1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/poll.h>
20 #include <linux/slab.h>
21 #include <linux/seq_file.h>
22 #include <linux/file.h>
23 #include <linux/bug.h>
24 #include <linux/anon_inodes.h>
25 #include <linux/syscalls.h>
26 #include <linux/userfaultfd_k.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ioctl.h>
29 #include <linux/security.h>
30 #include <linux/hugetlb.h>
31
32 int sysctl_unprivileged_userfaultfd __read_mostly;
33
34 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
35
36 /*
37 * Start with fault_pending_wqh and fault_wqh so they're more likely
38 * to be in the same cacheline.
39 *
40 * Locking order:
41 * fd_wqh.lock
42 * fault_pending_wqh.lock
43 * fault_wqh.lock
44 * event_wqh.lock
45 *
46 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
47 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
48 * also taken in IRQ context.
49 */
50 struct userfaultfd_ctx {
51 /* waitqueue head for the pending (i.e. not read) userfaults */
52 wait_queue_head_t fault_pending_wqh;
53 /* waitqueue head for the userfaults */
54 wait_queue_head_t fault_wqh;
55 /* waitqueue head for the pseudo fd to wakeup poll/read */
56 wait_queue_head_t fd_wqh;
57 /* waitqueue head for events */
58 wait_queue_head_t event_wqh;
59 /* a refile sequence protected by fault_pending_wqh lock */
60 seqcount_spinlock_t refile_seq;
61 /* pseudo fd refcounting */
62 refcount_t refcount;
63 /* userfaultfd syscall flags */
64 unsigned int flags;
65 /* features requested from the userspace */
66 unsigned int features;
67 /* released */
68 bool released;
69 /* memory mappings are changing because of non-cooperative event */
70 bool mmap_changing;
71 /* mm with one ore more vmas attached to this userfaultfd_ctx */
72 struct mm_struct *mm;
73 };
74
75 struct userfaultfd_fork_ctx {
76 struct userfaultfd_ctx *orig;
77 struct userfaultfd_ctx *new;
78 struct list_head list;
79 };
80
81 struct userfaultfd_unmap_ctx {
82 struct userfaultfd_ctx *ctx;
83 unsigned long start;
84 unsigned long end;
85 struct list_head list;
86 };
87
88 struct userfaultfd_wait_queue {
89 struct uffd_msg msg;
90 wait_queue_entry_t wq;
91 struct userfaultfd_ctx *ctx;
92 bool waken;
93 };
94
95 struct userfaultfd_wake_range {
96 unsigned long start;
97 unsigned long len;
98 };
99
100 /* internal indication that UFFD_API ioctl was successfully executed */
101 #define UFFD_FEATURE_INITIALIZED (1u << 31)
102
userfaultfd_is_initialized(struct userfaultfd_ctx * ctx)103 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
104 {
105 return ctx->features & UFFD_FEATURE_INITIALIZED;
106 }
107
userfaultfd_wake_function(wait_queue_entry_t * wq,unsigned mode,int wake_flags,void * key)108 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
109 int wake_flags, void *key)
110 {
111 struct userfaultfd_wake_range *range = key;
112 int ret;
113 struct userfaultfd_wait_queue *uwq;
114 unsigned long start, len;
115
116 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
117 ret = 0;
118 /* len == 0 means wake all */
119 start = range->start;
120 len = range->len;
121 if (len && (start > uwq->msg.arg.pagefault.address ||
122 start + len <= uwq->msg.arg.pagefault.address))
123 goto out;
124 WRITE_ONCE(uwq->waken, true);
125 /*
126 * The Program-Order guarantees provided by the scheduler
127 * ensure uwq->waken is visible before the task is woken.
128 */
129 ret = wake_up_state(wq->private, mode);
130 if (ret) {
131 /*
132 * Wake only once, autoremove behavior.
133 *
134 * After the effect of list_del_init is visible to the other
135 * CPUs, the waitqueue may disappear from under us, see the
136 * !list_empty_careful() in handle_userfault().
137 *
138 * try_to_wake_up() has an implicit smp_mb(), and the
139 * wq->private is read before calling the extern function
140 * "wake_up_state" (which in turns calls try_to_wake_up).
141 */
142 list_del_init(&wq->entry);
143 }
144 out:
145 return ret;
146 }
147
148 /**
149 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
150 * context.
151 * @ctx: [in] Pointer to the userfaultfd context.
152 */
userfaultfd_ctx_get(struct userfaultfd_ctx * ctx)153 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
154 {
155 refcount_inc(&ctx->refcount);
156 }
157
158 /**
159 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
160 * context.
161 * @ctx: [in] Pointer to userfaultfd context.
162 *
163 * The userfaultfd context reference must have been previously acquired either
164 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
165 */
userfaultfd_ctx_put(struct userfaultfd_ctx * ctx)166 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
167 {
168 if (refcount_dec_and_test(&ctx->refcount)) {
169 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
170 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
171 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
172 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
173 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
174 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
175 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
176 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
177 mmdrop(ctx->mm);
178 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
179 }
180 }
181
msg_init(struct uffd_msg * msg)182 static inline void msg_init(struct uffd_msg *msg)
183 {
184 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
185 /*
186 * Must use memset to zero out the paddings or kernel data is
187 * leaked to userland.
188 */
189 memset(msg, 0, sizeof(struct uffd_msg));
190 }
191
userfault_msg(unsigned long address,unsigned int flags,unsigned long reason,unsigned int features)192 static inline struct uffd_msg userfault_msg(unsigned long address,
193 unsigned int flags,
194 unsigned long reason,
195 unsigned int features)
196 {
197 struct uffd_msg msg;
198 msg_init(&msg);
199 msg.event = UFFD_EVENT_PAGEFAULT;
200 msg.arg.pagefault.address = address;
201 /*
202 * These flags indicate why the userfault occurred:
203 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
204 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
205 * - Neither of these flags being set indicates a MISSING fault.
206 *
207 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
208 * fault. Otherwise, it was a read fault.
209 */
210 if (flags & FAULT_FLAG_WRITE)
211 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
212 if (reason & VM_UFFD_WP)
213 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
214 if (reason & VM_UFFD_MINOR)
215 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
216 if (features & UFFD_FEATURE_THREAD_ID)
217 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
218 return msg;
219 }
220
221 #ifdef CONFIG_HUGETLB_PAGE
222 /*
223 * Same functionality as userfaultfd_must_wait below with modifications for
224 * hugepmd ranges.
225 */
userfaultfd_huge_must_wait(struct userfaultfd_ctx * ctx,struct vm_area_struct * vma,unsigned long address,unsigned long flags,unsigned long reason)226 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
227 struct vm_area_struct *vma,
228 unsigned long address,
229 unsigned long flags,
230 unsigned long reason)
231 {
232 struct mm_struct *mm = ctx->mm;
233 pte_t *ptep, pte;
234 bool ret = true;
235
236 mmap_assert_locked(mm);
237
238 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
239
240 if (!ptep)
241 goto out;
242
243 ret = false;
244 pte = huge_ptep_get(ptep);
245
246 /*
247 * Lockless access: we're in a wait_event so it's ok if it
248 * changes under us.
249 */
250 if (huge_pte_none(pte))
251 ret = true;
252 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
253 ret = true;
254 out:
255 return ret;
256 }
257 #else
userfaultfd_huge_must_wait(struct userfaultfd_ctx * ctx,struct vm_area_struct * vma,unsigned long address,unsigned long flags,unsigned long reason)258 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
259 struct vm_area_struct *vma,
260 unsigned long address,
261 unsigned long flags,
262 unsigned long reason)
263 {
264 return false; /* should never get here */
265 }
266 #endif /* CONFIG_HUGETLB_PAGE */
267
268 /*
269 * Verify the pagetables are still not ok after having reigstered into
270 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
271 * userfault that has already been resolved, if userfaultfd_read and
272 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
273 * threads.
274 */
userfaultfd_must_wait(struct userfaultfd_ctx * ctx,unsigned long address,unsigned long flags,unsigned long reason)275 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
276 unsigned long address,
277 unsigned long flags,
278 unsigned long reason)
279 {
280 struct mm_struct *mm = ctx->mm;
281 pgd_t *pgd;
282 p4d_t *p4d;
283 pud_t *pud;
284 pmd_t *pmd, _pmd;
285 pte_t *pte;
286 bool ret = true;
287
288 mmap_assert_locked(mm);
289
290 pgd = pgd_offset(mm, address);
291 if (!pgd_present(*pgd))
292 goto out;
293 p4d = p4d_offset(pgd, address);
294 if (!p4d_present(*p4d))
295 goto out;
296 pud = pud_offset(p4d, address);
297 if (!pud_present(*pud))
298 goto out;
299 pmd = pmd_offset(pud, address);
300 /*
301 * READ_ONCE must function as a barrier with narrower scope
302 * and it must be equivalent to:
303 * _pmd = *pmd; barrier();
304 *
305 * This is to deal with the instability (as in
306 * pmd_trans_unstable) of the pmd.
307 */
308 _pmd = READ_ONCE(*pmd);
309 if (pmd_none(_pmd))
310 goto out;
311
312 ret = false;
313 if (!pmd_present(_pmd))
314 goto out;
315
316 if (pmd_trans_huge(_pmd)) {
317 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
318 ret = true;
319 goto out;
320 }
321
322 /*
323 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
324 * and use the standard pte_offset_map() instead of parsing _pmd.
325 */
326 pte = pte_offset_map(pmd, address);
327 /*
328 * Lockless access: we're in a wait_event so it's ok if it
329 * changes under us.
330 */
331 if (pte_none(*pte))
332 ret = true;
333 if (!pte_write(*pte) && (reason & VM_UFFD_WP))
334 ret = true;
335 pte_unmap(pte);
336
337 out:
338 return ret;
339 }
340
userfaultfd_get_blocking_state(unsigned int flags)341 static inline long userfaultfd_get_blocking_state(unsigned int flags)
342 {
343 if (flags & FAULT_FLAG_INTERRUPTIBLE)
344 return TASK_INTERRUPTIBLE;
345
346 if (flags & FAULT_FLAG_KILLABLE)
347 return TASK_KILLABLE;
348
349 return TASK_UNINTERRUPTIBLE;
350 }
351
352 /*
353 * The locking rules involved in returning VM_FAULT_RETRY depending on
354 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
355 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
356 * recommendation in __lock_page_or_retry is not an understatement.
357 *
358 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
359 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
360 * not set.
361 *
362 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
363 * set, VM_FAULT_RETRY can still be returned if and only if there are
364 * fatal_signal_pending()s, and the mmap_lock must be released before
365 * returning it.
366 */
handle_userfault(struct vm_fault * vmf,unsigned long reason)367 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
368 {
369 struct mm_struct *mm = vmf->vma->vm_mm;
370 struct userfaultfd_ctx *ctx;
371 struct userfaultfd_wait_queue uwq;
372 vm_fault_t ret = VM_FAULT_SIGBUS;
373 bool must_wait;
374 long blocking_state;
375
376 /*
377 * We don't do userfault handling for the final child pid update.
378 *
379 * We also don't do userfault handling during
380 * coredumping. hugetlbfs has the special
381 * follow_hugetlb_page() to skip missing pages in the
382 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
383 * the no_page_table() helper in follow_page_mask(), but the
384 * shmem_vm_ops->fault method is invoked even during
385 * coredumping without mmap_lock and it ends up here.
386 */
387 if (current->flags & (PF_EXITING|PF_DUMPCORE))
388 goto out;
389
390 /*
391 * Coredumping runs without mmap_lock so we can only check that
392 * the mmap_lock is held, if PF_DUMPCORE was not set.
393 */
394 mmap_assert_locked(mm);
395
396 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
397 if (!ctx)
398 goto out;
399
400 BUG_ON(ctx->mm != mm);
401
402 /* Any unrecognized flag is a bug. */
403 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
404 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
405 VM_BUG_ON(!reason || (reason & (reason - 1)));
406
407 if (ctx->features & UFFD_FEATURE_SIGBUS)
408 goto out;
409 if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
410 ctx->flags & UFFD_USER_MODE_ONLY) {
411 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
412 "sysctl knob to 1 if kernel faults must be handled "
413 "without obtaining CAP_SYS_PTRACE capability\n");
414 goto out;
415 }
416
417 /*
418 * If it's already released don't get it. This avoids to loop
419 * in __get_user_pages if userfaultfd_release waits on the
420 * caller of handle_userfault to release the mmap_lock.
421 */
422 if (unlikely(READ_ONCE(ctx->released))) {
423 /*
424 * Don't return VM_FAULT_SIGBUS in this case, so a non
425 * cooperative manager can close the uffd after the
426 * last UFFDIO_COPY, without risking to trigger an
427 * involuntary SIGBUS if the process was starting the
428 * userfaultfd while the userfaultfd was still armed
429 * (but after the last UFFDIO_COPY). If the uffd
430 * wasn't already closed when the userfault reached
431 * this point, that would normally be solved by
432 * userfaultfd_must_wait returning 'false'.
433 *
434 * If we were to return VM_FAULT_SIGBUS here, the non
435 * cooperative manager would be instead forced to
436 * always call UFFDIO_UNREGISTER before it can safely
437 * close the uffd.
438 */
439 ret = VM_FAULT_NOPAGE;
440 goto out;
441 }
442
443 /*
444 * Check that we can return VM_FAULT_RETRY.
445 *
446 * NOTE: it should become possible to return VM_FAULT_RETRY
447 * even if FAULT_FLAG_TRIED is set without leading to gup()
448 * -EBUSY failures, if the userfaultfd is to be extended for
449 * VM_UFFD_WP tracking and we intend to arm the userfault
450 * without first stopping userland access to the memory. For
451 * VM_UFFD_MISSING userfaults this is enough for now.
452 */
453 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
454 /*
455 * Validate the invariant that nowait must allow retry
456 * to be sure not to return SIGBUS erroneously on
457 * nowait invocations.
458 */
459 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
460 #ifdef CONFIG_DEBUG_VM
461 if (printk_ratelimit()) {
462 printk(KERN_WARNING
463 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
464 vmf->flags);
465 dump_stack();
466 }
467 #endif
468 goto out;
469 }
470
471 /*
472 * Handle nowait, not much to do other than tell it to retry
473 * and wait.
474 */
475 ret = VM_FAULT_RETRY;
476 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
477 goto out;
478
479 /* take the reference before dropping the mmap_lock */
480 userfaultfd_ctx_get(ctx);
481
482 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
483 uwq.wq.private = current;
484 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
485 ctx->features);
486 uwq.ctx = ctx;
487 uwq.waken = false;
488
489 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
490
491 spin_lock_irq(&ctx->fault_pending_wqh.lock);
492 /*
493 * After the __add_wait_queue the uwq is visible to userland
494 * through poll/read().
495 */
496 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
497 /*
498 * The smp_mb() after __set_current_state prevents the reads
499 * following the spin_unlock to happen before the list_add in
500 * __add_wait_queue.
501 */
502 set_current_state(blocking_state);
503 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
504
505 if (!is_vm_hugetlb_page(vmf->vma))
506 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
507 reason);
508 else
509 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
510 vmf->address,
511 vmf->flags, reason);
512 mmap_read_unlock(mm);
513
514 if (likely(must_wait && !READ_ONCE(ctx->released))) {
515 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
516 schedule();
517 }
518
519 __set_current_state(TASK_RUNNING);
520
521 /*
522 * Here we race with the list_del; list_add in
523 * userfaultfd_ctx_read(), however because we don't ever run
524 * list_del_init() to refile across the two lists, the prev
525 * and next pointers will never point to self. list_add also
526 * would never let any of the two pointers to point to
527 * self. So list_empty_careful won't risk to see both pointers
528 * pointing to self at any time during the list refile. The
529 * only case where list_del_init() is called is the full
530 * removal in the wake function and there we don't re-list_add
531 * and it's fine not to block on the spinlock. The uwq on this
532 * kernel stack can be released after the list_del_init.
533 */
534 if (!list_empty_careful(&uwq.wq.entry)) {
535 spin_lock_irq(&ctx->fault_pending_wqh.lock);
536 /*
537 * No need of list_del_init(), the uwq on the stack
538 * will be freed shortly anyway.
539 */
540 list_del(&uwq.wq.entry);
541 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
542 }
543
544 /*
545 * ctx may go away after this if the userfault pseudo fd is
546 * already released.
547 */
548 userfaultfd_ctx_put(ctx);
549
550 out:
551 return ret;
552 }
553
userfaultfd_event_wait_completion(struct userfaultfd_ctx * ctx,struct userfaultfd_wait_queue * ewq)554 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
555 struct userfaultfd_wait_queue *ewq)
556 {
557 struct userfaultfd_ctx *release_new_ctx;
558
559 if (WARN_ON_ONCE(current->flags & PF_EXITING))
560 goto out;
561
562 ewq->ctx = ctx;
563 init_waitqueue_entry(&ewq->wq, current);
564 release_new_ctx = NULL;
565
566 spin_lock_irq(&ctx->event_wqh.lock);
567 /*
568 * After the __add_wait_queue the uwq is visible to userland
569 * through poll/read().
570 */
571 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
572 for (;;) {
573 set_current_state(TASK_KILLABLE);
574 if (ewq->msg.event == 0)
575 break;
576 if (READ_ONCE(ctx->released) ||
577 fatal_signal_pending(current)) {
578 /*
579 * &ewq->wq may be queued in fork_event, but
580 * __remove_wait_queue ignores the head
581 * parameter. It would be a problem if it
582 * didn't.
583 */
584 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
585 if (ewq->msg.event == UFFD_EVENT_FORK) {
586 struct userfaultfd_ctx *new;
587
588 new = (struct userfaultfd_ctx *)
589 (unsigned long)
590 ewq->msg.arg.reserved.reserved1;
591 release_new_ctx = new;
592 }
593 break;
594 }
595
596 spin_unlock_irq(&ctx->event_wqh.lock);
597
598 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
599 schedule();
600
601 spin_lock_irq(&ctx->event_wqh.lock);
602 }
603 __set_current_state(TASK_RUNNING);
604 spin_unlock_irq(&ctx->event_wqh.lock);
605
606 if (release_new_ctx) {
607 struct vm_area_struct *vma;
608 struct mm_struct *mm = release_new_ctx->mm;
609
610 /* the various vma->vm_userfaultfd_ctx still points to it */
611 mmap_write_lock(mm);
612 for (vma = mm->mmap; vma; vma = vma->vm_next)
613 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
614 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
615 vma->vm_flags &= ~__VM_UFFD_FLAGS;
616 }
617 mmap_write_unlock(mm);
618
619 userfaultfd_ctx_put(release_new_ctx);
620 }
621
622 /*
623 * ctx may go away after this if the userfault pseudo fd is
624 * already released.
625 */
626 out:
627 WRITE_ONCE(ctx->mmap_changing, false);
628 userfaultfd_ctx_put(ctx);
629 }
630
userfaultfd_event_complete(struct userfaultfd_ctx * ctx,struct userfaultfd_wait_queue * ewq)631 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
632 struct userfaultfd_wait_queue *ewq)
633 {
634 ewq->msg.event = 0;
635 wake_up_locked(&ctx->event_wqh);
636 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
637 }
638
dup_userfaultfd(struct vm_area_struct * vma,struct list_head * fcs)639 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
640 {
641 struct userfaultfd_ctx *ctx = NULL, *octx;
642 struct userfaultfd_fork_ctx *fctx;
643
644 octx = vma->vm_userfaultfd_ctx.ctx;
645 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
646 vm_write_begin(vma);
647 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
648 WRITE_ONCE(vma->vm_flags,
649 vma->vm_flags & ~__VM_UFFD_FLAGS);
650 vm_write_end(vma);
651 return 0;
652 }
653
654 list_for_each_entry(fctx, fcs, list)
655 if (fctx->orig == octx) {
656 ctx = fctx->new;
657 break;
658 }
659
660 if (!ctx) {
661 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
662 if (!fctx)
663 return -ENOMEM;
664
665 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
666 if (!ctx) {
667 kfree(fctx);
668 return -ENOMEM;
669 }
670
671 refcount_set(&ctx->refcount, 1);
672 ctx->flags = octx->flags;
673 ctx->features = octx->features;
674 ctx->released = false;
675 ctx->mmap_changing = false;
676 ctx->mm = vma->vm_mm;
677 mmgrab(ctx->mm);
678
679 userfaultfd_ctx_get(octx);
680 WRITE_ONCE(octx->mmap_changing, true);
681 fctx->orig = octx;
682 fctx->new = ctx;
683 list_add_tail(&fctx->list, fcs);
684 }
685
686 vma->vm_userfaultfd_ctx.ctx = ctx;
687 return 0;
688 }
689
dup_fctx(struct userfaultfd_fork_ctx * fctx)690 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
691 {
692 struct userfaultfd_ctx *ctx = fctx->orig;
693 struct userfaultfd_wait_queue ewq;
694
695 msg_init(&ewq.msg);
696
697 ewq.msg.event = UFFD_EVENT_FORK;
698 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
699
700 userfaultfd_event_wait_completion(ctx, &ewq);
701 }
702
dup_userfaultfd_complete(struct list_head * fcs)703 void dup_userfaultfd_complete(struct list_head *fcs)
704 {
705 struct userfaultfd_fork_ctx *fctx, *n;
706
707 list_for_each_entry_safe(fctx, n, fcs, list) {
708 dup_fctx(fctx);
709 list_del(&fctx->list);
710 kfree(fctx);
711 }
712 }
713
mremap_userfaultfd_prep(struct vm_area_struct * vma,struct vm_userfaultfd_ctx * vm_ctx)714 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
715 struct vm_userfaultfd_ctx *vm_ctx)
716 {
717 struct userfaultfd_ctx *ctx;
718
719 ctx = vma->vm_userfaultfd_ctx.ctx;
720
721 if (!ctx)
722 return;
723
724 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
725 vm_ctx->ctx = ctx;
726 userfaultfd_ctx_get(ctx);
727 WRITE_ONCE(ctx->mmap_changing, true);
728 } else {
729 /* Drop uffd context if remap feature not enabled */
730 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
731 vma->vm_flags &= ~__VM_UFFD_FLAGS;
732 }
733 }
734
mremap_userfaultfd_complete(struct vm_userfaultfd_ctx * vm_ctx,unsigned long from,unsigned long to,unsigned long len)735 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
736 unsigned long from, unsigned long to,
737 unsigned long len)
738 {
739 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
740 struct userfaultfd_wait_queue ewq;
741
742 if (!ctx)
743 return;
744
745 if (to & ~PAGE_MASK) {
746 userfaultfd_ctx_put(ctx);
747 return;
748 }
749
750 msg_init(&ewq.msg);
751
752 ewq.msg.event = UFFD_EVENT_REMAP;
753 ewq.msg.arg.remap.from = from;
754 ewq.msg.arg.remap.to = to;
755 ewq.msg.arg.remap.len = len;
756
757 userfaultfd_event_wait_completion(ctx, &ewq);
758 }
759
userfaultfd_remove(struct vm_area_struct * vma,unsigned long start,unsigned long end)760 bool userfaultfd_remove(struct vm_area_struct *vma,
761 unsigned long start, unsigned long end)
762 {
763 struct mm_struct *mm = vma->vm_mm;
764 struct userfaultfd_ctx *ctx;
765 struct userfaultfd_wait_queue ewq;
766
767 ctx = vma->vm_userfaultfd_ctx.ctx;
768 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
769 return true;
770
771 userfaultfd_ctx_get(ctx);
772 WRITE_ONCE(ctx->mmap_changing, true);
773 mmap_read_unlock(mm);
774
775 msg_init(&ewq.msg);
776
777 ewq.msg.event = UFFD_EVENT_REMOVE;
778 ewq.msg.arg.remove.start = start;
779 ewq.msg.arg.remove.end = end;
780
781 userfaultfd_event_wait_completion(ctx, &ewq);
782
783 return false;
784 }
785
has_unmap_ctx(struct userfaultfd_ctx * ctx,struct list_head * unmaps,unsigned long start,unsigned long end)786 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
787 unsigned long start, unsigned long end)
788 {
789 struct userfaultfd_unmap_ctx *unmap_ctx;
790
791 list_for_each_entry(unmap_ctx, unmaps, list)
792 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
793 unmap_ctx->end == end)
794 return true;
795
796 return false;
797 }
798
userfaultfd_unmap_prep(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * unmaps)799 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
800 unsigned long start, unsigned long end,
801 struct list_head *unmaps)
802 {
803 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
804 struct userfaultfd_unmap_ctx *unmap_ctx;
805 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
806
807 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
808 has_unmap_ctx(ctx, unmaps, start, end))
809 continue;
810
811 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
812 if (!unmap_ctx)
813 return -ENOMEM;
814
815 userfaultfd_ctx_get(ctx);
816 WRITE_ONCE(ctx->mmap_changing, true);
817 unmap_ctx->ctx = ctx;
818 unmap_ctx->start = start;
819 unmap_ctx->end = end;
820 list_add_tail(&unmap_ctx->list, unmaps);
821 }
822
823 return 0;
824 }
825
userfaultfd_unmap_complete(struct mm_struct * mm,struct list_head * uf)826 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
827 {
828 struct userfaultfd_unmap_ctx *ctx, *n;
829 struct userfaultfd_wait_queue ewq;
830
831 list_for_each_entry_safe(ctx, n, uf, list) {
832 msg_init(&ewq.msg);
833
834 ewq.msg.event = UFFD_EVENT_UNMAP;
835 ewq.msg.arg.remove.start = ctx->start;
836 ewq.msg.arg.remove.end = ctx->end;
837
838 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
839
840 list_del(&ctx->list);
841 kfree(ctx);
842 }
843 }
844
userfaultfd_release(struct inode * inode,struct file * file)845 static int userfaultfd_release(struct inode *inode, struct file *file)
846 {
847 struct userfaultfd_ctx *ctx = file->private_data;
848 struct mm_struct *mm = ctx->mm;
849 struct vm_area_struct *vma, *prev;
850 /* len == 0 means wake all */
851 struct userfaultfd_wake_range range = { .len = 0, };
852 unsigned long new_flags;
853
854 WRITE_ONCE(ctx->released, true);
855
856 if (!mmget_not_zero(mm))
857 goto wakeup;
858
859 /*
860 * Flush page faults out of all CPUs. NOTE: all page faults
861 * must be retried without returning VM_FAULT_SIGBUS if
862 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
863 * changes while handle_userfault released the mmap_lock. So
864 * it's critical that released is set to true (above), before
865 * taking the mmap_lock for writing.
866 */
867 mmap_write_lock(mm);
868 prev = NULL;
869 for (vma = mm->mmap; vma; vma = vma->vm_next) {
870 cond_resched();
871 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
872 !!(vma->vm_flags & __VM_UFFD_FLAGS));
873 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
874 prev = vma;
875 continue;
876 }
877 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
878 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
879 new_flags, vma->anon_vma,
880 vma->vm_file, vma->vm_pgoff,
881 vma_policy(vma),
882 NULL_VM_UFFD_CTX,
883 vma_get_anon_name(vma));
884 if (prev)
885 vma = prev;
886 else
887 prev = vma;
888 vm_write_begin(vma);
889 WRITE_ONCE(vma->vm_flags, new_flags);
890 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
891 vm_write_end(vma);
892 }
893 mmap_write_unlock(mm);
894 mmput(mm);
895 wakeup:
896 /*
897 * After no new page faults can wait on this fault_*wqh, flush
898 * the last page faults that may have been already waiting on
899 * the fault_*wqh.
900 */
901 spin_lock_irq(&ctx->fault_pending_wqh.lock);
902 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
903 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
904 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
905
906 /* Flush pending events that may still wait on event_wqh */
907 wake_up_all(&ctx->event_wqh);
908
909 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
910 userfaultfd_ctx_put(ctx);
911 return 0;
912 }
913
914 /* fault_pending_wqh.lock must be hold by the caller */
find_userfault_in(wait_queue_head_t * wqh)915 static inline struct userfaultfd_wait_queue *find_userfault_in(
916 wait_queue_head_t *wqh)
917 {
918 wait_queue_entry_t *wq;
919 struct userfaultfd_wait_queue *uwq;
920
921 lockdep_assert_held(&wqh->lock);
922
923 uwq = NULL;
924 if (!waitqueue_active(wqh))
925 goto out;
926 /* walk in reverse to provide FIFO behavior to read userfaults */
927 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
928 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
929 out:
930 return uwq;
931 }
932
find_userfault(struct userfaultfd_ctx * ctx)933 static inline struct userfaultfd_wait_queue *find_userfault(
934 struct userfaultfd_ctx *ctx)
935 {
936 return find_userfault_in(&ctx->fault_pending_wqh);
937 }
938
find_userfault_evt(struct userfaultfd_ctx * ctx)939 static inline struct userfaultfd_wait_queue *find_userfault_evt(
940 struct userfaultfd_ctx *ctx)
941 {
942 return find_userfault_in(&ctx->event_wqh);
943 }
944
userfaultfd_poll(struct file * file,poll_table * wait)945 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
946 {
947 struct userfaultfd_ctx *ctx = file->private_data;
948 __poll_t ret;
949
950 poll_wait(file, &ctx->fd_wqh, wait);
951
952 if (!userfaultfd_is_initialized(ctx))
953 return EPOLLERR;
954
955 /*
956 * poll() never guarantees that read won't block.
957 * userfaults can be waken before they're read().
958 */
959 if (unlikely(!(file->f_flags & O_NONBLOCK)))
960 return EPOLLERR;
961 /*
962 * lockless access to see if there are pending faults
963 * __pollwait last action is the add_wait_queue but
964 * the spin_unlock would allow the waitqueue_active to
965 * pass above the actual list_add inside
966 * add_wait_queue critical section. So use a full
967 * memory barrier to serialize the list_add write of
968 * add_wait_queue() with the waitqueue_active read
969 * below.
970 */
971 ret = 0;
972 smp_mb();
973 if (waitqueue_active(&ctx->fault_pending_wqh))
974 ret = EPOLLIN;
975 else if (waitqueue_active(&ctx->event_wqh))
976 ret = EPOLLIN;
977
978 return ret;
979 }
980
981 static const struct file_operations userfaultfd_fops;
982
resolve_userfault_fork(struct userfaultfd_ctx * new,struct inode * inode,struct uffd_msg * msg)983 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
984 struct inode *inode,
985 struct uffd_msg *msg)
986 {
987 int fd;
988
989 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
990 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
991 if (fd < 0)
992 return fd;
993
994 msg->arg.reserved.reserved1 = 0;
995 msg->arg.fork.ufd = fd;
996 return 0;
997 }
998
userfaultfd_ctx_read(struct userfaultfd_ctx * ctx,int no_wait,struct uffd_msg * msg,struct inode * inode)999 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1000 struct uffd_msg *msg, struct inode *inode)
1001 {
1002 ssize_t ret;
1003 DECLARE_WAITQUEUE(wait, current);
1004 struct userfaultfd_wait_queue *uwq;
1005 /*
1006 * Handling fork event requires sleeping operations, so
1007 * we drop the event_wqh lock, then do these ops, then
1008 * lock it back and wake up the waiter. While the lock is
1009 * dropped the ewq may go away so we keep track of it
1010 * carefully.
1011 */
1012 LIST_HEAD(fork_event);
1013 struct userfaultfd_ctx *fork_nctx = NULL;
1014
1015 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1016 spin_lock_irq(&ctx->fd_wqh.lock);
1017 __add_wait_queue(&ctx->fd_wqh, &wait);
1018 for (;;) {
1019 set_current_state(TASK_INTERRUPTIBLE);
1020 spin_lock(&ctx->fault_pending_wqh.lock);
1021 uwq = find_userfault(ctx);
1022 if (uwq) {
1023 /*
1024 * Use a seqcount to repeat the lockless check
1025 * in wake_userfault() to avoid missing
1026 * wakeups because during the refile both
1027 * waitqueue could become empty if this is the
1028 * only userfault.
1029 */
1030 write_seqcount_begin(&ctx->refile_seq);
1031
1032 /*
1033 * The fault_pending_wqh.lock prevents the uwq
1034 * to disappear from under us.
1035 *
1036 * Refile this userfault from
1037 * fault_pending_wqh to fault_wqh, it's not
1038 * pending anymore after we read it.
1039 *
1040 * Use list_del() by hand (as
1041 * userfaultfd_wake_function also uses
1042 * list_del_init() by hand) to be sure nobody
1043 * changes __remove_wait_queue() to use
1044 * list_del_init() in turn breaking the
1045 * !list_empty_careful() check in
1046 * handle_userfault(). The uwq->wq.head list
1047 * must never be empty at any time during the
1048 * refile, or the waitqueue could disappear
1049 * from under us. The "wait_queue_head_t"
1050 * parameter of __remove_wait_queue() is unused
1051 * anyway.
1052 */
1053 list_del(&uwq->wq.entry);
1054 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1055
1056 write_seqcount_end(&ctx->refile_seq);
1057
1058 /* careful to always initialize msg if ret == 0 */
1059 *msg = uwq->msg;
1060 spin_unlock(&ctx->fault_pending_wqh.lock);
1061 ret = 0;
1062 break;
1063 }
1064 spin_unlock(&ctx->fault_pending_wqh.lock);
1065
1066 spin_lock(&ctx->event_wqh.lock);
1067 uwq = find_userfault_evt(ctx);
1068 if (uwq) {
1069 *msg = uwq->msg;
1070
1071 if (uwq->msg.event == UFFD_EVENT_FORK) {
1072 fork_nctx = (struct userfaultfd_ctx *)
1073 (unsigned long)
1074 uwq->msg.arg.reserved.reserved1;
1075 list_move(&uwq->wq.entry, &fork_event);
1076 /*
1077 * fork_nctx can be freed as soon as
1078 * we drop the lock, unless we take a
1079 * reference on it.
1080 */
1081 userfaultfd_ctx_get(fork_nctx);
1082 spin_unlock(&ctx->event_wqh.lock);
1083 ret = 0;
1084 break;
1085 }
1086
1087 userfaultfd_event_complete(ctx, uwq);
1088 spin_unlock(&ctx->event_wqh.lock);
1089 ret = 0;
1090 break;
1091 }
1092 spin_unlock(&ctx->event_wqh.lock);
1093
1094 if (signal_pending(current)) {
1095 ret = -ERESTARTSYS;
1096 break;
1097 }
1098 if (no_wait) {
1099 ret = -EAGAIN;
1100 break;
1101 }
1102 spin_unlock_irq(&ctx->fd_wqh.lock);
1103 schedule();
1104 spin_lock_irq(&ctx->fd_wqh.lock);
1105 }
1106 __remove_wait_queue(&ctx->fd_wqh, &wait);
1107 __set_current_state(TASK_RUNNING);
1108 spin_unlock_irq(&ctx->fd_wqh.lock);
1109
1110 if (!ret && msg->event == UFFD_EVENT_FORK) {
1111 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1112 spin_lock_irq(&ctx->event_wqh.lock);
1113 if (!list_empty(&fork_event)) {
1114 /*
1115 * The fork thread didn't abort, so we can
1116 * drop the temporary refcount.
1117 */
1118 userfaultfd_ctx_put(fork_nctx);
1119
1120 uwq = list_first_entry(&fork_event,
1121 typeof(*uwq),
1122 wq.entry);
1123 /*
1124 * If fork_event list wasn't empty and in turn
1125 * the event wasn't already released by fork
1126 * (the event is allocated on fork kernel
1127 * stack), put the event back to its place in
1128 * the event_wq. fork_event head will be freed
1129 * as soon as we return so the event cannot
1130 * stay queued there no matter the current
1131 * "ret" value.
1132 */
1133 list_del(&uwq->wq.entry);
1134 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1135
1136 /*
1137 * Leave the event in the waitqueue and report
1138 * error to userland if we failed to resolve
1139 * the userfault fork.
1140 */
1141 if (likely(!ret))
1142 userfaultfd_event_complete(ctx, uwq);
1143 } else {
1144 /*
1145 * Here the fork thread aborted and the
1146 * refcount from the fork thread on fork_nctx
1147 * has already been released. We still hold
1148 * the reference we took before releasing the
1149 * lock above. If resolve_userfault_fork
1150 * failed we've to drop it because the
1151 * fork_nctx has to be freed in such case. If
1152 * it succeeded we'll hold it because the new
1153 * uffd references it.
1154 */
1155 if (ret)
1156 userfaultfd_ctx_put(fork_nctx);
1157 }
1158 spin_unlock_irq(&ctx->event_wqh.lock);
1159 }
1160
1161 return ret;
1162 }
1163
userfaultfd_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1164 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1165 size_t count, loff_t *ppos)
1166 {
1167 struct userfaultfd_ctx *ctx = file->private_data;
1168 ssize_t _ret, ret = 0;
1169 struct uffd_msg msg;
1170 int no_wait = file->f_flags & O_NONBLOCK;
1171 struct inode *inode = file_inode(file);
1172
1173 if (!userfaultfd_is_initialized(ctx))
1174 return -EINVAL;
1175
1176 for (;;) {
1177 if (count < sizeof(msg))
1178 return ret ? ret : -EINVAL;
1179 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1180 if (_ret < 0)
1181 return ret ? ret : _ret;
1182 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1183 return ret ? ret : -EFAULT;
1184 ret += sizeof(msg);
1185 buf += sizeof(msg);
1186 count -= sizeof(msg);
1187 /*
1188 * Allow to read more than one fault at time but only
1189 * block if waiting for the very first one.
1190 */
1191 no_wait = O_NONBLOCK;
1192 }
1193 }
1194
__wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)1195 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1196 struct userfaultfd_wake_range *range)
1197 {
1198 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1199 /* wake all in the range and autoremove */
1200 if (waitqueue_active(&ctx->fault_pending_wqh))
1201 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1202 range);
1203 if (waitqueue_active(&ctx->fault_wqh))
1204 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1205 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1206 }
1207
wake_userfault(struct userfaultfd_ctx * ctx,struct userfaultfd_wake_range * range)1208 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1209 struct userfaultfd_wake_range *range)
1210 {
1211 unsigned seq;
1212 bool need_wakeup;
1213
1214 /*
1215 * To be sure waitqueue_active() is not reordered by the CPU
1216 * before the pagetable update, use an explicit SMP memory
1217 * barrier here. PT lock release or mmap_read_unlock(mm) still
1218 * have release semantics that can allow the
1219 * waitqueue_active() to be reordered before the pte update.
1220 */
1221 smp_mb();
1222
1223 /*
1224 * Use waitqueue_active because it's very frequent to
1225 * change the address space atomically even if there are no
1226 * userfaults yet. So we take the spinlock only when we're
1227 * sure we've userfaults to wake.
1228 */
1229 do {
1230 seq = read_seqcount_begin(&ctx->refile_seq);
1231 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1232 waitqueue_active(&ctx->fault_wqh);
1233 cond_resched();
1234 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1235 if (need_wakeup)
1236 __wake_userfault(ctx, range);
1237 }
1238
validate_range(struct mm_struct * mm,__u64 start,__u64 len)1239 static __always_inline int validate_range(struct mm_struct *mm,
1240 __u64 start, __u64 len)
1241 {
1242 __u64 task_size = mm->task_size;
1243
1244 if (start & ~PAGE_MASK)
1245 return -EINVAL;
1246 if (len & ~PAGE_MASK)
1247 return -EINVAL;
1248 if (!len)
1249 return -EINVAL;
1250 if (start < mmap_min_addr)
1251 return -EINVAL;
1252 if (start >= task_size)
1253 return -EINVAL;
1254 if (len > task_size - start)
1255 return -EINVAL;
1256 return 0;
1257 }
1258
vma_can_userfault(struct vm_area_struct * vma,unsigned long vm_flags)1259 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1260 unsigned long vm_flags)
1261 {
1262 /* FIXME: add WP support to hugetlbfs and shmem */
1263 if (vm_flags & VM_UFFD_WP) {
1264 if (is_vm_hugetlb_page(vma) || vma_is_shmem(vma))
1265 return false;
1266 }
1267
1268 if (vm_flags & VM_UFFD_MINOR) {
1269 if (!(is_vm_hugetlb_page(vma) || vma_is_shmem(vma)))
1270 return false;
1271 }
1272
1273 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1274 vma_is_shmem(vma);
1275 }
1276
userfaultfd_register(struct userfaultfd_ctx * ctx,unsigned long arg)1277 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1278 unsigned long arg)
1279 {
1280 struct mm_struct *mm = ctx->mm;
1281 struct vm_area_struct *vma, *prev, *cur;
1282 int ret;
1283 struct uffdio_register uffdio_register;
1284 struct uffdio_register __user *user_uffdio_register;
1285 unsigned long vm_flags, new_flags;
1286 bool found;
1287 bool basic_ioctls;
1288 unsigned long start, end, vma_end;
1289
1290 user_uffdio_register = (struct uffdio_register __user *) arg;
1291
1292 ret = -EFAULT;
1293 if (copy_from_user(&uffdio_register, user_uffdio_register,
1294 sizeof(uffdio_register)-sizeof(__u64)))
1295 goto out;
1296
1297 ret = -EINVAL;
1298 if (!uffdio_register.mode)
1299 goto out;
1300 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1301 goto out;
1302 vm_flags = 0;
1303 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1304 vm_flags |= VM_UFFD_MISSING;
1305 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)
1306 vm_flags |= VM_UFFD_WP;
1307 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1308 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1309 goto out;
1310 #endif
1311 vm_flags |= VM_UFFD_MINOR;
1312 }
1313
1314 ret = validate_range(mm, uffdio_register.range.start,
1315 uffdio_register.range.len);
1316 if (ret)
1317 goto out;
1318
1319 start = uffdio_register.range.start;
1320 end = start + uffdio_register.range.len;
1321
1322 ret = -ENOMEM;
1323 if (!mmget_not_zero(mm))
1324 goto out;
1325
1326 mmap_write_lock(mm);
1327 vma = find_vma_prev(mm, start, &prev);
1328 if (!vma)
1329 goto out_unlock;
1330
1331 /* check that there's at least one vma in the range */
1332 ret = -EINVAL;
1333 if (vma->vm_start >= end)
1334 goto out_unlock;
1335
1336 /*
1337 * If the first vma contains huge pages, make sure start address
1338 * is aligned to huge page size.
1339 */
1340 if (is_vm_hugetlb_page(vma)) {
1341 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1342
1343 if (start & (vma_hpagesize - 1))
1344 goto out_unlock;
1345 }
1346
1347 /*
1348 * Search for not compatible vmas.
1349 */
1350 found = false;
1351 basic_ioctls = false;
1352 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1353 cond_resched();
1354
1355 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1356 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1357
1358 /* check not compatible vmas */
1359 ret = -EINVAL;
1360 if (!vma_can_userfault(cur, vm_flags))
1361 goto out_unlock;
1362
1363 /*
1364 * UFFDIO_COPY will fill file holes even without
1365 * PROT_WRITE. This check enforces that if this is a
1366 * MAP_SHARED, the process has write permission to the backing
1367 * file. If VM_MAYWRITE is set it also enforces that on a
1368 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1369 * F_WRITE_SEAL can be taken until the vma is destroyed.
1370 */
1371 ret = -EPERM;
1372 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1373 goto out_unlock;
1374
1375 /*
1376 * If this vma contains ending address, and huge pages
1377 * check alignment.
1378 */
1379 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1380 end > cur->vm_start) {
1381 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1382
1383 ret = -EINVAL;
1384
1385 if (end & (vma_hpagesize - 1))
1386 goto out_unlock;
1387 }
1388 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1389 goto out_unlock;
1390
1391 /*
1392 * Check that this vma isn't already owned by a
1393 * different userfaultfd. We can't allow more than one
1394 * userfaultfd to own a single vma simultaneously or we
1395 * wouldn't know which one to deliver the userfaults to.
1396 */
1397 ret = -EBUSY;
1398 if (cur->vm_userfaultfd_ctx.ctx &&
1399 cur->vm_userfaultfd_ctx.ctx != ctx)
1400 goto out_unlock;
1401
1402 /*
1403 * Note vmas containing huge pages
1404 */
1405 if (is_vm_hugetlb_page(cur))
1406 basic_ioctls = true;
1407
1408 found = true;
1409 }
1410 BUG_ON(!found);
1411
1412 if (vma->vm_start < start)
1413 prev = vma;
1414
1415 ret = 0;
1416 do {
1417 cond_resched();
1418
1419 BUG_ON(!vma_can_userfault(vma, vm_flags));
1420 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1421 vma->vm_userfaultfd_ctx.ctx != ctx);
1422 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1423
1424 /*
1425 * Nothing to do: this vma is already registered into this
1426 * userfaultfd and with the right tracking mode too.
1427 */
1428 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1429 (vma->vm_flags & vm_flags) == vm_flags)
1430 goto skip;
1431
1432 if (vma->vm_start > start)
1433 start = vma->vm_start;
1434 vma_end = min(end, vma->vm_end);
1435
1436 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1437 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1438 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1439 vma_policy(vma),
1440 ((struct vm_userfaultfd_ctx){ ctx }),
1441 vma_get_anon_name(vma));
1442 if (prev) {
1443 vma = prev;
1444 goto next;
1445 }
1446 if (vma->vm_start < start) {
1447 ret = split_vma(mm, vma, start, 1);
1448 if (ret)
1449 break;
1450 }
1451 if (vma->vm_end > end) {
1452 ret = split_vma(mm, vma, end, 0);
1453 if (ret)
1454 break;
1455 }
1456 next:
1457 /*
1458 * In the vma_merge() successful mprotect-like case 8:
1459 * the next vma was merged into the current one and
1460 * the current one has not been updated yet.
1461 */
1462 vm_write_begin(vma);
1463 WRITE_ONCE(vma->vm_flags, new_flags);
1464 vma->vm_userfaultfd_ctx.ctx = ctx;
1465 vm_write_end(vma);
1466
1467 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1468 hugetlb_unshare_all_pmds(vma);
1469
1470 skip:
1471 prev = vma;
1472 start = vma->vm_end;
1473 vma = vma->vm_next;
1474 } while (vma && vma->vm_start < end);
1475 out_unlock:
1476 mmap_write_unlock(mm);
1477 mmput(mm);
1478 if (!ret) {
1479 __u64 ioctls_out;
1480
1481 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1482 UFFD_API_RANGE_IOCTLS;
1483
1484 /*
1485 * Declare the WP ioctl only if the WP mode is
1486 * specified and all checks passed with the range
1487 */
1488 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1489 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1490
1491 /* CONTINUE ioctl is only supported for MINOR ranges. */
1492 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1493 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1494
1495 /*
1496 * Now that we scanned all vmas we can already tell
1497 * userland which ioctls methods are guaranteed to
1498 * succeed on this range.
1499 */
1500 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1501 ret = -EFAULT;
1502 }
1503 out:
1504 return ret;
1505 }
1506
userfaultfd_unregister(struct userfaultfd_ctx * ctx,unsigned long arg)1507 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1508 unsigned long arg)
1509 {
1510 struct mm_struct *mm = ctx->mm;
1511 struct vm_area_struct *vma, *prev, *cur;
1512 int ret;
1513 struct uffdio_range uffdio_unregister;
1514 unsigned long new_flags;
1515 bool found;
1516 unsigned long start, end, vma_end;
1517 const void __user *buf = (void __user *)arg;
1518
1519 ret = -EFAULT;
1520 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1521 goto out;
1522
1523 ret = validate_range(mm, uffdio_unregister.start,
1524 uffdio_unregister.len);
1525 if (ret)
1526 goto out;
1527
1528 start = uffdio_unregister.start;
1529 end = start + uffdio_unregister.len;
1530
1531 ret = -ENOMEM;
1532 if (!mmget_not_zero(mm))
1533 goto out;
1534
1535 mmap_write_lock(mm);
1536 vma = find_vma_prev(mm, start, &prev);
1537 if (!vma)
1538 goto out_unlock;
1539
1540 /* check that there's at least one vma in the range */
1541 ret = -EINVAL;
1542 if (vma->vm_start >= end)
1543 goto out_unlock;
1544
1545 /*
1546 * If the first vma contains huge pages, make sure start address
1547 * is aligned to huge page size.
1548 */
1549 if (is_vm_hugetlb_page(vma)) {
1550 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1551
1552 if (start & (vma_hpagesize - 1))
1553 goto out_unlock;
1554 }
1555
1556 /*
1557 * Search for not compatible vmas.
1558 */
1559 found = false;
1560 ret = -EINVAL;
1561 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1562 cond_resched();
1563
1564 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1565 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1566
1567 /*
1568 * Check not compatible vmas, not strictly required
1569 * here as not compatible vmas cannot have an
1570 * userfaultfd_ctx registered on them, but this
1571 * provides for more strict behavior to notice
1572 * unregistration errors.
1573 */
1574 if (!vma_can_userfault(cur, cur->vm_flags))
1575 goto out_unlock;
1576
1577 found = true;
1578 }
1579 BUG_ON(!found);
1580
1581 if (vma->vm_start < start)
1582 prev = vma;
1583
1584 ret = 0;
1585 do {
1586 cond_resched();
1587
1588 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1589
1590 /*
1591 * Nothing to do: this vma is already registered into this
1592 * userfaultfd and with the right tracking mode too.
1593 */
1594 if (!vma->vm_userfaultfd_ctx.ctx)
1595 goto skip;
1596
1597 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1598
1599 if (vma->vm_start > start)
1600 start = vma->vm_start;
1601 vma_end = min(end, vma->vm_end);
1602
1603 if (userfaultfd_missing(vma)) {
1604 /*
1605 * Wake any concurrent pending userfault while
1606 * we unregister, so they will not hang
1607 * permanently and it avoids userland to call
1608 * UFFDIO_WAKE explicitly.
1609 */
1610 struct userfaultfd_wake_range range;
1611 range.start = start;
1612 range.len = vma_end - start;
1613 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1614 }
1615
1616 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1617 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1618 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1619 vma_policy(vma),
1620 NULL_VM_UFFD_CTX,
1621 vma_get_anon_name(vma));
1622 if (prev) {
1623 vma = prev;
1624 goto next;
1625 }
1626 if (vma->vm_start < start) {
1627 ret = split_vma(mm, vma, start, 1);
1628 if (ret)
1629 break;
1630 }
1631 if (vma->vm_end > end) {
1632 ret = split_vma(mm, vma, end, 0);
1633 if (ret)
1634 break;
1635 }
1636 next:
1637 /*
1638 * In the vma_merge() successful mprotect-like case 8:
1639 * the next vma was merged into the current one and
1640 * the current one has not been updated yet.
1641 */
1642 vm_write_begin(vma);
1643 WRITE_ONCE(vma->vm_flags, new_flags);
1644 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1645 vm_write_end(vma);
1646
1647 skip:
1648 prev = vma;
1649 start = vma->vm_end;
1650 vma = vma->vm_next;
1651 } while (vma && vma->vm_start < end);
1652 out_unlock:
1653 mmap_write_unlock(mm);
1654 mmput(mm);
1655 out:
1656 return ret;
1657 }
1658
1659 /*
1660 * userfaultfd_wake may be used in combination with the
1661 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1662 */
userfaultfd_wake(struct userfaultfd_ctx * ctx,unsigned long arg)1663 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1664 unsigned long arg)
1665 {
1666 int ret;
1667 struct uffdio_range uffdio_wake;
1668 struct userfaultfd_wake_range range;
1669 const void __user *buf = (void __user *)arg;
1670
1671 ret = -EFAULT;
1672 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1673 goto out;
1674
1675 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1676 if (ret)
1677 goto out;
1678
1679 range.start = uffdio_wake.start;
1680 range.len = uffdio_wake.len;
1681
1682 /*
1683 * len == 0 means wake all and we don't want to wake all here,
1684 * so check it again to be sure.
1685 */
1686 VM_BUG_ON(!range.len);
1687
1688 wake_userfault(ctx, &range);
1689 ret = 0;
1690
1691 out:
1692 return ret;
1693 }
1694
userfaultfd_copy(struct userfaultfd_ctx * ctx,unsigned long arg)1695 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1696 unsigned long arg)
1697 {
1698 __s64 ret;
1699 struct uffdio_copy uffdio_copy;
1700 struct uffdio_copy __user *user_uffdio_copy;
1701 struct userfaultfd_wake_range range;
1702
1703 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1704
1705 ret = -EAGAIN;
1706 if (READ_ONCE(ctx->mmap_changing))
1707 goto out;
1708
1709 ret = -EFAULT;
1710 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1711 /* don't copy "copy" last field */
1712 sizeof(uffdio_copy)-sizeof(__s64)))
1713 goto out;
1714
1715 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1716 if (ret)
1717 goto out;
1718 /*
1719 * double check for wraparound just in case. copy_from_user()
1720 * will later check uffdio_copy.src + uffdio_copy.len to fit
1721 * in the userland range.
1722 */
1723 ret = -EINVAL;
1724 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1725 goto out;
1726 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1727 goto out;
1728 if (mmget_not_zero(ctx->mm)) {
1729 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1730 uffdio_copy.len, &ctx->mmap_changing,
1731 uffdio_copy.mode);
1732 mmput(ctx->mm);
1733 } else {
1734 return -ESRCH;
1735 }
1736 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1737 return -EFAULT;
1738 if (ret < 0)
1739 goto out;
1740 BUG_ON(!ret);
1741 /* len == 0 would wake all */
1742 range.len = ret;
1743 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1744 range.start = uffdio_copy.dst;
1745 wake_userfault(ctx, &range);
1746 }
1747 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1748 out:
1749 return ret;
1750 }
1751
userfaultfd_zeropage(struct userfaultfd_ctx * ctx,unsigned long arg)1752 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1753 unsigned long arg)
1754 {
1755 __s64 ret;
1756 struct uffdio_zeropage uffdio_zeropage;
1757 struct uffdio_zeropage __user *user_uffdio_zeropage;
1758 struct userfaultfd_wake_range range;
1759
1760 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1761
1762 ret = -EAGAIN;
1763 if (READ_ONCE(ctx->mmap_changing))
1764 goto out;
1765
1766 ret = -EFAULT;
1767 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1768 /* don't copy "zeropage" last field */
1769 sizeof(uffdio_zeropage)-sizeof(__s64)))
1770 goto out;
1771
1772 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1773 uffdio_zeropage.range.len);
1774 if (ret)
1775 goto out;
1776 ret = -EINVAL;
1777 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1778 goto out;
1779
1780 if (mmget_not_zero(ctx->mm)) {
1781 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1782 uffdio_zeropage.range.len,
1783 &ctx->mmap_changing);
1784 mmput(ctx->mm);
1785 } else {
1786 return -ESRCH;
1787 }
1788 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1789 return -EFAULT;
1790 if (ret < 0)
1791 goto out;
1792 /* len == 0 would wake all */
1793 BUG_ON(!ret);
1794 range.len = ret;
1795 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1796 range.start = uffdio_zeropage.range.start;
1797 wake_userfault(ctx, &range);
1798 }
1799 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1800 out:
1801 return ret;
1802 }
1803
userfaultfd_writeprotect(struct userfaultfd_ctx * ctx,unsigned long arg)1804 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1805 unsigned long arg)
1806 {
1807 int ret;
1808 struct uffdio_writeprotect uffdio_wp;
1809 struct uffdio_writeprotect __user *user_uffdio_wp;
1810 struct userfaultfd_wake_range range;
1811 bool mode_wp, mode_dontwake;
1812
1813 if (READ_ONCE(ctx->mmap_changing))
1814 return -EAGAIN;
1815
1816 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1817
1818 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1819 sizeof(struct uffdio_writeprotect)))
1820 return -EFAULT;
1821
1822 ret = validate_range(ctx->mm, uffdio_wp.range.start,
1823 uffdio_wp.range.len);
1824 if (ret)
1825 return ret;
1826
1827 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1828 UFFDIO_WRITEPROTECT_MODE_WP))
1829 return -EINVAL;
1830
1831 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1832 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1833
1834 if (mode_wp && mode_dontwake)
1835 return -EINVAL;
1836
1837 if (mmget_not_zero(ctx->mm)) {
1838 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1839 uffdio_wp.range.len, mode_wp,
1840 &ctx->mmap_changing);
1841 mmput(ctx->mm);
1842 } else {
1843 return -ESRCH;
1844 }
1845
1846 if (ret)
1847 return ret;
1848
1849 if (!mode_wp && !mode_dontwake) {
1850 range.start = uffdio_wp.range.start;
1851 range.len = uffdio_wp.range.len;
1852 wake_userfault(ctx, &range);
1853 }
1854 return ret;
1855 }
1856
userfaultfd_continue(struct userfaultfd_ctx * ctx,unsigned long arg)1857 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1858 {
1859 __s64 ret;
1860 struct uffdio_continue uffdio_continue;
1861 struct uffdio_continue __user *user_uffdio_continue;
1862 struct userfaultfd_wake_range range;
1863
1864 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1865
1866 ret = -EAGAIN;
1867 if (READ_ONCE(ctx->mmap_changing))
1868 goto out;
1869
1870 ret = -EFAULT;
1871 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1872 /* don't copy the output fields */
1873 sizeof(uffdio_continue) - (sizeof(__s64))))
1874 goto out;
1875
1876 ret = validate_range(ctx->mm, uffdio_continue.range.start,
1877 uffdio_continue.range.len);
1878 if (ret)
1879 goto out;
1880
1881 ret = -EINVAL;
1882 /* double check for wraparound just in case. */
1883 if (uffdio_continue.range.start + uffdio_continue.range.len <=
1884 uffdio_continue.range.start) {
1885 goto out;
1886 }
1887 if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1888 goto out;
1889
1890 if (mmget_not_zero(ctx->mm)) {
1891 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1892 uffdio_continue.range.len,
1893 &ctx->mmap_changing);
1894 mmput(ctx->mm);
1895 } else {
1896 return -ESRCH;
1897 }
1898
1899 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1900 return -EFAULT;
1901 if (ret < 0)
1902 goto out;
1903
1904 /* len == 0 would wake all */
1905 BUG_ON(!ret);
1906 range.len = ret;
1907 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1908 range.start = uffdio_continue.range.start;
1909 wake_userfault(ctx, &range);
1910 }
1911 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1912
1913 out:
1914 return ret;
1915 }
1916
uffd_ctx_features(__u64 user_features)1917 static inline unsigned int uffd_ctx_features(__u64 user_features)
1918 {
1919 /*
1920 * For the current set of features the bits just coincide. Set
1921 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1922 */
1923 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1924 }
1925
1926 /*
1927 * userland asks for a certain API version and we return which bits
1928 * and ioctl commands are implemented in this kernel for such API
1929 * version or -EINVAL if unknown.
1930 */
userfaultfd_api(struct userfaultfd_ctx * ctx,unsigned long arg)1931 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1932 unsigned long arg)
1933 {
1934 struct uffdio_api uffdio_api;
1935 void __user *buf = (void __user *)arg;
1936 unsigned int ctx_features;
1937 int ret;
1938 __u64 features;
1939
1940 ret = -EFAULT;
1941 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1942 goto out;
1943 features = uffdio_api.features;
1944 ret = -EINVAL;
1945 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1946 goto err_out;
1947 ret = -EPERM;
1948 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1949 goto err_out;
1950 /* report all available features and ioctls to userland */
1951 uffdio_api.features = UFFD_API_FEATURES;
1952 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1953 uffdio_api.features &=
1954 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
1955 #endif
1956 uffdio_api.ioctls = UFFD_API_IOCTLS;
1957 ret = -EFAULT;
1958 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1959 goto out;
1960
1961 /* only enable the requested features for this uffd context */
1962 ctx_features = uffd_ctx_features(features);
1963 ret = -EINVAL;
1964 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1965 goto err_out;
1966
1967 ret = 0;
1968 out:
1969 return ret;
1970 err_out:
1971 memset(&uffdio_api, 0, sizeof(uffdio_api));
1972 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1973 ret = -EFAULT;
1974 goto out;
1975 }
1976
userfaultfd_ioctl(struct file * file,unsigned cmd,unsigned long arg)1977 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1978 unsigned long arg)
1979 {
1980 int ret = -EINVAL;
1981 struct userfaultfd_ctx *ctx = file->private_data;
1982
1983 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
1984 return -EINVAL;
1985
1986 switch(cmd) {
1987 case UFFDIO_API:
1988 ret = userfaultfd_api(ctx, arg);
1989 break;
1990 case UFFDIO_REGISTER:
1991 ret = userfaultfd_register(ctx, arg);
1992 break;
1993 case UFFDIO_UNREGISTER:
1994 ret = userfaultfd_unregister(ctx, arg);
1995 break;
1996 case UFFDIO_WAKE:
1997 ret = userfaultfd_wake(ctx, arg);
1998 break;
1999 case UFFDIO_COPY:
2000 ret = userfaultfd_copy(ctx, arg);
2001 break;
2002 case UFFDIO_ZEROPAGE:
2003 ret = userfaultfd_zeropage(ctx, arg);
2004 break;
2005 case UFFDIO_WRITEPROTECT:
2006 ret = userfaultfd_writeprotect(ctx, arg);
2007 break;
2008 case UFFDIO_CONTINUE:
2009 ret = userfaultfd_continue(ctx, arg);
2010 break;
2011 }
2012 return ret;
2013 }
2014
2015 #ifdef CONFIG_PROC_FS
userfaultfd_show_fdinfo(struct seq_file * m,struct file * f)2016 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2017 {
2018 struct userfaultfd_ctx *ctx = f->private_data;
2019 wait_queue_entry_t *wq;
2020 unsigned long pending = 0, total = 0;
2021
2022 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2023 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2024 pending++;
2025 total++;
2026 }
2027 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2028 total++;
2029 }
2030 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2031
2032 /*
2033 * If more protocols will be added, there will be all shown
2034 * separated by a space. Like this:
2035 * protocols: aa:... bb:...
2036 */
2037 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2038 pending, total, UFFD_API, ctx->features,
2039 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2040 }
2041 #endif
2042
2043 static const struct file_operations userfaultfd_fops = {
2044 #ifdef CONFIG_PROC_FS
2045 .show_fdinfo = userfaultfd_show_fdinfo,
2046 #endif
2047 .release = userfaultfd_release,
2048 .poll = userfaultfd_poll,
2049 .read = userfaultfd_read,
2050 .unlocked_ioctl = userfaultfd_ioctl,
2051 .compat_ioctl = compat_ptr_ioctl,
2052 .llseek = noop_llseek,
2053 };
2054
init_once_userfaultfd_ctx(void * mem)2055 static void init_once_userfaultfd_ctx(void *mem)
2056 {
2057 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2058
2059 init_waitqueue_head(&ctx->fault_pending_wqh);
2060 init_waitqueue_head(&ctx->fault_wqh);
2061 init_waitqueue_head(&ctx->event_wqh);
2062 init_waitqueue_head(&ctx->fd_wqh);
2063 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2064 }
2065
SYSCALL_DEFINE1(userfaultfd,int,flags)2066 SYSCALL_DEFINE1(userfaultfd, int, flags)
2067 {
2068 struct userfaultfd_ctx *ctx;
2069 int fd;
2070
2071 if (!sysctl_unprivileged_userfaultfd &&
2072 (flags & UFFD_USER_MODE_ONLY) == 0 &&
2073 !capable(CAP_SYS_PTRACE)) {
2074 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
2075 "sysctl knob to 1 if kernel faults must be handled "
2076 "without obtaining CAP_SYS_PTRACE capability\n");
2077 return -EPERM;
2078 }
2079
2080 BUG_ON(!current->mm);
2081
2082 /* Check the UFFD_* constants for consistency. */
2083 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2084 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2085 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2086
2087 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2088 return -EINVAL;
2089
2090 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2091 if (!ctx)
2092 return -ENOMEM;
2093
2094 refcount_set(&ctx->refcount, 1);
2095 ctx->flags = flags;
2096 ctx->features = 0;
2097 ctx->released = false;
2098 ctx->mmap_changing = false;
2099 ctx->mm = current->mm;
2100 /* prevent the mm struct to be freed */
2101 mmgrab(ctx->mm);
2102
2103 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2104 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2105 if (fd < 0) {
2106 mmdrop(ctx->mm);
2107 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2108 }
2109 return fd;
2110 }
2111
userfaultfd_init(void)2112 static int __init userfaultfd_init(void)
2113 {
2114 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2115 sizeof(struct userfaultfd_ctx),
2116 0,
2117 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2118 init_once_userfaultfd_ctx);
2119 return 0;
2120 }
2121 __initcall(userfaultfd_init);
2122