1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/pipe.c
4 *
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28
29 #include <linux/uaccess.h>
30 #include <asm/ioctls.h>
31
32 #include "internal.h"
33
34 /*
35 * New pipe buffers will be restricted to this size while the user is exceeding
36 * their pipe buffer quota. The general pipe use case needs at least two
37 * buffers: one for data yet to be read, and one for new data. If this is less
38 * than two, then a write to a non-empty pipe may block even if the pipe is not
39 * full. This can occur with GNU make jobserver or similar uses of pipes as
40 * semaphores: multiple processes may be waiting to write tokens back to the
41 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
42 *
43 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
44 * own risk, namely: pipe writes to non-full pipes may block until the pipe is
45 * emptied.
46 */
47 #define PIPE_MIN_DEF_BUFFERS 2
48
49 /*
50 * The max size that a non-root user is allowed to grow the pipe. Can
51 * be set by root in /proc/sys/fs/pipe-max-size
52 */
53 unsigned int pipe_max_size = 1048576;
54
55 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
56 * matches default values.
57 */
58 unsigned long pipe_user_pages_hard;
59 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
60
61 /*
62 * We use head and tail indices that aren't masked off, except at the point of
63 * dereference, but rather they're allowed to wrap naturally. This means there
64 * isn't a dead spot in the buffer, but the ring has to be a power of two and
65 * <= 2^31.
66 * -- David Howells 2019-09-23.
67 *
68 * Reads with count = 0 should always return 0.
69 * -- Julian Bradfield 1999-06-07.
70 *
71 * FIFOs and Pipes now generate SIGIO for both readers and writers.
72 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
73 *
74 * pipe_read & write cleanup
75 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
76 */
77
pipe_lock_nested(struct pipe_inode_info * pipe,int subclass)78 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
79 {
80 if (pipe->files)
81 mutex_lock_nested(&pipe->mutex, subclass);
82 }
83
pipe_lock(struct pipe_inode_info * pipe)84 void pipe_lock(struct pipe_inode_info *pipe)
85 {
86 /*
87 * pipe_lock() nests non-pipe inode locks (for writing to a file)
88 */
89 pipe_lock_nested(pipe, I_MUTEX_PARENT);
90 }
91 EXPORT_SYMBOL(pipe_lock);
92
pipe_unlock(struct pipe_inode_info * pipe)93 void pipe_unlock(struct pipe_inode_info *pipe)
94 {
95 if (pipe->files)
96 mutex_unlock(&pipe->mutex);
97 }
98 EXPORT_SYMBOL(pipe_unlock);
99
__pipe_lock(struct pipe_inode_info * pipe)100 static inline void __pipe_lock(struct pipe_inode_info *pipe)
101 {
102 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
103 }
104
__pipe_unlock(struct pipe_inode_info * pipe)105 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
106 {
107 mutex_unlock(&pipe->mutex);
108 }
109
pipe_double_lock(struct pipe_inode_info * pipe1,struct pipe_inode_info * pipe2)110 void pipe_double_lock(struct pipe_inode_info *pipe1,
111 struct pipe_inode_info *pipe2)
112 {
113 BUG_ON(pipe1 == pipe2);
114
115 if (pipe1 < pipe2) {
116 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
117 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
118 } else {
119 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
120 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
121 }
122 }
123
anon_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)124 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
125 struct pipe_buffer *buf)
126 {
127 struct page *page = buf->page;
128
129 /*
130 * If nobody else uses this page, and we don't already have a
131 * temporary page, let's keep track of it as a one-deep
132 * allocation cache. (Otherwise just release our reference to it)
133 */
134 if (page_count(page) == 1 && !pipe->tmp_page)
135 pipe->tmp_page = page;
136 else
137 put_page(page);
138 }
139
anon_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)140 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
141 struct pipe_buffer *buf)
142 {
143 struct page *page = buf->page;
144
145 if (page_count(page) != 1)
146 return false;
147 memcg_kmem_uncharge_page(page, 0);
148 __SetPageLocked(page);
149 return true;
150 }
151
152 /**
153 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
154 * @pipe: the pipe that the buffer belongs to
155 * @buf: the buffer to attempt to steal
156 *
157 * Description:
158 * This function attempts to steal the &struct page attached to
159 * @buf. If successful, this function returns 0 and returns with
160 * the page locked. The caller may then reuse the page for whatever
161 * he wishes; the typical use is insertion into a different file
162 * page cache.
163 */
generic_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)164 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
165 struct pipe_buffer *buf)
166 {
167 struct page *page = buf->page;
168
169 /*
170 * A reference of one is golden, that means that the owner of this
171 * page is the only one holding a reference to it. lock the page
172 * and return OK.
173 */
174 if (page_count(page) == 1) {
175 lock_page(page);
176 return true;
177 }
178 return false;
179 }
180 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
181
182 /**
183 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
184 * @pipe: the pipe that the buffer belongs to
185 * @buf: the buffer to get a reference to
186 *
187 * Description:
188 * This function grabs an extra reference to @buf. It's used in
189 * in the tee() system call, when we duplicate the buffers in one
190 * pipe into another.
191 */
generic_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)192 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
193 {
194 return try_get_page(buf->page);
195 }
196 EXPORT_SYMBOL(generic_pipe_buf_get);
197
198 /**
199 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
200 * @pipe: the pipe that the buffer belongs to
201 * @buf: the buffer to put a reference to
202 *
203 * Description:
204 * This function releases a reference to @buf.
205 */
generic_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)206 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
207 struct pipe_buffer *buf)
208 {
209 put_page(buf->page);
210 }
211 EXPORT_SYMBOL(generic_pipe_buf_release);
212
213 static const struct pipe_buf_operations anon_pipe_buf_ops = {
214 .release = anon_pipe_buf_release,
215 .try_steal = anon_pipe_buf_try_steal,
216 .get = generic_pipe_buf_get,
217 };
218
219 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_readable(const struct pipe_inode_info * pipe)220 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
221 {
222 unsigned int head = READ_ONCE(pipe->head);
223 unsigned int tail = READ_ONCE(pipe->tail);
224 unsigned int writers = READ_ONCE(pipe->writers);
225
226 return !pipe_empty(head, tail) || !writers;
227 }
228
229 static ssize_t
pipe_read(struct kiocb * iocb,struct iov_iter * to)230 pipe_read(struct kiocb *iocb, struct iov_iter *to)
231 {
232 size_t total_len = iov_iter_count(to);
233 struct file *filp = iocb->ki_filp;
234 struct pipe_inode_info *pipe = filp->private_data;
235 bool was_full, wake_next_reader = false;
236 ssize_t ret;
237
238 /* Null read succeeds. */
239 if (unlikely(total_len == 0))
240 return 0;
241
242 ret = 0;
243 __pipe_lock(pipe);
244
245 /*
246 * We only wake up writers if the pipe was full when we started
247 * reading in order to avoid unnecessary wakeups.
248 *
249 * But when we do wake up writers, we do so using a sync wakeup
250 * (WF_SYNC), because we want them to get going and generate more
251 * data for us.
252 */
253 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
254 for (;;) {
255 /* Read ->head with a barrier vs post_one_notification() */
256 unsigned int head = smp_load_acquire(&pipe->head);
257 unsigned int tail = pipe->tail;
258 unsigned int mask = pipe->ring_size - 1;
259
260 #ifdef CONFIG_WATCH_QUEUE
261 if (pipe->note_loss) {
262 struct watch_notification n;
263
264 if (total_len < 8) {
265 if (ret == 0)
266 ret = -ENOBUFS;
267 break;
268 }
269
270 n.type = WATCH_TYPE_META;
271 n.subtype = WATCH_META_LOSS_NOTIFICATION;
272 n.info = watch_sizeof(n);
273 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
274 if (ret == 0)
275 ret = -EFAULT;
276 break;
277 }
278 ret += sizeof(n);
279 total_len -= sizeof(n);
280 pipe->note_loss = false;
281 }
282 #endif
283
284 if (!pipe_empty(head, tail)) {
285 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
286 size_t chars = buf->len;
287 size_t written;
288 int error;
289
290 if (chars > total_len) {
291 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
292 if (ret == 0)
293 ret = -ENOBUFS;
294 break;
295 }
296 chars = total_len;
297 }
298
299 error = pipe_buf_confirm(pipe, buf);
300 if (error) {
301 if (!ret)
302 ret = error;
303 break;
304 }
305
306 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
307 if (unlikely(written < chars)) {
308 if (!ret)
309 ret = -EFAULT;
310 break;
311 }
312 ret += chars;
313 buf->offset += chars;
314 buf->len -= chars;
315
316 /* Was it a packet buffer? Clean up and exit */
317 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
318 total_len = chars;
319 buf->len = 0;
320 }
321
322 if (!buf->len) {
323 pipe_buf_release(pipe, buf);
324 spin_lock_irq(&pipe->rd_wait.lock);
325 #ifdef CONFIG_WATCH_QUEUE
326 if (buf->flags & PIPE_BUF_FLAG_LOSS)
327 pipe->note_loss = true;
328 #endif
329 tail++;
330 pipe->tail = tail;
331 spin_unlock_irq(&pipe->rd_wait.lock);
332 }
333 total_len -= chars;
334 if (!total_len)
335 break; /* common path: read succeeded */
336 if (!pipe_empty(head, tail)) /* More to do? */
337 continue;
338 }
339
340 if (!pipe->writers)
341 break;
342 if (ret)
343 break;
344 if (filp->f_flags & O_NONBLOCK) {
345 ret = -EAGAIN;
346 break;
347 }
348 __pipe_unlock(pipe);
349
350 /*
351 * We only get here if we didn't actually read anything.
352 *
353 * However, we could have seen (and removed) a zero-sized
354 * pipe buffer, and might have made space in the buffers
355 * that way.
356 *
357 * You can't make zero-sized pipe buffers by doing an empty
358 * write (not even in packet mode), but they can happen if
359 * the writer gets an EFAULT when trying to fill a buffer
360 * that already got allocated and inserted in the buffer
361 * array.
362 *
363 * So we still need to wake up any pending writers in the
364 * _very_ unlikely case that the pipe was full, but we got
365 * no data.
366 */
367 if (unlikely(was_full)) {
368 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
369 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
370 }
371
372 /*
373 * But because we didn't read anything, at this point we can
374 * just return directly with -ERESTARTSYS if we're interrupted,
375 * since we've done any required wakeups and there's no need
376 * to mark anything accessed. And we've dropped the lock.
377 */
378 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
379 return -ERESTARTSYS;
380
381 __pipe_lock(pipe);
382 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
383 wake_next_reader = true;
384 }
385 if (pipe_empty(pipe->head, pipe->tail))
386 wake_next_reader = false;
387 __pipe_unlock(pipe);
388
389 if (was_full) {
390 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
391 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
392 }
393 if (wake_next_reader)
394 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
395 if (ret > 0)
396 file_accessed(filp);
397 return ret;
398 }
399
is_packetized(struct file * file)400 static inline int is_packetized(struct file *file)
401 {
402 return (file->f_flags & O_DIRECT) != 0;
403 }
404
405 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
pipe_writable(const struct pipe_inode_info * pipe)406 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
407 {
408 unsigned int head = READ_ONCE(pipe->head);
409 unsigned int tail = READ_ONCE(pipe->tail);
410 unsigned int max_usage = READ_ONCE(pipe->max_usage);
411
412 return !pipe_full(head, tail, max_usage) ||
413 !READ_ONCE(pipe->readers);
414 }
415
416 static ssize_t
pipe_write(struct kiocb * iocb,struct iov_iter * from)417 pipe_write(struct kiocb *iocb, struct iov_iter *from)
418 {
419 struct file *filp = iocb->ki_filp;
420 struct pipe_inode_info *pipe = filp->private_data;
421 unsigned int head;
422 ssize_t ret = 0;
423 size_t total_len = iov_iter_count(from);
424 ssize_t chars;
425 bool was_empty = false;
426 bool wake_next_writer = false;
427
428 /* Null write succeeds. */
429 if (unlikely(total_len == 0))
430 return 0;
431
432 __pipe_lock(pipe);
433
434 if (!pipe->readers) {
435 send_sig(SIGPIPE, current, 0);
436 ret = -EPIPE;
437 goto out;
438 }
439
440 #ifdef CONFIG_WATCH_QUEUE
441 if (pipe->watch_queue) {
442 ret = -EXDEV;
443 goto out;
444 }
445 #endif
446
447 /*
448 * Epoll nonsensically wants a wakeup whether the pipe
449 * was already empty or not.
450 *
451 * If it wasn't empty we try to merge new data into
452 * the last buffer.
453 *
454 * That naturally merges small writes, but it also
455 * page-aligns the rest of the writes for large writes
456 * spanning multiple pages.
457 */
458 head = pipe->head;
459 was_empty = true;
460 chars = total_len & (PAGE_SIZE-1);
461 if (chars && !pipe_empty(head, pipe->tail)) {
462 unsigned int mask = pipe->ring_size - 1;
463 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
464 int offset = buf->offset + buf->len;
465
466 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
467 offset + chars <= PAGE_SIZE) {
468 ret = pipe_buf_confirm(pipe, buf);
469 if (ret)
470 goto out;
471
472 ret = copy_page_from_iter(buf->page, offset, chars, from);
473 if (unlikely(ret < chars)) {
474 ret = -EFAULT;
475 goto out;
476 }
477
478 buf->len += ret;
479 if (!iov_iter_count(from))
480 goto out;
481 }
482 }
483
484 for (;;) {
485 if (!pipe->readers) {
486 send_sig(SIGPIPE, current, 0);
487 if (!ret)
488 ret = -EPIPE;
489 break;
490 }
491
492 head = pipe->head;
493 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
494 unsigned int mask = pipe->ring_size - 1;
495 struct pipe_buffer *buf = &pipe->bufs[head & mask];
496 struct page *page = pipe->tmp_page;
497 int copied;
498
499 if (!page) {
500 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
501 if (unlikely(!page)) {
502 ret = ret ? : -ENOMEM;
503 break;
504 }
505 pipe->tmp_page = page;
506 }
507
508 /* Allocate a slot in the ring in advance and attach an
509 * empty buffer. If we fault or otherwise fail to use
510 * it, either the reader will consume it or it'll still
511 * be there for the next write.
512 */
513 spin_lock_irq(&pipe->rd_wait.lock);
514
515 head = pipe->head;
516 if (pipe_full(head, pipe->tail, pipe->max_usage)) {
517 spin_unlock_irq(&pipe->rd_wait.lock);
518 continue;
519 }
520
521 pipe->head = head + 1;
522 spin_unlock_irq(&pipe->rd_wait.lock);
523
524 /* Insert it into the buffer array */
525 buf = &pipe->bufs[head & mask];
526 buf->page = page;
527 buf->ops = &anon_pipe_buf_ops;
528 buf->offset = 0;
529 buf->len = 0;
530 if (is_packetized(filp))
531 buf->flags = PIPE_BUF_FLAG_PACKET;
532 else
533 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
534 pipe->tmp_page = NULL;
535
536 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
537 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
538 if (!ret)
539 ret = -EFAULT;
540 break;
541 }
542 ret += copied;
543 buf->offset = 0;
544 buf->len = copied;
545
546 if (!iov_iter_count(from))
547 break;
548 }
549
550 if (!pipe_full(head, pipe->tail, pipe->max_usage))
551 continue;
552
553 /* Wait for buffer space to become available. */
554 if (filp->f_flags & O_NONBLOCK) {
555 if (!ret)
556 ret = -EAGAIN;
557 break;
558 }
559 if (signal_pending(current)) {
560 if (!ret)
561 ret = -ERESTARTSYS;
562 break;
563 }
564
565 /*
566 * We're going to release the pipe lock and wait for more
567 * space. We wake up any readers if necessary, and then
568 * after waiting we need to re-check whether the pipe
569 * become empty while we dropped the lock.
570 */
571 __pipe_unlock(pipe);
572 if (was_empty) {
573 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
574 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
575 }
576 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
577 __pipe_lock(pipe);
578 was_empty = pipe_empty(pipe->head, pipe->tail);
579 wake_next_writer = true;
580 }
581 out:
582 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
583 wake_next_writer = false;
584 __pipe_unlock(pipe);
585
586 /*
587 * If we do do a wakeup event, we do a 'sync' wakeup, because we
588 * want the reader to start processing things asap, rather than
589 * leave the data pending.
590 *
591 * This is particularly important for small writes, because of
592 * how (for example) the GNU make jobserver uses small writes to
593 * wake up pending jobs
594 */
595 if (was_empty) {
596 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
597 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
598 }
599 if (wake_next_writer)
600 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
601 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
602 int err = file_update_time(filp);
603 if (err)
604 ret = err;
605 sb_end_write(file_inode(filp)->i_sb);
606 }
607 return ret;
608 }
609
pipe_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)610 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
611 {
612 struct pipe_inode_info *pipe = filp->private_data;
613 int count, head, tail, mask;
614
615 switch (cmd) {
616 case FIONREAD:
617 __pipe_lock(pipe);
618 count = 0;
619 head = pipe->head;
620 tail = pipe->tail;
621 mask = pipe->ring_size - 1;
622
623 while (tail != head) {
624 count += pipe->bufs[tail & mask].len;
625 tail++;
626 }
627 __pipe_unlock(pipe);
628
629 return put_user(count, (int __user *)arg);
630
631 #ifdef CONFIG_WATCH_QUEUE
632 case IOC_WATCH_QUEUE_SET_SIZE: {
633 int ret;
634 __pipe_lock(pipe);
635 ret = watch_queue_set_size(pipe, arg);
636 __pipe_unlock(pipe);
637 return ret;
638 }
639
640 case IOC_WATCH_QUEUE_SET_FILTER:
641 return watch_queue_set_filter(
642 pipe, (struct watch_notification_filter __user *)arg);
643 #endif
644
645 default:
646 return -ENOIOCTLCMD;
647 }
648 }
649
650 /* No kernel lock held - fine */
651 static __poll_t
pipe_poll(struct file * filp,poll_table * wait)652 pipe_poll(struct file *filp, poll_table *wait)
653 {
654 __poll_t mask;
655 struct pipe_inode_info *pipe = filp->private_data;
656 unsigned int head, tail;
657
658 /*
659 * Reading pipe state only -- no need for acquiring the semaphore.
660 *
661 * But because this is racy, the code has to add the
662 * entry to the poll table _first_ ..
663 */
664 if (filp->f_mode & FMODE_READ)
665 poll_wait(filp, &pipe->rd_wait, wait);
666 if (filp->f_mode & FMODE_WRITE)
667 poll_wait(filp, &pipe->wr_wait, wait);
668
669 /*
670 * .. and only then can you do the racy tests. That way,
671 * if something changes and you got it wrong, the poll
672 * table entry will wake you up and fix it.
673 */
674 head = READ_ONCE(pipe->head);
675 tail = READ_ONCE(pipe->tail);
676
677 mask = 0;
678 if (filp->f_mode & FMODE_READ) {
679 if (!pipe_empty(head, tail))
680 mask |= EPOLLIN | EPOLLRDNORM;
681 if (!pipe->writers && filp->f_version != pipe->w_counter)
682 mask |= EPOLLHUP;
683 }
684
685 if (filp->f_mode & FMODE_WRITE) {
686 if (!pipe_full(head, tail, pipe->max_usage))
687 mask |= EPOLLOUT | EPOLLWRNORM;
688 /*
689 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
690 * behave exactly like pipes for poll().
691 */
692 if (!pipe->readers)
693 mask |= EPOLLERR;
694 }
695
696 return mask;
697 }
698
put_pipe_info(struct inode * inode,struct pipe_inode_info * pipe)699 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
700 {
701 int kill = 0;
702
703 spin_lock(&inode->i_lock);
704 if (!--pipe->files) {
705 inode->i_pipe = NULL;
706 kill = 1;
707 }
708 spin_unlock(&inode->i_lock);
709
710 if (kill)
711 free_pipe_info(pipe);
712 }
713
714 static int
pipe_release(struct inode * inode,struct file * file)715 pipe_release(struct inode *inode, struct file *file)
716 {
717 struct pipe_inode_info *pipe = file->private_data;
718
719 __pipe_lock(pipe);
720 if (file->f_mode & FMODE_READ)
721 pipe->readers--;
722 if (file->f_mode & FMODE_WRITE)
723 pipe->writers--;
724
725 /* Was that the last reader or writer, but not the other side? */
726 if (!pipe->readers != !pipe->writers) {
727 wake_up_interruptible_all(&pipe->rd_wait);
728 wake_up_interruptible_all(&pipe->wr_wait);
729 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
730 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
731 }
732 __pipe_unlock(pipe);
733
734 put_pipe_info(inode, pipe);
735 return 0;
736 }
737
738 static int
pipe_fasync(int fd,struct file * filp,int on)739 pipe_fasync(int fd, struct file *filp, int on)
740 {
741 struct pipe_inode_info *pipe = filp->private_data;
742 int retval = 0;
743
744 __pipe_lock(pipe);
745 if (filp->f_mode & FMODE_READ)
746 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
747 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
748 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
749 if (retval < 0 && (filp->f_mode & FMODE_READ))
750 /* this can happen only if on == T */
751 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
752 }
753 __pipe_unlock(pipe);
754 return retval;
755 }
756
account_pipe_buffers(struct user_struct * user,unsigned long old,unsigned long new)757 unsigned long account_pipe_buffers(struct user_struct *user,
758 unsigned long old, unsigned long new)
759 {
760 return atomic_long_add_return(new - old, &user->pipe_bufs);
761 }
762
too_many_pipe_buffers_soft(unsigned long user_bufs)763 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
764 {
765 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
766
767 return soft_limit && user_bufs > soft_limit;
768 }
769
too_many_pipe_buffers_hard(unsigned long user_bufs)770 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
771 {
772 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
773
774 return hard_limit && user_bufs > hard_limit;
775 }
776
pipe_is_unprivileged_user(void)777 bool pipe_is_unprivileged_user(void)
778 {
779 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
780 }
781
alloc_pipe_info(void)782 struct pipe_inode_info *alloc_pipe_info(void)
783 {
784 struct pipe_inode_info *pipe;
785 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
786 struct user_struct *user = get_current_user();
787 unsigned long user_bufs;
788 unsigned int max_size = READ_ONCE(pipe_max_size);
789
790 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
791 if (pipe == NULL)
792 goto out_free_uid;
793
794 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
795 pipe_bufs = max_size >> PAGE_SHIFT;
796
797 user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
798
799 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
800 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
801 pipe_bufs = PIPE_MIN_DEF_BUFFERS;
802 }
803
804 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
805 goto out_revert_acct;
806
807 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
808 GFP_KERNEL_ACCOUNT);
809
810 if (pipe->bufs) {
811 init_waitqueue_head(&pipe->rd_wait);
812 init_waitqueue_head(&pipe->wr_wait);
813 pipe->r_counter = pipe->w_counter = 1;
814 pipe->max_usage = pipe_bufs;
815 pipe->ring_size = pipe_bufs;
816 pipe->nr_accounted = pipe_bufs;
817 pipe->user = user;
818 mutex_init(&pipe->mutex);
819 return pipe;
820 }
821
822 out_revert_acct:
823 (void) account_pipe_buffers(user, pipe_bufs, 0);
824 kfree(pipe);
825 out_free_uid:
826 free_uid(user);
827 return NULL;
828 }
829
free_pipe_info(struct pipe_inode_info * pipe)830 void free_pipe_info(struct pipe_inode_info *pipe)
831 {
832 int i;
833
834 #ifdef CONFIG_WATCH_QUEUE
835 if (pipe->watch_queue)
836 watch_queue_clear(pipe->watch_queue);
837 #endif
838
839 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
840 free_uid(pipe->user);
841 for (i = 0; i < pipe->ring_size; i++) {
842 struct pipe_buffer *buf = pipe->bufs + i;
843 if (buf->ops)
844 pipe_buf_release(pipe, buf);
845 }
846 #ifdef CONFIG_WATCH_QUEUE
847 if (pipe->watch_queue)
848 put_watch_queue(pipe->watch_queue);
849 #endif
850 if (pipe->tmp_page)
851 __free_page(pipe->tmp_page);
852 kfree(pipe->bufs);
853 kfree(pipe);
854 }
855
856 static struct vfsmount *pipe_mnt __read_mostly;
857
858 /*
859 * pipefs_dname() is called from d_path().
860 */
pipefs_dname(struct dentry * dentry,char * buffer,int buflen)861 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
862 {
863 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
864 d_inode(dentry)->i_ino);
865 }
866
867 static const struct dentry_operations pipefs_dentry_operations = {
868 .d_dname = pipefs_dname,
869 };
870
get_pipe_inode(void)871 static struct inode * get_pipe_inode(void)
872 {
873 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
874 struct pipe_inode_info *pipe;
875
876 if (!inode)
877 goto fail_inode;
878
879 inode->i_ino = get_next_ino();
880
881 pipe = alloc_pipe_info();
882 if (!pipe)
883 goto fail_iput;
884
885 inode->i_pipe = pipe;
886 pipe->files = 2;
887 pipe->readers = pipe->writers = 1;
888 inode->i_fop = &pipefifo_fops;
889
890 /*
891 * Mark the inode dirty from the very beginning,
892 * that way it will never be moved to the dirty
893 * list because "mark_inode_dirty()" will think
894 * that it already _is_ on the dirty list.
895 */
896 inode->i_state = I_DIRTY;
897 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
898 inode->i_uid = current_fsuid();
899 inode->i_gid = current_fsgid();
900 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
901
902 return inode;
903
904 fail_iput:
905 iput(inode);
906
907 fail_inode:
908 return NULL;
909 }
910
create_pipe_files(struct file ** res,int flags)911 int create_pipe_files(struct file **res, int flags)
912 {
913 struct inode *inode = get_pipe_inode();
914 struct file *f;
915 int error;
916
917 if (!inode)
918 return -ENFILE;
919
920 if (flags & O_NOTIFICATION_PIPE) {
921 error = watch_queue_init(inode->i_pipe);
922 if (error) {
923 free_pipe_info(inode->i_pipe);
924 iput(inode);
925 return error;
926 }
927 }
928
929 f = alloc_file_pseudo(inode, pipe_mnt, "",
930 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
931 &pipefifo_fops);
932 if (IS_ERR(f)) {
933 free_pipe_info(inode->i_pipe);
934 iput(inode);
935 return PTR_ERR(f);
936 }
937
938 f->private_data = inode->i_pipe;
939
940 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
941 &pipefifo_fops);
942 if (IS_ERR(res[0])) {
943 put_pipe_info(inode, inode->i_pipe);
944 fput(f);
945 return PTR_ERR(res[0]);
946 }
947 res[0]->private_data = inode->i_pipe;
948 res[1] = f;
949 stream_open(inode, res[0]);
950 stream_open(inode, res[1]);
951 return 0;
952 }
953
__do_pipe_flags(int * fd,struct file ** files,int flags)954 static int __do_pipe_flags(int *fd, struct file **files, int flags)
955 {
956 int error;
957 int fdw, fdr;
958
959 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
960 return -EINVAL;
961
962 error = create_pipe_files(files, flags);
963 if (error)
964 return error;
965
966 error = get_unused_fd_flags(flags);
967 if (error < 0)
968 goto err_read_pipe;
969 fdr = error;
970
971 error = get_unused_fd_flags(flags);
972 if (error < 0)
973 goto err_fdr;
974 fdw = error;
975
976 audit_fd_pair(fdr, fdw);
977 fd[0] = fdr;
978 fd[1] = fdw;
979 return 0;
980
981 err_fdr:
982 put_unused_fd(fdr);
983 err_read_pipe:
984 fput(files[0]);
985 fput(files[1]);
986 return error;
987 }
988
do_pipe_flags(int * fd,int flags)989 int do_pipe_flags(int *fd, int flags)
990 {
991 struct file *files[2];
992 int error = __do_pipe_flags(fd, files, flags);
993 if (!error) {
994 fd_install(fd[0], files[0]);
995 fd_install(fd[1], files[1]);
996 }
997 return error;
998 }
999
1000 /*
1001 * sys_pipe() is the normal C calling standard for creating
1002 * a pipe. It's not the way Unix traditionally does this, though.
1003 */
do_pipe2(int __user * fildes,int flags)1004 static int do_pipe2(int __user *fildes, int flags)
1005 {
1006 struct file *files[2];
1007 int fd[2];
1008 int error;
1009
1010 error = __do_pipe_flags(fd, files, flags);
1011 if (!error) {
1012 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1013 fput(files[0]);
1014 fput(files[1]);
1015 put_unused_fd(fd[0]);
1016 put_unused_fd(fd[1]);
1017 error = -EFAULT;
1018 } else {
1019 fd_install(fd[0], files[0]);
1020 fd_install(fd[1], files[1]);
1021 }
1022 }
1023 return error;
1024 }
1025
SYSCALL_DEFINE2(pipe2,int __user *,fildes,int,flags)1026 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1027 {
1028 return do_pipe2(fildes, flags);
1029 }
1030
SYSCALL_DEFINE1(pipe,int __user *,fildes)1031 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1032 {
1033 return do_pipe2(fildes, 0);
1034 }
1035
1036 /*
1037 * This is the stupid "wait for pipe to be readable or writable"
1038 * model.
1039 *
1040 * See pipe_read/write() for the proper kind of exclusive wait,
1041 * but that requires that we wake up any other readers/writers
1042 * if we then do not end up reading everything (ie the whole
1043 * "wake_next_reader/writer" logic in pipe_read/write()).
1044 */
pipe_wait_readable(struct pipe_inode_info * pipe)1045 void pipe_wait_readable(struct pipe_inode_info *pipe)
1046 {
1047 pipe_unlock(pipe);
1048 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1049 pipe_lock(pipe);
1050 }
1051
pipe_wait_writable(struct pipe_inode_info * pipe)1052 void pipe_wait_writable(struct pipe_inode_info *pipe)
1053 {
1054 pipe_unlock(pipe);
1055 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1056 pipe_lock(pipe);
1057 }
1058
1059 /*
1060 * This depends on both the wait (here) and the wakeup (wake_up_partner)
1061 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1062 * race with the count check and waitqueue prep.
1063 *
1064 * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1065 * then check the condition you're waiting for, and only then sleep. But
1066 * because of the pipe lock, we can check the condition before being on
1067 * the wait queue.
1068 *
1069 * We use the 'rd_wait' waitqueue for pipe partner waiting.
1070 */
wait_for_partner(struct pipe_inode_info * pipe,unsigned int * cnt)1071 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1072 {
1073 DEFINE_WAIT(rdwait);
1074 int cur = *cnt;
1075
1076 while (cur == *cnt) {
1077 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1078 pipe_unlock(pipe);
1079 schedule();
1080 finish_wait(&pipe->rd_wait, &rdwait);
1081 pipe_lock(pipe);
1082 if (signal_pending(current))
1083 break;
1084 }
1085 return cur == *cnt ? -ERESTARTSYS : 0;
1086 }
1087
wake_up_partner(struct pipe_inode_info * pipe)1088 static void wake_up_partner(struct pipe_inode_info *pipe)
1089 {
1090 wake_up_interruptible_all(&pipe->rd_wait);
1091 }
1092
fifo_open(struct inode * inode,struct file * filp)1093 static int fifo_open(struct inode *inode, struct file *filp)
1094 {
1095 struct pipe_inode_info *pipe;
1096 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1097 int ret;
1098
1099 filp->f_version = 0;
1100
1101 spin_lock(&inode->i_lock);
1102 if (inode->i_pipe) {
1103 pipe = inode->i_pipe;
1104 pipe->files++;
1105 spin_unlock(&inode->i_lock);
1106 } else {
1107 spin_unlock(&inode->i_lock);
1108 pipe = alloc_pipe_info();
1109 if (!pipe)
1110 return -ENOMEM;
1111 pipe->files = 1;
1112 spin_lock(&inode->i_lock);
1113 if (unlikely(inode->i_pipe)) {
1114 inode->i_pipe->files++;
1115 spin_unlock(&inode->i_lock);
1116 free_pipe_info(pipe);
1117 pipe = inode->i_pipe;
1118 } else {
1119 inode->i_pipe = pipe;
1120 spin_unlock(&inode->i_lock);
1121 }
1122 }
1123 filp->private_data = pipe;
1124 /* OK, we have a pipe and it's pinned down */
1125
1126 __pipe_lock(pipe);
1127
1128 /* We can only do regular read/write on fifos */
1129 stream_open(inode, filp);
1130
1131 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1132 case FMODE_READ:
1133 /*
1134 * O_RDONLY
1135 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1136 * opened, even when there is no process writing the FIFO.
1137 */
1138 pipe->r_counter++;
1139 if (pipe->readers++ == 0)
1140 wake_up_partner(pipe);
1141
1142 if (!is_pipe && !pipe->writers) {
1143 if ((filp->f_flags & O_NONBLOCK)) {
1144 /* suppress EPOLLHUP until we have
1145 * seen a writer */
1146 filp->f_version = pipe->w_counter;
1147 } else {
1148 if (wait_for_partner(pipe, &pipe->w_counter))
1149 goto err_rd;
1150 }
1151 }
1152 break;
1153
1154 case FMODE_WRITE:
1155 /*
1156 * O_WRONLY
1157 * POSIX.1 says that O_NONBLOCK means return -1 with
1158 * errno=ENXIO when there is no process reading the FIFO.
1159 */
1160 ret = -ENXIO;
1161 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1162 goto err;
1163
1164 pipe->w_counter++;
1165 if (!pipe->writers++)
1166 wake_up_partner(pipe);
1167
1168 if (!is_pipe && !pipe->readers) {
1169 if (wait_for_partner(pipe, &pipe->r_counter))
1170 goto err_wr;
1171 }
1172 break;
1173
1174 case FMODE_READ | FMODE_WRITE:
1175 /*
1176 * O_RDWR
1177 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1178 * This implementation will NEVER block on a O_RDWR open, since
1179 * the process can at least talk to itself.
1180 */
1181
1182 pipe->readers++;
1183 pipe->writers++;
1184 pipe->r_counter++;
1185 pipe->w_counter++;
1186 if (pipe->readers == 1 || pipe->writers == 1)
1187 wake_up_partner(pipe);
1188 break;
1189
1190 default:
1191 ret = -EINVAL;
1192 goto err;
1193 }
1194
1195 /* Ok! */
1196 __pipe_unlock(pipe);
1197 return 0;
1198
1199 err_rd:
1200 if (!--pipe->readers)
1201 wake_up_interruptible(&pipe->wr_wait);
1202 ret = -ERESTARTSYS;
1203 goto err;
1204
1205 err_wr:
1206 if (!--pipe->writers)
1207 wake_up_interruptible_all(&pipe->rd_wait);
1208 ret = -ERESTARTSYS;
1209 goto err;
1210
1211 err:
1212 __pipe_unlock(pipe);
1213
1214 put_pipe_info(inode, pipe);
1215 return ret;
1216 }
1217
1218 const struct file_operations pipefifo_fops = {
1219 .open = fifo_open,
1220 .llseek = no_llseek,
1221 .read_iter = pipe_read,
1222 .write_iter = pipe_write,
1223 .poll = pipe_poll,
1224 .unlocked_ioctl = pipe_ioctl,
1225 .release = pipe_release,
1226 .fasync = pipe_fasync,
1227 .splice_write = iter_file_splice_write,
1228 };
1229
1230 /*
1231 * Currently we rely on the pipe array holding a power-of-2 number
1232 * of pages. Returns 0 on error.
1233 */
round_pipe_size(unsigned long size)1234 unsigned int round_pipe_size(unsigned long size)
1235 {
1236 if (size > (1U << 31))
1237 return 0;
1238
1239 /* Minimum pipe size, as required by POSIX */
1240 if (size < PAGE_SIZE)
1241 return PAGE_SIZE;
1242
1243 return roundup_pow_of_two(size);
1244 }
1245
1246 /*
1247 * Resize the pipe ring to a number of slots.
1248 *
1249 * Note the pipe can be reduced in capacity, but only if the current
1250 * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1251 * returned instead.
1252 */
pipe_resize_ring(struct pipe_inode_info * pipe,unsigned int nr_slots)1253 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1254 {
1255 struct pipe_buffer *bufs;
1256 unsigned int head, tail, mask, n;
1257
1258 bufs = kcalloc(nr_slots, sizeof(*bufs),
1259 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1260 if (unlikely(!bufs))
1261 return -ENOMEM;
1262
1263 spin_lock_irq(&pipe->rd_wait.lock);
1264 mask = pipe->ring_size - 1;
1265 head = pipe->head;
1266 tail = pipe->tail;
1267
1268 n = pipe_occupancy(head, tail);
1269 if (nr_slots < n) {
1270 spin_unlock_irq(&pipe->rd_wait.lock);
1271 kfree(bufs);
1272 return -EBUSY;
1273 }
1274
1275 /*
1276 * The pipe array wraps around, so just start the new one at zero
1277 * and adjust the indices.
1278 */
1279 if (n > 0) {
1280 unsigned int h = head & mask;
1281 unsigned int t = tail & mask;
1282 if (h > t) {
1283 memcpy(bufs, pipe->bufs + t,
1284 n * sizeof(struct pipe_buffer));
1285 } else {
1286 unsigned int tsize = pipe->ring_size - t;
1287 if (h > 0)
1288 memcpy(bufs + tsize, pipe->bufs,
1289 h * sizeof(struct pipe_buffer));
1290 memcpy(bufs, pipe->bufs + t,
1291 tsize * sizeof(struct pipe_buffer));
1292 }
1293 }
1294
1295 head = n;
1296 tail = 0;
1297
1298 kfree(pipe->bufs);
1299 pipe->bufs = bufs;
1300 pipe->ring_size = nr_slots;
1301 if (pipe->max_usage > nr_slots)
1302 pipe->max_usage = nr_slots;
1303 pipe->tail = tail;
1304 pipe->head = head;
1305
1306 spin_unlock_irq(&pipe->rd_wait.lock);
1307
1308 /* This might have made more room for writers */
1309 wake_up_interruptible(&pipe->wr_wait);
1310 return 0;
1311 }
1312
1313 /*
1314 * Allocate a new array of pipe buffers and copy the info over. Returns the
1315 * pipe size if successful, or return -ERROR on error.
1316 */
pipe_set_size(struct pipe_inode_info * pipe,unsigned long arg)1317 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1318 {
1319 unsigned long user_bufs;
1320 unsigned int nr_slots, size;
1321 long ret = 0;
1322
1323 #ifdef CONFIG_WATCH_QUEUE
1324 if (pipe->watch_queue)
1325 return -EBUSY;
1326 #endif
1327
1328 size = round_pipe_size(arg);
1329 nr_slots = size >> PAGE_SHIFT;
1330
1331 if (!nr_slots)
1332 return -EINVAL;
1333
1334 /*
1335 * If trying to increase the pipe capacity, check that an
1336 * unprivileged user is not trying to exceed various limits
1337 * (soft limit check here, hard limit check just below).
1338 * Decreasing the pipe capacity is always permitted, even
1339 * if the user is currently over a limit.
1340 */
1341 if (nr_slots > pipe->max_usage &&
1342 size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1343 return -EPERM;
1344
1345 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1346
1347 if (nr_slots > pipe->max_usage &&
1348 (too_many_pipe_buffers_hard(user_bufs) ||
1349 too_many_pipe_buffers_soft(user_bufs)) &&
1350 pipe_is_unprivileged_user()) {
1351 ret = -EPERM;
1352 goto out_revert_acct;
1353 }
1354
1355 ret = pipe_resize_ring(pipe, nr_slots);
1356 if (ret < 0)
1357 goto out_revert_acct;
1358
1359 pipe->max_usage = nr_slots;
1360 pipe->nr_accounted = nr_slots;
1361 return pipe->max_usage * PAGE_SIZE;
1362
1363 out_revert_acct:
1364 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1365 return ret;
1366 }
1367
1368 /*
1369 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1370 * location, so checking ->i_pipe is not enough to verify that this is a
1371 * pipe.
1372 */
get_pipe_info(struct file * file,bool for_splice)1373 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1374 {
1375 struct pipe_inode_info *pipe = file->private_data;
1376
1377 if (file->f_op != &pipefifo_fops || !pipe)
1378 return NULL;
1379 #ifdef CONFIG_WATCH_QUEUE
1380 if (for_splice && pipe->watch_queue)
1381 return NULL;
1382 #endif
1383 return pipe;
1384 }
1385
pipe_fcntl(struct file * file,unsigned int cmd,unsigned long arg)1386 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1387 {
1388 struct pipe_inode_info *pipe;
1389 long ret;
1390
1391 pipe = get_pipe_info(file, false);
1392 if (!pipe)
1393 return -EBADF;
1394
1395 __pipe_lock(pipe);
1396
1397 switch (cmd) {
1398 case F_SETPIPE_SZ:
1399 ret = pipe_set_size(pipe, arg);
1400 break;
1401 case F_GETPIPE_SZ:
1402 ret = pipe->max_usage * PAGE_SIZE;
1403 break;
1404 default:
1405 ret = -EINVAL;
1406 break;
1407 }
1408
1409 __pipe_unlock(pipe);
1410 return ret;
1411 }
1412
1413 static const struct super_operations pipefs_ops = {
1414 .destroy_inode = free_inode_nonrcu,
1415 .statfs = simple_statfs,
1416 };
1417
1418 /*
1419 * pipefs should _never_ be mounted by userland - too much of security hassle,
1420 * no real gain from having the whole whorehouse mounted. So we don't need
1421 * any operations on the root directory. However, we need a non-trivial
1422 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1423 */
1424
pipefs_init_fs_context(struct fs_context * fc)1425 static int pipefs_init_fs_context(struct fs_context *fc)
1426 {
1427 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1428 if (!ctx)
1429 return -ENOMEM;
1430 ctx->ops = &pipefs_ops;
1431 ctx->dops = &pipefs_dentry_operations;
1432 return 0;
1433 }
1434
1435 static struct file_system_type pipe_fs_type = {
1436 .name = "pipefs",
1437 .init_fs_context = pipefs_init_fs_context,
1438 .kill_sb = kill_anon_super,
1439 };
1440
init_pipe_fs(void)1441 static int __init init_pipe_fs(void)
1442 {
1443 int err = register_filesystem(&pipe_fs_type);
1444
1445 if (!err) {
1446 pipe_mnt = kern_mount(&pipe_fs_type);
1447 if (IS_ERR(pipe_mnt)) {
1448 err = PTR_ERR(pipe_mnt);
1449 unregister_filesystem(&pipe_fs_type);
1450 }
1451 }
1452 return err;
1453 }
1454
1455 fs_initcall(init_pipe_fs);
1456