xref: /OK3568_Linux_fs/kernel/fs/zonefs/super.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Simple file system for zoned block devices exposing zones as files.
4  *
5  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6  */
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/magic.h>
10 #include <linux/iomap.h>
11 #include <linux/init.h>
12 #include <linux/slab.h>
13 #include <linux/blkdev.h>
14 #include <linux/statfs.h>
15 #include <linux/writeback.h>
16 #include <linux/quotaops.h>
17 #include <linux/seq_file.h>
18 #include <linux/parser.h>
19 #include <linux/uio.h>
20 #include <linux/mman.h>
21 #include <linux/sched/mm.h>
22 #include <linux/crc32.h>
23 #include <linux/task_io_accounting_ops.h>
24 
25 #include "zonefs.h"
26 
zonefs_zone_mgmt(struct inode * inode,enum req_opf op)27 static inline int zonefs_zone_mgmt(struct inode *inode,
28 				   enum req_opf op)
29 {
30 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
31 	int ret;
32 
33 	lockdep_assert_held(&zi->i_truncate_mutex);
34 
35 	/*
36 	 * With ZNS drives, closing an explicitly open zone that has not been
37 	 * written will change the zone state to "closed", that is, the zone
38 	 * will remain active. Since this can then cause failure of explicit
39 	 * open operation on other zones if the drive active zone resources
40 	 * are exceeded, make sure that the zone does not remain active by
41 	 * resetting it.
42 	 */
43 	if (op == REQ_OP_ZONE_CLOSE && !zi->i_wpoffset)
44 		op = REQ_OP_ZONE_RESET;
45 
46 	ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector,
47 			       zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS);
48 	if (ret) {
49 		zonefs_err(inode->i_sb,
50 			   "Zone management operation %s at %llu failed %d\n",
51 			   blk_op_str(op), zi->i_zsector, ret);
52 		return ret;
53 	}
54 
55 	return 0;
56 }
57 
zonefs_i_size_write(struct inode * inode,loff_t isize)58 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize)
59 {
60 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
61 
62 	i_size_write(inode, isize);
63 	/*
64 	 * A full zone is no longer open/active and does not need
65 	 * explicit closing.
66 	 */
67 	if (isize >= zi->i_max_size)
68 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
69 }
70 
zonefs_read_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)71 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
72 				   loff_t length, unsigned int flags,
73 				   struct iomap *iomap, struct iomap *srcmap)
74 {
75 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
76 	struct super_block *sb = inode->i_sb;
77 	loff_t isize;
78 
79 	/*
80 	 * All blocks are always mapped below EOF. If reading past EOF,
81 	 * act as if there is a hole up to the file maximum size.
82 	 */
83 	mutex_lock(&zi->i_truncate_mutex);
84 	iomap->bdev = inode->i_sb->s_bdev;
85 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
86 	isize = i_size_read(inode);
87 	if (iomap->offset >= isize) {
88 		iomap->type = IOMAP_HOLE;
89 		iomap->addr = IOMAP_NULL_ADDR;
90 		iomap->length = length;
91 	} else {
92 		iomap->type = IOMAP_MAPPED;
93 		iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
94 		iomap->length = isize - iomap->offset;
95 	}
96 	mutex_unlock(&zi->i_truncate_mutex);
97 
98 	return 0;
99 }
100 
101 static const struct iomap_ops zonefs_read_iomap_ops = {
102 	.iomap_begin	= zonefs_read_iomap_begin,
103 };
104 
zonefs_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)105 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
106 				    loff_t length, unsigned int flags,
107 				    struct iomap *iomap, struct iomap *srcmap)
108 {
109 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
110 	struct super_block *sb = inode->i_sb;
111 	loff_t isize;
112 
113 	/* All write I/Os should always be within the file maximum size */
114 	if (WARN_ON_ONCE(offset + length > zi->i_max_size))
115 		return -EIO;
116 
117 	/*
118 	 * Sequential zones can only accept direct writes. This is already
119 	 * checked when writes are issued, so warn if we see a page writeback
120 	 * operation.
121 	 */
122 	if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
123 			 !(flags & IOMAP_DIRECT)))
124 		return -EIO;
125 
126 	/*
127 	 * For conventional zones, all blocks are always mapped. For sequential
128 	 * zones, all blocks after always mapped below the inode size (zone
129 	 * write pointer) and unwriten beyond.
130 	 */
131 	mutex_lock(&zi->i_truncate_mutex);
132 	iomap->bdev = inode->i_sb->s_bdev;
133 	iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
134 	iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
135 	isize = i_size_read(inode);
136 	if (iomap->offset >= isize) {
137 		iomap->type = IOMAP_UNWRITTEN;
138 		iomap->length = zi->i_max_size - iomap->offset;
139 	} else {
140 		iomap->type = IOMAP_MAPPED;
141 		iomap->length = isize - iomap->offset;
142 	}
143 	mutex_unlock(&zi->i_truncate_mutex);
144 
145 	return 0;
146 }
147 
148 static const struct iomap_ops zonefs_write_iomap_ops = {
149 	.iomap_begin	= zonefs_write_iomap_begin,
150 };
151 
zonefs_readpage(struct file * unused,struct page * page)152 static int zonefs_readpage(struct file *unused, struct page *page)
153 {
154 	return iomap_readpage(page, &zonefs_read_iomap_ops);
155 }
156 
zonefs_readahead(struct readahead_control * rac)157 static void zonefs_readahead(struct readahead_control *rac)
158 {
159 	iomap_readahead(rac, &zonefs_read_iomap_ops);
160 }
161 
162 /*
163  * Map blocks for page writeback. This is used only on conventional zone files,
164  * which implies that the page range can only be within the fixed inode size.
165  */
zonefs_write_map_blocks(struct iomap_writepage_ctx * wpc,struct inode * inode,loff_t offset)166 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc,
167 				   struct inode *inode, loff_t offset)
168 {
169 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
170 
171 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
172 		return -EIO;
173 	if (WARN_ON_ONCE(offset >= i_size_read(inode)))
174 		return -EIO;
175 
176 	/* If the mapping is already OK, nothing needs to be done */
177 	if (offset >= wpc->iomap.offset &&
178 	    offset < wpc->iomap.offset + wpc->iomap.length)
179 		return 0;
180 
181 	return zonefs_write_iomap_begin(inode, offset, zi->i_max_size - offset,
182 					IOMAP_WRITE, &wpc->iomap, NULL);
183 }
184 
185 static const struct iomap_writeback_ops zonefs_writeback_ops = {
186 	.map_blocks		= zonefs_write_map_blocks,
187 };
188 
zonefs_writepage(struct page * page,struct writeback_control * wbc)189 static int zonefs_writepage(struct page *page, struct writeback_control *wbc)
190 {
191 	struct iomap_writepage_ctx wpc = { };
192 
193 	return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops);
194 }
195 
zonefs_writepages(struct address_space * mapping,struct writeback_control * wbc)196 static int zonefs_writepages(struct address_space *mapping,
197 			     struct writeback_control *wbc)
198 {
199 	struct iomap_writepage_ctx wpc = { };
200 
201 	return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
202 }
203 
zonefs_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)204 static int zonefs_swap_activate(struct swap_info_struct *sis,
205 				struct file *swap_file, sector_t *span)
206 {
207 	struct inode *inode = file_inode(swap_file);
208 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
209 
210 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV) {
211 		zonefs_err(inode->i_sb,
212 			   "swap file: not a conventional zone file\n");
213 		return -EINVAL;
214 	}
215 
216 	return iomap_swapfile_activate(sis, swap_file, span,
217 				       &zonefs_read_iomap_ops);
218 }
219 
220 static const struct address_space_operations zonefs_file_aops = {
221 	.readpage		= zonefs_readpage,
222 	.readahead		= zonefs_readahead,
223 	.writepage		= zonefs_writepage,
224 	.writepages		= zonefs_writepages,
225 	.set_page_dirty		= iomap_set_page_dirty,
226 	.releasepage		= iomap_releasepage,
227 	.invalidatepage		= iomap_invalidatepage,
228 	.migratepage		= iomap_migrate_page,
229 	.is_partially_uptodate	= iomap_is_partially_uptodate,
230 	.error_remove_page	= generic_error_remove_page,
231 	.direct_IO		= noop_direct_IO,
232 	.swap_activate		= zonefs_swap_activate,
233 };
234 
zonefs_update_stats(struct inode * inode,loff_t new_isize)235 static void zonefs_update_stats(struct inode *inode, loff_t new_isize)
236 {
237 	struct super_block *sb = inode->i_sb;
238 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
239 	loff_t old_isize = i_size_read(inode);
240 	loff_t nr_blocks;
241 
242 	if (new_isize == old_isize)
243 		return;
244 
245 	spin_lock(&sbi->s_lock);
246 
247 	/*
248 	 * This may be called for an update after an IO error.
249 	 * So beware of the values seen.
250 	 */
251 	if (new_isize < old_isize) {
252 		nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
253 		if (sbi->s_used_blocks > nr_blocks)
254 			sbi->s_used_blocks -= nr_blocks;
255 		else
256 			sbi->s_used_blocks = 0;
257 	} else {
258 		sbi->s_used_blocks +=
259 			(new_isize - old_isize) >> sb->s_blocksize_bits;
260 		if (sbi->s_used_blocks > sbi->s_blocks)
261 			sbi->s_used_blocks = sbi->s_blocks;
262 	}
263 
264 	spin_unlock(&sbi->s_lock);
265 }
266 
267 /*
268  * Check a zone condition and adjust its file inode access permissions for
269  * offline and readonly zones. Return the inode size corresponding to the
270  * amount of readable data in the zone.
271  */
zonefs_check_zone_condition(struct inode * inode,struct blk_zone * zone,bool warn,bool mount)272 static loff_t zonefs_check_zone_condition(struct inode *inode,
273 					  struct blk_zone *zone, bool warn,
274 					  bool mount)
275 {
276 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
277 
278 	switch (zone->cond) {
279 	case BLK_ZONE_COND_OFFLINE:
280 		/*
281 		 * Dead zone: make the inode immutable, disable all accesses
282 		 * and set the file size to 0 (zone wp set to zone start).
283 		 */
284 		if (warn)
285 			zonefs_warn(inode->i_sb, "inode %lu: offline zone\n",
286 				    inode->i_ino);
287 		inode->i_flags |= S_IMMUTABLE;
288 		inode->i_mode &= ~0777;
289 		zone->wp = zone->start;
290 		return 0;
291 	case BLK_ZONE_COND_READONLY:
292 		/*
293 		 * The write pointer of read-only zones is invalid. If such a
294 		 * zone is found during mount, the file size cannot be retrieved
295 		 * so we treat the zone as offline (mount == true case).
296 		 * Otherwise, keep the file size as it was when last updated
297 		 * so that the user can recover data. In both cases, writes are
298 		 * always disabled for the zone.
299 		 */
300 		if (warn)
301 			zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n",
302 				    inode->i_ino);
303 		inode->i_flags |= S_IMMUTABLE;
304 		if (mount) {
305 			zone->cond = BLK_ZONE_COND_OFFLINE;
306 			inode->i_mode &= ~0777;
307 			zone->wp = zone->start;
308 			return 0;
309 		}
310 		inode->i_mode &= ~0222;
311 		return i_size_read(inode);
312 	case BLK_ZONE_COND_FULL:
313 		/* The write pointer of full zones is invalid. */
314 		return zi->i_max_size;
315 	default:
316 		if (zi->i_ztype == ZONEFS_ZTYPE_CNV)
317 			return zi->i_max_size;
318 		return (zone->wp - zone->start) << SECTOR_SHIFT;
319 	}
320 }
321 
322 struct zonefs_ioerr_data {
323 	struct inode	*inode;
324 	bool		write;
325 };
326 
zonefs_io_error_cb(struct blk_zone * zone,unsigned int idx,void * data)327 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
328 			      void *data)
329 {
330 	struct zonefs_ioerr_data *err = data;
331 	struct inode *inode = err->inode;
332 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
333 	struct super_block *sb = inode->i_sb;
334 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
335 	loff_t isize, data_size;
336 
337 	/*
338 	 * Check the zone condition: if the zone is not "bad" (offline or
339 	 * read-only), read errors are simply signaled to the IO issuer as long
340 	 * as there is no inconsistency between the inode size and the amount of
341 	 * data writen in the zone (data_size).
342 	 */
343 	data_size = zonefs_check_zone_condition(inode, zone, true, false);
344 	isize = i_size_read(inode);
345 	if (zone->cond != BLK_ZONE_COND_OFFLINE &&
346 	    zone->cond != BLK_ZONE_COND_READONLY &&
347 	    !err->write && isize == data_size)
348 		return 0;
349 
350 	/*
351 	 * At this point, we detected either a bad zone or an inconsistency
352 	 * between the inode size and the amount of data written in the zone.
353 	 * For the latter case, the cause may be a write IO error or an external
354 	 * action on the device. Two error patterns exist:
355 	 * 1) The inode size is lower than the amount of data in the zone:
356 	 *    a write operation partially failed and data was writen at the end
357 	 *    of the file. This can happen in the case of a large direct IO
358 	 *    needing several BIOs and/or write requests to be processed.
359 	 * 2) The inode size is larger than the amount of data in the zone:
360 	 *    this can happen with a deferred write error with the use of the
361 	 *    device side write cache after getting successful write IO
362 	 *    completions. Other possibilities are (a) an external corruption,
363 	 *    e.g. an application reset the zone directly, or (b) the device
364 	 *    has a serious problem (e.g. firmware bug).
365 	 *
366 	 * In all cases, warn about inode size inconsistency and handle the
367 	 * IO error according to the zone condition and to the mount options.
368 	 */
369 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size)
370 		zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n",
371 			    inode->i_ino, isize, data_size);
372 
373 	/*
374 	 * First handle bad zones signaled by hardware. The mount options
375 	 * errors=zone-ro and errors=zone-offline result in changing the
376 	 * zone condition to read-only and offline respectively, as if the
377 	 * condition was signaled by the hardware.
378 	 */
379 	if (zone->cond == BLK_ZONE_COND_OFFLINE ||
380 	    sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) {
381 		zonefs_warn(sb, "inode %lu: read/write access disabled\n",
382 			    inode->i_ino);
383 		if (zone->cond != BLK_ZONE_COND_OFFLINE) {
384 			zone->cond = BLK_ZONE_COND_OFFLINE;
385 			data_size = zonefs_check_zone_condition(inode, zone,
386 								false, false);
387 		}
388 	} else if (zone->cond == BLK_ZONE_COND_READONLY ||
389 		   sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) {
390 		zonefs_warn(sb, "inode %lu: write access disabled\n",
391 			    inode->i_ino);
392 		if (zone->cond != BLK_ZONE_COND_READONLY) {
393 			zone->cond = BLK_ZONE_COND_READONLY;
394 			data_size = zonefs_check_zone_condition(inode, zone,
395 								false, false);
396 		}
397 	}
398 
399 	/*
400 	 * If the filesystem is mounted with the explicit-open mount option, we
401 	 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
402 	 * the read-only or offline condition, to avoid attempting an explicit
403 	 * close of the zone when the inode file is closed.
404 	 */
405 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
406 	    (zone->cond == BLK_ZONE_COND_OFFLINE ||
407 	     zone->cond == BLK_ZONE_COND_READONLY))
408 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
409 
410 	/*
411 	 * If error=remount-ro was specified, any error result in remounting
412 	 * the volume as read-only.
413 	 */
414 	if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
415 		zonefs_warn(sb, "remounting filesystem read-only\n");
416 		sb->s_flags |= SB_RDONLY;
417 	}
418 
419 	/*
420 	 * Update block usage stats and the inode size  to prevent access to
421 	 * invalid data.
422 	 */
423 	zonefs_update_stats(inode, data_size);
424 	zonefs_i_size_write(inode, data_size);
425 	zi->i_wpoffset = data_size;
426 
427 	return 0;
428 }
429 
430 /*
431  * When an file IO error occurs, check the file zone to see if there is a change
432  * in the zone condition (e.g. offline or read-only). For a failed write to a
433  * sequential zone, the zone write pointer position must also be checked to
434  * eventually correct the file size and zonefs inode write pointer offset
435  * (which can be out of sync with the drive due to partial write failures).
436  */
__zonefs_io_error(struct inode * inode,bool write)437 static void __zonefs_io_error(struct inode *inode, bool write)
438 {
439 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
440 	struct super_block *sb = inode->i_sb;
441 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
442 	unsigned int noio_flag;
443 	unsigned int nr_zones = 1;
444 	struct zonefs_ioerr_data err = {
445 		.inode = inode,
446 		.write = write,
447 	};
448 	int ret;
449 
450 	/*
451 	 * The only files that have more than one zone are conventional zone
452 	 * files with aggregated conventional zones, for which the inode zone
453 	 * size is always larger than the device zone size.
454 	 */
455 	if (zi->i_zone_size > bdev_zone_sectors(sb->s_bdev))
456 		nr_zones = zi->i_zone_size >>
457 			(sbi->s_zone_sectors_shift + SECTOR_SHIFT);
458 
459 	/*
460 	 * Memory allocations in blkdev_report_zones() can trigger a memory
461 	 * reclaim which may in turn cause a recursion into zonefs as well as
462 	 * struct request allocations for the same device. The former case may
463 	 * end up in a deadlock on the inode truncate mutex, while the latter
464 	 * may prevent IO forward progress. Executing the report zones under
465 	 * the GFP_NOIO context avoids both problems.
466 	 */
467 	noio_flag = memalloc_noio_save();
468 	ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones,
469 				  zonefs_io_error_cb, &err);
470 	if (ret != nr_zones)
471 		zonefs_err(sb, "Get inode %lu zone information failed %d\n",
472 			   inode->i_ino, ret);
473 	memalloc_noio_restore(noio_flag);
474 }
475 
zonefs_io_error(struct inode * inode,bool write)476 static void zonefs_io_error(struct inode *inode, bool write)
477 {
478 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
479 
480 	mutex_lock(&zi->i_truncate_mutex);
481 	__zonefs_io_error(inode, write);
482 	mutex_unlock(&zi->i_truncate_mutex);
483 }
484 
zonefs_file_truncate(struct inode * inode,loff_t isize)485 static int zonefs_file_truncate(struct inode *inode, loff_t isize)
486 {
487 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
488 	loff_t old_isize;
489 	enum req_opf op;
490 	int ret = 0;
491 
492 	/*
493 	 * Only sequential zone files can be truncated and truncation is allowed
494 	 * only down to a 0 size, which is equivalent to a zone reset, and to
495 	 * the maximum file size, which is equivalent to a zone finish.
496 	 */
497 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
498 		return -EPERM;
499 
500 	if (!isize)
501 		op = REQ_OP_ZONE_RESET;
502 	else if (isize == zi->i_max_size)
503 		op = REQ_OP_ZONE_FINISH;
504 	else
505 		return -EPERM;
506 
507 	inode_dio_wait(inode);
508 
509 	/* Serialize against page faults */
510 	down_write(&zi->i_mmap_sem);
511 
512 	/* Serialize against zonefs_iomap_begin() */
513 	mutex_lock(&zi->i_truncate_mutex);
514 
515 	old_isize = i_size_read(inode);
516 	if (isize == old_isize)
517 		goto unlock;
518 
519 	ret = zonefs_zone_mgmt(inode, op);
520 	if (ret)
521 		goto unlock;
522 
523 	/*
524 	 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
525 	 * take care of open zones.
526 	 */
527 	if (zi->i_flags & ZONEFS_ZONE_OPEN) {
528 		/*
529 		 * Truncating a zone to EMPTY or FULL is the equivalent of
530 		 * closing the zone. For a truncation to 0, we need to
531 		 * re-open the zone to ensure new writes can be processed.
532 		 * For a truncation to the maximum file size, the zone is
533 		 * closed and writes cannot be accepted anymore, so clear
534 		 * the open flag.
535 		 */
536 		if (!isize)
537 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
538 		else
539 			zi->i_flags &= ~ZONEFS_ZONE_OPEN;
540 	}
541 
542 	zonefs_update_stats(inode, isize);
543 	truncate_setsize(inode, isize);
544 	zi->i_wpoffset = isize;
545 
546 unlock:
547 	mutex_unlock(&zi->i_truncate_mutex);
548 	up_write(&zi->i_mmap_sem);
549 
550 	return ret;
551 }
552 
zonefs_inode_setattr(struct dentry * dentry,struct iattr * iattr)553 static int zonefs_inode_setattr(struct dentry *dentry, struct iattr *iattr)
554 {
555 	struct inode *inode = d_inode(dentry);
556 	int ret;
557 
558 	if (unlikely(IS_IMMUTABLE(inode)))
559 		return -EPERM;
560 
561 	ret = setattr_prepare(dentry, iattr);
562 	if (ret)
563 		return ret;
564 
565 	/*
566 	 * Since files and directories cannot be created nor deleted, do not
567 	 * allow setting any write attributes on the sub-directories grouping
568 	 * files by zone type.
569 	 */
570 	if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
571 	    (iattr->ia_mode & 0222))
572 		return -EPERM;
573 
574 	if (((iattr->ia_valid & ATTR_UID) &&
575 	     !uid_eq(iattr->ia_uid, inode->i_uid)) ||
576 	    ((iattr->ia_valid & ATTR_GID) &&
577 	     !gid_eq(iattr->ia_gid, inode->i_gid))) {
578 		ret = dquot_transfer(inode, iattr);
579 		if (ret)
580 			return ret;
581 	}
582 
583 	if (iattr->ia_valid & ATTR_SIZE) {
584 		ret = zonefs_file_truncate(inode, iattr->ia_size);
585 		if (ret)
586 			return ret;
587 	}
588 
589 	setattr_copy(inode, iattr);
590 
591 	return 0;
592 }
593 
594 static const struct inode_operations zonefs_file_inode_operations = {
595 	.setattr	= zonefs_inode_setattr,
596 };
597 
zonefs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)598 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
599 			     int datasync)
600 {
601 	struct inode *inode = file_inode(file);
602 	int ret = 0;
603 
604 	if (unlikely(IS_IMMUTABLE(inode)))
605 		return -EPERM;
606 
607 	/*
608 	 * Since only direct writes are allowed in sequential files, page cache
609 	 * flush is needed only for conventional zone files.
610 	 */
611 	if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV)
612 		ret = file_write_and_wait_range(file, start, end);
613 	if (!ret)
614 		ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL);
615 
616 	if (ret)
617 		zonefs_io_error(inode, true);
618 
619 	return ret;
620 }
621 
zonefs_filemap_fault(struct vm_fault * vmf)622 static vm_fault_t zonefs_filemap_fault(struct vm_fault *vmf)
623 {
624 	struct zonefs_inode_info *zi = ZONEFS_I(file_inode(vmf->vma->vm_file));
625 	vm_fault_t ret;
626 
627 	down_read(&zi->i_mmap_sem);
628 	ret = filemap_fault(vmf);
629 	up_read(&zi->i_mmap_sem);
630 
631 	return ret;
632 }
633 
zonefs_filemap_page_mkwrite(struct vm_fault * vmf)634 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
635 {
636 	struct inode *inode = file_inode(vmf->vma->vm_file);
637 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
638 	vm_fault_t ret;
639 
640 	if (unlikely(IS_IMMUTABLE(inode)))
641 		return VM_FAULT_SIGBUS;
642 
643 	/*
644 	 * Sanity check: only conventional zone files can have shared
645 	 * writeable mappings.
646 	 */
647 	if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
648 		return VM_FAULT_NOPAGE;
649 
650 	sb_start_pagefault(inode->i_sb);
651 	file_update_time(vmf->vma->vm_file);
652 
653 	/* Serialize against truncates */
654 	down_read(&zi->i_mmap_sem);
655 	ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops);
656 	up_read(&zi->i_mmap_sem);
657 
658 	sb_end_pagefault(inode->i_sb);
659 	return ret;
660 }
661 
662 static const struct vm_operations_struct zonefs_file_vm_ops = {
663 	.fault		= zonefs_filemap_fault,
664 	.map_pages	= filemap_map_pages,
665 	.page_mkwrite	= zonefs_filemap_page_mkwrite,
666 };
667 
zonefs_file_mmap(struct file * file,struct vm_area_struct * vma)668 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
669 {
670 	/*
671 	 * Conventional zones accept random writes, so their files can support
672 	 * shared writable mappings. For sequential zone files, only read
673 	 * mappings are possible since there are no guarantees for write
674 	 * ordering between msync() and page cache writeback.
675 	 */
676 	if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ &&
677 	    (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
678 		return -EINVAL;
679 
680 	file_accessed(file);
681 	vma->vm_ops = &zonefs_file_vm_ops;
682 
683 	return 0;
684 }
685 
zonefs_file_llseek(struct file * file,loff_t offset,int whence)686 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
687 {
688 	loff_t isize = i_size_read(file_inode(file));
689 
690 	/*
691 	 * Seeks are limited to below the zone size for conventional zones
692 	 * and below the zone write pointer for sequential zones. In both
693 	 * cases, this limit is the inode size.
694 	 */
695 	return generic_file_llseek_size(file, offset, whence, isize, isize);
696 }
697 
zonefs_file_write_dio_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)698 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
699 					int error, unsigned int flags)
700 {
701 	struct inode *inode = file_inode(iocb->ki_filp);
702 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
703 
704 	if (error) {
705 		zonefs_io_error(inode, true);
706 		return error;
707 	}
708 
709 	if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) {
710 		/*
711 		 * Note that we may be seeing completions out of order,
712 		 * but that is not a problem since a write completed
713 		 * successfully necessarily means that all preceding writes
714 		 * were also successful. So we can safely increase the inode
715 		 * size to the write end location.
716 		 */
717 		mutex_lock(&zi->i_truncate_mutex);
718 		if (i_size_read(inode) < iocb->ki_pos + size) {
719 			zonefs_update_stats(inode, iocb->ki_pos + size);
720 			zonefs_i_size_write(inode, iocb->ki_pos + size);
721 		}
722 		mutex_unlock(&zi->i_truncate_mutex);
723 	}
724 
725 	return 0;
726 }
727 
728 static const struct iomap_dio_ops zonefs_write_dio_ops = {
729 	.end_io			= zonefs_file_write_dio_end_io,
730 };
731 
zonefs_file_dio_append(struct kiocb * iocb,struct iov_iter * from)732 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
733 {
734 	struct inode *inode = file_inode(iocb->ki_filp);
735 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
736 	struct block_device *bdev = inode->i_sb->s_bdev;
737 	unsigned int max;
738 	struct bio *bio;
739 	ssize_t size;
740 	int nr_pages;
741 	ssize_t ret;
742 
743 	max = queue_max_zone_append_sectors(bdev_get_queue(bdev));
744 	max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
745 	iov_iter_truncate(from, max);
746 
747 	nr_pages = iov_iter_npages(from, BIO_MAX_PAGES);
748 	if (!nr_pages)
749 		return 0;
750 
751 	bio = bio_alloc_bioset(GFP_NOFS, nr_pages, &fs_bio_set);
752 	if (!bio)
753 		return -ENOMEM;
754 
755 	bio_set_dev(bio, bdev);
756 	bio->bi_iter.bi_sector = zi->i_zsector;
757 	bio->bi_write_hint = iocb->ki_hint;
758 	bio->bi_ioprio = iocb->ki_ioprio;
759 	bio->bi_opf = REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE;
760 	if (iocb->ki_flags & IOCB_DSYNC)
761 		bio->bi_opf |= REQ_FUA;
762 
763 	ret = bio_iov_iter_get_pages(bio, from);
764 	if (unlikely(ret))
765 		goto out_release;
766 
767 	size = bio->bi_iter.bi_size;
768 	task_io_account_write(size);
769 
770 	if (iocb->ki_flags & IOCB_HIPRI)
771 		bio_set_polled(bio, iocb);
772 
773 	ret = submit_bio_wait(bio);
774 
775 	zonefs_file_write_dio_end_io(iocb, size, ret, 0);
776 
777 out_release:
778 	bio_release_pages(bio, false);
779 	bio_put(bio);
780 
781 	if (ret >= 0) {
782 		iocb->ki_pos += size;
783 		return size;
784 	}
785 
786 	return ret;
787 }
788 
789 /*
790  * Do not exceed the LFS limits nor the file zone size. If pos is under the
791  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
792  */
zonefs_write_check_limits(struct file * file,loff_t pos,loff_t count)793 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
794 					loff_t count)
795 {
796 	struct inode *inode = file_inode(file);
797 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
798 	loff_t limit = rlimit(RLIMIT_FSIZE);
799 	loff_t max_size = zi->i_max_size;
800 
801 	if (limit != RLIM_INFINITY) {
802 		if (pos >= limit) {
803 			send_sig(SIGXFSZ, current, 0);
804 			return -EFBIG;
805 		}
806 		count = min(count, limit - pos);
807 	}
808 
809 	if (!(file->f_flags & O_LARGEFILE))
810 		max_size = min_t(loff_t, MAX_NON_LFS, max_size);
811 
812 	if (unlikely(pos >= max_size))
813 		return -EFBIG;
814 
815 	return min(count, max_size - pos);
816 }
817 
zonefs_write_checks(struct kiocb * iocb,struct iov_iter * from)818 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
819 {
820 	struct file *file = iocb->ki_filp;
821 	struct inode *inode = file_inode(file);
822 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
823 	loff_t count;
824 
825 	if (IS_SWAPFILE(inode))
826 		return -ETXTBSY;
827 
828 	if (!iov_iter_count(from))
829 		return 0;
830 
831 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
832 		return -EINVAL;
833 
834 	if (iocb->ki_flags & IOCB_APPEND) {
835 		if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
836 			return -EINVAL;
837 		mutex_lock(&zi->i_truncate_mutex);
838 		iocb->ki_pos = zi->i_wpoffset;
839 		mutex_unlock(&zi->i_truncate_mutex);
840 	}
841 
842 	count = zonefs_write_check_limits(file, iocb->ki_pos,
843 					  iov_iter_count(from));
844 	if (count < 0)
845 		return count;
846 
847 	iov_iter_truncate(from, count);
848 	return iov_iter_count(from);
849 }
850 
851 /*
852  * Handle direct writes. For sequential zone files, this is the only possible
853  * write path. For these files, check that the user is issuing writes
854  * sequentially from the end of the file. This code assumes that the block layer
855  * delivers write requests to the device in sequential order. This is always the
856  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
857  * elevator feature is being used (e.g. mq-deadline). The block layer always
858  * automatically select such an elevator for zoned block devices during the
859  * device initialization.
860  */
zonefs_file_dio_write(struct kiocb * iocb,struct iov_iter * from)861 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
862 {
863 	struct inode *inode = file_inode(iocb->ki_filp);
864 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
865 	struct super_block *sb = inode->i_sb;
866 	bool sync = is_sync_kiocb(iocb);
867 	bool append = false;
868 	ssize_t ret, count;
869 
870 	/*
871 	 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
872 	 * as this can cause write reordering (e.g. the first aio gets EAGAIN
873 	 * on the inode lock but the second goes through but is now unaligned).
874 	 */
875 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync &&
876 	    (iocb->ki_flags & IOCB_NOWAIT))
877 		return -EOPNOTSUPP;
878 
879 	if (iocb->ki_flags & IOCB_NOWAIT) {
880 		if (!inode_trylock(inode))
881 			return -EAGAIN;
882 	} else {
883 		inode_lock(inode);
884 	}
885 
886 	count = zonefs_write_checks(iocb, from);
887 	if (count <= 0) {
888 		ret = count;
889 		goto inode_unlock;
890 	}
891 
892 	if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
893 		ret = -EINVAL;
894 		goto inode_unlock;
895 	}
896 
897 	/* Enforce sequential writes (append only) in sequential zones */
898 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) {
899 		mutex_lock(&zi->i_truncate_mutex);
900 		if (iocb->ki_pos != zi->i_wpoffset) {
901 			mutex_unlock(&zi->i_truncate_mutex);
902 			ret = -EINVAL;
903 			goto inode_unlock;
904 		}
905 		mutex_unlock(&zi->i_truncate_mutex);
906 		append = sync;
907 	}
908 
909 	if (append)
910 		ret = zonefs_file_dio_append(iocb, from);
911 	else
912 		ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
913 				   &zonefs_write_dio_ops, sync);
914 	if (zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
915 	    (ret > 0 || ret == -EIOCBQUEUED)) {
916 		if (ret > 0)
917 			count = ret;
918 		mutex_lock(&zi->i_truncate_mutex);
919 		zi->i_wpoffset += count;
920 		mutex_unlock(&zi->i_truncate_mutex);
921 	}
922 
923 inode_unlock:
924 	inode_unlock(inode);
925 
926 	return ret;
927 }
928 
zonefs_file_buffered_write(struct kiocb * iocb,struct iov_iter * from)929 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
930 					  struct iov_iter *from)
931 {
932 	struct inode *inode = file_inode(iocb->ki_filp);
933 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
934 	ssize_t ret;
935 
936 	/*
937 	 * Direct IO writes are mandatory for sequential zone files so that the
938 	 * write IO issuing order is preserved.
939 	 */
940 	if (zi->i_ztype != ZONEFS_ZTYPE_CNV)
941 		return -EIO;
942 
943 	if (iocb->ki_flags & IOCB_NOWAIT) {
944 		if (!inode_trylock(inode))
945 			return -EAGAIN;
946 	} else {
947 		inode_lock(inode);
948 	}
949 
950 	ret = zonefs_write_checks(iocb, from);
951 	if (ret <= 0)
952 		goto inode_unlock;
953 
954 	ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops);
955 	if (ret > 0)
956 		iocb->ki_pos += ret;
957 	else if (ret == -EIO)
958 		zonefs_io_error(inode, true);
959 
960 inode_unlock:
961 	inode_unlock(inode);
962 	if (ret > 0)
963 		ret = generic_write_sync(iocb, ret);
964 
965 	return ret;
966 }
967 
zonefs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)968 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
969 {
970 	struct inode *inode = file_inode(iocb->ki_filp);
971 
972 	if (unlikely(IS_IMMUTABLE(inode)))
973 		return -EPERM;
974 
975 	if (sb_rdonly(inode->i_sb))
976 		return -EROFS;
977 
978 	/* Write operations beyond the zone size are not allowed */
979 	if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size)
980 		return -EFBIG;
981 
982 	if (iocb->ki_flags & IOCB_DIRECT) {
983 		ssize_t ret = zonefs_file_dio_write(iocb, from);
984 		if (ret != -ENOTBLK)
985 			return ret;
986 	}
987 
988 	return zonefs_file_buffered_write(iocb, from);
989 }
990 
zonefs_file_read_dio_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)991 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
992 				       int error, unsigned int flags)
993 {
994 	if (error) {
995 		zonefs_io_error(file_inode(iocb->ki_filp), false);
996 		return error;
997 	}
998 
999 	return 0;
1000 }
1001 
1002 static const struct iomap_dio_ops zonefs_read_dio_ops = {
1003 	.end_io			= zonefs_file_read_dio_end_io,
1004 };
1005 
zonefs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)1006 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1007 {
1008 	struct inode *inode = file_inode(iocb->ki_filp);
1009 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1010 	struct super_block *sb = inode->i_sb;
1011 	loff_t isize;
1012 	ssize_t ret;
1013 
1014 	/* Offline zones cannot be read */
1015 	if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
1016 		return -EPERM;
1017 
1018 	if (iocb->ki_pos >= zi->i_max_size)
1019 		return 0;
1020 
1021 	if (iocb->ki_flags & IOCB_NOWAIT) {
1022 		if (!inode_trylock_shared(inode))
1023 			return -EAGAIN;
1024 	} else {
1025 		inode_lock_shared(inode);
1026 	}
1027 
1028 	/* Limit read operations to written data */
1029 	mutex_lock(&zi->i_truncate_mutex);
1030 	isize = i_size_read(inode);
1031 	if (iocb->ki_pos >= isize) {
1032 		mutex_unlock(&zi->i_truncate_mutex);
1033 		ret = 0;
1034 		goto inode_unlock;
1035 	}
1036 	iov_iter_truncate(to, isize - iocb->ki_pos);
1037 	mutex_unlock(&zi->i_truncate_mutex);
1038 
1039 	if (iocb->ki_flags & IOCB_DIRECT) {
1040 		size_t count = iov_iter_count(to);
1041 
1042 		if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
1043 			ret = -EINVAL;
1044 			goto inode_unlock;
1045 		}
1046 		file_accessed(iocb->ki_filp);
1047 		ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
1048 				   &zonefs_read_dio_ops, is_sync_kiocb(iocb));
1049 	} else {
1050 		ret = generic_file_read_iter(iocb, to);
1051 		if (ret == -EIO)
1052 			zonefs_io_error(inode, false);
1053 	}
1054 
1055 inode_unlock:
1056 	inode_unlock_shared(inode);
1057 
1058 	return ret;
1059 }
1060 
zonefs_file_use_exp_open(struct inode * inode,struct file * file)1061 static inline bool zonefs_file_use_exp_open(struct inode *inode, struct file *file)
1062 {
1063 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1064 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1065 
1066 	if (!(sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN))
1067 		return false;
1068 
1069 	if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
1070 		return false;
1071 
1072 	if (!(file->f_mode & FMODE_WRITE))
1073 		return false;
1074 
1075 	return true;
1076 }
1077 
zonefs_open_zone(struct inode * inode)1078 static int zonefs_open_zone(struct inode *inode)
1079 {
1080 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1081 	struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1082 	int ret = 0;
1083 
1084 	mutex_lock(&zi->i_truncate_mutex);
1085 
1086 	if (!zi->i_wr_refcnt) {
1087 		if (atomic_inc_return(&sbi->s_open_zones) > sbi->s_max_open_zones) {
1088 			atomic_dec(&sbi->s_open_zones);
1089 			ret = -EBUSY;
1090 			goto unlock;
1091 		}
1092 
1093 		if (i_size_read(inode) < zi->i_max_size) {
1094 			ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
1095 			if (ret) {
1096 				atomic_dec(&sbi->s_open_zones);
1097 				goto unlock;
1098 			}
1099 			zi->i_flags |= ZONEFS_ZONE_OPEN;
1100 		}
1101 	}
1102 
1103 	zi->i_wr_refcnt++;
1104 
1105 unlock:
1106 	mutex_unlock(&zi->i_truncate_mutex);
1107 
1108 	return ret;
1109 }
1110 
zonefs_file_open(struct inode * inode,struct file * file)1111 static int zonefs_file_open(struct inode *inode, struct file *file)
1112 {
1113 	int ret;
1114 
1115 	ret = generic_file_open(inode, file);
1116 	if (ret)
1117 		return ret;
1118 
1119 	if (zonefs_file_use_exp_open(inode, file))
1120 		return zonefs_open_zone(inode);
1121 
1122 	return 0;
1123 }
1124 
zonefs_close_zone(struct inode * inode)1125 static void zonefs_close_zone(struct inode *inode)
1126 {
1127 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1128 	int ret = 0;
1129 
1130 	mutex_lock(&zi->i_truncate_mutex);
1131 	zi->i_wr_refcnt--;
1132 	if (!zi->i_wr_refcnt) {
1133 		struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1134 		struct super_block *sb = inode->i_sb;
1135 
1136 		/*
1137 		 * If the file zone is full, it is not open anymore and we only
1138 		 * need to decrement the open count.
1139 		 */
1140 		if (!(zi->i_flags & ZONEFS_ZONE_OPEN))
1141 			goto dec;
1142 
1143 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1144 		if (ret) {
1145 			__zonefs_io_error(inode, false);
1146 			/*
1147 			 * Leaving zones explicitly open may lead to a state
1148 			 * where most zones cannot be written (zone resources
1149 			 * exhausted). So take preventive action by remounting
1150 			 * read-only.
1151 			 */
1152 			if (zi->i_flags & ZONEFS_ZONE_OPEN &&
1153 			    !(sb->s_flags & SB_RDONLY)) {
1154 				zonefs_warn(sb, "closing zone failed, remounting filesystem read-only\n");
1155 				sb->s_flags |= SB_RDONLY;
1156 			}
1157 		}
1158 		zi->i_flags &= ~ZONEFS_ZONE_OPEN;
1159 dec:
1160 		atomic_dec(&sbi->s_open_zones);
1161 	}
1162 	mutex_unlock(&zi->i_truncate_mutex);
1163 }
1164 
zonefs_file_release(struct inode * inode,struct file * file)1165 static int zonefs_file_release(struct inode *inode, struct file *file)
1166 {
1167 	/*
1168 	 * If we explicitly open a zone we must close it again as well, but the
1169 	 * zone management operation can fail (either due to an IO error or as
1170 	 * the zone has gone offline or read-only). Make sure we don't fail the
1171 	 * close(2) for user-space.
1172 	 */
1173 	if (zonefs_file_use_exp_open(inode, file))
1174 		zonefs_close_zone(inode);
1175 
1176 	return 0;
1177 }
1178 
1179 static const struct file_operations zonefs_file_operations = {
1180 	.open		= zonefs_file_open,
1181 	.release	= zonefs_file_release,
1182 	.fsync		= zonefs_file_fsync,
1183 	.mmap		= zonefs_file_mmap,
1184 	.llseek		= zonefs_file_llseek,
1185 	.read_iter	= zonefs_file_read_iter,
1186 	.write_iter	= zonefs_file_write_iter,
1187 	.splice_read	= generic_file_splice_read,
1188 	.splice_write	= iter_file_splice_write,
1189 	.iopoll		= iomap_dio_iopoll,
1190 };
1191 
1192 static struct kmem_cache *zonefs_inode_cachep;
1193 
zonefs_alloc_inode(struct super_block * sb)1194 static struct inode *zonefs_alloc_inode(struct super_block *sb)
1195 {
1196 	struct zonefs_inode_info *zi;
1197 
1198 	zi = kmem_cache_alloc(zonefs_inode_cachep, GFP_KERNEL);
1199 	if (!zi)
1200 		return NULL;
1201 
1202 	inode_init_once(&zi->i_vnode);
1203 	mutex_init(&zi->i_truncate_mutex);
1204 	init_rwsem(&zi->i_mmap_sem);
1205 	zi->i_wr_refcnt = 0;
1206 	zi->i_flags = 0;
1207 
1208 	return &zi->i_vnode;
1209 }
1210 
zonefs_free_inode(struct inode * inode)1211 static void zonefs_free_inode(struct inode *inode)
1212 {
1213 	kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
1214 }
1215 
1216 /*
1217  * File system stat.
1218  */
zonefs_statfs(struct dentry * dentry,struct kstatfs * buf)1219 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
1220 {
1221 	struct super_block *sb = dentry->d_sb;
1222 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1223 	enum zonefs_ztype t;
1224 	u64 fsid;
1225 
1226 	buf->f_type = ZONEFS_MAGIC;
1227 	buf->f_bsize = sb->s_blocksize;
1228 	buf->f_namelen = ZONEFS_NAME_MAX;
1229 
1230 	spin_lock(&sbi->s_lock);
1231 
1232 	buf->f_blocks = sbi->s_blocks;
1233 	if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
1234 		buf->f_bfree = 0;
1235 	else
1236 		buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
1237 	buf->f_bavail = buf->f_bfree;
1238 
1239 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1240 		if (sbi->s_nr_files[t])
1241 			buf->f_files += sbi->s_nr_files[t] + 1;
1242 	}
1243 	buf->f_ffree = 0;
1244 
1245 	spin_unlock(&sbi->s_lock);
1246 
1247 	fsid = le64_to_cpup((void *)sbi->s_uuid.b) ^
1248 		le64_to_cpup((void *)sbi->s_uuid.b + sizeof(u64));
1249 	buf->f_fsid = u64_to_fsid(fsid);
1250 
1251 	return 0;
1252 }
1253 
1254 enum {
1255 	Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
1256 	Opt_explicit_open, Opt_err,
1257 };
1258 
1259 static const match_table_t tokens = {
1260 	{ Opt_errors_ro,	"errors=remount-ro"},
1261 	{ Opt_errors_zro,	"errors=zone-ro"},
1262 	{ Opt_errors_zol,	"errors=zone-offline"},
1263 	{ Opt_errors_repair,	"errors=repair"},
1264 	{ Opt_explicit_open,	"explicit-open" },
1265 	{ Opt_err,		NULL}
1266 };
1267 
zonefs_parse_options(struct super_block * sb,char * options)1268 static int zonefs_parse_options(struct super_block *sb, char *options)
1269 {
1270 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1271 	substring_t args[MAX_OPT_ARGS];
1272 	char *p;
1273 
1274 	if (!options)
1275 		return 0;
1276 
1277 	while ((p = strsep(&options, ",")) != NULL) {
1278 		int token;
1279 
1280 		if (!*p)
1281 			continue;
1282 
1283 		token = match_token(p, tokens, args);
1284 		switch (token) {
1285 		case Opt_errors_ro:
1286 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1287 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
1288 			break;
1289 		case Opt_errors_zro:
1290 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1291 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
1292 			break;
1293 		case Opt_errors_zol:
1294 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1295 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
1296 			break;
1297 		case Opt_errors_repair:
1298 			sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1299 			sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
1300 			break;
1301 		case Opt_explicit_open:
1302 			sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
1303 			break;
1304 		default:
1305 			return -EINVAL;
1306 		}
1307 	}
1308 
1309 	return 0;
1310 }
1311 
zonefs_show_options(struct seq_file * seq,struct dentry * root)1312 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
1313 {
1314 	struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
1315 
1316 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
1317 		seq_puts(seq, ",errors=remount-ro");
1318 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
1319 		seq_puts(seq, ",errors=zone-ro");
1320 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
1321 		seq_puts(seq, ",errors=zone-offline");
1322 	if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
1323 		seq_puts(seq, ",errors=repair");
1324 
1325 	return 0;
1326 }
1327 
zonefs_remount(struct super_block * sb,int * flags,char * data)1328 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
1329 {
1330 	sync_filesystem(sb);
1331 
1332 	return zonefs_parse_options(sb, data);
1333 }
1334 
1335 static const struct super_operations zonefs_sops = {
1336 	.alloc_inode	= zonefs_alloc_inode,
1337 	.free_inode	= zonefs_free_inode,
1338 	.statfs		= zonefs_statfs,
1339 	.remount_fs	= zonefs_remount,
1340 	.show_options	= zonefs_show_options,
1341 };
1342 
1343 static const struct inode_operations zonefs_dir_inode_operations = {
1344 	.lookup		= simple_lookup,
1345 	.setattr	= zonefs_inode_setattr,
1346 };
1347 
zonefs_init_dir_inode(struct inode * parent,struct inode * inode,enum zonefs_ztype type)1348 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode,
1349 				  enum zonefs_ztype type)
1350 {
1351 	struct super_block *sb = parent->i_sb;
1352 
1353 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1;
1354 	inode_init_owner(inode, parent, S_IFDIR | 0555);
1355 	inode->i_op = &zonefs_dir_inode_operations;
1356 	inode->i_fop = &simple_dir_operations;
1357 	set_nlink(inode, 2);
1358 	inc_nlink(parent);
1359 }
1360 
zonefs_init_file_inode(struct inode * inode,struct blk_zone * zone,enum zonefs_ztype type)1361 static int zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone,
1362 				  enum zonefs_ztype type)
1363 {
1364 	struct super_block *sb = inode->i_sb;
1365 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1366 	struct zonefs_inode_info *zi = ZONEFS_I(inode);
1367 	int ret = 0;
1368 
1369 	inode->i_ino = zone->start >> sbi->s_zone_sectors_shift;
1370 	inode->i_mode = S_IFREG | sbi->s_perm;
1371 
1372 	zi->i_ztype = type;
1373 	zi->i_zsector = zone->start;
1374 	zi->i_zone_size = zone->len << SECTOR_SHIFT;
1375 	if (zi->i_zone_size > bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT &&
1376 	    !(sbi->s_features & ZONEFS_F_AGGRCNV)) {
1377 		zonefs_err(sb,
1378 			   "zone size %llu doesn't match device's zone sectors %llu\n",
1379 			   zi->i_zone_size,
1380 			   bdev_zone_sectors(sb->s_bdev) << SECTOR_SHIFT);
1381 		return -EINVAL;
1382 	}
1383 
1384 	zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE,
1385 			       zone->capacity << SECTOR_SHIFT);
1386 	zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true);
1387 
1388 	inode->i_uid = sbi->s_uid;
1389 	inode->i_gid = sbi->s_gid;
1390 	inode->i_size = zi->i_wpoffset;
1391 	inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT;
1392 
1393 	inode->i_op = &zonefs_file_inode_operations;
1394 	inode->i_fop = &zonefs_file_operations;
1395 	inode->i_mapping->a_ops = &zonefs_file_aops;
1396 
1397 	sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes);
1398 	sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits;
1399 	sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits;
1400 
1401 	/*
1402 	 * For sequential zones, make sure that any open zone is closed first
1403 	 * to ensure that the initial number of open zones is 0, in sync with
1404 	 * the open zone accounting done when the mount option
1405 	 * ZONEFS_MNTOPT_EXPLICIT_OPEN is used.
1406 	 */
1407 	if (type == ZONEFS_ZTYPE_SEQ &&
1408 	    (zone->cond == BLK_ZONE_COND_IMP_OPEN ||
1409 	     zone->cond == BLK_ZONE_COND_EXP_OPEN)) {
1410 		mutex_lock(&zi->i_truncate_mutex);
1411 		ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1412 		mutex_unlock(&zi->i_truncate_mutex);
1413 	}
1414 
1415 	return ret;
1416 }
1417 
zonefs_create_inode(struct dentry * parent,const char * name,struct blk_zone * zone,enum zonefs_ztype type)1418 static struct dentry *zonefs_create_inode(struct dentry *parent,
1419 					const char *name, struct blk_zone *zone,
1420 					enum zonefs_ztype type)
1421 {
1422 	struct inode *dir = d_inode(parent);
1423 	struct dentry *dentry;
1424 	struct inode *inode;
1425 	int ret = -ENOMEM;
1426 
1427 	dentry = d_alloc_name(parent, name);
1428 	if (!dentry)
1429 		return ERR_PTR(ret);
1430 
1431 	inode = new_inode(parent->d_sb);
1432 	if (!inode)
1433 		goto dput;
1434 
1435 	inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
1436 	if (zone) {
1437 		ret = zonefs_init_file_inode(inode, zone, type);
1438 		if (ret) {
1439 			iput(inode);
1440 			goto dput;
1441 		}
1442 	} else {
1443 		zonefs_init_dir_inode(dir, inode, type);
1444 	}
1445 
1446 	d_add(dentry, inode);
1447 	dir->i_size++;
1448 
1449 	return dentry;
1450 
1451 dput:
1452 	dput(dentry);
1453 
1454 	return ERR_PTR(ret);
1455 }
1456 
1457 struct zonefs_zone_data {
1458 	struct super_block	*sb;
1459 	unsigned int		nr_zones[ZONEFS_ZTYPE_MAX];
1460 	struct blk_zone		*zones;
1461 };
1462 
1463 /*
1464  * Create a zone group and populate it with zone files.
1465  */
zonefs_create_zgroup(struct zonefs_zone_data * zd,enum zonefs_ztype type)1466 static int zonefs_create_zgroup(struct zonefs_zone_data *zd,
1467 				enum zonefs_ztype type)
1468 {
1469 	struct super_block *sb = zd->sb;
1470 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1471 	struct blk_zone *zone, *next, *end;
1472 	const char *zgroup_name;
1473 	char *file_name;
1474 	struct dentry *dir, *dent;
1475 	unsigned int n = 0;
1476 	int ret;
1477 
1478 	/* If the group is empty, there is nothing to do */
1479 	if (!zd->nr_zones[type])
1480 		return 0;
1481 
1482 	file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
1483 	if (!file_name)
1484 		return -ENOMEM;
1485 
1486 	if (type == ZONEFS_ZTYPE_CNV)
1487 		zgroup_name = "cnv";
1488 	else
1489 		zgroup_name = "seq";
1490 
1491 	dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type);
1492 	if (IS_ERR(dir)) {
1493 		ret = PTR_ERR(dir);
1494 		goto free;
1495 	}
1496 
1497 	/*
1498 	 * The first zone contains the super block: skip it.
1499 	 */
1500 	end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk);
1501 	for (zone = &zd->zones[1]; zone < end; zone = next) {
1502 
1503 		next = zone + 1;
1504 		if (zonefs_zone_type(zone) != type)
1505 			continue;
1506 
1507 		/*
1508 		 * For conventional zones, contiguous zones can be aggregated
1509 		 * together to form larger files. Note that this overwrites the
1510 		 * length of the first zone of the set of contiguous zones
1511 		 * aggregated together. If one offline or read-only zone is
1512 		 * found, assume that all zones aggregated have the same
1513 		 * condition.
1514 		 */
1515 		if (type == ZONEFS_ZTYPE_CNV &&
1516 		    (sbi->s_features & ZONEFS_F_AGGRCNV)) {
1517 			for (; next < end; next++) {
1518 				if (zonefs_zone_type(next) != type)
1519 					break;
1520 				zone->len += next->len;
1521 				zone->capacity += next->capacity;
1522 				if (next->cond == BLK_ZONE_COND_READONLY &&
1523 				    zone->cond != BLK_ZONE_COND_OFFLINE)
1524 					zone->cond = BLK_ZONE_COND_READONLY;
1525 				else if (next->cond == BLK_ZONE_COND_OFFLINE)
1526 					zone->cond = BLK_ZONE_COND_OFFLINE;
1527 			}
1528 			if (zone->capacity != zone->len) {
1529 				zonefs_err(sb, "Invalid conventional zone capacity\n");
1530 				ret = -EINVAL;
1531 				goto free;
1532 			}
1533 		}
1534 
1535 		/*
1536 		 * Use the file number within its group as file name.
1537 		 */
1538 		snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n);
1539 		dent = zonefs_create_inode(dir, file_name, zone, type);
1540 		if (IS_ERR(dent)) {
1541 			ret = PTR_ERR(dent);
1542 			goto free;
1543 		}
1544 
1545 		n++;
1546 	}
1547 
1548 	zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1549 		    zgroup_name, n, n > 1 ? "s" : "");
1550 
1551 	sbi->s_nr_files[type] = n;
1552 	ret = 0;
1553 
1554 free:
1555 	kfree(file_name);
1556 
1557 	return ret;
1558 }
1559 
zonefs_get_zone_info_cb(struct blk_zone * zone,unsigned int idx,void * data)1560 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
1561 				   void *data)
1562 {
1563 	struct zonefs_zone_data *zd = data;
1564 
1565 	/*
1566 	 * Count the number of usable zones: the first zone at index 0 contains
1567 	 * the super block and is ignored.
1568 	 */
1569 	switch (zone->type) {
1570 	case BLK_ZONE_TYPE_CONVENTIONAL:
1571 		zone->wp = zone->start + zone->len;
1572 		if (idx)
1573 			zd->nr_zones[ZONEFS_ZTYPE_CNV]++;
1574 		break;
1575 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1576 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1577 		if (idx)
1578 			zd->nr_zones[ZONEFS_ZTYPE_SEQ]++;
1579 		break;
1580 	default:
1581 		zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
1582 			   zone->type);
1583 		return -EIO;
1584 	}
1585 
1586 	memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
1587 
1588 	return 0;
1589 }
1590 
zonefs_get_zone_info(struct zonefs_zone_data * zd)1591 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
1592 {
1593 	struct block_device *bdev = zd->sb->s_bdev;
1594 	int ret;
1595 
1596 	zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk),
1597 			     sizeof(struct blk_zone), GFP_KERNEL);
1598 	if (!zd->zones)
1599 		return -ENOMEM;
1600 
1601 	/* Get zones information from the device */
1602 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
1603 				  zonefs_get_zone_info_cb, zd);
1604 	if (ret < 0) {
1605 		zonefs_err(zd->sb, "Zone report failed %d\n", ret);
1606 		return ret;
1607 	}
1608 
1609 	if (ret != blkdev_nr_zones(bdev->bd_disk)) {
1610 		zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
1611 			   ret, blkdev_nr_zones(bdev->bd_disk));
1612 		return -EIO;
1613 	}
1614 
1615 	return 0;
1616 }
1617 
zonefs_cleanup_zone_info(struct zonefs_zone_data * zd)1618 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd)
1619 {
1620 	kvfree(zd->zones);
1621 }
1622 
1623 /*
1624  * Read super block information from the device.
1625  */
zonefs_read_super(struct super_block * sb)1626 static int zonefs_read_super(struct super_block *sb)
1627 {
1628 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1629 	struct zonefs_super *super;
1630 	u32 crc, stored_crc;
1631 	struct page *page;
1632 	struct bio_vec bio_vec;
1633 	struct bio bio;
1634 	int ret;
1635 
1636 	page = alloc_page(GFP_KERNEL);
1637 	if (!page)
1638 		return -ENOMEM;
1639 
1640 	bio_init(&bio, &bio_vec, 1);
1641 	bio.bi_iter.bi_sector = 0;
1642 	bio.bi_opf = REQ_OP_READ;
1643 	bio_set_dev(&bio, sb->s_bdev);
1644 	bio_add_page(&bio, page, PAGE_SIZE, 0);
1645 
1646 	ret = submit_bio_wait(&bio);
1647 	if (ret)
1648 		goto free_page;
1649 
1650 	super = kmap(page);
1651 
1652 	ret = -EINVAL;
1653 	if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1654 		goto unmap;
1655 
1656 	stored_crc = le32_to_cpu(super->s_crc);
1657 	super->s_crc = 0;
1658 	crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1659 	if (crc != stored_crc) {
1660 		zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1661 			   crc, stored_crc);
1662 		goto unmap;
1663 	}
1664 
1665 	sbi->s_features = le64_to_cpu(super->s_features);
1666 	if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1667 		zonefs_err(sb, "Unknown features set 0x%llx\n",
1668 			   sbi->s_features);
1669 		goto unmap;
1670 	}
1671 
1672 	if (sbi->s_features & ZONEFS_F_UID) {
1673 		sbi->s_uid = make_kuid(current_user_ns(),
1674 				       le32_to_cpu(super->s_uid));
1675 		if (!uid_valid(sbi->s_uid)) {
1676 			zonefs_err(sb, "Invalid UID feature\n");
1677 			goto unmap;
1678 		}
1679 	}
1680 
1681 	if (sbi->s_features & ZONEFS_F_GID) {
1682 		sbi->s_gid = make_kgid(current_user_ns(),
1683 				       le32_to_cpu(super->s_gid));
1684 		if (!gid_valid(sbi->s_gid)) {
1685 			zonefs_err(sb, "Invalid GID feature\n");
1686 			goto unmap;
1687 		}
1688 	}
1689 
1690 	if (sbi->s_features & ZONEFS_F_PERM)
1691 		sbi->s_perm = le32_to_cpu(super->s_perm);
1692 
1693 	if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1694 		zonefs_err(sb, "Reserved area is being used\n");
1695 		goto unmap;
1696 	}
1697 
1698 	import_uuid(&sbi->s_uuid, super->s_uuid);
1699 	ret = 0;
1700 
1701 unmap:
1702 	kunmap(page);
1703 free_page:
1704 	__free_page(page);
1705 
1706 	return ret;
1707 }
1708 
1709 /*
1710  * Check that the device is zoned. If it is, get the list of zones and create
1711  * sub-directories and files according to the device zone configuration and
1712  * format options.
1713  */
zonefs_fill_super(struct super_block * sb,void * data,int silent)1714 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1715 {
1716 	struct zonefs_zone_data zd;
1717 	struct zonefs_sb_info *sbi;
1718 	struct inode *inode;
1719 	enum zonefs_ztype t;
1720 	int ret;
1721 
1722 	if (!bdev_is_zoned(sb->s_bdev)) {
1723 		zonefs_err(sb, "Not a zoned block device\n");
1724 		return -EINVAL;
1725 	}
1726 
1727 	/*
1728 	 * Initialize super block information: the maximum file size is updated
1729 	 * when the zone files are created so that the format option
1730 	 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1731 	 * beyond the zone size is taken into account.
1732 	 */
1733 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1734 	if (!sbi)
1735 		return -ENOMEM;
1736 
1737 	spin_lock_init(&sbi->s_lock);
1738 	sb->s_fs_info = sbi;
1739 	sb->s_magic = ZONEFS_MAGIC;
1740 	sb->s_maxbytes = 0;
1741 	sb->s_op = &zonefs_sops;
1742 	sb->s_time_gran	= 1;
1743 
1744 	/*
1745 	 * The block size is set to the device physical sector size to ensure
1746 	 * that write operations on 512e devices (512B logical block and 4KB
1747 	 * physical block) are always aligned to the device physical blocks,
1748 	 * as mandated by the ZBC/ZAC specifications.
1749 	 */
1750 	sb_set_blocksize(sb, bdev_physical_block_size(sb->s_bdev));
1751 	sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1752 	sbi->s_uid = GLOBAL_ROOT_UID;
1753 	sbi->s_gid = GLOBAL_ROOT_GID;
1754 	sbi->s_perm = 0640;
1755 	sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1756 	sbi->s_max_open_zones = bdev_max_open_zones(sb->s_bdev);
1757 	atomic_set(&sbi->s_open_zones, 0);
1758 
1759 	ret = zonefs_read_super(sb);
1760 	if (ret)
1761 		return ret;
1762 
1763 	ret = zonefs_parse_options(sb, data);
1764 	if (ret)
1765 		return ret;
1766 
1767 	memset(&zd, 0, sizeof(struct zonefs_zone_data));
1768 	zd.sb = sb;
1769 	ret = zonefs_get_zone_info(&zd);
1770 	if (ret)
1771 		goto cleanup;
1772 
1773 	zonefs_info(sb, "Mounting %u zones",
1774 		    blkdev_nr_zones(sb->s_bdev->bd_disk));
1775 
1776 	if (!sbi->s_max_open_zones &&
1777 	    sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1778 		zonefs_info(sb, "No open zones limit. Ignoring explicit_open mount option\n");
1779 		sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1780 	}
1781 
1782 	/* Create root directory inode */
1783 	ret = -ENOMEM;
1784 	inode = new_inode(sb);
1785 	if (!inode)
1786 		goto cleanup;
1787 
1788 	inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk);
1789 	inode->i_mode = S_IFDIR | 0555;
1790 	inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1791 	inode->i_op = &zonefs_dir_inode_operations;
1792 	inode->i_fop = &simple_dir_operations;
1793 	set_nlink(inode, 2);
1794 
1795 	sb->s_root = d_make_root(inode);
1796 	if (!sb->s_root)
1797 		goto cleanup;
1798 
1799 	/* Create and populate files in zone groups directories */
1800 	for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1801 		ret = zonefs_create_zgroup(&zd, t);
1802 		if (ret)
1803 			break;
1804 	}
1805 
1806 cleanup:
1807 	zonefs_cleanup_zone_info(&zd);
1808 
1809 	return ret;
1810 }
1811 
zonefs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)1812 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1813 				   int flags, const char *dev_name, void *data)
1814 {
1815 	return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1816 }
1817 
zonefs_kill_super(struct super_block * sb)1818 static void zonefs_kill_super(struct super_block *sb)
1819 {
1820 	struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1821 
1822 	if (sb->s_root)
1823 		d_genocide(sb->s_root);
1824 	kill_block_super(sb);
1825 	kfree(sbi);
1826 }
1827 
1828 /*
1829  * File system definition and registration.
1830  */
1831 static struct file_system_type zonefs_type = {
1832 	.owner		= THIS_MODULE,
1833 	.name		= "zonefs",
1834 	.mount		= zonefs_mount,
1835 	.kill_sb	= zonefs_kill_super,
1836 	.fs_flags	= FS_REQUIRES_DEV,
1837 };
1838 
zonefs_init_inodecache(void)1839 static int __init zonefs_init_inodecache(void)
1840 {
1841 	zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1842 			sizeof(struct zonefs_inode_info), 0,
1843 			(SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1844 			NULL);
1845 	if (zonefs_inode_cachep == NULL)
1846 		return -ENOMEM;
1847 	return 0;
1848 }
1849 
zonefs_destroy_inodecache(void)1850 static void zonefs_destroy_inodecache(void)
1851 {
1852 	/*
1853 	 * Make sure all delayed rcu free inodes are flushed before we
1854 	 * destroy the inode cache.
1855 	 */
1856 	rcu_barrier();
1857 	kmem_cache_destroy(zonefs_inode_cachep);
1858 }
1859 
zonefs_init(void)1860 static int __init zonefs_init(void)
1861 {
1862 	int ret;
1863 
1864 	BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1865 
1866 	ret = zonefs_init_inodecache();
1867 	if (ret)
1868 		return ret;
1869 
1870 	ret = register_filesystem(&zonefs_type);
1871 	if (ret) {
1872 		zonefs_destroy_inodecache();
1873 		return ret;
1874 	}
1875 
1876 	return 0;
1877 }
1878 
zonefs_exit(void)1879 static void __exit zonefs_exit(void)
1880 {
1881 	zonefs_destroy_inodecache();
1882 	unregister_filesystem(&zonefs_type);
1883 }
1884 
1885 MODULE_AUTHOR("Damien Le Moal");
1886 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1887 MODULE_LICENSE("GPL");
1888 MODULE_ALIAS_FS("zonefs");
1889 MODULE_IMPORT_NS(ANDROID_GKI_VFS_EXPORT_ONLY);
1890 module_init(zonefs_init);
1891 module_exit(zonefs_exit);
1892