru_page(page);
566 }
567
release_pte_pages(pte_t * pte,pte_t * _pte,struct list_head * compound_pagelist)568 static void release_pte_pages(pte_t *pte, pte_t *_pte,
569 struct list_head *compound_pagelist)
570 {
571 struct page *page, *tmp;
572
573 while (--_pte >= pte) {
574 pte_t pteval = *_pte;
575
576 page = pte_page(pteval);
577 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
578 !PageCompound(page))
579 release_pte_page(page);
580 }
581
582 list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
583 list_del(&page->lru);
584 release_pte_page(page);
585 }
586 }
587
is_refcount_suitable(struct page * page)588 static bool is_refcount_suitable(struct page *page)
589 {
590 int expected_refcount;
591
592 expected_refcount = total_mapcount(page);
593 if (PageSwapCache(page))
594 expected_refcount += compound_nr(page);
595
596 return page_count(page) == expected_refcount;
597 }
598
__collapse_huge_page_isolate(struct vm_area_struct * vma,unsigned long address,pte_t * pte,struct list_head * compound_pagelist)599 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
600 unsigned long address,
601 pte_t *pte,
602 struct list_head *compound_pagelist)
603 {
604 struct page *page = NULL;
605 pte_t *_pte;
606 int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
607 bool writable = false;
608
609 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
610 _pte++, address += PAGE_SIZE) {
611 pte_t pteval = *_pte;
612 if (pte_none(pteval) || (pte_present(pteval) &&
613 is_zero_pfn(pte_pfn(pteval)))) {
614 if (!userfaultfd_armed(vma) &&
615 ++none_or_zero <= khugepaged_max_ptes_none) {
616 continue;
617 } else {
618 result = SCAN_EXCEED_NONE_PTE;
619 goto out;
620 }
621 }
622 if (!pte_present(pteval)) {
623 result = SCAN_PTE_NON_PRESENT;
624 goto out;
625 }
626 page = vm_normal_page(vma, address, pteval);
627 if (unlikely(!page)) {
628 result = SCAN_PAGE_NULL;
629 goto out;
630 }
631
632 VM_BUG_ON_PAGE(!PageAnon(page), page);
633
634 if (page_mapcount(page) > 1 &&
635 ++shared > khugepaged_max_ptes_shared) {
636 result = SCAN_EXCEED_SHARED_PTE;
637 goto out;
638 }
639
640 if (PageCompound(page)) {
641 struct page *p;
642 page = compound_head(page);
643
644 /*
645 * Check if we have dealt with the compound page
646 * already
647 */
648 list_for_each_entry(p, compound_pagelist, lru) {
649 if (page == p)
650 goto next;
651 }
652 }
653
654 /*
655 * We can do it before isolate_lru_page because the
656 * page can't be freed from under us. NOTE: PG_lock
657 * is needed to serialize against split_huge_page
658 * when invoked from the VM.
659 */
660 if (!trylock_page(page)) {
661 result = SCAN_PAGE_LOCK;
662 goto out;
663 }
664
665 /*
666 * Check if the page has any GUP (or other external) pins.
667 *
668 * The page table that maps the page has been already unlinked
669 * from the page table tree and this process cannot get
670 * an additinal pin on the page.
671 *
672 * New pins can come later if the page is shared across fork,
673 * but not from this process. The other process cannot write to
674 * the page, only trigger CoW.
675 */
676 if (!is_refcount_suitable(page)) {
677 unlock_page(page);
678 result = SCAN_PAGE_COUNT;
679 goto out;
680 }
681 if (!pte_write(pteval) && PageSwapCache(page) &&
682 !reuse_swap_page(page, NULL)) {
683 /*
684 * Page is in the swap cache and cannot be re-used.
685 * It cannot be collapsed into a THP.
686 */
687 unlock_page(page);
688 result = SCAN_SWAP_CACHE_PAGE;
689 goto out;
690 }
691
692 /*
693 * Isolate the page to avoid collapsing an hugepage
694 * currently in use by the VM.
695 */
696 if (isolate_lru_page(page)) {
697 unlock_page(page);
698 result = SCAN_DEL_PAGE_LRU;
699 goto out;
700 }
701 mod_node_page_state(page_pgdat(page),
702 NR_ISOLATED_ANON + page_is_file_lru(page),
703 compound_nr(page));
704 VM_BUG_ON_PAGE(!PageLocked(page), page);
705 VM_BUG_ON_PAGE(PageLRU(page), page);
706
707 if (PageCompound(page))
708 list_add_tail(&page->lru, compound_pagelist);
709 next:
710 /* There should be enough young pte to collapse the page */
711 if (pte_young(pteval) ||
712 page_is_young(page) || PageReferenced(page) ||
713 mmu_notifier_test_young(vma->vm_mm, address))
714 referenced++;
715
716 if (pte_write(pteval))
717 writable = true;
718 }
719
720 if (unlikely(!writable)) {
721 result = SCAN_PAGE_RO;
722 } else if (unlikely(!referenced)) {
723 result = SCAN_LACK_REFERENCED_PAGE;
724 } else {
725 result = SCAN_SUCCEED;
726 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
727 referenced, writable, result);
728 return 1;
729 }
730 out:
731 release_pte_pages(pte, _pte, compound_pagelist);
732 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
733 referenced, writable, result);
734 return 0;
735 }
736
__collapse_huge_page_copy(pte_t * pte,struct page * page,struct vm_area_struct * vma,unsigned long address,spinlock_t * ptl,struct list_head * compound_pagelist)737 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
738 struct vm_area_struct *vma,
739 unsigned long address,
740 spinlock_t *ptl,
741 struct list_head *compound_pagelist)
742 {
743 struct page *src_page, *tmp;
744 pte_t *_pte;
745 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
746 _pte++, page++, address += PAGE_SIZE) {
747 pte_t pteval = *_pte;
748
749 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
750 clear_user_highpage(page, address);
751 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
752 if (is_zero_pfn(pte_pfn(pteval))) {
753 /*
754 * ptl mostly unnecessary.
755 */
756 spin_lock(ptl);
757 /*
758 * paravirt calls inside pte_clear here are
759 * superfluous.
760 */
761 pte_clear(vma->vm_mm, address, _pte);
762 spin_unlock(ptl);
763 }
764 } else {
765 src_page = pte_page(pteval);
766 copy_user_highpage(page, src_page, address, vma);
767 if (!PageCompound(src_page))
768 release_pte_page(src_page);
769 /*
770 * ptl mostly unnecessary, but preempt has to
771 * be disabled to update the per-cpu stats
772 * inside page_remove_rmap().
773 */
774 spin_lock(ptl);
775 /*
776 * paravirt calls inside pte_clear here are
777 * superfluous.
778 */
779 pte_clear(vma->vm_mm, address, _pte);
780 page_remove_rmap(src_page, false);
781 spin_unlock(ptl);
782 free_page_and_swap_cache(src_page);
783 }
784 }
785
786 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
787 list_del(&src_page->lru);
788 release_pte_page(src_page);
789 }
790 }
791
khugepaged_alloc_sleep(void)792 static void khugepaged_alloc_sleep(void)
793 {
794 DEFINE_WAIT(wait);
795
796 add_wait_queue(&khugepaged_wait, &wait);
797 freezable_schedule_timeout_interruptible(
798 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
799 remove_wait_queue(&khugepaged_wait, &wait);
800 }
801
802 static int khugepaged_node_load[MAX_NUMNODES];
803
khugepaged_scan_abort(int nid)804 static bool khugepaged_scan_abort(int nid)
805 {
806 int i;
807
808 /*
809 * If node_reclaim_mode is disabled, then no extra effort is made to
810 * allocate memory locally.
811 */
812 if (!node_reclaim_mode)
813 return false;
814
815 /* If there is a count for this node already, it must be acceptable */
816 if (khugepaged_node_load[nid])
817 return false;
818
819 for (i = 0; i < MAX_NUMNODES; i++) {
820 if (!khugepaged_node_load[i])
821 continue;
822 if (node_distance(nid, i) > node_reclaim_distance)
823 return true;
824 }
825 return false;
826 }
827
828 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
alloc_hugepage_khugepaged_gfpmask(void)829 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
830 {
831 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
832 }
833
834 #ifdef CONFIG_NUMA
khugepaged_find_target_node(void)835 static int khugepaged_find_target_node(void)
836 {
837 static int last_khugepaged_target_node = NUMA_NO_NODE;
838 int nid, target_node = 0, max_value = 0;
839
840 /* find first node with max normal pages hit */
841 for (nid = 0; nid < MAX_NUMNODES; nid++)
842 if (khugepaged_node_load[nid] > max_value) {
843 max_value = khugepaged_node_load[nid];
844 target_node = nid;
845 }
846
847 /* do some balance if several nodes have the same hit record */
848 if (target_node <= last_khugepaged_target_node)
849 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
850 nid++)
851 if (max_value == khugepaged_node_load[nid]) {
852 target_node = nid;
853 break;
854 }
855
856 last_khugepaged_target_node = target_node;
857 return target_node;
858 }
859
khugepaged_prealloc_page(struct page ** hpage,bool * wait)860 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
861 {
862 if (IS_ERR(*hpage)) {
863 if (!*wait)
864 return false;
865
866 *wait = false;
867 *hpage = NULL;
868 khugepaged_alloc_sleep();
869 } else if (*hpage) {
870 put_page(*hpage);
871 *hpage = NULL;
872 }
873
874 return true;
875 }
876
877 static struct page *
khugepaged_alloc_page(struct page ** hpage,gfp_t gfp,int node)878 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
879 {
880 VM_BUG_ON_PAGE(*hpage, *hpage);
881
882 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
883 if (unlikely(!*hpage)) {
884 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
885 *hpage = ERR_PTR(-ENOMEM);
886 return NULL;
887 }
888
889 prep_transhuge_page(*hpage);
890 count_vm_event(THP_COLLAPSE_ALLOC);
891 return *hpage;
892 }
893 #else
khugepaged_find_target_node(void)894 static int khugepaged_find_target_node(void)
895 {
896 return 0;
897 }
898
alloc_khugepaged_hugepage(void)899 static inline struct page *alloc_khugepaged_hugepage(void)
900 {
901 struct page *page;
902
903 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
904 HPAGE_PMD_ORDER);
905 if (page)
906 prep_transhuge_page(page);
907 return page;
908 }
909
khugepaged_alloc_hugepage(bool * wait)910 static struct page *khugepaged_alloc_hugepage(bool *wait)
911 {
912 struct page *hpage;
913
914 do {
915 hpage = alloc_khugepaged_hugepage();
916 if (!hpage) {
917 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
918 if (!*wait)
919 return NULL;
920
921 *wait = false;
922 khugepaged_alloc_sleep();
923 } else
924 count_vm_event(THP_COLLAPSE_ALLOC);
925 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
926
927 return hpage;
928 }
929
khugepaged_prealloc_page(struct page ** hpage,bool * wait)930 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
931 {
932 /*
933 * If the hpage allocated earlier was briefly exposed in page cache
934 * before collapse_file() failed, it is possible that racing lookups
935 * have not yet completed, and would then be unpleasantly surprised by
936 * finding the hpage reused for the same mapping at a different offset.
937 * Just release the previous allocation if there is any danger of that.
938 */
939 if (*hpage && page_count(*hpage) > 1) {
940 put_page(*hpage);
941 *hpage = NULL;
942 }
943
944 if (!*hpage)
945 *hpage = khugepaged_alloc_hugepage(wait);
946
947 if (unlikely(!*hpage))
948 return false;
949
950 return true;
951 }
952
953 static struct page *
khugepaged_alloc_page(struct page ** hpage,gfp_t gfp,int node)954 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
955 {
956 VM_BUG_ON(!*hpage);
957
958 return *hpage;
959 }
960 #endif
961
962 /*
963 * If mmap_lock temporarily dropped, revalidate vma
964 * before taking mmap_lock.
965 * Return 0 if succeeds, otherwise return none-zero
966 * value (scan code).
967 */
968
hugepage_vma_revalidate(struct mm_struct * mm,unsigned long address,struct vm_area_struct ** vmap)969 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
970 struct vm_area_struct **vmap)
971 {
972 struct vm_area_struct *vma;
973 unsigned long hstart, hend;
974
975 if (unlikely(khugepaged_test_exit(mm)))
976 return SCAN_ANY_PROCESS;
977
978 *vmap = vma = find_vma(mm, address);
979 if (!vma)
980 return SCAN_VMA_NULL;
981
982 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
983 hend = vma->vm_end & HPAGE_PMD_MASK;
984 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
985 return SCAN_ADDRESS_RANGE;
986 if (!hugepage_vma_check(vma, vma->vm_flags))
987 return SCAN_VMA_CHECK;
988 /* Anon VMA expected */
989 if (!vma->anon_vma || vma->vm_ops)
990 return SCAN_VMA_CHECK;
991 return 0;
992 }
993
994 /*
995 * Bring missing pages in from swap, to complete THP collapse.
996 * Only done if khugepaged_scan_pmd believes it is worthwhile.
997 *
998 * Called and returns without pte mapped or spinlocks held,
999 * but with mmap_lock held to protect against vma changes.
1000 */
1001
__collapse_huge_page_swapin(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,int referenced)1002 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
1003 struct vm_area_struct *vma,
1004 unsigned long haddr, pmd_t *pmd,
1005 int referenced)
1006 {
1007 int swapped_in = 0;
1008 vm_fault_t ret = 0;
1009 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
1010
1011 for (address = haddr; address < end; address += PAGE_SIZE) {
1012 struct vm_fault vmf = {
1013 .vma = vma,
1014 .address = address,
1015 .pgoff = linear_page_index(vma, haddr),
1016 .flags = FAULT_FLAG_ALLOW_RETRY,
1017 .pmd = pmd,
1018 .vma_flags = vma->vm_flags,
1019 .vma_page_prot = vma->vm_page_prot,
1020 };
1021
1022 vmf.pte = pte_offset_map(pmd, address);
1023 vmf.orig_pte = *vmf.pte;
1024 if (!is_swap_pte(vmf.orig_pte)) {
1025 pte_unmap(vmf.pte);
1026 continue;
1027 }
1028 swapped_in++;
1029 ret = do_swap_page(&vmf);
1030
1031 /* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1032 if (ret & VM_FAULT_RETRY) {
1033 mmap_read_lock(mm);
1034 if (hugepage_vma_revalidate(mm, haddr, &vma)) {
1035 /* vma is no longer available, don't continue to swapin */
1036 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1037 return false;
1038 }
1039 /* check if the pmd is still valid */
1040 if (mm_find_pmd(mm, haddr) != pmd) {
1041 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1042 return false;
1043 }
1044 }
1045 if (ret & VM_FAULT_ERROR) {
1046 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1047 return false;
1048 }
1049 }
1050
1051 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1052 if (swapped_in)
1053 lru_add_drain();
1054
1055 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1056 return true;
1057 }
1058
collapse_huge_page(struct mm_struct * mm,unsigned long address,struct page ** hpage,int node,int referenced,int unmapped)1059 static void collapse_huge_page(struct mm_struct *mm,
1060 unsigned long address,
1061 struct page **hpage,
1062 int node, int referenced, int unmapped)
1063 {
1064 LIST_HEAD(compound_pagelist);
1065 pmd_t *pmd, _pmd;
1066 pte_t *pte;
1067 pgtable_t pgtable;
1068 struct page *new_page;
1069 spinlock_t *pmd_ptl, *pte_ptl;
1070 int isolated = 0, result = 0;
1071 struct vm_area_struct *vma;
1072 struct mmu_notifier_range range;
1073 gfp_t gfp;
1074
1075 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1076
1077 /* Only allocate from the target node */
1078 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1079
1080 /*
1081 * Before allocating the hugepage, release the mmap_lock read lock.
1082 * The allocation can take potentially a long time if it involves
1083 * sync compaction, and we do not need to hold the mmap_lock during
1084 * that. We will recheck the vma after taking it again in write mode.
1085 */
1086 mmap_read_unlock(mm);
1087 new_page = khugepaged_alloc_page(hpage, gfp, node);
1088 if (!new_page) {
1089 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1090 goto out_nolock;
1091 }
1092
1093 if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1094 result = SCAN_CGROUP_CHARGE_FAIL;
1095 goto out_nolock;
1096 }
1097 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1098
1099 mmap_read_lock(mm);
1100 result = hugepage_vma_revalidate(mm, address, &vma);
1101 if (result) {
1102 mmap_read_unlock(mm);
1103 goto out_nolock;
1104 }
1105
1106 pmd = mm_find_pmd(mm, address);
1107 if (!pmd) {
1108 result = SCAN_PMD_NULL;
1109 mmap_read_unlock(mm);
1110 goto out_nolock;
1111 }
1112
1113 /*
1114 * __collapse_huge_page_swapin always returns with mmap_lock locked.
1115 * If it fails, we release mmap_lock and jump out_nolock.
1116 * Continuing to collapse causes inconsistency.
1117 */
1118 if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
1119 pmd, referenced)) {
1120 mmap_read_unlock(mm);
1121 goto out_nolock;
1122 }
1123
1124 mmap_read_unlock(mm);
1125 /*
1126 * Prevent all access to pagetables with the exception of
1127 * gup_fast later handled by the ptep_clear_flush and the VM
1128 * handled by the anon_vma lock + PG_lock.
1129 */
1130 mmap_write_lock(mm);
1131 result = hugepage_vma_revalidate(mm, address, &vma);
1132 if (result)
1133 goto out;
1134 /* check if the pmd is still valid */
1135 if (mm_find_pmd(mm, address) != pmd)
1136 goto out;
1137
1138 vm_write_begin(vma);
1139 anon_vma_lock_write(vma->anon_vma);
1140
1141 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1142 address, address + HPAGE_PMD_SIZE);
1143 mmu_notifier_invalidate_range_start(&range);
1144
1145 pte = pte_offset_map(pmd, address);
1146 pte_ptl = pte_lockptr(mm, pmd);
1147
1148 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1149 /*
1150 * This removes any huge TLB entry from the CPU so we won't allow
1151 * huge and small TLB entries for the same virtual address to
1152 * avoid the risk of CPU bugs in that area.
1153 *
1154 * Parallel fast GUP is fine since fast GUP will back off when
1155 * it detects PMD is changed.
1156 */
1157 _pmd = pmdp_collapse_flush(vma, address, pmd);
1158 spin_unlock(pmd_ptl);
1159 mmu_notifier_invalidate_range_end(&range);
1160 tlb_remove_table_sync_one();
1161
1162 spin_lock(pte_ptl);
1163 isolated = __collapse_huge_page_isolate(vma, address, pte,
1164 &compound_pagelist);
1165 spin_unlock(pte_ptl);
1166
1167 if (unlikely(!isolated)) {
1168 pte_unmap(pte);
1169 spin_lock(pmd_ptl);
1170 BUG_ON(!pmd_none(*pmd));
1171 /*
1172 * We can only use set_pmd_at when establishing
1173 * hugepmds and never for establishing regular pmds that
1174 * points to regular pagetables. Use pmd_populate for that
1175 */
1176 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1177 spin_unlock(pmd_ptl);
1178 anon_vma_unlock_write(vma->anon_vma);
1179 vm_write_end(vma);
1180 result = SCAN_FAIL;
1181 goto out;
1182 }
1183
1184 /*
1185 * All pages are isolated and locked so anon_vma rmap
1186 * can't run anymore.
1187 */
1188 anon_vma_unlock_write(vma->anon_vma);
1189
1190 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
1191 &compound_pagelist);
1192 pte_unmap(pte);
1193 __SetPageUptodate(new_page);
1194 pgtable = pmd_pgtable(_pmd);
1195
1196 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1197 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1198
1199 /*
1200 * spin_lock() below is not the equivalent of smp_wmb(), so
1201 * this is needed to avoid the copy_huge_page writes to become
1202 * visible after the set_pmd_at() write.
1203 */
1204 smp_wmb();
1205
1206 spin_lock(pmd_ptl);
1207 BUG_ON(!pmd_none(*pmd));
1208 page_add_new_anon_rmap(new_page, vma, address, true);
1209 lru_cache_add_inactive_or_unevictable(new_page, vma);
1210 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1211 set_pmd_at(mm, address, pmd, _pmd);
1212 update_mmu_cache_pmd(vma, address, pmd);
1213 spin_unlock(pmd_ptl);
1214 vm_write_end(vma);
1215
1216 *hpage = NULL;
1217
1218 khugepaged_pages_collapsed++;
1219 result = SCAN_SUCCEED;
1220 out_up_write:
1221 mmap_write_unlock(mm);
1222 out_nolock:
1223 if (!IS_ERR_OR_NULL(*hpage))
1224 mem_cgroup_uncharge(*hpage);
1225 trace_mm_collapse_huge_page(mm, isolated, result);
1226 return;
1227 out:
1228 goto out_up_write;
1229 }
1230
khugepaged_scan_pmd(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,struct page ** hpage)1231 static int khugepaged_scan_pmd(struct mm_struct *mm,
1232 struct vm_area_struct *vma,
1233 unsigned long address,
1234 struct page **hpage)
1235 {
1236 pmd_t *pmd;
1237 pte_t *pte, *_pte;
1238 int ret = 0, result = 0, referenced = 0;
1239 int none_or_zero = 0, shared = 0;
1240 struct page *page = NULL;
1241 unsigned long _address;
1242 spinlock_t *ptl;
1243 int node = NUMA_NO_NODE, unmapped = 0;
1244 bool writable = false;
1245
1246 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1247
1248 pmd = mm_find_pmd(mm, address);
1249 if (!pmd) {
1250 result = SCAN_PMD_NULL;
1251 goto out;
1252 }
1253
1254 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1255 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1256 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1257 _pte++, _address += PAGE_SIZE) {
1258 pte_t pteval = *_pte;
1259 if (is_swap_pte(pteval)) {
1260 if (++unmapped <= khugepaged_max_ptes_swap) {
1261 /*
1262 * Always be strict with uffd-wp
1263 * enabled swap entries. Please see
1264 * comment below for pte_uffd_wp().
1265 */
1266 if (pte_swp_uffd_wp(pteval)) {
1267 result = SCAN_PTE_UFFD_WP;
1268 goto out_unmap;
1269 }
1270 continue;
1271 } else {
1272 result = SCAN_EXCEED_SWAP_PTE;
1273 goto out_unmap;
1274 }
1275 }
1276 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1277 if (!userfaultfd_armed(vma) &&
1278 ++none_or_zero <= khugepaged_max_ptes_none) {
1279 continue;
1280 } else {
1281 result = SCAN_EXCEED_NONE_PTE;
1282 goto out_unmap;
1283 }
1284 }
1285 if (!pte_present(pteval)) {
1286 result = SCAN_PTE_NON_PRESENT;
1287 goto out_unmap;
1288 }
1289 if (pte_uffd_wp(pteval)) {
1290 /*
1291 * Don't collapse the page if any of the small
1292 * PTEs are armed with uffd write protection.
1293 * Here we can also mark the new huge pmd as
1294 * write protected if any of the small ones is
1295 * marked but that could bring uknown
1296 * userfault messages that falls outside of
1297 * the registered range. So, just be simple.
1298 */
1299 result = SCAN_PTE_UFFD_WP;
1300 goto out_unmap;
1301 }
1302 if (pte_write(pteval))
1303 writable = true;
1304
1305 page = vm_normal_page(vma, _address, pteval);
1306 if (unlikely(!page)) {
1307 result = SCAN_PAGE_NULL;
1308 goto out_unmap;
1309 }
1310
1311 if (page_mapcount(page) > 1 &&
1312 ++shared > khugepaged_max_ptes_shared) {
1313 result = SCAN_EXCEED_SHARED_PTE;
1314 goto out_unmap;
1315 }
1316
1317 page = compound_head(page);
1318
1319 /*
1320 * Record which node the original page is from and save this
1321 * information to khugepaged_node_load[].
1322 * Khupaged will allocate hugepage from the node has the max
1323 * hit record.
1324 */
1325 node = page_to_nid(page);
1326 if (khugepaged_scan_abort(node)) {
1327 result = SCAN_SCAN_ABORT;
1328 goto out_unmap;
1329 }
1330 khugepaged_node_load[node]++;
1331 if (!PageLRU(page)) {
1332 result = SCAN_PAGE_LRU;
1333 goto out_unmap;
1334 }
1335 if (PageLocked(page)) {
1336 result = SCAN_PAGE_LOCK;
1337 goto out_unmap;
1338 }
1339 if (!PageAnon(page)) {
1340 result = SCAN_PAGE_ANON;
1341 goto out_unmap;
1342 }
1343
1344 /*
1345 * Check if the page has any GUP (or other external) pins.
1346 *
1347 * Here the check is racy it may see totmal_mapcount > refcount
1348 * in some cases.
1349 * For example, one process with one forked child process.
1350 * The parent has the PMD split due to MADV_DONTNEED, then
1351 * the child is trying unmap the whole PMD, but khugepaged
1352 * may be scanning the parent between the child has
1353 * PageDoubleMap flag cleared and dec the mapcount. So
1354 * khugepaged may see total_mapcount > refcount.
1355 *
1356 * But such case is ephemeral we could always retry collapse
1357 * later. However it may report false positive if the page
1358 * has excessive GUP pins (i.e. 512). Anyway the same check
1359 * will be done again later the risk seems low.
1360 */
1361 if (!is_refcount_suitable(page)) {
1362 result = SCAN_PAGE_COUNT;
1363 goto out_unmap;
1364 }
1365 if (pte_young(pteval) ||
1366 page_is_young(page) || PageReferenced(page) ||
1367 mmu_notifier_test_young(vma->vm_mm, address))
1368 referenced++;
1369 }
1370 if (!writable) {
1371 result = SCAN_PAGE_RO;
1372 } else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
1373 result = SCAN_LACK_REFERENCED_PAGE;
1374 } else {
1375 result = SCAN_SUCCEED;
1376 ret = 1;
1377 }
1378 out_unmap:
1379 pte_unmap_unlock(pte, ptl);
1380 if (ret) {
1381 node = khugepaged_find_target_node();
1382 /* collapse_huge_page will return with the mmap_lock released */
1383 collapse_huge_page(mm, address, hpage, node,
1384 referenced, unmapped);
1385 }
1386 out:
1387 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1388 none_or_zero, result, unmapped);
1389 return ret;
1390 }
1391
collect_mm_slot(struct mm_slot * mm_slot)1392 static void collect_mm_slot(struct mm_slot *mm_slot)
1393 {
1394 struct mm_struct *mm = mm_slot->mm;
1395
1396 lockdep_assert_held(&khugepaged_mm_lock);
1397
1398 if (khugepaged_test_exit(mm)) {
1399 /* free mm_slot */
1400 hash_del(&mm_slot->hash);
1401 list_del(&mm_slot->mm_node);
1402
1403 /*
1404 * Not strictly needed because the mm exited already.
1405 *
1406 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1407 */
1408
1409 /* khugepaged_mm_lock actually not necessary for the below */
1410 free_mm_slot(mm_slot);
1411 mmdrop(mm);
1412 }
1413 }
1414
1415 #ifdef CONFIG_SHMEM
1416 /*
1417 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1418 * khugepaged should try to collapse the page table.
1419 */
khugepaged_add_pte_mapped_thp(struct mm_struct * mm,unsigned long addr)1420 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1421 unsigned long addr)
1422 {
1423 struct mm_slot *mm_slot;
1424
1425 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1426
1427 spin_lock(&khugepaged_mm_lock);
1428 mm_slot = get_mm_slot(mm);
1429 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1430 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1431 spin_unlock(&khugepaged_mm_lock);
1432 return 0;
1433 }
1434
1435 /**
1436 * Try to collapse a pte-mapped THP for mm at address haddr.
1437 *
1438 * This function checks whether all the PTEs in the PMD are pointing to the
1439 * right THP. If so, retract the page table so the THP can refault in with
1440 * as pmd-mapped.
1441 */
collapse_pte_mapped_thp(struct mm_struct * mm,unsigned long addr)1442 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1443 {
1444 unsigned long haddr = addr & HPAGE_PMD_MASK;
1445 struct vm_area_struct *vma = find_vma(mm, haddr);
1446 struct page *hpage;
1447 pte_t *start_pte, *pte;
1448 pmd_t *pmd, _pmd;
1449 spinlock_t *ptl;
1450 int count = 0;
1451 int i;
1452 struct mmu_notifier_range range;
1453
1454 if (!vma || !vma->vm_file ||
1455 vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE)
1456 return;
1457
1458 /*
1459 * This vm_flags may not have VM_HUGEPAGE if the page was not
1460 * collapsed by this mm. But we can still collapse if the page is
1461 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1462 * will not fail the vma for missing VM_HUGEPAGE
1463 */
1464 if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1465 return;
1466
1467 /*
1468 * Symmetry with retract_page_tables(): Exclude MAP_PRIVATE mappings
1469 * that got written to. Without this, we'd have to also lock the
1470 * anon_vma if one exists.
1471 */
1472 if (vma->anon_vma)
1473 return;
1474
1475 hpage = find_lock_page(vma->vm_file->f_mapping,
1476 linear_page_index(vma, haddr));
1477 if (!hpage)
1478 return;
1479
1480 if (!PageHead(hpage))
1481 goto drop_hpage;
1482
1483 pmd = mm_find_pmd(mm, haddr);
1484 if (!pmd)
1485 goto drop_hpage;
1486
1487 vm_write_begin(vma);
1488
1489 /*
1490 * We need to lock the mapping so that from here on, only GUP-fast and
1491 * hardware page walks can access the parts of the page tables that
1492 * we're operating on.
1493 */
1494 i_mmap_lock_write(vma->vm_file->f_mapping);
1495
1496 /*
1497 * This spinlock should be unnecessary: Nobody else should be accessing
1498 * the page tables under spinlock protection here, only
1499 * lockless_pages_from_mm() and the hardware page walker can access page
1500 * tables while all the high-level locks are held in write mode.
1501 */
1502 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1503
1504 /* step 1: check all mapped PTEs are to the right huge page */
1505 for (i = 0, addr = haddr, pte = start_pte;
1506 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1507 struct page *page;
1508
1509 /* empty pte, skip */
1510 if (pte_none(*pte))
1511 continue;
1512
1513 /* page swapped out, abort */
1514 if (!pte_present(*pte))
1515 goto abort;
1516
1517 page = vm_normal_page(vma, addr, *pte);
1518
1519 /*
1520 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1521 * page table, but the new page will not be a subpage of hpage.
1522 */
1523 if (hpage + i != page)
1524 goto abort;
1525 count++;
1526 }
1527
1528 /* step 2: adjust rmap */
1529 for (i = 0, addr = haddr, pte = start_pte;
1530 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1531 struct page *page;
1532
1533 if (pte_none(*pte))
1534 continue;
1535 page = vm_normal_page(vma, addr, *pte);
1536 page_remove_rmap(page, false);
1537 }
1538
1539 pte_unmap_unlock(start_pte, ptl);
1540
1541 /* step 3: set proper refcount and mm_counters. */
1542 if (count) {
1543 page_ref_sub(hpage, count);
1544 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1545 }
1546
1547 /* step 4: collapse pmd */
1548 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, haddr,
1549 haddr + HPAGE_PMD_SIZE);
1550 mmu_notifier_invalidate_range_start(&range);
1551 _pmd = pmdp_collapse_flush(vma, haddr, pmd);
1552 vm_write_end(vma);
1553 mm_dec_nr_ptes(mm);
1554 tlb_remove_table_sync_one();
1555 mmu_notifier_invalidate_range_end(&range);
1556 pte_free(mm, pmd_pgtable(_pmd));
1557
1558 i_mmap_unlock_write(vma->vm_file->f_mapping);
1559
1560 drop_hpage:
1561 unlock_page(hpage);
1562 put_page(hpage);
1563 return;
1564
1565 abort:
1566 pte_unmap_unlock(start_pte, ptl);
1567 vm_write_end(vma);
1568 i_mmap_unlock_write(vma->vm_file->f_mapping);
1569 goto drop_hpage;
1570 }
1571
khugepaged_collapse_pte_mapped_thps(struct mm_slot * mm_slot)1572 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1573 {
1574 struct mm_struct *mm = mm_slot->mm;
1575 int i;
1576
1577 if (likely(mm_slot->nr_pte_mapped_thp == 0))
1578 return 0;
1579
1580 if (!mmap_write_trylock(mm))
1581 return -EBUSY;
1582
1583 if (unlikely(khugepaged_test_exit(mm)))
1584 goto out;
1585
1586 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1587 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1588
1589 out:
1590 mm_slot->nr_pte_mapped_thp = 0;
1591 mmap_write_unlock(mm);
1592 return 0;
1593 }
1594
retract_page_tables(struct address_space * mapping,pgoff_t pgoff)1595 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1596 {
1597 struct vm_area_struct *vma;
1598 struct mm_struct *mm;
1599 unsigned long addr;
1600 pmd_t *pmd, _pmd;
1601
1602 i_mmap_lock_write(mapping);
1603 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1604 /*
1605 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1606 * got written to. These VMAs are likely not worth investing
1607 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1608 * later.
1609 *
1610 * Not that vma->anon_vma check is racy: it can be set up after
1611 * the check but before we took mmap_lock by the fault path.
1612 * But page lock would prevent establishing any new ptes of the
1613 * page, so we are safe.
1614 *
1615 * An alternative would be drop the check, but check that page
1616 * table is clear before calling pmdp_collapse_flush() under
1617 * ptl. It has higher chance to recover THP for the VMA, but
1618 * has higher cost too. It would also probably require locking
1619 * the anon_vma.
1620 */
1621 if (vma->anon_vma)
1622 continue;
1623 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1624 if (addr & ~HPAGE_PMD_MASK)
1625 continue;
1626 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1627 continue;
1628 mm = vma->vm_mm;
1629 pmd = mm_find_pmd(mm, addr);
1630 if (!pmd)
1631 continue;
1632 /*
1633 * We need exclusive mmap_lock to retract page table.
1634 *
1635 * We use trylock due to lock inversion: we need to acquire
1636 * mmap_lock while holding page lock. Fault path does it in
1637 * reverse order. Trylock is a way to avoid deadlock.
1638 */
1639 if (mmap_write_trylock(mm)) {
1640 if (!khugepaged_test_exit(mm)) {
1641 struct mmu_notifier_range range;
1642
1643 vm_write_begin(vma);
1644 mmu_notifier_range_init(&range,
1645 MMU_NOTIFY_CLEAR, 0,
1646 NULL, mm, addr,
1647 addr + HPAGE_PMD_SIZE);
1648 mmu_notifier_invalidate_range_start(&range);
1649 /* assume page table is clear */
1650 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1651 vm_write_end(vma);
1652 mm_dec_nr_ptes(mm);
1653 tlb_remove_table_sync_one();
1654 pte_free(mm, pmd_pgtable(_pmd));
1655 mmu_notifier_invalidate_range_end(&range);
1656 }
1657 mmap_write_unlock(mm);
1658 } else {
1659 /* Try again later */
1660 khugepaged_add_pte_mapped_thp(mm, addr);
1661 }
1662 }
1663 i_mmap_unlock_write(mapping);
1664 }
1665
1666 /**
1667 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1668 *
1669 * Basic scheme is simple, details are more complex:
1670 * - allocate and lock a new huge page;
1671 * - scan page cache replacing old pages with the new one
1672 * + swap/gup in pages if necessary;
1673 * + fill in gaps;
1674 * + keep old pages around in case rollback is required;
1675 * - if replacing succeeds:
1676 * + copy data over;
1677 * + free old pages;
1678 * + unlock huge page;
1679 * - if replacing failed;
1680 * + put all pages back and unfreeze them;
1681 * + restore gaps in the page cache;
1682 * + unlock and free huge page;
1683 */
collapse_file(struct mm_struct * mm,struct file * file,pgoff_t start,struct page ** hpage,int node)1684 static void collapse_file(struct mm_struct *mm,
1685 struct file *file, pgoff_t start,
1686 struct page **hpage, int node)
1687 {
1688 struct address_space *mapping = file->f_mapping;
1689 gfp_t gfp;
1690 struct page *new_page;
1691 pgoff_t index, end = start + HPAGE_PMD_NR;
1692 LIST_HEAD(pagelist);
1693 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1694 int nr_none = 0, result = SCAN_SUCCEED;
1695 bool is_shmem = shmem_file(file);
1696
1697 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1698 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1699
1700 /* Only allocate from the target node */
1701 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1702
1703 new_page = khugepaged_alloc_page(hpage, gfp, node);
1704 if (!new_page) {
1705 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1706 goto out;
1707 }
1708
1709 if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1710 result = SCAN_CGROUP_CHARGE_FAIL;
1711 goto out;
1712 }
1713 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1714
1715 /* This will be less messy when we use multi-index entries */
1716 do {
1717 xas_lock_irq(&xas);
1718 xas_create_range(&xas);
1719 if (!xas_error(&xas))
1720 break;
1721 xas_unlock_irq(&xas);
1722 if (!xas_nomem(&xas, GFP_KERNEL)) {
1723 result = SCAN_FAIL;
1724 goto out;
1725 }
1726 } while (1);
1727
1728 __SetPageLocked(new_page);
1729 if (is_shmem)
1730 __SetPageSwapBacked(new_page);
1731 new_page->index = start;
1732 new_page->mapping = mapping;
1733
1734 /*
1735 * At this point the new_page is locked and not up-to-date.
1736 * It's safe to insert it into the page cache, because nobody would
1737 * be able to map it or use it in another way until we unlock it.
1738 */
1739
1740 xas_set(&xas, start);
1741 for (index = start; index < end; index++) {
1742 struct page *page = xas_next(&xas);
1743
1744 VM_BUG_ON(index != xas.xa_index);
1745 if (is_shmem) {
1746 if (!page) {
1747 /*
1748 * Stop if extent has been truncated or
1749 * hole-punched, and is now completely
1750 * empty.
1751 */
1752 if (index == start) {
1753 if (!xas_next_entry(&xas, end - 1)) {
1754 result = SCAN_TRUNCATED;
1755 goto xa_locked;
1756 }
1757 xas_set(&xas, index);
1758 }
1759 if (!shmem_charge(mapping->host, 1)) {
1760 result = SCAN_FAIL;
1761 goto xa_locked;
1762 }
1763 xas_store(&xas, new_page);
1764 nr_none++;
1765 continue;
1766 }
1767
1768 if (xa_is_value(page) || !PageUptodate(page)) {
1769 xas_unlock_irq(&xas);
1770 /* swap in or instantiate fallocated page */
1771 if (shmem_getpage(mapping->host, index, &page,
1772 SGP_NOHUGE)) {
1773 result = SCAN_FAIL;
1774 goto xa_unlocked;
1775 }
1776 } else if (trylock_page(page)) {
1777 get_page(page);
1778 xas_unlock_irq(&xas);
1779 } else {
1780 result = SCAN_PAGE_LOCK;
1781 goto xa_locked;
1782 }
1783 } else { /* !is_shmem */
1784 if (!page || xa_is_value(page)) {
1785 xas_unlock_irq(&xas);
1786 page_cache_sync_readahead(mapping, &file->f_ra,
1787 file, index,
1788 end - index);
1789 /* drain pagevecs to help isolate_lru_page() */
1790 lru_add_drain();
1791 page = find_lock_page(mapping, index);
1792 if (unlikely(page == NULL)) {
1793 result = SCAN_FAIL;
1794 goto xa_unlocked;
1795 }
1796 } else if (PageDirty(page)) {
1797 /*
1798 * khugepaged only works on read-only fd,
1799 * so this page is dirty because it hasn't
1800 * been flushed since first write. There
1801 * won't be new dirty pages.
1802 *
1803 * Trigger async flush here and hope the
1804 * writeback is done when khugepaged
1805 * revisits this page.
1806 *
1807 * This is a one-off situation. We are not
1808 * forcing writeback in loop.
1809 */
1810 xas_unlock_irq(&xas);
1811 filemap_flush(mapping);
1812 result = SCAN_FAIL;
1813 goto xa_unlocked;
1814 } else if (PageWriteback(page)) {
1815 xas_unlock_irq(&xas);
1816 result = SCAN_FAIL;
1817 goto xa_unlocked;
1818 } else if (trylock_page(page)) {
1819 get_page(page);
1820 xas_unlock_irq(&xas);
1821 } else {
1822 result = SCAN_PAGE_LOCK;
1823 goto xa_locked;
1824 }
1825 }
1826
1827 /*
1828 * The page must be locked, so we can drop the i_pages lock
1829 * without racing with truncate.
1830 */
1831 VM_BUG_ON_PAGE(!PageLocked(page), page);
1832
1833 /* make sure the page is up to date */
1834 if (unlikely(!PageUptodate(page))) {
1835 result = SCAN_FAIL;
1836 goto out_unlock;
1837 }
1838
1839 /*
1840 * If file was truncated then extended, or hole-punched, before
1841 * we locked the first page, then a THP might be there already.
1842 */
1843 if (PageTransCompound(page)) {
1844 result = SCAN_PAGE_COMPOUND;
1845 goto out_unlock;
1846 }
1847
1848 if (page_mapping(page) != mapping) {
1849 result = SCAN_TRUNCATED;
1850 goto out_unlock;
1851 }
1852
1853 if (!is_shmem && (PageDirty(page) ||
1854 PageWriteback(page))) {
1855 /*
1856 * khugepaged only works on read-only fd, so this
1857 * page is dirty because it hasn't been flushed
1858 * since first write.
1859 */
1860 result = SCAN_FAIL;
1861 goto out_unlock;
1862 }
1863
1864 if (isolate_lru_page(page)) {
1865 result = SCAN_DEL_PAGE_LRU;
1866 goto out_unlock;
1867 }
1868
1869 if (page_has_private(page) &&
1870 !try_to_release_page(page, GFP_KERNEL)) {
1871 result = SCAN_PAGE_HAS_PRIVATE;
1872 putback_lru_page(page);
1873 goto out_unlock;
1874 }
1875
1876 if (page_mapped(page))
1877 unmap_mapping_pages(mapping, index, 1, false);
1878
1879 xas_lock_irq(&xas);
1880 xas_set(&xas, index);
1881
1882 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1883 VM_BUG_ON_PAGE(page_mapped(page), page);
1884
1885 /*
1886 * The page is expected to have page_count() == 3:
1887 * - we hold a pin on it;
1888 * - one reference from page cache;
1889 * - one from isolate_lru_page;
1890 */
1891 if (!page_ref_freeze(page, 3)) {
1892 result = SCAN_PAGE_COUNT;
1893 xas_unlock_irq(&xas);
1894 putback_lru_page(page);
1895 goto out_unlock;
1896 }
1897
1898 /*
1899 * Add the page to the list to be able to undo the collapse if
1900 * something go wrong.
1901 */
1902 list_add_tail(&page->lru, &pagelist);
1903
1904 /* Finally, replace with the new page. */
1905 xas_store(&xas, new_page);
1906 continue;
1907 out_unlock:
1908 unlock_page(page);
1909 put_page(page);
1910 goto xa_unlocked;
1911 }
1912
1913 if (is_shmem)
1914 __inc_node_page_state(new_page, NR_SHMEM_THPS);
1915 else {
1916 __inc_node_page_state(new_page, NR_FILE_THPS);
1917 filemap_nr_thps_inc(mapping);
1918 /*
1919 * Paired with smp_mb() in do_dentry_open() to ensure
1920 * i_writecount is up to date and the update to nr_thps is
1921 * visible. Ensures the page cache will be truncated if the
1922 * file is opened writable.
1923 */
1924 smp_mb();
1925 if (inode_is_open_for_write(mapping->host)) {
1926 result = SCAN_FAIL;
1927 __dec_node_page_state(new_page, NR_FILE_THPS);
1928 filemap_nr_thps_dec(mapping);
1929 goto xa_locked;
1930 }
1931 }
1932
1933 if (nr_none) {
1934 __mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1935 if (is_shmem)
1936 __mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1937 }
1938
1939 xa_locked:
1940 xas_unlock_irq(&xas);
1941 xa_unlocked:
1942
1943 if (result == SCAN_SUCCEED) {
1944 struct page *page, *tmp;
1945
1946 /*
1947 * Replacing old pages with new one has succeeded, now we
1948 * need to copy the content and free the old pages.
1949 */
1950 index = start;
1951 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1952 while (index < page->index) {
1953 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1954 index++;
1955 }
1956 copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1957 page);
1958 list_del(&page->lru);
1959 page->mapping = NULL;
1960 page_ref_unfreeze(page, 1);
1961 ClearPageActive(page);
1962 ClearPageUnevictable(page);
1963 unlock_page(page);
1964 put_page(page);
1965 index++;
1966 }
1967 while (index < end) {
1968 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1969 index++;
1970 }
1971
1972 SetPageUptodate(new_page);
1973 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1974 if (is_shmem)
1975 set_page_dirty(new_page);
1976 lru_cache_add(new_page);
1977
1978 /*
1979 * Remove pte page tables, so we can re-fault the page as huge.
1980 */
1981 retract_page_tables(mapping, start);
1982 *hpage = NULL;
1983
1984 khugepaged_pages_collapsed++;
1985 } else {
1986 struct page *page;
1987
1988 /* Something went wrong: roll back page cache changes */
1989 xas_lock_irq(&xas);
1990 mapping->nrpages -= nr_none;
1991
1992 if (is_shmem)
1993 shmem_uncharge(mapping->host, nr_none);
1994
1995 xas_set(&xas, start);
1996 xas_for_each(&xas, page, end - 1) {
1997 page = list_first_entry_or_null(&pagelist,
1998 struct page, lru);
1999 if (!page || xas.xa_index < page->index) {
2000 if (!nr_none)
2001 break;
2002 nr_none--;
2003 /* Put holes back where they were */
2004 xas_store(&xas, NULL);
2005 continue;
2006 }
2007
2008 VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2009
2010 /* Unfreeze the page. */
2011 list_del(&page->lru);
2012 page_ref_unfreeze(page, 2);
2013 xas_store(&xas, page);
2014 xas_pause(&xas);
2015 xas_unlock_irq(&xas);
2016 unlock_page(page);
2017 putback_lru_page(page);
2018 xas_lock_irq(&xas);
2019 }
2020 VM_BUG_ON(nr_none);
2021 xas_unlock_irq(&xas);
2022
2023 new_page->mapping = NULL;
2024 }
2025
2026 unlock_page(new_page);
2027 out:
2028 VM_BUG_ON(!list_empty(&pagelist));
2029 if (!IS_ERR_OR_NULL(*hpage))
2030 mem_cgroup_uncharge(*hpage);
2031 /* TODO: tracepoints */
2032 }
2033
khugepaged_scan_file(struct mm_struct * mm,struct file * file,pgoff_t start,struct page ** hpage)2034 static void khugepaged_scan_file(struct mm_struct *mm,
2035 struct file *file, pgoff_t start, struct page **hpage)
2036 {
2037 struct page *page = NULL;
2038 struct address_space *mapping = file->f_mapping;
2039 XA_STATE(xas, &mapping->i_pages, start);
2040 int present, swap;
2041 int node = NUMA_NO_NODE;
2042 int result = SCAN_SUCCEED;
2043
2044 present = 0;
2045 swap = 0;
2046 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2047 rcu_read_lock();
2048 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2049 if (xas_retry(&xas, page))
2050 continue;
2051
2052 if (xa_is_value(page)) {
2053 if (++swap > khugepaged_max_ptes_swap) {
2054 result = SCAN_EXCEED_SWAP_PTE;
2055 break;
2056 }
2057 continue;
2058 }
2059
2060 if (PageTransCompound(page)) {
2061 result = SCAN_PAGE_COMPOUND;
2062 break;
2063 }
2064
2065 node = page_to_nid(page);
2066 if (khugepaged_scan_abort(node)) {
2067 result = SCAN_SCAN_ABORT;
2068 break;
2069 }
2070 khugepaged_node_load[node]++;
2071
2072 if (!PageLRU(page)) {
2073 result = SCAN_PAGE_LRU;
2074 break;
2075 }
2076
2077 if (page_count(page) !=
2078 1 + page_mapcount(page) + page_has_private(page)) {
2079 result = SCAN_PAGE_COUNT;
2080 break;
2081 }
2082
2083 /*
2084 * We probably should check if the page is referenced here, but
2085 * nobody would transfer pte_young() to PageReferenced() for us.
2086 * And rmap walk here is just too costly...
2087 */
2088
2089 present++;
2090
2091 if (need_resched()) {
2092 xas_pause(&xas);
2093 cond_resched_rcu();
2094 }
2095 }
2096 rcu_read_unlock();
2097
2098 if (result == SCAN_SUCCEED) {
2099 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2100 result = SCAN_EXCEED_NONE_PTE;
2101 } else {
2102 node = khugepaged_find_target_node();
2103 collapse_file(mm, file, start, hpage, node);
2104 }
2105 }
2106
2107 /* TODO: tracepoints */
2108 }
2109 #else
khugepaged_scan_file(struct mm_struct * mm,struct file * file,pgoff_t start,struct page ** hpage)2110 static void khugepaged_scan_file(struct mm_struct *mm,
2111 struct file *file, pgoff_t start, struct page **hpage)
2112 {
2113 BUILD_BUG();
2114 }
2115
khugepaged_collapse_pte_mapped_thps(struct mm_slot * mm_slot)2116 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
2117 {
2118 return 0;
2119 }
2120 #endif
2121
khugepaged_scan_mm_slot(unsigned int pages,struct page ** hpage)2122 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2123 struct page **hpage)
2124 __releases(&khugepaged_mm_lock)
2125 __acquires(&khugepaged_mm_lock)
2126 {
2127 struct mm_slot *mm_slot;
2128 struct mm_struct *mm;
2129 struct vm_area_struct *vma;
2130 int progress = 0;
2131
2132 VM_BUG_ON(!pages);
2133 lockdep_assert_held(&khugepaged_mm_lock);
2134
2135 if (khugepaged_scan.mm_slot)
2136 mm_slot = khugepaged_scan.mm_slot;
2137 else {
2138 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2139 struct mm_slot, mm_node);
2140 khugepaged_scan.address = 0;
2141 khugepaged_scan.mm_slot = mm_slot;
2142 }
2143 spin_unlock(&khugepaged_mm_lock);
2144 khugepaged_collapse_pte_mapped_thps(mm_slot);
2145
2146 mm = mm_slot->mm;
2147 /*
2148 * Don't wait for semaphore (to avoid long wait times). Just move to
2149 * the next mm on the list.
2150 */
2151 vma = NULL;
2152 if (unlikely(!mmap_read_trylock(mm)))
2153 goto breakouterloop_mmap_lock;
2154 if (likely(!khugepaged_test_exit(mm)))
2155 vma = find_vma(mm, khugepaged_scan.address);
2156
2157 progress++;
2158 for (; vma; vma = vma->vm_next) {
2159 unsigned long hstart, hend;
2160
2161 cond_resched();
2162 if (unlikely(khugepaged_test_exit(mm))) {
2163 progress++;
2164 break;
2165 }
2166 if (!hugepage_vma_check(vma, vma->vm_flags)) {
2167 skip:
2168 progress++;
2169 continue;
2170 }
2171 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2172 hend = vma->vm_end & HPAGE_PMD_MASK;
2173 if (hstart >= hend)
2174 goto skip;
2175 if (khugepaged_scan.address > hend)
2176 goto skip;
2177 if (khugepaged_scan.address < hstart)
2178 khugepaged_scan.address = hstart;
2179 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2180 if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
2181 goto skip;
2182
2183 while (khugepaged_scan.address < hend) {
2184 int ret;
2185 cond_resched();
2186 if (unlikely(khugepaged_test_exit(mm)))
2187 goto breakouterloop;
2188
2189 VM_BUG_ON(khugepaged_scan.address < hstart ||
2190 khugepaged_scan.address + HPAGE_PMD_SIZE >
2191 hend);
2192 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2193 struct file *file = get_file(vma->vm_file);
2194 pgoff_t pgoff = linear_page_index(vma,
2195 khugepaged_scan.address);
2196
2197 mmap_read_unlock(mm);
2198 ret = 1;
2199 khugepaged_scan_file(mm, file, pgoff, hpage);
2200 fput(file);
2201 } else {
2202 ret = khugepaged_scan_pmd(mm, vma,
2203 khugepaged_scan.address,
2204 hpage);
2205 }
2206 /* move to next address */
2207 khugepaged_scan.address += HPAGE_PMD_SIZE;
2208 progress += HPAGE_PMD_NR;
2209 if (ret)
2210 /* we released mmap_lock so break loop */
2211 goto breakouterloop_mmap_lock;
2212 if (progress >= pages)
2213 goto breakouterloop;
2214 }
2215 }
2216 breakouterloop:
2217 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2218 breakouterloop_mmap_lock:
2219
2220 spin_lock(&khugepaged_mm_lock);
2221 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2222 /*
2223 * Release the current mm_slot if this mm is about to die, or
2224 * if we scanned all vmas of this mm.
2225 */
2226 if (khugepaged_test_exit(mm) || !vma) {
2227 /*
2228 * Make sure that if mm_users is reaching zero while
2229 * khugepaged runs here, khugepaged_exit will find
2230 * mm_slot not pointing to the exiting mm.
2231 */
2232 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2233 khugepaged_scan.mm_slot = list_entry(
2234 mm_slot->mm_node.next,
2235 struct mm_slot, mm_node);
2236 khugepaged_scan.address = 0;
2237 } else {
2238 khugepaged_scan.mm_slot = NULL;
2239 khugepaged_full_scans++;
2240 }
2241
2242 collect_mm_slot(mm_slot);
2243 }
2244
2245 return progress;
2246 }
2247
khugepaged_has_work(void)2248 static int khugepaged_has_work(void)
2249 {
2250 return !list_empty(&khugepaged_scan.mm_head) &&
2251 khugepaged_enabled();
2252 }
2253
khugepaged_wait_event(void)2254 static int khugepaged_wait_event(void)
2255 {
2256 return !list_empty(&khugepaged_scan.mm_head) ||
2257 kthread_should_stop();
2258 }
2259
khugepaged_do_scan(void)2260 static void khugepaged_do_scan(void)
2261 {
2262 struct page *hpage = NULL;
2263 unsigned int progress = 0, pass_through_head = 0;
2264 unsigned int pages = khugepaged_pages_to_scan;
2265 bool wait = true;
2266
2267 barrier(); /* write khugepaged_pages_to_scan to local stack */
2268
2269 lru_add_drain_all();
2270
2271 while (progress < pages) {
2272 if (!khugepaged_prealloc_page(&hpage, &wait))
2273 break;
2274
2275 cond_resched();
2276
2277 if (unlikely(kthread_should_stop() || try_to_freeze()))
2278 break;
2279
2280 spin_lock(&khugepaged_mm_lock);
2281 if (!khugepaged_scan.mm_slot)
2282 pass_through_head++;
2283 if (khugepaged_has_work() &&
2284 pass_through_head < 2)
2285 progress += khugepaged_scan_mm_slot(pages - progress,
2286 &hpage);
2287 else
2288 progress = pages;
2289 spin_unlock(&khugepaged_mm_lock);
2290 }
2291
2292 if (!IS_ERR_OR_NULL(hpage))
2293 put_page(hpage);
2294 }
2295
khugepaged_should_wakeup(void)2296 static bool khugepaged_should_wakeup(void)
2297 {
2298 return kthread_should_stop() ||
2299 time_after_eq(jiffies, khugepaged_sleep_expire);
2300 }
2301
khugepaged_wait_work(void)2302 static void khugepaged_wait_work(void)
2303 {
2304 if (khugepaged_has_work()) {
2305 const unsigned long scan_sleep_jiffies =
2306 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2307
2308 if (!scan_sleep_jiffies)
2309 return;
2310
2311 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2312 wait_event_freezable_timeout(khugepaged_wait,
2313 khugepaged_should_wakeup(),
2314 scan_sleep_jiffies);
2315 return;
2316 }
2317
2318 if (khugepaged_enabled())
2319 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2320 }
2321
khugepaged(void * none)2322 static int khugepaged(void *none)
2323 {
2324 struct mm_slot *mm_slot;
2325
2326 set_freezable();
2327 set_user_nice(current, MAX_NICE);
2328
2329 while (!kthread_should_stop()) {
2330 khugepaged_do_scan();
2331 khugepaged_wait_work();
2332 }
2333
2334 spin_lock(&khugepaged_mm_lock);
2335 mm_slot = khugepaged_scan.mm_slot;
2336 khugepaged_scan.mm_slot = NULL;
2337 if (mm_slot)
2338 collect_mm_slot(mm_slot);
2339 spin_unlock(&khugepaged_mm_lock);
2340 return 0;
2341 }
2342
set_recommended_min_free_kbytes(void)2343 static void set_recommended_min_free_kbytes(void)
2344 {
2345 struct zone *zone;
2346 int nr_zones = 0;
2347 unsigned long recommended_min;
2348
2349 for_each_populated_zone(zone) {
2350 /*
2351 * We don't need to worry about fragmentation of
2352 * ZONE_MOVABLE since it only has movable pages.
2353 */
2354 if (zone_idx(zone) > gfp_zone(GFP_USER))
2355 continue;
2356
2357 nr_zones++;
2358 }
2359
2360 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2361 recommended_min = pageblock_nr_pages * nr_zones * 2;
2362
2363 /*
2364 * Make sure that on average at least two pageblocks are almost free
2365 * of another type, one for a migratetype to fall back to and a
2366 * second to avoid subsequent fallbacks of other types There are 3
2367 * MIGRATE_TYPES we care about.
2368 */
2369 recommended_min += pageblock_nr_pages * nr_zones *
2370 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2371
2372 /* don't ever allow to reserve more than 5% of the lowmem */
2373 recommended_min = min(recommended_min,
2374 (unsigned long) nr_free_buffer_pages() / 20);
2375 recommended_min <<= (PAGE_SHIFT-10);
2376
2377 if (recommended_min > min_free_kbytes) {
2378 if (user_min_free_kbytes >= 0)
2379 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2380 min_free_kbytes, recommended_min);
2381
2382 min_free_kbytes = recommended_min;
2383 }
2384 setup_per_zone_wmarks();
2385 }
2386
start_stop_khugepaged(void)2387 int start_stop_khugepaged(void)
2388 {
2389 int err = 0;
2390
2391 mutex_lock(&khugepaged_mutex);
2392 if (khugepaged_enabled()) {
2393 if (!khugepaged_thread)
2394 khugepaged_thread = kthread_run(khugepaged, NULL,
2395 "khugepaged");
2396 if (IS_ERR(khugepaged_thread)) {
2397 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2398 err = PTR_ERR(khugepaged_thread);
2399 khugepaged_thread = NULL;
2400 goto fail;
2401 }
2402
2403 if (!list_empty(&khugepaged_scan.mm_head))
2404 wake_up_interruptible(&khugepaged_wait);
2405
2406 set_recommended_min_free_kbytes();
2407 } else if (khugepaged_thread) {
2408 kthread_stop(khugepaged_thread);
2409 khugepaged_thread = NULL;
2410 }
2411 fail:
2412 mutex_unlock(&khugepaged_mutex);
2413 return err;
2414 }
2415
khugepaged_min_free_kbytes_update(void)2416 void khugepaged_min_free_kbytes_update(void)
2417 {
2418 mutex_lock(&khugepaged_mutex);
2419 if (khugepaged_enabled() && khugepaged_thread)
2420 set_recommended_min_free_kbytes();
2421 mutex_unlock(&khugepaged_mutex);
2422 }
2423