xref: /OK3568_Linux_fs/kernel/mm/hugetlb.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37 
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/page_owner.h>
43 #include "internal.h"
44 
45 int hugetlb_max_hstate __read_mostly;
46 unsigned int default_hstate_idx;
47 struct hstate hstates[HUGE_MAX_HSTATE];
48 
49 #ifdef CONFIG_CMA
50 static struct cma *hugetlb_cma[MAX_NUMNODES];
51 #endif
52 static unsigned long hugetlb_cma_size __initdata;
53 
54 /*
55  * Minimum page order among possible hugepage sizes, set to a proper value
56  * at boot time.
57  */
58 static unsigned int minimum_order __read_mostly = UINT_MAX;
59 
60 __initdata LIST_HEAD(huge_boot_pages);
61 
62 /* for command line parsing */
63 static struct hstate * __initdata parsed_hstate;
64 static unsigned long __initdata default_hstate_max_huge_pages;
65 static bool __initdata parsed_valid_hugepagesz = true;
66 static bool __initdata parsed_default_hugepagesz;
67 
68 /*
69  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
70  * free_huge_pages, and surplus_huge_pages.
71  */
72 DEFINE_SPINLOCK(hugetlb_lock);
73 
74 /*
75  * Serializes faults on the same logical page.  This is used to
76  * prevent spurious OOMs when the hugepage pool is fully utilized.
77  */
78 static int num_fault_mutexes;
79 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
80 
PageHugeFreed(struct page * head)81 static inline bool PageHugeFreed(struct page *head)
82 {
83 	return page_private(head + 4) == -1UL;
84 }
85 
SetPageHugeFreed(struct page * head)86 static inline void SetPageHugeFreed(struct page *head)
87 {
88 	set_page_private(head + 4, -1UL);
89 }
90 
ClearPageHugeFreed(struct page * head)91 static inline void ClearPageHugeFreed(struct page *head)
92 {
93 	set_page_private(head + 4, 0);
94 }
95 
96 /* Forward declaration */
97 static int hugetlb_acct_memory(struct hstate *h, long delta);
98 
unlock_or_release_subpool(struct hugepage_subpool * spool)99 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
100 {
101 	bool free = (spool->count == 0) && (spool->used_hpages == 0);
102 
103 	spin_unlock(&spool->lock);
104 
105 	/* If no pages are used, and no other handles to the subpool
106 	 * remain, give up any reservations based on minimum size and
107 	 * free the subpool */
108 	if (free) {
109 		if (spool->min_hpages != -1)
110 			hugetlb_acct_memory(spool->hstate,
111 						-spool->min_hpages);
112 		kfree(spool);
113 	}
114 }
115 
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)116 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
117 						long min_hpages)
118 {
119 	struct hugepage_subpool *spool;
120 
121 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
122 	if (!spool)
123 		return NULL;
124 
125 	spin_lock_init(&spool->lock);
126 	spool->count = 1;
127 	spool->max_hpages = max_hpages;
128 	spool->hstate = h;
129 	spool->min_hpages = min_hpages;
130 
131 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
132 		kfree(spool);
133 		return NULL;
134 	}
135 	spool->rsv_hpages = min_hpages;
136 
137 	return spool;
138 }
139 
hugepage_put_subpool(struct hugepage_subpool * spool)140 void hugepage_put_subpool(struct hugepage_subpool *spool)
141 {
142 	spin_lock(&spool->lock);
143 	BUG_ON(!spool->count);
144 	spool->count--;
145 	unlock_or_release_subpool(spool);
146 }
147 
148 /*
149  * Subpool accounting for allocating and reserving pages.
150  * Return -ENOMEM if there are not enough resources to satisfy the
151  * request.  Otherwise, return the number of pages by which the
152  * global pools must be adjusted (upward).  The returned value may
153  * only be different than the passed value (delta) in the case where
154  * a subpool minimum size must be maintained.
155  */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)156 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
157 				      long delta)
158 {
159 	long ret = delta;
160 
161 	if (!spool)
162 		return ret;
163 
164 	spin_lock(&spool->lock);
165 
166 	if (spool->max_hpages != -1) {		/* maximum size accounting */
167 		if ((spool->used_hpages + delta) <= spool->max_hpages)
168 			spool->used_hpages += delta;
169 		else {
170 			ret = -ENOMEM;
171 			goto unlock_ret;
172 		}
173 	}
174 
175 	/* minimum size accounting */
176 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
177 		if (delta > spool->rsv_hpages) {
178 			/*
179 			 * Asking for more reserves than those already taken on
180 			 * behalf of subpool.  Return difference.
181 			 */
182 			ret = delta - spool->rsv_hpages;
183 			spool->rsv_hpages = 0;
184 		} else {
185 			ret = 0;	/* reserves already accounted for */
186 			spool->rsv_hpages -= delta;
187 		}
188 	}
189 
190 unlock_ret:
191 	spin_unlock(&spool->lock);
192 	return ret;
193 }
194 
195 /*
196  * Subpool accounting for freeing and unreserving pages.
197  * Return the number of global page reservations that must be dropped.
198  * The return value may only be different than the passed value (delta)
199  * in the case where a subpool minimum size must be maintained.
200  */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)201 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
202 				       long delta)
203 {
204 	long ret = delta;
205 
206 	if (!spool)
207 		return delta;
208 
209 	spin_lock(&spool->lock);
210 
211 	if (spool->max_hpages != -1)		/* maximum size accounting */
212 		spool->used_hpages -= delta;
213 
214 	 /* minimum size accounting */
215 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
216 		if (spool->rsv_hpages + delta <= spool->min_hpages)
217 			ret = 0;
218 		else
219 			ret = spool->rsv_hpages + delta - spool->min_hpages;
220 
221 		spool->rsv_hpages += delta;
222 		if (spool->rsv_hpages > spool->min_hpages)
223 			spool->rsv_hpages = spool->min_hpages;
224 	}
225 
226 	/*
227 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
228 	 * quota reference, free it now.
229 	 */
230 	unlock_or_release_subpool(spool);
231 
232 	return ret;
233 }
234 
subpool_inode(struct inode * inode)235 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
236 {
237 	return HUGETLBFS_SB(inode->i_sb)->spool;
238 }
239 
subpool_vma(struct vm_area_struct * vma)240 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
241 {
242 	return subpool_inode(file_inode(vma->vm_file));
243 }
244 
245 /* Helper that removes a struct file_region from the resv_map cache and returns
246  * it for use.
247  */
248 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)249 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
250 {
251 	struct file_region *nrg = NULL;
252 
253 	VM_BUG_ON(resv->region_cache_count <= 0);
254 
255 	resv->region_cache_count--;
256 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
257 	list_del(&nrg->link);
258 
259 	nrg->from = from;
260 	nrg->to = to;
261 
262 	return nrg;
263 }
264 
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)265 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
266 					      struct file_region *rg)
267 {
268 #ifdef CONFIG_CGROUP_HUGETLB
269 	nrg->reservation_counter = rg->reservation_counter;
270 	nrg->css = rg->css;
271 	if (rg->css)
272 		css_get(rg->css);
273 #endif
274 }
275 
276 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)277 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
278 						struct hstate *h,
279 						struct resv_map *resv,
280 						struct file_region *nrg)
281 {
282 #ifdef CONFIG_CGROUP_HUGETLB
283 	if (h_cg) {
284 		nrg->reservation_counter =
285 			&h_cg->rsvd_hugepage[hstate_index(h)];
286 		nrg->css = &h_cg->css;
287 		/*
288 		 * The caller will hold exactly one h_cg->css reference for the
289 		 * whole contiguous reservation region. But this area might be
290 		 * scattered when there are already some file_regions reside in
291 		 * it. As a result, many file_regions may share only one css
292 		 * reference. In order to ensure that one file_region must hold
293 		 * exactly one h_cg->css reference, we should do css_get for
294 		 * each file_region and leave the reference held by caller
295 		 * untouched.
296 		 */
297 		css_get(&h_cg->css);
298 		if (!resv->pages_per_hpage)
299 			resv->pages_per_hpage = pages_per_huge_page(h);
300 		/* pages_per_hpage should be the same for all entries in
301 		 * a resv_map.
302 		 */
303 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
304 	} else {
305 		nrg->reservation_counter = NULL;
306 		nrg->css = NULL;
307 	}
308 #endif
309 }
310 
put_uncharge_info(struct file_region * rg)311 static void put_uncharge_info(struct file_region *rg)
312 {
313 #ifdef CONFIG_CGROUP_HUGETLB
314 	if (rg->css)
315 		css_put(rg->css);
316 #endif
317 }
318 
has_same_uncharge_info(struct file_region * rg,struct file_region * org)319 static bool has_same_uncharge_info(struct file_region *rg,
320 				   struct file_region *org)
321 {
322 #ifdef CONFIG_CGROUP_HUGETLB
323 	return rg && org &&
324 	       rg->reservation_counter == org->reservation_counter &&
325 	       rg->css == org->css;
326 
327 #else
328 	return true;
329 #endif
330 }
331 
coalesce_file_region(struct resv_map * resv,struct file_region * rg)332 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
333 {
334 	struct file_region *nrg = NULL, *prg = NULL;
335 
336 	prg = list_prev_entry(rg, link);
337 	if (&prg->link != &resv->regions && prg->to == rg->from &&
338 	    has_same_uncharge_info(prg, rg)) {
339 		prg->to = rg->to;
340 
341 		list_del(&rg->link);
342 		put_uncharge_info(rg);
343 		kfree(rg);
344 
345 		rg = prg;
346 	}
347 
348 	nrg = list_next_entry(rg, link);
349 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
350 	    has_same_uncharge_info(nrg, rg)) {
351 		nrg->from = rg->from;
352 
353 		list_del(&rg->link);
354 		put_uncharge_info(rg);
355 		kfree(rg);
356 	}
357 }
358 
359 /*
360  * Must be called with resv->lock held.
361  *
362  * Calling this with regions_needed != NULL will count the number of pages
363  * to be added but will not modify the linked list. And regions_needed will
364  * indicate the number of file_regions needed in the cache to carry out to add
365  * the regions for this range.
366  */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)367 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
368 				     struct hugetlb_cgroup *h_cg,
369 				     struct hstate *h, long *regions_needed)
370 {
371 	long add = 0;
372 	struct list_head *head = &resv->regions;
373 	long last_accounted_offset = f;
374 	struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
375 
376 	if (regions_needed)
377 		*regions_needed = 0;
378 
379 	/* In this loop, we essentially handle an entry for the range
380 	 * [last_accounted_offset, rg->from), at every iteration, with some
381 	 * bounds checking.
382 	 */
383 	list_for_each_entry_safe(rg, trg, head, link) {
384 		/* Skip irrelevant regions that start before our range. */
385 		if (rg->from < f) {
386 			/* If this region ends after the last accounted offset,
387 			 * then we need to update last_accounted_offset.
388 			 */
389 			if (rg->to > last_accounted_offset)
390 				last_accounted_offset = rg->to;
391 			continue;
392 		}
393 
394 		/* When we find a region that starts beyond our range, we've
395 		 * finished.
396 		 */
397 		if (rg->from > t)
398 			break;
399 
400 		/* Add an entry for last_accounted_offset -> rg->from, and
401 		 * update last_accounted_offset.
402 		 */
403 		if (rg->from > last_accounted_offset) {
404 			add += rg->from - last_accounted_offset;
405 			if (!regions_needed) {
406 				nrg = get_file_region_entry_from_cache(
407 					resv, last_accounted_offset, rg->from);
408 				record_hugetlb_cgroup_uncharge_info(h_cg, h,
409 								    resv, nrg);
410 				list_add(&nrg->link, rg->link.prev);
411 				coalesce_file_region(resv, nrg);
412 			} else
413 				*regions_needed += 1;
414 		}
415 
416 		last_accounted_offset = rg->to;
417 	}
418 
419 	/* Handle the case where our range extends beyond
420 	 * last_accounted_offset.
421 	 */
422 	if (last_accounted_offset < t) {
423 		add += t - last_accounted_offset;
424 		if (!regions_needed) {
425 			nrg = get_file_region_entry_from_cache(
426 				resv, last_accounted_offset, t);
427 			record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
428 			list_add(&nrg->link, rg->link.prev);
429 			coalesce_file_region(resv, nrg);
430 		} else
431 			*regions_needed += 1;
432 	}
433 
434 	VM_BUG_ON(add < 0);
435 	return add;
436 }
437 
438 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
439  */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)440 static int allocate_file_region_entries(struct resv_map *resv,
441 					int regions_needed)
442 	__must_hold(&resv->lock)
443 {
444 	struct list_head allocated_regions;
445 	int to_allocate = 0, i = 0;
446 	struct file_region *trg = NULL, *rg = NULL;
447 
448 	VM_BUG_ON(regions_needed < 0);
449 
450 	INIT_LIST_HEAD(&allocated_regions);
451 
452 	/*
453 	 * Check for sufficient descriptors in the cache to accommodate
454 	 * the number of in progress add operations plus regions_needed.
455 	 *
456 	 * This is a while loop because when we drop the lock, some other call
457 	 * to region_add or region_del may have consumed some region_entries,
458 	 * so we keep looping here until we finally have enough entries for
459 	 * (adds_in_progress + regions_needed).
460 	 */
461 	while (resv->region_cache_count <
462 	       (resv->adds_in_progress + regions_needed)) {
463 		to_allocate = resv->adds_in_progress + regions_needed -
464 			      resv->region_cache_count;
465 
466 		/* At this point, we should have enough entries in the cache
467 		 * for all the existings adds_in_progress. We should only be
468 		 * needing to allocate for regions_needed.
469 		 */
470 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
471 
472 		spin_unlock(&resv->lock);
473 		for (i = 0; i < to_allocate; i++) {
474 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
475 			if (!trg)
476 				goto out_of_memory;
477 			list_add(&trg->link, &allocated_regions);
478 		}
479 
480 		spin_lock(&resv->lock);
481 
482 		list_splice(&allocated_regions, &resv->region_cache);
483 		resv->region_cache_count += to_allocate;
484 	}
485 
486 	return 0;
487 
488 out_of_memory:
489 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
490 		list_del(&rg->link);
491 		kfree(rg);
492 	}
493 	return -ENOMEM;
494 }
495 
496 /*
497  * Add the huge page range represented by [f, t) to the reserve
498  * map.  Regions will be taken from the cache to fill in this range.
499  * Sufficient regions should exist in the cache due to the previous
500  * call to region_chg with the same range, but in some cases the cache will not
501  * have sufficient entries due to races with other code doing region_add or
502  * region_del.  The extra needed entries will be allocated.
503  *
504  * regions_needed is the out value provided by a previous call to region_chg.
505  *
506  * Return the number of new huge pages added to the map.  This number is greater
507  * than or equal to zero.  If file_region entries needed to be allocated for
508  * this operation and we were not able to allocate, it returns -ENOMEM.
509  * region_add of regions of length 1 never allocate file_regions and cannot
510  * fail; region_chg will always allocate at least 1 entry and a region_add for
511  * 1 page will only require at most 1 entry.
512  */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)513 static long region_add(struct resv_map *resv, long f, long t,
514 		       long in_regions_needed, struct hstate *h,
515 		       struct hugetlb_cgroup *h_cg)
516 {
517 	long add = 0, actual_regions_needed = 0;
518 
519 	spin_lock(&resv->lock);
520 retry:
521 
522 	/* Count how many regions are actually needed to execute this add. */
523 	add_reservation_in_range(resv, f, t, NULL, NULL,
524 				 &actual_regions_needed);
525 
526 	/*
527 	 * Check for sufficient descriptors in the cache to accommodate
528 	 * this add operation. Note that actual_regions_needed may be greater
529 	 * than in_regions_needed, as the resv_map may have been modified since
530 	 * the region_chg call. In this case, we need to make sure that we
531 	 * allocate extra entries, such that we have enough for all the
532 	 * existing adds_in_progress, plus the excess needed for this
533 	 * operation.
534 	 */
535 	if (actual_regions_needed > in_regions_needed &&
536 	    resv->region_cache_count <
537 		    resv->adds_in_progress +
538 			    (actual_regions_needed - in_regions_needed)) {
539 		/* region_add operation of range 1 should never need to
540 		 * allocate file_region entries.
541 		 */
542 		VM_BUG_ON(t - f <= 1);
543 
544 		if (allocate_file_region_entries(
545 			    resv, actual_regions_needed - in_regions_needed)) {
546 			return -ENOMEM;
547 		}
548 
549 		goto retry;
550 	}
551 
552 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
553 
554 	resv->adds_in_progress -= in_regions_needed;
555 
556 	spin_unlock(&resv->lock);
557 	VM_BUG_ON(add < 0);
558 	return add;
559 }
560 
561 /*
562  * Examine the existing reserve map and determine how many
563  * huge pages in the specified range [f, t) are NOT currently
564  * represented.  This routine is called before a subsequent
565  * call to region_add that will actually modify the reserve
566  * map to add the specified range [f, t).  region_chg does
567  * not change the number of huge pages represented by the
568  * map.  A number of new file_region structures is added to the cache as a
569  * placeholder, for the subsequent region_add call to use. At least 1
570  * file_region structure is added.
571  *
572  * out_regions_needed is the number of regions added to the
573  * resv->adds_in_progress.  This value needs to be provided to a follow up call
574  * to region_add or region_abort for proper accounting.
575  *
576  * Returns the number of huge pages that need to be added to the existing
577  * reservation map for the range [f, t).  This number is greater or equal to
578  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
579  * is needed and can not be allocated.
580  */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)581 static long region_chg(struct resv_map *resv, long f, long t,
582 		       long *out_regions_needed)
583 {
584 	long chg = 0;
585 
586 	spin_lock(&resv->lock);
587 
588 	/* Count how many hugepages in this range are NOT represented. */
589 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
590 				       out_regions_needed);
591 
592 	if (*out_regions_needed == 0)
593 		*out_regions_needed = 1;
594 
595 	if (allocate_file_region_entries(resv, *out_regions_needed))
596 		return -ENOMEM;
597 
598 	resv->adds_in_progress += *out_regions_needed;
599 
600 	spin_unlock(&resv->lock);
601 	return chg;
602 }
603 
604 /*
605  * Abort the in progress add operation.  The adds_in_progress field
606  * of the resv_map keeps track of the operations in progress between
607  * calls to region_chg and region_add.  Operations are sometimes
608  * aborted after the call to region_chg.  In such cases, region_abort
609  * is called to decrement the adds_in_progress counter. regions_needed
610  * is the value returned by the region_chg call, it is used to decrement
611  * the adds_in_progress counter.
612  *
613  * NOTE: The range arguments [f, t) are not needed or used in this
614  * routine.  They are kept to make reading the calling code easier as
615  * arguments will match the associated region_chg call.
616  */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)617 static void region_abort(struct resv_map *resv, long f, long t,
618 			 long regions_needed)
619 {
620 	spin_lock(&resv->lock);
621 	VM_BUG_ON(!resv->region_cache_count);
622 	resv->adds_in_progress -= regions_needed;
623 	spin_unlock(&resv->lock);
624 }
625 
626 /*
627  * Delete the specified range [f, t) from the reserve map.  If the
628  * t parameter is LONG_MAX, this indicates that ALL regions after f
629  * should be deleted.  Locate the regions which intersect [f, t)
630  * and either trim, delete or split the existing regions.
631  *
632  * Returns the number of huge pages deleted from the reserve map.
633  * In the normal case, the return value is zero or more.  In the
634  * case where a region must be split, a new region descriptor must
635  * be allocated.  If the allocation fails, -ENOMEM will be returned.
636  * NOTE: If the parameter t == LONG_MAX, then we will never split
637  * a region and possibly return -ENOMEM.  Callers specifying
638  * t == LONG_MAX do not need to check for -ENOMEM error.
639  */
region_del(struct resv_map * resv,long f,long t)640 static long region_del(struct resv_map *resv, long f, long t)
641 {
642 	struct list_head *head = &resv->regions;
643 	struct file_region *rg, *trg;
644 	struct file_region *nrg = NULL;
645 	long del = 0;
646 
647 retry:
648 	spin_lock(&resv->lock);
649 	list_for_each_entry_safe(rg, trg, head, link) {
650 		/*
651 		 * Skip regions before the range to be deleted.  file_region
652 		 * ranges are normally of the form [from, to).  However, there
653 		 * may be a "placeholder" entry in the map which is of the form
654 		 * (from, to) with from == to.  Check for placeholder entries
655 		 * at the beginning of the range to be deleted.
656 		 */
657 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
658 			continue;
659 
660 		if (rg->from >= t)
661 			break;
662 
663 		if (f > rg->from && t < rg->to) { /* Must split region */
664 			/*
665 			 * Check for an entry in the cache before dropping
666 			 * lock and attempting allocation.
667 			 */
668 			if (!nrg &&
669 			    resv->region_cache_count > resv->adds_in_progress) {
670 				nrg = list_first_entry(&resv->region_cache,
671 							struct file_region,
672 							link);
673 				list_del(&nrg->link);
674 				resv->region_cache_count--;
675 			}
676 
677 			if (!nrg) {
678 				spin_unlock(&resv->lock);
679 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
680 				if (!nrg)
681 					return -ENOMEM;
682 				goto retry;
683 			}
684 
685 			del += t - f;
686 			hugetlb_cgroup_uncharge_file_region(
687 				resv, rg, t - f, false);
688 
689 			/* New entry for end of split region */
690 			nrg->from = t;
691 			nrg->to = rg->to;
692 
693 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
694 
695 			INIT_LIST_HEAD(&nrg->link);
696 
697 			/* Original entry is trimmed */
698 			rg->to = f;
699 
700 			list_add(&nrg->link, &rg->link);
701 			nrg = NULL;
702 			break;
703 		}
704 
705 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
706 			del += rg->to - rg->from;
707 			hugetlb_cgroup_uncharge_file_region(resv, rg,
708 							    rg->to - rg->from, true);
709 			list_del(&rg->link);
710 			kfree(rg);
711 			continue;
712 		}
713 
714 		if (f <= rg->from) {	/* Trim beginning of region */
715 			hugetlb_cgroup_uncharge_file_region(resv, rg,
716 							    t - rg->from, false);
717 
718 			del += t - rg->from;
719 			rg->from = t;
720 		} else {		/* Trim end of region */
721 			hugetlb_cgroup_uncharge_file_region(resv, rg,
722 							    rg->to - f, false);
723 
724 			del += rg->to - f;
725 			rg->to = f;
726 		}
727 	}
728 
729 	spin_unlock(&resv->lock);
730 	kfree(nrg);
731 	return del;
732 }
733 
734 /*
735  * A rare out of memory error was encountered which prevented removal of
736  * the reserve map region for a page.  The huge page itself was free'ed
737  * and removed from the page cache.  This routine will adjust the subpool
738  * usage count, and the global reserve count if needed.  By incrementing
739  * these counts, the reserve map entry which could not be deleted will
740  * appear as a "reserved" entry instead of simply dangling with incorrect
741  * counts.
742  */
hugetlb_fix_reserve_counts(struct inode * inode)743 void hugetlb_fix_reserve_counts(struct inode *inode)
744 {
745 	struct hugepage_subpool *spool = subpool_inode(inode);
746 	long rsv_adjust;
747 	bool reserved = false;
748 
749 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
750 	if (rsv_adjust > 0) {
751 		struct hstate *h = hstate_inode(inode);
752 
753 		if (!hugetlb_acct_memory(h, 1))
754 			reserved = true;
755 	} else if (!rsv_adjust) {
756 		reserved = true;
757 	}
758 
759 	if (!reserved)
760 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
761 }
762 
763 /*
764  * Count and return the number of huge pages in the reserve map
765  * that intersect with the range [f, t).
766  */
region_count(struct resv_map * resv,long f,long t)767 static long region_count(struct resv_map *resv, long f, long t)
768 {
769 	struct list_head *head = &resv->regions;
770 	struct file_region *rg;
771 	long chg = 0;
772 
773 	spin_lock(&resv->lock);
774 	/* Locate each segment we overlap with, and count that overlap. */
775 	list_for_each_entry(rg, head, link) {
776 		long seg_from;
777 		long seg_to;
778 
779 		if (rg->to <= f)
780 			continue;
781 		if (rg->from >= t)
782 			break;
783 
784 		seg_from = max(rg->from, f);
785 		seg_to = min(rg->to, t);
786 
787 		chg += seg_to - seg_from;
788 	}
789 	spin_unlock(&resv->lock);
790 
791 	return chg;
792 }
793 
794 /*
795  * Convert the address within this vma to the page offset within
796  * the mapping, in pagecache page units; huge pages here.
797  */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)798 static pgoff_t vma_hugecache_offset(struct hstate *h,
799 			struct vm_area_struct *vma, unsigned long address)
800 {
801 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
802 			(vma->vm_pgoff >> huge_page_order(h));
803 }
804 
linear_hugepage_index(struct vm_area_struct * vma,unsigned long address)805 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
806 				     unsigned long address)
807 {
808 	return vma_hugecache_offset(hstate_vma(vma), vma, address);
809 }
810 EXPORT_SYMBOL_GPL(linear_hugepage_index);
811 
812 /*
813  * Return the size of the pages allocated when backing a VMA. In the majority
814  * cases this will be same size as used by the page table entries.
815  */
vma_kernel_pagesize(struct vm_area_struct * vma)816 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
817 {
818 	if (vma->vm_ops && vma->vm_ops->pagesize)
819 		return vma->vm_ops->pagesize(vma);
820 	return PAGE_SIZE;
821 }
822 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
823 
824 /*
825  * Return the page size being used by the MMU to back a VMA. In the majority
826  * of cases, the page size used by the kernel matches the MMU size. On
827  * architectures where it differs, an architecture-specific 'strong'
828  * version of this symbol is required.
829  */
vma_mmu_pagesize(struct vm_area_struct * vma)830 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
831 {
832 	return vma_kernel_pagesize(vma);
833 }
834 
835 /*
836  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
837  * bits of the reservation map pointer, which are always clear due to
838  * alignment.
839  */
840 #define HPAGE_RESV_OWNER    (1UL << 0)
841 #define HPAGE_RESV_UNMAPPED (1UL << 1)
842 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
843 
844 /*
845  * These helpers are used to track how many pages are reserved for
846  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
847  * is guaranteed to have their future faults succeed.
848  *
849  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
850  * the reserve counters are updated with the hugetlb_lock held. It is safe
851  * to reset the VMA at fork() time as it is not in use yet and there is no
852  * chance of the global counters getting corrupted as a result of the values.
853  *
854  * The private mapping reservation is represented in a subtly different
855  * manner to a shared mapping.  A shared mapping has a region map associated
856  * with the underlying file, this region map represents the backing file
857  * pages which have ever had a reservation assigned which this persists even
858  * after the page is instantiated.  A private mapping has a region map
859  * associated with the original mmap which is attached to all VMAs which
860  * reference it, this region map represents those offsets which have consumed
861  * reservation ie. where pages have been instantiated.
862  */
get_vma_private_data(struct vm_area_struct * vma)863 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
864 {
865 	return (unsigned long)vma->vm_private_data;
866 }
867 
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)868 static void set_vma_private_data(struct vm_area_struct *vma,
869 							unsigned long value)
870 {
871 	vma->vm_private_data = (void *)value;
872 }
873 
874 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)875 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
876 					  struct hugetlb_cgroup *h_cg,
877 					  struct hstate *h)
878 {
879 #ifdef CONFIG_CGROUP_HUGETLB
880 	if (!h_cg || !h) {
881 		resv_map->reservation_counter = NULL;
882 		resv_map->pages_per_hpage = 0;
883 		resv_map->css = NULL;
884 	} else {
885 		resv_map->reservation_counter =
886 			&h_cg->rsvd_hugepage[hstate_index(h)];
887 		resv_map->pages_per_hpage = pages_per_huge_page(h);
888 		resv_map->css = &h_cg->css;
889 	}
890 #endif
891 }
892 
resv_map_alloc(void)893 struct resv_map *resv_map_alloc(void)
894 {
895 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
896 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
897 
898 	if (!resv_map || !rg) {
899 		kfree(resv_map);
900 		kfree(rg);
901 		return NULL;
902 	}
903 
904 	kref_init(&resv_map->refs);
905 	spin_lock_init(&resv_map->lock);
906 	INIT_LIST_HEAD(&resv_map->regions);
907 
908 	resv_map->adds_in_progress = 0;
909 	/*
910 	 * Initialize these to 0. On shared mappings, 0's here indicate these
911 	 * fields don't do cgroup accounting. On private mappings, these will be
912 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
913 	 * reservations are to be un-charged from here.
914 	 */
915 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
916 
917 	INIT_LIST_HEAD(&resv_map->region_cache);
918 	list_add(&rg->link, &resv_map->region_cache);
919 	resv_map->region_cache_count = 1;
920 
921 	return resv_map;
922 }
923 
resv_map_release(struct kref * ref)924 void resv_map_release(struct kref *ref)
925 {
926 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
927 	struct list_head *head = &resv_map->region_cache;
928 	struct file_region *rg, *trg;
929 
930 	/* Clear out any active regions before we release the map. */
931 	region_del(resv_map, 0, LONG_MAX);
932 
933 	/* ... and any entries left in the cache */
934 	list_for_each_entry_safe(rg, trg, head, link) {
935 		list_del(&rg->link);
936 		kfree(rg);
937 	}
938 
939 	VM_BUG_ON(resv_map->adds_in_progress);
940 
941 	kfree(resv_map);
942 }
943 
inode_resv_map(struct inode * inode)944 static inline struct resv_map *inode_resv_map(struct inode *inode)
945 {
946 	/*
947 	 * At inode evict time, i_mapping may not point to the original
948 	 * address space within the inode.  This original address space
949 	 * contains the pointer to the resv_map.  So, always use the
950 	 * address space embedded within the inode.
951 	 * The VERY common case is inode->mapping == &inode->i_data but,
952 	 * this may not be true for device special inodes.
953 	 */
954 	return (struct resv_map *)(&inode->i_data)->private_data;
955 }
956 
vma_resv_map(struct vm_area_struct * vma)957 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
958 {
959 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
960 	if (vma->vm_flags & VM_MAYSHARE) {
961 		struct address_space *mapping = vma->vm_file->f_mapping;
962 		struct inode *inode = mapping->host;
963 
964 		return inode_resv_map(inode);
965 
966 	} else {
967 		return (struct resv_map *)(get_vma_private_data(vma) &
968 							~HPAGE_RESV_MASK);
969 	}
970 }
971 
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)972 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
973 {
974 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
975 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
976 
977 	set_vma_private_data(vma, (get_vma_private_data(vma) &
978 				HPAGE_RESV_MASK) | (unsigned long)map);
979 }
980 
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)981 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
982 {
983 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
984 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
985 
986 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
987 }
988 
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)989 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
990 {
991 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
992 
993 	return (get_vma_private_data(vma) & flag) != 0;
994 }
995 
996 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
reset_vma_resv_huge_pages(struct vm_area_struct * vma)997 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
998 {
999 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1000 	if (!(vma->vm_flags & VM_MAYSHARE))
1001 		vma->vm_private_data = (void *)0;
1002 }
1003 
1004 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)1005 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1006 {
1007 	if (vma->vm_flags & VM_NORESERVE) {
1008 		/*
1009 		 * This address is already reserved by other process(chg == 0),
1010 		 * so, we should decrement reserved count. Without decrementing,
1011 		 * reserve count remains after releasing inode, because this
1012 		 * allocated page will go into page cache and is regarded as
1013 		 * coming from reserved pool in releasing step.  Currently, we
1014 		 * don't have any other solution to deal with this situation
1015 		 * properly, so add work-around here.
1016 		 */
1017 		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1018 			return true;
1019 		else
1020 			return false;
1021 	}
1022 
1023 	/* Shared mappings always use reserves */
1024 	if (vma->vm_flags & VM_MAYSHARE) {
1025 		/*
1026 		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1027 		 * be a region map for all pages.  The only situation where
1028 		 * there is no region map is if a hole was punched via
1029 		 * fallocate.  In this case, there really are no reserves to
1030 		 * use.  This situation is indicated if chg != 0.
1031 		 */
1032 		if (chg)
1033 			return false;
1034 		else
1035 			return true;
1036 	}
1037 
1038 	/*
1039 	 * Only the process that called mmap() has reserves for
1040 	 * private mappings.
1041 	 */
1042 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1043 		/*
1044 		 * Like the shared case above, a hole punch or truncate
1045 		 * could have been performed on the private mapping.
1046 		 * Examine the value of chg to determine if reserves
1047 		 * actually exist or were previously consumed.
1048 		 * Very Subtle - The value of chg comes from a previous
1049 		 * call to vma_needs_reserves().  The reserve map for
1050 		 * private mappings has different (opposite) semantics
1051 		 * than that of shared mappings.  vma_needs_reserves()
1052 		 * has already taken this difference in semantics into
1053 		 * account.  Therefore, the meaning of chg is the same
1054 		 * as in the shared case above.  Code could easily be
1055 		 * combined, but keeping it separate draws attention to
1056 		 * subtle differences.
1057 		 */
1058 		if (chg)
1059 			return false;
1060 		else
1061 			return true;
1062 	}
1063 
1064 	return false;
1065 }
1066 
enqueue_huge_page(struct hstate * h,struct page * page)1067 static void enqueue_huge_page(struct hstate *h, struct page *page)
1068 {
1069 	int nid = page_to_nid(page);
1070 	list_move(&page->lru, &h->hugepage_freelists[nid]);
1071 	h->free_huge_pages++;
1072 	h->free_huge_pages_node[nid]++;
1073 	SetPageHugeFreed(page);
1074 }
1075 
dequeue_huge_page_node_exact(struct hstate * h,int nid)1076 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1077 {
1078 	struct page *page;
1079 	bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1080 
1081 	list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1082 		if (nocma && is_migrate_cma_page(page))
1083 			continue;
1084 
1085 		if (PageHWPoison(page))
1086 			continue;
1087 
1088 		list_move(&page->lru, &h->hugepage_activelist);
1089 		set_page_refcounted(page);
1090 		ClearPageHugeFreed(page);
1091 		h->free_huge_pages--;
1092 		h->free_huge_pages_node[nid]--;
1093 		return page;
1094 	}
1095 
1096 	return NULL;
1097 }
1098 
dequeue_huge_page_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1099 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1100 		nodemask_t *nmask)
1101 {
1102 	unsigned int cpuset_mems_cookie;
1103 	struct zonelist *zonelist;
1104 	struct zone *zone;
1105 	struct zoneref *z;
1106 	int node = NUMA_NO_NODE;
1107 
1108 	zonelist = node_zonelist(nid, gfp_mask);
1109 
1110 retry_cpuset:
1111 	cpuset_mems_cookie = read_mems_allowed_begin();
1112 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1113 		struct page *page;
1114 
1115 		if (!cpuset_zone_allowed(zone, gfp_mask))
1116 			continue;
1117 		/*
1118 		 * no need to ask again on the same node. Pool is node rather than
1119 		 * zone aware
1120 		 */
1121 		if (zone_to_nid(zone) == node)
1122 			continue;
1123 		node = zone_to_nid(zone);
1124 
1125 		page = dequeue_huge_page_node_exact(h, node);
1126 		if (page)
1127 			return page;
1128 	}
1129 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1130 		goto retry_cpuset;
1131 
1132 	return NULL;
1133 }
1134 
dequeue_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)1135 static struct page *dequeue_huge_page_vma(struct hstate *h,
1136 				struct vm_area_struct *vma,
1137 				unsigned long address, int avoid_reserve,
1138 				long chg)
1139 {
1140 	struct page *page;
1141 	struct mempolicy *mpol;
1142 	gfp_t gfp_mask;
1143 	nodemask_t *nodemask;
1144 	int nid;
1145 
1146 	/*
1147 	 * A child process with MAP_PRIVATE mappings created by their parent
1148 	 * have no page reserves. This check ensures that reservations are
1149 	 * not "stolen". The child may still get SIGKILLed
1150 	 */
1151 	if (!vma_has_reserves(vma, chg) &&
1152 			h->free_huge_pages - h->resv_huge_pages == 0)
1153 		goto err;
1154 
1155 	/* If reserves cannot be used, ensure enough pages are in the pool */
1156 	if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1157 		goto err;
1158 
1159 	gfp_mask = htlb_alloc_mask(h);
1160 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1161 	page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1162 	if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1163 		SetPagePrivate(page);
1164 		h->resv_huge_pages--;
1165 	}
1166 
1167 	mpol_cond_put(mpol);
1168 	return page;
1169 
1170 err:
1171 	return NULL;
1172 }
1173 
1174 /*
1175  * common helper functions for hstate_next_node_to_{alloc|free}.
1176  * We may have allocated or freed a huge page based on a different
1177  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1178  * be outside of *nodes_allowed.  Ensure that we use an allowed
1179  * node for alloc or free.
1180  */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1181 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1182 {
1183 	nid = next_node_in(nid, *nodes_allowed);
1184 	VM_BUG_ON(nid >= MAX_NUMNODES);
1185 
1186 	return nid;
1187 }
1188 
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1189 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1190 {
1191 	if (!node_isset(nid, *nodes_allowed))
1192 		nid = next_node_allowed(nid, nodes_allowed);
1193 	return nid;
1194 }
1195 
1196 /*
1197  * returns the previously saved node ["this node"] from which to
1198  * allocate a persistent huge page for the pool and advance the
1199  * next node from which to allocate, handling wrap at end of node
1200  * mask.
1201  */
hstate_next_node_to_alloc(struct hstate * h,nodemask_t * nodes_allowed)1202 static int hstate_next_node_to_alloc(struct hstate *h,
1203 					nodemask_t *nodes_allowed)
1204 {
1205 	int nid;
1206 
1207 	VM_BUG_ON(!nodes_allowed);
1208 
1209 	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1210 	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1211 
1212 	return nid;
1213 }
1214 
1215 /*
1216  * helper for free_pool_huge_page() - return the previously saved
1217  * node ["this node"] from which to free a huge page.  Advance the
1218  * next node id whether or not we find a free huge page to free so
1219  * that the next attempt to free addresses the next node.
1220  */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1221 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1222 {
1223 	int nid;
1224 
1225 	VM_BUG_ON(!nodes_allowed);
1226 
1227 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1228 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1229 
1230 	return nid;
1231 }
1232 
1233 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1234 	for (nr_nodes = nodes_weight(*mask);				\
1235 		nr_nodes > 0 &&						\
1236 		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1237 		nr_nodes--)
1238 
1239 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1240 	for (nr_nodes = nodes_weight(*mask);				\
1241 		nr_nodes > 0 &&						\
1242 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1243 		nr_nodes--)
1244 
1245 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
destroy_compound_gigantic_page(struct page * page,unsigned int order)1246 static void destroy_compound_gigantic_page(struct page *page,
1247 					unsigned int order)
1248 {
1249 	int i;
1250 	int nr_pages = 1 << order;
1251 	struct page *p = page + 1;
1252 
1253 	atomic_set(compound_mapcount_ptr(page), 0);
1254 	atomic_set(compound_pincount_ptr(page), 0);
1255 
1256 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1257 		clear_compound_head(p);
1258 		set_page_refcounted(p);
1259 	}
1260 
1261 	set_compound_order(page, 0);
1262 	page[1].compound_nr = 0;
1263 	__ClearPageHead(page);
1264 }
1265 
free_gigantic_page(struct page * page,unsigned int order)1266 static void free_gigantic_page(struct page *page, unsigned int order)
1267 {
1268 	/*
1269 	 * If the page isn't allocated using the cma allocator,
1270 	 * cma_release() returns false.
1271 	 */
1272 #ifdef CONFIG_CMA
1273 	if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1274 		return;
1275 #endif
1276 
1277 	free_contig_range(page_to_pfn(page), 1 << order);
1278 }
1279 
1280 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1281 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1282 		int nid, nodemask_t *nodemask)
1283 {
1284 	unsigned long nr_pages = 1UL << huge_page_order(h);
1285 	if (nid == NUMA_NO_NODE)
1286 		nid = numa_mem_id();
1287 
1288 #ifdef CONFIG_CMA
1289 	{
1290 		struct page *page;
1291 		int node;
1292 
1293 		if (hugetlb_cma[nid]) {
1294 			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1295 					huge_page_order(h),
1296 					GFP_KERNEL | __GFP_NOWARN);
1297 			if (page)
1298 				return page;
1299 		}
1300 
1301 		if (!(gfp_mask & __GFP_THISNODE)) {
1302 			for_each_node_mask(node, *nodemask) {
1303 				if (node == nid || !hugetlb_cma[node])
1304 					continue;
1305 
1306 				page = cma_alloc(hugetlb_cma[node], nr_pages,
1307 						huge_page_order(h),
1308 						GFP_KERNEL | __GFP_NOWARN);
1309 				if (page)
1310 					return page;
1311 			}
1312 		}
1313 	}
1314 #endif
1315 
1316 	return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1317 }
1318 
1319 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1320 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1321 					int nid, nodemask_t *nodemask)
1322 {
1323 	return NULL;
1324 }
1325 #endif /* CONFIG_CONTIG_ALLOC */
1326 
1327 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1328 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1329 					int nid, nodemask_t *nodemask)
1330 {
1331 	return NULL;
1332 }
free_gigantic_page(struct page * page,unsigned int order)1333 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
destroy_compound_gigantic_page(struct page * page,unsigned int order)1334 static inline void destroy_compound_gigantic_page(struct page *page,
1335 						unsigned int order) { }
1336 #endif
1337 
update_and_free_page(struct hstate * h,struct page * page)1338 static void update_and_free_page(struct hstate *h, struct page *page)
1339 {
1340 	int i;
1341 	struct page *subpage = page;
1342 
1343 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1344 		return;
1345 
1346 	h->nr_huge_pages--;
1347 	h->nr_huge_pages_node[page_to_nid(page)]--;
1348 	for (i = 0; i < pages_per_huge_page(h);
1349 	     i++, subpage = mem_map_next(subpage, page, i)) {
1350 		subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1351 				1 << PG_referenced | 1 << PG_dirty |
1352 				1 << PG_active | 1 << PG_private |
1353 				1 << PG_writeback);
1354 	}
1355 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1356 	VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1357 	set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1358 	set_page_refcounted(page);
1359 	if (hstate_is_gigantic(h)) {
1360 		/*
1361 		 * Temporarily drop the hugetlb_lock, because
1362 		 * we might block in free_gigantic_page().
1363 		 */
1364 		spin_unlock(&hugetlb_lock);
1365 		destroy_compound_gigantic_page(page, huge_page_order(h));
1366 		free_gigantic_page(page, huge_page_order(h));
1367 		spin_lock(&hugetlb_lock);
1368 	} else {
1369 		__free_pages(page, huge_page_order(h));
1370 	}
1371 }
1372 
size_to_hstate(unsigned long size)1373 struct hstate *size_to_hstate(unsigned long size)
1374 {
1375 	struct hstate *h;
1376 
1377 	for_each_hstate(h) {
1378 		if (huge_page_size(h) == size)
1379 			return h;
1380 	}
1381 	return NULL;
1382 }
1383 
1384 /*
1385  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1386  * to hstate->hugepage_activelist.)
1387  *
1388  * This function can be called for tail pages, but never returns true for them.
1389  */
page_huge_active(struct page * page)1390 bool page_huge_active(struct page *page)
1391 {
1392 	return PageHeadHuge(page) && PagePrivate(&page[1]);
1393 }
1394 
1395 /* never called for tail page */
set_page_huge_active(struct page * page)1396 void set_page_huge_active(struct page *page)
1397 {
1398 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1399 	SetPagePrivate(&page[1]);
1400 }
1401 
clear_page_huge_active(struct page * page)1402 static void clear_page_huge_active(struct page *page)
1403 {
1404 	VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1405 	ClearPagePrivate(&page[1]);
1406 }
1407 
1408 /*
1409  * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1410  * code
1411  */
PageHugeTemporary(struct page * page)1412 static inline bool PageHugeTemporary(struct page *page)
1413 {
1414 	if (!PageHuge(page))
1415 		return false;
1416 
1417 	return (unsigned long)page[2].mapping == -1U;
1418 }
1419 
SetPageHugeTemporary(struct page * page)1420 static inline void SetPageHugeTemporary(struct page *page)
1421 {
1422 	page[2].mapping = (void *)-1U;
1423 }
1424 
ClearPageHugeTemporary(struct page * page)1425 static inline void ClearPageHugeTemporary(struct page *page)
1426 {
1427 	page[2].mapping = NULL;
1428 }
1429 
__free_huge_page(struct page * page)1430 static void __free_huge_page(struct page *page)
1431 {
1432 	/*
1433 	 * Can't pass hstate in here because it is called from the
1434 	 * compound page destructor.
1435 	 */
1436 	struct hstate *h = page_hstate(page);
1437 	int nid = page_to_nid(page);
1438 	struct hugepage_subpool *spool =
1439 		(struct hugepage_subpool *)page_private(page);
1440 	bool restore_reserve;
1441 
1442 	VM_BUG_ON_PAGE(page_count(page), page);
1443 	VM_BUG_ON_PAGE(page_mapcount(page), page);
1444 
1445 	set_page_private(page, 0);
1446 	page->mapping = NULL;
1447 	restore_reserve = PagePrivate(page);
1448 	ClearPagePrivate(page);
1449 
1450 	/*
1451 	 * If PagePrivate() was set on page, page allocation consumed a
1452 	 * reservation.  If the page was associated with a subpool, there
1453 	 * would have been a page reserved in the subpool before allocation
1454 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1455 	 * reservtion, do not call hugepage_subpool_put_pages() as this will
1456 	 * remove the reserved page from the subpool.
1457 	 */
1458 	if (!restore_reserve) {
1459 		/*
1460 		 * A return code of zero implies that the subpool will be
1461 		 * under its minimum size if the reservation is not restored
1462 		 * after page is free.  Therefore, force restore_reserve
1463 		 * operation.
1464 		 */
1465 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1466 			restore_reserve = true;
1467 	}
1468 
1469 	spin_lock(&hugetlb_lock);
1470 	clear_page_huge_active(page);
1471 	hugetlb_cgroup_uncharge_page(hstate_index(h),
1472 				     pages_per_huge_page(h), page);
1473 	hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1474 					  pages_per_huge_page(h), page);
1475 	if (restore_reserve)
1476 		h->resv_huge_pages++;
1477 
1478 	if (PageHugeTemporary(page)) {
1479 		list_del(&page->lru);
1480 		ClearPageHugeTemporary(page);
1481 		update_and_free_page(h, page);
1482 	} else if (h->surplus_huge_pages_node[nid]) {
1483 		/* remove the page from active list */
1484 		list_del(&page->lru);
1485 		update_and_free_page(h, page);
1486 		h->surplus_huge_pages--;
1487 		h->surplus_huge_pages_node[nid]--;
1488 	} else {
1489 		arch_clear_hugepage_flags(page);
1490 		enqueue_huge_page(h, page);
1491 	}
1492 	spin_unlock(&hugetlb_lock);
1493 }
1494 
1495 /*
1496  * As free_huge_page() can be called from a non-task context, we have
1497  * to defer the actual freeing in a workqueue to prevent potential
1498  * hugetlb_lock deadlock.
1499  *
1500  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1501  * be freed and frees them one-by-one. As the page->mapping pointer is
1502  * going to be cleared in __free_huge_page() anyway, it is reused as the
1503  * llist_node structure of a lockless linked list of huge pages to be freed.
1504  */
1505 static LLIST_HEAD(hpage_freelist);
1506 
free_hpage_workfn(struct work_struct * work)1507 static void free_hpage_workfn(struct work_struct *work)
1508 {
1509 	struct llist_node *node;
1510 	struct page *page;
1511 
1512 	node = llist_del_all(&hpage_freelist);
1513 
1514 	while (node) {
1515 		page = container_of((struct address_space **)node,
1516 				     struct page, mapping);
1517 		node = node->next;
1518 		__free_huge_page(page);
1519 	}
1520 }
1521 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1522 
free_huge_page(struct page * page)1523 void free_huge_page(struct page *page)
1524 {
1525 	/*
1526 	 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1527 	 */
1528 	if (!in_task()) {
1529 		/*
1530 		 * Only call schedule_work() if hpage_freelist is previously
1531 		 * empty. Otherwise, schedule_work() had been called but the
1532 		 * workfn hasn't retrieved the list yet.
1533 		 */
1534 		if (llist_add((struct llist_node *)&page->mapping,
1535 			      &hpage_freelist))
1536 			schedule_work(&free_hpage_work);
1537 		return;
1538 	}
1539 
1540 	__free_huge_page(page);
1541 }
1542 
prep_new_huge_page(struct hstate * h,struct page * page,int nid)1543 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1544 {
1545 	INIT_LIST_HEAD(&page->lru);
1546 	set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1547 	set_hugetlb_cgroup(page, NULL);
1548 	set_hugetlb_cgroup_rsvd(page, NULL);
1549 	spin_lock(&hugetlb_lock);
1550 	h->nr_huge_pages++;
1551 	h->nr_huge_pages_node[nid]++;
1552 	ClearPageHugeFreed(page);
1553 	spin_unlock(&hugetlb_lock);
1554 }
1555 
prep_compound_gigantic_page(struct page * page,unsigned int order)1556 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1557 {
1558 	int i;
1559 	int nr_pages = 1 << order;
1560 	struct page *p = page + 1;
1561 
1562 	/* we rely on prep_new_huge_page to set the destructor */
1563 	set_compound_order(page, order);
1564 	__ClearPageReserved(page);
1565 	__SetPageHead(page);
1566 	for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1567 		/*
1568 		 * For gigantic hugepages allocated through bootmem at
1569 		 * boot, it's safer to be consistent with the not-gigantic
1570 		 * hugepages and clear the PG_reserved bit from all tail pages
1571 		 * too.  Otherwise drivers using get_user_pages() to access tail
1572 		 * pages may get the reference counting wrong if they see
1573 		 * PG_reserved set on a tail page (despite the head page not
1574 		 * having PG_reserved set).  Enforcing this consistency between
1575 		 * head and tail pages allows drivers to optimize away a check
1576 		 * on the head page when they need know if put_page() is needed
1577 		 * after get_user_pages().
1578 		 */
1579 		__ClearPageReserved(p);
1580 		set_page_count(p, 0);
1581 		set_compound_head(p, page);
1582 	}
1583 	atomic_set(compound_mapcount_ptr(page), -1);
1584 	atomic_set(compound_pincount_ptr(page), 0);
1585 }
1586 
1587 /*
1588  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1589  * transparent huge pages.  See the PageTransHuge() documentation for more
1590  * details.
1591  */
PageHuge(struct page * page)1592 int PageHuge(struct page *page)
1593 {
1594 	if (!PageCompound(page))
1595 		return 0;
1596 
1597 	page = compound_head(page);
1598 	return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1599 }
1600 EXPORT_SYMBOL_GPL(PageHuge);
1601 
1602 /*
1603  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1604  * normal or transparent huge pages.
1605  */
PageHeadHuge(struct page * page_head)1606 int PageHeadHuge(struct page *page_head)
1607 {
1608 	if (!PageHead(page_head))
1609 		return 0;
1610 
1611 	return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1612 }
1613 
1614 /*
1615  * Find and lock address space (mapping) in write mode.
1616  *
1617  * Upon entry, the page is locked which means that page_mapping() is
1618  * stable.  Due to locking order, we can only trylock_write.  If we can
1619  * not get the lock, simply return NULL to caller.
1620  */
hugetlb_page_mapping_lock_write(struct page * hpage)1621 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1622 {
1623 	struct address_space *mapping = page_mapping(hpage);
1624 
1625 	if (!mapping)
1626 		return mapping;
1627 
1628 	if (i_mmap_trylock_write(mapping))
1629 		return mapping;
1630 
1631 	return NULL;
1632 }
1633 
hugetlb_basepage_index(struct page * page)1634 pgoff_t hugetlb_basepage_index(struct page *page)
1635 {
1636 	struct page *page_head = compound_head(page);
1637 	pgoff_t index = page_index(page_head);
1638 	unsigned long compound_idx;
1639 
1640 	if (compound_order(page_head) >= MAX_ORDER)
1641 		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1642 	else
1643 		compound_idx = page - page_head;
1644 
1645 	return (index << compound_order(page_head)) + compound_idx;
1646 }
1647 
alloc_buddy_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1648 static struct page *alloc_buddy_huge_page(struct hstate *h,
1649 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1650 		nodemask_t *node_alloc_noretry)
1651 {
1652 	int order = huge_page_order(h);
1653 	struct page *page;
1654 	bool alloc_try_hard = true;
1655 
1656 	/*
1657 	 * By default we always try hard to allocate the page with
1658 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1659 	 * a loop (to adjust global huge page counts) and previous allocation
1660 	 * failed, do not continue to try hard on the same node.  Use the
1661 	 * node_alloc_noretry bitmap to manage this state information.
1662 	 */
1663 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1664 		alloc_try_hard = false;
1665 	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1666 	if (alloc_try_hard)
1667 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1668 	if (nid == NUMA_NO_NODE)
1669 		nid = numa_mem_id();
1670 	page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1671 	if (page)
1672 		__count_vm_event(HTLB_BUDDY_PGALLOC);
1673 	else
1674 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1675 
1676 	/*
1677 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1678 	 * indicates an overall state change.  Clear bit so that we resume
1679 	 * normal 'try hard' allocations.
1680 	 */
1681 	if (node_alloc_noretry && page && !alloc_try_hard)
1682 		node_clear(nid, *node_alloc_noretry);
1683 
1684 	/*
1685 	 * If we tried hard to get a page but failed, set bit so that
1686 	 * subsequent attempts will not try as hard until there is an
1687 	 * overall state change.
1688 	 */
1689 	if (node_alloc_noretry && !page && alloc_try_hard)
1690 		node_set(nid, *node_alloc_noretry);
1691 
1692 	return page;
1693 }
1694 
1695 /*
1696  * Common helper to allocate a fresh hugetlb page. All specific allocators
1697  * should use this function to get new hugetlb pages
1698  */
alloc_fresh_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1699 static struct page *alloc_fresh_huge_page(struct hstate *h,
1700 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1701 		nodemask_t *node_alloc_noretry)
1702 {
1703 	struct page *page;
1704 
1705 	if (hstate_is_gigantic(h))
1706 		page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1707 	else
1708 		page = alloc_buddy_huge_page(h, gfp_mask,
1709 				nid, nmask, node_alloc_noretry);
1710 	if (!page)
1711 		return NULL;
1712 
1713 	if (hstate_is_gigantic(h))
1714 		prep_compound_gigantic_page(page, huge_page_order(h));
1715 	prep_new_huge_page(h, page, page_to_nid(page));
1716 
1717 	return page;
1718 }
1719 
1720 /*
1721  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1722  * manner.
1723  */
alloc_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry)1724 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1725 				nodemask_t *node_alloc_noretry)
1726 {
1727 	struct page *page;
1728 	int nr_nodes, node;
1729 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1730 
1731 	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1732 		page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1733 						node_alloc_noretry);
1734 		if (page)
1735 			break;
1736 	}
1737 
1738 	if (!page)
1739 		return 0;
1740 
1741 	put_page(page); /* free it into the hugepage allocator */
1742 
1743 	return 1;
1744 }
1745 
1746 /*
1747  * Free huge page from pool from next node to free.
1748  * Attempt to keep persistent huge pages more or less
1749  * balanced over allowed nodes.
1750  * Called with hugetlb_lock locked.
1751  */
free_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)1752 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1753 							 bool acct_surplus)
1754 {
1755 	int nr_nodes, node;
1756 	int ret = 0;
1757 
1758 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1759 		/*
1760 		 * If we're returning unused surplus pages, only examine
1761 		 * nodes with surplus pages.
1762 		 */
1763 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1764 		    !list_empty(&h->hugepage_freelists[node])) {
1765 			struct page *page =
1766 				list_entry(h->hugepage_freelists[node].next,
1767 					  struct page, lru);
1768 			list_del(&page->lru);
1769 			h->free_huge_pages--;
1770 			h->free_huge_pages_node[node]--;
1771 			if (acct_surplus) {
1772 				h->surplus_huge_pages--;
1773 				h->surplus_huge_pages_node[node]--;
1774 			}
1775 			update_and_free_page(h, page);
1776 			ret = 1;
1777 			break;
1778 		}
1779 	}
1780 
1781 	return ret;
1782 }
1783 
1784 /*
1785  * Dissolve a given free hugepage into free buddy pages. This function does
1786  * nothing for in-use hugepages and non-hugepages.
1787  * This function returns values like below:
1788  *
1789  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1790  *          (allocated or reserved.)
1791  *       0: successfully dissolved free hugepages or the page is not a
1792  *          hugepage (considered as already dissolved)
1793  */
dissolve_free_huge_page(struct page * page)1794 int dissolve_free_huge_page(struct page *page)
1795 {
1796 	int rc = -EBUSY;
1797 
1798 retry:
1799 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
1800 	if (!PageHuge(page))
1801 		return 0;
1802 
1803 	spin_lock(&hugetlb_lock);
1804 	if (!PageHuge(page)) {
1805 		rc = 0;
1806 		goto out;
1807 	}
1808 
1809 	if (!page_count(page)) {
1810 		struct page *head = compound_head(page);
1811 		struct hstate *h = page_hstate(head);
1812 		int nid = page_to_nid(head);
1813 		if (h->free_huge_pages - h->resv_huge_pages == 0)
1814 			goto out;
1815 
1816 		/*
1817 		 * We should make sure that the page is already on the free list
1818 		 * when it is dissolved.
1819 		 */
1820 		if (unlikely(!PageHugeFreed(head))) {
1821 			spin_unlock(&hugetlb_lock);
1822 			cond_resched();
1823 
1824 			/*
1825 			 * Theoretically, we should return -EBUSY when we
1826 			 * encounter this race. In fact, we have a chance
1827 			 * to successfully dissolve the page if we do a
1828 			 * retry. Because the race window is quite small.
1829 			 * If we seize this opportunity, it is an optimization
1830 			 * for increasing the success rate of dissolving page.
1831 			 */
1832 			goto retry;
1833 		}
1834 
1835 		/*
1836 		 * Move PageHWPoison flag from head page to the raw error page,
1837 		 * which makes any subpages rather than the error page reusable.
1838 		 */
1839 		if (PageHWPoison(head) && page != head) {
1840 			SetPageHWPoison(page);
1841 			ClearPageHWPoison(head);
1842 		}
1843 		list_del(&head->lru);
1844 		h->free_huge_pages--;
1845 		h->free_huge_pages_node[nid]--;
1846 		h->max_huge_pages--;
1847 		update_and_free_page(h, head);
1848 		rc = 0;
1849 	}
1850 out:
1851 	spin_unlock(&hugetlb_lock);
1852 	return rc;
1853 }
1854 
1855 /*
1856  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1857  * make specified memory blocks removable from the system.
1858  * Note that this will dissolve a free gigantic hugepage completely, if any
1859  * part of it lies within the given range.
1860  * Also note that if dissolve_free_huge_page() returns with an error, all
1861  * free hugepages that were dissolved before that error are lost.
1862  */
dissolve_free_huge_pages(unsigned long start_pfn,unsigned long end_pfn)1863 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1864 {
1865 	unsigned long pfn;
1866 	struct page *page;
1867 	int rc = 0;
1868 
1869 	if (!hugepages_supported())
1870 		return rc;
1871 
1872 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1873 		page = pfn_to_page(pfn);
1874 		rc = dissolve_free_huge_page(page);
1875 		if (rc)
1876 			break;
1877 	}
1878 
1879 	return rc;
1880 }
1881 
1882 /*
1883  * Allocates a fresh surplus page from the page allocator.
1884  */
alloc_surplus_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1885 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1886 		int nid, nodemask_t *nmask)
1887 {
1888 	struct page *page = NULL;
1889 
1890 	if (hstate_is_gigantic(h))
1891 		return NULL;
1892 
1893 	spin_lock(&hugetlb_lock);
1894 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1895 		goto out_unlock;
1896 	spin_unlock(&hugetlb_lock);
1897 
1898 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1899 	if (!page)
1900 		return NULL;
1901 
1902 	spin_lock(&hugetlb_lock);
1903 	/*
1904 	 * We could have raced with the pool size change.
1905 	 * Double check that and simply deallocate the new page
1906 	 * if we would end up overcommiting the surpluses. Abuse
1907 	 * temporary page to workaround the nasty free_huge_page
1908 	 * codeflow
1909 	 */
1910 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1911 		SetPageHugeTemporary(page);
1912 		spin_unlock(&hugetlb_lock);
1913 		put_page(page);
1914 		return NULL;
1915 	} else {
1916 		h->surplus_huge_pages++;
1917 		h->surplus_huge_pages_node[page_to_nid(page)]++;
1918 	}
1919 
1920 out_unlock:
1921 	spin_unlock(&hugetlb_lock);
1922 
1923 	return page;
1924 }
1925 
alloc_migrate_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1926 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1927 				     int nid, nodemask_t *nmask)
1928 {
1929 	struct page *page;
1930 
1931 	if (hstate_is_gigantic(h))
1932 		return NULL;
1933 
1934 	page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1935 	if (!page)
1936 		return NULL;
1937 
1938 	/*
1939 	 * We do not account these pages as surplus because they are only
1940 	 * temporary and will be released properly on the last reference
1941 	 */
1942 	SetPageHugeTemporary(page);
1943 
1944 	return page;
1945 }
1946 
1947 /*
1948  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1949  */
1950 static
alloc_buddy_huge_page_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1951 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1952 		struct vm_area_struct *vma, unsigned long addr)
1953 {
1954 	struct page *page;
1955 	struct mempolicy *mpol;
1956 	gfp_t gfp_mask = htlb_alloc_mask(h);
1957 	int nid;
1958 	nodemask_t *nodemask;
1959 
1960 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1961 	page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1962 	mpol_cond_put(mpol);
1963 
1964 	return page;
1965 }
1966 
1967 /* page migration callback function */
alloc_huge_page_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)1968 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1969 		nodemask_t *nmask, gfp_t gfp_mask)
1970 {
1971 	spin_lock(&hugetlb_lock);
1972 	if (h->free_huge_pages - h->resv_huge_pages > 0) {
1973 		struct page *page;
1974 
1975 		page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1976 		if (page) {
1977 			spin_unlock(&hugetlb_lock);
1978 			return page;
1979 		}
1980 	}
1981 	spin_unlock(&hugetlb_lock);
1982 
1983 	return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1984 }
1985 
1986 /* mempolicy aware migration callback */
alloc_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)1987 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1988 		unsigned long address)
1989 {
1990 	struct mempolicy *mpol;
1991 	nodemask_t *nodemask;
1992 	struct page *page;
1993 	gfp_t gfp_mask;
1994 	int node;
1995 
1996 	gfp_mask = htlb_alloc_mask(h);
1997 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1998 	page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1999 	mpol_cond_put(mpol);
2000 
2001 	return page;
2002 }
2003 
2004 /*
2005  * Increase the hugetlb pool such that it can accommodate a reservation
2006  * of size 'delta'.
2007  */
gather_surplus_pages(struct hstate * h,int delta)2008 static int gather_surplus_pages(struct hstate *h, int delta)
2009 	__must_hold(&hugetlb_lock)
2010 {
2011 	struct list_head surplus_list;
2012 	struct page *page, *tmp;
2013 	int ret, i;
2014 	int needed, allocated;
2015 	bool alloc_ok = true;
2016 
2017 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2018 	if (needed <= 0) {
2019 		h->resv_huge_pages += delta;
2020 		return 0;
2021 	}
2022 
2023 	allocated = 0;
2024 	INIT_LIST_HEAD(&surplus_list);
2025 
2026 	ret = -ENOMEM;
2027 retry:
2028 	spin_unlock(&hugetlb_lock);
2029 	for (i = 0; i < needed; i++) {
2030 		page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2031 				NUMA_NO_NODE, NULL);
2032 		if (!page) {
2033 			alloc_ok = false;
2034 			break;
2035 		}
2036 		list_add(&page->lru, &surplus_list);
2037 		cond_resched();
2038 	}
2039 	allocated += i;
2040 
2041 	/*
2042 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2043 	 * because either resv_huge_pages or free_huge_pages may have changed.
2044 	 */
2045 	spin_lock(&hugetlb_lock);
2046 	needed = (h->resv_huge_pages + delta) -
2047 			(h->free_huge_pages + allocated);
2048 	if (needed > 0) {
2049 		if (alloc_ok)
2050 			goto retry;
2051 		/*
2052 		 * We were not able to allocate enough pages to
2053 		 * satisfy the entire reservation so we free what
2054 		 * we've allocated so far.
2055 		 */
2056 		goto free;
2057 	}
2058 	/*
2059 	 * The surplus_list now contains _at_least_ the number of extra pages
2060 	 * needed to accommodate the reservation.  Add the appropriate number
2061 	 * of pages to the hugetlb pool and free the extras back to the buddy
2062 	 * allocator.  Commit the entire reservation here to prevent another
2063 	 * process from stealing the pages as they are added to the pool but
2064 	 * before they are reserved.
2065 	 */
2066 	needed += allocated;
2067 	h->resv_huge_pages += delta;
2068 	ret = 0;
2069 
2070 	/* Free the needed pages to the hugetlb pool */
2071 	list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2072 		if ((--needed) < 0)
2073 			break;
2074 		/*
2075 		 * This page is now managed by the hugetlb allocator and has
2076 		 * no users -- drop the buddy allocator's reference.
2077 		 */
2078 		put_page_testzero(page);
2079 		VM_BUG_ON_PAGE(page_count(page), page);
2080 		enqueue_huge_page(h, page);
2081 	}
2082 free:
2083 	spin_unlock(&hugetlb_lock);
2084 
2085 	/* Free unnecessary surplus pages to the buddy allocator */
2086 	list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2087 		put_page(page);
2088 	spin_lock(&hugetlb_lock);
2089 
2090 	return ret;
2091 }
2092 
2093 /*
2094  * This routine has two main purposes:
2095  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2096  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2097  *    to the associated reservation map.
2098  * 2) Free any unused surplus pages that may have been allocated to satisfy
2099  *    the reservation.  As many as unused_resv_pages may be freed.
2100  *
2101  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2102  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2103  * we must make sure nobody else can claim pages we are in the process of
2104  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2105  * number of huge pages we plan to free when dropping the lock.
2106  */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2107 static void return_unused_surplus_pages(struct hstate *h,
2108 					unsigned long unused_resv_pages)
2109 {
2110 	unsigned long nr_pages;
2111 
2112 	/* Cannot return gigantic pages currently */
2113 	if (hstate_is_gigantic(h))
2114 		goto out;
2115 
2116 	/*
2117 	 * Part (or even all) of the reservation could have been backed
2118 	 * by pre-allocated pages. Only free surplus pages.
2119 	 */
2120 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2121 
2122 	/*
2123 	 * We want to release as many surplus pages as possible, spread
2124 	 * evenly across all nodes with memory. Iterate across these nodes
2125 	 * until we can no longer free unreserved surplus pages. This occurs
2126 	 * when the nodes with surplus pages have no free pages.
2127 	 * free_pool_huge_page() will balance the freed pages across the
2128 	 * on-line nodes with memory and will handle the hstate accounting.
2129 	 *
2130 	 * Note that we decrement resv_huge_pages as we free the pages.  If
2131 	 * we drop the lock, resv_huge_pages will still be sufficiently large
2132 	 * to cover subsequent pages we may free.
2133 	 */
2134 	while (nr_pages--) {
2135 		h->resv_huge_pages--;
2136 		unused_resv_pages--;
2137 		if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2138 			goto out;
2139 		cond_resched_lock(&hugetlb_lock);
2140 	}
2141 
2142 out:
2143 	/* Fully uncommit the reservation */
2144 	h->resv_huge_pages -= unused_resv_pages;
2145 }
2146 
2147 
2148 /*
2149  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2150  * are used by the huge page allocation routines to manage reservations.
2151  *
2152  * vma_needs_reservation is called to determine if the huge page at addr
2153  * within the vma has an associated reservation.  If a reservation is
2154  * needed, the value 1 is returned.  The caller is then responsible for
2155  * managing the global reservation and subpool usage counts.  After
2156  * the huge page has been allocated, vma_commit_reservation is called
2157  * to add the page to the reservation map.  If the page allocation fails,
2158  * the reservation must be ended instead of committed.  vma_end_reservation
2159  * is called in such cases.
2160  *
2161  * In the normal case, vma_commit_reservation returns the same value
2162  * as the preceding vma_needs_reservation call.  The only time this
2163  * is not the case is if a reserve map was changed between calls.  It
2164  * is the responsibility of the caller to notice the difference and
2165  * take appropriate action.
2166  *
2167  * vma_add_reservation is used in error paths where a reservation must
2168  * be restored when a newly allocated huge page must be freed.  It is
2169  * to be called after calling vma_needs_reservation to determine if a
2170  * reservation exists.
2171  */
2172 enum vma_resv_mode {
2173 	VMA_NEEDS_RESV,
2174 	VMA_COMMIT_RESV,
2175 	VMA_END_RESV,
2176 	VMA_ADD_RESV,
2177 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2178 static long __vma_reservation_common(struct hstate *h,
2179 				struct vm_area_struct *vma, unsigned long addr,
2180 				enum vma_resv_mode mode)
2181 {
2182 	struct resv_map *resv;
2183 	pgoff_t idx;
2184 	long ret;
2185 	long dummy_out_regions_needed;
2186 
2187 	resv = vma_resv_map(vma);
2188 	if (!resv)
2189 		return 1;
2190 
2191 	idx = vma_hugecache_offset(h, vma, addr);
2192 	switch (mode) {
2193 	case VMA_NEEDS_RESV:
2194 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2195 		/* We assume that vma_reservation_* routines always operate on
2196 		 * 1 page, and that adding to resv map a 1 page entry can only
2197 		 * ever require 1 region.
2198 		 */
2199 		VM_BUG_ON(dummy_out_regions_needed != 1);
2200 		break;
2201 	case VMA_COMMIT_RESV:
2202 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2203 		/* region_add calls of range 1 should never fail. */
2204 		VM_BUG_ON(ret < 0);
2205 		break;
2206 	case VMA_END_RESV:
2207 		region_abort(resv, idx, idx + 1, 1);
2208 		ret = 0;
2209 		break;
2210 	case VMA_ADD_RESV:
2211 		if (vma->vm_flags & VM_MAYSHARE) {
2212 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2213 			/* region_add calls of range 1 should never fail. */
2214 			VM_BUG_ON(ret < 0);
2215 		} else {
2216 			region_abort(resv, idx, idx + 1, 1);
2217 			ret = region_del(resv, idx, idx + 1);
2218 		}
2219 		break;
2220 	default:
2221 		BUG();
2222 	}
2223 
2224 	if (vma->vm_flags & VM_MAYSHARE)
2225 		return ret;
2226 	else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2227 		/*
2228 		 * In most cases, reserves always exist for private mappings.
2229 		 * However, a file associated with mapping could have been
2230 		 * hole punched or truncated after reserves were consumed.
2231 		 * As subsequent fault on such a range will not use reserves.
2232 		 * Subtle - The reserve map for private mappings has the
2233 		 * opposite meaning than that of shared mappings.  If NO
2234 		 * entry is in the reserve map, it means a reservation exists.
2235 		 * If an entry exists in the reserve map, it means the
2236 		 * reservation has already been consumed.  As a result, the
2237 		 * return value of this routine is the opposite of the
2238 		 * value returned from reserve map manipulation routines above.
2239 		 */
2240 		if (ret)
2241 			return 0;
2242 		else
2243 			return 1;
2244 	}
2245 	else
2246 		return ret < 0 ? ret : 0;
2247 }
2248 
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2249 static long vma_needs_reservation(struct hstate *h,
2250 			struct vm_area_struct *vma, unsigned long addr)
2251 {
2252 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2253 }
2254 
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2255 static long vma_commit_reservation(struct hstate *h,
2256 			struct vm_area_struct *vma, unsigned long addr)
2257 {
2258 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2259 }
2260 
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2261 static void vma_end_reservation(struct hstate *h,
2262 			struct vm_area_struct *vma, unsigned long addr)
2263 {
2264 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2265 }
2266 
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2267 static long vma_add_reservation(struct hstate *h,
2268 			struct vm_area_struct *vma, unsigned long addr)
2269 {
2270 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2271 }
2272 
2273 /*
2274  * This routine is called to restore a reservation on error paths.  In the
2275  * specific error paths, a huge page was allocated (via alloc_huge_page)
2276  * and is about to be freed.  If a reservation for the page existed,
2277  * alloc_huge_page would have consumed the reservation and set PagePrivate
2278  * in the newly allocated page.  When the page is freed via free_huge_page,
2279  * the global reservation count will be incremented if PagePrivate is set.
2280  * However, free_huge_page can not adjust the reserve map.  Adjust the
2281  * reserve map here to be consistent with global reserve count adjustments
2282  * to be made by free_huge_page.
2283  */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct page * page)2284 static void restore_reserve_on_error(struct hstate *h,
2285 			struct vm_area_struct *vma, unsigned long address,
2286 			struct page *page)
2287 {
2288 	if (unlikely(PagePrivate(page))) {
2289 		long rc = vma_needs_reservation(h, vma, address);
2290 
2291 		if (unlikely(rc < 0)) {
2292 			/*
2293 			 * Rare out of memory condition in reserve map
2294 			 * manipulation.  Clear PagePrivate so that
2295 			 * global reserve count will not be incremented
2296 			 * by free_huge_page.  This will make it appear
2297 			 * as though the reservation for this page was
2298 			 * consumed.  This may prevent the task from
2299 			 * faulting in the page at a later time.  This
2300 			 * is better than inconsistent global huge page
2301 			 * accounting of reserve counts.
2302 			 */
2303 			ClearPagePrivate(page);
2304 		} else if (rc) {
2305 			rc = vma_add_reservation(h, vma, address);
2306 			if (unlikely(rc < 0))
2307 				/*
2308 				 * See above comment about rare out of
2309 				 * memory condition.
2310 				 */
2311 				ClearPagePrivate(page);
2312 		} else
2313 			vma_end_reservation(h, vma, address);
2314 	}
2315 }
2316 
alloc_huge_page(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)2317 struct page *alloc_huge_page(struct vm_area_struct *vma,
2318 				    unsigned long addr, int avoid_reserve)
2319 {
2320 	struct hugepage_subpool *spool = subpool_vma(vma);
2321 	struct hstate *h = hstate_vma(vma);
2322 	struct page *page;
2323 	long map_chg, map_commit;
2324 	long gbl_chg;
2325 	int ret, idx;
2326 	struct hugetlb_cgroup *h_cg;
2327 	bool deferred_reserve;
2328 
2329 	idx = hstate_index(h);
2330 	/*
2331 	 * Examine the region/reserve map to determine if the process
2332 	 * has a reservation for the page to be allocated.  A return
2333 	 * code of zero indicates a reservation exists (no change).
2334 	 */
2335 	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2336 	if (map_chg < 0)
2337 		return ERR_PTR(-ENOMEM);
2338 
2339 	/*
2340 	 * Processes that did not create the mapping will have no
2341 	 * reserves as indicated by the region/reserve map. Check
2342 	 * that the allocation will not exceed the subpool limit.
2343 	 * Allocations for MAP_NORESERVE mappings also need to be
2344 	 * checked against any subpool limit.
2345 	 */
2346 	if (map_chg || avoid_reserve) {
2347 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2348 		if (gbl_chg < 0) {
2349 			vma_end_reservation(h, vma, addr);
2350 			return ERR_PTR(-ENOSPC);
2351 		}
2352 
2353 		/*
2354 		 * Even though there was no reservation in the region/reserve
2355 		 * map, there could be reservations associated with the
2356 		 * subpool that can be used.  This would be indicated if the
2357 		 * return value of hugepage_subpool_get_pages() is zero.
2358 		 * However, if avoid_reserve is specified we still avoid even
2359 		 * the subpool reservations.
2360 		 */
2361 		if (avoid_reserve)
2362 			gbl_chg = 1;
2363 	}
2364 
2365 	/* If this allocation is not consuming a reservation, charge it now.
2366 	 */
2367 	deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2368 	if (deferred_reserve) {
2369 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2370 			idx, pages_per_huge_page(h), &h_cg);
2371 		if (ret)
2372 			goto out_subpool_put;
2373 	}
2374 
2375 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2376 	if (ret)
2377 		goto out_uncharge_cgroup_reservation;
2378 
2379 	spin_lock(&hugetlb_lock);
2380 	/*
2381 	 * glb_chg is passed to indicate whether or not a page must be taken
2382 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2383 	 * a reservation exists for the allocation.
2384 	 */
2385 	page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2386 	if (!page) {
2387 		spin_unlock(&hugetlb_lock);
2388 		page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2389 		if (!page)
2390 			goto out_uncharge_cgroup;
2391 		spin_lock(&hugetlb_lock);
2392 		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2393 			SetPagePrivate(page);
2394 			h->resv_huge_pages--;
2395 		}
2396 		list_add(&page->lru, &h->hugepage_activelist);
2397 		/* Fall through */
2398 	}
2399 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2400 	/* If allocation is not consuming a reservation, also store the
2401 	 * hugetlb_cgroup pointer on the page.
2402 	 */
2403 	if (deferred_reserve) {
2404 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2405 						  h_cg, page);
2406 	}
2407 
2408 	spin_unlock(&hugetlb_lock);
2409 
2410 	set_page_private(page, (unsigned long)spool);
2411 
2412 	map_commit = vma_commit_reservation(h, vma, addr);
2413 	if (unlikely(map_chg > map_commit)) {
2414 		/*
2415 		 * The page was added to the reservation map between
2416 		 * vma_needs_reservation and vma_commit_reservation.
2417 		 * This indicates a race with hugetlb_reserve_pages.
2418 		 * Adjust for the subpool count incremented above AND
2419 		 * in hugetlb_reserve_pages for the same page.  Also,
2420 		 * the reservation count added in hugetlb_reserve_pages
2421 		 * no longer applies.
2422 		 */
2423 		long rsv_adjust;
2424 
2425 		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2426 		hugetlb_acct_memory(h, -rsv_adjust);
2427 		if (deferred_reserve)
2428 			hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2429 					pages_per_huge_page(h), page);
2430 	}
2431 	return page;
2432 
2433 out_uncharge_cgroup:
2434 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2435 out_uncharge_cgroup_reservation:
2436 	if (deferred_reserve)
2437 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2438 						    h_cg);
2439 out_subpool_put:
2440 	if (map_chg || avoid_reserve)
2441 		hugepage_subpool_put_pages(spool, 1);
2442 	vma_end_reservation(h, vma, addr);
2443 	return ERR_PTR(-ENOSPC);
2444 }
2445 
2446 int alloc_bootmem_huge_page(struct hstate *h)
2447 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h)2448 int __alloc_bootmem_huge_page(struct hstate *h)
2449 {
2450 	struct huge_bootmem_page *m;
2451 	int nr_nodes, node;
2452 
2453 	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2454 		void *addr;
2455 
2456 		addr = memblock_alloc_try_nid_raw(
2457 				huge_page_size(h), huge_page_size(h),
2458 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2459 		if (addr) {
2460 			/*
2461 			 * Use the beginning of the huge page to store the
2462 			 * huge_bootmem_page struct (until gather_bootmem
2463 			 * puts them into the mem_map).
2464 			 */
2465 			m = addr;
2466 			goto found;
2467 		}
2468 	}
2469 	return 0;
2470 
2471 found:
2472 	BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2473 	/* Put them into a private list first because mem_map is not up yet */
2474 	INIT_LIST_HEAD(&m->list);
2475 	list_add(&m->list, &huge_boot_pages);
2476 	m->hstate = h;
2477 	return 1;
2478 }
2479 
2480 /*
2481  * Put bootmem huge pages into the standard lists after mem_map is up.
2482  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
2483  */
gather_bootmem_prealloc(void)2484 static void __init gather_bootmem_prealloc(void)
2485 {
2486 	struct huge_bootmem_page *m;
2487 
2488 	list_for_each_entry(m, &huge_boot_pages, list) {
2489 		struct page *page = virt_to_page(m);
2490 		struct hstate *h = m->hstate;
2491 
2492 		VM_BUG_ON(!hstate_is_gigantic(h));
2493 		WARN_ON(page_count(page) != 1);
2494 		prep_compound_gigantic_page(page, huge_page_order(h));
2495 		WARN_ON(PageReserved(page));
2496 		prep_new_huge_page(h, page, page_to_nid(page));
2497 		put_page(page); /* free it into the hugepage allocator */
2498 
2499 		/*
2500 		 * We need to restore the 'stolen' pages to totalram_pages
2501 		 * in order to fix confusing memory reports from free(1) and
2502 		 * other side-effects, like CommitLimit going negative.
2503 		 */
2504 		adjust_managed_page_count(page, pages_per_huge_page(h));
2505 		cond_resched();
2506 	}
2507 }
2508 
hugetlb_hstate_alloc_pages(struct hstate * h)2509 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2510 {
2511 	unsigned long i;
2512 	nodemask_t *node_alloc_noretry;
2513 
2514 	if (!hstate_is_gigantic(h)) {
2515 		/*
2516 		 * Bit mask controlling how hard we retry per-node allocations.
2517 		 * Ignore errors as lower level routines can deal with
2518 		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2519 		 * time, we are likely in bigger trouble.
2520 		 */
2521 		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2522 						GFP_KERNEL);
2523 	} else {
2524 		/* allocations done at boot time */
2525 		node_alloc_noretry = NULL;
2526 	}
2527 
2528 	/* bit mask controlling how hard we retry per-node allocations */
2529 	if (node_alloc_noretry)
2530 		nodes_clear(*node_alloc_noretry);
2531 
2532 	for (i = 0; i < h->max_huge_pages; ++i) {
2533 		if (hstate_is_gigantic(h)) {
2534 			if (hugetlb_cma_size) {
2535 				pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2536 				goto free;
2537 			}
2538 			if (!alloc_bootmem_huge_page(h))
2539 				break;
2540 		} else if (!alloc_pool_huge_page(h,
2541 					 &node_states[N_MEMORY],
2542 					 node_alloc_noretry))
2543 			break;
2544 		cond_resched();
2545 	}
2546 	if (i < h->max_huge_pages) {
2547 		char buf[32];
2548 
2549 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2550 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2551 			h->max_huge_pages, buf, i);
2552 		h->max_huge_pages = i;
2553 	}
2554 free:
2555 	kfree(node_alloc_noretry);
2556 }
2557 
hugetlb_init_hstates(void)2558 static void __init hugetlb_init_hstates(void)
2559 {
2560 	struct hstate *h;
2561 
2562 	for_each_hstate(h) {
2563 		if (minimum_order > huge_page_order(h))
2564 			minimum_order = huge_page_order(h);
2565 
2566 		/* oversize hugepages were init'ed in early boot */
2567 		if (!hstate_is_gigantic(h))
2568 			hugetlb_hstate_alloc_pages(h);
2569 	}
2570 	VM_BUG_ON(minimum_order == UINT_MAX);
2571 }
2572 
report_hugepages(void)2573 static void __init report_hugepages(void)
2574 {
2575 	struct hstate *h;
2576 
2577 	for_each_hstate(h) {
2578 		char buf[32];
2579 
2580 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2581 		pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2582 			buf, h->free_huge_pages);
2583 	}
2584 }
2585 
2586 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)2587 static void try_to_free_low(struct hstate *h, unsigned long count,
2588 						nodemask_t *nodes_allowed)
2589 {
2590 	int i;
2591 
2592 	if (hstate_is_gigantic(h))
2593 		return;
2594 
2595 	for_each_node_mask(i, *nodes_allowed) {
2596 		struct page *page, *next;
2597 		struct list_head *freel = &h->hugepage_freelists[i];
2598 		list_for_each_entry_safe(page, next, freel, lru) {
2599 			if (count >= h->nr_huge_pages)
2600 				return;
2601 			if (PageHighMem(page))
2602 				continue;
2603 			list_del(&page->lru);
2604 			update_and_free_page(h, page);
2605 			h->free_huge_pages--;
2606 			h->free_huge_pages_node[page_to_nid(page)]--;
2607 		}
2608 	}
2609 }
2610 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)2611 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2612 						nodemask_t *nodes_allowed)
2613 {
2614 }
2615 #endif
2616 
2617 /*
2618  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2619  * balanced by operating on them in a round-robin fashion.
2620  * Returns 1 if an adjustment was made.
2621  */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)2622 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2623 				int delta)
2624 {
2625 	int nr_nodes, node;
2626 
2627 	VM_BUG_ON(delta != -1 && delta != 1);
2628 
2629 	if (delta < 0) {
2630 		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2631 			if (h->surplus_huge_pages_node[node])
2632 				goto found;
2633 		}
2634 	} else {
2635 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2636 			if (h->surplus_huge_pages_node[node] <
2637 					h->nr_huge_pages_node[node])
2638 				goto found;
2639 		}
2640 	}
2641 	return 0;
2642 
2643 found:
2644 	h->surplus_huge_pages += delta;
2645 	h->surplus_huge_pages_node[node] += delta;
2646 	return 1;
2647 }
2648 
2649 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)2650 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2651 			      nodemask_t *nodes_allowed)
2652 {
2653 	unsigned long min_count, ret;
2654 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2655 
2656 	/*
2657 	 * Bit mask controlling how hard we retry per-node allocations.
2658 	 * If we can not allocate the bit mask, do not attempt to allocate
2659 	 * the requested huge pages.
2660 	 */
2661 	if (node_alloc_noretry)
2662 		nodes_clear(*node_alloc_noretry);
2663 	else
2664 		return -ENOMEM;
2665 
2666 	spin_lock(&hugetlb_lock);
2667 
2668 	/*
2669 	 * Check for a node specific request.
2670 	 * Changing node specific huge page count may require a corresponding
2671 	 * change to the global count.  In any case, the passed node mask
2672 	 * (nodes_allowed) will restrict alloc/free to the specified node.
2673 	 */
2674 	if (nid != NUMA_NO_NODE) {
2675 		unsigned long old_count = count;
2676 
2677 		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2678 		/*
2679 		 * User may have specified a large count value which caused the
2680 		 * above calculation to overflow.  In this case, they wanted
2681 		 * to allocate as many huge pages as possible.  Set count to
2682 		 * largest possible value to align with their intention.
2683 		 */
2684 		if (count < old_count)
2685 			count = ULONG_MAX;
2686 	}
2687 
2688 	/*
2689 	 * Gigantic pages runtime allocation depend on the capability for large
2690 	 * page range allocation.
2691 	 * If the system does not provide this feature, return an error when
2692 	 * the user tries to allocate gigantic pages but let the user free the
2693 	 * boottime allocated gigantic pages.
2694 	 */
2695 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2696 		if (count > persistent_huge_pages(h)) {
2697 			spin_unlock(&hugetlb_lock);
2698 			NODEMASK_FREE(node_alloc_noretry);
2699 			return -EINVAL;
2700 		}
2701 		/* Fall through to decrease pool */
2702 	}
2703 
2704 	/*
2705 	 * Increase the pool size
2706 	 * First take pages out of surplus state.  Then make up the
2707 	 * remaining difference by allocating fresh huge pages.
2708 	 *
2709 	 * We might race with alloc_surplus_huge_page() here and be unable
2710 	 * to convert a surplus huge page to a normal huge page. That is
2711 	 * not critical, though, it just means the overall size of the
2712 	 * pool might be one hugepage larger than it needs to be, but
2713 	 * within all the constraints specified by the sysctls.
2714 	 */
2715 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2716 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
2717 			break;
2718 	}
2719 
2720 	while (count > persistent_huge_pages(h)) {
2721 		/*
2722 		 * If this allocation races such that we no longer need the
2723 		 * page, free_huge_page will handle it by freeing the page
2724 		 * and reducing the surplus.
2725 		 */
2726 		spin_unlock(&hugetlb_lock);
2727 
2728 		/* yield cpu to avoid soft lockup */
2729 		cond_resched();
2730 
2731 		ret = alloc_pool_huge_page(h, nodes_allowed,
2732 						node_alloc_noretry);
2733 		spin_lock(&hugetlb_lock);
2734 		if (!ret)
2735 			goto out;
2736 
2737 		/* Bail for signals. Probably ctrl-c from user */
2738 		if (signal_pending(current))
2739 			goto out;
2740 	}
2741 
2742 	/*
2743 	 * Decrease the pool size
2744 	 * First return free pages to the buddy allocator (being careful
2745 	 * to keep enough around to satisfy reservations).  Then place
2746 	 * pages into surplus state as needed so the pool will shrink
2747 	 * to the desired size as pages become free.
2748 	 *
2749 	 * By placing pages into the surplus state independent of the
2750 	 * overcommit value, we are allowing the surplus pool size to
2751 	 * exceed overcommit. There are few sane options here. Since
2752 	 * alloc_surplus_huge_page() is checking the global counter,
2753 	 * though, we'll note that we're not allowed to exceed surplus
2754 	 * and won't grow the pool anywhere else. Not until one of the
2755 	 * sysctls are changed, or the surplus pages go out of use.
2756 	 */
2757 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2758 	min_count = max(count, min_count);
2759 	try_to_free_low(h, min_count, nodes_allowed);
2760 	while (min_count < persistent_huge_pages(h)) {
2761 		if (!free_pool_huge_page(h, nodes_allowed, 0))
2762 			break;
2763 		cond_resched_lock(&hugetlb_lock);
2764 	}
2765 	while (count < persistent_huge_pages(h)) {
2766 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
2767 			break;
2768 	}
2769 out:
2770 	h->max_huge_pages = persistent_huge_pages(h);
2771 	spin_unlock(&hugetlb_lock);
2772 
2773 	NODEMASK_FREE(node_alloc_noretry);
2774 
2775 	return 0;
2776 }
2777 
2778 #define HSTATE_ATTR_RO(_name) \
2779 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2780 
2781 #define HSTATE_ATTR(_name) \
2782 	static struct kobj_attribute _name##_attr = \
2783 		__ATTR(_name, 0644, _name##_show, _name##_store)
2784 
2785 static struct kobject *hugepages_kobj;
2786 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2787 
2788 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2789 
kobj_to_hstate(struct kobject * kobj,int * nidp)2790 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2791 {
2792 	int i;
2793 
2794 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
2795 		if (hstate_kobjs[i] == kobj) {
2796 			if (nidp)
2797 				*nidp = NUMA_NO_NODE;
2798 			return &hstates[i];
2799 		}
2800 
2801 	return kobj_to_node_hstate(kobj, nidp);
2802 }
2803 
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2804 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2805 					struct kobj_attribute *attr, char *buf)
2806 {
2807 	struct hstate *h;
2808 	unsigned long nr_huge_pages;
2809 	int nid;
2810 
2811 	h = kobj_to_hstate(kobj, &nid);
2812 	if (nid == NUMA_NO_NODE)
2813 		nr_huge_pages = h->nr_huge_pages;
2814 	else
2815 		nr_huge_pages = h->nr_huge_pages_node[nid];
2816 
2817 	return sprintf(buf, "%lu\n", nr_huge_pages);
2818 }
2819 
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)2820 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2821 					   struct hstate *h, int nid,
2822 					   unsigned long count, size_t len)
2823 {
2824 	int err;
2825 	nodemask_t nodes_allowed, *n_mask;
2826 
2827 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2828 		return -EINVAL;
2829 
2830 	if (nid == NUMA_NO_NODE) {
2831 		/*
2832 		 * global hstate attribute
2833 		 */
2834 		if (!(obey_mempolicy &&
2835 				init_nodemask_of_mempolicy(&nodes_allowed)))
2836 			n_mask = &node_states[N_MEMORY];
2837 		else
2838 			n_mask = &nodes_allowed;
2839 	} else {
2840 		/*
2841 		 * Node specific request.  count adjustment happens in
2842 		 * set_max_huge_pages() after acquiring hugetlb_lock.
2843 		 */
2844 		init_nodemask_of_node(&nodes_allowed, nid);
2845 		n_mask = &nodes_allowed;
2846 	}
2847 
2848 	err = set_max_huge_pages(h, count, nid, n_mask);
2849 
2850 	return err ? err : len;
2851 }
2852 
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)2853 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2854 					 struct kobject *kobj, const char *buf,
2855 					 size_t len)
2856 {
2857 	struct hstate *h;
2858 	unsigned long count;
2859 	int nid;
2860 	int err;
2861 
2862 	err = kstrtoul(buf, 10, &count);
2863 	if (err)
2864 		return err;
2865 
2866 	h = kobj_to_hstate(kobj, &nid);
2867 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2868 }
2869 
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2870 static ssize_t nr_hugepages_show(struct kobject *kobj,
2871 				       struct kobj_attribute *attr, char *buf)
2872 {
2873 	return nr_hugepages_show_common(kobj, attr, buf);
2874 }
2875 
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)2876 static ssize_t nr_hugepages_store(struct kobject *kobj,
2877 	       struct kobj_attribute *attr, const char *buf, size_t len)
2878 {
2879 	return nr_hugepages_store_common(false, kobj, buf, len);
2880 }
2881 HSTATE_ATTR(nr_hugepages);
2882 
2883 #ifdef CONFIG_NUMA
2884 
2885 /*
2886  * hstate attribute for optionally mempolicy-based constraint on persistent
2887  * huge page alloc/free.
2888  */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2889 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2890 				       struct kobj_attribute *attr, char *buf)
2891 {
2892 	return nr_hugepages_show_common(kobj, attr, buf);
2893 }
2894 
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)2895 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2896 	       struct kobj_attribute *attr, const char *buf, size_t len)
2897 {
2898 	return nr_hugepages_store_common(true, kobj, buf, len);
2899 }
2900 HSTATE_ATTR(nr_hugepages_mempolicy);
2901 #endif
2902 
2903 
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2904 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2905 					struct kobj_attribute *attr, char *buf)
2906 {
2907 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2908 	return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2909 }
2910 
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2911 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2912 		struct kobj_attribute *attr, const char *buf, size_t count)
2913 {
2914 	int err;
2915 	unsigned long input;
2916 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2917 
2918 	if (hstate_is_gigantic(h))
2919 		return -EINVAL;
2920 
2921 	err = kstrtoul(buf, 10, &input);
2922 	if (err)
2923 		return err;
2924 
2925 	spin_lock(&hugetlb_lock);
2926 	h->nr_overcommit_huge_pages = input;
2927 	spin_unlock(&hugetlb_lock);
2928 
2929 	return count;
2930 }
2931 HSTATE_ATTR(nr_overcommit_hugepages);
2932 
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2933 static ssize_t free_hugepages_show(struct kobject *kobj,
2934 					struct kobj_attribute *attr, char *buf)
2935 {
2936 	struct hstate *h;
2937 	unsigned long free_huge_pages;
2938 	int nid;
2939 
2940 	h = kobj_to_hstate(kobj, &nid);
2941 	if (nid == NUMA_NO_NODE)
2942 		free_huge_pages = h->free_huge_pages;
2943 	else
2944 		free_huge_pages = h->free_huge_pages_node[nid];
2945 
2946 	return sprintf(buf, "%lu\n", free_huge_pages);
2947 }
2948 HSTATE_ATTR_RO(free_hugepages);
2949 
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2950 static ssize_t resv_hugepages_show(struct kobject *kobj,
2951 					struct kobj_attribute *attr, char *buf)
2952 {
2953 	struct hstate *h = kobj_to_hstate(kobj, NULL);
2954 	return sprintf(buf, "%lu\n", h->resv_huge_pages);
2955 }
2956 HSTATE_ATTR_RO(resv_hugepages);
2957 
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2958 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2959 					struct kobj_attribute *attr, char *buf)
2960 {
2961 	struct hstate *h;
2962 	unsigned long surplus_huge_pages;
2963 	int nid;
2964 
2965 	h = kobj_to_hstate(kobj, &nid);
2966 	if (nid == NUMA_NO_NODE)
2967 		surplus_huge_pages = h->surplus_huge_pages;
2968 	else
2969 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
2970 
2971 	return sprintf(buf, "%lu\n", surplus_huge_pages);
2972 }
2973 HSTATE_ATTR_RO(surplus_hugepages);
2974 
2975 static struct attribute *hstate_attrs[] = {
2976 	&nr_hugepages_attr.attr,
2977 	&nr_overcommit_hugepages_attr.attr,
2978 	&free_hugepages_attr.attr,
2979 	&resv_hugepages_attr.attr,
2980 	&surplus_hugepages_attr.attr,
2981 #ifdef CONFIG_NUMA
2982 	&nr_hugepages_mempolicy_attr.attr,
2983 #endif
2984 	NULL,
2985 };
2986 
2987 static const struct attribute_group hstate_attr_group = {
2988 	.attrs = hstate_attrs,
2989 };
2990 
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)2991 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2992 				    struct kobject **hstate_kobjs,
2993 				    const struct attribute_group *hstate_attr_group)
2994 {
2995 	int retval;
2996 	int hi = hstate_index(h);
2997 
2998 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2999 	if (!hstate_kobjs[hi])
3000 		return -ENOMEM;
3001 
3002 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3003 	if (retval) {
3004 		kobject_put(hstate_kobjs[hi]);
3005 		hstate_kobjs[hi] = NULL;
3006 	}
3007 
3008 	return retval;
3009 }
3010 
hugetlb_sysfs_init(void)3011 static void __init hugetlb_sysfs_init(void)
3012 {
3013 	struct hstate *h;
3014 	int err;
3015 
3016 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3017 	if (!hugepages_kobj)
3018 		return;
3019 
3020 	for_each_hstate(h) {
3021 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3022 					 hstate_kobjs, &hstate_attr_group);
3023 		if (err)
3024 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
3025 	}
3026 }
3027 
3028 #ifdef CONFIG_NUMA
3029 
3030 /*
3031  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3032  * with node devices in node_devices[] using a parallel array.  The array
3033  * index of a node device or _hstate == node id.
3034  * This is here to avoid any static dependency of the node device driver, in
3035  * the base kernel, on the hugetlb module.
3036  */
3037 struct node_hstate {
3038 	struct kobject		*hugepages_kobj;
3039 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
3040 };
3041 static struct node_hstate node_hstates[MAX_NUMNODES];
3042 
3043 /*
3044  * A subset of global hstate attributes for node devices
3045  */
3046 static struct attribute *per_node_hstate_attrs[] = {
3047 	&nr_hugepages_attr.attr,
3048 	&free_hugepages_attr.attr,
3049 	&surplus_hugepages_attr.attr,
3050 	NULL,
3051 };
3052 
3053 static const struct attribute_group per_node_hstate_attr_group = {
3054 	.attrs = per_node_hstate_attrs,
3055 };
3056 
3057 /*
3058  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3059  * Returns node id via non-NULL nidp.
3060  */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)3061 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3062 {
3063 	int nid;
3064 
3065 	for (nid = 0; nid < nr_node_ids; nid++) {
3066 		struct node_hstate *nhs = &node_hstates[nid];
3067 		int i;
3068 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
3069 			if (nhs->hstate_kobjs[i] == kobj) {
3070 				if (nidp)
3071 					*nidp = nid;
3072 				return &hstates[i];
3073 			}
3074 	}
3075 
3076 	BUG();
3077 	return NULL;
3078 }
3079 
3080 /*
3081  * Unregister hstate attributes from a single node device.
3082  * No-op if no hstate attributes attached.
3083  */
hugetlb_unregister_node(struct node * node)3084 static void hugetlb_unregister_node(struct node *node)
3085 {
3086 	struct hstate *h;
3087 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3088 
3089 	if (!nhs->hugepages_kobj)
3090 		return;		/* no hstate attributes */
3091 
3092 	for_each_hstate(h) {
3093 		int idx = hstate_index(h);
3094 		if (nhs->hstate_kobjs[idx]) {
3095 			kobject_put(nhs->hstate_kobjs[idx]);
3096 			nhs->hstate_kobjs[idx] = NULL;
3097 		}
3098 	}
3099 
3100 	kobject_put(nhs->hugepages_kobj);
3101 	nhs->hugepages_kobj = NULL;
3102 }
3103 
3104 
3105 /*
3106  * Register hstate attributes for a single node device.
3107  * No-op if attributes already registered.
3108  */
hugetlb_register_node(struct node * node)3109 static void hugetlb_register_node(struct node *node)
3110 {
3111 	struct hstate *h;
3112 	struct node_hstate *nhs = &node_hstates[node->dev.id];
3113 	int err;
3114 
3115 	if (nhs->hugepages_kobj)
3116 		return;		/* already allocated */
3117 
3118 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3119 							&node->dev.kobj);
3120 	if (!nhs->hugepages_kobj)
3121 		return;
3122 
3123 	for_each_hstate(h) {
3124 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3125 						nhs->hstate_kobjs,
3126 						&per_node_hstate_attr_group);
3127 		if (err) {
3128 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3129 				h->name, node->dev.id);
3130 			hugetlb_unregister_node(node);
3131 			break;
3132 		}
3133 	}
3134 }
3135 
3136 /*
3137  * hugetlb init time:  register hstate attributes for all registered node
3138  * devices of nodes that have memory.  All on-line nodes should have
3139  * registered their associated device by this time.
3140  */
hugetlb_register_all_nodes(void)3141 static void __init hugetlb_register_all_nodes(void)
3142 {
3143 	int nid;
3144 
3145 	for_each_node_state(nid, N_MEMORY) {
3146 		struct node *node = node_devices[nid];
3147 		if (node->dev.id == nid)
3148 			hugetlb_register_node(node);
3149 	}
3150 
3151 	/*
3152 	 * Let the node device driver know we're here so it can
3153 	 * [un]register hstate attributes on node hotplug.
3154 	 */
3155 	register_hugetlbfs_with_node(hugetlb_register_node,
3156 				     hugetlb_unregister_node);
3157 }
3158 #else	/* !CONFIG_NUMA */
3159 
kobj_to_node_hstate(struct kobject * kobj,int * nidp)3160 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3161 {
3162 	BUG();
3163 	if (nidp)
3164 		*nidp = -1;
3165 	return NULL;
3166 }
3167 
hugetlb_register_all_nodes(void)3168 static void hugetlb_register_all_nodes(void) { }
3169 
3170 #endif
3171 
hugetlb_init(void)3172 static int __init hugetlb_init(void)
3173 {
3174 	int i;
3175 
3176 	if (!hugepages_supported()) {
3177 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3178 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3179 		return 0;
3180 	}
3181 
3182 	/*
3183 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3184 	 * architectures depend on setup being done here.
3185 	 */
3186 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3187 	if (!parsed_default_hugepagesz) {
3188 		/*
3189 		 * If we did not parse a default huge page size, set
3190 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3191 		 * number of huge pages for this default size was implicitly
3192 		 * specified, set that here as well.
3193 		 * Note that the implicit setting will overwrite an explicit
3194 		 * setting.  A warning will be printed in this case.
3195 		 */
3196 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3197 		if (default_hstate_max_huge_pages) {
3198 			if (default_hstate.max_huge_pages) {
3199 				char buf[32];
3200 
3201 				string_get_size(huge_page_size(&default_hstate),
3202 					1, STRING_UNITS_2, buf, 32);
3203 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3204 					default_hstate.max_huge_pages, buf);
3205 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3206 					default_hstate_max_huge_pages);
3207 			}
3208 			default_hstate.max_huge_pages =
3209 				default_hstate_max_huge_pages;
3210 		}
3211 	}
3212 
3213 	hugetlb_cma_check();
3214 	hugetlb_init_hstates();
3215 	gather_bootmem_prealloc();
3216 	report_hugepages();
3217 
3218 	hugetlb_sysfs_init();
3219 	hugetlb_register_all_nodes();
3220 	hugetlb_cgroup_file_init();
3221 
3222 #ifdef CONFIG_SMP
3223 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3224 #else
3225 	num_fault_mutexes = 1;
3226 #endif
3227 	hugetlb_fault_mutex_table =
3228 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3229 			      GFP_KERNEL);
3230 	BUG_ON(!hugetlb_fault_mutex_table);
3231 
3232 	for (i = 0; i < num_fault_mutexes; i++)
3233 		mutex_init(&hugetlb_fault_mutex_table[i]);
3234 	return 0;
3235 }
3236 subsys_initcall(hugetlb_init);
3237 
3238 /* Overwritten by architectures with more huge page sizes */
__init(weak)3239 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3240 {
3241 	return size == HPAGE_SIZE;
3242 }
3243 
hugetlb_add_hstate(unsigned int order)3244 void __init hugetlb_add_hstate(unsigned int order)
3245 {
3246 	struct hstate *h;
3247 	unsigned long i;
3248 
3249 	if (size_to_hstate(PAGE_SIZE << order)) {
3250 		return;
3251 	}
3252 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3253 	BUG_ON(order == 0);
3254 	h = &hstates[hugetlb_max_hstate++];
3255 	h->order = order;
3256 	h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3257 	h->nr_huge_pages = 0;
3258 	h->free_huge_pages = 0;
3259 	for (i = 0; i < MAX_NUMNODES; ++i)
3260 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3261 	INIT_LIST_HEAD(&h->hugepage_activelist);
3262 	h->next_nid_to_alloc = first_memory_node;
3263 	h->next_nid_to_free = first_memory_node;
3264 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3265 					huge_page_size(h)/1024);
3266 
3267 	parsed_hstate = h;
3268 }
3269 
3270 /*
3271  * hugepages command line processing
3272  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3273  * specification.  If not, ignore the hugepages value.  hugepages can also
3274  * be the first huge page command line  option in which case it implicitly
3275  * specifies the number of huge pages for the default size.
3276  */
hugepages_setup(char * s)3277 static int __init hugepages_setup(char *s)
3278 {
3279 	unsigned long *mhp;
3280 	static unsigned long *last_mhp;
3281 
3282 	if (!parsed_valid_hugepagesz) {
3283 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3284 		parsed_valid_hugepagesz = true;
3285 		return 0;
3286 	}
3287 
3288 	/*
3289 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3290 	 * yet, so this hugepages= parameter goes to the "default hstate".
3291 	 * Otherwise, it goes with the previously parsed hugepagesz or
3292 	 * default_hugepagesz.
3293 	 */
3294 	else if (!hugetlb_max_hstate)
3295 		mhp = &default_hstate_max_huge_pages;
3296 	else
3297 		mhp = &parsed_hstate->max_huge_pages;
3298 
3299 	if (mhp == last_mhp) {
3300 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3301 		return 0;
3302 	}
3303 
3304 	if (sscanf(s, "%lu", mhp) <= 0)
3305 		*mhp = 0;
3306 
3307 	/*
3308 	 * Global state is always initialized later in hugetlb_init.
3309 	 * But we need to allocate >= MAX_ORDER hstates here early to still
3310 	 * use the bootmem allocator.
3311 	 */
3312 	if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3313 		hugetlb_hstate_alloc_pages(parsed_hstate);
3314 
3315 	last_mhp = mhp;
3316 
3317 	return 1;
3318 }
3319 __setup("hugepages=", hugepages_setup);
3320 
3321 /*
3322  * hugepagesz command line processing
3323  * A specific huge page size can only be specified once with hugepagesz.
3324  * hugepagesz is followed by hugepages on the command line.  The global
3325  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3326  * hugepagesz argument was valid.
3327  */
hugepagesz_setup(char * s)3328 static int __init hugepagesz_setup(char *s)
3329 {
3330 	unsigned long size;
3331 	struct hstate *h;
3332 
3333 	parsed_valid_hugepagesz = false;
3334 	size = (unsigned long)memparse(s, NULL);
3335 
3336 	if (!arch_hugetlb_valid_size(size)) {
3337 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3338 		return 0;
3339 	}
3340 
3341 	h = size_to_hstate(size);
3342 	if (h) {
3343 		/*
3344 		 * hstate for this size already exists.  This is normally
3345 		 * an error, but is allowed if the existing hstate is the
3346 		 * default hstate.  More specifically, it is only allowed if
3347 		 * the number of huge pages for the default hstate was not
3348 		 * previously specified.
3349 		 */
3350 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3351 		    default_hstate.max_huge_pages) {
3352 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3353 			return 0;
3354 		}
3355 
3356 		/*
3357 		 * No need to call hugetlb_add_hstate() as hstate already
3358 		 * exists.  But, do set parsed_hstate so that a following
3359 		 * hugepages= parameter will be applied to this hstate.
3360 		 */
3361 		parsed_hstate = h;
3362 		parsed_valid_hugepagesz = true;
3363 		return 1;
3364 	}
3365 
3366 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3367 	parsed_valid_hugepagesz = true;
3368 	return 1;
3369 }
3370 __setup("hugepagesz=", hugepagesz_setup);
3371 
3372 /*
3373  * default_hugepagesz command line input
3374  * Only one instance of default_hugepagesz allowed on command line.
3375  */
default_hugepagesz_setup(char * s)3376 static int __init default_hugepagesz_setup(char *s)
3377 {
3378 	unsigned long size;
3379 
3380 	parsed_valid_hugepagesz = false;
3381 	if (parsed_default_hugepagesz) {
3382 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3383 		return 0;
3384 	}
3385 
3386 	size = (unsigned long)memparse(s, NULL);
3387 
3388 	if (!arch_hugetlb_valid_size(size)) {
3389 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3390 		return 0;
3391 	}
3392 
3393 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3394 	parsed_valid_hugepagesz = true;
3395 	parsed_default_hugepagesz = true;
3396 	default_hstate_idx = hstate_index(size_to_hstate(size));
3397 
3398 	/*
3399 	 * The number of default huge pages (for this size) could have been
3400 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
3401 	 * then default_hstate_max_huge_pages is set.  If the default huge
3402 	 * page size is gigantic (>= MAX_ORDER), then the pages must be
3403 	 * allocated here from bootmem allocator.
3404 	 */
3405 	if (default_hstate_max_huge_pages) {
3406 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3407 		if (hstate_is_gigantic(&default_hstate))
3408 			hugetlb_hstate_alloc_pages(&default_hstate);
3409 		default_hstate_max_huge_pages = 0;
3410 	}
3411 
3412 	return 1;
3413 }
3414 __setup("default_hugepagesz=", default_hugepagesz_setup);
3415 
allowed_mems_nr(struct hstate * h)3416 static unsigned int allowed_mems_nr(struct hstate *h)
3417 {
3418 	int node;
3419 	unsigned int nr = 0;
3420 	nodemask_t *mpol_allowed;
3421 	unsigned int *array = h->free_huge_pages_node;
3422 	gfp_t gfp_mask = htlb_alloc_mask(h);
3423 
3424 	mpol_allowed = policy_nodemask_current(gfp_mask);
3425 
3426 	for_each_node_mask(node, cpuset_current_mems_allowed) {
3427 		if (!mpol_allowed ||
3428 		    (mpol_allowed && node_isset(node, *mpol_allowed)))
3429 			nr += array[node];
3430 	}
3431 
3432 	return nr;
3433 }
3434 
3435 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)3436 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3437 					  void *buffer, size_t *length,
3438 					  loff_t *ppos, unsigned long *out)
3439 {
3440 	struct ctl_table dup_table;
3441 
3442 	/*
3443 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3444 	 * can duplicate the @table and alter the duplicate of it.
3445 	 */
3446 	dup_table = *table;
3447 	dup_table.data = out;
3448 
3449 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3450 }
3451 
hugetlb_sysctl_handler_common(bool obey_mempolicy,struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3452 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3453 			 struct ctl_table *table, int write,
3454 			 void *buffer, size_t *length, loff_t *ppos)
3455 {
3456 	struct hstate *h = &default_hstate;
3457 	unsigned long tmp = h->max_huge_pages;
3458 	int ret;
3459 
3460 	if (!hugepages_supported())
3461 		return -EOPNOTSUPP;
3462 
3463 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3464 					     &tmp);
3465 	if (ret)
3466 		goto out;
3467 
3468 	if (write)
3469 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
3470 						  NUMA_NO_NODE, tmp, *length);
3471 out:
3472 	return ret;
3473 }
3474 
hugetlb_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3475 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3476 			  void *buffer, size_t *length, loff_t *ppos)
3477 {
3478 
3479 	return hugetlb_sysctl_handler_common(false, table, write,
3480 							buffer, length, ppos);
3481 }
3482 
3483 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3484 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3485 			  void *buffer, size_t *length, loff_t *ppos)
3486 {
3487 	return hugetlb_sysctl_handler_common(true, table, write,
3488 							buffer, length, ppos);
3489 }
3490 #endif /* CONFIG_NUMA */
3491 
hugetlb_overcommit_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3492 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3493 		void *buffer, size_t *length, loff_t *ppos)
3494 {
3495 	struct hstate *h = &default_hstate;
3496 	unsigned long tmp;
3497 	int ret;
3498 
3499 	if (!hugepages_supported())
3500 		return -EOPNOTSUPP;
3501 
3502 	tmp = h->nr_overcommit_huge_pages;
3503 
3504 	if (write && hstate_is_gigantic(h))
3505 		return -EINVAL;
3506 
3507 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3508 					     &tmp);
3509 	if (ret)
3510 		goto out;
3511 
3512 	if (write) {
3513 		spin_lock(&hugetlb_lock);
3514 		h->nr_overcommit_huge_pages = tmp;
3515 		spin_unlock(&hugetlb_lock);
3516 	}
3517 out:
3518 	return ret;
3519 }
3520 
3521 #endif /* CONFIG_SYSCTL */
3522 
hugetlb_report_meminfo(struct seq_file * m)3523 void hugetlb_report_meminfo(struct seq_file *m)
3524 {
3525 	struct hstate *h;
3526 	unsigned long total = 0;
3527 
3528 	if (!hugepages_supported())
3529 		return;
3530 
3531 	for_each_hstate(h) {
3532 		unsigned long count = h->nr_huge_pages;
3533 
3534 		total += (PAGE_SIZE << huge_page_order(h)) * count;
3535 
3536 		if (h == &default_hstate)
3537 			seq_printf(m,
3538 				   "HugePages_Total:   %5lu\n"
3539 				   "HugePages_Free:    %5lu\n"
3540 				   "HugePages_Rsvd:    %5lu\n"
3541 				   "HugePages_Surp:    %5lu\n"
3542 				   "Hugepagesize:   %8lu kB\n",
3543 				   count,
3544 				   h->free_huge_pages,
3545 				   h->resv_huge_pages,
3546 				   h->surplus_huge_pages,
3547 				   (PAGE_SIZE << huge_page_order(h)) / 1024);
3548 	}
3549 
3550 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3551 }
3552 
hugetlb_report_node_meminfo(char * buf,int len,int nid)3553 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3554 {
3555 	struct hstate *h = &default_hstate;
3556 
3557 	if (!hugepages_supported())
3558 		return 0;
3559 
3560 	return sysfs_emit_at(buf, len,
3561 			     "Node %d HugePages_Total: %5u\n"
3562 			     "Node %d HugePages_Free:  %5u\n"
3563 			     "Node %d HugePages_Surp:  %5u\n",
3564 			     nid, h->nr_huge_pages_node[nid],
3565 			     nid, h->free_huge_pages_node[nid],
3566 			     nid, h->surplus_huge_pages_node[nid]);
3567 }
3568 
hugetlb_show_meminfo(void)3569 void hugetlb_show_meminfo(void)
3570 {
3571 	struct hstate *h;
3572 	int nid;
3573 
3574 	if (!hugepages_supported())
3575 		return;
3576 
3577 	for_each_node_state(nid, N_MEMORY)
3578 		for_each_hstate(h)
3579 			pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3580 				nid,
3581 				h->nr_huge_pages_node[nid],
3582 				h->free_huge_pages_node[nid],
3583 				h->surplus_huge_pages_node[nid],
3584 				1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3585 }
3586 
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)3587 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3588 {
3589 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3590 		   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3591 }
3592 
3593 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)3594 unsigned long hugetlb_total_pages(void)
3595 {
3596 	struct hstate *h;
3597 	unsigned long nr_total_pages = 0;
3598 
3599 	for_each_hstate(h)
3600 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3601 	return nr_total_pages;
3602 }
3603 
hugetlb_acct_memory(struct hstate * h,long delta)3604 static int hugetlb_acct_memory(struct hstate *h, long delta)
3605 {
3606 	int ret = -ENOMEM;
3607 
3608 	spin_lock(&hugetlb_lock);
3609 	/*
3610 	 * When cpuset is configured, it breaks the strict hugetlb page
3611 	 * reservation as the accounting is done on a global variable. Such
3612 	 * reservation is completely rubbish in the presence of cpuset because
3613 	 * the reservation is not checked against page availability for the
3614 	 * current cpuset. Application can still potentially OOM'ed by kernel
3615 	 * with lack of free htlb page in cpuset that the task is in.
3616 	 * Attempt to enforce strict accounting with cpuset is almost
3617 	 * impossible (or too ugly) because cpuset is too fluid that
3618 	 * task or memory node can be dynamically moved between cpusets.
3619 	 *
3620 	 * The change of semantics for shared hugetlb mapping with cpuset is
3621 	 * undesirable. However, in order to preserve some of the semantics,
3622 	 * we fall back to check against current free page availability as
3623 	 * a best attempt and hopefully to minimize the impact of changing
3624 	 * semantics that cpuset has.
3625 	 *
3626 	 * Apart from cpuset, we also have memory policy mechanism that
3627 	 * also determines from which node the kernel will allocate memory
3628 	 * in a NUMA system. So similar to cpuset, we also should consider
3629 	 * the memory policy of the current task. Similar to the description
3630 	 * above.
3631 	 */
3632 	if (delta > 0) {
3633 		if (gather_surplus_pages(h, delta) < 0)
3634 			goto out;
3635 
3636 		if (delta > allowed_mems_nr(h)) {
3637 			return_unused_surplus_pages(h, delta);
3638 			goto out;
3639 		}
3640 	}
3641 
3642 	ret = 0;
3643 	if (delta < 0)
3644 		return_unused_surplus_pages(h, (unsigned long) -delta);
3645 
3646 out:
3647 	spin_unlock(&hugetlb_lock);
3648 	return ret;
3649 }
3650 
hugetlb_vm_op_open(struct vm_area_struct * vma)3651 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3652 {
3653 	struct resv_map *resv = vma_resv_map(vma);
3654 
3655 	/*
3656 	 * This new VMA should share its siblings reservation map if present.
3657 	 * The VMA will only ever have a valid reservation map pointer where
3658 	 * it is being copied for another still existing VMA.  As that VMA
3659 	 * has a reference to the reservation map it cannot disappear until
3660 	 * after this open call completes.  It is therefore safe to take a
3661 	 * new reference here without additional locking.
3662 	 */
3663 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
3664 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
3665 		kref_get(&resv->refs);
3666 	}
3667 }
3668 
hugetlb_vm_op_close(struct vm_area_struct * vma)3669 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3670 {
3671 	struct hstate *h = hstate_vma(vma);
3672 	struct resv_map *resv = vma_resv_map(vma);
3673 	struct hugepage_subpool *spool = subpool_vma(vma);
3674 	unsigned long reserve, start, end;
3675 	long gbl_reserve;
3676 
3677 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3678 		return;
3679 
3680 	start = vma_hugecache_offset(h, vma, vma->vm_start);
3681 	end = vma_hugecache_offset(h, vma, vma->vm_end);
3682 
3683 	reserve = (end - start) - region_count(resv, start, end);
3684 	hugetlb_cgroup_uncharge_counter(resv, start, end);
3685 	if (reserve) {
3686 		/*
3687 		 * Decrement reserve counts.  The global reserve count may be
3688 		 * adjusted if the subpool has a minimum size.
3689 		 */
3690 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3691 		hugetlb_acct_memory(h, -gbl_reserve);
3692 	}
3693 
3694 	kref_put(&resv->refs, resv_map_release);
3695 }
3696 
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)3697 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3698 {
3699 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
3700 		return -EINVAL;
3701 	return 0;
3702 }
3703 
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)3704 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3705 {
3706 	struct hstate *hstate = hstate_vma(vma);
3707 
3708 	return 1UL << huge_page_shift(hstate);
3709 }
3710 
3711 /*
3712  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3713  * handle_mm_fault() to try to instantiate regular-sized pages in the
3714  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3715  * this far.
3716  */
hugetlb_vm_op_fault(struct vm_fault * vmf)3717 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3718 {
3719 	BUG();
3720 	return 0;
3721 }
3722 
3723 /*
3724  * When a new function is introduced to vm_operations_struct and added
3725  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3726  * This is because under System V memory model, mappings created via
3727  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3728  * their original vm_ops are overwritten with shm_vm_ops.
3729  */
3730 const struct vm_operations_struct hugetlb_vm_ops = {
3731 	.fault = hugetlb_vm_op_fault,
3732 	.open = hugetlb_vm_op_open,
3733 	.close = hugetlb_vm_op_close,
3734 	.split = hugetlb_vm_op_split,
3735 	.pagesize = hugetlb_vm_op_pagesize,
3736 };
3737 
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)3738 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3739 				int writable)
3740 {
3741 	pte_t entry;
3742 
3743 	if (writable) {
3744 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3745 					 vma->vm_page_prot)));
3746 	} else {
3747 		entry = huge_pte_wrprotect(mk_huge_pte(page,
3748 					   vma->vm_page_prot));
3749 	}
3750 	entry = pte_mkyoung(entry);
3751 	entry = pte_mkhuge(entry);
3752 	entry = arch_make_huge_pte(entry, vma, page, writable);
3753 
3754 	return entry;
3755 }
3756 
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)3757 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3758 				   unsigned long address, pte_t *ptep)
3759 {
3760 	pte_t entry;
3761 
3762 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3763 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3764 		update_mmu_cache(vma, address, ptep);
3765 }
3766 
is_hugetlb_entry_migration(pte_t pte)3767 bool is_hugetlb_entry_migration(pte_t pte)
3768 {
3769 	swp_entry_t swp;
3770 
3771 	if (huge_pte_none(pte) || pte_present(pte))
3772 		return false;
3773 	swp = pte_to_swp_entry(pte);
3774 	if (is_migration_entry(swp))
3775 		return true;
3776 	else
3777 		return false;
3778 }
3779 
is_hugetlb_entry_hwpoisoned(pte_t pte)3780 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3781 {
3782 	swp_entry_t swp;
3783 
3784 	if (huge_pte_none(pte) || pte_present(pte))
3785 		return false;
3786 	swp = pte_to_swp_entry(pte);
3787 	if (is_hwpoison_entry(swp))
3788 		return true;
3789 	else
3790 		return false;
3791 }
3792 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * vma)3793 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3794 			    struct vm_area_struct *vma)
3795 {
3796 	pte_t *src_pte, *dst_pte, entry, dst_entry;
3797 	struct page *ptepage;
3798 	unsigned long addr;
3799 	int cow;
3800 	struct hstate *h = hstate_vma(vma);
3801 	unsigned long sz = huge_page_size(h);
3802 	struct address_space *mapping = vma->vm_file->f_mapping;
3803 	struct mmu_notifier_range range;
3804 	int ret = 0;
3805 
3806 	cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3807 
3808 	if (cow) {
3809 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3810 					vma->vm_start,
3811 					vma->vm_end);
3812 		mmu_notifier_invalidate_range_start(&range);
3813 	} else {
3814 		/*
3815 		 * For shared mappings i_mmap_rwsem must be held to call
3816 		 * huge_pte_alloc, otherwise the returned ptep could go
3817 		 * away if part of a shared pmd and another thread calls
3818 		 * huge_pmd_unshare.
3819 		 */
3820 		i_mmap_lock_read(mapping);
3821 	}
3822 
3823 	for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3824 		spinlock_t *src_ptl, *dst_ptl;
3825 		src_pte = huge_pte_offset(src, addr, sz);
3826 		if (!src_pte)
3827 			continue;
3828 		dst_pte = huge_pte_alloc(dst, vma, addr, sz);
3829 		if (!dst_pte) {
3830 			ret = -ENOMEM;
3831 			break;
3832 		}
3833 
3834 		/*
3835 		 * If the pagetables are shared don't copy or take references.
3836 		 * dst_pte == src_pte is the common case of src/dest sharing.
3837 		 *
3838 		 * However, src could have 'unshared' and dst shares with
3839 		 * another vma.  If dst_pte !none, this implies sharing.
3840 		 * Check here before taking page table lock, and once again
3841 		 * after taking the lock below.
3842 		 */
3843 		dst_entry = huge_ptep_get(dst_pte);
3844 		if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3845 			continue;
3846 
3847 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
3848 		src_ptl = huge_pte_lockptr(h, src, src_pte);
3849 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3850 		entry = huge_ptep_get(src_pte);
3851 		dst_entry = huge_ptep_get(dst_pte);
3852 		if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3853 			/*
3854 			 * Skip if src entry none.  Also, skip in the
3855 			 * unlikely case dst entry !none as this implies
3856 			 * sharing with another vma.
3857 			 */
3858 			;
3859 		} else if (unlikely(is_hugetlb_entry_migration(entry) ||
3860 				    is_hugetlb_entry_hwpoisoned(entry))) {
3861 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
3862 
3863 			if (is_write_migration_entry(swp_entry) && cow) {
3864 				/*
3865 				 * COW mappings require pages in both
3866 				 * parent and child to be set to read.
3867 				 */
3868 				make_migration_entry_read(&swp_entry);
3869 				entry = swp_entry_to_pte(swp_entry);
3870 				set_huge_swap_pte_at(src, addr, src_pte,
3871 						     entry, sz);
3872 			}
3873 			set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3874 		} else {
3875 			if (cow) {
3876 				/*
3877 				 * No need to notify as we are downgrading page
3878 				 * table protection not changing it to point
3879 				 * to a new page.
3880 				 *
3881 				 * See Documentation/vm/mmu_notifier.rst
3882 				 */
3883 				huge_ptep_set_wrprotect(src, addr, src_pte);
3884 			}
3885 			entry = huge_ptep_get(src_pte);
3886 			ptepage = pte_page(entry);
3887 			get_page(ptepage);
3888 			page_dup_rmap(ptepage, true);
3889 			set_huge_pte_at(dst, addr, dst_pte, entry);
3890 			hugetlb_count_add(pages_per_huge_page(h), dst);
3891 		}
3892 		spin_unlock(src_ptl);
3893 		spin_unlock(dst_ptl);
3894 	}
3895 
3896 	if (cow)
3897 		mmu_notifier_invalidate_range_end(&range);
3898 	else
3899 		i_mmap_unlock_read(mapping);
3900 
3901 	return ret;
3902 }
3903 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)3904 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3905 			    unsigned long start, unsigned long end,
3906 			    struct page *ref_page)
3907 {
3908 	struct mm_struct *mm = vma->vm_mm;
3909 	unsigned long address;
3910 	pte_t *ptep;
3911 	pte_t pte;
3912 	spinlock_t *ptl;
3913 	struct page *page;
3914 	struct hstate *h = hstate_vma(vma);
3915 	unsigned long sz = huge_page_size(h);
3916 	struct mmu_notifier_range range;
3917 	bool force_flush = false;
3918 
3919 	WARN_ON(!is_vm_hugetlb_page(vma));
3920 	BUG_ON(start & ~huge_page_mask(h));
3921 	BUG_ON(end & ~huge_page_mask(h));
3922 
3923 	/*
3924 	 * This is a hugetlb vma, all the pte entries should point
3925 	 * to huge page.
3926 	 */
3927 	tlb_change_page_size(tlb, sz);
3928 	tlb_start_vma(tlb, vma);
3929 
3930 	/*
3931 	 * If sharing possible, alert mmu notifiers of worst case.
3932 	 */
3933 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3934 				end);
3935 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3936 	mmu_notifier_invalidate_range_start(&range);
3937 	address = start;
3938 	for (; address < end; address += sz) {
3939 		ptep = huge_pte_offset(mm, address, sz);
3940 		if (!ptep)
3941 			continue;
3942 
3943 		ptl = huge_pte_lock(h, mm, ptep);
3944 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3945 			spin_unlock(ptl);
3946 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
3947 			force_flush = true;
3948 			continue;
3949 		}
3950 
3951 		pte = huge_ptep_get(ptep);
3952 		if (huge_pte_none(pte)) {
3953 			spin_unlock(ptl);
3954 			continue;
3955 		}
3956 
3957 		/*
3958 		 * Migrating hugepage or HWPoisoned hugepage is already
3959 		 * unmapped and its refcount is dropped, so just clear pte here.
3960 		 */
3961 		if (unlikely(!pte_present(pte))) {
3962 			huge_pte_clear(mm, address, ptep, sz);
3963 			spin_unlock(ptl);
3964 			continue;
3965 		}
3966 
3967 		page = pte_page(pte);
3968 		/*
3969 		 * If a reference page is supplied, it is because a specific
3970 		 * page is being unmapped, not a range. Ensure the page we
3971 		 * are about to unmap is the actual page of interest.
3972 		 */
3973 		if (ref_page) {
3974 			if (page != ref_page) {
3975 				spin_unlock(ptl);
3976 				continue;
3977 			}
3978 			/*
3979 			 * Mark the VMA as having unmapped its page so that
3980 			 * future faults in this VMA will fail rather than
3981 			 * looking like data was lost
3982 			 */
3983 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3984 		}
3985 
3986 		pte = huge_ptep_get_and_clear(mm, address, ptep);
3987 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3988 		if (huge_pte_dirty(pte))
3989 			set_page_dirty(page);
3990 
3991 		hugetlb_count_sub(pages_per_huge_page(h), mm);
3992 		page_remove_rmap(page, true);
3993 
3994 		spin_unlock(ptl);
3995 		tlb_remove_page_size(tlb, page, huge_page_size(h));
3996 		/*
3997 		 * Bail out after unmapping reference page if supplied
3998 		 */
3999 		if (ref_page)
4000 			break;
4001 	}
4002 	mmu_notifier_invalidate_range_end(&range);
4003 	tlb_end_vma(tlb, vma);
4004 
4005 	/*
4006 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
4007 	 * could defer the flush until now, since by holding i_mmap_rwsem we
4008 	 * guaranteed that the last refernece would not be dropped. But we must
4009 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
4010 	 * dropped and the last reference to the shared PMDs page might be
4011 	 * dropped as well.
4012 	 *
4013 	 * In theory we could defer the freeing of the PMD pages as well, but
4014 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
4015 	 * detect sharing, so we cannot defer the release of the page either.
4016 	 * Instead, do flush now.
4017 	 */
4018 	if (force_flush)
4019 		tlb_flush_mmu_tlbonly(tlb);
4020 }
4021 
__unmap_hugepage_range_final(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)4022 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4023 			  struct vm_area_struct *vma, unsigned long start,
4024 			  unsigned long end, struct page *ref_page)
4025 {
4026 	__unmap_hugepage_range(tlb, vma, start, end, ref_page);
4027 
4028 	/*
4029 	 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4030 	 * test will fail on a vma being torn down, and not grab a page table
4031 	 * on its way out.  We're lucky that the flag has such an appropriate
4032 	 * name, and can in fact be safely cleared here. We could clear it
4033 	 * before the __unmap_hugepage_range above, but all that's necessary
4034 	 * is to clear it before releasing the i_mmap_rwsem. This works
4035 	 * because in the context this is called, the VMA is about to be
4036 	 * destroyed and the i_mmap_rwsem is held.
4037 	 */
4038 	vma->vm_flags &= ~VM_MAYSHARE;
4039 }
4040 
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)4041 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4042 			  unsigned long end, struct page *ref_page)
4043 {
4044 	struct mm_struct *mm;
4045 	struct mmu_gather tlb;
4046 	unsigned long tlb_start = start;
4047 	unsigned long tlb_end = end;
4048 
4049 	/*
4050 	 * If shared PMDs were possibly used within this vma range, adjust
4051 	 * start/end for worst case tlb flushing.
4052 	 * Note that we can not be sure if PMDs are shared until we try to
4053 	 * unmap pages.  However, we want to make sure TLB flushing covers
4054 	 * the largest possible range.
4055 	 */
4056 	adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4057 
4058 	mm = vma->vm_mm;
4059 
4060 	tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4061 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4062 	tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4063 }
4064 
4065 /*
4066  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4067  * mappping it owns the reserve page for. The intention is to unmap the page
4068  * from other VMAs and let the children be SIGKILLed if they are faulting the
4069  * same region.
4070  */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)4071 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4072 			      struct page *page, unsigned long address)
4073 {
4074 	struct hstate *h = hstate_vma(vma);
4075 	struct vm_area_struct *iter_vma;
4076 	struct address_space *mapping;
4077 	pgoff_t pgoff;
4078 
4079 	/*
4080 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4081 	 * from page cache lookup which is in HPAGE_SIZE units.
4082 	 */
4083 	address = address & huge_page_mask(h);
4084 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4085 			vma->vm_pgoff;
4086 	mapping = vma->vm_file->f_mapping;
4087 
4088 	/*
4089 	 * Take the mapping lock for the duration of the table walk. As
4090 	 * this mapping should be shared between all the VMAs,
4091 	 * __unmap_hugepage_range() is called as the lock is already held
4092 	 */
4093 	i_mmap_lock_write(mapping);
4094 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4095 		/* Do not unmap the current VMA */
4096 		if (iter_vma == vma)
4097 			continue;
4098 
4099 		/*
4100 		 * Shared VMAs have their own reserves and do not affect
4101 		 * MAP_PRIVATE accounting but it is possible that a shared
4102 		 * VMA is using the same page so check and skip such VMAs.
4103 		 */
4104 		if (iter_vma->vm_flags & VM_MAYSHARE)
4105 			continue;
4106 
4107 		/*
4108 		 * Unmap the page from other VMAs without their own reserves.
4109 		 * They get marked to be SIGKILLed if they fault in these
4110 		 * areas. This is because a future no-page fault on this VMA
4111 		 * could insert a zeroed page instead of the data existing
4112 		 * from the time of fork. This would look like data corruption
4113 		 */
4114 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4115 			unmap_hugepage_range(iter_vma, address,
4116 					     address + huge_page_size(h), page);
4117 	}
4118 	i_mmap_unlock_write(mapping);
4119 }
4120 
4121 /*
4122  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4123  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4124  * cannot race with other handlers or page migration.
4125  * Keep the pte_same checks anyway to make transition from the mutex easier.
4126  */
hugetlb_cow(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,struct page * pagecache_page,spinlock_t * ptl)4127 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4128 		       unsigned long address, pte_t *ptep,
4129 		       struct page *pagecache_page, spinlock_t *ptl)
4130 {
4131 	pte_t pte;
4132 	struct hstate *h = hstate_vma(vma);
4133 	struct page *old_page, *new_page;
4134 	int outside_reserve = 0;
4135 	vm_fault_t ret = 0;
4136 	unsigned long haddr = address & huge_page_mask(h);
4137 	struct mmu_notifier_range range;
4138 
4139 	pte = huge_ptep_get(ptep);
4140 	old_page = pte_page(pte);
4141 
4142 retry_avoidcopy:
4143 	/* If no-one else is actually using this page, avoid the copy
4144 	 * and just make the page writable */
4145 	if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4146 		page_move_anon_rmap(old_page, vma);
4147 		set_huge_ptep_writable(vma, haddr, ptep);
4148 		return 0;
4149 	}
4150 
4151 	/*
4152 	 * If the process that created a MAP_PRIVATE mapping is about to
4153 	 * perform a COW due to a shared page count, attempt to satisfy
4154 	 * the allocation without using the existing reserves. The pagecache
4155 	 * page is used to determine if the reserve at this address was
4156 	 * consumed or not. If reserves were used, a partial faulted mapping
4157 	 * at the time of fork() could consume its reserves on COW instead
4158 	 * of the full address range.
4159 	 */
4160 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4161 			old_page != pagecache_page)
4162 		outside_reserve = 1;
4163 
4164 	get_page(old_page);
4165 
4166 	/*
4167 	 * Drop page table lock as buddy allocator may be called. It will
4168 	 * be acquired again before returning to the caller, as expected.
4169 	 */
4170 	spin_unlock(ptl);
4171 	new_page = alloc_huge_page(vma, haddr, outside_reserve);
4172 
4173 	if (IS_ERR(new_page)) {
4174 		/*
4175 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
4176 		 * it is due to references held by a child and an insufficient
4177 		 * huge page pool. To guarantee the original mappers
4178 		 * reliability, unmap the page from child processes. The child
4179 		 * may get SIGKILLed if it later faults.
4180 		 */
4181 		if (outside_reserve) {
4182 			struct address_space *mapping = vma->vm_file->f_mapping;
4183 			pgoff_t idx;
4184 			u32 hash;
4185 
4186 			put_page(old_page);
4187 			BUG_ON(huge_pte_none(pte));
4188 			/*
4189 			 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4190 			 * unmapping.  unmapping needs to hold i_mmap_rwsem
4191 			 * in write mode.  Dropping i_mmap_rwsem in read mode
4192 			 * here is OK as COW mappings do not interact with
4193 			 * PMD sharing.
4194 			 *
4195 			 * Reacquire both after unmap operation.
4196 			 */
4197 			idx = vma_hugecache_offset(h, vma, haddr);
4198 			hash = hugetlb_fault_mutex_hash(mapping, idx);
4199 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4200 			i_mmap_unlock_read(mapping);
4201 
4202 			unmap_ref_private(mm, vma, old_page, haddr);
4203 
4204 			i_mmap_lock_read(mapping);
4205 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
4206 			spin_lock(ptl);
4207 			ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4208 			if (likely(ptep &&
4209 				   pte_same(huge_ptep_get(ptep), pte)))
4210 				goto retry_avoidcopy;
4211 			/*
4212 			 * race occurs while re-acquiring page table
4213 			 * lock, and our job is done.
4214 			 */
4215 			return 0;
4216 		}
4217 
4218 		ret = vmf_error(PTR_ERR(new_page));
4219 		goto out_release_old;
4220 	}
4221 
4222 	/*
4223 	 * When the original hugepage is shared one, it does not have
4224 	 * anon_vma prepared.
4225 	 */
4226 	if (unlikely(anon_vma_prepare(vma))) {
4227 		ret = VM_FAULT_OOM;
4228 		goto out_release_all;
4229 	}
4230 
4231 	copy_user_huge_page(new_page, old_page, address, vma,
4232 			    pages_per_huge_page(h));
4233 	__SetPageUptodate(new_page);
4234 
4235 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4236 				haddr + huge_page_size(h));
4237 	mmu_notifier_invalidate_range_start(&range);
4238 
4239 	/*
4240 	 * Retake the page table lock to check for racing updates
4241 	 * before the page tables are altered
4242 	 */
4243 	spin_lock(ptl);
4244 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4245 	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4246 		ClearPagePrivate(new_page);
4247 
4248 		/* Break COW */
4249 		huge_ptep_clear_flush(vma, haddr, ptep);
4250 		mmu_notifier_invalidate_range(mm, range.start, range.end);
4251 		set_huge_pte_at(mm, haddr, ptep,
4252 				make_huge_pte(vma, new_page, 1));
4253 		page_remove_rmap(old_page, true);
4254 		hugepage_add_new_anon_rmap(new_page, vma, haddr);
4255 		set_page_huge_active(new_page);
4256 		/* Make the old page be freed below */
4257 		new_page = old_page;
4258 	}
4259 	spin_unlock(ptl);
4260 	mmu_notifier_invalidate_range_end(&range);
4261 out_release_all:
4262 	restore_reserve_on_error(h, vma, haddr, new_page);
4263 	put_page(new_page);
4264 out_release_old:
4265 	put_page(old_page);
4266 
4267 	spin_lock(ptl); /* Caller expects lock to be held */
4268 	return ret;
4269 }
4270 
4271 /* Return the pagecache page at a given address within a VMA */
hugetlbfs_pagecache_page(struct hstate * h,struct vm_area_struct * vma,unsigned long address)4272 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4273 			struct vm_area_struct *vma, unsigned long address)
4274 {
4275 	struct address_space *mapping;
4276 	pgoff_t idx;
4277 
4278 	mapping = vma->vm_file->f_mapping;
4279 	idx = vma_hugecache_offset(h, vma, address);
4280 
4281 	return find_lock_page(mapping, idx);
4282 }
4283 
4284 /*
4285  * Return whether there is a pagecache page to back given address within VMA.
4286  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4287  */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)4288 static bool hugetlbfs_pagecache_present(struct hstate *h,
4289 			struct vm_area_struct *vma, unsigned long address)
4290 {
4291 	struct address_space *mapping;
4292 	pgoff_t idx;
4293 	struct page *page;
4294 
4295 	mapping = vma->vm_file->f_mapping;
4296 	idx = vma_hugecache_offset(h, vma, address);
4297 
4298 	page = find_get_page(mapping, idx);
4299 	if (page)
4300 		put_page(page);
4301 	return page != NULL;
4302 }
4303 
huge_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t idx)4304 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4305 			   pgoff_t idx)
4306 {
4307 	struct inode *inode = mapping->host;
4308 	struct hstate *h = hstate_inode(inode);
4309 	int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4310 
4311 	if (err)
4312 		return err;
4313 	ClearPagePrivate(page);
4314 
4315 	/*
4316 	 * set page dirty so that it will not be removed from cache/file
4317 	 * by non-hugetlbfs specific code paths.
4318 	 */
4319 	set_page_dirty(page);
4320 
4321 	spin_lock(&inode->i_lock);
4322 	inode->i_blocks += blocks_per_huge_page(h);
4323 	spin_unlock(&inode->i_lock);
4324 	return 0;
4325 }
4326 
hugetlb_handle_userfault(struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned int flags,unsigned long haddr,unsigned long reason)4327 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4328 						  struct address_space *mapping,
4329 						  pgoff_t idx,
4330 						  unsigned int flags,
4331 						  unsigned long haddr,
4332 						  unsigned long reason)
4333 {
4334 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
4335 	struct vm_fault vmf = {
4336 		.vma = vma,
4337 		.address = haddr,
4338 		.flags = flags,
4339 		/*
4340 		 * Hard to debug if it ends up being
4341 		 * used by a callee that assumes
4342 		 * something about the other
4343 		 * uninitialized fields... same as in
4344 		 * memory.c
4345 		 */
4346 	};
4347 
4348 	/*
4349 	 * vma_lock and hugetlb_fault_mutex must be dropped
4350 	 * before handling userfault. Also mmap_lock will
4351 	 * be dropped during handling userfault, any vma
4352 	 * operation should be careful from here.
4353 	 */
4354 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4355 	i_mmap_unlock_read(mapping);
4356 	return handle_userfault(&vmf, VM_UFFD_MISSING);
4357 }
4358 
hugetlb_no_page(struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address,pte_t * ptep,unsigned int flags)4359 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4360 			struct vm_area_struct *vma,
4361 			struct address_space *mapping, pgoff_t idx,
4362 			unsigned long address, pte_t *ptep, unsigned int flags)
4363 {
4364 	struct hstate *h = hstate_vma(vma);
4365 	vm_fault_t ret = VM_FAULT_SIGBUS;
4366 	int anon_rmap = 0;
4367 	unsigned long size;
4368 	struct page *page;
4369 	pte_t new_pte;
4370 	spinlock_t *ptl;
4371 	unsigned long haddr = address & huge_page_mask(h);
4372 	bool new_page = false;
4373 	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
4374 
4375 	/*
4376 	 * Currently, we are forced to kill the process in the event the
4377 	 * original mapper has unmapped pages from the child due to a failed
4378 	 * COW. Warn that such a situation has occurred as it may not be obvious
4379 	 */
4380 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4381 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4382 			   current->pid);
4383 		goto out;
4384 	}
4385 
4386 	/*
4387 	 * We can not race with truncation due to holding i_mmap_rwsem.
4388 	 * i_size is modified when holding i_mmap_rwsem, so check here
4389 	 * once for faults beyond end of file.
4390 	 */
4391 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4392 	if (idx >= size)
4393 		goto out;
4394 
4395 retry:
4396 	page = find_lock_page(mapping, idx);
4397 	if (!page) {
4398 		/* Check for page in userfault range */
4399 		if (userfaultfd_missing(vma)) {
4400 			ret = hugetlb_handle_userfault(vma, mapping, idx,
4401 						       flags, haddr,
4402 						       VM_UFFD_MISSING);
4403 			goto out;
4404 		}
4405 
4406 		page = alloc_huge_page(vma, haddr, 0);
4407 		if (IS_ERR(page)) {
4408 			/*
4409 			 * Returning error will result in faulting task being
4410 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
4411 			 * tasks from racing to fault in the same page which
4412 			 * could result in false unable to allocate errors.
4413 			 * Page migration does not take the fault mutex, but
4414 			 * does a clear then write of pte's under page table
4415 			 * lock.  Page fault code could race with migration,
4416 			 * notice the clear pte and try to allocate a page
4417 			 * here.  Before returning error, get ptl and make
4418 			 * sure there really is no pte entry.
4419 			 */
4420 			ptl = huge_pte_lock(h, mm, ptep);
4421 			if (!huge_pte_none(huge_ptep_get(ptep))) {
4422 				ret = 0;
4423 				spin_unlock(ptl);
4424 				goto out;
4425 			}
4426 			spin_unlock(ptl);
4427 			ret = vmf_error(PTR_ERR(page));
4428 			goto out;
4429 		}
4430 		clear_huge_page(page, address, pages_per_huge_page(h));
4431 		__SetPageUptodate(page);
4432 		new_page = true;
4433 
4434 		if (vma->vm_flags & VM_MAYSHARE) {
4435 			int err = huge_add_to_page_cache(page, mapping, idx);
4436 			if (err) {
4437 				put_page(page);
4438 				if (err == -EEXIST)
4439 					goto retry;
4440 				goto out;
4441 			}
4442 		} else {
4443 			lock_page(page);
4444 			if (unlikely(anon_vma_prepare(vma))) {
4445 				ret = VM_FAULT_OOM;
4446 				goto backout_unlocked;
4447 			}
4448 			anon_rmap = 1;
4449 		}
4450 	} else {
4451 		/*
4452 		 * If memory error occurs between mmap() and fault, some process
4453 		 * don't have hwpoisoned swap entry for errored virtual address.
4454 		 * So we need to block hugepage fault by PG_hwpoison bit check.
4455 		 */
4456 		if (unlikely(PageHWPoison(page))) {
4457 			ret = VM_FAULT_HWPOISON_LARGE |
4458 				VM_FAULT_SET_HINDEX(hstate_index(h));
4459 			goto backout_unlocked;
4460 		}
4461 
4462 		/* Check for page in userfault range. */
4463 		if (userfaultfd_minor(vma)) {
4464 			unlock_page(page);
4465 			put_page(page);
4466 			ret = hugetlb_handle_userfault(vma, mapping, idx,
4467 						       flags, haddr,
4468 						       VM_UFFD_MINOR);
4469 			goto out;
4470 		}
4471 	}
4472 
4473 	/*
4474 	 * If we are going to COW a private mapping later, we examine the
4475 	 * pending reservations for this page now. This will ensure that
4476 	 * any allocations necessary to record that reservation occur outside
4477 	 * the spinlock.
4478 	 */
4479 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4480 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4481 			ret = VM_FAULT_OOM;
4482 			goto backout_unlocked;
4483 		}
4484 		/* Just decrements count, does not deallocate */
4485 		vma_end_reservation(h, vma, haddr);
4486 	}
4487 
4488 	ptl = huge_pte_lock(h, mm, ptep);
4489 	ret = 0;
4490 	if (!huge_pte_none(huge_ptep_get(ptep)))
4491 		goto backout;
4492 
4493 	if (anon_rmap) {
4494 		ClearPagePrivate(page);
4495 		hugepage_add_new_anon_rmap(page, vma, haddr);
4496 	} else
4497 		page_dup_rmap(page, true);
4498 	new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4499 				&& (vma->vm_flags & VM_SHARED)));
4500 	set_huge_pte_at(mm, haddr, ptep, new_pte);
4501 
4502 	hugetlb_count_add(pages_per_huge_page(h), mm);
4503 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4504 		/* Optimization, do the COW without a second fault */
4505 		ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4506 	}
4507 
4508 	spin_unlock(ptl);
4509 
4510 	/*
4511 	 * Only make newly allocated pages active.  Existing pages found
4512 	 * in the pagecache could be !page_huge_active() if they have been
4513 	 * isolated for migration.
4514 	 */
4515 	if (new_page)
4516 		set_page_huge_active(page);
4517 
4518 	unlock_page(page);
4519 out:
4520 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4521 	i_mmap_unlock_read(mapping);
4522 	return ret;
4523 
4524 backout:
4525 	spin_unlock(ptl);
4526 backout_unlocked:
4527 	unlock_page(page);
4528 	restore_reserve_on_error(h, vma, haddr, page);
4529 	put_page(page);
4530 	goto out;
4531 }
4532 
4533 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)4534 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4535 {
4536 	unsigned long key[2];
4537 	u32 hash;
4538 
4539 	key[0] = (unsigned long) mapping;
4540 	key[1] = idx;
4541 
4542 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4543 
4544 	return hash & (num_fault_mutexes - 1);
4545 }
4546 #else
4547 /*
4548  * For uniprocesor systems we always use a single mutex, so just
4549  * return 0 and avoid the hashing overhead.
4550  */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)4551 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4552 {
4553 	return 0;
4554 }
4555 #endif
4556 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)4557 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4558 			unsigned long address, unsigned int flags)
4559 {
4560 	pte_t *ptep, entry;
4561 	spinlock_t *ptl;
4562 	vm_fault_t ret;
4563 	u32 hash;
4564 	pgoff_t idx;
4565 	struct page *page = NULL;
4566 	struct page *pagecache_page = NULL;
4567 	struct hstate *h = hstate_vma(vma);
4568 	struct address_space *mapping;
4569 	int need_wait_lock = 0;
4570 	unsigned long haddr = address & huge_page_mask(h);
4571 
4572 	ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4573 	if (ptep) {
4574 		/*
4575 		 * Since we hold no locks, ptep could be stale.  That is
4576 		 * OK as we are only making decisions based on content and
4577 		 * not actually modifying content here.
4578 		 */
4579 		entry = huge_ptep_get(ptep);
4580 		if (unlikely(is_hugetlb_entry_migration(entry))) {
4581 			migration_entry_wait_huge(vma, mm, ptep);
4582 			return 0;
4583 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4584 			return VM_FAULT_HWPOISON_LARGE |
4585 				VM_FAULT_SET_HINDEX(hstate_index(h));
4586 	}
4587 
4588 	/*
4589 	 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4590 	 * until finished with ptep.  This serves two purposes:
4591 	 * 1) It prevents huge_pmd_unshare from being called elsewhere
4592 	 *    and making the ptep no longer valid.
4593 	 * 2) It synchronizes us with i_size modifications during truncation.
4594 	 *
4595 	 * ptep could have already be assigned via huge_pte_offset.  That
4596 	 * is OK, as huge_pte_alloc will return the same value unless
4597 	 * something has changed.
4598 	 */
4599 	mapping = vma->vm_file->f_mapping;
4600 	i_mmap_lock_read(mapping);
4601 	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4602 	if (!ptep) {
4603 		i_mmap_unlock_read(mapping);
4604 		return VM_FAULT_OOM;
4605 	}
4606 
4607 	/*
4608 	 * Serialize hugepage allocation and instantiation, so that we don't
4609 	 * get spurious allocation failures if two CPUs race to instantiate
4610 	 * the same page in the page cache.
4611 	 */
4612 	idx = vma_hugecache_offset(h, vma, haddr);
4613 	hash = hugetlb_fault_mutex_hash(mapping, idx);
4614 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
4615 
4616 	entry = huge_ptep_get(ptep);
4617 	if (huge_pte_none(entry))
4618 		/*
4619 		 * hugetlb_no_page will drop vma lock and hugetlb fault
4620 		 * mutex internally, which make us return immediately.
4621 		 */
4622 		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4623 
4624 	ret = 0;
4625 
4626 	/*
4627 	 * entry could be a migration/hwpoison entry at this point, so this
4628 	 * check prevents the kernel from going below assuming that we have
4629 	 * an active hugepage in pagecache. This goto expects the 2nd page
4630 	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4631 	 * properly handle it.
4632 	 */
4633 	if (!pte_present(entry))
4634 		goto out_mutex;
4635 
4636 	/*
4637 	 * If we are going to COW the mapping later, we examine the pending
4638 	 * reservations for this page now. This will ensure that any
4639 	 * allocations necessary to record that reservation occur outside the
4640 	 * spinlock. For private mappings, we also lookup the pagecache
4641 	 * page now as it is used to determine if a reservation has been
4642 	 * consumed.
4643 	 */
4644 	if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4645 		if (vma_needs_reservation(h, vma, haddr) < 0) {
4646 			ret = VM_FAULT_OOM;
4647 			goto out_mutex;
4648 		}
4649 		/* Just decrements count, does not deallocate */
4650 		vma_end_reservation(h, vma, haddr);
4651 
4652 		if (!(vma->vm_flags & VM_MAYSHARE))
4653 			pagecache_page = hugetlbfs_pagecache_page(h,
4654 								vma, haddr);
4655 	}
4656 
4657 	ptl = huge_pte_lock(h, mm, ptep);
4658 
4659 	/* Check for a racing update before calling hugetlb_cow */
4660 	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4661 		goto out_ptl;
4662 
4663 	/*
4664 	 * hugetlb_cow() requires page locks of pte_page(entry) and
4665 	 * pagecache_page, so here we need take the former one
4666 	 * when page != pagecache_page or !pagecache_page.
4667 	 */
4668 	page = pte_page(entry);
4669 	if (page != pagecache_page)
4670 		if (!trylock_page(page)) {
4671 			need_wait_lock = 1;
4672 			goto out_ptl;
4673 		}
4674 
4675 	get_page(page);
4676 
4677 	if (flags & FAULT_FLAG_WRITE) {
4678 		if (!huge_pte_write(entry)) {
4679 			ret = hugetlb_cow(mm, vma, address, ptep,
4680 					  pagecache_page, ptl);
4681 			goto out_put_page;
4682 		}
4683 		entry = huge_pte_mkdirty(entry);
4684 	}
4685 	entry = pte_mkyoung(entry);
4686 	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4687 						flags & FAULT_FLAG_WRITE))
4688 		update_mmu_cache(vma, haddr, ptep);
4689 out_put_page:
4690 	if (page != pagecache_page)
4691 		unlock_page(page);
4692 	put_page(page);
4693 out_ptl:
4694 	spin_unlock(ptl);
4695 
4696 	if (pagecache_page) {
4697 		unlock_page(pagecache_page);
4698 		put_page(pagecache_page);
4699 	}
4700 out_mutex:
4701 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4702 	i_mmap_unlock_read(mapping);
4703 	/*
4704 	 * Generally it's safe to hold refcount during waiting page lock. But
4705 	 * here we just wait to defer the next page fault to avoid busy loop and
4706 	 * the page is not used after unlocked before returning from the current
4707 	 * page fault. So we are safe from accessing freed page, even if we wait
4708 	 * here without taking refcount.
4709 	 */
4710 	if (need_wait_lock)
4711 		wait_on_page_locked(page);
4712 	return ret;
4713 }
4714 
4715 #ifdef CONFIG_USERFAULTFD
4716 /*
4717  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4718  * modifications for huge pages.
4719  */
hugetlb_mcopy_atomic_pte(struct mm_struct * dst_mm,pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,enum mcopy_atomic_mode mode,struct page ** pagep)4720 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4721 			    pte_t *dst_pte,
4722 			    struct vm_area_struct *dst_vma,
4723 			    unsigned long dst_addr,
4724 			    unsigned long src_addr,
4725 			    enum mcopy_atomic_mode mode,
4726 			    struct page **pagep)
4727 {
4728 	bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
4729 	struct address_space *mapping;
4730 	pgoff_t idx;
4731 	unsigned long size;
4732 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
4733 	struct hstate *h = hstate_vma(dst_vma);
4734 	pte_t _dst_pte;
4735 	spinlock_t *ptl;
4736 	int ret;
4737 	struct page *page;
4738 	int writable;
4739 
4740 	mapping = dst_vma->vm_file->f_mapping;
4741 	idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4742 
4743 	if (is_continue) {
4744 		ret = -EFAULT;
4745 		page = find_lock_page(mapping, idx);
4746 		if (!page)
4747 			goto out;
4748 	} else if (!*pagep) {
4749 		/* If a page already exists, then it's UFFDIO_COPY for
4750 		 * a non-missing case. Return -EEXIST.
4751 		 */
4752 		if (vm_shared &&
4753 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
4754 			ret = -EEXIST;
4755 			goto out;
4756 		}
4757 
4758 		page = alloc_huge_page(dst_vma, dst_addr, 0);
4759 		if (IS_ERR(page)) {
4760 			ret = -ENOMEM;
4761 			goto out;
4762 		}
4763 
4764 		ret = copy_huge_page_from_user(page,
4765 						(const void __user *) src_addr,
4766 						pages_per_huge_page(h), false);
4767 
4768 		/* fallback to copy_from_user outside mmap_lock */
4769 		if (unlikely(ret)) {
4770 			ret = -ENOENT;
4771 			*pagep = page;
4772 			/* don't free the page */
4773 			goto out;
4774 		}
4775 	} else {
4776 		page = *pagep;
4777 		*pagep = NULL;
4778 	}
4779 
4780 	/*
4781 	 * The memory barrier inside __SetPageUptodate makes sure that
4782 	 * preceding stores to the page contents become visible before
4783 	 * the set_pte_at() write.
4784 	 */
4785 	__SetPageUptodate(page);
4786 
4787 	/* Add shared, newly allocated pages to the page cache. */
4788 	if (vm_shared && !is_continue) {
4789 		size = i_size_read(mapping->host) >> huge_page_shift(h);
4790 		ret = -EFAULT;
4791 		if (idx >= size)
4792 			goto out_release_nounlock;
4793 
4794 		/*
4795 		 * Serialization between remove_inode_hugepages() and
4796 		 * huge_add_to_page_cache() below happens through the
4797 		 * hugetlb_fault_mutex_table that here must be hold by
4798 		 * the caller.
4799 		 */
4800 		ret = huge_add_to_page_cache(page, mapping, idx);
4801 		if (ret)
4802 			goto out_release_nounlock;
4803 	}
4804 
4805 	ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4806 	spin_lock(ptl);
4807 
4808 	/*
4809 	 * Recheck the i_size after holding PT lock to make sure not
4810 	 * to leave any page mapped (as page_mapped()) beyond the end
4811 	 * of the i_size (remove_inode_hugepages() is strict about
4812 	 * enforcing that). If we bail out here, we'll also leave a
4813 	 * page in the radix tree in the vm_shared case beyond the end
4814 	 * of the i_size, but remove_inode_hugepages() will take care
4815 	 * of it as soon as we drop the hugetlb_fault_mutex_table.
4816 	 */
4817 	size = i_size_read(mapping->host) >> huge_page_shift(h);
4818 	ret = -EFAULT;
4819 	if (idx >= size)
4820 		goto out_release_unlock;
4821 
4822 	ret = -EEXIST;
4823 	if (!huge_pte_none(huge_ptep_get(dst_pte)))
4824 		goto out_release_unlock;
4825 
4826 	if (vm_shared) {
4827 		page_dup_rmap(page, true);
4828 	} else {
4829 		ClearPagePrivate(page);
4830 		hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4831 	}
4832 
4833 	/* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
4834 	if (is_continue && !vm_shared)
4835 		writable = 0;
4836 	else
4837 		writable = dst_vma->vm_flags & VM_WRITE;
4838 
4839 	_dst_pte = make_huge_pte(dst_vma, page, writable);
4840 	if (writable)
4841 		_dst_pte = huge_pte_mkdirty(_dst_pte);
4842 	_dst_pte = pte_mkyoung(_dst_pte);
4843 
4844 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4845 
4846 	(void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4847 					dst_vma->vm_flags & VM_WRITE);
4848 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4849 
4850 	/* No need to invalidate - it was non-present before */
4851 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
4852 
4853 	spin_unlock(ptl);
4854 	if (!is_continue)
4855 		set_page_huge_active(page);
4856 	if (vm_shared || is_continue)
4857 		unlock_page(page);
4858 	ret = 0;
4859 out:
4860 	return ret;
4861 out_release_unlock:
4862 	spin_unlock(ptl);
4863 	if (vm_shared || is_continue)
4864 		unlock_page(page);
4865 out_release_nounlock:
4866 	put_page(page);
4867 	goto out;
4868 }
4869 #endif /* CONFIG_USERFAULTFD */
4870 
follow_hugetlb_page(struct mm_struct * mm,struct vm_area_struct * vma,struct page ** pages,struct vm_area_struct ** vmas,unsigned long * position,unsigned long * nr_pages,long i,unsigned int flags,int * locked)4871 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4872 			 struct page **pages, struct vm_area_struct **vmas,
4873 			 unsigned long *position, unsigned long *nr_pages,
4874 			 long i, unsigned int flags, int *locked)
4875 {
4876 	unsigned long pfn_offset;
4877 	unsigned long vaddr = *position;
4878 	unsigned long remainder = *nr_pages;
4879 	struct hstate *h = hstate_vma(vma);
4880 	int err = -EFAULT;
4881 
4882 	while (vaddr < vma->vm_end && remainder) {
4883 		pte_t *pte;
4884 		spinlock_t *ptl = NULL;
4885 		int absent;
4886 		struct page *page;
4887 
4888 		/*
4889 		 * If we have a pending SIGKILL, don't keep faulting pages and
4890 		 * potentially allocating memory.
4891 		 */
4892 		if (fatal_signal_pending(current)) {
4893 			remainder = 0;
4894 			break;
4895 		}
4896 
4897 		/*
4898 		 * Some archs (sparc64, sh*) have multiple pte_ts to
4899 		 * each hugepage.  We have to make sure we get the
4900 		 * first, for the page indexing below to work.
4901 		 *
4902 		 * Note that page table lock is not held when pte is null.
4903 		 */
4904 		pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4905 				      huge_page_size(h));
4906 		if (pte)
4907 			ptl = huge_pte_lock(h, mm, pte);
4908 		absent = !pte || huge_pte_none(huge_ptep_get(pte));
4909 
4910 		/*
4911 		 * When coredumping, it suits get_dump_page if we just return
4912 		 * an error where there's an empty slot with no huge pagecache
4913 		 * to back it.  This way, we avoid allocating a hugepage, and
4914 		 * the sparse dumpfile avoids allocating disk blocks, but its
4915 		 * huge holes still show up with zeroes where they need to be.
4916 		 */
4917 		if (absent && (flags & FOLL_DUMP) &&
4918 		    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4919 			if (pte)
4920 				spin_unlock(ptl);
4921 			remainder = 0;
4922 			break;
4923 		}
4924 
4925 		/*
4926 		 * We need call hugetlb_fault for both hugepages under migration
4927 		 * (in which case hugetlb_fault waits for the migration,) and
4928 		 * hwpoisoned hugepages (in which case we need to prevent the
4929 		 * caller from accessing to them.) In order to do this, we use
4930 		 * here is_swap_pte instead of is_hugetlb_entry_migration and
4931 		 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4932 		 * both cases, and because we can't follow correct pages
4933 		 * directly from any kind of swap entries.
4934 		 */
4935 		if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4936 		    ((flags & FOLL_WRITE) &&
4937 		      !huge_pte_write(huge_ptep_get(pte)))) {
4938 			vm_fault_t ret;
4939 			unsigned int fault_flags = 0;
4940 
4941 			if (pte)
4942 				spin_unlock(ptl);
4943 			if (flags & FOLL_WRITE)
4944 				fault_flags |= FAULT_FLAG_WRITE;
4945 			if (locked)
4946 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4947 					FAULT_FLAG_KILLABLE;
4948 			if (flags & FOLL_NOWAIT)
4949 				fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4950 					FAULT_FLAG_RETRY_NOWAIT;
4951 			if (flags & FOLL_TRIED) {
4952 				/*
4953 				 * Note: FAULT_FLAG_ALLOW_RETRY and
4954 				 * FAULT_FLAG_TRIED can co-exist
4955 				 */
4956 				fault_flags |= FAULT_FLAG_TRIED;
4957 			}
4958 			ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4959 			if (ret & VM_FAULT_ERROR) {
4960 				err = vm_fault_to_errno(ret, flags);
4961 				remainder = 0;
4962 				break;
4963 			}
4964 			if (ret & VM_FAULT_RETRY) {
4965 				if (locked &&
4966 				    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4967 					*locked = 0;
4968 				*nr_pages = 0;
4969 				/*
4970 				 * VM_FAULT_RETRY must not return an
4971 				 * error, it will return zero
4972 				 * instead.
4973 				 *
4974 				 * No need to update "position" as the
4975 				 * caller will not check it after
4976 				 * *nr_pages is set to 0.
4977 				 */
4978 				return i;
4979 			}
4980 			continue;
4981 		}
4982 
4983 		pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4984 		page = pte_page(huge_ptep_get(pte));
4985 
4986 		/*
4987 		 * If subpage information not requested, update counters
4988 		 * and skip the same_page loop below.
4989 		 */
4990 		if (!pages && !vmas && !pfn_offset &&
4991 		    (vaddr + huge_page_size(h) < vma->vm_end) &&
4992 		    (remainder >= pages_per_huge_page(h))) {
4993 			vaddr += huge_page_size(h);
4994 			remainder -= pages_per_huge_page(h);
4995 			i += pages_per_huge_page(h);
4996 			spin_unlock(ptl);
4997 			continue;
4998 		}
4999 
5000 same_page:
5001 		if (pages) {
5002 			pages[i] = mem_map_offset(page, pfn_offset);
5003 			/*
5004 			 * try_grab_page() should always succeed here, because:
5005 			 * a) we hold the ptl lock, and b) we've just checked
5006 			 * that the huge page is present in the page tables. If
5007 			 * the huge page is present, then the tail pages must
5008 			 * also be present. The ptl prevents the head page and
5009 			 * tail pages from being rearranged in any way. So this
5010 			 * page must be available at this point, unless the page
5011 			 * refcount overflowed:
5012 			 */
5013 			if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
5014 				spin_unlock(ptl);
5015 				remainder = 0;
5016 				err = -ENOMEM;
5017 				break;
5018 			}
5019 		}
5020 
5021 		if (vmas)
5022 			vmas[i] = vma;
5023 
5024 		vaddr += PAGE_SIZE;
5025 		++pfn_offset;
5026 		--remainder;
5027 		++i;
5028 		if (vaddr < vma->vm_end && remainder &&
5029 				pfn_offset < pages_per_huge_page(h)) {
5030 			/*
5031 			 * We use pfn_offset to avoid touching the pageframes
5032 			 * of this compound page.
5033 			 */
5034 			goto same_page;
5035 		}
5036 		spin_unlock(ptl);
5037 	}
5038 	*nr_pages = remainder;
5039 	/*
5040 	 * setting position is actually required only if remainder is
5041 	 * not zero but it's faster not to add a "if (remainder)"
5042 	 * branch.
5043 	 */
5044 	*position = vaddr;
5045 
5046 	return i ? i : err;
5047 }
5048 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot)5049 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5050 		unsigned long address, unsigned long end, pgprot_t newprot)
5051 {
5052 	struct mm_struct *mm = vma->vm_mm;
5053 	unsigned long start = address;
5054 	pte_t *ptep;
5055 	pte_t pte;
5056 	struct hstate *h = hstate_vma(vma);
5057 	unsigned long pages = 0;
5058 	bool shared_pmd = false;
5059 	struct mmu_notifier_range range;
5060 
5061 	/*
5062 	 * In the case of shared PMDs, the area to flush could be beyond
5063 	 * start/end.  Set range.start/range.end to cover the maximum possible
5064 	 * range if PMD sharing is possible.
5065 	 */
5066 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5067 				0, vma, mm, start, end);
5068 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5069 
5070 	BUG_ON(address >= end);
5071 	flush_cache_range(vma, range.start, range.end);
5072 
5073 	mmu_notifier_invalidate_range_start(&range);
5074 	i_mmap_lock_write(vma->vm_file->f_mapping);
5075 	for (; address < end; address += huge_page_size(h)) {
5076 		spinlock_t *ptl;
5077 		ptep = huge_pte_offset(mm, address, huge_page_size(h));
5078 		if (!ptep)
5079 			continue;
5080 		ptl = huge_pte_lock(h, mm, ptep);
5081 		if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5082 			pages++;
5083 			spin_unlock(ptl);
5084 			shared_pmd = true;
5085 			continue;
5086 		}
5087 		pte = huge_ptep_get(ptep);
5088 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5089 			spin_unlock(ptl);
5090 			continue;
5091 		}
5092 		if (unlikely(is_hugetlb_entry_migration(pte))) {
5093 			swp_entry_t entry = pte_to_swp_entry(pte);
5094 
5095 			if (is_write_migration_entry(entry)) {
5096 				pte_t newpte;
5097 
5098 				make_migration_entry_read(&entry);
5099 				newpte = swp_entry_to_pte(entry);
5100 				set_huge_swap_pte_at(mm, address, ptep,
5101 						     newpte, huge_page_size(h));
5102 				pages++;
5103 			}
5104 			spin_unlock(ptl);
5105 			continue;
5106 		}
5107 		if (!huge_pte_none(pte)) {
5108 			pte_t old_pte;
5109 
5110 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5111 			pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5112 			pte = arch_make_huge_pte(pte, vma, NULL, 0);
5113 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5114 			pages++;
5115 		}
5116 		spin_unlock(ptl);
5117 	}
5118 	/*
5119 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5120 	 * may have cleared our pud entry and done put_page on the page table:
5121 	 * once we release i_mmap_rwsem, another task can do the final put_page
5122 	 * and that page table be reused and filled with junk.  If we actually
5123 	 * did unshare a page of pmds, flush the range corresponding to the pud.
5124 	 */
5125 	if (shared_pmd)
5126 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5127 	else
5128 		flush_hugetlb_tlb_range(vma, start, end);
5129 	/*
5130 	 * No need to call mmu_notifier_invalidate_range() we are downgrading
5131 	 * page table protection not changing it to point to a new page.
5132 	 *
5133 	 * See Documentation/vm/mmu_notifier.rst
5134 	 */
5135 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5136 	mmu_notifier_invalidate_range_end(&range);
5137 
5138 	return pages << h->order;
5139 }
5140 
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)5141 int hugetlb_reserve_pages(struct inode *inode,
5142 					long from, long to,
5143 					struct vm_area_struct *vma,
5144 					vm_flags_t vm_flags)
5145 {
5146 	long ret, chg, add = -1;
5147 	struct hstate *h = hstate_inode(inode);
5148 	struct hugepage_subpool *spool = subpool_inode(inode);
5149 	struct resv_map *resv_map;
5150 	struct hugetlb_cgroup *h_cg = NULL;
5151 	long gbl_reserve, regions_needed = 0;
5152 
5153 	/* This should never happen */
5154 	if (from > to) {
5155 		VM_WARN(1, "%s called with a negative range\n", __func__);
5156 		return -EINVAL;
5157 	}
5158 
5159 	/*
5160 	 * Only apply hugepage reservation if asked. At fault time, an
5161 	 * attempt will be made for VM_NORESERVE to allocate a page
5162 	 * without using reserves
5163 	 */
5164 	if (vm_flags & VM_NORESERVE)
5165 		return 0;
5166 
5167 	/*
5168 	 * Shared mappings base their reservation on the number of pages that
5169 	 * are already allocated on behalf of the file. Private mappings need
5170 	 * to reserve the full area even if read-only as mprotect() may be
5171 	 * called to make the mapping read-write. Assume !vma is a shm mapping
5172 	 */
5173 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5174 		/*
5175 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
5176 		 * called for inodes for which resv_maps were created (see
5177 		 * hugetlbfs_get_inode).
5178 		 */
5179 		resv_map = inode_resv_map(inode);
5180 
5181 		chg = region_chg(resv_map, from, to, &regions_needed);
5182 
5183 	} else {
5184 		/* Private mapping. */
5185 		resv_map = resv_map_alloc();
5186 		if (!resv_map)
5187 			return -ENOMEM;
5188 
5189 		chg = to - from;
5190 
5191 		set_vma_resv_map(vma, resv_map);
5192 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5193 	}
5194 
5195 	if (chg < 0) {
5196 		ret = chg;
5197 		goto out_err;
5198 	}
5199 
5200 	ret = hugetlb_cgroup_charge_cgroup_rsvd(
5201 		hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5202 
5203 	if (ret < 0) {
5204 		ret = -ENOMEM;
5205 		goto out_err;
5206 	}
5207 
5208 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5209 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
5210 		 * of the resv_map.
5211 		 */
5212 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5213 	}
5214 
5215 	/*
5216 	 * There must be enough pages in the subpool for the mapping. If
5217 	 * the subpool has a minimum size, there may be some global
5218 	 * reservations already in place (gbl_reserve).
5219 	 */
5220 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5221 	if (gbl_reserve < 0) {
5222 		ret = -ENOSPC;
5223 		goto out_uncharge_cgroup;
5224 	}
5225 
5226 	/*
5227 	 * Check enough hugepages are available for the reservation.
5228 	 * Hand the pages back to the subpool if there are not
5229 	 */
5230 	ret = hugetlb_acct_memory(h, gbl_reserve);
5231 	if (ret < 0) {
5232 		goto out_put_pages;
5233 	}
5234 
5235 	/*
5236 	 * Account for the reservations made. Shared mappings record regions
5237 	 * that have reservations as they are shared by multiple VMAs.
5238 	 * When the last VMA disappears, the region map says how much
5239 	 * the reservation was and the page cache tells how much of
5240 	 * the reservation was consumed. Private mappings are per-VMA and
5241 	 * only the consumed reservations are tracked. When the VMA
5242 	 * disappears, the original reservation is the VMA size and the
5243 	 * consumed reservations are stored in the map. Hence, nothing
5244 	 * else has to be done for private mappings here
5245 	 */
5246 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
5247 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5248 
5249 		if (unlikely(add < 0)) {
5250 			hugetlb_acct_memory(h, -gbl_reserve);
5251 			ret = add;
5252 			goto out_put_pages;
5253 		} else if (unlikely(chg > add)) {
5254 			/*
5255 			 * pages in this range were added to the reserve
5256 			 * map between region_chg and region_add.  This
5257 			 * indicates a race with alloc_huge_page.  Adjust
5258 			 * the subpool and reserve counts modified above
5259 			 * based on the difference.
5260 			 */
5261 			long rsv_adjust;
5262 
5263 			/*
5264 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5265 			 * reference to h_cg->css. See comment below for detail.
5266 			 */
5267 			hugetlb_cgroup_uncharge_cgroup_rsvd(
5268 				hstate_index(h),
5269 				(chg - add) * pages_per_huge_page(h), h_cg);
5270 
5271 			rsv_adjust = hugepage_subpool_put_pages(spool,
5272 								chg - add);
5273 			hugetlb_acct_memory(h, -rsv_adjust);
5274 		} else if (h_cg) {
5275 			/*
5276 			 * The file_regions will hold their own reference to
5277 			 * h_cg->css. So we should release the reference held
5278 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5279 			 * done.
5280 			 */
5281 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5282 		}
5283 	}
5284 	return 0;
5285 out_put_pages:
5286 	/* put back original number of pages, chg */
5287 	(void)hugepage_subpool_put_pages(spool, chg);
5288 out_uncharge_cgroup:
5289 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5290 					    chg * pages_per_huge_page(h), h_cg);
5291 out_err:
5292 	if (!vma || vma->vm_flags & VM_MAYSHARE)
5293 		/* Only call region_abort if the region_chg succeeded but the
5294 		 * region_add failed or didn't run.
5295 		 */
5296 		if (chg >= 0 && add < 0)
5297 			region_abort(resv_map, from, to, regions_needed);
5298 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5299 		kref_put(&resv_map->refs, resv_map_release);
5300 	return ret;
5301 }
5302 
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)5303 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5304 								long freed)
5305 {
5306 	struct hstate *h = hstate_inode(inode);
5307 	struct resv_map *resv_map = inode_resv_map(inode);
5308 	long chg = 0;
5309 	struct hugepage_subpool *spool = subpool_inode(inode);
5310 	long gbl_reserve;
5311 
5312 	/*
5313 	 * Since this routine can be called in the evict inode path for all
5314 	 * hugetlbfs inodes, resv_map could be NULL.
5315 	 */
5316 	if (resv_map) {
5317 		chg = region_del(resv_map, start, end);
5318 		/*
5319 		 * region_del() can fail in the rare case where a region
5320 		 * must be split and another region descriptor can not be
5321 		 * allocated.  If end == LONG_MAX, it will not fail.
5322 		 */
5323 		if (chg < 0)
5324 			return chg;
5325 	}
5326 
5327 	spin_lock(&inode->i_lock);
5328 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5329 	spin_unlock(&inode->i_lock);
5330 
5331 	/*
5332 	 * If the subpool has a minimum size, the number of global
5333 	 * reservations to be released may be adjusted.
5334 	 */
5335 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5336 	hugetlb_acct_memory(h, -gbl_reserve);
5337 
5338 	return 0;
5339 }
5340 
5341 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)5342 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5343 				struct vm_area_struct *vma,
5344 				unsigned long addr, pgoff_t idx)
5345 {
5346 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5347 				svma->vm_start;
5348 	unsigned long sbase = saddr & PUD_MASK;
5349 	unsigned long s_end = sbase + PUD_SIZE;
5350 
5351 	/* Allow segments to share if only one is marked locked */
5352 	unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5353 	unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5354 
5355 	/*
5356 	 * match the virtual addresses, permission and the alignment of the
5357 	 * page table page.
5358 	 */
5359 	if (pmd_index(addr) != pmd_index(saddr) ||
5360 	    vm_flags != svm_flags ||
5361 	    sbase < svma->vm_start || svma->vm_end < s_end)
5362 		return 0;
5363 
5364 	return saddr;
5365 }
5366 
vma_shareable(struct vm_area_struct * vma,unsigned long addr)5367 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5368 {
5369 	unsigned long base = addr & PUD_MASK;
5370 	unsigned long end = base + PUD_SIZE;
5371 
5372 	/*
5373 	 * check on proper vm_flags and page table alignment
5374 	 */
5375 	if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5376 		return true;
5377 	return false;
5378 }
5379 
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)5380 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5381 {
5382 #ifdef CONFIG_USERFAULTFD
5383 	if (uffd_disable_huge_pmd_share(vma))
5384 		return false;
5385 #endif
5386 	return vma_shareable(vma, addr);
5387 }
5388 
5389 /*
5390  * Determine if start,end range within vma could be mapped by shared pmd.
5391  * If yes, adjust start and end to cover range associated with possible
5392  * shared pmd mappings.
5393  */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5394 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5395 				unsigned long *start, unsigned long *end)
5396 {
5397 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5398 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5399 
5400 	/*
5401 	 * vma need span at least one aligned PUD size and the start,end range
5402 	 * must at least partialy within it.
5403 	 */
5404 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5405 		(*end <= v_start) || (*start >= v_end))
5406 		return;
5407 
5408 	/* Extend the range to be PUD aligned for a worst case scenario */
5409 	if (*start > v_start)
5410 		*start = ALIGN_DOWN(*start, PUD_SIZE);
5411 
5412 	if (*end < v_end)
5413 		*end = ALIGN(*end, PUD_SIZE);
5414 }
5415 
5416 /*
5417  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5418  * and returns the corresponding pte. While this is not necessary for the
5419  * !shared pmd case because we can allocate the pmd later as well, it makes the
5420  * code much cleaner.
5421  *
5422  * This routine must be called with i_mmap_rwsem held in at least read mode if
5423  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5424  * table entries associated with the address space.  This is important as we
5425  * are setting up sharing based on existing page table entries (mappings).
5426  *
5427  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5428  * huge_pte_alloc know that sharing is not possible and do not take
5429  * i_mmap_rwsem as a performance optimization.  This is handled by the
5430  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5431  * only required for subsequent processing.
5432  */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)5433 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5434 		      unsigned long addr, pud_t *pud)
5435 {
5436 	struct address_space *mapping = vma->vm_file->f_mapping;
5437 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5438 			vma->vm_pgoff;
5439 	struct vm_area_struct *svma;
5440 	unsigned long saddr;
5441 	pte_t *spte = NULL;
5442 	pte_t *pte;
5443 	spinlock_t *ptl;
5444 
5445 	i_mmap_assert_locked(mapping);
5446 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5447 		if (svma == vma)
5448 			continue;
5449 
5450 		saddr = page_table_shareable(svma, vma, addr, idx);
5451 		if (saddr) {
5452 			spte = huge_pte_offset(svma->vm_mm, saddr,
5453 					       vma_mmu_pagesize(svma));
5454 			if (spte) {
5455 				get_page(virt_to_page(spte));
5456 				break;
5457 			}
5458 		}
5459 	}
5460 
5461 	if (!spte)
5462 		goto out;
5463 
5464 	ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5465 	if (pud_none(*pud)) {
5466 		pud_populate(mm, pud,
5467 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
5468 		mm_inc_nr_pmds(mm);
5469 	} else {
5470 		put_page(virt_to_page(spte));
5471 	}
5472 	spin_unlock(ptl);
5473 out:
5474 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
5475 	return pte;
5476 }
5477 
5478 /*
5479  * unmap huge page backed by shared pte.
5480  *
5481  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5482  * indicated by page_count > 1, unmap is achieved by clearing pud and
5483  * decrementing the ref count. If count == 1, the pte page is not shared.
5484  *
5485  * Called with page table lock held and i_mmap_rwsem held in write mode.
5486  *
5487  * returns: 1 successfully unmapped a shared pte page
5488  *	    0 the underlying pte page is not shared, or it is the last user
5489  */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long * addr,pte_t * ptep)5490 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5491 					unsigned long *addr, pte_t *ptep)
5492 {
5493 	pgd_t *pgd = pgd_offset(mm, *addr);
5494 	p4d_t *p4d = p4d_offset(pgd, *addr);
5495 	pud_t *pud = pud_offset(p4d, *addr);
5496 
5497 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5498 	BUG_ON(page_count(virt_to_page(ptep)) == 0);
5499 	if (page_count(virt_to_page(ptep)) == 1)
5500 		return 0;
5501 
5502 	pud_clear(pud);
5503 	put_page(virt_to_page(ptep));
5504 	mm_dec_nr_pmds(mm);
5505 	/*
5506 	 * This update of passed address optimizes loops sequentially
5507 	 * processing addresses in increments of huge page size (PMD_SIZE
5508 	 * in this case).  By clearing the pud, a PUD_SIZE area is unmapped.
5509 	 * Update address to the 'last page' in the cleared area so that
5510 	 * calling loop can move to first page past this area.
5511 	 */
5512 	*addr |= PUD_SIZE - PMD_SIZE;
5513 	return 1;
5514 }
5515 
5516 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)5517 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5518 		      unsigned long addr, pud_t *pud)
5519 {
5520 	return NULL;
5521 }
5522 
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long * addr,pte_t * ptep)5523 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5524 				unsigned long *addr, pte_t *ptep)
5525 {
5526 	return 0;
5527 }
5528 
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5529 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5530 				unsigned long *start, unsigned long *end)
5531 {
5532 }
5533 
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)5534 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5535 {
5536 	return false;
5537 }
5538 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5539 
5540 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)5541 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5542 			unsigned long addr, unsigned long sz)
5543 {
5544 	pgd_t *pgd;
5545 	p4d_t *p4d;
5546 	pud_t *pud;
5547 	pte_t *pte = NULL;
5548 
5549 	pgd = pgd_offset(mm, addr);
5550 	p4d = p4d_alloc(mm, pgd, addr);
5551 	if (!p4d)
5552 		return NULL;
5553 	pud = pud_alloc(mm, p4d, addr);
5554 	if (pud) {
5555 		if (sz == PUD_SIZE) {
5556 			pte = (pte_t *)pud;
5557 		} else {
5558 			BUG_ON(sz != PMD_SIZE);
5559 			if (want_pmd_share(vma, addr) && pud_none(*pud))
5560 				pte = huge_pmd_share(mm, vma, addr, pud);
5561 			else
5562 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
5563 		}
5564 	}
5565 	BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5566 
5567 	return pte;
5568 }
5569 
5570 /*
5571  * huge_pte_offset() - Walk the page table to resolve the hugepage
5572  * entry at address @addr
5573  *
5574  * Return: Pointer to page table entry (PUD or PMD) for
5575  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5576  * size @sz doesn't match the hugepage size at this level of the page
5577  * table.
5578  */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)5579 pte_t *huge_pte_offset(struct mm_struct *mm,
5580 		       unsigned long addr, unsigned long sz)
5581 {
5582 	pgd_t *pgd;
5583 	p4d_t *p4d;
5584 	pud_t *pud;
5585 	pmd_t *pmd;
5586 
5587 	pgd = pgd_offset(mm, addr);
5588 	if (!pgd_present(*pgd))
5589 		return NULL;
5590 	p4d = p4d_offset(pgd, addr);
5591 	if (!p4d_present(*p4d))
5592 		return NULL;
5593 
5594 	pud = pud_offset(p4d, addr);
5595 	if (sz == PUD_SIZE)
5596 		/* must be pud huge, non-present or none */
5597 		return (pte_t *)pud;
5598 	if (!pud_present(*pud))
5599 		return NULL;
5600 	/* must have a valid entry and size to go further */
5601 
5602 	pmd = pmd_offset(pud, addr);
5603 	/* must be pmd huge, non-present or none */
5604 	return (pte_t *)pmd;
5605 }
5606 
5607 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5608 
5609 /*
5610  * These functions are overwritable if your architecture needs its own
5611  * behavior.
5612  */
5613 struct page * __weak
follow_huge_addr(struct mm_struct * mm,unsigned long address,int write)5614 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5615 			      int write)
5616 {
5617 	return ERR_PTR(-EINVAL);
5618 }
5619 
5620 struct page * __weak
follow_huge_pd(struct vm_area_struct * vma,unsigned long address,hugepd_t hpd,int flags,int pdshift)5621 follow_huge_pd(struct vm_area_struct *vma,
5622 	       unsigned long address, hugepd_t hpd, int flags, int pdshift)
5623 {
5624 	WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5625 	return NULL;
5626 }
5627 
5628 struct page * __weak
follow_huge_pmd_pte(struct vm_area_struct * vma,unsigned long address,int flags)5629 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
5630 {
5631 	struct hstate *h = hstate_vma(vma);
5632 	struct mm_struct *mm = vma->vm_mm;
5633 	struct page *page = NULL;
5634 	spinlock_t *ptl;
5635 	pte_t *ptep, pte;
5636 
5637 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
5638 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5639 			 (FOLL_PIN | FOLL_GET)))
5640 		return NULL;
5641 
5642 retry:
5643 	ptep = huge_pte_offset(mm, address, huge_page_size(h));
5644 	if (!ptep)
5645 		return NULL;
5646 
5647 	ptl = huge_pte_lock(h, mm, ptep);
5648 	pte = huge_ptep_get(ptep);
5649 	if (pte_present(pte)) {
5650 		page = pte_page(pte) +
5651 			((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
5652 		/*
5653 		 * try_grab_page() should always succeed here, because: a) we
5654 		 * hold the pmd (ptl) lock, and b) we've just checked that the
5655 		 * huge pmd (head) page is present in the page tables. The ptl
5656 		 * prevents the head page and tail pages from being rearranged
5657 		 * in any way. So this page must be available at this point,
5658 		 * unless the page refcount overflowed:
5659 		 */
5660 		if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5661 			page = NULL;
5662 			goto out;
5663 		}
5664 	} else {
5665 		if (is_hugetlb_entry_migration(pte)) {
5666 			spin_unlock(ptl);
5667 			__migration_entry_wait(mm, ptep, ptl);
5668 			goto retry;
5669 		}
5670 		/*
5671 		 * hwpoisoned entry is treated as no_page_table in
5672 		 * follow_page_mask().
5673 		 */
5674 	}
5675 out:
5676 	spin_unlock(ptl);
5677 	return page;
5678 }
5679 
5680 struct page * __weak
follow_huge_pud(struct mm_struct * mm,unsigned long address,pud_t * pud,int flags)5681 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5682 		pud_t *pud, int flags)
5683 {
5684 	if (flags & (FOLL_GET | FOLL_PIN))
5685 		return NULL;
5686 
5687 	return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5688 }
5689 
5690 struct page * __weak
follow_huge_pgd(struct mm_struct * mm,unsigned long address,pgd_t * pgd,int flags)5691 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5692 {
5693 	if (flags & (FOLL_GET | FOLL_PIN))
5694 		return NULL;
5695 
5696 	return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5697 }
5698 
isolate_huge_page(struct page * page,struct list_head * list)5699 bool isolate_huge_page(struct page *page, struct list_head *list)
5700 {
5701 	bool ret = true;
5702 
5703 	spin_lock(&hugetlb_lock);
5704 	if (!PageHeadHuge(page) || !page_huge_active(page) ||
5705 	    !get_page_unless_zero(page)) {
5706 		ret = false;
5707 		goto unlock;
5708 	}
5709 	clear_page_huge_active(page);
5710 	list_move_tail(&page->lru, list);
5711 unlock:
5712 	spin_unlock(&hugetlb_lock);
5713 	return ret;
5714 }
5715 
putback_active_hugepage(struct page * page)5716 void putback_active_hugepage(struct page *page)
5717 {
5718 	VM_BUG_ON_PAGE(!PageHead(page), page);
5719 	spin_lock(&hugetlb_lock);
5720 	set_page_huge_active(page);
5721 	list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5722 	spin_unlock(&hugetlb_lock);
5723 	put_page(page);
5724 }
5725 
move_hugetlb_state(struct page * oldpage,struct page * newpage,int reason)5726 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5727 {
5728 	struct hstate *h = page_hstate(oldpage);
5729 
5730 	hugetlb_cgroup_migrate(oldpage, newpage);
5731 	set_page_owner_migrate_reason(newpage, reason);
5732 
5733 	/*
5734 	 * transfer temporary state of the new huge page. This is
5735 	 * reverse to other transitions because the newpage is going to
5736 	 * be final while the old one will be freed so it takes over
5737 	 * the temporary status.
5738 	 *
5739 	 * Also note that we have to transfer the per-node surplus state
5740 	 * here as well otherwise the global surplus count will not match
5741 	 * the per-node's.
5742 	 */
5743 	if (PageHugeTemporary(newpage)) {
5744 		int old_nid = page_to_nid(oldpage);
5745 		int new_nid = page_to_nid(newpage);
5746 
5747 		SetPageHugeTemporary(oldpage);
5748 		ClearPageHugeTemporary(newpage);
5749 
5750 		spin_lock(&hugetlb_lock);
5751 		if (h->surplus_huge_pages_node[old_nid]) {
5752 			h->surplus_huge_pages_node[old_nid]--;
5753 			h->surplus_huge_pages_node[new_nid]++;
5754 		}
5755 		spin_unlock(&hugetlb_lock);
5756 	}
5757 }
5758 
5759 /*
5760  * This function will unconditionally remove all the shared pmd pgtable entries
5761  * within the specific vma for a hugetlbfs memory range.
5762  */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)5763 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
5764 {
5765 	struct hstate *h = hstate_vma(vma);
5766 	unsigned long sz = huge_page_size(h);
5767 	struct mm_struct *mm = vma->vm_mm;
5768 	struct mmu_notifier_range range;
5769 	unsigned long address, start, end;
5770 	spinlock_t *ptl;
5771 	pte_t *ptep;
5772 
5773 	if (!(vma->vm_flags & VM_MAYSHARE))
5774 		return;
5775 
5776 	start = ALIGN(vma->vm_start, PUD_SIZE);
5777 	end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5778 
5779 	if (start >= end)
5780 		return;
5781 
5782 	flush_cache_range(vma, start, end);
5783 	/*
5784 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
5785 	 * we have already done the PUD_SIZE alignment.
5786 	 */
5787 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
5788 				start, end);
5789 	mmu_notifier_invalidate_range_start(&range);
5790 	i_mmap_lock_write(vma->vm_file->f_mapping);
5791 	for (address = start; address < end; address += PUD_SIZE) {
5792 		unsigned long tmp = address;
5793 
5794 		ptep = huge_pte_offset(mm, address, sz);
5795 		if (!ptep)
5796 			continue;
5797 		ptl = huge_pte_lock(h, mm, ptep);
5798 		/* We don't want 'address' to be changed */
5799 		huge_pmd_unshare(mm, vma, &tmp, ptep);
5800 		spin_unlock(ptl);
5801 	}
5802 	flush_hugetlb_tlb_range(vma, start, end);
5803 	i_mmap_unlock_write(vma->vm_file->f_mapping);
5804 	/*
5805 	 * No need to call mmu_notifier_invalidate_range(), see
5806 	 * Documentation/vm/mmu_notifier.rst.
5807 	 */
5808 	mmu_notifier_invalidate_range_end(&range);
5809 }
5810 
5811 #ifdef CONFIG_CMA
5812 static bool cma_reserve_called __initdata;
5813 
cmdline_parse_hugetlb_cma(char * p)5814 static int __init cmdline_parse_hugetlb_cma(char *p)
5815 {
5816 	hugetlb_cma_size = memparse(p, &p);
5817 	return 0;
5818 }
5819 
5820 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5821 
hugetlb_cma_reserve(int order)5822 void __init hugetlb_cma_reserve(int order)
5823 {
5824 	unsigned long size, reserved, per_node;
5825 	int nid;
5826 
5827 	cma_reserve_called = true;
5828 
5829 	if (!hugetlb_cma_size)
5830 		return;
5831 
5832 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5833 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5834 			(PAGE_SIZE << order) / SZ_1M);
5835 		return;
5836 	}
5837 
5838 	/*
5839 	 * If 3 GB area is requested on a machine with 4 numa nodes,
5840 	 * let's allocate 1 GB on first three nodes and ignore the last one.
5841 	 */
5842 	per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5843 	pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5844 		hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5845 
5846 	reserved = 0;
5847 	for_each_node_state(nid, N_ONLINE) {
5848 		int res;
5849 		char name[CMA_MAX_NAME];
5850 
5851 		size = min(per_node, hugetlb_cma_size - reserved);
5852 		size = round_up(size, PAGE_SIZE << order);
5853 
5854 		snprintf(name, sizeof(name), "hugetlb%d", nid);
5855 		res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5856 						 0, false, name,
5857 						 &hugetlb_cma[nid], nid);
5858 		if (res) {
5859 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5860 				res, nid);
5861 			continue;
5862 		}
5863 
5864 		reserved += size;
5865 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5866 			size / SZ_1M, nid);
5867 
5868 		if (reserved >= hugetlb_cma_size)
5869 			break;
5870 	}
5871 }
5872 
hugetlb_cma_check(void)5873 void __init hugetlb_cma_check(void)
5874 {
5875 	if (!hugetlb_cma_size || cma_reserve_called)
5876 		return;
5877 
5878 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5879 }
5880 
5881 #endif /* CONFIG_CMA */
5882