1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/proc/base.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 *
7 * proc base directory handling functions
8 *
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
15 *
16 *
17 * Changelog:
18 * 17-Jan-2005
19 * Allan Bezerra
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
24 *
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26 *
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
33 *
34 * Changelog:
35 * 21-Feb-2005
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
38 *
39 * ChangeLog:
40 * 10-Mar-2005
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
43 *
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
46 *
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
49 */
50
51 #include <linux/uaccess.h>
52
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
67 #include <linux/mm.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/kallsyms.h>
71 #include <linux/stacktrace.h>
72 #include <linux/resource.h>
73 #include <linux/module.h>
74 #include <linux/mount.h>
75 #include <linux/security.h>
76 #include <linux/ptrace.h>
77 #include <linux/tracehook.h>
78 #include <linux/printk.h>
79 #include <linux/cache.h>
80 #include <linux/cgroup.h>
81 #include <linux/cpuset.h>
82 #include <linux/audit.h>
83 #include <linux/poll.h>
84 #include <linux/nsproxy.h>
85 #include <linux/oom.h>
86 #include <linux/elf.h>
87 #include <linux/pid_namespace.h>
88 #include <linux/user_namespace.h>
89 #include <linux/fs_struct.h>
90 #include <linux/slab.h>
91 #include <linux/sched/autogroup.h>
92 #include <linux/sched/mm.h>
93 #include <linux/sched/coredump.h>
94 #include <linux/sched/debug.h>
95 #include <linux/sched/stat.h>
96 #include <linux/posix-timers.h>
97 #include <linux/time_namespace.h>
98 #include <linux/resctrl.h>
99 #include <linux/cpufreq_times.h>
100 #include <trace/events/oom.h>
101 #include "internal.h"
102 #include "fd.h"
103
104 #include "../../lib/kstrtox.h"
105
106 /* NOTE:
107 * Implementing inode permission operations in /proc is almost
108 * certainly an error. Permission checks need to happen during
109 * each system call not at open time. The reason is that most of
110 * what we wish to check for permissions in /proc varies at runtime.
111 *
112 * The classic example of a problem is opening file descriptors
113 * in /proc for a task before it execs a suid executable.
114 */
115
116 static u8 nlink_tid __ro_after_init;
117 static u8 nlink_tgid __ro_after_init;
118
119 struct pid_entry {
120 const char *name;
121 unsigned int len;
122 umode_t mode;
123 const struct inode_operations *iop;
124 const struct file_operations *fop;
125 union proc_op op;
126 };
127
128 #define NOD(NAME, MODE, IOP, FOP, OP) { \
129 .name = (NAME), \
130 .len = sizeof(NAME) - 1, \
131 .mode = MODE, \
132 .iop = IOP, \
133 .fop = FOP, \
134 .op = OP, \
135 }
136
137 #define DIR(NAME, MODE, iops, fops) \
138 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
139 #define LNK(NAME, get_link) \
140 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
141 &proc_pid_link_inode_operations, NULL, \
142 { .proc_get_link = get_link } )
143 #define REG(NAME, MODE, fops) \
144 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
145 #define ONE(NAME, MODE, show) \
146 NOD(NAME, (S_IFREG|(MODE)), \
147 NULL, &proc_single_file_operations, \
148 { .proc_show = show } )
149 #define ATTR(LSM, NAME, MODE) \
150 NOD(NAME, (S_IFREG|(MODE)), \
151 NULL, &proc_pid_attr_operations, \
152 { .lsm = LSM })
153
154 /*
155 * Count the number of hardlinks for the pid_entry table, excluding the .
156 * and .. links.
157 */
pid_entry_nlink(const struct pid_entry * entries,unsigned int n)158 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
159 unsigned int n)
160 {
161 unsigned int i;
162 unsigned int count;
163
164 count = 2;
165 for (i = 0; i < n; ++i) {
166 if (S_ISDIR(entries[i].mode))
167 ++count;
168 }
169
170 return count;
171 }
172
get_task_root(struct task_struct * task,struct path * root)173 static int get_task_root(struct task_struct *task, struct path *root)
174 {
175 int result = -ENOENT;
176
177 task_lock(task);
178 if (task->fs) {
179 get_fs_root(task->fs, root);
180 result = 0;
181 }
182 task_unlock(task);
183 return result;
184 }
185
proc_cwd_link(struct dentry * dentry,struct path * path)186 static int proc_cwd_link(struct dentry *dentry, struct path *path)
187 {
188 struct task_struct *task = get_proc_task(d_inode(dentry));
189 int result = -ENOENT;
190
191 if (task) {
192 task_lock(task);
193 if (task->fs) {
194 get_fs_pwd(task->fs, path);
195 result = 0;
196 }
197 task_unlock(task);
198 put_task_struct(task);
199 }
200 return result;
201 }
202
proc_root_link(struct dentry * dentry,struct path * path)203 static int proc_root_link(struct dentry *dentry, struct path *path)
204 {
205 struct task_struct *task = get_proc_task(d_inode(dentry));
206 int result = -ENOENT;
207
208 if (task) {
209 result = get_task_root(task, path);
210 put_task_struct(task);
211 }
212 return result;
213 }
214
215 /*
216 * If the user used setproctitle(), we just get the string from
217 * user space at arg_start, and limit it to a maximum of one page.
218 */
get_mm_proctitle(struct mm_struct * mm,char __user * buf,size_t count,unsigned long pos,unsigned long arg_start)219 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
220 size_t count, unsigned long pos,
221 unsigned long arg_start)
222 {
223 char *page;
224 int ret, got;
225
226 if (pos >= PAGE_SIZE)
227 return 0;
228
229 page = (char *)__get_free_page(GFP_KERNEL);
230 if (!page)
231 return -ENOMEM;
232
233 ret = 0;
234 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
235 if (got > 0) {
236 int len = strnlen(page, got);
237
238 /* Include the NUL character if it was found */
239 if (len < got)
240 len++;
241
242 if (len > pos) {
243 len -= pos;
244 if (len > count)
245 len = count;
246 len -= copy_to_user(buf, page+pos, len);
247 if (!len)
248 len = -EFAULT;
249 ret = len;
250 }
251 }
252 free_page((unsigned long)page);
253 return ret;
254 }
255
get_mm_cmdline(struct mm_struct * mm,char __user * buf,size_t count,loff_t * ppos)256 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
257 size_t count, loff_t *ppos)
258 {
259 unsigned long arg_start, arg_end, env_start, env_end;
260 unsigned long pos, len;
261 char *page, c;
262
263 /* Check if process spawned far enough to have cmdline. */
264 if (!mm->env_end)
265 return 0;
266
267 spin_lock(&mm->arg_lock);
268 arg_start = mm->arg_start;
269 arg_end = mm->arg_end;
270 env_start = mm->env_start;
271 env_end = mm->env_end;
272 spin_unlock(&mm->arg_lock);
273
274 if (arg_start >= arg_end)
275 return 0;
276
277 /*
278 * We allow setproctitle() to overwrite the argument
279 * strings, and overflow past the original end. But
280 * only when it overflows into the environment area.
281 */
282 if (env_start != arg_end || env_end < env_start)
283 env_start = env_end = arg_end;
284 len = env_end - arg_start;
285
286 /* We're not going to care if "*ppos" has high bits set */
287 pos = *ppos;
288 if (pos >= len)
289 return 0;
290 if (count > len - pos)
291 count = len - pos;
292 if (!count)
293 return 0;
294
295 /*
296 * Magical special case: if the argv[] end byte is not
297 * zero, the user has overwritten it with setproctitle(3).
298 *
299 * Possible future enhancement: do this only once when
300 * pos is 0, and set a flag in the 'struct file'.
301 */
302 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
303 return get_mm_proctitle(mm, buf, count, pos, arg_start);
304
305 /*
306 * For the non-setproctitle() case we limit things strictly
307 * to the [arg_start, arg_end[ range.
308 */
309 pos += arg_start;
310 if (pos < arg_start || pos >= arg_end)
311 return 0;
312 if (count > arg_end - pos)
313 count = arg_end - pos;
314
315 page = (char *)__get_free_page(GFP_KERNEL);
316 if (!page)
317 return -ENOMEM;
318
319 len = 0;
320 while (count) {
321 int got;
322 size_t size = min_t(size_t, PAGE_SIZE, count);
323
324 got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
325 if (got <= 0)
326 break;
327 got -= copy_to_user(buf, page, got);
328 if (unlikely(!got)) {
329 if (!len)
330 len = -EFAULT;
331 break;
332 }
333 pos += got;
334 buf += got;
335 len += got;
336 count -= got;
337 }
338
339 free_page((unsigned long)page);
340 return len;
341 }
342
get_task_cmdline(struct task_struct * tsk,char __user * buf,size_t count,loff_t * pos)343 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
344 size_t count, loff_t *pos)
345 {
346 struct mm_struct *mm;
347 ssize_t ret;
348
349 mm = get_task_mm(tsk);
350 if (!mm)
351 return 0;
352
353 ret = get_mm_cmdline(mm, buf, count, pos);
354 mmput(mm);
355 return ret;
356 }
357
proc_pid_cmdline_read(struct file * file,char __user * buf,size_t count,loff_t * pos)358 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
359 size_t count, loff_t *pos)
360 {
361 struct task_struct *tsk;
362 ssize_t ret;
363
364 BUG_ON(*pos < 0);
365
366 tsk = get_proc_task(file_inode(file));
367 if (!tsk)
368 return -ESRCH;
369 ret = get_task_cmdline(tsk, buf, count, pos);
370 put_task_struct(tsk);
371 if (ret > 0)
372 *pos += ret;
373 return ret;
374 }
375
376 static const struct file_operations proc_pid_cmdline_ops = {
377 .read = proc_pid_cmdline_read,
378 .llseek = generic_file_llseek,
379 };
380
381 #ifdef CONFIG_KALLSYMS
382 /*
383 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
384 * Returns the resolved symbol. If that fails, simply return the address.
385 */
proc_pid_wchan(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)386 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
387 struct pid *pid, struct task_struct *task)
388 {
389 unsigned long wchan;
390 char symname[KSYM_NAME_LEN];
391
392 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
393 goto print0;
394
395 wchan = get_wchan(task);
396 if (wchan && !lookup_symbol_name(wchan, symname)) {
397 seq_puts(m, symname);
398 return 0;
399 }
400
401 print0:
402 seq_putc(m, '0');
403 return 0;
404 }
405 #endif /* CONFIG_KALLSYMS */
406
lock_trace(struct task_struct * task)407 static int lock_trace(struct task_struct *task)
408 {
409 int err = down_read_killable(&task->signal->exec_update_lock);
410 if (err)
411 return err;
412 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
413 up_read(&task->signal->exec_update_lock);
414 return -EPERM;
415 }
416 return 0;
417 }
418
unlock_trace(struct task_struct * task)419 static void unlock_trace(struct task_struct *task)
420 {
421 up_read(&task->signal->exec_update_lock);
422 }
423
424 #ifdef CONFIG_STACKTRACE
425
426 #define MAX_STACK_TRACE_DEPTH 64
427
proc_pid_stack(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)428 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
429 struct pid *pid, struct task_struct *task)
430 {
431 unsigned long *entries;
432 int err;
433
434 /*
435 * The ability to racily run the kernel stack unwinder on a running task
436 * and then observe the unwinder output is scary; while it is useful for
437 * debugging kernel issues, it can also allow an attacker to leak kernel
438 * stack contents.
439 * Doing this in a manner that is at least safe from races would require
440 * some work to ensure that the remote task can not be scheduled; and
441 * even then, this would still expose the unwinder as local attack
442 * surface.
443 * Therefore, this interface is restricted to root.
444 */
445 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
446 return -EACCES;
447
448 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
449 GFP_KERNEL);
450 if (!entries)
451 return -ENOMEM;
452
453 err = lock_trace(task);
454 if (!err) {
455 unsigned int i, nr_entries;
456
457 nr_entries = stack_trace_save_tsk(task, entries,
458 MAX_STACK_TRACE_DEPTH, 0);
459
460 for (i = 0; i < nr_entries; i++) {
461 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
462 }
463
464 unlock_trace(task);
465 }
466 kfree(entries);
467
468 return err;
469 }
470 #endif
471
472 #ifdef CONFIG_SCHED_INFO
473 /*
474 * Provides /proc/PID/schedstat
475 */
proc_pid_schedstat(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)476 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
477 struct pid *pid, struct task_struct *task)
478 {
479 if (unlikely(!sched_info_on()))
480 seq_puts(m, "0 0 0\n");
481 else
482 seq_printf(m, "%llu %llu %lu\n",
483 (unsigned long long)task->se.sum_exec_runtime,
484 (unsigned long long)task->sched_info.run_delay,
485 task->sched_info.pcount);
486
487 return 0;
488 }
489 #endif
490
491 #ifdef CONFIG_LATENCYTOP
lstats_show_proc(struct seq_file * m,void * v)492 static int lstats_show_proc(struct seq_file *m, void *v)
493 {
494 int i;
495 struct inode *inode = m->private;
496 struct task_struct *task = get_proc_task(inode);
497
498 if (!task)
499 return -ESRCH;
500 seq_puts(m, "Latency Top version : v0.1\n");
501 for (i = 0; i < LT_SAVECOUNT; i++) {
502 struct latency_record *lr = &task->latency_record[i];
503 if (lr->backtrace[0]) {
504 int q;
505 seq_printf(m, "%i %li %li",
506 lr->count, lr->time, lr->max);
507 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
508 unsigned long bt = lr->backtrace[q];
509
510 if (!bt)
511 break;
512 seq_printf(m, " %ps", (void *)bt);
513 }
514 seq_putc(m, '\n');
515 }
516
517 }
518 put_task_struct(task);
519 return 0;
520 }
521
lstats_open(struct inode * inode,struct file * file)522 static int lstats_open(struct inode *inode, struct file *file)
523 {
524 return single_open(file, lstats_show_proc, inode);
525 }
526
lstats_write(struct file * file,const char __user * buf,size_t count,loff_t * offs)527 static ssize_t lstats_write(struct file *file, const char __user *buf,
528 size_t count, loff_t *offs)
529 {
530 struct task_struct *task = get_proc_task(file_inode(file));
531
532 if (!task)
533 return -ESRCH;
534 clear_tsk_latency_tracing(task);
535 put_task_struct(task);
536
537 return count;
538 }
539
540 static const struct file_operations proc_lstats_operations = {
541 .open = lstats_open,
542 .read = seq_read,
543 .write = lstats_write,
544 .llseek = seq_lseek,
545 .release = single_release,
546 };
547
548 #endif
549
proc_oom_score(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)550 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
551 struct pid *pid, struct task_struct *task)
552 {
553 unsigned long totalpages = totalram_pages() + total_swap_pages;
554 unsigned long points = 0;
555 long badness;
556
557 badness = oom_badness(task, totalpages);
558 /*
559 * Special case OOM_SCORE_ADJ_MIN for all others scale the
560 * badness value into [0, 2000] range which we have been
561 * exporting for a long time so userspace might depend on it.
562 */
563 if (badness != LONG_MIN)
564 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
565
566 seq_printf(m, "%lu\n", points);
567
568 return 0;
569 }
570
571 struct limit_names {
572 const char *name;
573 const char *unit;
574 };
575
576 static const struct limit_names lnames[RLIM_NLIMITS] = {
577 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
578 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
579 [RLIMIT_DATA] = {"Max data size", "bytes"},
580 [RLIMIT_STACK] = {"Max stack size", "bytes"},
581 [RLIMIT_CORE] = {"Max core file size", "bytes"},
582 [RLIMIT_RSS] = {"Max resident set", "bytes"},
583 [RLIMIT_NPROC] = {"Max processes", "processes"},
584 [RLIMIT_NOFILE] = {"Max open files", "files"},
585 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
586 [RLIMIT_AS] = {"Max address space", "bytes"},
587 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
588 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
589 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
590 [RLIMIT_NICE] = {"Max nice priority", NULL},
591 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
592 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
593 };
594
595 /* Display limits for a process */
proc_pid_limits(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)596 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
597 struct pid *pid, struct task_struct *task)
598 {
599 unsigned int i;
600 unsigned long flags;
601
602 struct rlimit rlim[RLIM_NLIMITS];
603
604 if (!lock_task_sighand(task, &flags))
605 return 0;
606 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
607 unlock_task_sighand(task, &flags);
608
609 /*
610 * print the file header
611 */
612 seq_puts(m, "Limit "
613 "Soft Limit "
614 "Hard Limit "
615 "Units \n");
616
617 for (i = 0; i < RLIM_NLIMITS; i++) {
618 if (rlim[i].rlim_cur == RLIM_INFINITY)
619 seq_printf(m, "%-25s %-20s ",
620 lnames[i].name, "unlimited");
621 else
622 seq_printf(m, "%-25s %-20lu ",
623 lnames[i].name, rlim[i].rlim_cur);
624
625 if (rlim[i].rlim_max == RLIM_INFINITY)
626 seq_printf(m, "%-20s ", "unlimited");
627 else
628 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
629
630 if (lnames[i].unit)
631 seq_printf(m, "%-10s\n", lnames[i].unit);
632 else
633 seq_putc(m, '\n');
634 }
635
636 return 0;
637 }
638
639 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
proc_pid_syscall(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)640 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
641 struct pid *pid, struct task_struct *task)
642 {
643 struct syscall_info info;
644 u64 *args = &info.data.args[0];
645 int res;
646
647 res = lock_trace(task);
648 if (res)
649 return res;
650
651 if (task_current_syscall(task, &info))
652 seq_puts(m, "running\n");
653 else if (info.data.nr < 0)
654 seq_printf(m, "%d 0x%llx 0x%llx\n",
655 info.data.nr, info.sp, info.data.instruction_pointer);
656 else
657 seq_printf(m,
658 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
659 info.data.nr,
660 args[0], args[1], args[2], args[3], args[4], args[5],
661 info.sp, info.data.instruction_pointer);
662 unlock_trace(task);
663
664 return 0;
665 }
666 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
667
668 /************************************************************************/
669 /* Here the fs part begins */
670 /************************************************************************/
671
672 /* permission checks */
proc_fd_access_allowed(struct inode * inode)673 static int proc_fd_access_allowed(struct inode *inode)
674 {
675 struct task_struct *task;
676 int allowed = 0;
677 /* Allow access to a task's file descriptors if it is us or we
678 * may use ptrace attach to the process and find out that
679 * information.
680 */
681 task = get_proc_task(inode);
682 if (task) {
683 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
684 put_task_struct(task);
685 }
686 return allowed;
687 }
688
proc_setattr(struct dentry * dentry,struct iattr * attr)689 int proc_setattr(struct dentry *dentry, struct iattr *attr)
690 {
691 int error;
692 struct inode *inode = d_inode(dentry);
693
694 if (attr->ia_valid & ATTR_MODE)
695 return -EPERM;
696
697 error = setattr_prepare(dentry, attr);
698 if (error)
699 return error;
700
701 setattr_copy(inode, attr);
702 mark_inode_dirty(inode);
703 return 0;
704 }
705
706 /*
707 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
708 * or euid/egid (for hide_pid_min=2)?
709 */
has_pid_permissions(struct proc_fs_info * fs_info,struct task_struct * task,enum proc_hidepid hide_pid_min)710 static bool has_pid_permissions(struct proc_fs_info *fs_info,
711 struct task_struct *task,
712 enum proc_hidepid hide_pid_min)
713 {
714 /*
715 * If 'hidpid' mount option is set force a ptrace check,
716 * we indicate that we are using a filesystem syscall
717 * by passing PTRACE_MODE_READ_FSCREDS
718 */
719 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
720 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
721
722 if (fs_info->hide_pid < hide_pid_min)
723 return true;
724 if (in_group_p(fs_info->pid_gid))
725 return true;
726 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
727 }
728
729
proc_pid_permission(struct inode * inode,int mask)730 static int proc_pid_permission(struct inode *inode, int mask)
731 {
732 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
733 struct task_struct *task;
734 bool has_perms;
735
736 task = get_proc_task(inode);
737 if (!task)
738 return -ESRCH;
739 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
740 put_task_struct(task);
741
742 if (!has_perms) {
743 if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
744 /*
745 * Let's make getdents(), stat(), and open()
746 * consistent with each other. If a process
747 * may not stat() a file, it shouldn't be seen
748 * in procfs at all.
749 */
750 return -ENOENT;
751 }
752
753 return -EPERM;
754 }
755 return generic_permission(inode, mask);
756 }
757
758
759
760 static const struct inode_operations proc_def_inode_operations = {
761 .setattr = proc_setattr,
762 };
763
proc_single_show(struct seq_file * m,void * v)764 static int proc_single_show(struct seq_file *m, void *v)
765 {
766 struct inode *inode = m->private;
767 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
768 struct pid *pid = proc_pid(inode);
769 struct task_struct *task;
770 int ret;
771
772 task = get_pid_task(pid, PIDTYPE_PID);
773 if (!task)
774 return -ESRCH;
775
776 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
777
778 put_task_struct(task);
779 return ret;
780 }
781
proc_single_open(struct inode * inode,struct file * filp)782 static int proc_single_open(struct inode *inode, struct file *filp)
783 {
784 return single_open(filp, proc_single_show, inode);
785 }
786
787 static const struct file_operations proc_single_file_operations = {
788 .open = proc_single_open,
789 .read = seq_read,
790 .llseek = seq_lseek,
791 .release = single_release,
792 };
793
794
proc_mem_open(struct inode * inode,unsigned int mode)795 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
796 {
797 struct task_struct *task = get_proc_task(inode);
798 struct mm_struct *mm = ERR_PTR(-ESRCH);
799
800 if (task) {
801 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
802 put_task_struct(task);
803
804 if (!IS_ERR_OR_NULL(mm)) {
805 /* ensure this mm_struct can't be freed */
806 mmgrab(mm);
807 /* but do not pin its memory */
808 mmput(mm);
809 }
810 }
811
812 return mm;
813 }
814
__mem_open(struct inode * inode,struct file * file,unsigned int mode)815 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
816 {
817 struct mm_struct *mm = proc_mem_open(inode, mode);
818
819 if (IS_ERR(mm))
820 return PTR_ERR(mm);
821
822 file->private_data = mm;
823 return 0;
824 }
825
mem_open(struct inode * inode,struct file * file)826 static int mem_open(struct inode *inode, struct file *file)
827 {
828 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
829
830 /* OK to pass negative loff_t, we can catch out-of-range */
831 file->f_mode |= FMODE_UNSIGNED_OFFSET;
832
833 return ret;
834 }
835
mem_rw(struct file * file,char __user * buf,size_t count,loff_t * ppos,int write)836 static ssize_t mem_rw(struct file *file, char __user *buf,
837 size_t count, loff_t *ppos, int write)
838 {
839 struct mm_struct *mm = file->private_data;
840 unsigned long addr = *ppos;
841 ssize_t copied;
842 char *page;
843 unsigned int flags;
844
845 if (!mm)
846 return 0;
847
848 page = (char *)__get_free_page(GFP_KERNEL);
849 if (!page)
850 return -ENOMEM;
851
852 copied = 0;
853 if (!mmget_not_zero(mm))
854 goto free;
855
856 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
857
858 while (count > 0) {
859 size_t this_len = min_t(size_t, count, PAGE_SIZE);
860
861 if (write && copy_from_user(page, buf, this_len)) {
862 copied = -EFAULT;
863 break;
864 }
865
866 this_len = access_remote_vm(mm, addr, page, this_len, flags);
867 if (!this_len) {
868 if (!copied)
869 copied = -EIO;
870 break;
871 }
872
873 if (!write && copy_to_user(buf, page, this_len)) {
874 copied = -EFAULT;
875 break;
876 }
877
878 buf += this_len;
879 addr += this_len;
880 copied += this_len;
881 count -= this_len;
882 }
883 *ppos = addr;
884
885 mmput(mm);
886 free:
887 free_page((unsigned long) page);
888 return copied;
889 }
890
mem_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)891 static ssize_t mem_read(struct file *file, char __user *buf,
892 size_t count, loff_t *ppos)
893 {
894 return mem_rw(file, buf, count, ppos, 0);
895 }
896
mem_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)897 static ssize_t mem_write(struct file *file, const char __user *buf,
898 size_t count, loff_t *ppos)
899 {
900 return mem_rw(file, (char __user*)buf, count, ppos, 1);
901 }
902
mem_lseek(struct file * file,loff_t offset,int orig)903 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
904 {
905 switch (orig) {
906 case 0:
907 file->f_pos = offset;
908 break;
909 case 1:
910 file->f_pos += offset;
911 break;
912 default:
913 return -EINVAL;
914 }
915 force_successful_syscall_return();
916 return file->f_pos;
917 }
918
mem_release(struct inode * inode,struct file * file)919 static int mem_release(struct inode *inode, struct file *file)
920 {
921 struct mm_struct *mm = file->private_data;
922 if (mm)
923 mmdrop(mm);
924 return 0;
925 }
926
927 static const struct file_operations proc_mem_operations = {
928 .llseek = mem_lseek,
929 .read = mem_read,
930 .write = mem_write,
931 .open = mem_open,
932 .release = mem_release,
933 };
934
environ_open(struct inode * inode,struct file * file)935 static int environ_open(struct inode *inode, struct file *file)
936 {
937 return __mem_open(inode, file, PTRACE_MODE_READ);
938 }
939
environ_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)940 static ssize_t environ_read(struct file *file, char __user *buf,
941 size_t count, loff_t *ppos)
942 {
943 char *page;
944 unsigned long src = *ppos;
945 int ret = 0;
946 struct mm_struct *mm = file->private_data;
947 unsigned long env_start, env_end;
948
949 /* Ensure the process spawned far enough to have an environment. */
950 if (!mm || !mm->env_end)
951 return 0;
952
953 page = (char *)__get_free_page(GFP_KERNEL);
954 if (!page)
955 return -ENOMEM;
956
957 ret = 0;
958 if (!mmget_not_zero(mm))
959 goto free;
960
961 spin_lock(&mm->arg_lock);
962 env_start = mm->env_start;
963 env_end = mm->env_end;
964 spin_unlock(&mm->arg_lock);
965
966 while (count > 0) {
967 size_t this_len, max_len;
968 int retval;
969
970 if (src >= (env_end - env_start))
971 break;
972
973 this_len = env_end - (env_start + src);
974
975 max_len = min_t(size_t, PAGE_SIZE, count);
976 this_len = min(max_len, this_len);
977
978 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
979
980 if (retval <= 0) {
981 ret = retval;
982 break;
983 }
984
985 if (copy_to_user(buf, page, retval)) {
986 ret = -EFAULT;
987 break;
988 }
989
990 ret += retval;
991 src += retval;
992 buf += retval;
993 count -= retval;
994 }
995 *ppos = src;
996 mmput(mm);
997
998 free:
999 free_page((unsigned long) page);
1000 return ret;
1001 }
1002
1003 static const struct file_operations proc_environ_operations = {
1004 .open = environ_open,
1005 .read = environ_read,
1006 .llseek = generic_file_llseek,
1007 .release = mem_release,
1008 };
1009
auxv_open(struct inode * inode,struct file * file)1010 static int auxv_open(struct inode *inode, struct file *file)
1011 {
1012 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1013 }
1014
auxv_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1015 static ssize_t auxv_read(struct file *file, char __user *buf,
1016 size_t count, loff_t *ppos)
1017 {
1018 struct mm_struct *mm = file->private_data;
1019 unsigned int nwords = 0;
1020
1021 if (!mm)
1022 return 0;
1023 do {
1024 nwords += 2;
1025 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1026 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1027 nwords * sizeof(mm->saved_auxv[0]));
1028 }
1029
1030 static const struct file_operations proc_auxv_operations = {
1031 .open = auxv_open,
1032 .read = auxv_read,
1033 .llseek = generic_file_llseek,
1034 .release = mem_release,
1035 };
1036
oom_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1037 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1038 loff_t *ppos)
1039 {
1040 struct task_struct *task = get_proc_task(file_inode(file));
1041 char buffer[PROC_NUMBUF];
1042 int oom_adj = OOM_ADJUST_MIN;
1043 size_t len;
1044
1045 if (!task)
1046 return -ESRCH;
1047 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1048 oom_adj = OOM_ADJUST_MAX;
1049 else
1050 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1051 OOM_SCORE_ADJ_MAX;
1052 put_task_struct(task);
1053 if (oom_adj > OOM_ADJUST_MAX)
1054 oom_adj = OOM_ADJUST_MAX;
1055 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1056 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1057 }
1058
__set_oom_adj(struct file * file,int oom_adj,bool legacy)1059 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1060 {
1061 struct mm_struct *mm = NULL;
1062 struct task_struct *task;
1063 int err = 0;
1064
1065 task = get_proc_task(file_inode(file));
1066 if (!task)
1067 return -ESRCH;
1068
1069 mutex_lock(&oom_adj_mutex);
1070 if (legacy) {
1071 if (oom_adj < task->signal->oom_score_adj &&
1072 !capable(CAP_SYS_RESOURCE)) {
1073 err = -EACCES;
1074 goto err_unlock;
1075 }
1076 /*
1077 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1078 * /proc/pid/oom_score_adj instead.
1079 */
1080 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1081 current->comm, task_pid_nr(current), task_pid_nr(task),
1082 task_pid_nr(task));
1083 } else {
1084 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1085 !capable(CAP_SYS_RESOURCE)) {
1086 err = -EACCES;
1087 goto err_unlock;
1088 }
1089 }
1090
1091 /*
1092 * Make sure we will check other processes sharing the mm if this is
1093 * not vfrok which wants its own oom_score_adj.
1094 * pin the mm so it doesn't go away and get reused after task_unlock
1095 */
1096 if (!task->vfork_done) {
1097 struct task_struct *p = find_lock_task_mm(task);
1098
1099 if (p) {
1100 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1101 mm = p->mm;
1102 mmgrab(mm);
1103 }
1104 task_unlock(p);
1105 }
1106 }
1107
1108 task->signal->oom_score_adj = oom_adj;
1109 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1110 task->signal->oom_score_adj_min = (short)oom_adj;
1111 trace_oom_score_adj_update(task);
1112
1113 if (mm) {
1114 struct task_struct *p;
1115
1116 rcu_read_lock();
1117 for_each_process(p) {
1118 if (same_thread_group(task, p))
1119 continue;
1120
1121 /* do not touch kernel threads or the global init */
1122 if (p->flags & PF_KTHREAD || is_global_init(p))
1123 continue;
1124
1125 task_lock(p);
1126 if (!p->vfork_done && process_shares_mm(p, mm)) {
1127 p->signal->oom_score_adj = oom_adj;
1128 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1129 p->signal->oom_score_adj_min = (short)oom_adj;
1130 }
1131 task_unlock(p);
1132 }
1133 rcu_read_unlock();
1134 mmdrop(mm);
1135 }
1136 err_unlock:
1137 mutex_unlock(&oom_adj_mutex);
1138 put_task_struct(task);
1139 return err;
1140 }
1141
1142 /*
1143 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1144 * kernels. The effective policy is defined by oom_score_adj, which has a
1145 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1146 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1147 * Processes that become oom disabled via oom_adj will still be oom disabled
1148 * with this implementation.
1149 *
1150 * oom_adj cannot be removed since existing userspace binaries use it.
1151 */
oom_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1152 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1153 size_t count, loff_t *ppos)
1154 {
1155 char buffer[PROC_NUMBUF];
1156 int oom_adj;
1157 int err;
1158
1159 memset(buffer, 0, sizeof(buffer));
1160 if (count > sizeof(buffer) - 1)
1161 count = sizeof(buffer) - 1;
1162 if (copy_from_user(buffer, buf, count)) {
1163 err = -EFAULT;
1164 goto out;
1165 }
1166
1167 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1168 if (err)
1169 goto out;
1170 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1171 oom_adj != OOM_DISABLE) {
1172 err = -EINVAL;
1173 goto out;
1174 }
1175
1176 /*
1177 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1178 * value is always attainable.
1179 */
1180 if (oom_adj == OOM_ADJUST_MAX)
1181 oom_adj = OOM_SCORE_ADJ_MAX;
1182 else
1183 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1184
1185 err = __set_oom_adj(file, oom_adj, true);
1186 out:
1187 return err < 0 ? err : count;
1188 }
1189
1190 static const struct file_operations proc_oom_adj_operations = {
1191 .read = oom_adj_read,
1192 .write = oom_adj_write,
1193 .llseek = generic_file_llseek,
1194 };
1195
oom_score_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1196 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1197 size_t count, loff_t *ppos)
1198 {
1199 struct task_struct *task = get_proc_task(file_inode(file));
1200 char buffer[PROC_NUMBUF];
1201 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1202 size_t len;
1203
1204 if (!task)
1205 return -ESRCH;
1206 oom_score_adj = task->signal->oom_score_adj;
1207 put_task_struct(task);
1208 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1209 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1210 }
1211
oom_score_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1212 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1213 size_t count, loff_t *ppos)
1214 {
1215 char buffer[PROC_NUMBUF];
1216 int oom_score_adj;
1217 int err;
1218
1219 memset(buffer, 0, sizeof(buffer));
1220 if (count > sizeof(buffer) - 1)
1221 count = sizeof(buffer) - 1;
1222 if (copy_from_user(buffer, buf, count)) {
1223 err = -EFAULT;
1224 goto out;
1225 }
1226
1227 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1228 if (err)
1229 goto out;
1230 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1231 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1232 err = -EINVAL;
1233 goto out;
1234 }
1235
1236 err = __set_oom_adj(file, oom_score_adj, false);
1237 out:
1238 return err < 0 ? err : count;
1239 }
1240
1241 static const struct file_operations proc_oom_score_adj_operations = {
1242 .read = oom_score_adj_read,
1243 .write = oom_score_adj_write,
1244 .llseek = default_llseek,
1245 };
1246
1247 #ifdef CONFIG_AUDIT
1248 #define TMPBUFLEN 11
proc_loginuid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1249 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1250 size_t count, loff_t *ppos)
1251 {
1252 struct inode * inode = file_inode(file);
1253 struct task_struct *task = get_proc_task(inode);
1254 ssize_t length;
1255 char tmpbuf[TMPBUFLEN];
1256
1257 if (!task)
1258 return -ESRCH;
1259 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1260 from_kuid(file->f_cred->user_ns,
1261 audit_get_loginuid(task)));
1262 put_task_struct(task);
1263 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1264 }
1265
proc_loginuid_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1266 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1267 size_t count, loff_t *ppos)
1268 {
1269 struct inode * inode = file_inode(file);
1270 uid_t loginuid;
1271 kuid_t kloginuid;
1272 int rv;
1273
1274 /* Don't let kthreads write their own loginuid */
1275 if (current->flags & PF_KTHREAD)
1276 return -EPERM;
1277
1278 rcu_read_lock();
1279 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1280 rcu_read_unlock();
1281 return -EPERM;
1282 }
1283 rcu_read_unlock();
1284
1285 if (*ppos != 0) {
1286 /* No partial writes. */
1287 return -EINVAL;
1288 }
1289
1290 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1291 if (rv < 0)
1292 return rv;
1293
1294 /* is userspace tring to explicitly UNSET the loginuid? */
1295 if (loginuid == AUDIT_UID_UNSET) {
1296 kloginuid = INVALID_UID;
1297 } else {
1298 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1299 if (!uid_valid(kloginuid))
1300 return -EINVAL;
1301 }
1302
1303 rv = audit_set_loginuid(kloginuid);
1304 if (rv < 0)
1305 return rv;
1306 return count;
1307 }
1308
1309 static const struct file_operations proc_loginuid_operations = {
1310 .read = proc_loginuid_read,
1311 .write = proc_loginuid_write,
1312 .llseek = generic_file_llseek,
1313 };
1314
proc_sessionid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1315 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1316 size_t count, loff_t *ppos)
1317 {
1318 struct inode * inode = file_inode(file);
1319 struct task_struct *task = get_proc_task(inode);
1320 ssize_t length;
1321 char tmpbuf[TMPBUFLEN];
1322
1323 if (!task)
1324 return -ESRCH;
1325 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1326 audit_get_sessionid(task));
1327 put_task_struct(task);
1328 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1329 }
1330
1331 static const struct file_operations proc_sessionid_operations = {
1332 .read = proc_sessionid_read,
1333 .llseek = generic_file_llseek,
1334 };
1335 #endif
1336
1337 #ifdef CONFIG_FAULT_INJECTION
proc_fault_inject_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1338 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1339 size_t count, loff_t *ppos)
1340 {
1341 struct task_struct *task = get_proc_task(file_inode(file));
1342 char buffer[PROC_NUMBUF];
1343 size_t len;
1344 int make_it_fail;
1345
1346 if (!task)
1347 return -ESRCH;
1348 make_it_fail = task->make_it_fail;
1349 put_task_struct(task);
1350
1351 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1352
1353 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1354 }
1355
proc_fault_inject_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1356 static ssize_t proc_fault_inject_write(struct file * file,
1357 const char __user * buf, size_t count, loff_t *ppos)
1358 {
1359 struct task_struct *task;
1360 char buffer[PROC_NUMBUF];
1361 int make_it_fail;
1362 int rv;
1363
1364 if (!capable(CAP_SYS_RESOURCE))
1365 return -EPERM;
1366 memset(buffer, 0, sizeof(buffer));
1367 if (count > sizeof(buffer) - 1)
1368 count = sizeof(buffer) - 1;
1369 if (copy_from_user(buffer, buf, count))
1370 return -EFAULT;
1371 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1372 if (rv < 0)
1373 return rv;
1374 if (make_it_fail < 0 || make_it_fail > 1)
1375 return -EINVAL;
1376
1377 task = get_proc_task(file_inode(file));
1378 if (!task)
1379 return -ESRCH;
1380 task->make_it_fail = make_it_fail;
1381 put_task_struct(task);
1382
1383 return count;
1384 }
1385
1386 static const struct file_operations proc_fault_inject_operations = {
1387 .read = proc_fault_inject_read,
1388 .write = proc_fault_inject_write,
1389 .llseek = generic_file_llseek,
1390 };
1391
proc_fail_nth_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1392 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1393 size_t count, loff_t *ppos)
1394 {
1395 struct task_struct *task;
1396 int err;
1397 unsigned int n;
1398
1399 err = kstrtouint_from_user(buf, count, 0, &n);
1400 if (err)
1401 return err;
1402
1403 task = get_proc_task(file_inode(file));
1404 if (!task)
1405 return -ESRCH;
1406 task->fail_nth = n;
1407 put_task_struct(task);
1408
1409 return count;
1410 }
1411
proc_fail_nth_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1412 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1413 size_t count, loff_t *ppos)
1414 {
1415 struct task_struct *task;
1416 char numbuf[PROC_NUMBUF];
1417 ssize_t len;
1418
1419 task = get_proc_task(file_inode(file));
1420 if (!task)
1421 return -ESRCH;
1422 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1423 put_task_struct(task);
1424 return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1425 }
1426
1427 static const struct file_operations proc_fail_nth_operations = {
1428 .read = proc_fail_nth_read,
1429 .write = proc_fail_nth_write,
1430 };
1431 #endif
1432
1433
1434 #ifdef CONFIG_SCHED_DEBUG
1435 /*
1436 * Print out various scheduling related per-task fields:
1437 */
sched_show(struct seq_file * m,void * v)1438 static int sched_show(struct seq_file *m, void *v)
1439 {
1440 struct inode *inode = m->private;
1441 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1442 struct task_struct *p;
1443
1444 p = get_proc_task(inode);
1445 if (!p)
1446 return -ESRCH;
1447 proc_sched_show_task(p, ns, m);
1448
1449 put_task_struct(p);
1450
1451 return 0;
1452 }
1453
1454 static ssize_t
sched_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1455 sched_write(struct file *file, const char __user *buf,
1456 size_t count, loff_t *offset)
1457 {
1458 struct inode *inode = file_inode(file);
1459 struct task_struct *p;
1460
1461 p = get_proc_task(inode);
1462 if (!p)
1463 return -ESRCH;
1464 proc_sched_set_task(p);
1465
1466 put_task_struct(p);
1467
1468 return count;
1469 }
1470
sched_open(struct inode * inode,struct file * filp)1471 static int sched_open(struct inode *inode, struct file *filp)
1472 {
1473 return single_open(filp, sched_show, inode);
1474 }
1475
1476 static const struct file_operations proc_pid_sched_operations = {
1477 .open = sched_open,
1478 .read = seq_read,
1479 .write = sched_write,
1480 .llseek = seq_lseek,
1481 .release = single_release,
1482 };
1483
1484 #endif
1485
1486 #ifdef CONFIG_SCHED_AUTOGROUP
1487 /*
1488 * Print out autogroup related information:
1489 */
sched_autogroup_show(struct seq_file * m,void * v)1490 static int sched_autogroup_show(struct seq_file *m, void *v)
1491 {
1492 struct inode *inode = m->private;
1493 struct task_struct *p;
1494
1495 p = get_proc_task(inode);
1496 if (!p)
1497 return -ESRCH;
1498 proc_sched_autogroup_show_task(p, m);
1499
1500 put_task_struct(p);
1501
1502 return 0;
1503 }
1504
1505 static ssize_t
sched_autogroup_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1506 sched_autogroup_write(struct file *file, const char __user *buf,
1507 size_t count, loff_t *offset)
1508 {
1509 struct inode *inode = file_inode(file);
1510 struct task_struct *p;
1511 char buffer[PROC_NUMBUF];
1512 int nice;
1513 int err;
1514
1515 memset(buffer, 0, sizeof(buffer));
1516 if (count > sizeof(buffer) - 1)
1517 count = sizeof(buffer) - 1;
1518 if (copy_from_user(buffer, buf, count))
1519 return -EFAULT;
1520
1521 err = kstrtoint(strstrip(buffer), 0, &nice);
1522 if (err < 0)
1523 return err;
1524
1525 p = get_proc_task(inode);
1526 if (!p)
1527 return -ESRCH;
1528
1529 err = proc_sched_autogroup_set_nice(p, nice);
1530 if (err)
1531 count = err;
1532
1533 put_task_struct(p);
1534
1535 return count;
1536 }
1537
sched_autogroup_open(struct inode * inode,struct file * filp)1538 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1539 {
1540 int ret;
1541
1542 ret = single_open(filp, sched_autogroup_show, NULL);
1543 if (!ret) {
1544 struct seq_file *m = filp->private_data;
1545
1546 m->private = inode;
1547 }
1548 return ret;
1549 }
1550
1551 static const struct file_operations proc_pid_sched_autogroup_operations = {
1552 .open = sched_autogroup_open,
1553 .read = seq_read,
1554 .write = sched_autogroup_write,
1555 .llseek = seq_lseek,
1556 .release = single_release,
1557 };
1558
1559 #endif /* CONFIG_SCHED_AUTOGROUP */
1560
1561 #ifdef CONFIG_TIME_NS
timens_offsets_show(struct seq_file * m,void * v)1562 static int timens_offsets_show(struct seq_file *m, void *v)
1563 {
1564 struct task_struct *p;
1565
1566 p = get_proc_task(file_inode(m->file));
1567 if (!p)
1568 return -ESRCH;
1569 proc_timens_show_offsets(p, m);
1570
1571 put_task_struct(p);
1572
1573 return 0;
1574 }
1575
timens_offsets_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1576 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1577 size_t count, loff_t *ppos)
1578 {
1579 struct inode *inode = file_inode(file);
1580 struct proc_timens_offset offsets[2];
1581 char *kbuf = NULL, *pos, *next_line;
1582 struct task_struct *p;
1583 int ret, noffsets;
1584
1585 /* Only allow < page size writes at the beginning of the file */
1586 if ((*ppos != 0) || (count >= PAGE_SIZE))
1587 return -EINVAL;
1588
1589 /* Slurp in the user data */
1590 kbuf = memdup_user_nul(buf, count);
1591 if (IS_ERR(kbuf))
1592 return PTR_ERR(kbuf);
1593
1594 /* Parse the user data */
1595 ret = -EINVAL;
1596 noffsets = 0;
1597 for (pos = kbuf; pos; pos = next_line) {
1598 struct proc_timens_offset *off = &offsets[noffsets];
1599 char clock[10];
1600 int err;
1601
1602 /* Find the end of line and ensure we don't look past it */
1603 next_line = strchr(pos, '\n');
1604 if (next_line) {
1605 *next_line = '\0';
1606 next_line++;
1607 if (*next_line == '\0')
1608 next_line = NULL;
1609 }
1610
1611 err = sscanf(pos, "%9s %lld %lu", clock,
1612 &off->val.tv_sec, &off->val.tv_nsec);
1613 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1614 goto out;
1615
1616 clock[sizeof(clock) - 1] = 0;
1617 if (strcmp(clock, "monotonic") == 0 ||
1618 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1619 off->clockid = CLOCK_MONOTONIC;
1620 else if (strcmp(clock, "boottime") == 0 ||
1621 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1622 off->clockid = CLOCK_BOOTTIME;
1623 else
1624 goto out;
1625
1626 noffsets++;
1627 if (noffsets == ARRAY_SIZE(offsets)) {
1628 if (next_line)
1629 count = next_line - kbuf;
1630 break;
1631 }
1632 }
1633
1634 ret = -ESRCH;
1635 p = get_proc_task(inode);
1636 if (!p)
1637 goto out;
1638 ret = proc_timens_set_offset(file, p, offsets, noffsets);
1639 put_task_struct(p);
1640 if (ret)
1641 goto out;
1642
1643 ret = count;
1644 out:
1645 kfree(kbuf);
1646 return ret;
1647 }
1648
timens_offsets_open(struct inode * inode,struct file * filp)1649 static int timens_offsets_open(struct inode *inode, struct file *filp)
1650 {
1651 return single_open(filp, timens_offsets_show, inode);
1652 }
1653
1654 static const struct file_operations proc_timens_offsets_operations = {
1655 .open = timens_offsets_open,
1656 .read = seq_read,
1657 .write = timens_offsets_write,
1658 .llseek = seq_lseek,
1659 .release = single_release,
1660 };
1661 #endif /* CONFIG_TIME_NS */
1662
comm_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1663 static ssize_t comm_write(struct file *file, const char __user *buf,
1664 size_t count, loff_t *offset)
1665 {
1666 struct inode *inode = file_inode(file);
1667 struct task_struct *p;
1668 char buffer[TASK_COMM_LEN];
1669 const size_t maxlen = sizeof(buffer) - 1;
1670
1671 memset(buffer, 0, sizeof(buffer));
1672 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1673 return -EFAULT;
1674
1675 p = get_proc_task(inode);
1676 if (!p)
1677 return -ESRCH;
1678
1679 if (same_thread_group(current, p))
1680 set_task_comm(p, buffer);
1681 else
1682 count = -EINVAL;
1683
1684 put_task_struct(p);
1685
1686 return count;
1687 }
1688
comm_show(struct seq_file * m,void * v)1689 static int comm_show(struct seq_file *m, void *v)
1690 {
1691 struct inode *inode = m->private;
1692 struct task_struct *p;
1693
1694 p = get_proc_task(inode);
1695 if (!p)
1696 return -ESRCH;
1697
1698 proc_task_name(m, p, false);
1699 seq_putc(m, '\n');
1700
1701 put_task_struct(p);
1702
1703 return 0;
1704 }
1705
comm_open(struct inode * inode,struct file * filp)1706 static int comm_open(struct inode *inode, struct file *filp)
1707 {
1708 return single_open(filp, comm_show, inode);
1709 }
1710
1711 static const struct file_operations proc_pid_set_comm_operations = {
1712 .open = comm_open,
1713 .read = seq_read,
1714 .write = comm_write,
1715 .llseek = seq_lseek,
1716 .release = single_release,
1717 };
1718
proc_exe_link(struct dentry * dentry,struct path * exe_path)1719 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1720 {
1721 struct task_struct *task;
1722 struct file *exe_file;
1723
1724 task = get_proc_task(d_inode(dentry));
1725 if (!task)
1726 return -ENOENT;
1727 exe_file = get_task_exe_file(task);
1728 put_task_struct(task);
1729 if (exe_file) {
1730 *exe_path = exe_file->f_path;
1731 path_get(&exe_file->f_path);
1732 fput(exe_file);
1733 return 0;
1734 } else
1735 return -ENOENT;
1736 }
1737
proc_pid_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1738 static const char *proc_pid_get_link(struct dentry *dentry,
1739 struct inode *inode,
1740 struct delayed_call *done)
1741 {
1742 struct path path;
1743 int error = -EACCES;
1744
1745 if (!dentry)
1746 return ERR_PTR(-ECHILD);
1747
1748 /* Are we allowed to snoop on the tasks file descriptors? */
1749 if (!proc_fd_access_allowed(inode))
1750 goto out;
1751
1752 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1753 if (error)
1754 goto out;
1755
1756 error = nd_jump_link(&path);
1757 out:
1758 return ERR_PTR(error);
1759 }
1760
do_proc_readlink(struct path * path,char __user * buffer,int buflen)1761 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1762 {
1763 char *tmp = (char *)__get_free_page(GFP_KERNEL);
1764 char *pathname;
1765 int len;
1766
1767 if (!tmp)
1768 return -ENOMEM;
1769
1770 pathname = d_path(path, tmp, PAGE_SIZE);
1771 len = PTR_ERR(pathname);
1772 if (IS_ERR(pathname))
1773 goto out;
1774 len = tmp + PAGE_SIZE - 1 - pathname;
1775
1776 if (len > buflen)
1777 len = buflen;
1778 if (copy_to_user(buffer, pathname, len))
1779 len = -EFAULT;
1780 out:
1781 free_page((unsigned long)tmp);
1782 return len;
1783 }
1784
proc_pid_readlink(struct dentry * dentry,char __user * buffer,int buflen)1785 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1786 {
1787 int error = -EACCES;
1788 struct inode *inode = d_inode(dentry);
1789 struct path path;
1790
1791 /* Are we allowed to snoop on the tasks file descriptors? */
1792 if (!proc_fd_access_allowed(inode))
1793 goto out;
1794
1795 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1796 if (error)
1797 goto out;
1798
1799 error = do_proc_readlink(&path, buffer, buflen);
1800 path_put(&path);
1801 out:
1802 return error;
1803 }
1804
1805 const struct inode_operations proc_pid_link_inode_operations = {
1806 .readlink = proc_pid_readlink,
1807 .get_link = proc_pid_get_link,
1808 .setattr = proc_setattr,
1809 };
1810
1811
1812 /* building an inode */
1813
task_dump_owner(struct task_struct * task,umode_t mode,kuid_t * ruid,kgid_t * rgid)1814 void task_dump_owner(struct task_struct *task, umode_t mode,
1815 kuid_t *ruid, kgid_t *rgid)
1816 {
1817 /* Depending on the state of dumpable compute who should own a
1818 * proc file for a task.
1819 */
1820 const struct cred *cred;
1821 kuid_t uid;
1822 kgid_t gid;
1823
1824 if (unlikely(task->flags & PF_KTHREAD)) {
1825 *ruid = GLOBAL_ROOT_UID;
1826 *rgid = GLOBAL_ROOT_GID;
1827 return;
1828 }
1829
1830 /* Default to the tasks effective ownership */
1831 rcu_read_lock();
1832 cred = __task_cred(task);
1833 uid = cred->euid;
1834 gid = cred->egid;
1835 rcu_read_unlock();
1836
1837 /*
1838 * Before the /proc/pid/status file was created the only way to read
1839 * the effective uid of a /process was to stat /proc/pid. Reading
1840 * /proc/pid/status is slow enough that procps and other packages
1841 * kept stating /proc/pid. To keep the rules in /proc simple I have
1842 * made this apply to all per process world readable and executable
1843 * directories.
1844 */
1845 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1846 struct mm_struct *mm;
1847 task_lock(task);
1848 mm = task->mm;
1849 /* Make non-dumpable tasks owned by some root */
1850 if (mm) {
1851 if (get_dumpable(mm) != SUID_DUMP_USER) {
1852 struct user_namespace *user_ns = mm->user_ns;
1853
1854 uid = make_kuid(user_ns, 0);
1855 if (!uid_valid(uid))
1856 uid = GLOBAL_ROOT_UID;
1857
1858 gid = make_kgid(user_ns, 0);
1859 if (!gid_valid(gid))
1860 gid = GLOBAL_ROOT_GID;
1861 }
1862 } else {
1863 uid = GLOBAL_ROOT_UID;
1864 gid = GLOBAL_ROOT_GID;
1865 }
1866 task_unlock(task);
1867 }
1868 *ruid = uid;
1869 *rgid = gid;
1870 }
1871
proc_pid_evict_inode(struct proc_inode * ei)1872 void proc_pid_evict_inode(struct proc_inode *ei)
1873 {
1874 struct pid *pid = ei->pid;
1875
1876 if (S_ISDIR(ei->vfs_inode.i_mode)) {
1877 spin_lock(&pid->lock);
1878 hlist_del_init_rcu(&ei->sibling_inodes);
1879 spin_unlock(&pid->lock);
1880 }
1881
1882 put_pid(pid);
1883 }
1884
proc_pid_make_inode(struct super_block * sb,struct task_struct * task,umode_t mode)1885 struct inode *proc_pid_make_inode(struct super_block * sb,
1886 struct task_struct *task, umode_t mode)
1887 {
1888 struct inode * inode;
1889 struct proc_inode *ei;
1890 struct pid *pid;
1891
1892 /* We need a new inode */
1893
1894 inode = new_inode(sb);
1895 if (!inode)
1896 goto out;
1897
1898 /* Common stuff */
1899 ei = PROC_I(inode);
1900 inode->i_mode = mode;
1901 inode->i_ino = get_next_ino();
1902 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1903 inode->i_op = &proc_def_inode_operations;
1904
1905 /*
1906 * grab the reference to task.
1907 */
1908 pid = get_task_pid(task, PIDTYPE_PID);
1909 if (!pid)
1910 goto out_unlock;
1911
1912 /* Let the pid remember us for quick removal */
1913 ei->pid = pid;
1914 if (S_ISDIR(mode)) {
1915 spin_lock(&pid->lock);
1916 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1917 spin_unlock(&pid->lock);
1918 }
1919
1920 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1921 security_task_to_inode(task, inode);
1922
1923 out:
1924 return inode;
1925
1926 out_unlock:
1927 iput(inode);
1928 return NULL;
1929 }
1930
pid_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1931 int pid_getattr(const struct path *path, struct kstat *stat,
1932 u32 request_mask, unsigned int query_flags)
1933 {
1934 struct inode *inode = d_inode(path->dentry);
1935 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1936 struct task_struct *task;
1937
1938 generic_fillattr(inode, stat);
1939
1940 stat->uid = GLOBAL_ROOT_UID;
1941 stat->gid = GLOBAL_ROOT_GID;
1942 rcu_read_lock();
1943 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1944 if (task) {
1945 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1946 rcu_read_unlock();
1947 /*
1948 * This doesn't prevent learning whether PID exists,
1949 * it only makes getattr() consistent with readdir().
1950 */
1951 return -ENOENT;
1952 }
1953 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1954 }
1955 rcu_read_unlock();
1956 return 0;
1957 }
1958
1959 /* dentry stuff */
1960
1961 /*
1962 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1963 */
pid_update_inode(struct task_struct * task,struct inode * inode)1964 void pid_update_inode(struct task_struct *task, struct inode *inode)
1965 {
1966 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1967
1968 inode->i_mode &= ~(S_ISUID | S_ISGID);
1969 security_task_to_inode(task, inode);
1970 }
1971
1972 /*
1973 * Rewrite the inode's ownerships here because the owning task may have
1974 * performed a setuid(), etc.
1975 *
1976 */
pid_revalidate(struct dentry * dentry,unsigned int flags)1977 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1978 {
1979 struct inode *inode;
1980 struct task_struct *task;
1981
1982 if (flags & LOOKUP_RCU)
1983 return -ECHILD;
1984
1985 inode = d_inode(dentry);
1986 task = get_proc_task(inode);
1987
1988 if (task) {
1989 pid_update_inode(task, inode);
1990 put_task_struct(task);
1991 return 1;
1992 }
1993 return 0;
1994 }
1995
proc_inode_is_dead(struct inode * inode)1996 static inline bool proc_inode_is_dead(struct inode *inode)
1997 {
1998 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1999 }
2000
pid_delete_dentry(const struct dentry * dentry)2001 int pid_delete_dentry(const struct dentry *dentry)
2002 {
2003 /* Is the task we represent dead?
2004 * If so, then don't put the dentry on the lru list,
2005 * kill it immediately.
2006 */
2007 return proc_inode_is_dead(d_inode(dentry));
2008 }
2009
2010 const struct dentry_operations pid_dentry_operations =
2011 {
2012 .d_revalidate = pid_revalidate,
2013 .d_delete = pid_delete_dentry,
2014 };
2015
2016 /* Lookups */
2017
2018 /*
2019 * Fill a directory entry.
2020 *
2021 * If possible create the dcache entry and derive our inode number and
2022 * file type from dcache entry.
2023 *
2024 * Since all of the proc inode numbers are dynamically generated, the inode
2025 * numbers do not exist until the inode is cache. This means creating the
2026 * the dcache entry in readdir is necessary to keep the inode numbers
2027 * reported by readdir in sync with the inode numbers reported
2028 * by stat.
2029 */
proc_fill_cache(struct file * file,struct dir_context * ctx,const char * name,unsigned int len,instantiate_t instantiate,struct task_struct * task,const void * ptr)2030 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2031 const char *name, unsigned int len,
2032 instantiate_t instantiate, struct task_struct *task, const void *ptr)
2033 {
2034 struct dentry *child, *dir = file->f_path.dentry;
2035 struct qstr qname = QSTR_INIT(name, len);
2036 struct inode *inode;
2037 unsigned type = DT_UNKNOWN;
2038 ino_t ino = 1;
2039
2040 child = d_hash_and_lookup(dir, &qname);
2041 if (!child) {
2042 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2043 child = d_alloc_parallel(dir, &qname, &wq);
2044 if (IS_ERR(child))
2045 goto end_instantiate;
2046 if (d_in_lookup(child)) {
2047 struct dentry *res;
2048 res = instantiate(child, task, ptr);
2049 d_lookup_done(child);
2050 if (unlikely(res)) {
2051 dput(child);
2052 child = res;
2053 if (IS_ERR(child))
2054 goto end_instantiate;
2055 }
2056 }
2057 }
2058 inode = d_inode(child);
2059 ino = inode->i_ino;
2060 type = inode->i_mode >> 12;
2061 dput(child);
2062 end_instantiate:
2063 return dir_emit(ctx, name, len, ino, type);
2064 }
2065
2066 /*
2067 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2068 * which represent vma start and end addresses.
2069 */
dname_to_vma_addr(struct dentry * dentry,unsigned long * start,unsigned long * end)2070 static int dname_to_vma_addr(struct dentry *dentry,
2071 unsigned long *start, unsigned long *end)
2072 {
2073 const char *str = dentry->d_name.name;
2074 unsigned long long sval, eval;
2075 unsigned int len;
2076
2077 if (str[0] == '0' && str[1] != '-')
2078 return -EINVAL;
2079 len = _parse_integer(str, 16, &sval);
2080 if (len & KSTRTOX_OVERFLOW)
2081 return -EINVAL;
2082 if (sval != (unsigned long)sval)
2083 return -EINVAL;
2084 str += len;
2085
2086 if (*str != '-')
2087 return -EINVAL;
2088 str++;
2089
2090 if (str[0] == '0' && str[1])
2091 return -EINVAL;
2092 len = _parse_integer(str, 16, &eval);
2093 if (len & KSTRTOX_OVERFLOW)
2094 return -EINVAL;
2095 if (eval != (unsigned long)eval)
2096 return -EINVAL;
2097 str += len;
2098
2099 if (*str != '\0')
2100 return -EINVAL;
2101
2102 *start = sval;
2103 *end = eval;
2104
2105 return 0;
2106 }
2107
map_files_d_revalidate(struct dentry * dentry,unsigned int flags)2108 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2109 {
2110 unsigned long vm_start, vm_end;
2111 bool exact_vma_exists = false;
2112 struct mm_struct *mm = NULL;
2113 struct task_struct *task;
2114 struct inode *inode;
2115 int status = 0;
2116
2117 if (flags & LOOKUP_RCU)
2118 return -ECHILD;
2119
2120 inode = d_inode(dentry);
2121 task = get_proc_task(inode);
2122 if (!task)
2123 goto out_notask;
2124
2125 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2126 if (IS_ERR_OR_NULL(mm))
2127 goto out;
2128
2129 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2130 status = mmap_read_lock_killable(mm);
2131 if (!status) {
2132 exact_vma_exists = !!find_exact_vma(mm, vm_start,
2133 vm_end);
2134 mmap_read_unlock(mm);
2135 }
2136 }
2137
2138 mmput(mm);
2139
2140 if (exact_vma_exists) {
2141 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2142
2143 security_task_to_inode(task, inode);
2144 status = 1;
2145 }
2146
2147 out:
2148 put_task_struct(task);
2149
2150 out_notask:
2151 return status;
2152 }
2153
2154 static const struct dentry_operations tid_map_files_dentry_operations = {
2155 .d_revalidate = map_files_d_revalidate,
2156 .d_delete = pid_delete_dentry,
2157 };
2158
map_files_get_link(struct dentry * dentry,struct path * path)2159 static int map_files_get_link(struct dentry *dentry, struct path *path)
2160 {
2161 unsigned long vm_start, vm_end;
2162 struct vm_area_struct *vma;
2163 struct task_struct *task;
2164 struct mm_struct *mm;
2165 int rc;
2166
2167 rc = -ENOENT;
2168 task = get_proc_task(d_inode(dentry));
2169 if (!task)
2170 goto out;
2171
2172 mm = get_task_mm(task);
2173 put_task_struct(task);
2174 if (!mm)
2175 goto out;
2176
2177 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2178 if (rc)
2179 goto out_mmput;
2180
2181 rc = mmap_read_lock_killable(mm);
2182 if (rc)
2183 goto out_mmput;
2184
2185 rc = -ENOENT;
2186 vma = find_exact_vma(mm, vm_start, vm_end);
2187 if (vma && vma->vm_file) {
2188 *path = vma->vm_file->f_path;
2189 path_get(path);
2190 rc = 0;
2191 }
2192 mmap_read_unlock(mm);
2193
2194 out_mmput:
2195 mmput(mm);
2196 out:
2197 return rc;
2198 }
2199
2200 struct map_files_info {
2201 unsigned long start;
2202 unsigned long end;
2203 fmode_t mode;
2204 };
2205
2206 /*
2207 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2208 * to concerns about how the symlinks may be used to bypass permissions on
2209 * ancestor directories in the path to the file in question.
2210 */
2211 static const char *
proc_map_files_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)2212 proc_map_files_get_link(struct dentry *dentry,
2213 struct inode *inode,
2214 struct delayed_call *done)
2215 {
2216 if (!checkpoint_restore_ns_capable(&init_user_ns))
2217 return ERR_PTR(-EPERM);
2218
2219 return proc_pid_get_link(dentry, inode, done);
2220 }
2221
2222 /*
2223 * Identical to proc_pid_link_inode_operations except for get_link()
2224 */
2225 static const struct inode_operations proc_map_files_link_inode_operations = {
2226 .readlink = proc_pid_readlink,
2227 .get_link = proc_map_files_get_link,
2228 .setattr = proc_setattr,
2229 };
2230
2231 static struct dentry *
proc_map_files_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2232 proc_map_files_instantiate(struct dentry *dentry,
2233 struct task_struct *task, const void *ptr)
2234 {
2235 fmode_t mode = (fmode_t)(unsigned long)ptr;
2236 struct proc_inode *ei;
2237 struct inode *inode;
2238
2239 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2240 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2241 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2242 if (!inode)
2243 return ERR_PTR(-ENOENT);
2244
2245 ei = PROC_I(inode);
2246 ei->op.proc_get_link = map_files_get_link;
2247
2248 inode->i_op = &proc_map_files_link_inode_operations;
2249 inode->i_size = 64;
2250
2251 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2252 return d_splice_alias(inode, dentry);
2253 }
2254
proc_map_files_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2255 static struct dentry *proc_map_files_lookup(struct inode *dir,
2256 struct dentry *dentry, unsigned int flags)
2257 {
2258 unsigned long vm_start, vm_end;
2259 struct vm_area_struct *vma;
2260 struct task_struct *task;
2261 struct dentry *result;
2262 struct mm_struct *mm;
2263
2264 result = ERR_PTR(-ENOENT);
2265 task = get_proc_task(dir);
2266 if (!task)
2267 goto out;
2268
2269 result = ERR_PTR(-EACCES);
2270 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2271 goto out_put_task;
2272
2273 result = ERR_PTR(-ENOENT);
2274 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2275 goto out_put_task;
2276
2277 mm = get_task_mm(task);
2278 if (!mm)
2279 goto out_put_task;
2280
2281 result = ERR_PTR(-EINTR);
2282 if (mmap_read_lock_killable(mm))
2283 goto out_put_mm;
2284
2285 result = ERR_PTR(-ENOENT);
2286 vma = find_exact_vma(mm, vm_start, vm_end);
2287 if (!vma)
2288 goto out_no_vma;
2289
2290 if (vma->vm_file)
2291 result = proc_map_files_instantiate(dentry, task,
2292 (void *)(unsigned long)vma->vm_file->f_mode);
2293
2294 out_no_vma:
2295 mmap_read_unlock(mm);
2296 out_put_mm:
2297 mmput(mm);
2298 out_put_task:
2299 put_task_struct(task);
2300 out:
2301 return result;
2302 }
2303
2304 static const struct inode_operations proc_map_files_inode_operations = {
2305 .lookup = proc_map_files_lookup,
2306 .permission = proc_fd_permission,
2307 .setattr = proc_setattr,
2308 };
2309
2310 static int
proc_map_files_readdir(struct file * file,struct dir_context * ctx)2311 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2312 {
2313 struct vm_area_struct *vma;
2314 struct task_struct *task;
2315 struct mm_struct *mm;
2316 unsigned long nr_files, pos, i;
2317 GENRADIX(struct map_files_info) fa;
2318 struct map_files_info *p;
2319 int ret;
2320
2321 genradix_init(&fa);
2322
2323 ret = -ENOENT;
2324 task = get_proc_task(file_inode(file));
2325 if (!task)
2326 goto out;
2327
2328 ret = -EACCES;
2329 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2330 goto out_put_task;
2331
2332 ret = 0;
2333 if (!dir_emit_dots(file, ctx))
2334 goto out_put_task;
2335
2336 mm = get_task_mm(task);
2337 if (!mm)
2338 goto out_put_task;
2339
2340 ret = mmap_read_lock_killable(mm);
2341 if (ret) {
2342 mmput(mm);
2343 goto out_put_task;
2344 }
2345
2346 nr_files = 0;
2347
2348 /*
2349 * We need two passes here:
2350 *
2351 * 1) Collect vmas of mapped files with mmap_lock taken
2352 * 2) Release mmap_lock and instantiate entries
2353 *
2354 * otherwise we get lockdep complained, since filldir()
2355 * routine might require mmap_lock taken in might_fault().
2356 */
2357
2358 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2359 if (!vma->vm_file)
2360 continue;
2361 if (++pos <= ctx->pos)
2362 continue;
2363
2364 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2365 if (!p) {
2366 ret = -ENOMEM;
2367 mmap_read_unlock(mm);
2368 mmput(mm);
2369 goto out_put_task;
2370 }
2371
2372 p->start = vma->vm_start;
2373 p->end = vma->vm_end;
2374 p->mode = vma->vm_file->f_mode;
2375 }
2376 mmap_read_unlock(mm);
2377 mmput(mm);
2378
2379 for (i = 0; i < nr_files; i++) {
2380 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2381 unsigned int len;
2382
2383 p = genradix_ptr(&fa, i);
2384 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2385 if (!proc_fill_cache(file, ctx,
2386 buf, len,
2387 proc_map_files_instantiate,
2388 task,
2389 (void *)(unsigned long)p->mode))
2390 break;
2391 ctx->pos++;
2392 }
2393
2394 out_put_task:
2395 put_task_struct(task);
2396 out:
2397 genradix_free(&fa);
2398 return ret;
2399 }
2400
2401 static const struct file_operations proc_map_files_operations = {
2402 .read = generic_read_dir,
2403 .iterate_shared = proc_map_files_readdir,
2404 .llseek = generic_file_llseek,
2405 };
2406
2407 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2408 struct timers_private {
2409 struct pid *pid;
2410 struct task_struct *task;
2411 struct sighand_struct *sighand;
2412 struct pid_namespace *ns;
2413 unsigned long flags;
2414 };
2415
timers_start(struct seq_file * m,loff_t * pos)2416 static void *timers_start(struct seq_file *m, loff_t *pos)
2417 {
2418 struct timers_private *tp = m->private;
2419
2420 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2421 if (!tp->task)
2422 return ERR_PTR(-ESRCH);
2423
2424 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2425 if (!tp->sighand)
2426 return ERR_PTR(-ESRCH);
2427
2428 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2429 }
2430
timers_next(struct seq_file * m,void * v,loff_t * pos)2431 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2432 {
2433 struct timers_private *tp = m->private;
2434 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2435 }
2436
timers_stop(struct seq_file * m,void * v)2437 static void timers_stop(struct seq_file *m, void *v)
2438 {
2439 struct timers_private *tp = m->private;
2440
2441 if (tp->sighand) {
2442 unlock_task_sighand(tp->task, &tp->flags);
2443 tp->sighand = NULL;
2444 }
2445
2446 if (tp->task) {
2447 put_task_struct(tp->task);
2448 tp->task = NULL;
2449 }
2450 }
2451
show_timer(struct seq_file * m,void * v)2452 static int show_timer(struct seq_file *m, void *v)
2453 {
2454 struct k_itimer *timer;
2455 struct timers_private *tp = m->private;
2456 int notify;
2457 static const char * const nstr[] = {
2458 [SIGEV_SIGNAL] = "signal",
2459 [SIGEV_NONE] = "none",
2460 [SIGEV_THREAD] = "thread",
2461 };
2462
2463 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2464 notify = timer->it_sigev_notify;
2465
2466 seq_printf(m, "ID: %d\n", timer->it_id);
2467 seq_printf(m, "signal: %d/%px\n",
2468 timer->sigq->info.si_signo,
2469 timer->sigq->info.si_value.sival_ptr);
2470 seq_printf(m, "notify: %s/%s.%d\n",
2471 nstr[notify & ~SIGEV_THREAD_ID],
2472 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2473 pid_nr_ns(timer->it_pid, tp->ns));
2474 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2475
2476 return 0;
2477 }
2478
2479 static const struct seq_operations proc_timers_seq_ops = {
2480 .start = timers_start,
2481 .next = timers_next,
2482 .stop = timers_stop,
2483 .show = show_timer,
2484 };
2485
proc_timers_open(struct inode * inode,struct file * file)2486 static int proc_timers_open(struct inode *inode, struct file *file)
2487 {
2488 struct timers_private *tp;
2489
2490 tp = __seq_open_private(file, &proc_timers_seq_ops,
2491 sizeof(struct timers_private));
2492 if (!tp)
2493 return -ENOMEM;
2494
2495 tp->pid = proc_pid(inode);
2496 tp->ns = proc_pid_ns(inode->i_sb);
2497 return 0;
2498 }
2499
2500 static const struct file_operations proc_timers_operations = {
2501 .open = proc_timers_open,
2502 .read = seq_read,
2503 .llseek = seq_lseek,
2504 .release = seq_release_private,
2505 };
2506 #endif
2507
timerslack_ns_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)2508 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2509 size_t count, loff_t *offset)
2510 {
2511 struct inode *inode = file_inode(file);
2512 struct task_struct *p;
2513 u64 slack_ns;
2514 int err;
2515
2516 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2517 if (err < 0)
2518 return err;
2519
2520 p = get_proc_task(inode);
2521 if (!p)
2522 return -ESRCH;
2523
2524 if (p != current) {
2525 rcu_read_lock();
2526 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2527 rcu_read_unlock();
2528 count = -EPERM;
2529 goto out;
2530 }
2531 rcu_read_unlock();
2532
2533 err = security_task_setscheduler(p);
2534 if (err) {
2535 count = err;
2536 goto out;
2537 }
2538 }
2539
2540 task_lock(p);
2541 if (slack_ns == 0)
2542 p->timer_slack_ns = p->default_timer_slack_ns;
2543 else
2544 p->timer_slack_ns = slack_ns;
2545 task_unlock(p);
2546
2547 out:
2548 put_task_struct(p);
2549
2550 return count;
2551 }
2552
timerslack_ns_show(struct seq_file * m,void * v)2553 static int timerslack_ns_show(struct seq_file *m, void *v)
2554 {
2555 struct inode *inode = m->private;
2556 struct task_struct *p;
2557 int err = 0;
2558
2559 p = get_proc_task(inode);
2560 if (!p)
2561 return -ESRCH;
2562
2563 if (p != current) {
2564 rcu_read_lock();
2565 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2566 rcu_read_unlock();
2567 err = -EPERM;
2568 goto out;
2569 }
2570 rcu_read_unlock();
2571
2572 err = security_task_getscheduler(p);
2573 if (err)
2574 goto out;
2575 }
2576
2577 task_lock(p);
2578 seq_printf(m, "%llu\n", p->timer_slack_ns);
2579 task_unlock(p);
2580
2581 out:
2582 put_task_struct(p);
2583
2584 return err;
2585 }
2586
timerslack_ns_open(struct inode * inode,struct file * filp)2587 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2588 {
2589 return single_open(filp, timerslack_ns_show, inode);
2590 }
2591
2592 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2593 .open = timerslack_ns_open,
2594 .read = seq_read,
2595 .write = timerslack_ns_write,
2596 .llseek = seq_lseek,
2597 .release = single_release,
2598 };
2599
proc_pident_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2600 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2601 struct task_struct *task, const void *ptr)
2602 {
2603 const struct pid_entry *p = ptr;
2604 struct inode *inode;
2605 struct proc_inode *ei;
2606
2607 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2608 if (!inode)
2609 return ERR_PTR(-ENOENT);
2610
2611 ei = PROC_I(inode);
2612 if (S_ISDIR(inode->i_mode))
2613 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2614 if (p->iop)
2615 inode->i_op = p->iop;
2616 if (p->fop)
2617 inode->i_fop = p->fop;
2618 ei->op = p->op;
2619 pid_update_inode(task, inode);
2620 d_set_d_op(dentry, &pid_dentry_operations);
2621 return d_splice_alias(inode, dentry);
2622 }
2623
proc_pident_lookup(struct inode * dir,struct dentry * dentry,const struct pid_entry * p,const struct pid_entry * end)2624 static struct dentry *proc_pident_lookup(struct inode *dir,
2625 struct dentry *dentry,
2626 const struct pid_entry *p,
2627 const struct pid_entry *end)
2628 {
2629 struct task_struct *task = get_proc_task(dir);
2630 struct dentry *res = ERR_PTR(-ENOENT);
2631
2632 if (!task)
2633 goto out_no_task;
2634
2635 /*
2636 * Yes, it does not scale. And it should not. Don't add
2637 * new entries into /proc/<tgid>/ without very good reasons.
2638 */
2639 for (; p < end; p++) {
2640 if (p->len != dentry->d_name.len)
2641 continue;
2642 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2643 res = proc_pident_instantiate(dentry, task, p);
2644 break;
2645 }
2646 }
2647 put_task_struct(task);
2648 out_no_task:
2649 return res;
2650 }
2651
proc_pident_readdir(struct file * file,struct dir_context * ctx,const struct pid_entry * ents,unsigned int nents)2652 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2653 const struct pid_entry *ents, unsigned int nents)
2654 {
2655 struct task_struct *task = get_proc_task(file_inode(file));
2656 const struct pid_entry *p;
2657
2658 if (!task)
2659 return -ENOENT;
2660
2661 if (!dir_emit_dots(file, ctx))
2662 goto out;
2663
2664 if (ctx->pos >= nents + 2)
2665 goto out;
2666
2667 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2668 if (!proc_fill_cache(file, ctx, p->name, p->len,
2669 proc_pident_instantiate, task, p))
2670 break;
2671 ctx->pos++;
2672 }
2673 out:
2674 put_task_struct(task);
2675 return 0;
2676 }
2677
2678 #ifdef CONFIG_SECURITY
proc_pid_attr_open(struct inode * inode,struct file * file)2679 static int proc_pid_attr_open(struct inode *inode, struct file *file)
2680 {
2681 file->private_data = NULL;
2682 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2683 return 0;
2684 }
2685
proc_pid_attr_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2686 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2687 size_t count, loff_t *ppos)
2688 {
2689 struct inode * inode = file_inode(file);
2690 char *p = NULL;
2691 ssize_t length;
2692 struct task_struct *task = get_proc_task(inode);
2693
2694 if (!task)
2695 return -ESRCH;
2696
2697 length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2698 (char*)file->f_path.dentry->d_name.name,
2699 &p);
2700 put_task_struct(task);
2701 if (length > 0)
2702 length = simple_read_from_buffer(buf, count, ppos, p, length);
2703 kfree(p);
2704 return length;
2705 }
2706
proc_pid_attr_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2707 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2708 size_t count, loff_t *ppos)
2709 {
2710 struct inode * inode = file_inode(file);
2711 struct task_struct *task;
2712 void *page;
2713 int rv;
2714
2715 /* A task may only write when it was the opener. */
2716 if (file->private_data != current->mm)
2717 return -EPERM;
2718
2719 rcu_read_lock();
2720 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2721 if (!task) {
2722 rcu_read_unlock();
2723 return -ESRCH;
2724 }
2725 /* A task may only write its own attributes. */
2726 if (current != task) {
2727 rcu_read_unlock();
2728 return -EACCES;
2729 }
2730 /* Prevent changes to overridden credentials. */
2731 if (current_cred() != current_real_cred()) {
2732 rcu_read_unlock();
2733 return -EBUSY;
2734 }
2735 rcu_read_unlock();
2736
2737 if (count > PAGE_SIZE)
2738 count = PAGE_SIZE;
2739
2740 /* No partial writes. */
2741 if (*ppos != 0)
2742 return -EINVAL;
2743
2744 page = memdup_user(buf, count);
2745 if (IS_ERR(page)) {
2746 rv = PTR_ERR(page);
2747 goto out;
2748 }
2749
2750 /* Guard against adverse ptrace interaction */
2751 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex);
2752 if (rv < 0)
2753 goto out_free;
2754
2755 rv = security_setprocattr(PROC_I(inode)->op.lsm,
2756 file->f_path.dentry->d_name.name, page,
2757 count);
2758 mutex_unlock(¤t->signal->cred_guard_mutex);
2759 out_free:
2760 kfree(page);
2761 out:
2762 return rv;
2763 }
2764
2765 static const struct file_operations proc_pid_attr_operations = {
2766 .open = proc_pid_attr_open,
2767 .read = proc_pid_attr_read,
2768 .write = proc_pid_attr_write,
2769 .llseek = generic_file_llseek,
2770 .release = mem_release,
2771 };
2772
2773 #define LSM_DIR_OPS(LSM) \
2774 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2775 struct dir_context *ctx) \
2776 { \
2777 return proc_pident_readdir(filp, ctx, \
2778 LSM##_attr_dir_stuff, \
2779 ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2780 } \
2781 \
2782 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2783 .read = generic_read_dir, \
2784 .iterate = proc_##LSM##_attr_dir_iterate, \
2785 .llseek = default_llseek, \
2786 }; \
2787 \
2788 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2789 struct dentry *dentry, unsigned int flags) \
2790 { \
2791 return proc_pident_lookup(dir, dentry, \
2792 LSM##_attr_dir_stuff, \
2793 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2794 } \
2795 \
2796 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2797 .lookup = proc_##LSM##_attr_dir_lookup, \
2798 .getattr = pid_getattr, \
2799 .setattr = proc_setattr, \
2800 }
2801
2802 #ifdef CONFIG_SECURITY_SMACK
2803 static const struct pid_entry smack_attr_dir_stuff[] = {
2804 ATTR("smack", "current", 0666),
2805 };
2806 LSM_DIR_OPS(smack);
2807 #endif
2808
2809 #ifdef CONFIG_SECURITY_APPARMOR
2810 static const struct pid_entry apparmor_attr_dir_stuff[] = {
2811 ATTR("apparmor", "current", 0666),
2812 ATTR("apparmor", "prev", 0444),
2813 ATTR("apparmor", "exec", 0666),
2814 };
2815 LSM_DIR_OPS(apparmor);
2816 #endif
2817
2818 static const struct pid_entry attr_dir_stuff[] = {
2819 ATTR(NULL, "current", 0666),
2820 ATTR(NULL, "prev", 0444),
2821 ATTR(NULL, "exec", 0666),
2822 ATTR(NULL, "fscreate", 0666),
2823 ATTR(NULL, "keycreate", 0666),
2824 ATTR(NULL, "sockcreate", 0666),
2825 #ifdef CONFIG_SECURITY_SMACK
2826 DIR("smack", 0555,
2827 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2828 #endif
2829 #ifdef CONFIG_SECURITY_APPARMOR
2830 DIR("apparmor", 0555,
2831 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2832 #endif
2833 };
2834
proc_attr_dir_readdir(struct file * file,struct dir_context * ctx)2835 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2836 {
2837 return proc_pident_readdir(file, ctx,
2838 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2839 }
2840
2841 static const struct file_operations proc_attr_dir_operations = {
2842 .read = generic_read_dir,
2843 .iterate_shared = proc_attr_dir_readdir,
2844 .llseek = generic_file_llseek,
2845 };
2846
proc_attr_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2847 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2848 struct dentry *dentry, unsigned int flags)
2849 {
2850 return proc_pident_lookup(dir, dentry,
2851 attr_dir_stuff,
2852 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2853 }
2854
2855 static const struct inode_operations proc_attr_dir_inode_operations = {
2856 .lookup = proc_attr_dir_lookup,
2857 .getattr = pid_getattr,
2858 .setattr = proc_setattr,
2859 };
2860
2861 #endif
2862
2863 #ifdef CONFIG_ELF_CORE
proc_coredump_filter_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2864 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2865 size_t count, loff_t *ppos)
2866 {
2867 struct task_struct *task = get_proc_task(file_inode(file));
2868 struct mm_struct *mm;
2869 char buffer[PROC_NUMBUF];
2870 size_t len;
2871 int ret;
2872
2873 if (!task)
2874 return -ESRCH;
2875
2876 ret = 0;
2877 mm = get_task_mm(task);
2878 if (mm) {
2879 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2880 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2881 MMF_DUMP_FILTER_SHIFT));
2882 mmput(mm);
2883 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2884 }
2885
2886 put_task_struct(task);
2887
2888 return ret;
2889 }
2890
proc_coredump_filter_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2891 static ssize_t proc_coredump_filter_write(struct file *file,
2892 const char __user *buf,
2893 size_t count,
2894 loff_t *ppos)
2895 {
2896 struct task_struct *task;
2897 struct mm_struct *mm;
2898 unsigned int val;
2899 int ret;
2900 int i;
2901 unsigned long mask;
2902
2903 ret = kstrtouint_from_user(buf, count, 0, &val);
2904 if (ret < 0)
2905 return ret;
2906
2907 ret = -ESRCH;
2908 task = get_proc_task(file_inode(file));
2909 if (!task)
2910 goto out_no_task;
2911
2912 mm = get_task_mm(task);
2913 if (!mm)
2914 goto out_no_mm;
2915 ret = 0;
2916
2917 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2918 if (val & mask)
2919 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2920 else
2921 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2922 }
2923
2924 mmput(mm);
2925 out_no_mm:
2926 put_task_struct(task);
2927 out_no_task:
2928 if (ret < 0)
2929 return ret;
2930 return count;
2931 }
2932
2933 static const struct file_operations proc_coredump_filter_operations = {
2934 .read = proc_coredump_filter_read,
2935 .write = proc_coredump_filter_write,
2936 .llseek = generic_file_llseek,
2937 };
2938 #endif
2939
2940 #ifdef CONFIG_TASK_IO_ACCOUNTING
do_io_accounting(struct task_struct * task,struct seq_file * m,int whole)2941 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2942 {
2943 struct task_io_accounting acct = task->ioac;
2944 unsigned long flags;
2945 int result;
2946
2947 result = down_read_killable(&task->signal->exec_update_lock);
2948 if (result)
2949 return result;
2950
2951 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2952 result = -EACCES;
2953 goto out_unlock;
2954 }
2955
2956 if (whole && lock_task_sighand(task, &flags)) {
2957 struct task_struct *t = task;
2958
2959 task_io_accounting_add(&acct, &task->signal->ioac);
2960 while_each_thread(task, t)
2961 task_io_accounting_add(&acct, &t->ioac);
2962
2963 unlock_task_sighand(task, &flags);
2964 }
2965 seq_printf(m,
2966 "rchar: %llu\n"
2967 "wchar: %llu\n"
2968 "syscr: %llu\n"
2969 "syscw: %llu\n"
2970 "read_bytes: %llu\n"
2971 "write_bytes: %llu\n"
2972 "cancelled_write_bytes: %llu\n",
2973 (unsigned long long)acct.rchar,
2974 (unsigned long long)acct.wchar,
2975 (unsigned long long)acct.syscr,
2976 (unsigned long long)acct.syscw,
2977 (unsigned long long)acct.read_bytes,
2978 (unsigned long long)acct.write_bytes,
2979 (unsigned long long)acct.cancelled_write_bytes);
2980 result = 0;
2981
2982 out_unlock:
2983 up_read(&task->signal->exec_update_lock);
2984 return result;
2985 }
2986
proc_tid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)2987 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2988 struct pid *pid, struct task_struct *task)
2989 {
2990 return do_io_accounting(task, m, 0);
2991 }
2992
proc_tgid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)2993 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2994 struct pid *pid, struct task_struct *task)
2995 {
2996 return do_io_accounting(task, m, 1);
2997 }
2998 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2999
3000 #ifdef CONFIG_USER_NS
proc_id_map_open(struct inode * inode,struct file * file,const struct seq_operations * seq_ops)3001 static int proc_id_map_open(struct inode *inode, struct file *file,
3002 const struct seq_operations *seq_ops)
3003 {
3004 struct user_namespace *ns = NULL;
3005 struct task_struct *task;
3006 struct seq_file *seq;
3007 int ret = -EINVAL;
3008
3009 task = get_proc_task(inode);
3010 if (task) {
3011 rcu_read_lock();
3012 ns = get_user_ns(task_cred_xxx(task, user_ns));
3013 rcu_read_unlock();
3014 put_task_struct(task);
3015 }
3016 if (!ns)
3017 goto err;
3018
3019 ret = seq_open(file, seq_ops);
3020 if (ret)
3021 goto err_put_ns;
3022
3023 seq = file->private_data;
3024 seq->private = ns;
3025
3026 return 0;
3027 err_put_ns:
3028 put_user_ns(ns);
3029 err:
3030 return ret;
3031 }
3032
proc_id_map_release(struct inode * inode,struct file * file)3033 static int proc_id_map_release(struct inode *inode, struct file *file)
3034 {
3035 struct seq_file *seq = file->private_data;
3036 struct user_namespace *ns = seq->private;
3037 put_user_ns(ns);
3038 return seq_release(inode, file);
3039 }
3040
proc_uid_map_open(struct inode * inode,struct file * file)3041 static int proc_uid_map_open(struct inode *inode, struct file *file)
3042 {
3043 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3044 }
3045
proc_gid_map_open(struct inode * inode,struct file * file)3046 static int proc_gid_map_open(struct inode *inode, struct file *file)
3047 {
3048 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3049 }
3050
proc_projid_map_open(struct inode * inode,struct file * file)3051 static int proc_projid_map_open(struct inode *inode, struct file *file)
3052 {
3053 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3054 }
3055
3056 static const struct file_operations proc_uid_map_operations = {
3057 .open = proc_uid_map_open,
3058 .write = proc_uid_map_write,
3059 .read = seq_read,
3060 .llseek = seq_lseek,
3061 .release = proc_id_map_release,
3062 };
3063
3064 static const struct file_operations proc_gid_map_operations = {
3065 .open = proc_gid_map_open,
3066 .write = proc_gid_map_write,
3067 .read = seq_read,
3068 .llseek = seq_lseek,
3069 .release = proc_id_map_release,
3070 };
3071
3072 static const struct file_operations proc_projid_map_operations = {
3073 .open = proc_projid_map_open,
3074 .write = proc_projid_map_write,
3075 .read = seq_read,
3076 .llseek = seq_lseek,
3077 .release = proc_id_map_release,
3078 };
3079
proc_setgroups_open(struct inode * inode,struct file * file)3080 static int proc_setgroups_open(struct inode *inode, struct file *file)
3081 {
3082 struct user_namespace *ns = NULL;
3083 struct task_struct *task;
3084 int ret;
3085
3086 ret = -ESRCH;
3087 task = get_proc_task(inode);
3088 if (task) {
3089 rcu_read_lock();
3090 ns = get_user_ns(task_cred_xxx(task, user_ns));
3091 rcu_read_unlock();
3092 put_task_struct(task);
3093 }
3094 if (!ns)
3095 goto err;
3096
3097 if (file->f_mode & FMODE_WRITE) {
3098 ret = -EACCES;
3099 if (!ns_capable(ns, CAP_SYS_ADMIN))
3100 goto err_put_ns;
3101 }
3102
3103 ret = single_open(file, &proc_setgroups_show, ns);
3104 if (ret)
3105 goto err_put_ns;
3106
3107 return 0;
3108 err_put_ns:
3109 put_user_ns(ns);
3110 err:
3111 return ret;
3112 }
3113
proc_setgroups_release(struct inode * inode,struct file * file)3114 static int proc_setgroups_release(struct inode *inode, struct file *file)
3115 {
3116 struct seq_file *seq = file->private_data;
3117 struct user_namespace *ns = seq->private;
3118 int ret = single_release(inode, file);
3119 put_user_ns(ns);
3120 return ret;
3121 }
3122
3123 static const struct file_operations proc_setgroups_operations = {
3124 .open = proc_setgroups_open,
3125 .write = proc_setgroups_write,
3126 .read = seq_read,
3127 .llseek = seq_lseek,
3128 .release = proc_setgroups_release,
3129 };
3130 #endif /* CONFIG_USER_NS */
3131
proc_pid_personality(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3132 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3133 struct pid *pid, struct task_struct *task)
3134 {
3135 int err = lock_trace(task);
3136 if (!err) {
3137 seq_printf(m, "%08x\n", task->personality);
3138 unlock_trace(task);
3139 }
3140 return err;
3141 }
3142
3143 #ifdef CONFIG_LIVEPATCH
proc_pid_patch_state(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3144 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3145 struct pid *pid, struct task_struct *task)
3146 {
3147 seq_printf(m, "%d\n", task->patch_state);
3148 return 0;
3149 }
3150 #endif /* CONFIG_LIVEPATCH */
3151
3152 #ifdef CONFIG_STACKLEAK_METRICS
proc_stack_depth(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)3153 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3154 struct pid *pid, struct task_struct *task)
3155 {
3156 unsigned long prev_depth = THREAD_SIZE -
3157 (task->prev_lowest_stack & (THREAD_SIZE - 1));
3158 unsigned long depth = THREAD_SIZE -
3159 (task->lowest_stack & (THREAD_SIZE - 1));
3160
3161 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3162 prev_depth, depth);
3163 return 0;
3164 }
3165 #endif /* CONFIG_STACKLEAK_METRICS */
3166
3167 /*
3168 * Thread groups
3169 */
3170 static const struct file_operations proc_task_operations;
3171 static const struct inode_operations proc_task_inode_operations;
3172
3173 static const struct pid_entry tgid_base_stuff[] = {
3174 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3175 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3176 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3177 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3178 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3179 #ifdef CONFIG_NET
3180 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3181 #endif
3182 REG("environ", S_IRUSR, proc_environ_operations),
3183 REG("auxv", S_IRUSR, proc_auxv_operations),
3184 ONE("status", S_IRUGO, proc_pid_status),
3185 ONE("personality", S_IRUSR, proc_pid_personality),
3186 ONE("limits", S_IRUGO, proc_pid_limits),
3187 #ifdef CONFIG_SCHED_DEBUG
3188 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3189 #endif
3190 #ifdef CONFIG_SCHED_AUTOGROUP
3191 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3192 #endif
3193 #ifdef CONFIG_TIME_NS
3194 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3195 #endif
3196 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3197 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3198 ONE("syscall", S_IRUSR, proc_pid_syscall),
3199 #endif
3200 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3201 ONE("stat", S_IRUGO, proc_tgid_stat),
3202 ONE("statm", S_IRUGO, proc_pid_statm),
3203 REG("maps", S_IRUGO, proc_pid_maps_operations),
3204 #ifdef CONFIG_NUMA
3205 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3206 #endif
3207 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3208 LNK("cwd", proc_cwd_link),
3209 LNK("root", proc_root_link),
3210 LNK("exe", proc_exe_link),
3211 REG("mounts", S_IRUGO, proc_mounts_operations),
3212 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3213 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3214 #ifdef CONFIG_PROC_PAGE_MONITOR
3215 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3216 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3217 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3218 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3219 #endif
3220 #ifdef CONFIG_SECURITY
3221 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3222 #endif
3223 #ifdef CONFIG_KALLSYMS
3224 ONE("wchan", S_IRUGO, proc_pid_wchan),
3225 #endif
3226 #ifdef CONFIG_STACKTRACE
3227 ONE("stack", S_IRUSR, proc_pid_stack),
3228 #endif
3229 #ifdef CONFIG_SCHED_INFO
3230 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3231 #endif
3232 #ifdef CONFIG_LATENCYTOP
3233 REG("latency", S_IRUGO, proc_lstats_operations),
3234 #endif
3235 #ifdef CONFIG_PROC_PID_CPUSET
3236 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3237 #endif
3238 #ifdef CONFIG_CGROUPS
3239 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3240 #endif
3241 #ifdef CONFIG_PROC_CPU_RESCTRL
3242 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3243 #endif
3244 ONE("oom_score", S_IRUGO, proc_oom_score),
3245 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3246 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3247 #ifdef CONFIG_AUDIT
3248 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3249 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3250 #endif
3251 #ifdef CONFIG_FAULT_INJECTION
3252 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3253 REG("fail-nth", 0644, proc_fail_nth_operations),
3254 #endif
3255 #ifdef CONFIG_ELF_CORE
3256 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3257 #endif
3258 #ifdef CONFIG_TASK_IO_ACCOUNTING
3259 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3260 #endif
3261 #ifdef CONFIG_USER_NS
3262 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3263 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3264 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3265 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3266 #endif
3267 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3268 REG("timers", S_IRUGO, proc_timers_operations),
3269 #endif
3270 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3271 #ifdef CONFIG_LIVEPATCH
3272 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3273 #endif
3274 #ifdef CONFIG_CPU_FREQ_TIMES
3275 ONE("time_in_state", 0444, proc_time_in_state_show),
3276 #endif
3277 #ifdef CONFIG_STACKLEAK_METRICS
3278 ONE("stack_depth", S_IRUGO, proc_stack_depth),
3279 #endif
3280 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3281 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3282 #endif
3283 };
3284
proc_tgid_base_readdir(struct file * file,struct dir_context * ctx)3285 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3286 {
3287 return proc_pident_readdir(file, ctx,
3288 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3289 }
3290
3291 static const struct file_operations proc_tgid_base_operations = {
3292 .read = generic_read_dir,
3293 .iterate_shared = proc_tgid_base_readdir,
3294 .llseek = generic_file_llseek,
3295 };
3296
tgid_pidfd_to_pid(const struct file * file)3297 struct pid *tgid_pidfd_to_pid(const struct file *file)
3298 {
3299 if (file->f_op != &proc_tgid_base_operations)
3300 return ERR_PTR(-EBADF);
3301
3302 return proc_pid(file_inode(file));
3303 }
3304
proc_tgid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3305 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3306 {
3307 return proc_pident_lookup(dir, dentry,
3308 tgid_base_stuff,
3309 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3310 }
3311
3312 static const struct inode_operations proc_tgid_base_inode_operations = {
3313 .lookup = proc_tgid_base_lookup,
3314 .getattr = pid_getattr,
3315 .setattr = proc_setattr,
3316 .permission = proc_pid_permission,
3317 };
3318
3319 /**
3320 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache.
3321 * @pid: pid that should be flushed.
3322 *
3323 * This function walks a list of inodes (that belong to any proc
3324 * filesystem) that are attached to the pid and flushes them from
3325 * the dentry cache.
3326 *
3327 * It is safe and reasonable to cache /proc entries for a task until
3328 * that task exits. After that they just clog up the dcache with
3329 * useless entries, possibly causing useful dcache entries to be
3330 * flushed instead. This routine is provided to flush those useless
3331 * dcache entries when a process is reaped.
3332 *
3333 * NOTE: This routine is just an optimization so it does not guarantee
3334 * that no dcache entries will exist after a process is reaped
3335 * it just makes it very unlikely that any will persist.
3336 */
3337
proc_flush_pid(struct pid * pid)3338 void proc_flush_pid(struct pid *pid)
3339 {
3340 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3341 }
3342
proc_pid_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3343 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3344 struct task_struct *task, const void *ptr)
3345 {
3346 struct inode *inode;
3347
3348 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3349 if (!inode)
3350 return ERR_PTR(-ENOENT);
3351
3352 inode->i_op = &proc_tgid_base_inode_operations;
3353 inode->i_fop = &proc_tgid_base_operations;
3354 inode->i_flags|=S_IMMUTABLE;
3355
3356 set_nlink(inode, nlink_tgid);
3357 pid_update_inode(task, inode);
3358
3359 d_set_d_op(dentry, &pid_dentry_operations);
3360 return d_splice_alias(inode, dentry);
3361 }
3362
proc_pid_lookup(struct dentry * dentry,unsigned int flags)3363 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3364 {
3365 struct task_struct *task;
3366 unsigned tgid;
3367 struct proc_fs_info *fs_info;
3368 struct pid_namespace *ns;
3369 struct dentry *result = ERR_PTR(-ENOENT);
3370
3371 tgid = name_to_int(&dentry->d_name);
3372 if (tgid == ~0U)
3373 goto out;
3374
3375 fs_info = proc_sb_info(dentry->d_sb);
3376 ns = fs_info->pid_ns;
3377 rcu_read_lock();
3378 task = find_task_by_pid_ns(tgid, ns);
3379 if (task)
3380 get_task_struct(task);
3381 rcu_read_unlock();
3382 if (!task)
3383 goto out;
3384
3385 /* Limit procfs to only ptraceable tasks */
3386 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3387 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3388 goto out_put_task;
3389 }
3390
3391 result = proc_pid_instantiate(dentry, task, NULL);
3392 out_put_task:
3393 put_task_struct(task);
3394 out:
3395 return result;
3396 }
3397
3398 /*
3399 * Find the first task with tgid >= tgid
3400 *
3401 */
3402 struct tgid_iter {
3403 unsigned int tgid;
3404 struct task_struct *task;
3405 };
next_tgid(struct pid_namespace * ns,struct tgid_iter iter)3406 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3407 {
3408 struct pid *pid;
3409
3410 if (iter.task)
3411 put_task_struct(iter.task);
3412 rcu_read_lock();
3413 retry:
3414 iter.task = NULL;
3415 pid = find_ge_pid(iter.tgid, ns);
3416 if (pid) {
3417 iter.tgid = pid_nr_ns(pid, ns);
3418 iter.task = pid_task(pid, PIDTYPE_TGID);
3419 if (!iter.task) {
3420 iter.tgid += 1;
3421 goto retry;
3422 }
3423 get_task_struct(iter.task);
3424 }
3425 rcu_read_unlock();
3426 return iter;
3427 }
3428
3429 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3430
3431 /* for the /proc/ directory itself, after non-process stuff has been done */
proc_pid_readdir(struct file * file,struct dir_context * ctx)3432 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3433 {
3434 struct tgid_iter iter;
3435 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3436 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3437 loff_t pos = ctx->pos;
3438
3439 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3440 return 0;
3441
3442 if (pos == TGID_OFFSET - 2) {
3443 struct inode *inode = d_inode(fs_info->proc_self);
3444 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3445 return 0;
3446 ctx->pos = pos = pos + 1;
3447 }
3448 if (pos == TGID_OFFSET - 1) {
3449 struct inode *inode = d_inode(fs_info->proc_thread_self);
3450 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3451 return 0;
3452 ctx->pos = pos = pos + 1;
3453 }
3454 iter.tgid = pos - TGID_OFFSET;
3455 iter.task = NULL;
3456 for (iter = next_tgid(ns, iter);
3457 iter.task;
3458 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3459 char name[10 + 1];
3460 unsigned int len;
3461
3462 cond_resched();
3463 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3464 continue;
3465
3466 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3467 ctx->pos = iter.tgid + TGID_OFFSET;
3468 if (!proc_fill_cache(file, ctx, name, len,
3469 proc_pid_instantiate, iter.task, NULL)) {
3470 put_task_struct(iter.task);
3471 return 0;
3472 }
3473 }
3474 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3475 return 0;
3476 }
3477
3478 /*
3479 * proc_tid_comm_permission is a special permission function exclusively
3480 * used for the node /proc/<pid>/task/<tid>/comm.
3481 * It bypasses generic permission checks in the case where a task of the same
3482 * task group attempts to access the node.
3483 * The rationale behind this is that glibc and bionic access this node for
3484 * cross thread naming (pthread_set/getname_np(!self)). However, if
3485 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3486 * which locks out the cross thread naming implementation.
3487 * This function makes sure that the node is always accessible for members of
3488 * same thread group.
3489 */
proc_tid_comm_permission(struct inode * inode,int mask)3490 static int proc_tid_comm_permission(struct inode *inode, int mask)
3491 {
3492 bool is_same_tgroup;
3493 struct task_struct *task;
3494
3495 task = get_proc_task(inode);
3496 if (!task)
3497 return -ESRCH;
3498 is_same_tgroup = same_thread_group(current, task);
3499 put_task_struct(task);
3500
3501 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3502 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3503 * read or written by the members of the corresponding
3504 * thread group.
3505 */
3506 return 0;
3507 }
3508
3509 return generic_permission(inode, mask);
3510 }
3511
3512 static const struct inode_operations proc_tid_comm_inode_operations = {
3513 .permission = proc_tid_comm_permission,
3514 };
3515
3516 /*
3517 * Tasks
3518 */
3519 static const struct pid_entry tid_base_stuff[] = {
3520 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3521 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3522 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3523 #ifdef CONFIG_NET
3524 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3525 #endif
3526 REG("environ", S_IRUSR, proc_environ_operations),
3527 REG("auxv", S_IRUSR, proc_auxv_operations),
3528 ONE("status", S_IRUGO, proc_pid_status),
3529 ONE("personality", S_IRUSR, proc_pid_personality),
3530 ONE("limits", S_IRUGO, proc_pid_limits),
3531 #ifdef CONFIG_SCHED_DEBUG
3532 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3533 #endif
3534 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3535 &proc_tid_comm_inode_operations,
3536 &proc_pid_set_comm_operations, {}),
3537 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3538 ONE("syscall", S_IRUSR, proc_pid_syscall),
3539 #endif
3540 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3541 ONE("stat", S_IRUGO, proc_tid_stat),
3542 ONE("statm", S_IRUGO, proc_pid_statm),
3543 REG("maps", S_IRUGO, proc_pid_maps_operations),
3544 #ifdef CONFIG_PROC_CHILDREN
3545 REG("children", S_IRUGO, proc_tid_children_operations),
3546 #endif
3547 #ifdef CONFIG_NUMA
3548 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3549 #endif
3550 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3551 LNK("cwd", proc_cwd_link),
3552 LNK("root", proc_root_link),
3553 LNK("exe", proc_exe_link),
3554 REG("mounts", S_IRUGO, proc_mounts_operations),
3555 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3556 #ifdef CONFIG_PROC_PAGE_MONITOR
3557 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3558 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3559 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3560 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3561 #endif
3562 #ifdef CONFIG_SECURITY
3563 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3564 #endif
3565 #ifdef CONFIG_KALLSYMS
3566 ONE("wchan", S_IRUGO, proc_pid_wchan),
3567 #endif
3568 #ifdef CONFIG_STACKTRACE
3569 ONE("stack", S_IRUSR, proc_pid_stack),
3570 #endif
3571 #ifdef CONFIG_SCHED_INFO
3572 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3573 #endif
3574 #ifdef CONFIG_LATENCYTOP
3575 REG("latency", S_IRUGO, proc_lstats_operations),
3576 #endif
3577 #ifdef CONFIG_PROC_PID_CPUSET
3578 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3579 #endif
3580 #ifdef CONFIG_CGROUPS
3581 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3582 #endif
3583 #ifdef CONFIG_PROC_CPU_RESCTRL
3584 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3585 #endif
3586 ONE("oom_score", S_IRUGO, proc_oom_score),
3587 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3588 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3589 #ifdef CONFIG_AUDIT
3590 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3591 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3592 #endif
3593 #ifdef CONFIG_FAULT_INJECTION
3594 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3595 REG("fail-nth", 0644, proc_fail_nth_operations),
3596 #endif
3597 #ifdef CONFIG_TASK_IO_ACCOUNTING
3598 ONE("io", S_IRUSR, proc_tid_io_accounting),
3599 #endif
3600 #ifdef CONFIG_USER_NS
3601 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3602 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3603 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3604 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3605 #endif
3606 #ifdef CONFIG_LIVEPATCH
3607 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3608 #endif
3609 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3610 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3611 #endif
3612 #ifdef CONFIG_CPU_FREQ_TIMES
3613 ONE("time_in_state", 0444, proc_time_in_state_show),
3614 #endif
3615 };
3616
proc_tid_base_readdir(struct file * file,struct dir_context * ctx)3617 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3618 {
3619 return proc_pident_readdir(file, ctx,
3620 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3621 }
3622
proc_tid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3623 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3624 {
3625 return proc_pident_lookup(dir, dentry,
3626 tid_base_stuff,
3627 tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3628 }
3629
3630 static const struct file_operations proc_tid_base_operations = {
3631 .read = generic_read_dir,
3632 .iterate_shared = proc_tid_base_readdir,
3633 .llseek = generic_file_llseek,
3634 };
3635
3636 static const struct inode_operations proc_tid_base_inode_operations = {
3637 .lookup = proc_tid_base_lookup,
3638 .getattr = pid_getattr,
3639 .setattr = proc_setattr,
3640 };
3641
proc_task_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3642 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3643 struct task_struct *task, const void *ptr)
3644 {
3645 struct inode *inode;
3646 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3647 if (!inode)
3648 return ERR_PTR(-ENOENT);
3649
3650 inode->i_op = &proc_tid_base_inode_operations;
3651 inode->i_fop = &proc_tid_base_operations;
3652 inode->i_flags |= S_IMMUTABLE;
3653
3654 set_nlink(inode, nlink_tid);
3655 pid_update_inode(task, inode);
3656
3657 d_set_d_op(dentry, &pid_dentry_operations);
3658 return d_splice_alias(inode, dentry);
3659 }
3660
proc_task_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3661 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3662 {
3663 struct task_struct *task;
3664 struct task_struct *leader = get_proc_task(dir);
3665 unsigned tid;
3666 struct proc_fs_info *fs_info;
3667 struct pid_namespace *ns;
3668 struct dentry *result = ERR_PTR(-ENOENT);
3669
3670 if (!leader)
3671 goto out_no_task;
3672
3673 tid = name_to_int(&dentry->d_name);
3674 if (tid == ~0U)
3675 goto out;
3676
3677 fs_info = proc_sb_info(dentry->d_sb);
3678 ns = fs_info->pid_ns;
3679 rcu_read_lock();
3680 task = find_task_by_pid_ns(tid, ns);
3681 if (task)
3682 get_task_struct(task);
3683 rcu_read_unlock();
3684 if (!task)
3685 goto out;
3686 if (!same_thread_group(leader, task))
3687 goto out_drop_task;
3688
3689 result = proc_task_instantiate(dentry, task, NULL);
3690 out_drop_task:
3691 put_task_struct(task);
3692 out:
3693 put_task_struct(leader);
3694 out_no_task:
3695 return result;
3696 }
3697
3698 /*
3699 * Find the first tid of a thread group to return to user space.
3700 *
3701 * Usually this is just the thread group leader, but if the users
3702 * buffer was too small or there was a seek into the middle of the
3703 * directory we have more work todo.
3704 *
3705 * In the case of a short read we start with find_task_by_pid.
3706 *
3707 * In the case of a seek we start with the leader and walk nr
3708 * threads past it.
3709 */
first_tid(struct pid * pid,int tid,loff_t f_pos,struct pid_namespace * ns)3710 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3711 struct pid_namespace *ns)
3712 {
3713 struct task_struct *pos, *task;
3714 unsigned long nr = f_pos;
3715
3716 if (nr != f_pos) /* 32bit overflow? */
3717 return NULL;
3718
3719 rcu_read_lock();
3720 task = pid_task(pid, PIDTYPE_PID);
3721 if (!task)
3722 goto fail;
3723
3724 /* Attempt to start with the tid of a thread */
3725 if (tid && nr) {
3726 pos = find_task_by_pid_ns(tid, ns);
3727 if (pos && same_thread_group(pos, task))
3728 goto found;
3729 }
3730
3731 /* If nr exceeds the number of threads there is nothing todo */
3732 if (nr >= get_nr_threads(task))
3733 goto fail;
3734
3735 /* If we haven't found our starting place yet start
3736 * with the leader and walk nr threads forward.
3737 */
3738 pos = task = task->group_leader;
3739 do {
3740 if (!nr--)
3741 goto found;
3742 } while_each_thread(task, pos);
3743 fail:
3744 pos = NULL;
3745 goto out;
3746 found:
3747 get_task_struct(pos);
3748 out:
3749 rcu_read_unlock();
3750 return pos;
3751 }
3752
3753 /*
3754 * Find the next thread in the thread list.
3755 * Return NULL if there is an error or no next thread.
3756 *
3757 * The reference to the input task_struct is released.
3758 */
next_tid(struct task_struct * start)3759 static struct task_struct *next_tid(struct task_struct *start)
3760 {
3761 struct task_struct *pos = NULL;
3762 rcu_read_lock();
3763 if (pid_alive(start)) {
3764 pos = next_thread(start);
3765 if (thread_group_leader(pos))
3766 pos = NULL;
3767 else
3768 get_task_struct(pos);
3769 }
3770 rcu_read_unlock();
3771 put_task_struct(start);
3772 return pos;
3773 }
3774
3775 /* for the /proc/TGID/task/ directories */
proc_task_readdir(struct file * file,struct dir_context * ctx)3776 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3777 {
3778 struct inode *inode = file_inode(file);
3779 struct task_struct *task;
3780 struct pid_namespace *ns;
3781 int tid;
3782
3783 if (proc_inode_is_dead(inode))
3784 return -ENOENT;
3785
3786 if (!dir_emit_dots(file, ctx))
3787 return 0;
3788
3789 /* f_version caches the tgid value that the last readdir call couldn't
3790 * return. lseek aka telldir automagically resets f_version to 0.
3791 */
3792 ns = proc_pid_ns(inode->i_sb);
3793 tid = (int)file->f_version;
3794 file->f_version = 0;
3795 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3796 task;
3797 task = next_tid(task), ctx->pos++) {
3798 char name[10 + 1];
3799 unsigned int len;
3800 tid = task_pid_nr_ns(task, ns);
3801 len = snprintf(name, sizeof(name), "%u", tid);
3802 if (!proc_fill_cache(file, ctx, name, len,
3803 proc_task_instantiate, task, NULL)) {
3804 /* returning this tgid failed, save it as the first
3805 * pid for the next readir call */
3806 file->f_version = (u64)tid;
3807 put_task_struct(task);
3808 break;
3809 }
3810 }
3811
3812 return 0;
3813 }
3814
proc_task_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)3815 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3816 u32 request_mask, unsigned int query_flags)
3817 {
3818 struct inode *inode = d_inode(path->dentry);
3819 struct task_struct *p = get_proc_task(inode);
3820 generic_fillattr(inode, stat);
3821
3822 if (p) {
3823 stat->nlink += get_nr_threads(p);
3824 put_task_struct(p);
3825 }
3826
3827 return 0;
3828 }
3829
3830 static const struct inode_operations proc_task_inode_operations = {
3831 .lookup = proc_task_lookup,
3832 .getattr = proc_task_getattr,
3833 .setattr = proc_setattr,
3834 .permission = proc_pid_permission,
3835 };
3836
3837 static const struct file_operations proc_task_operations = {
3838 .read = generic_read_dir,
3839 .iterate_shared = proc_task_readdir,
3840 .llseek = generic_file_llseek,
3841 };
3842
set_proc_pid_nlink(void)3843 void __init set_proc_pid_nlink(void)
3844 {
3845 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3846 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3847 }
3848