1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation
6 *
7 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
9 */
10
11 /*
12 * This file implements functions needed to recover from unclean un-mounts.
13 * When UBIFS is mounted, it checks a flag on the master node to determine if
14 * an un-mount was completed successfully. If not, the process of mounting
15 * incorporates additional checking and fixing of on-flash data structures.
16 * UBIFS always cleans away all remnants of an unclean un-mount, so that
17 * errors do not accumulate. However UBIFS defers recovery if it is mounted
18 * read-only, and the flash is not modified in that case.
19 *
20 * The general UBIFS approach to the recovery is that it recovers from
21 * corruptions which could be caused by power cuts, but it refuses to recover
22 * from corruption caused by other reasons. And UBIFS tries to distinguish
23 * between these 2 reasons of corruptions and silently recover in the former
24 * case and loudly complain in the latter case.
25 *
26 * UBIFS writes only to erased LEBs, so it writes only to the flash space
27 * containing only 0xFFs. UBIFS also always writes strictly from the beginning
28 * of the LEB to the end. And UBIFS assumes that the underlying flash media
29 * writes in @c->max_write_size bytes at a time.
30 *
31 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
32 * I/O unit corresponding to offset X to contain corrupted data, all the
33 * following min. I/O units have to contain empty space (all 0xFFs). If this is
34 * not true, the corruption cannot be the result of a power cut, and UBIFS
35 * refuses to mount.
36 */
37
38 #include <linux/crc32.h>
39 #include <linux/slab.h>
40 #include "ubifs.h"
41
42 /**
43 * is_empty - determine whether a buffer is empty (contains all 0xff).
44 * @buf: buffer to clean
45 * @len: length of buffer
46 *
47 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
48 * %0 is returned.
49 */
is_empty(void * buf,int len)50 static int is_empty(void *buf, int len)
51 {
52 uint8_t *p = buf;
53 int i;
54
55 for (i = 0; i < len; i++)
56 if (*p++ != 0xff)
57 return 0;
58 return 1;
59 }
60
61 /**
62 * first_non_ff - find offset of the first non-0xff byte.
63 * @buf: buffer to search in
64 * @len: length of buffer
65 *
66 * This function returns offset of the first non-0xff byte in @buf or %-1 if
67 * the buffer contains only 0xff bytes.
68 */
first_non_ff(void * buf,int len)69 static int first_non_ff(void *buf, int len)
70 {
71 uint8_t *p = buf;
72 int i;
73
74 for (i = 0; i < len; i++)
75 if (*p++ != 0xff)
76 return i;
77 return -1;
78 }
79
80 /**
81 * get_master_node - get the last valid master node allowing for corruption.
82 * @c: UBIFS file-system description object
83 * @lnum: LEB number
84 * @pbuf: buffer containing the LEB read, is returned here
85 * @mst: master node, if found, is returned here
86 * @cor: corruption, if found, is returned here
87 *
88 * This function allocates a buffer, reads the LEB into it, and finds and
89 * returns the last valid master node allowing for one area of corruption.
90 * The corrupt area, if there is one, must be consistent with the assumption
91 * that it is the result of an unclean unmount while the master node was being
92 * written. Under those circumstances, it is valid to use the previously written
93 * master node.
94 *
95 * This function returns %0 on success and a negative error code on failure.
96 */
get_master_node(const struct ubifs_info * c,int lnum,void ** pbuf,struct ubifs_mst_node ** mst,void ** cor)97 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
98 struct ubifs_mst_node **mst, void **cor)
99 {
100 const int sz = c->mst_node_alsz;
101 int err, offs, len;
102 void *sbuf, *buf;
103
104 sbuf = vmalloc(c->leb_size);
105 if (!sbuf)
106 return -ENOMEM;
107
108 err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0);
109 if (err && err != -EBADMSG)
110 goto out_free;
111
112 /* Find the first position that is definitely not a node */
113 offs = 0;
114 buf = sbuf;
115 len = c->leb_size;
116 while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
117 struct ubifs_ch *ch = buf;
118
119 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
120 break;
121 offs += sz;
122 buf += sz;
123 len -= sz;
124 }
125 /* See if there was a valid master node before that */
126 if (offs) {
127 int ret;
128
129 offs -= sz;
130 buf -= sz;
131 len += sz;
132 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
133 if (ret != SCANNED_A_NODE && offs) {
134 /* Could have been corruption so check one place back */
135 offs -= sz;
136 buf -= sz;
137 len += sz;
138 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
139 if (ret != SCANNED_A_NODE)
140 /*
141 * We accept only one area of corruption because
142 * we are assuming that it was caused while
143 * trying to write a master node.
144 */
145 goto out_err;
146 }
147 if (ret == SCANNED_A_NODE) {
148 struct ubifs_ch *ch = buf;
149
150 if (ch->node_type != UBIFS_MST_NODE)
151 goto out_err;
152 dbg_rcvry("found a master node at %d:%d", lnum, offs);
153 *mst = buf;
154 offs += sz;
155 buf += sz;
156 len -= sz;
157 }
158 }
159 /* Check for corruption */
160 if (offs < c->leb_size) {
161 if (!is_empty(buf, min_t(int, len, sz))) {
162 *cor = buf;
163 dbg_rcvry("found corruption at %d:%d", lnum, offs);
164 }
165 offs += sz;
166 buf += sz;
167 len -= sz;
168 }
169 /* Check remaining empty space */
170 if (offs < c->leb_size)
171 if (!is_empty(buf, len))
172 goto out_err;
173 *pbuf = sbuf;
174 return 0;
175
176 out_err:
177 err = -EINVAL;
178 out_free:
179 vfree(sbuf);
180 *mst = NULL;
181 *cor = NULL;
182 return err;
183 }
184
185 /**
186 * write_rcvrd_mst_node - write recovered master node.
187 * @c: UBIFS file-system description object
188 * @mst: master node
189 *
190 * This function returns %0 on success and a negative error code on failure.
191 */
write_rcvrd_mst_node(struct ubifs_info * c,struct ubifs_mst_node * mst)192 static int write_rcvrd_mst_node(struct ubifs_info *c,
193 struct ubifs_mst_node *mst)
194 {
195 int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
196 __le32 save_flags;
197
198 dbg_rcvry("recovery");
199
200 save_flags = mst->flags;
201 mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY);
202
203 err = ubifs_prepare_node_hmac(c, mst, UBIFS_MST_NODE_SZ,
204 offsetof(struct ubifs_mst_node, hmac), 1);
205 if (err)
206 goto out;
207 err = ubifs_leb_change(c, lnum, mst, sz);
208 if (err)
209 goto out;
210 err = ubifs_leb_change(c, lnum + 1, mst, sz);
211 if (err)
212 goto out;
213 out:
214 mst->flags = save_flags;
215 return err;
216 }
217
218 /**
219 * ubifs_recover_master_node - recover the master node.
220 * @c: UBIFS file-system description object
221 *
222 * This function recovers the master node from corruption that may occur due to
223 * an unclean unmount.
224 *
225 * This function returns %0 on success and a negative error code on failure.
226 */
ubifs_recover_master_node(struct ubifs_info * c)227 int ubifs_recover_master_node(struct ubifs_info *c)
228 {
229 void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
230 struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
231 const int sz = c->mst_node_alsz;
232 int err, offs1, offs2;
233
234 dbg_rcvry("recovery");
235
236 err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
237 if (err)
238 goto out_free;
239
240 err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
241 if (err)
242 goto out_free;
243
244 if (mst1) {
245 offs1 = (void *)mst1 - buf1;
246 if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
247 (offs1 == 0 && !cor1)) {
248 /*
249 * mst1 was written by recovery at offset 0 with no
250 * corruption.
251 */
252 dbg_rcvry("recovery recovery");
253 mst = mst1;
254 } else if (mst2) {
255 offs2 = (void *)mst2 - buf2;
256 if (offs1 == offs2) {
257 /* Same offset, so must be the same */
258 if (ubifs_compare_master_node(c, mst1, mst2))
259 goto out_err;
260 mst = mst1;
261 } else if (offs2 + sz == offs1) {
262 /* 1st LEB was written, 2nd was not */
263 if (cor1)
264 goto out_err;
265 mst = mst1;
266 } else if (offs1 == 0 &&
267 c->leb_size - offs2 - sz < sz) {
268 /* 1st LEB was unmapped and written, 2nd not */
269 if (cor1)
270 goto out_err;
271 mst = mst1;
272 } else
273 goto out_err;
274 } else {
275 /*
276 * 2nd LEB was unmapped and about to be written, so
277 * there must be only one master node in the first LEB
278 * and no corruption.
279 */
280 if (offs1 != 0 || cor1)
281 goto out_err;
282 mst = mst1;
283 }
284 } else {
285 if (!mst2)
286 goto out_err;
287 /*
288 * 1st LEB was unmapped and about to be written, so there must
289 * be no room left in 2nd LEB.
290 */
291 offs2 = (void *)mst2 - buf2;
292 if (offs2 + sz + sz <= c->leb_size)
293 goto out_err;
294 mst = mst2;
295 }
296
297 ubifs_msg(c, "recovered master node from LEB %d",
298 (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));
299
300 memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);
301
302 if (c->ro_mount) {
303 /* Read-only mode. Keep a copy for switching to rw mode */
304 c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
305 if (!c->rcvrd_mst_node) {
306 err = -ENOMEM;
307 goto out_free;
308 }
309 memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
310
311 /*
312 * We had to recover the master node, which means there was an
313 * unclean reboot. However, it is possible that the master node
314 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set.
315 * E.g., consider the following chain of events:
316 *
317 * 1. UBIFS was cleanly unmounted, so the master node is clean
318 * 2. UBIFS is being mounted R/W and starts changing the master
319 * node in the first (%UBIFS_MST_LNUM). A power cut happens,
320 * so this LEB ends up with some amount of garbage at the
321 * end.
322 * 3. UBIFS is being mounted R/O. We reach this place and
323 * recover the master node from the second LEB
324 * (%UBIFS_MST_LNUM + 1). But we cannot update the media
325 * because we are being mounted R/O. We have to defer the
326 * operation.
327 * 4. However, this master node (@c->mst_node) is marked as
328 * clean (since the step 1). And if we just return, the
329 * mount code will be confused and won't recover the master
330 * node when it is re-mounter R/W later.
331 *
332 * Thus, to force the recovery by marking the master node as
333 * dirty.
334 */
335 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
336 } else {
337 /* Write the recovered master node */
338 c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
339 err = write_rcvrd_mst_node(c, c->mst_node);
340 if (err)
341 goto out_free;
342 }
343
344 vfree(buf2);
345 vfree(buf1);
346
347 return 0;
348
349 out_err:
350 err = -EINVAL;
351 out_free:
352 ubifs_err(c, "failed to recover master node");
353 if (mst1) {
354 ubifs_err(c, "dumping first master node");
355 ubifs_dump_node(c, mst1);
356 }
357 if (mst2) {
358 ubifs_err(c, "dumping second master node");
359 ubifs_dump_node(c, mst2);
360 }
361 vfree(buf2);
362 vfree(buf1);
363 return err;
364 }
365
366 /**
367 * ubifs_write_rcvrd_mst_node - write the recovered master node.
368 * @c: UBIFS file-system description object
369 *
370 * This function writes the master node that was recovered during mounting in
371 * read-only mode and must now be written because we are remounting rw.
372 *
373 * This function returns %0 on success and a negative error code on failure.
374 */
ubifs_write_rcvrd_mst_node(struct ubifs_info * c)375 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
376 {
377 int err;
378
379 if (!c->rcvrd_mst_node)
380 return 0;
381 c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
382 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
383 err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
384 if (err)
385 return err;
386 kfree(c->rcvrd_mst_node);
387 c->rcvrd_mst_node = NULL;
388 return 0;
389 }
390
391 /**
392 * is_last_write - determine if an offset was in the last write to a LEB.
393 * @c: UBIFS file-system description object
394 * @buf: buffer to check
395 * @offs: offset to check
396 *
397 * This function returns %1 if @offs was in the last write to the LEB whose data
398 * is in @buf, otherwise %0 is returned. The determination is made by checking
399 * for subsequent empty space starting from the next @c->max_write_size
400 * boundary.
401 */
is_last_write(const struct ubifs_info * c,void * buf,int offs)402 static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
403 {
404 int empty_offs, check_len;
405 uint8_t *p;
406
407 /*
408 * Round up to the next @c->max_write_size boundary i.e. @offs is in
409 * the last wbuf written. After that should be empty space.
410 */
411 empty_offs = ALIGN(offs + 1, c->max_write_size);
412 check_len = c->leb_size - empty_offs;
413 p = buf + empty_offs - offs;
414 return is_empty(p, check_len);
415 }
416
417 /**
418 * clean_buf - clean the data from an LEB sitting in a buffer.
419 * @c: UBIFS file-system description object
420 * @buf: buffer to clean
421 * @lnum: LEB number to clean
422 * @offs: offset from which to clean
423 * @len: length of buffer
424 *
425 * This function pads up to the next min_io_size boundary (if there is one) and
426 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
427 * @c->min_io_size boundary.
428 */
clean_buf(const struct ubifs_info * c,void ** buf,int lnum,int * offs,int * len)429 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
430 int *offs, int *len)
431 {
432 int empty_offs, pad_len;
433
434 dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);
435
436 ubifs_assert(c, !(*offs & 7));
437 empty_offs = ALIGN(*offs, c->min_io_size);
438 pad_len = empty_offs - *offs;
439 ubifs_pad(c, *buf, pad_len);
440 *offs += pad_len;
441 *buf += pad_len;
442 *len -= pad_len;
443 memset(*buf, 0xff, c->leb_size - empty_offs);
444 }
445
446 /**
447 * no_more_nodes - determine if there are no more nodes in a buffer.
448 * @c: UBIFS file-system description object
449 * @buf: buffer to check
450 * @len: length of buffer
451 * @lnum: LEB number of the LEB from which @buf was read
452 * @offs: offset from which @buf was read
453 *
454 * This function ensures that the corrupted node at @offs is the last thing
455 * written to a LEB. This function returns %1 if more data is not found and
456 * %0 if more data is found.
457 */
no_more_nodes(const struct ubifs_info * c,void * buf,int len,int lnum,int offs)458 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
459 int lnum, int offs)
460 {
461 struct ubifs_ch *ch = buf;
462 int skip, dlen = le32_to_cpu(ch->len);
463
464 /* Check for empty space after the corrupt node's common header */
465 skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs;
466 if (is_empty(buf + skip, len - skip))
467 return 1;
468 /*
469 * The area after the common header size is not empty, so the common
470 * header must be intact. Check it.
471 */
472 if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) {
473 dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs);
474 return 0;
475 }
476 /* Now we know the corrupt node's length we can skip over it */
477 skip = ALIGN(offs + dlen, c->max_write_size) - offs;
478 /* After which there should be empty space */
479 if (is_empty(buf + skip, len - skip))
480 return 1;
481 dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip);
482 return 0;
483 }
484
485 /**
486 * fix_unclean_leb - fix an unclean LEB.
487 * @c: UBIFS file-system description object
488 * @sleb: scanned LEB information
489 * @start: offset where scan started
490 */
fix_unclean_leb(struct ubifs_info * c,struct ubifs_scan_leb * sleb,int start)491 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
492 int start)
493 {
494 int lnum = sleb->lnum, endpt = start;
495
496 /* Get the end offset of the last node we are keeping */
497 if (!list_empty(&sleb->nodes)) {
498 struct ubifs_scan_node *snod;
499
500 snod = list_entry(sleb->nodes.prev,
501 struct ubifs_scan_node, list);
502 endpt = snod->offs + snod->len;
503 }
504
505 if (c->ro_mount && !c->remounting_rw) {
506 /* Add to recovery list */
507 struct ubifs_unclean_leb *ucleb;
508
509 dbg_rcvry("need to fix LEB %d start %d endpt %d",
510 lnum, start, sleb->endpt);
511 ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
512 if (!ucleb)
513 return -ENOMEM;
514 ucleb->lnum = lnum;
515 ucleb->endpt = endpt;
516 list_add_tail(&ucleb->list, &c->unclean_leb_list);
517 } else {
518 /* Write the fixed LEB back to flash */
519 int err;
520
521 dbg_rcvry("fixing LEB %d start %d endpt %d",
522 lnum, start, sleb->endpt);
523 if (endpt == 0) {
524 err = ubifs_leb_unmap(c, lnum);
525 if (err)
526 return err;
527 } else {
528 int len = ALIGN(endpt, c->min_io_size);
529
530 if (start) {
531 err = ubifs_leb_read(c, lnum, sleb->buf, 0,
532 start, 1);
533 if (err)
534 return err;
535 }
536 /* Pad to min_io_size */
537 if (len > endpt) {
538 int pad_len = len - ALIGN(endpt, 8);
539
540 if (pad_len > 0) {
541 void *buf = sleb->buf + len - pad_len;
542
543 ubifs_pad(c, buf, pad_len);
544 }
545 }
546 err = ubifs_leb_change(c, lnum, sleb->buf, len);
547 if (err)
548 return err;
549 }
550 }
551 return 0;
552 }
553
554 /**
555 * drop_last_group - drop the last group of nodes.
556 * @sleb: scanned LEB information
557 * @offs: offset of dropped nodes is returned here
558 *
559 * This is a helper function for 'ubifs_recover_leb()' which drops the last
560 * group of nodes of the scanned LEB.
561 */
drop_last_group(struct ubifs_scan_leb * sleb,int * offs)562 static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs)
563 {
564 while (!list_empty(&sleb->nodes)) {
565 struct ubifs_scan_node *snod;
566 struct ubifs_ch *ch;
567
568 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
569 list);
570 ch = snod->node;
571 if (ch->group_type != UBIFS_IN_NODE_GROUP)
572 break;
573
574 dbg_rcvry("dropping grouped node at %d:%d",
575 sleb->lnum, snod->offs);
576 *offs = snod->offs;
577 list_del(&snod->list);
578 kfree(snod);
579 sleb->nodes_cnt -= 1;
580 }
581 }
582
583 /**
584 * drop_last_node - drop the last node.
585 * @sleb: scanned LEB information
586 * @offs: offset of dropped nodes is returned here
587 *
588 * This is a helper function for 'ubifs_recover_leb()' which drops the last
589 * node of the scanned LEB.
590 */
drop_last_node(struct ubifs_scan_leb * sleb,int * offs)591 static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs)
592 {
593 struct ubifs_scan_node *snod;
594
595 if (!list_empty(&sleb->nodes)) {
596 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
597 list);
598
599 dbg_rcvry("dropping last node at %d:%d",
600 sleb->lnum, snod->offs);
601 *offs = snod->offs;
602 list_del(&snod->list);
603 kfree(snod);
604 sleb->nodes_cnt -= 1;
605 }
606 }
607
608 /**
609 * ubifs_recover_leb - scan and recover a LEB.
610 * @c: UBIFS file-system description object
611 * @lnum: LEB number
612 * @offs: offset
613 * @sbuf: LEB-sized buffer to use
614 * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not
615 * belong to any journal head)
616 *
617 * This function does a scan of a LEB, but caters for errors that might have
618 * been caused by the unclean unmount from which we are attempting to recover.
619 * Returns the scanned information on success and a negative error code on
620 * failure.
621 */
ubifs_recover_leb(struct ubifs_info * c,int lnum,int offs,void * sbuf,int jhead)622 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
623 int offs, void *sbuf, int jhead)
624 {
625 int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit;
626 int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped;
627 struct ubifs_scan_leb *sleb;
628 void *buf = sbuf + offs;
629
630 dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped);
631
632 sleb = ubifs_start_scan(c, lnum, offs, sbuf);
633 if (IS_ERR(sleb))
634 return sleb;
635
636 ubifs_assert(c, len >= 8);
637 while (len >= 8) {
638 dbg_scan("look at LEB %d:%d (%d bytes left)",
639 lnum, offs, len);
640
641 cond_resched();
642
643 /*
644 * Scan quietly until there is an error from which we cannot
645 * recover
646 */
647 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
648 if (ret == SCANNED_A_NODE) {
649 /* A valid node, and not a padding node */
650 struct ubifs_ch *ch = buf;
651 int node_len;
652
653 err = ubifs_add_snod(c, sleb, buf, offs);
654 if (err)
655 goto error;
656 node_len = ALIGN(le32_to_cpu(ch->len), 8);
657 offs += node_len;
658 buf += node_len;
659 len -= node_len;
660 } else if (ret > 0) {
661 /* Padding bytes or a valid padding node */
662 offs += ret;
663 buf += ret;
664 len -= ret;
665 } else if (ret == SCANNED_A_CORRUPT_NODE) {
666 dbg_rcvry("found corruption (%d) at %d:%d",
667 ret, lnum, offs);
668 if (ubifs_check_node(c, buf, lnum, offs, 1, 1) == -EUCLEAN &&
669 !no_more_nodes(c, buf, len, lnum, offs)) {
670 int skip;
671 struct ubifs_ch *ch = buf;
672
673 /*
674 * If the flash voltage power down suddenly in the programming
675 * process, it may lead to abnormal data written by the flash
676 * in the low-voltage operation process, and the last data
677 * should be discarded.
678 */
679 ubifs_msg(c, "recovery corrupt node\n");
680 skip = ALIGN(offs + le32_to_cpu(ch->len), c->max_write_size) - offs;
681 memset(buf + skip, 0xff, len - skip);
682 }
683
684 break;
685 } else if (ret == SCANNED_EMPTY_SPACE) {
686 dbg_rcvry("found corruption (%d) at %d:%d",
687 ret, lnum, offs);
688 if (!is_empty(buf, len) && !is_last_write(c, buf, offs)) {
689 /*
690 * If the flash voltage power down suddenly in the programming
691 * process, it may lead to the data was programmed to the wroge
692 * page written by the flash in the low-voltage operation process,
693 * and the data should be discarded.
694 */
695 ubifs_msg(c, "recovery empty space\n");
696 memset(buf, 0xff, len);
697 }
698
699 break;
700 } else if (ret == SCANNED_GARBAGE ||
701 ret == SCANNED_A_BAD_PAD_NODE) {
702 dbg_rcvry("found corruption (%d) at %d:%d",
703 ret, lnum, offs);
704 break;
705 } else {
706 ubifs_err(c, "unexpected return value %d", ret);
707 err = -EINVAL;
708 goto error;
709 }
710 }
711
712 if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) {
713 if (!is_last_write(c, buf, offs))
714 goto corrupted_rescan;
715 } else if (ret == SCANNED_A_CORRUPT_NODE) {
716 if (!no_more_nodes(c, buf, len, lnum, offs))
717 goto corrupted_rescan;
718 } else if (!is_empty(buf, len)) {
719 if (!is_last_write(c, buf, offs)) {
720 int corruption = first_non_ff(buf, len);
721
722 /*
723 * See header comment for this file for more
724 * explanations about the reasons we have this check.
725 */
726 ubifs_err(c, "corrupt empty space LEB %d:%d, corruption starts at %d",
727 lnum, offs, corruption);
728 /* Make sure we dump interesting non-0xFF data */
729 offs += corruption;
730 buf += corruption;
731 goto corrupted;
732 }
733 }
734
735 min_io_unit = round_down(offs, c->min_io_size);
736 if (grouped)
737 /*
738 * If nodes are grouped, always drop the incomplete group at
739 * the end.
740 */
741 drop_last_group(sleb, &offs);
742
743 if (jhead == GCHD) {
744 /*
745 * If this LEB belongs to the GC head then while we are in the
746 * middle of the same min. I/O unit keep dropping nodes. So
747 * basically, what we want is to make sure that the last min.
748 * I/O unit where we saw the corruption is dropped completely
749 * with all the uncorrupted nodes which may possibly sit there.
750 *
751 * In other words, let's name the min. I/O unit where the
752 * corruption starts B, and the previous min. I/O unit A. The
753 * below code tries to deal with a situation when half of B
754 * contains valid nodes or the end of a valid node, and the
755 * second half of B contains corrupted data or garbage. This
756 * means that UBIFS had been writing to B just before the power
757 * cut happened. I do not know how realistic is this scenario
758 * that half of the min. I/O unit had been written successfully
759 * and the other half not, but this is possible in our 'failure
760 * mode emulation' infrastructure at least.
761 *
762 * So what is the problem, why we need to drop those nodes? Why
763 * can't we just clean-up the second half of B by putting a
764 * padding node there? We can, and this works fine with one
765 * exception which was reproduced with power cut emulation
766 * testing and happens extremely rarely.
767 *
768 * Imagine the file-system is full, we run GC which starts
769 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is
770 * the current GC head LEB). The @c->gc_lnum is -1, which means
771 * that GC will retain LEB X and will try to continue. Imagine
772 * that LEB X is currently the dirtiest LEB, and the amount of
773 * used space in LEB Y is exactly the same as amount of free
774 * space in LEB X.
775 *
776 * And a power cut happens when nodes are moved from LEB X to
777 * LEB Y. We are here trying to recover LEB Y which is the GC
778 * head LEB. We find the min. I/O unit B as described above.
779 * Then we clean-up LEB Y by padding min. I/O unit. And later
780 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot
781 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X
782 * does not match because the amount of valid nodes there does
783 * not fit the free space in LEB Y any more! And this is
784 * because of the padding node which we added to LEB Y. The
785 * user-visible effect of this which I once observed and
786 * analysed is that we cannot mount the file-system with
787 * -ENOSPC error.
788 *
789 * So obviously, to make sure that situation does not happen we
790 * should free min. I/O unit B in LEB Y completely and the last
791 * used min. I/O unit in LEB Y should be A. This is basically
792 * what the below code tries to do.
793 */
794 while (offs > min_io_unit)
795 drop_last_node(sleb, &offs);
796 }
797
798 buf = sbuf + offs;
799 len = c->leb_size - offs;
800
801 clean_buf(c, &buf, lnum, &offs, &len);
802 ubifs_end_scan(c, sleb, lnum, offs);
803
804 err = fix_unclean_leb(c, sleb, start);
805 if (err)
806 goto error;
807
808 return sleb;
809
810 corrupted_rescan:
811 /* Re-scan the corrupted data with verbose messages */
812 ubifs_err(c, "corruption %d", ret);
813 ubifs_scan_a_node(c, buf, len, lnum, offs, 0);
814 corrupted:
815 ubifs_scanned_corruption(c, lnum, offs, buf);
816 err = -EUCLEAN;
817 error:
818 ubifs_err(c, "LEB %d scanning failed", lnum);
819 ubifs_scan_destroy(sleb);
820 return ERR_PTR(err);
821 }
822
823 /**
824 * get_cs_sqnum - get commit start sequence number.
825 * @c: UBIFS file-system description object
826 * @lnum: LEB number of commit start node
827 * @offs: offset of commit start node
828 * @cs_sqnum: commit start sequence number is returned here
829 *
830 * This function returns %0 on success and a negative error code on failure.
831 */
get_cs_sqnum(struct ubifs_info * c,int lnum,int offs,unsigned long long * cs_sqnum)832 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
833 unsigned long long *cs_sqnum)
834 {
835 struct ubifs_cs_node *cs_node = NULL;
836 int err, ret;
837
838 dbg_rcvry("at %d:%d", lnum, offs);
839 cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
840 if (!cs_node)
841 return -ENOMEM;
842 if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
843 goto out_err;
844 err = ubifs_leb_read(c, lnum, (void *)cs_node, offs,
845 UBIFS_CS_NODE_SZ, 0);
846 if (err && err != -EBADMSG)
847 goto out_free;
848 ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
849 if (ret != SCANNED_A_NODE) {
850 ubifs_err(c, "Not a valid node");
851 goto out_err;
852 }
853 if (cs_node->ch.node_type != UBIFS_CS_NODE) {
854 ubifs_err(c, "Not a CS node, type is %d", cs_node->ch.node_type);
855 goto out_err;
856 }
857 if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
858 ubifs_err(c, "CS node cmt_no %llu != current cmt_no %llu",
859 (unsigned long long)le64_to_cpu(cs_node->cmt_no),
860 c->cmt_no);
861 goto out_err;
862 }
863 *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
864 dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
865 kfree(cs_node);
866 return 0;
867
868 out_err:
869 err = -EINVAL;
870 out_free:
871 ubifs_err(c, "failed to get CS sqnum");
872 kfree(cs_node);
873 return err;
874 }
875
876 /**
877 * ubifs_recover_log_leb - scan and recover a log LEB.
878 * @c: UBIFS file-system description object
879 * @lnum: LEB number
880 * @offs: offset
881 * @sbuf: LEB-sized buffer to use
882 *
883 * This function does a scan of a LEB, but caters for errors that might have
884 * been caused by unclean reboots from which we are attempting to recover
885 * (assume that only the last log LEB can be corrupted by an unclean reboot).
886 *
887 * This function returns %0 on success and a negative error code on failure.
888 */
ubifs_recover_log_leb(struct ubifs_info * c,int lnum,int offs,void * sbuf)889 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
890 int offs, void *sbuf)
891 {
892 struct ubifs_scan_leb *sleb;
893 int next_lnum;
894
895 dbg_rcvry("LEB %d", lnum);
896 next_lnum = lnum + 1;
897 if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
898 next_lnum = UBIFS_LOG_LNUM;
899 if (next_lnum != c->ltail_lnum) {
900 /*
901 * We can only recover at the end of the log, so check that the
902 * next log LEB is empty or out of date.
903 */
904 sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0);
905 if (IS_ERR(sleb))
906 return sleb;
907 if (sleb->nodes_cnt) {
908 struct ubifs_scan_node *snod;
909 unsigned long long cs_sqnum = c->cs_sqnum;
910
911 snod = list_entry(sleb->nodes.next,
912 struct ubifs_scan_node, list);
913 if (cs_sqnum == 0) {
914 int err;
915
916 err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
917 if (err) {
918 ubifs_scan_destroy(sleb);
919 return ERR_PTR(err);
920 }
921 }
922 if (snod->sqnum > cs_sqnum) {
923 ubifs_err(c, "unrecoverable log corruption in LEB %d",
924 lnum);
925 ubifs_scan_destroy(sleb);
926 return ERR_PTR(-EUCLEAN);
927 }
928 }
929 ubifs_scan_destroy(sleb);
930 }
931 return ubifs_recover_leb(c, lnum, offs, sbuf, -1);
932 }
933
934 /**
935 * recover_head - recover a head.
936 * @c: UBIFS file-system description object
937 * @lnum: LEB number of head to recover
938 * @offs: offset of head to recover
939 * @sbuf: LEB-sized buffer to use
940 *
941 * This function ensures that there is no data on the flash at a head location.
942 *
943 * This function returns %0 on success and a negative error code on failure.
944 */
recover_head(struct ubifs_info * c,int lnum,int offs,void * sbuf)945 static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf)
946 {
947 int len = c->max_write_size, err;
948
949 if (offs + len > c->leb_size)
950 len = c->leb_size - offs;
951
952 if (!len)
953 return 0;
954
955 /* Read at the head location and check it is empty flash */
956 err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1);
957 if (err || !is_empty(sbuf, len)) {
958 dbg_rcvry("cleaning head at %d:%d", lnum, offs);
959 if (offs == 0)
960 return ubifs_leb_unmap(c, lnum);
961 err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1);
962 if (err)
963 return err;
964 return ubifs_leb_change(c, lnum, sbuf, offs);
965 }
966
967 return 0;
968 }
969
970 /**
971 * ubifs_recover_inl_heads - recover index and LPT heads.
972 * @c: UBIFS file-system description object
973 * @sbuf: LEB-sized buffer to use
974 *
975 * This function ensures that there is no data on the flash at the index and
976 * LPT head locations.
977 *
978 * This deals with the recovery of a half-completed journal commit. UBIFS is
979 * careful never to overwrite the last version of the index or the LPT. Because
980 * the index and LPT are wandering trees, data from a half-completed commit will
981 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
982 * assumed to be empty and will be unmapped anyway before use, or in the index
983 * and LPT heads.
984 *
985 * This function returns %0 on success and a negative error code on failure.
986 */
ubifs_recover_inl_heads(struct ubifs_info * c,void * sbuf)987 int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf)
988 {
989 int err;
990
991 ubifs_assert(c, !c->ro_mount || c->remounting_rw);
992
993 dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
994 err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
995 if (err)
996 return err;
997
998 dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
999
1000 return recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
1001 }
1002
1003 /**
1004 * clean_an_unclean_leb - read and write a LEB to remove corruption.
1005 * @c: UBIFS file-system description object
1006 * @ucleb: unclean LEB information
1007 * @sbuf: LEB-sized buffer to use
1008 *
1009 * This function reads a LEB up to a point pre-determined by the mount recovery,
1010 * checks the nodes, and writes the result back to the flash, thereby cleaning
1011 * off any following corruption, or non-fatal ECC errors.
1012 *
1013 * This function returns %0 on success and a negative error code on failure.
1014 */
clean_an_unclean_leb(struct ubifs_info * c,struct ubifs_unclean_leb * ucleb,void * sbuf)1015 static int clean_an_unclean_leb(struct ubifs_info *c,
1016 struct ubifs_unclean_leb *ucleb, void *sbuf)
1017 {
1018 int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
1019 void *buf = sbuf;
1020
1021 dbg_rcvry("LEB %d len %d", lnum, len);
1022
1023 if (len == 0) {
1024 /* Nothing to read, just unmap it */
1025 return ubifs_leb_unmap(c, lnum);
1026 }
1027
1028 err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1029 if (err && err != -EBADMSG)
1030 return err;
1031
1032 while (len >= 8) {
1033 int ret;
1034
1035 cond_resched();
1036
1037 /* Scan quietly until there is an error */
1038 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);
1039
1040 if (ret == SCANNED_A_NODE) {
1041 /* A valid node, and not a padding node */
1042 struct ubifs_ch *ch = buf;
1043 int node_len;
1044
1045 node_len = ALIGN(le32_to_cpu(ch->len), 8);
1046 offs += node_len;
1047 buf += node_len;
1048 len -= node_len;
1049 continue;
1050 }
1051
1052 if (ret > 0) {
1053 /* Padding bytes or a valid padding node */
1054 offs += ret;
1055 buf += ret;
1056 len -= ret;
1057 continue;
1058 }
1059
1060 if (ret == SCANNED_EMPTY_SPACE) {
1061 ubifs_err(c, "unexpected empty space at %d:%d",
1062 lnum, offs);
1063 return -EUCLEAN;
1064 }
1065
1066 if (quiet) {
1067 /* Redo the last scan but noisily */
1068 quiet = 0;
1069 continue;
1070 }
1071
1072 ubifs_scanned_corruption(c, lnum, offs, buf);
1073 return -EUCLEAN;
1074 }
1075
1076 /* Pad to min_io_size */
1077 len = ALIGN(ucleb->endpt, c->min_io_size);
1078 if (len > ucleb->endpt) {
1079 int pad_len = len - ALIGN(ucleb->endpt, 8);
1080
1081 if (pad_len > 0) {
1082 buf = c->sbuf + len - pad_len;
1083 ubifs_pad(c, buf, pad_len);
1084 }
1085 }
1086
1087 /* Write back the LEB atomically */
1088 err = ubifs_leb_change(c, lnum, sbuf, len);
1089 if (err)
1090 return err;
1091
1092 dbg_rcvry("cleaned LEB %d", lnum);
1093
1094 return 0;
1095 }
1096
1097 /**
1098 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1099 * @c: UBIFS file-system description object
1100 * @sbuf: LEB-sized buffer to use
1101 *
1102 * This function cleans a LEB identified during recovery that needs to be
1103 * written but was not because UBIFS was mounted read-only. This happens when
1104 * remounting to read-write mode.
1105 *
1106 * This function returns %0 on success and a negative error code on failure.
1107 */
ubifs_clean_lebs(struct ubifs_info * c,void * sbuf)1108 int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf)
1109 {
1110 dbg_rcvry("recovery");
1111 while (!list_empty(&c->unclean_leb_list)) {
1112 struct ubifs_unclean_leb *ucleb;
1113 int err;
1114
1115 ucleb = list_entry(c->unclean_leb_list.next,
1116 struct ubifs_unclean_leb, list);
1117 err = clean_an_unclean_leb(c, ucleb, sbuf);
1118 if (err)
1119 return err;
1120 list_del(&ucleb->list);
1121 kfree(ucleb);
1122 }
1123 return 0;
1124 }
1125
1126 /**
1127 * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit.
1128 * @c: UBIFS file-system description object
1129 *
1130 * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty
1131 * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns
1132 * zero in case of success and a negative error code in case of failure.
1133 */
grab_empty_leb(struct ubifs_info * c)1134 static int grab_empty_leb(struct ubifs_info *c)
1135 {
1136 int lnum, err;
1137
1138 /*
1139 * Note, it is very important to first search for an empty LEB and then
1140 * run the commit, not vice-versa. The reason is that there might be
1141 * only one empty LEB at the moment, the one which has been the
1142 * @c->gc_lnum just before the power cut happened. During the regular
1143 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no
1144 * one but GC can grab it. But at this moment this single empty LEB is
1145 * not marked as taken, so if we run commit - what happens? Right, the
1146 * commit will grab it and write the index there. Remember that the
1147 * index always expands as long as there is free space, and it only
1148 * starts consolidating when we run out of space.
1149 *
1150 * IOW, if we run commit now, we might not be able to find a free LEB
1151 * after this.
1152 */
1153 lnum = ubifs_find_free_leb_for_idx(c);
1154 if (lnum < 0) {
1155 ubifs_err(c, "could not find an empty LEB");
1156 ubifs_dump_lprops(c);
1157 ubifs_dump_budg(c, &c->bi);
1158 return lnum;
1159 }
1160
1161 /* Reset the index flag */
1162 err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
1163 LPROPS_INDEX, 0);
1164 if (err)
1165 return err;
1166
1167 c->gc_lnum = lnum;
1168 dbg_rcvry("found empty LEB %d, run commit", lnum);
1169
1170 return ubifs_run_commit(c);
1171 }
1172
1173 /**
1174 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1175 * @c: UBIFS file-system description object
1176 *
1177 * Out-of-place garbage collection requires always one empty LEB with which to
1178 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1179 * written to the master node on unmounting. In the case of an unclean unmount
1180 * the value of gc_lnum recorded in the master node is out of date and cannot
1181 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1182 * However, there may not be enough empty space, in which case it must be
1183 * possible to GC the dirtiest LEB into the GC head LEB.
1184 *
1185 * This function also runs the commit which causes the TNC updates from
1186 * size-recovery and orphans to be written to the flash. That is important to
1187 * ensure correct replay order for subsequent mounts.
1188 *
1189 * This function returns %0 on success and a negative error code on failure.
1190 */
ubifs_rcvry_gc_commit(struct ubifs_info * c)1191 int ubifs_rcvry_gc_commit(struct ubifs_info *c)
1192 {
1193 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
1194 struct ubifs_lprops lp;
1195 int err;
1196
1197 dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs);
1198
1199 c->gc_lnum = -1;
1200 if (wbuf->lnum == -1 || wbuf->offs == c->leb_size)
1201 return grab_empty_leb(c);
1202
1203 err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
1204 if (err) {
1205 if (err != -ENOSPC)
1206 return err;
1207
1208 dbg_rcvry("could not find a dirty LEB");
1209 return grab_empty_leb(c);
1210 }
1211
1212 ubifs_assert(c, !(lp.flags & LPROPS_INDEX));
1213 ubifs_assert(c, lp.free + lp.dirty >= wbuf->offs);
1214
1215 /*
1216 * We run the commit before garbage collection otherwise subsequent
1217 * mounts will see the GC and orphan deletion in a different order.
1218 */
1219 dbg_rcvry("committing");
1220 err = ubifs_run_commit(c);
1221 if (err)
1222 return err;
1223
1224 dbg_rcvry("GC'ing LEB %d", lp.lnum);
1225 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1226 err = ubifs_garbage_collect_leb(c, &lp);
1227 if (err >= 0) {
1228 int err2 = ubifs_wbuf_sync_nolock(wbuf);
1229
1230 if (err2)
1231 err = err2;
1232 }
1233 mutex_unlock(&wbuf->io_mutex);
1234 if (err < 0) {
1235 ubifs_err(c, "GC failed, error %d", err);
1236 if (err == -EAGAIN)
1237 err = -EINVAL;
1238 return err;
1239 }
1240
1241 ubifs_assert(c, err == LEB_RETAINED);
1242 if (err != LEB_RETAINED)
1243 return -EINVAL;
1244
1245 err = ubifs_leb_unmap(c, c->gc_lnum);
1246 if (err)
1247 return err;
1248
1249 dbg_rcvry("allocated LEB %d for GC", lp.lnum);
1250 return 0;
1251 }
1252
1253 /**
1254 * struct size_entry - inode size information for recovery.
1255 * @rb: link in the RB-tree of sizes
1256 * @inum: inode number
1257 * @i_size: size on inode
1258 * @d_size: maximum size based on data nodes
1259 * @exists: indicates whether the inode exists
1260 * @inode: inode if pinned in memory awaiting rw mode to fix it
1261 */
1262 struct size_entry {
1263 struct rb_node rb;
1264 ino_t inum;
1265 loff_t i_size;
1266 loff_t d_size;
1267 int exists;
1268 struct inode *inode;
1269 };
1270
1271 /**
1272 * add_ino - add an entry to the size tree.
1273 * @c: UBIFS file-system description object
1274 * @inum: inode number
1275 * @i_size: size on inode
1276 * @d_size: maximum size based on data nodes
1277 * @exists: indicates whether the inode exists
1278 */
add_ino(struct ubifs_info * c,ino_t inum,loff_t i_size,loff_t d_size,int exists)1279 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
1280 loff_t d_size, int exists)
1281 {
1282 struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
1283 struct size_entry *e;
1284
1285 while (*p) {
1286 parent = *p;
1287 e = rb_entry(parent, struct size_entry, rb);
1288 if (inum < e->inum)
1289 p = &(*p)->rb_left;
1290 else
1291 p = &(*p)->rb_right;
1292 }
1293
1294 e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
1295 if (!e)
1296 return -ENOMEM;
1297
1298 e->inum = inum;
1299 e->i_size = i_size;
1300 e->d_size = d_size;
1301 e->exists = exists;
1302
1303 rb_link_node(&e->rb, parent, p);
1304 rb_insert_color(&e->rb, &c->size_tree);
1305
1306 return 0;
1307 }
1308
1309 /**
1310 * find_ino - find an entry on the size tree.
1311 * @c: UBIFS file-system description object
1312 * @inum: inode number
1313 */
find_ino(struct ubifs_info * c,ino_t inum)1314 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
1315 {
1316 struct rb_node *p = c->size_tree.rb_node;
1317 struct size_entry *e;
1318
1319 while (p) {
1320 e = rb_entry(p, struct size_entry, rb);
1321 if (inum < e->inum)
1322 p = p->rb_left;
1323 else if (inum > e->inum)
1324 p = p->rb_right;
1325 else
1326 return e;
1327 }
1328 return NULL;
1329 }
1330
1331 /**
1332 * remove_ino - remove an entry from the size tree.
1333 * @c: UBIFS file-system description object
1334 * @inum: inode number
1335 */
remove_ino(struct ubifs_info * c,ino_t inum)1336 static void remove_ino(struct ubifs_info *c, ino_t inum)
1337 {
1338 struct size_entry *e = find_ino(c, inum);
1339
1340 if (!e)
1341 return;
1342 rb_erase(&e->rb, &c->size_tree);
1343 kfree(e);
1344 }
1345
1346 /**
1347 * ubifs_destroy_size_tree - free resources related to the size tree.
1348 * @c: UBIFS file-system description object
1349 */
ubifs_destroy_size_tree(struct ubifs_info * c)1350 void ubifs_destroy_size_tree(struct ubifs_info *c)
1351 {
1352 struct size_entry *e, *n;
1353
1354 rbtree_postorder_for_each_entry_safe(e, n, &c->size_tree, rb) {
1355 iput(e->inode);
1356 kfree(e);
1357 }
1358
1359 c->size_tree = RB_ROOT;
1360 }
1361
1362 /**
1363 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1364 * @c: UBIFS file-system description object
1365 * @key: node key
1366 * @deletion: node is for a deletion
1367 * @new_size: inode size
1368 *
1369 * This function has two purposes:
1370 * 1) to ensure there are no data nodes that fall outside the inode size
1371 * 2) to ensure there are no data nodes for inodes that do not exist
1372 * To accomplish those purposes, a rb-tree is constructed containing an entry
1373 * for each inode number in the journal that has not been deleted, and recording
1374 * the size from the inode node, the maximum size of any data node (also altered
1375 * by truncations) and a flag indicating a inode number for which no inode node
1376 * was present in the journal.
1377 *
1378 * Note that there is still the possibility that there are data nodes that have
1379 * been committed that are beyond the inode size, however the only way to find
1380 * them would be to scan the entire index. Alternatively, some provision could
1381 * be made to record the size of inodes at the start of commit, which would seem
1382 * very cumbersome for a scenario that is quite unlikely and the only negative
1383 * consequence of which is wasted space.
1384 *
1385 * This functions returns %0 on success and a negative error code on failure.
1386 */
ubifs_recover_size_accum(struct ubifs_info * c,union ubifs_key * key,int deletion,loff_t new_size)1387 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
1388 int deletion, loff_t new_size)
1389 {
1390 ino_t inum = key_inum(c, key);
1391 struct size_entry *e;
1392 int err;
1393
1394 switch (key_type(c, key)) {
1395 case UBIFS_INO_KEY:
1396 if (deletion)
1397 remove_ino(c, inum);
1398 else {
1399 e = find_ino(c, inum);
1400 if (e) {
1401 e->i_size = new_size;
1402 e->exists = 1;
1403 } else {
1404 err = add_ino(c, inum, new_size, 0, 1);
1405 if (err)
1406 return err;
1407 }
1408 }
1409 break;
1410 case UBIFS_DATA_KEY:
1411 e = find_ino(c, inum);
1412 if (e) {
1413 if (new_size > e->d_size)
1414 e->d_size = new_size;
1415 } else {
1416 err = add_ino(c, inum, 0, new_size, 0);
1417 if (err)
1418 return err;
1419 }
1420 break;
1421 case UBIFS_TRUN_KEY:
1422 e = find_ino(c, inum);
1423 if (e)
1424 e->d_size = new_size;
1425 break;
1426 }
1427 return 0;
1428 }
1429
1430 /**
1431 * fix_size_in_place - fix inode size in place on flash.
1432 * @c: UBIFS file-system description object
1433 * @e: inode size information for recovery
1434 */
fix_size_in_place(struct ubifs_info * c,struct size_entry * e)1435 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
1436 {
1437 struct ubifs_ino_node *ino = c->sbuf;
1438 unsigned char *p;
1439 union ubifs_key key;
1440 int err, lnum, offs, len;
1441 loff_t i_size;
1442 uint32_t crc;
1443
1444 /* Locate the inode node LEB number and offset */
1445 ino_key_init(c, &key, e->inum);
1446 err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
1447 if (err)
1448 goto out;
1449 /*
1450 * If the size recorded on the inode node is greater than the size that
1451 * was calculated from nodes in the journal then don't change the inode.
1452 */
1453 i_size = le64_to_cpu(ino->size);
1454 if (i_size >= e->d_size)
1455 return 0;
1456 /* Read the LEB */
1457 err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1);
1458 if (err)
1459 goto out;
1460 /* Change the size field and recalculate the CRC */
1461 ino = c->sbuf + offs;
1462 ino->size = cpu_to_le64(e->d_size);
1463 len = le32_to_cpu(ino->ch.len);
1464 crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
1465 ino->ch.crc = cpu_to_le32(crc);
1466 /* Work out where data in the LEB ends and free space begins */
1467 p = c->sbuf;
1468 len = c->leb_size - 1;
1469 while (p[len] == 0xff)
1470 len -= 1;
1471 len = ALIGN(len + 1, c->min_io_size);
1472 /* Atomically write the fixed LEB back again */
1473 err = ubifs_leb_change(c, lnum, c->sbuf, len);
1474 if (err)
1475 goto out;
1476 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld",
1477 (unsigned long)e->inum, lnum, offs, i_size, e->d_size);
1478 return 0;
1479
1480 out:
1481 ubifs_warn(c, "inode %lu failed to fix size %lld -> %lld error %d",
1482 (unsigned long)e->inum, e->i_size, e->d_size, err);
1483 return err;
1484 }
1485
1486 /**
1487 * inode_fix_size - fix inode size
1488 * @c: UBIFS file-system description object
1489 * @e: inode size information for recovery
1490 */
inode_fix_size(struct ubifs_info * c,struct size_entry * e)1491 static int inode_fix_size(struct ubifs_info *c, struct size_entry *e)
1492 {
1493 struct inode *inode;
1494 struct ubifs_inode *ui;
1495 int err;
1496
1497 if (c->ro_mount)
1498 ubifs_assert(c, !e->inode);
1499
1500 if (e->inode) {
1501 /* Remounting rw, pick up inode we stored earlier */
1502 inode = e->inode;
1503 } else {
1504 inode = ubifs_iget(c->vfs_sb, e->inum);
1505 if (IS_ERR(inode))
1506 return PTR_ERR(inode);
1507
1508 if (inode->i_size >= e->d_size) {
1509 /*
1510 * The original inode in the index already has a size
1511 * big enough, nothing to do
1512 */
1513 iput(inode);
1514 return 0;
1515 }
1516
1517 dbg_rcvry("ino %lu size %lld -> %lld",
1518 (unsigned long)e->inum,
1519 inode->i_size, e->d_size);
1520
1521 ui = ubifs_inode(inode);
1522
1523 inode->i_size = e->d_size;
1524 ui->ui_size = e->d_size;
1525 ui->synced_i_size = e->d_size;
1526
1527 e->inode = inode;
1528 }
1529
1530 /*
1531 * In readonly mode just keep the inode pinned in memory until we go
1532 * readwrite. In readwrite mode write the inode to the journal with the
1533 * fixed size.
1534 */
1535 if (c->ro_mount)
1536 return 0;
1537
1538 err = ubifs_jnl_write_inode(c, inode);
1539
1540 iput(inode);
1541
1542 if (err)
1543 return err;
1544
1545 rb_erase(&e->rb, &c->size_tree);
1546 kfree(e);
1547
1548 return 0;
1549 }
1550
1551 /**
1552 * ubifs_recover_size - recover inode size.
1553 * @c: UBIFS file-system description object
1554 * @in_place: If true, do a in-place size fixup
1555 *
1556 * This function attempts to fix inode size discrepancies identified by the
1557 * 'ubifs_recover_size_accum()' function.
1558 *
1559 * This functions returns %0 on success and a negative error code on failure.
1560 */
ubifs_recover_size(struct ubifs_info * c,bool in_place)1561 int ubifs_recover_size(struct ubifs_info *c, bool in_place)
1562 {
1563 struct rb_node *this = rb_first(&c->size_tree);
1564
1565 while (this) {
1566 struct size_entry *e;
1567 int err;
1568
1569 e = rb_entry(this, struct size_entry, rb);
1570
1571 this = rb_next(this);
1572
1573 if (!e->exists) {
1574 union ubifs_key key;
1575
1576 ino_key_init(c, &key, e->inum);
1577 err = ubifs_tnc_lookup(c, &key, c->sbuf);
1578 if (err && err != -ENOENT)
1579 return err;
1580 if (err == -ENOENT) {
1581 /* Remove data nodes that have no inode */
1582 dbg_rcvry("removing ino %lu",
1583 (unsigned long)e->inum);
1584 err = ubifs_tnc_remove_ino(c, e->inum);
1585 if (err)
1586 return err;
1587 } else {
1588 struct ubifs_ino_node *ino = c->sbuf;
1589
1590 e->exists = 1;
1591 e->i_size = le64_to_cpu(ino->size);
1592 }
1593 }
1594
1595 if (e->exists && e->i_size < e->d_size) {
1596 ubifs_assert(c, !(c->ro_mount && in_place));
1597
1598 /*
1599 * We found data that is outside the found inode size,
1600 * fixup the inode size
1601 */
1602
1603 if (in_place) {
1604 err = fix_size_in_place(c, e);
1605 if (err)
1606 return err;
1607 iput(e->inode);
1608 } else {
1609 err = inode_fix_size(c, e);
1610 if (err)
1611 return err;
1612 continue;
1613 }
1614 }
1615
1616 rb_erase(&e->rb, &c->size_tree);
1617 kfree(e);
1618 }
1619
1620 return 0;
1621 }
1622