xref: /OK3568_Linux_fs/kernel/mm/khugepaged.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21 
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25 
26 enum scan_result {
27 	SCAN_FAIL,
28 	SCAN_SUCCEED,
29 	SCAN_PMD_NULL,
30 	SCAN_EXCEED_NONE_PTE,
31 	SCAN_EXCEED_SWAP_PTE,
32 	SCAN_EXCEED_SHARED_PTE,
33 	SCAN_PTE_NON_PRESENT,
34 	SCAN_PTE_UFFD_WP,
35 	SCAN_PAGE_RO,
36 	SCAN_LACK_REFERENCED_PAGE,
37 	SCAN_PAGE_NULL,
38 	SCAN_SCAN_ABORT,
39 	SCAN_PAGE_COUNT,
40 	SCAN_PAGE_LRU,
41 	SCAN_PAGE_LOCK,
42 	SCAN_PAGE_ANON,
43 	SCAN_PAGE_COMPOUND,
44 	SCAN_ANY_PROCESS,
45 	SCAN_VMA_NULL,
46 	SCAN_VMA_CHECK,
47 	SCAN_ADDRESS_RANGE,
48 	SCAN_SWAP_CACHE_PAGE,
49 	SCAN_DEL_PAGE_LRU,
50 	SCAN_ALLOC_HUGE_PAGE_FAIL,
51 	SCAN_CGROUP_CHARGE_FAIL,
52 	SCAN_TRUNCATED,
53 	SCAN_PAGE_HAS_PRIVATE,
54 };
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/huge_memory.h>
58 
59 static struct task_struct *khugepaged_thread __read_mostly;
60 static DEFINE_MUTEX(khugepaged_mutex);
61 
62 /* default scan 8*512 pte (or vmas) every 30 second */
63 static unsigned int khugepaged_pages_to_scan __read_mostly;
64 static unsigned int khugepaged_pages_collapsed;
65 static unsigned int khugepaged_full_scans;
66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
67 /* during fragmentation poll the hugepage allocator once every minute */
68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
69 static unsigned long khugepaged_sleep_expire;
70 static DEFINE_SPINLOCK(khugepaged_mm_lock);
71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
72 /*
73  * default collapse hugepages if there is at least one pte mapped like
74  * it would have happened if the vma was large enough during page
75  * fault.
76  */
77 static unsigned int khugepaged_max_ptes_none __read_mostly;
78 static unsigned int khugepaged_max_ptes_swap __read_mostly;
79 static unsigned int khugepaged_max_ptes_shared __read_mostly;
80 
81 #define MM_SLOTS_HASH_BITS 10
82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
83 
84 static struct kmem_cache *mm_slot_cache __read_mostly;
85 
86 #define MAX_PTE_MAPPED_THP 8
87 
88 /**
89  * struct mm_slot - hash lookup from mm to mm_slot
90  * @hash: hash collision list
91  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
92  * @mm: the mm that this information is valid for
93  */
94 struct mm_slot {
95 	struct hlist_node hash;
96 	struct list_head mm_node;
97 	struct mm_struct *mm;
98 
99 	/* pte-mapped THP in this mm */
100 	int nr_pte_mapped_thp;
101 	unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
102 };
103 
104 /**
105  * struct khugepaged_scan - cursor for scanning
106  * @mm_head: the head of the mm list to scan
107  * @mm_slot: the current mm_slot we are scanning
108  * @address: the next address inside that to be scanned
109  *
110  * There is only the one khugepaged_scan instance of this cursor structure.
111  */
112 struct khugepaged_scan {
113 	struct list_head mm_head;
114 	struct mm_slot *mm_slot;
115 	unsigned long address;
116 };
117 
118 static struct khugepaged_scan khugepaged_scan = {
119 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
120 };
121 
122 #ifdef CONFIG_SYSFS
scan_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)123 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
124 					 struct kobj_attribute *attr,
125 					 char *buf)
126 {
127 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
128 }
129 
scan_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)130 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
131 					  struct kobj_attribute *attr,
132 					  const char *buf, size_t count)
133 {
134 	unsigned long msecs;
135 	int err;
136 
137 	err = kstrtoul(buf, 10, &msecs);
138 	if (err || msecs > UINT_MAX)
139 		return -EINVAL;
140 
141 	khugepaged_scan_sleep_millisecs = msecs;
142 	khugepaged_sleep_expire = 0;
143 	wake_up_interruptible(&khugepaged_wait);
144 
145 	return count;
146 }
147 static struct kobj_attribute scan_sleep_millisecs_attr =
148 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
149 	       scan_sleep_millisecs_store);
150 
alloc_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)151 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
152 					  struct kobj_attribute *attr,
153 					  char *buf)
154 {
155 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
156 }
157 
alloc_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)158 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
159 					   struct kobj_attribute *attr,
160 					   const char *buf, size_t count)
161 {
162 	unsigned long msecs;
163 	int err;
164 
165 	err = kstrtoul(buf, 10, &msecs);
166 	if (err || msecs > UINT_MAX)
167 		return -EINVAL;
168 
169 	khugepaged_alloc_sleep_millisecs = msecs;
170 	khugepaged_sleep_expire = 0;
171 	wake_up_interruptible(&khugepaged_wait);
172 
173 	return count;
174 }
175 static struct kobj_attribute alloc_sleep_millisecs_attr =
176 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
177 	       alloc_sleep_millisecs_store);
178 
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)179 static ssize_t pages_to_scan_show(struct kobject *kobj,
180 				  struct kobj_attribute *attr,
181 				  char *buf)
182 {
183 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
184 }
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)185 static ssize_t pages_to_scan_store(struct kobject *kobj,
186 				   struct kobj_attribute *attr,
187 				   const char *buf, size_t count)
188 {
189 	int err;
190 	unsigned long pages;
191 
192 	err = kstrtoul(buf, 10, &pages);
193 	if (err || !pages || pages > UINT_MAX)
194 		return -EINVAL;
195 
196 	khugepaged_pages_to_scan = pages;
197 
198 	return count;
199 }
200 static struct kobj_attribute pages_to_scan_attr =
201 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
202 	       pages_to_scan_store);
203 
pages_collapsed_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)204 static ssize_t pages_collapsed_show(struct kobject *kobj,
205 				    struct kobj_attribute *attr,
206 				    char *buf)
207 {
208 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
209 }
210 static struct kobj_attribute pages_collapsed_attr =
211 	__ATTR_RO(pages_collapsed);
212 
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)213 static ssize_t full_scans_show(struct kobject *kobj,
214 			       struct kobj_attribute *attr,
215 			       char *buf)
216 {
217 	return sprintf(buf, "%u\n", khugepaged_full_scans);
218 }
219 static struct kobj_attribute full_scans_attr =
220 	__ATTR_RO(full_scans);
221 
khugepaged_defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)222 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
223 				      struct kobj_attribute *attr, char *buf)
224 {
225 	return single_hugepage_flag_show(kobj, attr, buf,
226 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
227 }
khugepaged_defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)228 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
229 				       struct kobj_attribute *attr,
230 				       const char *buf, size_t count)
231 {
232 	return single_hugepage_flag_store(kobj, attr, buf, count,
233 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
234 }
235 static struct kobj_attribute khugepaged_defrag_attr =
236 	__ATTR(defrag, 0644, khugepaged_defrag_show,
237 	       khugepaged_defrag_store);
238 
239 /*
240  * max_ptes_none controls if khugepaged should collapse hugepages over
241  * any unmapped ptes in turn potentially increasing the memory
242  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
243  * reduce the available free memory in the system as it
244  * runs. Increasing max_ptes_none will instead potentially reduce the
245  * free memory in the system during the khugepaged scan.
246  */
khugepaged_max_ptes_none_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)247 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
248 					     struct kobj_attribute *attr,
249 					     char *buf)
250 {
251 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
252 }
khugepaged_max_ptes_none_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)253 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
254 					      struct kobj_attribute *attr,
255 					      const char *buf, size_t count)
256 {
257 	int err;
258 	unsigned long max_ptes_none;
259 
260 	err = kstrtoul(buf, 10, &max_ptes_none);
261 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
262 		return -EINVAL;
263 
264 	khugepaged_max_ptes_none = max_ptes_none;
265 
266 	return count;
267 }
268 static struct kobj_attribute khugepaged_max_ptes_none_attr =
269 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
270 	       khugepaged_max_ptes_none_store);
271 
khugepaged_max_ptes_swap_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)272 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
273 					     struct kobj_attribute *attr,
274 					     char *buf)
275 {
276 	return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
277 }
278 
khugepaged_max_ptes_swap_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)279 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
280 					      struct kobj_attribute *attr,
281 					      const char *buf, size_t count)
282 {
283 	int err;
284 	unsigned long max_ptes_swap;
285 
286 	err  = kstrtoul(buf, 10, &max_ptes_swap);
287 	if (err || max_ptes_swap > HPAGE_PMD_NR-1)
288 		return -EINVAL;
289 
290 	khugepaged_max_ptes_swap = max_ptes_swap;
291 
292 	return count;
293 }
294 
295 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
296 	__ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
297 	       khugepaged_max_ptes_swap_store);
298 
khugepaged_max_ptes_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)299 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
300 					     struct kobj_attribute *attr,
301 					     char *buf)
302 {
303 	return sprintf(buf, "%u\n", khugepaged_max_ptes_shared);
304 }
305 
khugepaged_max_ptes_shared_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)306 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
307 					      struct kobj_attribute *attr,
308 					      const char *buf, size_t count)
309 {
310 	int err;
311 	unsigned long max_ptes_shared;
312 
313 	err  = kstrtoul(buf, 10, &max_ptes_shared);
314 	if (err || max_ptes_shared > HPAGE_PMD_NR-1)
315 		return -EINVAL;
316 
317 	khugepaged_max_ptes_shared = max_ptes_shared;
318 
319 	return count;
320 }
321 
322 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
323 	__ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
324 	       khugepaged_max_ptes_shared_store);
325 
326 static struct attribute *khugepaged_attr[] = {
327 	&khugepaged_defrag_attr.attr,
328 	&khugepaged_max_ptes_none_attr.attr,
329 	&khugepaged_max_ptes_swap_attr.attr,
330 	&khugepaged_max_ptes_shared_attr.attr,
331 	&pages_to_scan_attr.attr,
332 	&pages_collapsed_attr.attr,
333 	&full_scans_attr.attr,
334 	&scan_sleep_millisecs_attr.attr,
335 	&alloc_sleep_millisecs_attr.attr,
336 	NULL,
337 };
338 
339 struct attribute_group khugepaged_attr_group = {
340 	.attrs = khugepaged_attr,
341 	.name = "khugepaged",
342 };
343 #endif /* CONFIG_SYSFS */
344 
hugepage_madvise(struct vm_area_struct * vma,unsigned long * vm_flags,int advice)345 int hugepage_madvise(struct vm_area_struct *vma,
346 		     unsigned long *vm_flags, int advice)
347 {
348 	switch (advice) {
349 	case MADV_HUGEPAGE:
350 #ifdef CONFIG_S390
351 		/*
352 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
353 		 * can't handle this properly after s390_enable_sie, so we simply
354 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
355 		 */
356 		if (mm_has_pgste(vma->vm_mm))
357 			return 0;
358 #endif
359 		*vm_flags &= ~VM_NOHUGEPAGE;
360 		*vm_flags |= VM_HUGEPAGE;
361 		/*
362 		 * If the vma become good for khugepaged to scan,
363 		 * register it here without waiting a page fault that
364 		 * may not happen any time soon.
365 		 */
366 		if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
367 				khugepaged_enter_vma_merge(vma, *vm_flags))
368 			return -ENOMEM;
369 		break;
370 	case MADV_NOHUGEPAGE:
371 		*vm_flags &= ~VM_HUGEPAGE;
372 		*vm_flags |= VM_NOHUGEPAGE;
373 		/*
374 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
375 		 * this vma even if we leave the mm registered in khugepaged if
376 		 * it got registered before VM_NOHUGEPAGE was set.
377 		 */
378 		break;
379 	}
380 
381 	return 0;
382 }
383 
khugepaged_init(void)384 int __init khugepaged_init(void)
385 {
386 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
387 					  sizeof(struct mm_slot),
388 					  __alignof__(struct mm_slot), 0, NULL);
389 	if (!mm_slot_cache)
390 		return -ENOMEM;
391 
392 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
393 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
394 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
395 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
396 
397 	return 0;
398 }
399 
khugepaged_destroy(void)400 void __init khugepaged_destroy(void)
401 {
402 	kmem_cache_destroy(mm_slot_cache);
403 }
404 
alloc_mm_slot(void)405 static inline struct mm_slot *alloc_mm_slot(void)
406 {
407 	if (!mm_slot_cache)	/* initialization failed */
408 		return NULL;
409 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
410 }
411 
free_mm_slot(struct mm_slot * mm_slot)412 static inline void free_mm_slot(struct mm_slot *mm_slot)
413 {
414 	kmem_cache_free(mm_slot_cache, mm_slot);
415 }
416 
get_mm_slot(struct mm_struct * mm)417 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
418 {
419 	struct mm_slot *mm_slot;
420 
421 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
422 		if (mm == mm_slot->mm)
423 			return mm_slot;
424 
425 	return NULL;
426 }
427 
insert_to_mm_slots_hash(struct mm_struct * mm,struct mm_slot * mm_slot)428 static void insert_to_mm_slots_hash(struct mm_struct *mm,
429 				    struct mm_slot *mm_slot)
430 {
431 	mm_slot->mm = mm;
432 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
433 }
434 
khugepaged_test_exit(struct mm_struct * mm)435 static inline int khugepaged_test_exit(struct mm_struct *mm)
436 {
437 	return atomic_read(&mm->mm_users) == 0;
438 }
439 
hugepage_vma_check(struct vm_area_struct * vma,unsigned long vm_flags)440 static bool hugepage_vma_check(struct vm_area_struct *vma,
441 			       unsigned long vm_flags)
442 {
443 	if (!transhuge_vma_enabled(vma, vm_flags))
444 		return false;
445 
446 	if (vma->vm_file && !IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) -
447 				vma->vm_pgoff, HPAGE_PMD_NR))
448 		return false;
449 
450 	/* Enabled via shmem mount options or sysfs settings. */
451 	if (shmem_file(vma->vm_file))
452 		return shmem_huge_enabled(vma);
453 
454 	/* THP settings require madvise. */
455 	if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always())
456 		return false;
457 
458 	/* Only regular file is valid */
459 	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && vma->vm_file &&
460 	    !inode_is_open_for_write(vma->vm_file->f_inode) &&
461 	    (vm_flags & VM_EXEC)) {
462 		struct inode *inode = vma->vm_file->f_inode;
463 
464 		return S_ISREG(inode->i_mode);
465 	}
466 
467 	if (!vma->anon_vma || vma->vm_ops)
468 		return false;
469 	if (vma_is_temporary_stack(vma))
470 		return false;
471 	return !(vm_flags & VM_NO_KHUGEPAGED);
472 }
473 
__khugepaged_enter(struct mm_struct * mm)474 int __khugepaged_enter(struct mm_struct *mm)
475 {
476 	struct mm_slot *mm_slot;
477 	int wakeup;
478 
479 	mm_slot = alloc_mm_slot();
480 	if (!mm_slot)
481 		return -ENOMEM;
482 
483 	/* __khugepaged_exit() must not run from under us */
484 	VM_BUG_ON_MM(atomic_read(&mm->mm_users) == 0, mm);
485 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
486 		free_mm_slot(mm_slot);
487 		return 0;
488 	}
489 
490 	spin_lock(&khugepaged_mm_lock);
491 	insert_to_mm_slots_hash(mm, mm_slot);
492 	/*
493 	 * Insert just behind the scanning cursor, to let the area settle
494 	 * down a little.
495 	 */
496 	wakeup = list_empty(&khugepaged_scan.mm_head);
497 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
498 	spin_unlock(&khugepaged_mm_lock);
499 
500 	mmgrab(mm);
501 	if (wakeup)
502 		wake_up_interruptible(&khugepaged_wait);
503 
504 	return 0;
505 }
506 
khugepaged_enter_vma_merge(struct vm_area_struct * vma,unsigned long vm_flags)507 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
508 			       unsigned long vm_flags)
509 {
510 	unsigned long hstart, hend;
511 
512 	/*
513 	 * khugepaged only supports read-only files for non-shmem files.
514 	 * khugepaged does not yet work on special mappings. And
515 	 * file-private shmem THP is not supported.
516 	 */
517 	if (!hugepage_vma_check(vma, vm_flags))
518 		return 0;
519 
520 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
521 	hend = vma->vm_end & HPAGE_PMD_MASK;
522 	if (hstart < hend)
523 		return khugepaged_enter(vma, vm_flags);
524 	return 0;
525 }
526 
__khugepaged_exit(struct mm_struct * mm)527 void __khugepaged_exit(struct mm_struct *mm)
528 {
529 	struct mm_slot *mm_slot;
530 	int free = 0;
531 
532 	spin_lock(&khugepaged_mm_lock);
533 	mm_slot = get_mm_slot(mm);
534 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
535 		hash_del(&mm_slot->hash);
536 		list_del(&mm_slot->mm_node);
537 		free = 1;
538 	}
539 	spin_unlock(&khugepaged_mm_lock);
540 
541 	if (free) {
542 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
543 		free_mm_slot(mm_slot);
544 		mmdrop(mm);
545 	} else if (mm_slot) {
546 		/*
547 		 * This is required to serialize against
548 		 * khugepaged_test_exit() (which is guaranteed to run
549 		 * under mmap sem read mode). Stop here (after we
550 		 * return all pagetables will be destroyed) until
551 		 * khugepaged has finished working on the pagetables
552 		 * under the mmap_lock.
553 		 */
554 		mmap_write_lock(mm);
555 		mmap_write_unlock(mm);
556 	}
557 }
558 
release_pte_page(struct page * page)559 static void release_pte_page(struct page *page)
560 {
561 	mod_node_page_state(page_pgdat(page),
562 			NR_ISOLATED_ANON + page_is_file_lru(page),
563 			-compound_nr(page));
564 	unlock_page(page);
565 	putback_lru_page(page);
566 }
567 
release_pte_pages(pte_t * pte,pte_t * _pte,struct list_head * compound_pagelist)568 static void release_pte_pages(pte_t *pte, pte_t *_pte,
569 		struct list_head *compound_pagelist)
570 {
571 	struct page *page, *tmp;
572 
573 	while (--_pte >= pte) {
574 		pte_t pteval = *_pte;
575 
576 		page = pte_page(pteval);
577 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
578 				!PageCompound(page))
579 			release_pte_page(page);
580 	}
581 
582 	list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
583 		list_del(&page->lru);
584 		release_pte_page(page);
585 	}
586 }
587 
is_refcount_suitable(struct page * page)588 static bool is_refcount_suitable(struct page *page)
589 {
590 	int expected_refcount;
591 
592 	expected_refcount = total_mapcount(page);
593 	if (PageSwapCache(page))
594 		expected_refcount += compound_nr(page);
595 
596 	return page_count(page) == expected_refcount;
597 }
598 
__collapse_huge_page_isolate(struct vm_area_struct * vma,unsigned long address,pte_t * pte,struct list_head * compound_pagelist)599 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
600 					unsigned long address,
601 					pte_t *pte,
602 					struct list_head *compound_pagelist)
603 {
604 	struct page *page = NULL;
605 	pte_t *_pte;
606 	int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
607 	bool writable = false;
608 
609 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
610 	     _pte++, address += PAGE_SIZE) {
611 		pte_t pteval = *_pte;
612 		if (pte_none(pteval) || (pte_present(pteval) &&
613 				is_zero_pfn(pte_pfn(pteval)))) {
614 			if (!userfaultfd_armed(vma) &&
615 			    ++none_or_zero <= khugepaged_max_ptes_none) {
616 				continue;
617 			} else {
618 				result = SCAN_EXCEED_NONE_PTE;
619 				goto out;
620 			}
621 		}
622 		if (!pte_present(pteval)) {
623 			result = SCAN_PTE_NON_PRESENT;
624 			goto out;
625 		}
626 		page = vm_normal_page(vma, address, pteval);
627 		if (unlikely(!page)) {
628 			result = SCAN_PAGE_NULL;
629 			goto out;
630 		}
631 
632 		VM_BUG_ON_PAGE(!PageAnon(page), page);
633 
634 		if (page_mapcount(page) > 1 &&
635 				++shared > khugepaged_max_ptes_shared) {
636 			result = SCAN_EXCEED_SHARED_PTE;
637 			goto out;
638 		}
639 
640 		if (PageCompound(page)) {
641 			struct page *p;
642 			page = compound_head(page);
643 
644 			/*
645 			 * Check if we have dealt with the compound page
646 			 * already
647 			 */
648 			list_for_each_entry(p, compound_pagelist, lru) {
649 				if (page == p)
650 					goto next;
651 			}
652 		}
653 
654 		/*
655 		 * We can do it before isolate_lru_page because the
656 		 * page can't be freed from under us. NOTE: PG_lock
657 		 * is needed to serialize against split_huge_page
658 		 * when invoked from the VM.
659 		 */
660 		if (!trylock_page(page)) {
661 			result = SCAN_PAGE_LOCK;
662 			goto out;
663 		}
664 
665 		/*
666 		 * Check if the page has any GUP (or other external) pins.
667 		 *
668 		 * The page table that maps the page has been already unlinked
669 		 * from the page table tree and this process cannot get
670 		 * an additinal pin on the page.
671 		 *
672 		 * New pins can come later if the page is shared across fork,
673 		 * but not from this process. The other process cannot write to
674 		 * the page, only trigger CoW.
675 		 */
676 		if (!is_refcount_suitable(page)) {
677 			unlock_page(page);
678 			result = SCAN_PAGE_COUNT;
679 			goto out;
680 		}
681 		if (!pte_write(pteval) && PageSwapCache(page) &&
682 				!reuse_swap_page(page, NULL)) {
683 			/*
684 			 * Page is in the swap cache and cannot be re-used.
685 			 * It cannot be collapsed into a THP.
686 			 */
687 			unlock_page(page);
688 			result = SCAN_SWAP_CACHE_PAGE;
689 			goto out;
690 		}
691 
692 		/*
693 		 * Isolate the page to avoid collapsing an hugepage
694 		 * currently in use by the VM.
695 		 */
696 		if (isolate_lru_page(page)) {
697 			unlock_page(page);
698 			result = SCAN_DEL_PAGE_LRU;
699 			goto out;
700 		}
701 		mod_node_page_state(page_pgdat(page),
702 				NR_ISOLATED_ANON + page_is_file_lru(page),
703 				compound_nr(page));
704 		VM_BUG_ON_PAGE(!PageLocked(page), page);
705 		VM_BUG_ON_PAGE(PageLRU(page), page);
706 
707 		if (PageCompound(page))
708 			list_add_tail(&page->lru, compound_pagelist);
709 next:
710 		/* There should be enough young pte to collapse the page */
711 		if (pte_young(pteval) ||
712 		    page_is_young(page) || PageReferenced(page) ||
713 		    mmu_notifier_test_young(vma->vm_mm, address))
714 			referenced++;
715 
716 		if (pte_write(pteval))
717 			writable = true;
718 	}
719 
720 	if (unlikely(!writable)) {
721 		result = SCAN_PAGE_RO;
722 	} else if (unlikely(!referenced)) {
723 		result = SCAN_LACK_REFERENCED_PAGE;
724 	} else {
725 		result = SCAN_SUCCEED;
726 		trace_mm_collapse_huge_page_isolate(page, none_or_zero,
727 						    referenced, writable, result);
728 		return 1;
729 	}
730 out:
731 	release_pte_pages(pte, _pte, compound_pagelist);
732 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
733 					    referenced, writable, result);
734 	return 0;
735 }
736 
__collapse_huge_page_copy(pte_t * pte,struct page * page,struct vm_area_struct * vma,unsigned long address,spinlock_t * ptl,struct list_head * compound_pagelist)737 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
738 				      struct vm_area_struct *vma,
739 				      unsigned long address,
740 				      spinlock_t *ptl,
741 				      struct list_head *compound_pagelist)
742 {
743 	struct page *src_page, *tmp;
744 	pte_t *_pte;
745 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
746 				_pte++, page++, address += PAGE_SIZE) {
747 		pte_t pteval = *_pte;
748 
749 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
750 			clear_user_highpage(page, address);
751 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
752 			if (is_zero_pfn(pte_pfn(pteval))) {
753 				/*
754 				 * ptl mostly unnecessary.
755 				 */
756 				spin_lock(ptl);
757 				/*
758 				 * paravirt calls inside pte_clear here are
759 				 * superfluous.
760 				 */
761 				pte_clear(vma->vm_mm, address, _pte);
762 				spin_unlock(ptl);
763 			}
764 		} else {
765 			src_page = pte_page(pteval);
766 			copy_user_highpage(page, src_page, address, vma);
767 			if (!PageCompound(src_page))
768 				release_pte_page(src_page);
769 			/*
770 			 * ptl mostly unnecessary, but preempt has to
771 			 * be disabled to update the per-cpu stats
772 			 * inside page_remove_rmap().
773 			 */
774 			spin_lock(ptl);
775 			/*
776 			 * paravirt calls inside pte_clear here are
777 			 * superfluous.
778 			 */
779 			pte_clear(vma->vm_mm, address, _pte);
780 			page_remove_rmap(src_page, false);
781 			spin_unlock(ptl);
782 			free_page_and_swap_cache(src_page);
783 		}
784 	}
785 
786 	list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
787 		list_del(&src_page->lru);
788 		release_pte_page(src_page);
789 	}
790 }
791 
khugepaged_alloc_sleep(void)792 static void khugepaged_alloc_sleep(void)
793 {
794 	DEFINE_WAIT(wait);
795 
796 	add_wait_queue(&khugepaged_wait, &wait);
797 	freezable_schedule_timeout_interruptible(
798 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
799 	remove_wait_queue(&khugepaged_wait, &wait);
800 }
801 
802 static int khugepaged_node_load[MAX_NUMNODES];
803 
khugepaged_scan_abort(int nid)804 static bool khugepaged_scan_abort(int nid)
805 {
806 	int i;
807 
808 	/*
809 	 * If node_reclaim_mode is disabled, then no extra effort is made to
810 	 * allocate memory locally.
811 	 */
812 	if (!node_reclaim_mode)
813 		return false;
814 
815 	/* If there is a count for this node already, it must be acceptable */
816 	if (khugepaged_node_load[nid])
817 		return false;
818 
819 	for (i = 0; i < MAX_NUMNODES; i++) {
820 		if (!khugepaged_node_load[i])
821 			continue;
822 		if (node_distance(nid, i) > node_reclaim_distance)
823 			return true;
824 	}
825 	return false;
826 }
827 
828 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
alloc_hugepage_khugepaged_gfpmask(void)829 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
830 {
831 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
832 }
833 
834 #ifdef CONFIG_NUMA
khugepaged_find_target_node(void)835 static int khugepaged_find_target_node(void)
836 {
837 	static int last_khugepaged_target_node = NUMA_NO_NODE;
838 	int nid, target_node = 0, max_value = 0;
839 
840 	/* find first node with max normal pages hit */
841 	for (nid = 0; nid < MAX_NUMNODES; nid++)
842 		if (khugepaged_node_load[nid] > max_value) {
843 			max_value = khugepaged_node_load[nid];
844 			target_node = nid;
845 		}
846 
847 	/* do some balance if several nodes have the same hit record */
848 	if (target_node <= last_khugepaged_target_node)
849 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
850 				nid++)
851 			if (max_value == khugepaged_node_load[nid]) {
852 				target_node = nid;
853 				break;
854 			}
855 
856 	last_khugepaged_target_node = target_node;
857 	return target_node;
858 }
859 
khugepaged_prealloc_page(struct page ** hpage,bool * wait)860 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
861 {
862 	if (IS_ERR(*hpage)) {
863 		if (!*wait)
864 			return false;
865 
866 		*wait = false;
867 		*hpage = NULL;
868 		khugepaged_alloc_sleep();
869 	} else if (*hpage) {
870 		put_page(*hpage);
871 		*hpage = NULL;
872 	}
873 
874 	return true;
875 }
876 
877 static struct page *
khugepaged_alloc_page(struct page ** hpage,gfp_t gfp,int node)878 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
879 {
880 	VM_BUG_ON_PAGE(*hpage, *hpage);
881 
882 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
883 	if (unlikely(!*hpage)) {
884 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
885 		*hpage = ERR_PTR(-ENOMEM);
886 		return NULL;
887 	}
888 
889 	prep_transhuge_page(*hpage);
890 	count_vm_event(THP_COLLAPSE_ALLOC);
891 	return *hpage;
892 }
893 #else
khugepaged_find_target_node(void)894 static int khugepaged_find_target_node(void)
895 {
896 	return 0;
897 }
898 
alloc_khugepaged_hugepage(void)899 static inline struct page *alloc_khugepaged_hugepage(void)
900 {
901 	struct page *page;
902 
903 	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
904 			   HPAGE_PMD_ORDER);
905 	if (page)
906 		prep_transhuge_page(page);
907 	return page;
908 }
909 
khugepaged_alloc_hugepage(bool * wait)910 static struct page *khugepaged_alloc_hugepage(bool *wait)
911 {
912 	struct page *hpage;
913 
914 	do {
915 		hpage = alloc_khugepaged_hugepage();
916 		if (!hpage) {
917 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
918 			if (!*wait)
919 				return NULL;
920 
921 			*wait = false;
922 			khugepaged_alloc_sleep();
923 		} else
924 			count_vm_event(THP_COLLAPSE_ALLOC);
925 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
926 
927 	return hpage;
928 }
929 
khugepaged_prealloc_page(struct page ** hpage,bool * wait)930 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
931 {
932 	/*
933 	 * If the hpage allocated earlier was briefly exposed in page cache
934 	 * before collapse_file() failed, it is possible that racing lookups
935 	 * have not yet completed, and would then be unpleasantly surprised by
936 	 * finding the hpage reused for the same mapping at a different offset.
937 	 * Just release the previous allocation if there is any danger of that.
938 	 */
939 	if (*hpage && page_count(*hpage) > 1) {
940 		put_page(*hpage);
941 		*hpage = NULL;
942 	}
943 
944 	if (!*hpage)
945 		*hpage = khugepaged_alloc_hugepage(wait);
946 
947 	if (unlikely(!*hpage))
948 		return false;
949 
950 	return true;
951 }
952 
953 static struct page *
khugepaged_alloc_page(struct page ** hpage,gfp_t gfp,int node)954 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
955 {
956 	VM_BUG_ON(!*hpage);
957 
958 	return  *hpage;
959 }
960 #endif
961 
962 /*
963  * If mmap_lock temporarily dropped, revalidate vma
964  * before taking mmap_lock.
965  * Return 0 if succeeds, otherwise return none-zero
966  * value (scan code).
967  */
968 
hugepage_vma_revalidate(struct mm_struct * mm,unsigned long address,struct vm_area_struct ** vmap)969 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
970 		struct vm_area_struct **vmap)
971 {
972 	struct vm_area_struct *vma;
973 	unsigned long hstart, hend;
974 
975 	if (unlikely(khugepaged_test_exit(mm)))
976 		return SCAN_ANY_PROCESS;
977 
978 	*vmap = vma = find_vma(mm, address);
979 	if (!vma)
980 		return SCAN_VMA_NULL;
981 
982 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
983 	hend = vma->vm_end & HPAGE_PMD_MASK;
984 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
985 		return SCAN_ADDRESS_RANGE;
986 	if (!hugepage_vma_check(vma, vma->vm_flags))
987 		return SCAN_VMA_CHECK;
988 	/* Anon VMA expected */
989 	if (!vma->anon_vma || vma->vm_ops)
990 		return SCAN_VMA_CHECK;
991 	return 0;
992 }
993 
994 /*
995  * Bring missing pages in from swap, to complete THP collapse.
996  * Only done if khugepaged_scan_pmd believes it is worthwhile.
997  *
998  * Called and returns without pte mapped or spinlocks held,
999  * but with mmap_lock held to protect against vma changes.
1000  */
1001 
__collapse_huge_page_swapin(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,int referenced)1002 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
1003 					struct vm_area_struct *vma,
1004 					unsigned long haddr, pmd_t *pmd,
1005 					int referenced)
1006 {
1007 	int swapped_in = 0;
1008 	vm_fault_t ret = 0;
1009 	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
1010 
1011 	for (address = haddr; address < end; address += PAGE_SIZE) {
1012 		struct vm_fault vmf = {
1013 			.vma = vma,
1014 			.address = address,
1015 			.pgoff = linear_page_index(vma, haddr),
1016 			.flags = FAULT_FLAG_ALLOW_RETRY,
1017 			.pmd = pmd,
1018 			.vma_flags = vma->vm_flags,
1019 			.vma_page_prot = vma->vm_page_prot,
1020 		};
1021 
1022 		vmf.pte = pte_offset_map(pmd, address);
1023 		vmf.orig_pte = *vmf.pte;
1024 		if (!is_swap_pte(vmf.orig_pte)) {
1025 			pte_unmap(vmf.pte);
1026 			continue;
1027 		}
1028 		swapped_in++;
1029 		ret = do_swap_page(&vmf);
1030 
1031 		/* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1032 		if (ret & VM_FAULT_RETRY) {
1033 			mmap_read_lock(mm);
1034 			if (hugepage_vma_revalidate(mm, haddr, &vma)) {
1035 				/* vma is no longer available, don't continue to swapin */
1036 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1037 				return false;
1038 			}
1039 			/* check if the pmd is still valid */
1040 			if (mm_find_pmd(mm, haddr) != pmd) {
1041 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1042 				return false;
1043 			}
1044 		}
1045 		if (ret & VM_FAULT_ERROR) {
1046 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1047 			return false;
1048 		}
1049 	}
1050 
1051 	/* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1052 	if (swapped_in)
1053 		lru_add_drain();
1054 
1055 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1056 	return true;
1057 }
1058 
collapse_huge_page(struct mm_struct * mm,unsigned long address,struct page ** hpage,int node,int referenced,int unmapped)1059 static void collapse_huge_page(struct mm_struct *mm,
1060 				   unsigned long address,
1061 				   struct page **hpage,
1062 				   int node, int referenced, int unmapped)
1063 {
1064 	LIST_HEAD(compound_pagelist);
1065 	pmd_t *pmd, _pmd;
1066 	pte_t *pte;
1067 	pgtable_t pgtable;
1068 	struct page *new_page;
1069 	spinlock_t *pmd_ptl, *pte_ptl;
1070 	int isolated = 0, result = 0;
1071 	struct vm_area_struct *vma;
1072 	struct mmu_notifier_range range;
1073 	gfp_t gfp;
1074 
1075 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1076 
1077 	/* Only allocate from the target node */
1078 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1079 
1080 	/*
1081 	 * Before allocating the hugepage, release the mmap_lock read lock.
1082 	 * The allocation can take potentially a long time if it involves
1083 	 * sync compaction, and we do not need to hold the mmap_lock during
1084 	 * that. We will recheck the vma after taking it again in write mode.
1085 	 */
1086 	mmap_read_unlock(mm);
1087 	new_page = khugepaged_alloc_page(hpage, gfp, node);
1088 	if (!new_page) {
1089 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1090 		goto out_nolock;
1091 	}
1092 
1093 	if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1094 		result = SCAN_CGROUP_CHARGE_FAIL;
1095 		goto out_nolock;
1096 	}
1097 	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1098 
1099 	mmap_read_lock(mm);
1100 	result = hugepage_vma_revalidate(mm, address, &vma);
1101 	if (result) {
1102 		mmap_read_unlock(mm);
1103 		goto out_nolock;
1104 	}
1105 
1106 	pmd = mm_find_pmd(mm, address);
1107 	if (!pmd) {
1108 		result = SCAN_PMD_NULL;
1109 		mmap_read_unlock(mm);
1110 		goto out_nolock;
1111 	}
1112 
1113 	/*
1114 	 * __collapse_huge_page_swapin always returns with mmap_lock locked.
1115 	 * If it fails, we release mmap_lock and jump out_nolock.
1116 	 * Continuing to collapse causes inconsistency.
1117 	 */
1118 	if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
1119 						     pmd, referenced)) {
1120 		mmap_read_unlock(mm);
1121 		goto out_nolock;
1122 	}
1123 
1124 	mmap_read_unlock(mm);
1125 	/*
1126 	 * Prevent all access to pagetables with the exception of
1127 	 * gup_fast later handled by the ptep_clear_flush and the VM
1128 	 * handled by the anon_vma lock + PG_lock.
1129 	 */
1130 	mmap_write_lock(mm);
1131 	result = hugepage_vma_revalidate(mm, address, &vma);
1132 	if (result)
1133 		goto out;
1134 	/* check if the pmd is still valid */
1135 	if (mm_find_pmd(mm, address) != pmd)
1136 		goto out;
1137 
1138 	vm_write_begin(vma);
1139 	anon_vma_lock_write(vma->anon_vma);
1140 
1141 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1142 				address, address + HPAGE_PMD_SIZE);
1143 	mmu_notifier_invalidate_range_start(&range);
1144 
1145 	pte = pte_offset_map(pmd, address);
1146 	pte_ptl = pte_lockptr(mm, pmd);
1147 
1148 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1149 	/*
1150 	 * This removes any huge TLB entry from the CPU so we won't allow
1151 	 * huge and small TLB entries for the same virtual address to
1152 	 * avoid the risk of CPU bugs in that area.
1153 	 *
1154 	 * Parallel fast GUP is fine since fast GUP will back off when
1155 	 * it detects PMD is changed.
1156 	 */
1157 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1158 	spin_unlock(pmd_ptl);
1159 	mmu_notifier_invalidate_range_end(&range);
1160 	tlb_remove_table_sync_one();
1161 
1162 	spin_lock(pte_ptl);
1163 	isolated = __collapse_huge_page_isolate(vma, address, pte,
1164 			&compound_pagelist);
1165 	spin_unlock(pte_ptl);
1166 
1167 	if (unlikely(!isolated)) {
1168 		pte_unmap(pte);
1169 		spin_lock(pmd_ptl);
1170 		BUG_ON(!pmd_none(*pmd));
1171 		/*
1172 		 * We can only use set_pmd_at when establishing
1173 		 * hugepmds and never for establishing regular pmds that
1174 		 * points to regular pagetables. Use pmd_populate for that
1175 		 */
1176 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1177 		spin_unlock(pmd_ptl);
1178 		anon_vma_unlock_write(vma->anon_vma);
1179 		vm_write_end(vma);
1180 		result = SCAN_FAIL;
1181 		goto out;
1182 	}
1183 
1184 	/*
1185 	 * All pages are isolated and locked so anon_vma rmap
1186 	 * can't run anymore.
1187 	 */
1188 	anon_vma_unlock_write(vma->anon_vma);
1189 
1190 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
1191 			&compound_pagelist);
1192 	pte_unmap(pte);
1193 	__SetPageUptodate(new_page);
1194 	pgtable = pmd_pgtable(_pmd);
1195 
1196 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1197 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1198 
1199 	/*
1200 	 * spin_lock() below is not the equivalent of smp_wmb(), so
1201 	 * this is needed to avoid the copy_huge_page writes to become
1202 	 * visible after the set_pmd_at() write.
1203 	 */
1204 	smp_wmb();
1205 
1206 	spin_lock(pmd_ptl);
1207 	BUG_ON(!pmd_none(*pmd));
1208 	page_add_new_anon_rmap(new_page, vma, address, true);
1209 	lru_cache_add_inactive_or_unevictable(new_page, vma);
1210 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1211 	set_pmd_at(mm, address, pmd, _pmd);
1212 	update_mmu_cache_pmd(vma, address, pmd);
1213 	spin_unlock(pmd_ptl);
1214 	vm_write_end(vma);
1215 
1216 	*hpage = NULL;
1217 
1218 	khugepaged_pages_collapsed++;
1219 	result = SCAN_SUCCEED;
1220 out_up_write:
1221 	mmap_write_unlock(mm);
1222 out_nolock:
1223 	if (!IS_ERR_OR_NULL(*hpage))
1224 		mem_cgroup_uncharge(*hpage);
1225 	trace_mm_collapse_huge_page(mm, isolated, result);
1226 	return;
1227 out:
1228 	goto out_up_write;
1229 }
1230 
khugepaged_scan_pmd(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,struct page ** hpage)1231 static int khugepaged_scan_pmd(struct mm_struct *mm,
1232 			       struct vm_area_struct *vma,
1233 			       unsigned long address,
1234 			       struct page **hpage)
1235 {
1236 	pmd_t *pmd;
1237 	pte_t *pte, *_pte;
1238 	int ret = 0, result = 0, referenced = 0;
1239 	int none_or_zero = 0, shared = 0;
1240 	struct page *page = NULL;
1241 	unsigned long _address;
1242 	spinlock_t *ptl;
1243 	int node = NUMA_NO_NODE, unmapped = 0;
1244 	bool writable = false;
1245 
1246 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1247 
1248 	pmd = mm_find_pmd(mm, address);
1249 	if (!pmd) {
1250 		result = SCAN_PMD_NULL;
1251 		goto out;
1252 	}
1253 
1254 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1255 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1256 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1257 	     _pte++, _address += PAGE_SIZE) {
1258 		pte_t pteval = *_pte;
1259 		if (is_swap_pte(pteval)) {
1260 			if (++unmapped <= khugepaged_max_ptes_swap) {
1261 				/*
1262 				 * Always be strict with uffd-wp
1263 				 * enabled swap entries.  Please see
1264 				 * comment below for pte_uffd_wp().
1265 				 */
1266 				if (pte_swp_uffd_wp(pteval)) {
1267 					result = SCAN_PTE_UFFD_WP;
1268 					goto out_unmap;
1269 				}
1270 				continue;
1271 			} else {
1272 				result = SCAN_EXCEED_SWAP_PTE;
1273 				goto out_unmap;
1274 			}
1275 		}
1276 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1277 			if (!userfaultfd_armed(vma) &&
1278 			    ++none_or_zero <= khugepaged_max_ptes_none) {
1279 				continue;
1280 			} else {
1281 				result = SCAN_EXCEED_NONE_PTE;
1282 				goto out_unmap;
1283 			}
1284 		}
1285 		if (!pte_present(pteval)) {
1286 			result = SCAN_PTE_NON_PRESENT;
1287 			goto out_unmap;
1288 		}
1289 		if (pte_uffd_wp(pteval)) {
1290 			/*
1291 			 * Don't collapse the page if any of the small
1292 			 * PTEs are armed with uffd write protection.
1293 			 * Here we can also mark the new huge pmd as
1294 			 * write protected if any of the small ones is
1295 			 * marked but that could bring uknown
1296 			 * userfault messages that falls outside of
1297 			 * the registered range.  So, just be simple.
1298 			 */
1299 			result = SCAN_PTE_UFFD_WP;
1300 			goto out_unmap;
1301 		}
1302 		if (pte_write(pteval))
1303 			writable = true;
1304 
1305 		page = vm_normal_page(vma, _address, pteval);
1306 		if (unlikely(!page)) {
1307 			result = SCAN_PAGE_NULL;
1308 			goto out_unmap;
1309 		}
1310 
1311 		if (page_mapcount(page) > 1 &&
1312 				++shared > khugepaged_max_ptes_shared) {
1313 			result = SCAN_EXCEED_SHARED_PTE;
1314 			goto out_unmap;
1315 		}
1316 
1317 		page = compound_head(page);
1318 
1319 		/*
1320 		 * Record which node the original page is from and save this
1321 		 * information to khugepaged_node_load[].
1322 		 * Khupaged will allocate hugepage from the node has the max
1323 		 * hit record.
1324 		 */
1325 		node = page_to_nid(page);
1326 		if (khugepaged_scan_abort(node)) {
1327 			result = SCAN_SCAN_ABORT;
1328 			goto out_unmap;
1329 		}
1330 		khugepaged_node_load[node]++;
1331 		if (!PageLRU(page)) {
1332 			result = SCAN_PAGE_LRU;
1333 			goto out_unmap;
1334 		}
1335 		if (PageLocked(page)) {
1336 			result = SCAN_PAGE_LOCK;
1337 			goto out_unmap;
1338 		}
1339 		if (!PageAnon(page)) {
1340 			result = SCAN_PAGE_ANON;
1341 			goto out_unmap;
1342 		}
1343 
1344 		/*
1345 		 * Check if the page has any GUP (or other external) pins.
1346 		 *
1347 		 * Here the check is racy it may see totmal_mapcount > refcount
1348 		 * in some cases.
1349 		 * For example, one process with one forked child process.
1350 		 * The parent has the PMD split due to MADV_DONTNEED, then
1351 		 * the child is trying unmap the whole PMD, but khugepaged
1352 		 * may be scanning the parent between the child has
1353 		 * PageDoubleMap flag cleared and dec the mapcount.  So
1354 		 * khugepaged may see total_mapcount > refcount.
1355 		 *
1356 		 * But such case is ephemeral we could always retry collapse
1357 		 * later.  However it may report false positive if the page
1358 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1359 		 * will be done again later the risk seems low.
1360 		 */
1361 		if (!is_refcount_suitable(page)) {
1362 			result = SCAN_PAGE_COUNT;
1363 			goto out_unmap;
1364 		}
1365 		if (pte_young(pteval) ||
1366 		    page_is_young(page) || PageReferenced(page) ||
1367 		    mmu_notifier_test_young(vma->vm_mm, address))
1368 			referenced++;
1369 	}
1370 	if (!writable) {
1371 		result = SCAN_PAGE_RO;
1372 	} else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
1373 		result = SCAN_LACK_REFERENCED_PAGE;
1374 	} else {
1375 		result = SCAN_SUCCEED;
1376 		ret = 1;
1377 	}
1378 out_unmap:
1379 	pte_unmap_unlock(pte, ptl);
1380 	if (ret) {
1381 		node = khugepaged_find_target_node();
1382 		/* collapse_huge_page will return with the mmap_lock released */
1383 		collapse_huge_page(mm, address, hpage, node,
1384 				referenced, unmapped);
1385 	}
1386 out:
1387 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1388 				     none_or_zero, result, unmapped);
1389 	return ret;
1390 }
1391 
collect_mm_slot(struct mm_slot * mm_slot)1392 static void collect_mm_slot(struct mm_slot *mm_slot)
1393 {
1394 	struct mm_struct *mm = mm_slot->mm;
1395 
1396 	lockdep_assert_held(&khugepaged_mm_lock);
1397 
1398 	if (khugepaged_test_exit(mm)) {
1399 		/* free mm_slot */
1400 		hash_del(&mm_slot->hash);
1401 		list_del(&mm_slot->mm_node);
1402 
1403 		/*
1404 		 * Not strictly needed because the mm exited already.
1405 		 *
1406 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1407 		 */
1408 
1409 		/* khugepaged_mm_lock actually not necessary for the below */
1410 		free_mm_slot(mm_slot);
1411 		mmdrop(mm);
1412 	}
1413 }
1414 
1415 #ifdef CONFIG_SHMEM
1416 /*
1417  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1418  * khugepaged should try to collapse the page table.
1419  */
khugepaged_add_pte_mapped_thp(struct mm_struct * mm,unsigned long addr)1420 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1421 					 unsigned long addr)
1422 {
1423 	struct mm_slot *mm_slot;
1424 
1425 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1426 
1427 	spin_lock(&khugepaged_mm_lock);
1428 	mm_slot = get_mm_slot(mm);
1429 	if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1430 		mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1431 	spin_unlock(&khugepaged_mm_lock);
1432 	return 0;
1433 }
1434 
1435 /**
1436  * Try to collapse a pte-mapped THP for mm at address haddr.
1437  *
1438  * This function checks whether all the PTEs in the PMD are pointing to the
1439  * right THP. If so, retract the page table so the THP can refault in with
1440  * as pmd-mapped.
1441  */
collapse_pte_mapped_thp(struct mm_struct * mm,unsigned long addr)1442 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1443 {
1444 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1445 	struct vm_area_struct *vma = find_vma(mm, haddr);
1446 	struct page *hpage;
1447 	pte_t *start_pte, *pte;
1448 	pmd_t *pmd, _pmd;
1449 	spinlock_t *ptl;
1450 	int count = 0;
1451 	int i;
1452 	struct mmu_notifier_range range;
1453 
1454 	if (!vma || !vma->vm_file ||
1455 	    vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE)
1456 		return;
1457 
1458 	/*
1459 	 * This vm_flags may not have VM_HUGEPAGE if the page was not
1460 	 * collapsed by this mm. But we can still collapse if the page is
1461 	 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1462 	 * will not fail the vma for missing VM_HUGEPAGE
1463 	 */
1464 	if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1465 		return;
1466 
1467 	/*
1468 	 * Symmetry with retract_page_tables(): Exclude MAP_PRIVATE mappings
1469 	 * that got written to. Without this, we'd have to also lock the
1470 	 * anon_vma if one exists.
1471 	 */
1472 	if (vma->anon_vma)
1473 		return;
1474 
1475 	hpage = find_lock_page(vma->vm_file->f_mapping,
1476 			       linear_page_index(vma, haddr));
1477 	if (!hpage)
1478 		return;
1479 
1480 	if (!PageHead(hpage))
1481 		goto drop_hpage;
1482 
1483 	pmd = mm_find_pmd(mm, haddr);
1484 	if (!pmd)
1485 		goto drop_hpage;
1486 
1487 	vm_write_begin(vma);
1488 
1489 	/*
1490 	 * We need to lock the mapping so that from here on, only GUP-fast and
1491 	 * hardware page walks can access the parts of the page tables that
1492 	 * we're operating on.
1493 	 */
1494 	i_mmap_lock_write(vma->vm_file->f_mapping);
1495 
1496 	/*
1497 	 * This spinlock should be unnecessary: Nobody else should be accessing
1498 	 * the page tables under spinlock protection here, only
1499 	 * lockless_pages_from_mm() and the hardware page walker can access page
1500 	 * tables while all the high-level locks are held in write mode.
1501 	 */
1502 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1503 
1504 	/* step 1: check all mapped PTEs are to the right huge page */
1505 	for (i = 0, addr = haddr, pte = start_pte;
1506 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1507 		struct page *page;
1508 
1509 		/* empty pte, skip */
1510 		if (pte_none(*pte))
1511 			continue;
1512 
1513 		/* page swapped out, abort */
1514 		if (!pte_present(*pte))
1515 			goto abort;
1516 
1517 		page = vm_normal_page(vma, addr, *pte);
1518 
1519 		/*
1520 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1521 		 * page table, but the new page will not be a subpage of hpage.
1522 		 */
1523 		if (hpage + i != page)
1524 			goto abort;
1525 		count++;
1526 	}
1527 
1528 	/* step 2: adjust rmap */
1529 	for (i = 0, addr = haddr, pte = start_pte;
1530 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1531 		struct page *page;
1532 
1533 		if (pte_none(*pte))
1534 			continue;
1535 		page = vm_normal_page(vma, addr, *pte);
1536 		page_remove_rmap(page, false);
1537 	}
1538 
1539 	pte_unmap_unlock(start_pte, ptl);
1540 
1541 	/* step 3: set proper refcount and mm_counters. */
1542 	if (count) {
1543 		page_ref_sub(hpage, count);
1544 		add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1545 	}
1546 
1547 	/* step 4: collapse pmd */
1548 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, haddr,
1549 				haddr + HPAGE_PMD_SIZE);
1550 	mmu_notifier_invalidate_range_start(&range);
1551 	_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1552 	vm_write_end(vma);
1553 	mm_dec_nr_ptes(mm);
1554 	tlb_remove_table_sync_one();
1555 	mmu_notifier_invalidate_range_end(&range);
1556 	pte_free(mm, pmd_pgtable(_pmd));
1557 
1558 	i_mmap_unlock_write(vma->vm_file->f_mapping);
1559 
1560 drop_hpage:
1561 	unlock_page(hpage);
1562 	put_page(hpage);
1563 	return;
1564 
1565 abort:
1566 	pte_unmap_unlock(start_pte, ptl);
1567 	vm_write_end(vma);
1568 	i_mmap_unlock_write(vma->vm_file->f_mapping);
1569 	goto drop_hpage;
1570 }
1571 
khugepaged_collapse_pte_mapped_thps(struct mm_slot * mm_slot)1572 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1573 {
1574 	struct mm_struct *mm = mm_slot->mm;
1575 	int i;
1576 
1577 	if (likely(mm_slot->nr_pte_mapped_thp == 0))
1578 		return 0;
1579 
1580 	if (!mmap_write_trylock(mm))
1581 		return -EBUSY;
1582 
1583 	if (unlikely(khugepaged_test_exit(mm)))
1584 		goto out;
1585 
1586 	for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1587 		collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1588 
1589 out:
1590 	mm_slot->nr_pte_mapped_thp = 0;
1591 	mmap_write_unlock(mm);
1592 	return 0;
1593 }
1594 
retract_page_tables(struct address_space * mapping,pgoff_t pgoff)1595 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1596 {
1597 	struct vm_area_struct *vma;
1598 	struct mm_struct *mm;
1599 	unsigned long addr;
1600 	pmd_t *pmd, _pmd;
1601 
1602 	i_mmap_lock_write(mapping);
1603 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1604 		/*
1605 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1606 		 * got written to. These VMAs are likely not worth investing
1607 		 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1608 		 * later.
1609 		 *
1610 		 * Not that vma->anon_vma check is racy: it can be set up after
1611 		 * the check but before we took mmap_lock by the fault path.
1612 		 * But page lock would prevent establishing any new ptes of the
1613 		 * page, so we are safe.
1614 		 *
1615 		 * An alternative would be drop the check, but check that page
1616 		 * table is clear before calling pmdp_collapse_flush() under
1617 		 * ptl. It has higher chance to recover THP for the VMA, but
1618 		 * has higher cost too. It would also probably require locking
1619 		 * the anon_vma.
1620 		 */
1621 		if (vma->anon_vma)
1622 			continue;
1623 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1624 		if (addr & ~HPAGE_PMD_MASK)
1625 			continue;
1626 		if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1627 			continue;
1628 		mm = vma->vm_mm;
1629 		pmd = mm_find_pmd(mm, addr);
1630 		if (!pmd)
1631 			continue;
1632 		/*
1633 		 * We need exclusive mmap_lock to retract page table.
1634 		 *
1635 		 * We use trylock due to lock inversion: we need to acquire
1636 		 * mmap_lock while holding page lock. Fault path does it in
1637 		 * reverse order. Trylock is a way to avoid deadlock.
1638 		 */
1639 		if (mmap_write_trylock(mm)) {
1640 			if (!khugepaged_test_exit(mm)) {
1641 				struct mmu_notifier_range range;
1642 
1643 				vm_write_begin(vma);
1644 				mmu_notifier_range_init(&range,
1645 							MMU_NOTIFY_CLEAR, 0,
1646 							NULL, mm, addr,
1647 							addr + HPAGE_PMD_SIZE);
1648 				mmu_notifier_invalidate_range_start(&range);
1649 				/* assume page table is clear */
1650 				_pmd = pmdp_collapse_flush(vma, addr, pmd);
1651 				vm_write_end(vma);
1652 				mm_dec_nr_ptes(mm);
1653 				tlb_remove_table_sync_one();
1654 				pte_free(mm, pmd_pgtable(_pmd));
1655 				mmu_notifier_invalidate_range_end(&range);
1656 			}
1657 			mmap_write_unlock(mm);
1658 		} else {
1659 			/* Try again later */
1660 			khugepaged_add_pte_mapped_thp(mm, addr);
1661 		}
1662 	}
1663 	i_mmap_unlock_write(mapping);
1664 }
1665 
1666 /**
1667  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1668  *
1669  * Basic scheme is simple, details are more complex:
1670  *  - allocate and lock a new huge page;
1671  *  - scan page cache replacing old pages with the new one
1672  *    + swap/gup in pages if necessary;
1673  *    + fill in gaps;
1674  *    + keep old pages around in case rollback is required;
1675  *  - if replacing succeeds:
1676  *    + copy data over;
1677  *    + free old pages;
1678  *    + unlock huge page;
1679  *  - if replacing failed;
1680  *    + put all pages back and unfreeze them;
1681  *    + restore gaps in the page cache;
1682  *    + unlock and free huge page;
1683  */
collapse_file(struct mm_struct * mm,struct file * file,pgoff_t start,struct page ** hpage,int node)1684 static void collapse_file(struct mm_struct *mm,
1685 		struct file *file, pgoff_t start,
1686 		struct page **hpage, int node)
1687 {
1688 	struct address_space *mapping = file->f_mapping;
1689 	gfp_t gfp;
1690 	struct page *new_page;
1691 	pgoff_t index, end = start + HPAGE_PMD_NR;
1692 	LIST_HEAD(pagelist);
1693 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1694 	int nr_none = 0, result = SCAN_SUCCEED;
1695 	bool is_shmem = shmem_file(file);
1696 
1697 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1698 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1699 
1700 	/* Only allocate from the target node */
1701 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1702 
1703 	new_page = khugepaged_alloc_page(hpage, gfp, node);
1704 	if (!new_page) {
1705 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1706 		goto out;
1707 	}
1708 
1709 	if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1710 		result = SCAN_CGROUP_CHARGE_FAIL;
1711 		goto out;
1712 	}
1713 	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1714 
1715 	/* This will be less messy when we use multi-index entries */
1716 	do {
1717 		xas_lock_irq(&xas);
1718 		xas_create_range(&xas);
1719 		if (!xas_error(&xas))
1720 			break;
1721 		xas_unlock_irq(&xas);
1722 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1723 			result = SCAN_FAIL;
1724 			goto out;
1725 		}
1726 	} while (1);
1727 
1728 	__SetPageLocked(new_page);
1729 	if (is_shmem)
1730 		__SetPageSwapBacked(new_page);
1731 	new_page->index = start;
1732 	new_page->mapping = mapping;
1733 
1734 	/*
1735 	 * At this point the new_page is locked and not up-to-date.
1736 	 * It's safe to insert it into the page cache, because nobody would
1737 	 * be able to map it or use it in another way until we unlock it.
1738 	 */
1739 
1740 	xas_set(&xas, start);
1741 	for (index = start; index < end; index++) {
1742 		struct page *page = xas_next(&xas);
1743 
1744 		VM_BUG_ON(index != xas.xa_index);
1745 		if (is_shmem) {
1746 			if (!page) {
1747 				/*
1748 				 * Stop if extent has been truncated or
1749 				 * hole-punched, and is now completely
1750 				 * empty.
1751 				 */
1752 				if (index == start) {
1753 					if (!xas_next_entry(&xas, end - 1)) {
1754 						result = SCAN_TRUNCATED;
1755 						goto xa_locked;
1756 					}
1757 					xas_set(&xas, index);
1758 				}
1759 				if (!shmem_charge(mapping->host, 1)) {
1760 					result = SCAN_FAIL;
1761 					goto xa_locked;
1762 				}
1763 				xas_store(&xas, new_page);
1764 				nr_none++;
1765 				continue;
1766 			}
1767 
1768 			if (xa_is_value(page) || !PageUptodate(page)) {
1769 				xas_unlock_irq(&xas);
1770 				/* swap in or instantiate fallocated page */
1771 				if (shmem_getpage(mapping->host, index, &page,
1772 						  SGP_NOHUGE)) {
1773 					result = SCAN_FAIL;
1774 					goto xa_unlocked;
1775 				}
1776 			} else if (trylock_page(page)) {
1777 				get_page(page);
1778 				xas_unlock_irq(&xas);
1779 			} else {
1780 				result = SCAN_PAGE_LOCK;
1781 				goto xa_locked;
1782 			}
1783 		} else {	/* !is_shmem */
1784 			if (!page || xa_is_value(page)) {
1785 				xas_unlock_irq(&xas);
1786 				page_cache_sync_readahead(mapping, &file->f_ra,
1787 							  file, index,
1788 							  end - index);
1789 				/* drain pagevecs to help isolate_lru_page() */
1790 				lru_add_drain();
1791 				page = find_lock_page(mapping, index);
1792 				if (unlikely(page == NULL)) {
1793 					result = SCAN_FAIL;
1794 					goto xa_unlocked;
1795 				}
1796 			} else if (PageDirty(page)) {
1797 				/*
1798 				 * khugepaged only works on read-only fd,
1799 				 * so this page is dirty because it hasn't
1800 				 * been flushed since first write. There
1801 				 * won't be new dirty pages.
1802 				 *
1803 				 * Trigger async flush here and hope the
1804 				 * writeback is done when khugepaged
1805 				 * revisits this page.
1806 				 *
1807 				 * This is a one-off situation. We are not
1808 				 * forcing writeback in loop.
1809 				 */
1810 				xas_unlock_irq(&xas);
1811 				filemap_flush(mapping);
1812 				result = SCAN_FAIL;
1813 				goto xa_unlocked;
1814 			} else if (PageWriteback(page)) {
1815 				xas_unlock_irq(&xas);
1816 				result = SCAN_FAIL;
1817 				goto xa_unlocked;
1818 			} else if (trylock_page(page)) {
1819 				get_page(page);
1820 				xas_unlock_irq(&xas);
1821 			} else {
1822 				result = SCAN_PAGE_LOCK;
1823 				goto xa_locked;
1824 			}
1825 		}
1826 
1827 		/*
1828 		 * The page must be locked, so we can drop the i_pages lock
1829 		 * without racing with truncate.
1830 		 */
1831 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1832 
1833 		/* make sure the page is up to date */
1834 		if (unlikely(!PageUptodate(page))) {
1835 			result = SCAN_FAIL;
1836 			goto out_unlock;
1837 		}
1838 
1839 		/*
1840 		 * If file was truncated then extended, or hole-punched, before
1841 		 * we locked the first page, then a THP might be there already.
1842 		 */
1843 		if (PageTransCompound(page)) {
1844 			result = SCAN_PAGE_COMPOUND;
1845 			goto out_unlock;
1846 		}
1847 
1848 		if (page_mapping(page) != mapping) {
1849 			result = SCAN_TRUNCATED;
1850 			goto out_unlock;
1851 		}
1852 
1853 		if (!is_shmem && (PageDirty(page) ||
1854 				  PageWriteback(page))) {
1855 			/*
1856 			 * khugepaged only works on read-only fd, so this
1857 			 * page is dirty because it hasn't been flushed
1858 			 * since first write.
1859 			 */
1860 			result = SCAN_FAIL;
1861 			goto out_unlock;
1862 		}
1863 
1864 		if (isolate_lru_page(page)) {
1865 			result = SCAN_DEL_PAGE_LRU;
1866 			goto out_unlock;
1867 		}
1868 
1869 		if (page_has_private(page) &&
1870 		    !try_to_release_page(page, GFP_KERNEL)) {
1871 			result = SCAN_PAGE_HAS_PRIVATE;
1872 			putback_lru_page(page);
1873 			goto out_unlock;
1874 		}
1875 
1876 		if (page_mapped(page))
1877 			unmap_mapping_pages(mapping, index, 1, false);
1878 
1879 		xas_lock_irq(&xas);
1880 		xas_set(&xas, index);
1881 
1882 		VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1883 		VM_BUG_ON_PAGE(page_mapped(page), page);
1884 
1885 		/*
1886 		 * The page is expected to have page_count() == 3:
1887 		 *  - we hold a pin on it;
1888 		 *  - one reference from page cache;
1889 		 *  - one from isolate_lru_page;
1890 		 */
1891 		if (!page_ref_freeze(page, 3)) {
1892 			result = SCAN_PAGE_COUNT;
1893 			xas_unlock_irq(&xas);
1894 			putback_lru_page(page);
1895 			goto out_unlock;
1896 		}
1897 
1898 		/*
1899 		 * Add the page to the list to be able to undo the collapse if
1900 		 * something go wrong.
1901 		 */
1902 		list_add_tail(&page->lru, &pagelist);
1903 
1904 		/* Finally, replace with the new page. */
1905 		xas_store(&xas, new_page);
1906 		continue;
1907 out_unlock:
1908 		unlock_page(page);
1909 		put_page(page);
1910 		goto xa_unlocked;
1911 	}
1912 
1913 	if (is_shmem)
1914 		__inc_node_page_state(new_page, NR_SHMEM_THPS);
1915 	else {
1916 		__inc_node_page_state(new_page, NR_FILE_THPS);
1917 		filemap_nr_thps_inc(mapping);
1918 		/*
1919 		 * Paired with smp_mb() in do_dentry_open() to ensure
1920 		 * i_writecount is up to date and the update to nr_thps is
1921 		 * visible. Ensures the page cache will be truncated if the
1922 		 * file is opened writable.
1923 		*/
1924 		smp_mb();
1925 		if (inode_is_open_for_write(mapping->host)) {
1926 			result = SCAN_FAIL;
1927 			__dec_node_page_state(new_page, NR_FILE_THPS);
1928 			filemap_nr_thps_dec(mapping);
1929 			goto xa_locked;
1930 		}
1931 	}
1932 
1933 	if (nr_none) {
1934 		__mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1935 		if (is_shmem)
1936 			__mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1937 	}
1938 
1939 xa_locked:
1940 	xas_unlock_irq(&xas);
1941 xa_unlocked:
1942 
1943 	if (result == SCAN_SUCCEED) {
1944 		struct page *page, *tmp;
1945 
1946 		/*
1947 		 * Replacing old pages with new one has succeeded, now we
1948 		 * need to copy the content and free the old pages.
1949 		 */
1950 		index = start;
1951 		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1952 			while (index < page->index) {
1953 				clear_highpage(new_page + (index % HPAGE_PMD_NR));
1954 				index++;
1955 			}
1956 			copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1957 					page);
1958 			list_del(&page->lru);
1959 			page->mapping = NULL;
1960 			page_ref_unfreeze(page, 1);
1961 			ClearPageActive(page);
1962 			ClearPageUnevictable(page);
1963 			unlock_page(page);
1964 			put_page(page);
1965 			index++;
1966 		}
1967 		while (index < end) {
1968 			clear_highpage(new_page + (index % HPAGE_PMD_NR));
1969 			index++;
1970 		}
1971 
1972 		SetPageUptodate(new_page);
1973 		page_ref_add(new_page, HPAGE_PMD_NR - 1);
1974 		if (is_shmem)
1975 			set_page_dirty(new_page);
1976 		lru_cache_add(new_page);
1977 
1978 		/*
1979 		 * Remove pte page tables, so we can re-fault the page as huge.
1980 		 */
1981 		retract_page_tables(mapping, start);
1982 		*hpage = NULL;
1983 
1984 		khugepaged_pages_collapsed++;
1985 	} else {
1986 		struct page *page;
1987 
1988 		/* Something went wrong: roll back page cache changes */
1989 		xas_lock_irq(&xas);
1990 		mapping->nrpages -= nr_none;
1991 
1992 		if (is_shmem)
1993 			shmem_uncharge(mapping->host, nr_none);
1994 
1995 		xas_set(&xas, start);
1996 		xas_for_each(&xas, page, end - 1) {
1997 			page = list_first_entry_or_null(&pagelist,
1998 					struct page, lru);
1999 			if (!page || xas.xa_index < page->index) {
2000 				if (!nr_none)
2001 					break;
2002 				nr_none--;
2003 				/* Put holes back where they were */
2004 				xas_store(&xas, NULL);
2005 				continue;
2006 			}
2007 
2008 			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2009 
2010 			/* Unfreeze the page. */
2011 			list_del(&page->lru);
2012 			page_ref_unfreeze(page, 2);
2013 			xas_store(&xas, page);
2014 			xas_pause(&xas);
2015 			xas_unlock_irq(&xas);
2016 			unlock_page(page);
2017 			putback_lru_page(page);
2018 			xas_lock_irq(&xas);
2019 		}
2020 		VM_BUG_ON(nr_none);
2021 		xas_unlock_irq(&xas);
2022 
2023 		new_page->mapping = NULL;
2024 	}
2025 
2026 	unlock_page(new_page);
2027 out:
2028 	VM_BUG_ON(!list_empty(&pagelist));
2029 	if (!IS_ERR_OR_NULL(*hpage))
2030 		mem_cgroup_uncharge(*hpage);
2031 	/* TODO: tracepoints */
2032 }
2033 
khugepaged_scan_file(struct mm_struct * mm,struct file * file,pgoff_t start,struct page ** hpage)2034 static void khugepaged_scan_file(struct mm_struct *mm,
2035 		struct file *file, pgoff_t start, struct page **hpage)
2036 {
2037 	struct page *page = NULL;
2038 	struct address_space *mapping = file->f_mapping;
2039 	XA_STATE(xas, &mapping->i_pages, start);
2040 	int present, swap;
2041 	int node = NUMA_NO_NODE;
2042 	int result = SCAN_SUCCEED;
2043 
2044 	present = 0;
2045 	swap = 0;
2046 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2047 	rcu_read_lock();
2048 	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2049 		if (xas_retry(&xas, page))
2050 			continue;
2051 
2052 		if (xa_is_value(page)) {
2053 			if (++swap > khugepaged_max_ptes_swap) {
2054 				result = SCAN_EXCEED_SWAP_PTE;
2055 				break;
2056 			}
2057 			continue;
2058 		}
2059 
2060 		if (PageTransCompound(page)) {
2061 			result = SCAN_PAGE_COMPOUND;
2062 			break;
2063 		}
2064 
2065 		node = page_to_nid(page);
2066 		if (khugepaged_scan_abort(node)) {
2067 			result = SCAN_SCAN_ABORT;
2068 			break;
2069 		}
2070 		khugepaged_node_load[node]++;
2071 
2072 		if (!PageLRU(page)) {
2073 			result = SCAN_PAGE_LRU;
2074 			break;
2075 		}
2076 
2077 		if (page_count(page) !=
2078 		    1 + page_mapcount(page) + page_has_private(page)) {
2079 			result = SCAN_PAGE_COUNT;
2080 			break;
2081 		}
2082 
2083 		/*
2084 		 * We probably should check if the page is referenced here, but
2085 		 * nobody would transfer pte_young() to PageReferenced() for us.
2086 		 * And rmap walk here is just too costly...
2087 		 */
2088 
2089 		present++;
2090 
2091 		if (need_resched()) {
2092 			xas_pause(&xas);
2093 			cond_resched_rcu();
2094 		}
2095 	}
2096 	rcu_read_unlock();
2097 
2098 	if (result == SCAN_SUCCEED) {
2099 		if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2100 			result = SCAN_EXCEED_NONE_PTE;
2101 		} else {
2102 			node = khugepaged_find_target_node();
2103 			collapse_file(mm, file, start, hpage, node);
2104 		}
2105 	}
2106 
2107 	/* TODO: tracepoints */
2108 }
2109 #else
khugepaged_scan_file(struct mm_struct * mm,struct file * file,pgoff_t start,struct page ** hpage)2110 static void khugepaged_scan_file(struct mm_struct *mm,
2111 		struct file *file, pgoff_t start, struct page **hpage)
2112 {
2113 	BUILD_BUG();
2114 }
2115 
khugepaged_collapse_pte_mapped_thps(struct mm_slot * mm_slot)2116 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
2117 {
2118 	return 0;
2119 }
2120 #endif
2121 
khugepaged_scan_mm_slot(unsigned int pages,struct page ** hpage)2122 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2123 					    struct page **hpage)
2124 	__releases(&khugepaged_mm_lock)
2125 	__acquires(&khugepaged_mm_lock)
2126 {
2127 	struct mm_slot *mm_slot;
2128 	struct mm_struct *mm;
2129 	struct vm_area_struct *vma;
2130 	int progress = 0;
2131 
2132 	VM_BUG_ON(!pages);
2133 	lockdep_assert_held(&khugepaged_mm_lock);
2134 
2135 	if (khugepaged_scan.mm_slot)
2136 		mm_slot = khugepaged_scan.mm_slot;
2137 	else {
2138 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2139 				     struct mm_slot, mm_node);
2140 		khugepaged_scan.address = 0;
2141 		khugepaged_scan.mm_slot = mm_slot;
2142 	}
2143 	spin_unlock(&khugepaged_mm_lock);
2144 	khugepaged_collapse_pte_mapped_thps(mm_slot);
2145 
2146 	mm = mm_slot->mm;
2147 	/*
2148 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2149 	 * the next mm on the list.
2150 	 */
2151 	vma = NULL;
2152 	if (unlikely(!mmap_read_trylock(mm)))
2153 		goto breakouterloop_mmap_lock;
2154 	if (likely(!khugepaged_test_exit(mm)))
2155 		vma = find_vma(mm, khugepaged_scan.address);
2156 
2157 	progress++;
2158 	for (; vma; vma = vma->vm_next) {
2159 		unsigned long hstart, hend;
2160 
2161 		cond_resched();
2162 		if (unlikely(khugepaged_test_exit(mm))) {
2163 			progress++;
2164 			break;
2165 		}
2166 		if (!hugepage_vma_check(vma, vma->vm_flags)) {
2167 skip:
2168 			progress++;
2169 			continue;
2170 		}
2171 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2172 		hend = vma->vm_end & HPAGE_PMD_MASK;
2173 		if (hstart >= hend)
2174 			goto skip;
2175 		if (khugepaged_scan.address > hend)
2176 			goto skip;
2177 		if (khugepaged_scan.address < hstart)
2178 			khugepaged_scan.address = hstart;
2179 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2180 		if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
2181 			goto skip;
2182 
2183 		while (khugepaged_scan.address < hend) {
2184 			int ret;
2185 			cond_resched();
2186 			if (unlikely(khugepaged_test_exit(mm)))
2187 				goto breakouterloop;
2188 
2189 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2190 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2191 				  hend);
2192 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2193 				struct file *file = get_file(vma->vm_file);
2194 				pgoff_t pgoff = linear_page_index(vma,
2195 						khugepaged_scan.address);
2196 
2197 				mmap_read_unlock(mm);
2198 				ret = 1;
2199 				khugepaged_scan_file(mm, file, pgoff, hpage);
2200 				fput(file);
2201 			} else {
2202 				ret = khugepaged_scan_pmd(mm, vma,
2203 						khugepaged_scan.address,
2204 						hpage);
2205 			}
2206 			/* move to next address */
2207 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2208 			progress += HPAGE_PMD_NR;
2209 			if (ret)
2210 				/* we released mmap_lock so break loop */
2211 				goto breakouterloop_mmap_lock;
2212 			if (progress >= pages)
2213 				goto breakouterloop;
2214 		}
2215 	}
2216 breakouterloop:
2217 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2218 breakouterloop_mmap_lock:
2219 
2220 	spin_lock(&khugepaged_mm_lock);
2221 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2222 	/*
2223 	 * Release the current mm_slot if this mm is about to die, or
2224 	 * if we scanned all vmas of this mm.
2225 	 */
2226 	if (khugepaged_test_exit(mm) || !vma) {
2227 		/*
2228 		 * Make sure that if mm_users is reaching zero while
2229 		 * khugepaged runs here, khugepaged_exit will find
2230 		 * mm_slot not pointing to the exiting mm.
2231 		 */
2232 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2233 			khugepaged_scan.mm_slot = list_entry(
2234 				mm_slot->mm_node.next,
2235 				struct mm_slot, mm_node);
2236 			khugepaged_scan.address = 0;
2237 		} else {
2238 			khugepaged_scan.mm_slot = NULL;
2239 			khugepaged_full_scans++;
2240 		}
2241 
2242 		collect_mm_slot(mm_slot);
2243 	}
2244 
2245 	return progress;
2246 }
2247 
khugepaged_has_work(void)2248 static int khugepaged_has_work(void)
2249 {
2250 	return !list_empty(&khugepaged_scan.mm_head) &&
2251 		khugepaged_enabled();
2252 }
2253 
khugepaged_wait_event(void)2254 static int khugepaged_wait_event(void)
2255 {
2256 	return !list_empty(&khugepaged_scan.mm_head) ||
2257 		kthread_should_stop();
2258 }
2259 
khugepaged_do_scan(void)2260 static void khugepaged_do_scan(void)
2261 {
2262 	struct page *hpage = NULL;
2263 	unsigned int progress = 0, pass_through_head = 0;
2264 	unsigned int pages = khugepaged_pages_to_scan;
2265 	bool wait = true;
2266 
2267 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2268 
2269 	lru_add_drain_all();
2270 
2271 	while (progress < pages) {
2272 		if (!khugepaged_prealloc_page(&hpage, &wait))
2273 			break;
2274 
2275 		cond_resched();
2276 
2277 		if (unlikely(kthread_should_stop() || try_to_freeze()))
2278 			break;
2279 
2280 		spin_lock(&khugepaged_mm_lock);
2281 		if (!khugepaged_scan.mm_slot)
2282 			pass_through_head++;
2283 		if (khugepaged_has_work() &&
2284 		    pass_through_head < 2)
2285 			progress += khugepaged_scan_mm_slot(pages - progress,
2286 							    &hpage);
2287 		else
2288 			progress = pages;
2289 		spin_unlock(&khugepaged_mm_lock);
2290 	}
2291 
2292 	if (!IS_ERR_OR_NULL(hpage))
2293 		put_page(hpage);
2294 }
2295 
khugepaged_should_wakeup(void)2296 static bool khugepaged_should_wakeup(void)
2297 {
2298 	return kthread_should_stop() ||
2299 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2300 }
2301 
khugepaged_wait_work(void)2302 static void khugepaged_wait_work(void)
2303 {
2304 	if (khugepaged_has_work()) {
2305 		const unsigned long scan_sleep_jiffies =
2306 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2307 
2308 		if (!scan_sleep_jiffies)
2309 			return;
2310 
2311 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2312 		wait_event_freezable_timeout(khugepaged_wait,
2313 					     khugepaged_should_wakeup(),
2314 					     scan_sleep_jiffies);
2315 		return;
2316 	}
2317 
2318 	if (khugepaged_enabled())
2319 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2320 }
2321 
khugepaged(void * none)2322 static int khugepaged(void *none)
2323 {
2324 	struct mm_slot *mm_slot;
2325 
2326 	set_freezable();
2327 	set_user_nice(current, MAX_NICE);
2328 
2329 	while (!kthread_should_stop()) {
2330 		khugepaged_do_scan();
2331 		khugepaged_wait_work();
2332 	}
2333 
2334 	spin_lock(&khugepaged_mm_lock);
2335 	mm_slot = khugepaged_scan.mm_slot;
2336 	khugepaged_scan.mm_slot = NULL;
2337 	if (mm_slot)
2338 		collect_mm_slot(mm_slot);
2339 	spin_unlock(&khugepaged_mm_lock);
2340 	return 0;
2341 }
2342 
set_recommended_min_free_kbytes(void)2343 static void set_recommended_min_free_kbytes(void)
2344 {
2345 	struct zone *zone;
2346 	int nr_zones = 0;
2347 	unsigned long recommended_min;
2348 
2349 	for_each_populated_zone(zone) {
2350 		/*
2351 		 * We don't need to worry about fragmentation of
2352 		 * ZONE_MOVABLE since it only has movable pages.
2353 		 */
2354 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2355 			continue;
2356 
2357 		nr_zones++;
2358 	}
2359 
2360 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2361 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2362 
2363 	/*
2364 	 * Make sure that on average at least two pageblocks are almost free
2365 	 * of another type, one for a migratetype to fall back to and a
2366 	 * second to avoid subsequent fallbacks of other types There are 3
2367 	 * MIGRATE_TYPES we care about.
2368 	 */
2369 	recommended_min += pageblock_nr_pages * nr_zones *
2370 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2371 
2372 	/* don't ever allow to reserve more than 5% of the lowmem */
2373 	recommended_min = min(recommended_min,
2374 			      (unsigned long) nr_free_buffer_pages() / 20);
2375 	recommended_min <<= (PAGE_SHIFT-10);
2376 
2377 	if (recommended_min > min_free_kbytes) {
2378 		if (user_min_free_kbytes >= 0)
2379 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2380 				min_free_kbytes, recommended_min);
2381 
2382 		min_free_kbytes = recommended_min;
2383 	}
2384 	setup_per_zone_wmarks();
2385 }
2386 
start_stop_khugepaged(void)2387 int start_stop_khugepaged(void)
2388 {
2389 	int err = 0;
2390 
2391 	mutex_lock(&khugepaged_mutex);
2392 	if (khugepaged_enabled()) {
2393 		if (!khugepaged_thread)
2394 			khugepaged_thread = kthread_run(khugepaged, NULL,
2395 							"khugepaged");
2396 		if (IS_ERR(khugepaged_thread)) {
2397 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2398 			err = PTR_ERR(khugepaged_thread);
2399 			khugepaged_thread = NULL;
2400 			goto fail;
2401 		}
2402 
2403 		if (!list_empty(&khugepaged_scan.mm_head))
2404 			wake_up_interruptible(&khugepaged_wait);
2405 
2406 		set_recommended_min_free_kbytes();
2407 	} else if (khugepaged_thread) {
2408 		kthread_stop(khugepaged_thread);
2409 		khugepaged_thread = NULL;
2410 	}
2411 fail:
2412 	mutex_unlock(&khugepaged_mutex);
2413 	return err;
2414 }
2415 
khugepaged_min_free_kbytes_update(void)2416 void khugepaged_min_free_kbytes_update(void)
2417 {
2418 	mutex_lock(&khugepaged_mutex);
2419 	if (khugepaged_enabled() && khugepaged_thread)
2420 		set_recommended_min_free_kbytes();
2421 	mutex_unlock(&khugepaged_mutex);
2422 }
2423