xref: /OK3568_Linux_fs/kernel/fs/f2fs/node.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/node.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
15 
16 #include "f2fs.h"
17 #include "node.h"
18 #include "segment.h"
19 #include "xattr.h"
20 #include <trace/events/f2fs.h>
21 
22 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
23 
24 static struct kmem_cache *nat_entry_slab;
25 static struct kmem_cache *free_nid_slab;
26 static struct kmem_cache *nat_entry_set_slab;
27 static struct kmem_cache *fsync_node_entry_slab;
28 
29 /*
30  * Check whether the given nid is within node id range.
31  */
f2fs_check_nid_range(struct f2fs_sb_info * sbi,nid_t nid)32 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
33 {
34 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
35 		set_sbi_flag(sbi, SBI_NEED_FSCK);
36 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
37 			  __func__, nid);
38 		return -EFSCORRUPTED;
39 	}
40 	return 0;
41 }
42 
f2fs_available_free_memory(struct f2fs_sb_info * sbi,int type)43 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
44 {
45 	struct f2fs_nm_info *nm_i = NM_I(sbi);
46 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
47 	struct sysinfo val;
48 	unsigned long avail_ram;
49 	unsigned long mem_size = 0;
50 	bool res = false;
51 
52 	if (!nm_i)
53 		return true;
54 
55 	si_meminfo(&val);
56 
57 	/* only uses low memory */
58 	avail_ram = val.totalram - val.totalhigh;
59 
60 	/*
61 	 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
62 	 */
63 	if (type == FREE_NIDS) {
64 		mem_size = (nm_i->nid_cnt[FREE_NID] *
65 				sizeof(struct free_nid)) >> PAGE_SHIFT;
66 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
67 	} else if (type == NAT_ENTRIES) {
68 		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
69 				sizeof(struct nat_entry)) >> PAGE_SHIFT;
70 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
71 		if (excess_cached_nats(sbi))
72 			res = false;
73 	} else if (type == DIRTY_DENTS) {
74 		if (sbi->sb->s_bdi->wb.dirty_exceeded)
75 			return false;
76 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
77 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
78 	} else if (type == INO_ENTRIES) {
79 		int i;
80 
81 		for (i = 0; i < MAX_INO_ENTRY; i++)
82 			mem_size += sbi->im[i].ino_num *
83 						sizeof(struct ino_entry);
84 		mem_size >>= PAGE_SHIFT;
85 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
86 	} else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
87 		enum extent_type etype = type == READ_EXTENT_CACHE ?
88 						EX_READ : EX_BLOCK_AGE;
89 		struct extent_tree_info *eti = &sbi->extent_tree[etype];
90 
91 		mem_size = (atomic_read(&eti->total_ext_tree) *
92 				sizeof(struct extent_tree) +
93 				atomic_read(&eti->total_ext_node) *
94 				sizeof(struct extent_node)) >> PAGE_SHIFT;
95 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
96 	} else if (type == INMEM_PAGES) {
97 		/* it allows 20% / total_ram for inmemory pages */
98 		mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
99 		res = mem_size < (val.totalram / 5);
100 	} else if (type == DISCARD_CACHE) {
101 		mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
102 				sizeof(struct discard_cmd)) >> PAGE_SHIFT;
103 		res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
104 	} else if (type == COMPRESS_PAGE) {
105 #ifdef CONFIG_F2FS_FS_COMPRESSION
106 		unsigned long free_ram = val.freeram;
107 
108 		/*
109 		 * free memory is lower than watermark or cached page count
110 		 * exceed threshold, deny caching compress page.
111 		 */
112 		res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
113 			(COMPRESS_MAPPING(sbi)->nrpages <
114 			 free_ram * sbi->compress_percent / 100);
115 #else
116 		res = false;
117 #endif
118 	} else {
119 		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
120 			return true;
121 	}
122 	return res;
123 }
124 
clear_node_page_dirty(struct page * page)125 static void clear_node_page_dirty(struct page *page)
126 {
127 	if (PageDirty(page)) {
128 		f2fs_clear_page_cache_dirty_tag(page);
129 		clear_page_dirty_for_io(page);
130 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
131 	}
132 	ClearPageUptodate(page);
133 }
134 
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)135 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
136 {
137 	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
138 }
139 
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)140 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
141 {
142 	struct page *src_page;
143 	struct page *dst_page;
144 	pgoff_t dst_off;
145 	void *src_addr;
146 	void *dst_addr;
147 	struct f2fs_nm_info *nm_i = NM_I(sbi);
148 
149 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
150 
151 	/* get current nat block page with lock */
152 	src_page = get_current_nat_page(sbi, nid);
153 	if (IS_ERR(src_page))
154 		return src_page;
155 	dst_page = f2fs_grab_meta_page(sbi, dst_off);
156 	f2fs_bug_on(sbi, PageDirty(src_page));
157 
158 	src_addr = page_address(src_page);
159 	dst_addr = page_address(dst_page);
160 	memcpy(dst_addr, src_addr, PAGE_SIZE);
161 	set_page_dirty(dst_page);
162 	f2fs_put_page(src_page, 1);
163 
164 	set_to_next_nat(nm_i, nid);
165 
166 	return dst_page;
167 }
168 
__alloc_nat_entry(nid_t nid,bool no_fail)169 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
170 {
171 	struct nat_entry *new;
172 
173 	if (no_fail)
174 		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
175 	else
176 		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
177 	if (new) {
178 		nat_set_nid(new, nid);
179 		nat_reset_flag(new);
180 	}
181 	return new;
182 }
183 
__free_nat_entry(struct nat_entry * e)184 static void __free_nat_entry(struct nat_entry *e)
185 {
186 	kmem_cache_free(nat_entry_slab, e);
187 }
188 
189 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)190 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
191 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
192 {
193 	if (no_fail)
194 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
195 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
196 		return NULL;
197 
198 	if (raw_ne)
199 		node_info_from_raw_nat(&ne->ni, raw_ne);
200 
201 	spin_lock(&nm_i->nat_list_lock);
202 	list_add_tail(&ne->list, &nm_i->nat_entries);
203 	spin_unlock(&nm_i->nat_list_lock);
204 
205 	nm_i->nat_cnt[TOTAL_NAT]++;
206 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
207 	return ne;
208 }
209 
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)210 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
211 {
212 	struct nat_entry *ne;
213 
214 	ne = radix_tree_lookup(&nm_i->nat_root, n);
215 
216 	/* for recent accessed nat entry, move it to tail of lru list */
217 	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
218 		spin_lock(&nm_i->nat_list_lock);
219 		if (!list_empty(&ne->list))
220 			list_move_tail(&ne->list, &nm_i->nat_entries);
221 		spin_unlock(&nm_i->nat_list_lock);
222 	}
223 
224 	return ne;
225 }
226 
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)227 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
228 		nid_t start, unsigned int nr, struct nat_entry **ep)
229 {
230 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
231 }
232 
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)233 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
234 {
235 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
236 	nm_i->nat_cnt[TOTAL_NAT]--;
237 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
238 	__free_nat_entry(e);
239 }
240 
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)241 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
242 							struct nat_entry *ne)
243 {
244 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
245 	struct nat_entry_set *head;
246 
247 	head = radix_tree_lookup(&nm_i->nat_set_root, set);
248 	if (!head) {
249 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
250 
251 		INIT_LIST_HEAD(&head->entry_list);
252 		INIT_LIST_HEAD(&head->set_list);
253 		head->set = set;
254 		head->entry_cnt = 0;
255 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
256 	}
257 	return head;
258 }
259 
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)260 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
261 						struct nat_entry *ne)
262 {
263 	struct nat_entry_set *head;
264 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
265 
266 	if (!new_ne)
267 		head = __grab_nat_entry_set(nm_i, ne);
268 
269 	/*
270 	 * update entry_cnt in below condition:
271 	 * 1. update NEW_ADDR to valid block address;
272 	 * 2. update old block address to new one;
273 	 */
274 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
275 				!get_nat_flag(ne, IS_DIRTY)))
276 		head->entry_cnt++;
277 
278 	set_nat_flag(ne, IS_PREALLOC, new_ne);
279 
280 	if (get_nat_flag(ne, IS_DIRTY))
281 		goto refresh_list;
282 
283 	nm_i->nat_cnt[DIRTY_NAT]++;
284 	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
285 	set_nat_flag(ne, IS_DIRTY, true);
286 refresh_list:
287 	spin_lock(&nm_i->nat_list_lock);
288 	if (new_ne)
289 		list_del_init(&ne->list);
290 	else
291 		list_move_tail(&ne->list, &head->entry_list);
292 	spin_unlock(&nm_i->nat_list_lock);
293 }
294 
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)295 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
296 		struct nat_entry_set *set, struct nat_entry *ne)
297 {
298 	spin_lock(&nm_i->nat_list_lock);
299 	list_move_tail(&ne->list, &nm_i->nat_entries);
300 	spin_unlock(&nm_i->nat_list_lock);
301 
302 	set_nat_flag(ne, IS_DIRTY, false);
303 	set->entry_cnt--;
304 	nm_i->nat_cnt[DIRTY_NAT]--;
305 	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
306 }
307 
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)308 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
309 		nid_t start, unsigned int nr, struct nat_entry_set **ep)
310 {
311 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
312 							start, nr);
313 }
314 
f2fs_in_warm_node_list(struct f2fs_sb_info * sbi,struct page * page)315 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
316 {
317 	return NODE_MAPPING(sbi) == page->mapping &&
318 			IS_DNODE(page) && is_cold_node(page);
319 }
320 
f2fs_init_fsync_node_info(struct f2fs_sb_info * sbi)321 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
322 {
323 	spin_lock_init(&sbi->fsync_node_lock);
324 	INIT_LIST_HEAD(&sbi->fsync_node_list);
325 	sbi->fsync_seg_id = 0;
326 	sbi->fsync_node_num = 0;
327 }
328 
f2fs_add_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)329 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
330 							struct page *page)
331 {
332 	struct fsync_node_entry *fn;
333 	unsigned long flags;
334 	unsigned int seq_id;
335 
336 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
337 
338 	get_page(page);
339 	fn->page = page;
340 	INIT_LIST_HEAD(&fn->list);
341 
342 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
343 	list_add_tail(&fn->list, &sbi->fsync_node_list);
344 	fn->seq_id = sbi->fsync_seg_id++;
345 	seq_id = fn->seq_id;
346 	sbi->fsync_node_num++;
347 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
348 
349 	return seq_id;
350 }
351 
f2fs_del_fsync_node_entry(struct f2fs_sb_info * sbi,struct page * page)352 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
353 {
354 	struct fsync_node_entry *fn;
355 	unsigned long flags;
356 
357 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
358 	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
359 		if (fn->page == page) {
360 			list_del(&fn->list);
361 			sbi->fsync_node_num--;
362 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
363 			kmem_cache_free(fsync_node_entry_slab, fn);
364 			put_page(page);
365 			return;
366 		}
367 	}
368 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
369 	f2fs_bug_on(sbi, 1);
370 }
371 
f2fs_reset_fsync_node_info(struct f2fs_sb_info * sbi)372 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
373 {
374 	unsigned long flags;
375 
376 	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
377 	sbi->fsync_seg_id = 0;
378 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
379 }
380 
f2fs_need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)381 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
382 {
383 	struct f2fs_nm_info *nm_i = NM_I(sbi);
384 	struct nat_entry *e;
385 	bool need = false;
386 
387 	f2fs_down_read(&nm_i->nat_tree_lock);
388 	e = __lookup_nat_cache(nm_i, nid);
389 	if (e) {
390 		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
391 				!get_nat_flag(e, HAS_FSYNCED_INODE))
392 			need = true;
393 	}
394 	f2fs_up_read(&nm_i->nat_tree_lock);
395 	return need;
396 }
397 
f2fs_is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)398 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
399 {
400 	struct f2fs_nm_info *nm_i = NM_I(sbi);
401 	struct nat_entry *e;
402 	bool is_cp = true;
403 
404 	f2fs_down_read(&nm_i->nat_tree_lock);
405 	e = __lookup_nat_cache(nm_i, nid);
406 	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
407 		is_cp = false;
408 	f2fs_up_read(&nm_i->nat_tree_lock);
409 	return is_cp;
410 }
411 
f2fs_need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)412 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
413 {
414 	struct f2fs_nm_info *nm_i = NM_I(sbi);
415 	struct nat_entry *e;
416 	bool need_update = true;
417 
418 	f2fs_down_read(&nm_i->nat_tree_lock);
419 	e = __lookup_nat_cache(nm_i, ino);
420 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
421 			(get_nat_flag(e, IS_CHECKPOINTED) ||
422 			 get_nat_flag(e, HAS_FSYNCED_INODE)))
423 		need_update = false;
424 	f2fs_up_read(&nm_i->nat_tree_lock);
425 	return need_update;
426 }
427 
428 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)429 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
430 						struct f2fs_nat_entry *ne)
431 {
432 	struct f2fs_nm_info *nm_i = NM_I(sbi);
433 	struct nat_entry *new, *e;
434 
435 	/* Let's mitigate lock contention of nat_tree_lock during checkpoint */
436 	if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
437 		return;
438 
439 	new = __alloc_nat_entry(nid, false);
440 	if (!new)
441 		return;
442 
443 	f2fs_down_write(&nm_i->nat_tree_lock);
444 	e = __lookup_nat_cache(nm_i, nid);
445 	if (!e)
446 		e = __init_nat_entry(nm_i, new, ne, false);
447 	else
448 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
449 				nat_get_blkaddr(e) !=
450 					le32_to_cpu(ne->block_addr) ||
451 				nat_get_version(e) != ne->version);
452 	f2fs_up_write(&nm_i->nat_tree_lock);
453 	if (e != new)
454 		__free_nat_entry(new);
455 }
456 
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)457 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
458 			block_t new_blkaddr, bool fsync_done)
459 {
460 	struct f2fs_nm_info *nm_i = NM_I(sbi);
461 	struct nat_entry *e;
462 	struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
463 
464 	f2fs_down_write(&nm_i->nat_tree_lock);
465 	e = __lookup_nat_cache(nm_i, ni->nid);
466 	if (!e) {
467 		e = __init_nat_entry(nm_i, new, NULL, true);
468 		copy_node_info(&e->ni, ni);
469 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
470 	} else if (new_blkaddr == NEW_ADDR) {
471 		/*
472 		 * when nid is reallocated,
473 		 * previous nat entry can be remained in nat cache.
474 		 * So, reinitialize it with new information.
475 		 */
476 		copy_node_info(&e->ni, ni);
477 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
478 	}
479 	/* let's free early to reduce memory consumption */
480 	if (e != new)
481 		__free_nat_entry(new);
482 
483 	/* sanity check */
484 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
485 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
486 			new_blkaddr == NULL_ADDR);
487 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
488 			new_blkaddr == NEW_ADDR);
489 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
490 			new_blkaddr == NEW_ADDR);
491 
492 	/* increment version no as node is removed */
493 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
494 		unsigned char version = nat_get_version(e);
495 
496 		nat_set_version(e, inc_node_version(version));
497 	}
498 
499 	/* change address */
500 	nat_set_blkaddr(e, new_blkaddr);
501 	if (!__is_valid_data_blkaddr(new_blkaddr))
502 		set_nat_flag(e, IS_CHECKPOINTED, false);
503 	__set_nat_cache_dirty(nm_i, e);
504 
505 	/* update fsync_mark if its inode nat entry is still alive */
506 	if (ni->nid != ni->ino)
507 		e = __lookup_nat_cache(nm_i, ni->ino);
508 	if (e) {
509 		if (fsync_done && ni->nid == ni->ino)
510 			set_nat_flag(e, HAS_FSYNCED_INODE, true);
511 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
512 	}
513 	f2fs_up_write(&nm_i->nat_tree_lock);
514 }
515 
f2fs_try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)516 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
517 {
518 	struct f2fs_nm_info *nm_i = NM_I(sbi);
519 	int nr = nr_shrink;
520 
521 	if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
522 		return 0;
523 
524 	spin_lock(&nm_i->nat_list_lock);
525 	while (nr_shrink) {
526 		struct nat_entry *ne;
527 
528 		if (list_empty(&nm_i->nat_entries))
529 			break;
530 
531 		ne = list_first_entry(&nm_i->nat_entries,
532 					struct nat_entry, list);
533 		list_del(&ne->list);
534 		spin_unlock(&nm_i->nat_list_lock);
535 
536 		__del_from_nat_cache(nm_i, ne);
537 		nr_shrink--;
538 
539 		spin_lock(&nm_i->nat_list_lock);
540 	}
541 	spin_unlock(&nm_i->nat_list_lock);
542 
543 	f2fs_up_write(&nm_i->nat_tree_lock);
544 	return nr - nr_shrink;
545 }
546 
f2fs_get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni,bool checkpoint_context)547 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
548 				struct node_info *ni, bool checkpoint_context)
549 {
550 	struct f2fs_nm_info *nm_i = NM_I(sbi);
551 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
552 	struct f2fs_journal *journal = curseg->journal;
553 	nid_t start_nid = START_NID(nid);
554 	struct f2fs_nat_block *nat_blk;
555 	struct page *page = NULL;
556 	struct f2fs_nat_entry ne;
557 	struct nat_entry *e;
558 	pgoff_t index;
559 	block_t blkaddr;
560 	int i;
561 
562 	ni->nid = nid;
563 retry:
564 	/* Check nat cache */
565 	f2fs_down_read(&nm_i->nat_tree_lock);
566 	e = __lookup_nat_cache(nm_i, nid);
567 	if (e) {
568 		ni->ino = nat_get_ino(e);
569 		ni->blk_addr = nat_get_blkaddr(e);
570 		ni->version = nat_get_version(e);
571 		f2fs_up_read(&nm_i->nat_tree_lock);
572 		return 0;
573 	}
574 
575 	/*
576 	 * Check current segment summary by trying to grab journal_rwsem first.
577 	 * This sem is on the critical path on the checkpoint requiring the above
578 	 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
579 	 * while not bothering checkpoint.
580 	 */
581 	if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
582 		down_read(&curseg->journal_rwsem);
583 	} else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
584 				!down_read_trylock(&curseg->journal_rwsem)) {
585 		f2fs_up_read(&nm_i->nat_tree_lock);
586 		goto retry;
587 	}
588 
589 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
590 	if (i >= 0) {
591 		ne = nat_in_journal(journal, i);
592 		node_info_from_raw_nat(ni, &ne);
593 	}
594         up_read(&curseg->journal_rwsem);
595 	if (i >= 0) {
596 		f2fs_up_read(&nm_i->nat_tree_lock);
597 		goto cache;
598 	}
599 
600 	/* Fill node_info from nat page */
601 	index = current_nat_addr(sbi, nid);
602 	f2fs_up_read(&nm_i->nat_tree_lock);
603 
604 	page = f2fs_get_meta_page(sbi, index);
605 	if (IS_ERR(page))
606 		return PTR_ERR(page);
607 
608 	nat_blk = (struct f2fs_nat_block *)page_address(page);
609 	ne = nat_blk->entries[nid - start_nid];
610 	node_info_from_raw_nat(ni, &ne);
611 	f2fs_put_page(page, 1);
612 cache:
613 	blkaddr = le32_to_cpu(ne.block_addr);
614 	if (__is_valid_data_blkaddr(blkaddr) &&
615 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
616 		return -EFAULT;
617 
618 	/* cache nat entry */
619 	cache_nat_entry(sbi, nid, &ne);
620 	return 0;
621 }
622 
623 /*
624  * readahead MAX_RA_NODE number of node pages.
625  */
f2fs_ra_node_pages(struct page * parent,int start,int n)626 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
627 {
628 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
629 	struct blk_plug plug;
630 	int i, end;
631 	nid_t nid;
632 
633 	blk_start_plug(&plug);
634 
635 	/* Then, try readahead for siblings of the desired node */
636 	end = start + n;
637 	end = min(end, NIDS_PER_BLOCK);
638 	for (i = start; i < end; i++) {
639 		nid = get_nid(parent, i, false);
640 		f2fs_ra_node_page(sbi, nid);
641 	}
642 
643 	blk_finish_plug(&plug);
644 }
645 
f2fs_get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)646 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
647 {
648 	const long direct_index = ADDRS_PER_INODE(dn->inode);
649 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
650 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
651 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
652 	int cur_level = dn->cur_level;
653 	int max_level = dn->max_level;
654 	pgoff_t base = 0;
655 
656 	if (!dn->max_level)
657 		return pgofs + 1;
658 
659 	while (max_level-- > cur_level)
660 		skipped_unit *= NIDS_PER_BLOCK;
661 
662 	switch (dn->max_level) {
663 	case 3:
664 		base += 2 * indirect_blks;
665 		fallthrough;
666 	case 2:
667 		base += 2 * direct_blks;
668 		fallthrough;
669 	case 1:
670 		base += direct_index;
671 		break;
672 	default:
673 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
674 	}
675 
676 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
677 }
678 
679 /*
680  * The maximum depth is four.
681  * Offset[0] will have raw inode offset.
682  */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])683 static int get_node_path(struct inode *inode, long block,
684 				int offset[4], unsigned int noffset[4])
685 {
686 	const long direct_index = ADDRS_PER_INODE(inode);
687 	const long direct_blks = ADDRS_PER_BLOCK(inode);
688 	const long dptrs_per_blk = NIDS_PER_BLOCK;
689 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
690 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
691 	int n = 0;
692 	int level = 0;
693 
694 	noffset[0] = 0;
695 
696 	if (block < direct_index) {
697 		offset[n] = block;
698 		goto got;
699 	}
700 	block -= direct_index;
701 	if (block < direct_blks) {
702 		offset[n++] = NODE_DIR1_BLOCK;
703 		noffset[n] = 1;
704 		offset[n] = block;
705 		level = 1;
706 		goto got;
707 	}
708 	block -= direct_blks;
709 	if (block < direct_blks) {
710 		offset[n++] = NODE_DIR2_BLOCK;
711 		noffset[n] = 2;
712 		offset[n] = block;
713 		level = 1;
714 		goto got;
715 	}
716 	block -= direct_blks;
717 	if (block < indirect_blks) {
718 		offset[n++] = NODE_IND1_BLOCK;
719 		noffset[n] = 3;
720 		offset[n++] = block / direct_blks;
721 		noffset[n] = 4 + offset[n - 1];
722 		offset[n] = block % direct_blks;
723 		level = 2;
724 		goto got;
725 	}
726 	block -= indirect_blks;
727 	if (block < indirect_blks) {
728 		offset[n++] = NODE_IND2_BLOCK;
729 		noffset[n] = 4 + dptrs_per_blk;
730 		offset[n++] = block / direct_blks;
731 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
732 		offset[n] = block % direct_blks;
733 		level = 2;
734 		goto got;
735 	}
736 	block -= indirect_blks;
737 	if (block < dindirect_blks) {
738 		offset[n++] = NODE_DIND_BLOCK;
739 		noffset[n] = 5 + (dptrs_per_blk * 2);
740 		offset[n++] = block / indirect_blks;
741 		noffset[n] = 6 + (dptrs_per_blk * 2) +
742 			      offset[n - 1] * (dptrs_per_blk + 1);
743 		offset[n++] = (block / direct_blks) % dptrs_per_blk;
744 		noffset[n] = 7 + (dptrs_per_blk * 2) +
745 			      offset[n - 2] * (dptrs_per_blk + 1) +
746 			      offset[n - 1];
747 		offset[n] = block % direct_blks;
748 		level = 3;
749 		goto got;
750 	} else {
751 		return -E2BIG;
752 	}
753 got:
754 	return level;
755 }
756 
757 /*
758  * Caller should call f2fs_put_dnode(dn).
759  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
760  * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
761  */
f2fs_get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)762 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
763 {
764 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
765 	struct page *npage[4];
766 	struct page *parent = NULL;
767 	int offset[4];
768 	unsigned int noffset[4];
769 	nid_t nids[4];
770 	int level, i = 0;
771 	int err = 0;
772 
773 	level = get_node_path(dn->inode, index, offset, noffset);
774 	if (level < 0)
775 		return level;
776 
777 	nids[0] = dn->inode->i_ino;
778 	npage[0] = dn->inode_page;
779 
780 	if (!npage[0]) {
781 		npage[0] = f2fs_get_node_page(sbi, nids[0]);
782 		if (IS_ERR(npage[0]))
783 			return PTR_ERR(npage[0]);
784 	}
785 
786 	/* if inline_data is set, should not report any block indices */
787 	if (f2fs_has_inline_data(dn->inode) && index) {
788 		err = -ENOENT;
789 		f2fs_put_page(npage[0], 1);
790 		goto release_out;
791 	}
792 
793 	parent = npage[0];
794 	if (level != 0)
795 		nids[1] = get_nid(parent, offset[0], true);
796 	dn->inode_page = npage[0];
797 	dn->inode_page_locked = true;
798 
799 	/* get indirect or direct nodes */
800 	for (i = 1; i <= level; i++) {
801 		bool done = false;
802 
803 		if (!nids[i] && mode == ALLOC_NODE) {
804 			/* alloc new node */
805 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
806 				err = -ENOSPC;
807 				goto release_pages;
808 			}
809 
810 			dn->nid = nids[i];
811 			npage[i] = f2fs_new_node_page(dn, noffset[i]);
812 			if (IS_ERR(npage[i])) {
813 				f2fs_alloc_nid_failed(sbi, nids[i]);
814 				err = PTR_ERR(npage[i]);
815 				goto release_pages;
816 			}
817 
818 			set_nid(parent, offset[i - 1], nids[i], i == 1);
819 			f2fs_alloc_nid_done(sbi, nids[i]);
820 			done = true;
821 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
822 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
823 			if (IS_ERR(npage[i])) {
824 				err = PTR_ERR(npage[i]);
825 				goto release_pages;
826 			}
827 			done = true;
828 		}
829 		if (i == 1) {
830 			dn->inode_page_locked = false;
831 			unlock_page(parent);
832 		} else {
833 			f2fs_put_page(parent, 1);
834 		}
835 
836 		if (!done) {
837 			npage[i] = f2fs_get_node_page(sbi, nids[i]);
838 			if (IS_ERR(npage[i])) {
839 				err = PTR_ERR(npage[i]);
840 				f2fs_put_page(npage[0], 0);
841 				goto release_out;
842 			}
843 		}
844 		if (i < level) {
845 			parent = npage[i];
846 			nids[i + 1] = get_nid(parent, offset[i], false);
847 		}
848 	}
849 	dn->nid = nids[level];
850 	dn->ofs_in_node = offset[level];
851 	dn->node_page = npage[level];
852 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
853 
854 	if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
855 					f2fs_sb_has_readonly(sbi)) {
856 		unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
857 		block_t blkaddr;
858 
859 		if (!c_len)
860 			goto out;
861 
862 		blkaddr = f2fs_data_blkaddr(dn);
863 		if (blkaddr == COMPRESS_ADDR)
864 			blkaddr = data_blkaddr(dn->inode, dn->node_page,
865 						dn->ofs_in_node + 1);
866 
867 		f2fs_update_read_extent_tree_range_compressed(dn->inode,
868 					index, blkaddr,
869 					F2FS_I(dn->inode)->i_cluster_size,
870 					c_len);
871 	}
872 out:
873 	return 0;
874 
875 release_pages:
876 	f2fs_put_page(parent, 1);
877 	if (i > 1)
878 		f2fs_put_page(npage[0], 0);
879 release_out:
880 	dn->inode_page = NULL;
881 	dn->node_page = NULL;
882 	if (err == -ENOENT) {
883 		dn->cur_level = i;
884 		dn->max_level = level;
885 		dn->ofs_in_node = offset[level];
886 	}
887 	return err;
888 }
889 
truncate_node(struct dnode_of_data * dn)890 static int truncate_node(struct dnode_of_data *dn)
891 {
892 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
893 	struct node_info ni;
894 	int err;
895 	pgoff_t index;
896 
897 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
898 	if (err)
899 		return err;
900 
901 	/* Deallocate node address */
902 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
903 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
904 	set_node_addr(sbi, &ni, NULL_ADDR, false);
905 
906 	if (dn->nid == dn->inode->i_ino) {
907 		f2fs_remove_orphan_inode(sbi, dn->nid);
908 		dec_valid_inode_count(sbi);
909 		f2fs_inode_synced(dn->inode);
910 	}
911 
912 	clear_node_page_dirty(dn->node_page);
913 	set_sbi_flag(sbi, SBI_IS_DIRTY);
914 
915 	index = dn->node_page->index;
916 	f2fs_put_page(dn->node_page, 1);
917 
918 	invalidate_mapping_pages(NODE_MAPPING(sbi),
919 			index, index);
920 
921 	dn->node_page = NULL;
922 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
923 
924 	return 0;
925 }
926 
truncate_dnode(struct dnode_of_data * dn)927 static int truncate_dnode(struct dnode_of_data *dn)
928 {
929 	struct page *page;
930 	int err;
931 
932 	if (dn->nid == 0)
933 		return 1;
934 
935 	/* get direct node */
936 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
937 	if (PTR_ERR(page) == -ENOENT)
938 		return 1;
939 	else if (IS_ERR(page))
940 		return PTR_ERR(page);
941 
942 	/* Make dnode_of_data for parameter */
943 	dn->node_page = page;
944 	dn->ofs_in_node = 0;
945 	f2fs_truncate_data_blocks(dn);
946 	err = truncate_node(dn);
947 	if (err)
948 		return err;
949 
950 	return 1;
951 }
952 
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)953 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
954 						int ofs, int depth)
955 {
956 	struct dnode_of_data rdn = *dn;
957 	struct page *page;
958 	struct f2fs_node *rn;
959 	nid_t child_nid;
960 	unsigned int child_nofs;
961 	int freed = 0;
962 	int i, ret;
963 
964 	if (dn->nid == 0)
965 		return NIDS_PER_BLOCK + 1;
966 
967 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
968 
969 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
970 	if (IS_ERR(page)) {
971 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
972 		return PTR_ERR(page);
973 	}
974 
975 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
976 
977 	rn = F2FS_NODE(page);
978 	if (depth < 3) {
979 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
980 			child_nid = le32_to_cpu(rn->in.nid[i]);
981 			if (child_nid == 0)
982 				continue;
983 			rdn.nid = child_nid;
984 			ret = truncate_dnode(&rdn);
985 			if (ret < 0)
986 				goto out_err;
987 			if (set_nid(page, i, 0, false))
988 				dn->node_changed = true;
989 		}
990 	} else {
991 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
992 		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
993 			child_nid = le32_to_cpu(rn->in.nid[i]);
994 			if (child_nid == 0) {
995 				child_nofs += NIDS_PER_BLOCK + 1;
996 				continue;
997 			}
998 			rdn.nid = child_nid;
999 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
1000 			if (ret == (NIDS_PER_BLOCK + 1)) {
1001 				if (set_nid(page, i, 0, false))
1002 					dn->node_changed = true;
1003 				child_nofs += ret;
1004 			} else if (ret < 0 && ret != -ENOENT) {
1005 				goto out_err;
1006 			}
1007 		}
1008 		freed = child_nofs;
1009 	}
1010 
1011 	if (!ofs) {
1012 		/* remove current indirect node */
1013 		dn->node_page = page;
1014 		ret = truncate_node(dn);
1015 		if (ret)
1016 			goto out_err;
1017 		freed++;
1018 	} else {
1019 		f2fs_put_page(page, 1);
1020 	}
1021 	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1022 	return freed;
1023 
1024 out_err:
1025 	f2fs_put_page(page, 1);
1026 	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1027 	return ret;
1028 }
1029 
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)1030 static int truncate_partial_nodes(struct dnode_of_data *dn,
1031 			struct f2fs_inode *ri, int *offset, int depth)
1032 {
1033 	struct page *pages[2];
1034 	nid_t nid[3];
1035 	nid_t child_nid;
1036 	int err = 0;
1037 	int i;
1038 	int idx = depth - 2;
1039 
1040 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1041 	if (!nid[0])
1042 		return 0;
1043 
1044 	/* get indirect nodes in the path */
1045 	for (i = 0; i < idx + 1; i++) {
1046 		/* reference count'll be increased */
1047 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1048 		if (IS_ERR(pages[i])) {
1049 			err = PTR_ERR(pages[i]);
1050 			idx = i - 1;
1051 			goto fail;
1052 		}
1053 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1054 	}
1055 
1056 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1057 
1058 	/* free direct nodes linked to a partial indirect node */
1059 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1060 		child_nid = get_nid(pages[idx], i, false);
1061 		if (!child_nid)
1062 			continue;
1063 		dn->nid = child_nid;
1064 		err = truncate_dnode(dn);
1065 		if (err < 0)
1066 			goto fail;
1067 		if (set_nid(pages[idx], i, 0, false))
1068 			dn->node_changed = true;
1069 	}
1070 
1071 	if (offset[idx + 1] == 0) {
1072 		dn->node_page = pages[idx];
1073 		dn->nid = nid[idx];
1074 		err = truncate_node(dn);
1075 		if (err)
1076 			goto fail;
1077 	} else {
1078 		f2fs_put_page(pages[idx], 1);
1079 	}
1080 	offset[idx]++;
1081 	offset[idx + 1] = 0;
1082 	idx--;
1083 fail:
1084 	for (i = idx; i >= 0; i--)
1085 		f2fs_put_page(pages[i], 1);
1086 
1087 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1088 
1089 	return err;
1090 }
1091 
1092 /*
1093  * All the block addresses of data and nodes should be nullified.
1094  */
f2fs_truncate_inode_blocks(struct inode * inode,pgoff_t from)1095 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1096 {
1097 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1098 	int err = 0, cont = 1;
1099 	int level, offset[4], noffset[4];
1100 	unsigned int nofs = 0;
1101 	struct f2fs_inode *ri;
1102 	struct dnode_of_data dn;
1103 	struct page *page;
1104 
1105 	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1106 
1107 	level = get_node_path(inode, from, offset, noffset);
1108 	if (level < 0) {
1109 		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1110 		return level;
1111 	}
1112 
1113 	page = f2fs_get_node_page(sbi, inode->i_ino);
1114 	if (IS_ERR(page)) {
1115 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1116 		return PTR_ERR(page);
1117 	}
1118 
1119 	set_new_dnode(&dn, inode, page, NULL, 0);
1120 	unlock_page(page);
1121 
1122 	ri = F2FS_INODE(page);
1123 	switch (level) {
1124 	case 0:
1125 	case 1:
1126 		nofs = noffset[1];
1127 		break;
1128 	case 2:
1129 		nofs = noffset[1];
1130 		if (!offset[level - 1])
1131 			goto skip_partial;
1132 		err = truncate_partial_nodes(&dn, ri, offset, level);
1133 		if (err < 0 && err != -ENOENT)
1134 			goto fail;
1135 		nofs += 1 + NIDS_PER_BLOCK;
1136 		break;
1137 	case 3:
1138 		nofs = 5 + 2 * NIDS_PER_BLOCK;
1139 		if (!offset[level - 1])
1140 			goto skip_partial;
1141 		err = truncate_partial_nodes(&dn, ri, offset, level);
1142 		if (err < 0 && err != -ENOENT)
1143 			goto fail;
1144 		break;
1145 	default:
1146 		BUG();
1147 	}
1148 
1149 skip_partial:
1150 	while (cont) {
1151 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1152 		switch (offset[0]) {
1153 		case NODE_DIR1_BLOCK:
1154 		case NODE_DIR2_BLOCK:
1155 			err = truncate_dnode(&dn);
1156 			break;
1157 
1158 		case NODE_IND1_BLOCK:
1159 		case NODE_IND2_BLOCK:
1160 			err = truncate_nodes(&dn, nofs, offset[1], 2);
1161 			break;
1162 
1163 		case NODE_DIND_BLOCK:
1164 			err = truncate_nodes(&dn, nofs, offset[1], 3);
1165 			cont = 0;
1166 			break;
1167 
1168 		default:
1169 			BUG();
1170 		}
1171 		if (err < 0 && err != -ENOENT)
1172 			goto fail;
1173 		if (offset[1] == 0 &&
1174 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1175 			lock_page(page);
1176 			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1177 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1178 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1179 			set_page_dirty(page);
1180 			unlock_page(page);
1181 		}
1182 		offset[1] = 0;
1183 		offset[0]++;
1184 		nofs += err;
1185 	}
1186 fail:
1187 	f2fs_put_page(page, 0);
1188 	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1189 	return err > 0 ? 0 : err;
1190 }
1191 
1192 /* caller must lock inode page */
f2fs_truncate_xattr_node(struct inode * inode)1193 int f2fs_truncate_xattr_node(struct inode *inode)
1194 {
1195 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1196 	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1197 	struct dnode_of_data dn;
1198 	struct page *npage;
1199 	int err;
1200 
1201 	if (!nid)
1202 		return 0;
1203 
1204 	npage = f2fs_get_node_page(sbi, nid);
1205 	if (IS_ERR(npage))
1206 		return PTR_ERR(npage);
1207 
1208 	set_new_dnode(&dn, inode, NULL, npage, nid);
1209 	err = truncate_node(&dn);
1210 	if (err) {
1211 		f2fs_put_page(npage, 1);
1212 		return err;
1213 	}
1214 
1215 	f2fs_i_xnid_write(inode, 0);
1216 
1217 	return 0;
1218 }
1219 
1220 /*
1221  * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1222  * f2fs_unlock_op().
1223  */
f2fs_remove_inode_page(struct inode * inode)1224 int f2fs_remove_inode_page(struct inode *inode)
1225 {
1226 	struct dnode_of_data dn;
1227 	int err;
1228 
1229 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1230 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1231 	if (err)
1232 		return err;
1233 
1234 	err = f2fs_truncate_xattr_node(inode);
1235 	if (err) {
1236 		f2fs_put_dnode(&dn);
1237 		return err;
1238 	}
1239 
1240 	/* remove potential inline_data blocks */
1241 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1242 				S_ISLNK(inode->i_mode))
1243 		f2fs_truncate_data_blocks_range(&dn, 1);
1244 
1245 	/* 0 is possible, after f2fs_new_inode() has failed */
1246 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1247 		f2fs_put_dnode(&dn);
1248 		return -EIO;
1249 	}
1250 
1251 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1252 		f2fs_warn(F2FS_I_SB(inode),
1253 			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1254 			inode->i_ino, (unsigned long long)inode->i_blocks);
1255 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1256 	}
1257 
1258 	/* will put inode & node pages */
1259 	err = truncate_node(&dn);
1260 	if (err) {
1261 		f2fs_put_dnode(&dn);
1262 		return err;
1263 	}
1264 	return 0;
1265 }
1266 
f2fs_new_inode_page(struct inode * inode)1267 struct page *f2fs_new_inode_page(struct inode *inode)
1268 {
1269 	struct dnode_of_data dn;
1270 
1271 	/* allocate inode page for new inode */
1272 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1273 
1274 	/* caller should f2fs_put_page(page, 1); */
1275 	return f2fs_new_node_page(&dn, 0);
1276 }
1277 
f2fs_new_node_page(struct dnode_of_data * dn,unsigned int ofs)1278 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1279 {
1280 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1281 	struct node_info new_ni;
1282 	struct page *page;
1283 	int err;
1284 
1285 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1286 		return ERR_PTR(-EPERM);
1287 
1288 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1289 	if (!page)
1290 		return ERR_PTR(-ENOMEM);
1291 
1292 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1293 		goto fail;
1294 
1295 #ifdef CONFIG_F2FS_CHECK_FS
1296 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1297 	if (err) {
1298 		dec_valid_node_count(sbi, dn->inode, !ofs);
1299 		goto fail;
1300 	}
1301 	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1302 		err = -EFSCORRUPTED;
1303 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1304 		goto fail;
1305 	}
1306 #endif
1307 	new_ni.nid = dn->nid;
1308 	new_ni.ino = dn->inode->i_ino;
1309 	new_ni.blk_addr = NULL_ADDR;
1310 	new_ni.flag = 0;
1311 	new_ni.version = 0;
1312 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1313 
1314 	f2fs_wait_on_page_writeback(page, NODE, true, true);
1315 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1316 	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1317 	if (!PageUptodate(page))
1318 		SetPageUptodate(page);
1319 	if (set_page_dirty(page))
1320 		dn->node_changed = true;
1321 
1322 	if (f2fs_has_xattr_block(ofs))
1323 		f2fs_i_xnid_write(dn->inode, dn->nid);
1324 
1325 	if (ofs == 0)
1326 		inc_valid_inode_count(sbi);
1327 	return page;
1328 
1329 fail:
1330 	clear_node_page_dirty(page);
1331 	f2fs_put_page(page, 1);
1332 	return ERR_PTR(err);
1333 }
1334 
1335 /*
1336  * Caller should do after getting the following values.
1337  * 0: f2fs_put_page(page, 0)
1338  * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1339  */
read_node_page(struct page * page,int op_flags)1340 static int read_node_page(struct page *page, int op_flags)
1341 {
1342 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1343 	struct node_info ni;
1344 	struct f2fs_io_info fio = {
1345 		.sbi = sbi,
1346 		.type = NODE,
1347 		.op = REQ_OP_READ,
1348 		.op_flags = op_flags,
1349 		.page = page,
1350 		.encrypted_page = NULL,
1351 	};
1352 	int err;
1353 
1354 	if (PageUptodate(page)) {
1355 		if (!f2fs_inode_chksum_verify(sbi, page)) {
1356 			ClearPageUptodate(page);
1357 			return -EFSBADCRC;
1358 		}
1359 		return LOCKED_PAGE;
1360 	}
1361 
1362 	err = f2fs_get_node_info(sbi, page->index, &ni, false);
1363 	if (err)
1364 		return err;
1365 
1366 	/* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1367 	if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1368 		ClearPageUptodate(page);
1369 		return -ENOENT;
1370 	}
1371 
1372 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1373 
1374 	err = f2fs_submit_page_bio(&fio);
1375 
1376 	if (!err)
1377 		f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1378 
1379 	return err;
1380 }
1381 
1382 /*
1383  * Readahead a node page
1384  */
f2fs_ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1385 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1386 {
1387 	struct page *apage;
1388 	int err;
1389 
1390 	if (!nid)
1391 		return;
1392 	if (f2fs_check_nid_range(sbi, nid))
1393 		return;
1394 
1395 	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1396 	if (apage)
1397 		return;
1398 
1399 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1400 	if (!apage)
1401 		return;
1402 
1403 	err = read_node_page(apage, REQ_RAHEAD);
1404 	f2fs_put_page(apage, err ? 1 : 0);
1405 }
1406 
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1407 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1408 					struct page *parent, int start)
1409 {
1410 	struct page *page;
1411 	int err;
1412 
1413 	if (!nid)
1414 		return ERR_PTR(-ENOENT);
1415 	if (f2fs_check_nid_range(sbi, nid))
1416 		return ERR_PTR(-EINVAL);
1417 repeat:
1418 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1419 	if (!page)
1420 		return ERR_PTR(-ENOMEM);
1421 
1422 	err = read_node_page(page, 0);
1423 	if (err < 0) {
1424 		f2fs_put_page(page, 1);
1425 		return ERR_PTR(err);
1426 	} else if (err == LOCKED_PAGE) {
1427 		err = 0;
1428 		goto page_hit;
1429 	}
1430 
1431 	if (parent)
1432 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1433 
1434 	lock_page(page);
1435 
1436 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1437 		f2fs_put_page(page, 1);
1438 		goto repeat;
1439 	}
1440 
1441 	if (unlikely(!PageUptodate(page))) {
1442 		err = -EIO;
1443 		goto out_err;
1444 	}
1445 
1446 	if (!f2fs_inode_chksum_verify(sbi, page)) {
1447 		err = -EFSBADCRC;
1448 		goto out_err;
1449 	}
1450 page_hit:
1451 	if (unlikely(nid != nid_of_node(page))) {
1452 		f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1453 			  nid, nid_of_node(page), ino_of_node(page),
1454 			  ofs_of_node(page), cpver_of_node(page),
1455 			  next_blkaddr_of_node(page));
1456 		set_sbi_flag(sbi, SBI_NEED_FSCK);
1457 		err = -EINVAL;
1458 out_err:
1459 		ClearPageUptodate(page);
1460 		f2fs_put_page(page, 1);
1461 		return ERR_PTR(err);
1462 	}
1463 	return page;
1464 }
1465 
f2fs_get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1466 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1467 {
1468 	return __get_node_page(sbi, nid, NULL, 0);
1469 }
1470 
f2fs_get_node_page_ra(struct page * parent,int start)1471 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1472 {
1473 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1474 	nid_t nid = get_nid(parent, start, false);
1475 
1476 	return __get_node_page(sbi, nid, parent, start);
1477 }
1478 
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1479 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1480 {
1481 	struct inode *inode;
1482 	struct page *page;
1483 	int ret;
1484 
1485 	/* should flush inline_data before evict_inode */
1486 	inode = ilookup(sbi->sb, ino);
1487 	if (!inode)
1488 		return;
1489 
1490 	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1491 					FGP_LOCK|FGP_NOWAIT, 0);
1492 	if (!page)
1493 		goto iput_out;
1494 
1495 	if (!PageUptodate(page))
1496 		goto page_out;
1497 
1498 	if (!PageDirty(page))
1499 		goto page_out;
1500 
1501 	if (!clear_page_dirty_for_io(page))
1502 		goto page_out;
1503 
1504 	ret = f2fs_write_inline_data(inode, page);
1505 	inode_dec_dirty_pages(inode);
1506 	f2fs_remove_dirty_inode(inode);
1507 	if (ret)
1508 		set_page_dirty(page);
1509 page_out:
1510 	f2fs_put_page(page, 1);
1511 iput_out:
1512 	iput(inode);
1513 }
1514 
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1515 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1516 {
1517 	pgoff_t index;
1518 	struct pagevec pvec;
1519 	struct page *last_page = NULL;
1520 	int nr_pages;
1521 
1522 	pagevec_init(&pvec);
1523 	index = 0;
1524 
1525 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1526 				PAGECACHE_TAG_DIRTY))) {
1527 		int i;
1528 
1529 		for (i = 0; i < nr_pages; i++) {
1530 			struct page *page = pvec.pages[i];
1531 
1532 			if (unlikely(f2fs_cp_error(sbi))) {
1533 				f2fs_put_page(last_page, 0);
1534 				pagevec_release(&pvec);
1535 				return ERR_PTR(-EIO);
1536 			}
1537 
1538 			if (!IS_DNODE(page) || !is_cold_node(page))
1539 				continue;
1540 			if (ino_of_node(page) != ino)
1541 				continue;
1542 
1543 			lock_page(page);
1544 
1545 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1546 continue_unlock:
1547 				unlock_page(page);
1548 				continue;
1549 			}
1550 			if (ino_of_node(page) != ino)
1551 				goto continue_unlock;
1552 
1553 			if (!PageDirty(page)) {
1554 				/* someone wrote it for us */
1555 				goto continue_unlock;
1556 			}
1557 
1558 			if (last_page)
1559 				f2fs_put_page(last_page, 0);
1560 
1561 			get_page(page);
1562 			last_page = page;
1563 			unlock_page(page);
1564 		}
1565 		pagevec_release(&pvec);
1566 		cond_resched();
1567 	}
1568 	return last_page;
1569 }
1570 
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type,unsigned int * seq_id)1571 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1572 				struct writeback_control *wbc, bool do_balance,
1573 				enum iostat_type io_type, unsigned int *seq_id)
1574 {
1575 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1576 	nid_t nid;
1577 	struct node_info ni;
1578 	struct f2fs_io_info fio = {
1579 		.sbi = sbi,
1580 		.ino = ino_of_node(page),
1581 		.type = NODE,
1582 		.op = REQ_OP_WRITE,
1583 		.op_flags = wbc_to_write_flags(wbc),
1584 		.page = page,
1585 		.encrypted_page = NULL,
1586 		.submitted = false,
1587 		.io_type = io_type,
1588 		.io_wbc = wbc,
1589 	};
1590 	unsigned int seq;
1591 
1592 	trace_f2fs_writepage(page, NODE);
1593 
1594 	if (unlikely(f2fs_cp_error(sbi))) {
1595 		if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1596 			ClearPageUptodate(page);
1597 			dec_page_count(sbi, F2FS_DIRTY_NODES);
1598 			unlock_page(page);
1599 			return 0;
1600 		}
1601 		goto redirty_out;
1602 	}
1603 
1604 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1605 		goto redirty_out;
1606 
1607 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1608 			wbc->sync_mode == WB_SYNC_NONE &&
1609 			IS_DNODE(page) && is_cold_node(page))
1610 		goto redirty_out;
1611 
1612 	/* get old block addr of this node page */
1613 	nid = nid_of_node(page);
1614 	f2fs_bug_on(sbi, page->index != nid);
1615 
1616 	if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1617 		goto redirty_out;
1618 
1619 	if (wbc->for_reclaim) {
1620 		if (!f2fs_down_read_trylock(&sbi->node_write))
1621 			goto redirty_out;
1622 	} else {
1623 		f2fs_down_read(&sbi->node_write);
1624 	}
1625 
1626 	/* This page is already truncated */
1627 	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1628 		ClearPageUptodate(page);
1629 		dec_page_count(sbi, F2FS_DIRTY_NODES);
1630 		f2fs_up_read(&sbi->node_write);
1631 		unlock_page(page);
1632 		return 0;
1633 	}
1634 
1635 	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1636 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1637 					DATA_GENERIC_ENHANCE)) {
1638 		f2fs_up_read(&sbi->node_write);
1639 		goto redirty_out;
1640 	}
1641 
1642 	if (atomic && !test_opt(sbi, NOBARRIER))
1643 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1644 
1645 	/* should add to global list before clearing PAGECACHE status */
1646 	if (f2fs_in_warm_node_list(sbi, page)) {
1647 		seq = f2fs_add_fsync_node_entry(sbi, page);
1648 		if (seq_id)
1649 			*seq_id = seq;
1650 	}
1651 
1652 	set_page_writeback(page);
1653 	ClearPageError(page);
1654 
1655 	fio.old_blkaddr = ni.blk_addr;
1656 	f2fs_do_write_node_page(nid, &fio);
1657 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1658 	dec_page_count(sbi, F2FS_DIRTY_NODES);
1659 	f2fs_up_read(&sbi->node_write);
1660 
1661 	if (wbc->for_reclaim) {
1662 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1663 		submitted = NULL;
1664 	}
1665 
1666 	unlock_page(page);
1667 
1668 	if (unlikely(f2fs_cp_error(sbi))) {
1669 		f2fs_submit_merged_write(sbi, NODE);
1670 		submitted = NULL;
1671 	}
1672 	if (submitted)
1673 		*submitted = fio.submitted;
1674 
1675 	if (do_balance)
1676 		f2fs_balance_fs(sbi, false);
1677 	return 0;
1678 
1679 redirty_out:
1680 	redirty_page_for_writepage(wbc, page);
1681 	return AOP_WRITEPAGE_ACTIVATE;
1682 }
1683 
f2fs_move_node_page(struct page * node_page,int gc_type)1684 int f2fs_move_node_page(struct page *node_page, int gc_type)
1685 {
1686 	int err = 0;
1687 
1688 	if (gc_type == FG_GC) {
1689 		struct writeback_control wbc = {
1690 			.sync_mode = WB_SYNC_ALL,
1691 			.nr_to_write = 1,
1692 			.for_reclaim = 0,
1693 		};
1694 
1695 		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1696 
1697 		set_page_dirty(node_page);
1698 
1699 		if (!clear_page_dirty_for_io(node_page)) {
1700 			err = -EAGAIN;
1701 			goto out_page;
1702 		}
1703 
1704 		if (__write_node_page(node_page, false, NULL,
1705 					&wbc, false, FS_GC_NODE_IO, NULL)) {
1706 			err = -EAGAIN;
1707 			unlock_page(node_page);
1708 		}
1709 		goto release_page;
1710 	} else {
1711 		/* set page dirty and write it */
1712 		if (!PageWriteback(node_page))
1713 			set_page_dirty(node_page);
1714 	}
1715 out_page:
1716 	unlock_page(node_page);
1717 release_page:
1718 	f2fs_put_page(node_page, 0);
1719 	return err;
1720 }
1721 
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1722 static int f2fs_write_node_page(struct page *page,
1723 				struct writeback_control *wbc)
1724 {
1725 	return __write_node_page(page, false, NULL, wbc, false,
1726 						FS_NODE_IO, NULL);
1727 }
1728 
f2fs_fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic,unsigned int * seq_id)1729 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1730 			struct writeback_control *wbc, bool atomic,
1731 			unsigned int *seq_id)
1732 {
1733 	pgoff_t index;
1734 	struct pagevec pvec;
1735 	int ret = 0;
1736 	struct page *last_page = NULL;
1737 	bool marked = false;
1738 	nid_t ino = inode->i_ino;
1739 	int nr_pages;
1740 	int nwritten = 0;
1741 
1742 	if (atomic) {
1743 		last_page = last_fsync_dnode(sbi, ino);
1744 		if (IS_ERR_OR_NULL(last_page))
1745 			return PTR_ERR_OR_ZERO(last_page);
1746 	}
1747 retry:
1748 	pagevec_init(&pvec);
1749 	index = 0;
1750 
1751 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1752 				PAGECACHE_TAG_DIRTY))) {
1753 		int i;
1754 
1755 		for (i = 0; i < nr_pages; i++) {
1756 			struct page *page = pvec.pages[i];
1757 			bool submitted = false;
1758 
1759 			if (unlikely(f2fs_cp_error(sbi))) {
1760 				f2fs_put_page(last_page, 0);
1761 				pagevec_release(&pvec);
1762 				ret = -EIO;
1763 				goto out;
1764 			}
1765 
1766 			if (!IS_DNODE(page) || !is_cold_node(page))
1767 				continue;
1768 			if (ino_of_node(page) != ino)
1769 				continue;
1770 
1771 			lock_page(page);
1772 
1773 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1774 continue_unlock:
1775 				unlock_page(page);
1776 				continue;
1777 			}
1778 			if (ino_of_node(page) != ino)
1779 				goto continue_unlock;
1780 
1781 			if (!PageDirty(page) && page != last_page) {
1782 				/* someone wrote it for us */
1783 				goto continue_unlock;
1784 			}
1785 
1786 			f2fs_wait_on_page_writeback(page, NODE, true, true);
1787 
1788 			set_fsync_mark(page, 0);
1789 			set_dentry_mark(page, 0);
1790 
1791 			if (!atomic || page == last_page) {
1792 				set_fsync_mark(page, 1);
1793 				if (IS_INODE(page)) {
1794 					if (is_inode_flag_set(inode,
1795 								FI_DIRTY_INODE))
1796 						f2fs_update_inode(inode, page);
1797 					set_dentry_mark(page,
1798 						f2fs_need_dentry_mark(sbi, ino));
1799 				}
1800 				/* may be written by other thread */
1801 				if (!PageDirty(page))
1802 					set_page_dirty(page);
1803 			}
1804 
1805 			if (!clear_page_dirty_for_io(page))
1806 				goto continue_unlock;
1807 
1808 			ret = __write_node_page(page, atomic &&
1809 						page == last_page,
1810 						&submitted, wbc, true,
1811 						FS_NODE_IO, seq_id);
1812 			if (ret) {
1813 				unlock_page(page);
1814 				f2fs_put_page(last_page, 0);
1815 				break;
1816 			} else if (submitted) {
1817 				nwritten++;
1818 			}
1819 
1820 			if (page == last_page) {
1821 				f2fs_put_page(page, 0);
1822 				marked = true;
1823 				break;
1824 			}
1825 		}
1826 		pagevec_release(&pvec);
1827 		cond_resched();
1828 
1829 		if (ret || marked)
1830 			break;
1831 	}
1832 	if (!ret && atomic && !marked) {
1833 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1834 			   ino, last_page->index);
1835 		lock_page(last_page);
1836 		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1837 		set_page_dirty(last_page);
1838 		unlock_page(last_page);
1839 		goto retry;
1840 	}
1841 out:
1842 	if (nwritten)
1843 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1844 	return ret ? -EIO : 0;
1845 }
1846 
f2fs_match_ino(struct inode * inode,unsigned long ino,void * data)1847 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1848 {
1849 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1850 	bool clean;
1851 
1852 	if (inode->i_ino != ino)
1853 		return 0;
1854 
1855 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1856 		return 0;
1857 
1858 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1859 	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1860 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1861 
1862 	if (clean)
1863 		return 0;
1864 
1865 	inode = igrab(inode);
1866 	if (!inode)
1867 		return 0;
1868 	return 1;
1869 }
1870 
flush_dirty_inode(struct page * page)1871 static bool flush_dirty_inode(struct page *page)
1872 {
1873 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1874 	struct inode *inode;
1875 	nid_t ino = ino_of_node(page);
1876 
1877 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1878 	if (!inode)
1879 		return false;
1880 
1881 	f2fs_update_inode(inode, page);
1882 	unlock_page(page);
1883 
1884 	iput(inode);
1885 	return true;
1886 }
1887 
f2fs_flush_inline_data(struct f2fs_sb_info * sbi)1888 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1889 {
1890 	pgoff_t index = 0;
1891 	struct pagevec pvec;
1892 	int nr_pages;
1893 
1894 	pagevec_init(&pvec);
1895 
1896 	while ((nr_pages = pagevec_lookup_tag(&pvec,
1897 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1898 		int i;
1899 
1900 		for (i = 0; i < nr_pages; i++) {
1901 			struct page *page = pvec.pages[i];
1902 
1903 			if (!IS_DNODE(page))
1904 				continue;
1905 
1906 			lock_page(page);
1907 
1908 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1909 continue_unlock:
1910 				unlock_page(page);
1911 				continue;
1912 			}
1913 
1914 			if (!PageDirty(page)) {
1915 				/* someone wrote it for us */
1916 				goto continue_unlock;
1917 			}
1918 
1919 			/* flush inline_data, if it's async context. */
1920 			if (page_private_inline(page)) {
1921 				clear_page_private_inline(page);
1922 				unlock_page(page);
1923 				flush_inline_data(sbi, ino_of_node(page));
1924 				continue;
1925 			}
1926 			unlock_page(page);
1927 		}
1928 		pagevec_release(&pvec);
1929 		cond_resched();
1930 	}
1931 }
1932 
f2fs_sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1933 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1934 				struct writeback_control *wbc,
1935 				bool do_balance, enum iostat_type io_type)
1936 {
1937 	pgoff_t index;
1938 	struct pagevec pvec;
1939 	int step = 0;
1940 	int nwritten = 0;
1941 	int ret = 0;
1942 	int nr_pages, done = 0;
1943 
1944 	pagevec_init(&pvec);
1945 
1946 next_step:
1947 	index = 0;
1948 
1949 	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1950 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1951 		int i;
1952 
1953 		for (i = 0; i < nr_pages; i++) {
1954 			struct page *page = pvec.pages[i];
1955 			bool submitted = false;
1956 			bool may_dirty = true;
1957 
1958 			/* give a priority to WB_SYNC threads */
1959 			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1960 					wbc->sync_mode == WB_SYNC_NONE) {
1961 				done = 1;
1962 				break;
1963 			}
1964 
1965 			/*
1966 			 * flushing sequence with step:
1967 			 * 0. indirect nodes
1968 			 * 1. dentry dnodes
1969 			 * 2. file dnodes
1970 			 */
1971 			if (step == 0 && IS_DNODE(page))
1972 				continue;
1973 			if (step == 1 && (!IS_DNODE(page) ||
1974 						is_cold_node(page)))
1975 				continue;
1976 			if (step == 2 && (!IS_DNODE(page) ||
1977 						!is_cold_node(page)))
1978 				continue;
1979 lock_node:
1980 			if (wbc->sync_mode == WB_SYNC_ALL)
1981 				lock_page(page);
1982 			else if (!trylock_page(page))
1983 				continue;
1984 
1985 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1986 continue_unlock:
1987 				unlock_page(page);
1988 				continue;
1989 			}
1990 
1991 			if (!PageDirty(page)) {
1992 				/* someone wrote it for us */
1993 				goto continue_unlock;
1994 			}
1995 
1996 			/* flush inline_data/inode, if it's async context. */
1997 			if (!do_balance)
1998 				goto write_node;
1999 
2000 			/* flush inline_data */
2001 			if (page_private_inline(page)) {
2002 				clear_page_private_inline(page);
2003 				unlock_page(page);
2004 				flush_inline_data(sbi, ino_of_node(page));
2005 				goto lock_node;
2006 			}
2007 
2008 			/* flush dirty inode */
2009 			if (IS_INODE(page) && may_dirty) {
2010 				may_dirty = false;
2011 				if (flush_dirty_inode(page))
2012 					goto lock_node;
2013 			}
2014 write_node:
2015 			f2fs_wait_on_page_writeback(page, NODE, true, true);
2016 
2017 			if (!clear_page_dirty_for_io(page))
2018 				goto continue_unlock;
2019 
2020 			set_fsync_mark(page, 0);
2021 			set_dentry_mark(page, 0);
2022 
2023 			ret = __write_node_page(page, false, &submitted,
2024 						wbc, do_balance, io_type, NULL);
2025 			if (ret)
2026 				unlock_page(page);
2027 			else if (submitted)
2028 				nwritten++;
2029 
2030 			if (--wbc->nr_to_write == 0)
2031 				break;
2032 		}
2033 		pagevec_release(&pvec);
2034 		cond_resched();
2035 
2036 		if (wbc->nr_to_write == 0) {
2037 			step = 2;
2038 			break;
2039 		}
2040 	}
2041 
2042 	if (step < 2) {
2043 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2044 				wbc->sync_mode == WB_SYNC_NONE && step == 1)
2045 			goto out;
2046 		step++;
2047 		goto next_step;
2048 	}
2049 out:
2050 	if (nwritten)
2051 		f2fs_submit_merged_write(sbi, NODE);
2052 
2053 	if (unlikely(f2fs_cp_error(sbi)))
2054 		return -EIO;
2055 	return ret;
2056 }
2057 
f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,unsigned int seq_id)2058 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2059 						unsigned int seq_id)
2060 {
2061 	struct fsync_node_entry *fn;
2062 	struct page *page;
2063 	struct list_head *head = &sbi->fsync_node_list;
2064 	unsigned long flags;
2065 	unsigned int cur_seq_id = 0;
2066 	int ret2, ret = 0;
2067 
2068 	while (seq_id && cur_seq_id < seq_id) {
2069 		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2070 		if (list_empty(head)) {
2071 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2072 			break;
2073 		}
2074 		fn = list_first_entry(head, struct fsync_node_entry, list);
2075 		if (fn->seq_id > seq_id) {
2076 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2077 			break;
2078 		}
2079 		cur_seq_id = fn->seq_id;
2080 		page = fn->page;
2081 		get_page(page);
2082 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2083 
2084 		f2fs_wait_on_page_writeback(page, NODE, true, false);
2085 		if (TestClearPageError(page))
2086 			ret = -EIO;
2087 
2088 		put_page(page);
2089 
2090 		if (ret)
2091 			break;
2092 	}
2093 
2094 	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2095 	if (!ret)
2096 		ret = ret2;
2097 
2098 	return ret;
2099 }
2100 
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)2101 static int f2fs_write_node_pages(struct address_space *mapping,
2102 			    struct writeback_control *wbc)
2103 {
2104 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2105 	struct blk_plug plug;
2106 	long diff;
2107 
2108 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2109 		goto skip_write;
2110 
2111 	/* balancing f2fs's metadata in background */
2112 	f2fs_balance_fs_bg(sbi, true);
2113 
2114 	/* collect a number of dirty node pages and write together */
2115 	if (wbc->sync_mode != WB_SYNC_ALL &&
2116 			get_pages(sbi, F2FS_DIRTY_NODES) <
2117 					nr_pages_to_skip(sbi, NODE))
2118 		goto skip_write;
2119 
2120 	if (wbc->sync_mode == WB_SYNC_ALL)
2121 		atomic_inc(&sbi->wb_sync_req[NODE]);
2122 	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2123 		/* to avoid potential deadlock */
2124 		if (current->plug)
2125 			blk_finish_plug(current->plug);
2126 		goto skip_write;
2127 	}
2128 
2129 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2130 
2131 	diff = nr_pages_to_write(sbi, NODE, wbc);
2132 	blk_start_plug(&plug);
2133 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2134 	blk_finish_plug(&plug);
2135 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2136 
2137 	if (wbc->sync_mode == WB_SYNC_ALL)
2138 		atomic_dec(&sbi->wb_sync_req[NODE]);
2139 	return 0;
2140 
2141 skip_write:
2142 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2143 	trace_f2fs_writepages(mapping->host, wbc, NODE);
2144 	return 0;
2145 }
2146 
f2fs_set_node_page_dirty(struct page * page)2147 static int f2fs_set_node_page_dirty(struct page *page)
2148 {
2149 	trace_f2fs_set_page_dirty(page, NODE);
2150 
2151 	if (!PageUptodate(page))
2152 		SetPageUptodate(page);
2153 #ifdef CONFIG_F2FS_CHECK_FS
2154 	if (IS_INODE(page))
2155 		f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2156 #endif
2157 	if (!PageDirty(page)) {
2158 		__set_page_dirty_nobuffers(page);
2159 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2160 		set_page_private_reference(page);
2161 		return 1;
2162 	}
2163 	return 0;
2164 }
2165 
2166 /*
2167  * Structure of the f2fs node operations
2168  */
2169 const struct address_space_operations f2fs_node_aops = {
2170 	.writepage	= f2fs_write_node_page,
2171 	.writepages	= f2fs_write_node_pages,
2172 	.set_page_dirty	= f2fs_set_node_page_dirty,
2173 	.invalidatepage	= f2fs_invalidate_page,
2174 	.releasepage	= f2fs_release_page,
2175 #ifdef CONFIG_MIGRATION
2176 	.migratepage	= f2fs_migrate_page,
2177 #endif
2178 };
2179 
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)2180 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2181 						nid_t n)
2182 {
2183 	return radix_tree_lookup(&nm_i->free_nid_root, n);
2184 }
2185 
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i)2186 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2187 				struct free_nid *i)
2188 {
2189 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2190 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2191 
2192 	if (err)
2193 		return err;
2194 
2195 	nm_i->nid_cnt[FREE_NID]++;
2196 	list_add_tail(&i->list, &nm_i->free_nid_list);
2197 	return 0;
2198 }
2199 
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)2200 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2201 			struct free_nid *i, enum nid_state state)
2202 {
2203 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2204 
2205 	f2fs_bug_on(sbi, state != i->state);
2206 	nm_i->nid_cnt[state]--;
2207 	if (state == FREE_NID)
2208 		list_del(&i->list);
2209 	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2210 }
2211 
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)2212 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2213 			enum nid_state org_state, enum nid_state dst_state)
2214 {
2215 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2216 
2217 	f2fs_bug_on(sbi, org_state != i->state);
2218 	i->state = dst_state;
2219 	nm_i->nid_cnt[org_state]--;
2220 	nm_i->nid_cnt[dst_state]++;
2221 
2222 	switch (dst_state) {
2223 	case PREALLOC_NID:
2224 		list_del(&i->list);
2225 		break;
2226 	case FREE_NID:
2227 		list_add_tail(&i->list, &nm_i->free_nid_list);
2228 		break;
2229 	default:
2230 		BUG_ON(1);
2231 	}
2232 }
2233 
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)2234 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2235 							bool set, bool build)
2236 {
2237 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2238 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2239 	unsigned int nid_ofs = nid - START_NID(nid);
2240 
2241 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2242 		return;
2243 
2244 	if (set) {
2245 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2246 			return;
2247 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2248 		nm_i->free_nid_count[nat_ofs]++;
2249 	} else {
2250 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2251 			return;
2252 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2253 		if (!build)
2254 			nm_i->free_nid_count[nat_ofs]--;
2255 	}
2256 }
2257 
2258 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)2259 static bool add_free_nid(struct f2fs_sb_info *sbi,
2260 				nid_t nid, bool build, bool update)
2261 {
2262 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2263 	struct free_nid *i, *e;
2264 	struct nat_entry *ne;
2265 	int err = -EINVAL;
2266 	bool ret = false;
2267 
2268 	/* 0 nid should not be used */
2269 	if (unlikely(nid == 0))
2270 		return false;
2271 
2272 	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2273 		return false;
2274 
2275 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2276 	i->nid = nid;
2277 	i->state = FREE_NID;
2278 
2279 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2280 
2281 	spin_lock(&nm_i->nid_list_lock);
2282 
2283 	if (build) {
2284 		/*
2285 		 *   Thread A             Thread B
2286 		 *  - f2fs_create
2287 		 *   - f2fs_new_inode
2288 		 *    - f2fs_alloc_nid
2289 		 *     - __insert_nid_to_list(PREALLOC_NID)
2290 		 *                     - f2fs_balance_fs_bg
2291 		 *                      - f2fs_build_free_nids
2292 		 *                       - __f2fs_build_free_nids
2293 		 *                        - scan_nat_page
2294 		 *                         - add_free_nid
2295 		 *                          - __lookup_nat_cache
2296 		 *  - f2fs_add_link
2297 		 *   - f2fs_init_inode_metadata
2298 		 *    - f2fs_new_inode_page
2299 		 *     - f2fs_new_node_page
2300 		 *      - set_node_addr
2301 		 *  - f2fs_alloc_nid_done
2302 		 *   - __remove_nid_from_list(PREALLOC_NID)
2303 		 *                         - __insert_nid_to_list(FREE_NID)
2304 		 */
2305 		ne = __lookup_nat_cache(nm_i, nid);
2306 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2307 				nat_get_blkaddr(ne) != NULL_ADDR))
2308 			goto err_out;
2309 
2310 		e = __lookup_free_nid_list(nm_i, nid);
2311 		if (e) {
2312 			if (e->state == FREE_NID)
2313 				ret = true;
2314 			goto err_out;
2315 		}
2316 	}
2317 	ret = true;
2318 	err = __insert_free_nid(sbi, i);
2319 err_out:
2320 	if (update) {
2321 		update_free_nid_bitmap(sbi, nid, ret, build);
2322 		if (!build)
2323 			nm_i->available_nids++;
2324 	}
2325 	spin_unlock(&nm_i->nid_list_lock);
2326 	radix_tree_preload_end();
2327 
2328 	if (err)
2329 		kmem_cache_free(free_nid_slab, i);
2330 	return ret;
2331 }
2332 
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)2333 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2334 {
2335 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2336 	struct free_nid *i;
2337 	bool need_free = false;
2338 
2339 	spin_lock(&nm_i->nid_list_lock);
2340 	i = __lookup_free_nid_list(nm_i, nid);
2341 	if (i && i->state == FREE_NID) {
2342 		__remove_free_nid(sbi, i, FREE_NID);
2343 		need_free = true;
2344 	}
2345 	spin_unlock(&nm_i->nid_list_lock);
2346 
2347 	if (need_free)
2348 		kmem_cache_free(free_nid_slab, i);
2349 }
2350 
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)2351 static int scan_nat_page(struct f2fs_sb_info *sbi,
2352 			struct page *nat_page, nid_t start_nid)
2353 {
2354 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2355 	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2356 	block_t blk_addr;
2357 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2358 	int i;
2359 
2360 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2361 
2362 	i = start_nid % NAT_ENTRY_PER_BLOCK;
2363 
2364 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2365 		if (unlikely(start_nid >= nm_i->max_nid))
2366 			break;
2367 
2368 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2369 
2370 		if (blk_addr == NEW_ADDR)
2371 			return -EINVAL;
2372 
2373 		if (blk_addr == NULL_ADDR) {
2374 			add_free_nid(sbi, start_nid, true, true);
2375 		} else {
2376 			spin_lock(&NM_I(sbi)->nid_list_lock);
2377 			update_free_nid_bitmap(sbi, start_nid, false, true);
2378 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2379 		}
2380 	}
2381 
2382 	return 0;
2383 }
2384 
scan_curseg_cache(struct f2fs_sb_info * sbi)2385 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2386 {
2387 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2388 	struct f2fs_journal *journal = curseg->journal;
2389 	int i;
2390 
2391 	down_read(&curseg->journal_rwsem);
2392 	for (i = 0; i < nats_in_cursum(journal); i++) {
2393 		block_t addr;
2394 		nid_t nid;
2395 
2396 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2397 		nid = le32_to_cpu(nid_in_journal(journal, i));
2398 		if (addr == NULL_ADDR)
2399 			add_free_nid(sbi, nid, true, false);
2400 		else
2401 			remove_free_nid(sbi, nid);
2402 	}
2403 	up_read(&curseg->journal_rwsem);
2404 }
2405 
scan_free_nid_bits(struct f2fs_sb_info * sbi)2406 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2407 {
2408 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2409 	unsigned int i, idx;
2410 	nid_t nid;
2411 
2412 	f2fs_down_read(&nm_i->nat_tree_lock);
2413 
2414 	for (i = 0; i < nm_i->nat_blocks; i++) {
2415 		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2416 			continue;
2417 		if (!nm_i->free_nid_count[i])
2418 			continue;
2419 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2420 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2421 						NAT_ENTRY_PER_BLOCK, idx);
2422 			if (idx >= NAT_ENTRY_PER_BLOCK)
2423 				break;
2424 
2425 			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2426 			add_free_nid(sbi, nid, true, false);
2427 
2428 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2429 				goto out;
2430 		}
2431 	}
2432 out:
2433 	scan_curseg_cache(sbi);
2434 
2435 	f2fs_up_read(&nm_i->nat_tree_lock);
2436 }
2437 
__f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2438 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2439 						bool sync, bool mount)
2440 {
2441 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2442 	int i = 0, ret;
2443 	nid_t nid = nm_i->next_scan_nid;
2444 
2445 	if (unlikely(nid >= nm_i->max_nid))
2446 		nid = 0;
2447 
2448 	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2449 		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2450 
2451 	/* Enough entries */
2452 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2453 		return 0;
2454 
2455 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2456 		return 0;
2457 
2458 	if (!mount) {
2459 		/* try to find free nids in free_nid_bitmap */
2460 		scan_free_nid_bits(sbi);
2461 
2462 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2463 			return 0;
2464 	}
2465 
2466 	/* readahead nat pages to be scanned */
2467 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2468 							META_NAT, true);
2469 
2470 	f2fs_down_read(&nm_i->nat_tree_lock);
2471 
2472 	while (1) {
2473 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2474 						nm_i->nat_block_bitmap)) {
2475 			struct page *page = get_current_nat_page(sbi, nid);
2476 
2477 			if (IS_ERR(page)) {
2478 				ret = PTR_ERR(page);
2479 			} else {
2480 				ret = scan_nat_page(sbi, page, nid);
2481 				f2fs_put_page(page, 1);
2482 			}
2483 
2484 			if (ret) {
2485 				f2fs_up_read(&nm_i->nat_tree_lock);
2486 				f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2487 				return ret;
2488 			}
2489 		}
2490 
2491 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2492 		if (unlikely(nid >= nm_i->max_nid))
2493 			nid = 0;
2494 
2495 		if (++i >= FREE_NID_PAGES)
2496 			break;
2497 	}
2498 
2499 	/* go to the next free nat pages to find free nids abundantly */
2500 	nm_i->next_scan_nid = nid;
2501 
2502 	/* find free nids from current sum_pages */
2503 	scan_curseg_cache(sbi);
2504 
2505 	f2fs_up_read(&nm_i->nat_tree_lock);
2506 
2507 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2508 					nm_i->ra_nid_pages, META_NAT, false);
2509 
2510 	return 0;
2511 }
2512 
f2fs_build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2513 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2514 {
2515 	int ret;
2516 
2517 	mutex_lock(&NM_I(sbi)->build_lock);
2518 	ret = __f2fs_build_free_nids(sbi, sync, mount);
2519 	mutex_unlock(&NM_I(sbi)->build_lock);
2520 
2521 	return ret;
2522 }
2523 
2524 /*
2525  * If this function returns success, caller can obtain a new nid
2526  * from second parameter of this function.
2527  * The returned nid could be used ino as well as nid when inode is created.
2528  */
f2fs_alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2529 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2530 {
2531 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2532 	struct free_nid *i = NULL;
2533 retry:
2534 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2535 		f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2536 		return false;
2537 	}
2538 
2539 	spin_lock(&nm_i->nid_list_lock);
2540 
2541 	if (unlikely(nm_i->available_nids == 0)) {
2542 		spin_unlock(&nm_i->nid_list_lock);
2543 		return false;
2544 	}
2545 
2546 	/* We should not use stale free nids created by f2fs_build_free_nids */
2547 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2548 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2549 		i = list_first_entry(&nm_i->free_nid_list,
2550 					struct free_nid, list);
2551 		*nid = i->nid;
2552 
2553 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2554 		nm_i->available_nids--;
2555 
2556 		update_free_nid_bitmap(sbi, *nid, false, false);
2557 
2558 		spin_unlock(&nm_i->nid_list_lock);
2559 		return true;
2560 	}
2561 	spin_unlock(&nm_i->nid_list_lock);
2562 
2563 	/* Let's scan nat pages and its caches to get free nids */
2564 	if (!f2fs_build_free_nids(sbi, true, false))
2565 		goto retry;
2566 	return false;
2567 }
2568 
2569 /*
2570  * f2fs_alloc_nid() should be called prior to this function.
2571  */
f2fs_alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2572 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2573 {
2574 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2575 	struct free_nid *i;
2576 
2577 	spin_lock(&nm_i->nid_list_lock);
2578 	i = __lookup_free_nid_list(nm_i, nid);
2579 	f2fs_bug_on(sbi, !i);
2580 	__remove_free_nid(sbi, i, PREALLOC_NID);
2581 	spin_unlock(&nm_i->nid_list_lock);
2582 
2583 	kmem_cache_free(free_nid_slab, i);
2584 }
2585 
2586 /*
2587  * f2fs_alloc_nid() should be called prior to this function.
2588  */
f2fs_alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2589 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2590 {
2591 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2592 	struct free_nid *i;
2593 	bool need_free = false;
2594 
2595 	if (!nid)
2596 		return;
2597 
2598 	spin_lock(&nm_i->nid_list_lock);
2599 	i = __lookup_free_nid_list(nm_i, nid);
2600 	f2fs_bug_on(sbi, !i);
2601 
2602 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2603 		__remove_free_nid(sbi, i, PREALLOC_NID);
2604 		need_free = true;
2605 	} else {
2606 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2607 	}
2608 
2609 	nm_i->available_nids++;
2610 
2611 	update_free_nid_bitmap(sbi, nid, true, false);
2612 
2613 	spin_unlock(&nm_i->nid_list_lock);
2614 
2615 	if (need_free)
2616 		kmem_cache_free(free_nid_slab, i);
2617 }
2618 
f2fs_try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2619 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2620 {
2621 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2622 	int nr = nr_shrink;
2623 
2624 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2625 		return 0;
2626 
2627 	if (!mutex_trylock(&nm_i->build_lock))
2628 		return 0;
2629 
2630 	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2631 		struct free_nid *i, *next;
2632 		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2633 
2634 		spin_lock(&nm_i->nid_list_lock);
2635 		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2636 			if (!nr_shrink || !batch ||
2637 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2638 				break;
2639 			__remove_free_nid(sbi, i, FREE_NID);
2640 			kmem_cache_free(free_nid_slab, i);
2641 			nr_shrink--;
2642 			batch--;
2643 		}
2644 		spin_unlock(&nm_i->nid_list_lock);
2645 	}
2646 
2647 	mutex_unlock(&nm_i->build_lock);
2648 
2649 	return nr - nr_shrink;
2650 }
2651 
f2fs_recover_inline_xattr(struct inode * inode,struct page * page)2652 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2653 {
2654 	void *src_addr, *dst_addr;
2655 	size_t inline_size;
2656 	struct page *ipage;
2657 	struct f2fs_inode *ri;
2658 
2659 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2660 	if (IS_ERR(ipage))
2661 		return PTR_ERR(ipage);
2662 
2663 	ri = F2FS_INODE(page);
2664 	if (ri->i_inline & F2FS_INLINE_XATTR) {
2665 		if (!f2fs_has_inline_xattr(inode)) {
2666 			set_inode_flag(inode, FI_INLINE_XATTR);
2667 			stat_inc_inline_xattr(inode);
2668 		}
2669 	} else {
2670 		if (f2fs_has_inline_xattr(inode)) {
2671 			stat_dec_inline_xattr(inode);
2672 			clear_inode_flag(inode, FI_INLINE_XATTR);
2673 		}
2674 		goto update_inode;
2675 	}
2676 
2677 	dst_addr = inline_xattr_addr(inode, ipage);
2678 	src_addr = inline_xattr_addr(inode, page);
2679 	inline_size = inline_xattr_size(inode);
2680 
2681 	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2682 	memcpy(dst_addr, src_addr, inline_size);
2683 update_inode:
2684 	f2fs_update_inode(inode, ipage);
2685 	f2fs_put_page(ipage, 1);
2686 	return 0;
2687 }
2688 
f2fs_recover_xattr_data(struct inode * inode,struct page * page)2689 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2690 {
2691 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2692 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2693 	nid_t new_xnid;
2694 	struct dnode_of_data dn;
2695 	struct node_info ni;
2696 	struct page *xpage;
2697 	int err;
2698 
2699 	if (!prev_xnid)
2700 		goto recover_xnid;
2701 
2702 	/* 1: invalidate the previous xattr nid */
2703 	err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2704 	if (err)
2705 		return err;
2706 
2707 	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2708 	dec_valid_node_count(sbi, inode, false);
2709 	set_node_addr(sbi, &ni, NULL_ADDR, false);
2710 
2711 recover_xnid:
2712 	/* 2: update xattr nid in inode */
2713 	if (!f2fs_alloc_nid(sbi, &new_xnid))
2714 		return -ENOSPC;
2715 
2716 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2717 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2718 	if (IS_ERR(xpage)) {
2719 		f2fs_alloc_nid_failed(sbi, new_xnid);
2720 		return PTR_ERR(xpage);
2721 	}
2722 
2723 	f2fs_alloc_nid_done(sbi, new_xnid);
2724 	f2fs_update_inode_page(inode);
2725 
2726 	/* 3: update and set xattr node page dirty */
2727 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2728 
2729 	set_page_dirty(xpage);
2730 	f2fs_put_page(xpage, 1);
2731 
2732 	return 0;
2733 }
2734 
f2fs_recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2735 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2736 {
2737 	struct f2fs_inode *src, *dst;
2738 	nid_t ino = ino_of_node(page);
2739 	struct node_info old_ni, new_ni;
2740 	struct page *ipage;
2741 	int err;
2742 
2743 	err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2744 	if (err)
2745 		return err;
2746 
2747 	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2748 		return -EINVAL;
2749 retry:
2750 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2751 	if (!ipage) {
2752 		congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2753 		goto retry;
2754 	}
2755 
2756 	/* Should not use this inode from free nid list */
2757 	remove_free_nid(sbi, ino);
2758 
2759 	if (!PageUptodate(ipage))
2760 		SetPageUptodate(ipage);
2761 	fill_node_footer(ipage, ino, ino, 0, true);
2762 	set_cold_node(ipage, false);
2763 
2764 	src = F2FS_INODE(page);
2765 	dst = F2FS_INODE(ipage);
2766 
2767 	memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2768 	dst->i_size = 0;
2769 	dst->i_blocks = cpu_to_le64(1);
2770 	dst->i_links = cpu_to_le32(1);
2771 	dst->i_xattr_nid = 0;
2772 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2773 	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2774 		dst->i_extra_isize = src->i_extra_isize;
2775 
2776 		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2777 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2778 							i_inline_xattr_size))
2779 			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2780 
2781 		if (f2fs_sb_has_project_quota(sbi) &&
2782 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2783 								i_projid))
2784 			dst->i_projid = src->i_projid;
2785 
2786 		if (f2fs_sb_has_inode_crtime(sbi) &&
2787 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2788 							i_crtime_nsec)) {
2789 			dst->i_crtime = src->i_crtime;
2790 			dst->i_crtime_nsec = src->i_crtime_nsec;
2791 		}
2792 	}
2793 
2794 	new_ni = old_ni;
2795 	new_ni.ino = ino;
2796 
2797 	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2798 		WARN_ON(1);
2799 	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2800 	inc_valid_inode_count(sbi);
2801 	set_page_dirty(ipage);
2802 	f2fs_put_page(ipage, 1);
2803 	return 0;
2804 }
2805 
f2fs_restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2806 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2807 			unsigned int segno, struct f2fs_summary_block *sum)
2808 {
2809 	struct f2fs_node *rn;
2810 	struct f2fs_summary *sum_entry;
2811 	block_t addr;
2812 	int i, idx, last_offset, nrpages;
2813 
2814 	/* scan the node segment */
2815 	last_offset = sbi->blocks_per_seg;
2816 	addr = START_BLOCK(sbi, segno);
2817 	sum_entry = &sum->entries[0];
2818 
2819 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2820 		nrpages = min(last_offset - i, BIO_MAX_PAGES);
2821 
2822 		/* readahead node pages */
2823 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2824 
2825 		for (idx = addr; idx < addr + nrpages; idx++) {
2826 			struct page *page = f2fs_get_tmp_page(sbi, idx);
2827 
2828 			if (IS_ERR(page))
2829 				return PTR_ERR(page);
2830 
2831 			rn = F2FS_NODE(page);
2832 			sum_entry->nid = rn->footer.nid;
2833 			sum_entry->version = 0;
2834 			sum_entry->ofs_in_node = 0;
2835 			sum_entry++;
2836 			f2fs_put_page(page, 1);
2837 		}
2838 
2839 		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2840 							addr + nrpages);
2841 	}
2842 	return 0;
2843 }
2844 
remove_nats_in_journal(struct f2fs_sb_info * sbi)2845 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2846 {
2847 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2848 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2849 	struct f2fs_journal *journal = curseg->journal;
2850 	int i;
2851 
2852 	down_write(&curseg->journal_rwsem);
2853 	for (i = 0; i < nats_in_cursum(journal); i++) {
2854 		struct nat_entry *ne;
2855 		struct f2fs_nat_entry raw_ne;
2856 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2857 
2858 		if (f2fs_check_nid_range(sbi, nid))
2859 			continue;
2860 
2861 		raw_ne = nat_in_journal(journal, i);
2862 
2863 		ne = __lookup_nat_cache(nm_i, nid);
2864 		if (!ne) {
2865 			ne = __alloc_nat_entry(nid, true);
2866 			__init_nat_entry(nm_i, ne, &raw_ne, true);
2867 		}
2868 
2869 		/*
2870 		 * if a free nat in journal has not been used after last
2871 		 * checkpoint, we should remove it from available nids,
2872 		 * since later we will add it again.
2873 		 */
2874 		if (!get_nat_flag(ne, IS_DIRTY) &&
2875 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2876 			spin_lock(&nm_i->nid_list_lock);
2877 			nm_i->available_nids--;
2878 			spin_unlock(&nm_i->nid_list_lock);
2879 		}
2880 
2881 		__set_nat_cache_dirty(nm_i, ne);
2882 	}
2883 	update_nats_in_cursum(journal, -i);
2884 	up_write(&curseg->journal_rwsem);
2885 }
2886 
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2887 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2888 						struct list_head *head, int max)
2889 {
2890 	struct nat_entry_set *cur;
2891 
2892 	if (nes->entry_cnt >= max)
2893 		goto add_out;
2894 
2895 	list_for_each_entry(cur, head, set_list) {
2896 		if (cur->entry_cnt >= nes->entry_cnt) {
2897 			list_add(&nes->set_list, cur->set_list.prev);
2898 			return;
2899 		}
2900 	}
2901 add_out:
2902 	list_add_tail(&nes->set_list, head);
2903 }
2904 
__update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2905 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2906 						struct page *page)
2907 {
2908 	struct f2fs_nm_info *nm_i = NM_I(sbi);
2909 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2910 	struct f2fs_nat_block *nat_blk = page_address(page);
2911 	int valid = 0;
2912 	int i = 0;
2913 
2914 	if (!enabled_nat_bits(sbi, NULL))
2915 		return;
2916 
2917 	if (nat_index == 0) {
2918 		valid = 1;
2919 		i = 1;
2920 	}
2921 	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2922 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2923 			valid++;
2924 	}
2925 	if (valid == 0) {
2926 		__set_bit_le(nat_index, nm_i->empty_nat_bits);
2927 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2928 		return;
2929 	}
2930 
2931 	__clear_bit_le(nat_index, nm_i->empty_nat_bits);
2932 	if (valid == NAT_ENTRY_PER_BLOCK)
2933 		__set_bit_le(nat_index, nm_i->full_nat_bits);
2934 	else
2935 		__clear_bit_le(nat_index, nm_i->full_nat_bits);
2936 }
2937 
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)2938 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2939 		struct nat_entry_set *set, struct cp_control *cpc)
2940 {
2941 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2942 	struct f2fs_journal *journal = curseg->journal;
2943 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2944 	bool to_journal = true;
2945 	struct f2fs_nat_block *nat_blk;
2946 	struct nat_entry *ne, *cur;
2947 	struct page *page = NULL;
2948 
2949 	/*
2950 	 * there are two steps to flush nat entries:
2951 	 * #1, flush nat entries to journal in current hot data summary block.
2952 	 * #2, flush nat entries to nat page.
2953 	 */
2954 	if (enabled_nat_bits(sbi, cpc) ||
2955 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2956 		to_journal = false;
2957 
2958 	if (to_journal) {
2959 		down_write(&curseg->journal_rwsem);
2960 	} else {
2961 		page = get_next_nat_page(sbi, start_nid);
2962 		if (IS_ERR(page))
2963 			return PTR_ERR(page);
2964 
2965 		nat_blk = page_address(page);
2966 		f2fs_bug_on(sbi, !nat_blk);
2967 	}
2968 
2969 	/* flush dirty nats in nat entry set */
2970 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2971 		struct f2fs_nat_entry *raw_ne;
2972 		nid_t nid = nat_get_nid(ne);
2973 		int offset;
2974 
2975 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2976 
2977 		if (to_journal) {
2978 			offset = f2fs_lookup_journal_in_cursum(journal,
2979 							NAT_JOURNAL, nid, 1);
2980 			f2fs_bug_on(sbi, offset < 0);
2981 			raw_ne = &nat_in_journal(journal, offset);
2982 			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2983 		} else {
2984 			raw_ne = &nat_blk->entries[nid - start_nid];
2985 		}
2986 		raw_nat_from_node_info(raw_ne, &ne->ni);
2987 		nat_reset_flag(ne);
2988 		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
2989 		if (nat_get_blkaddr(ne) == NULL_ADDR) {
2990 			add_free_nid(sbi, nid, false, true);
2991 		} else {
2992 			spin_lock(&NM_I(sbi)->nid_list_lock);
2993 			update_free_nid_bitmap(sbi, nid, false, false);
2994 			spin_unlock(&NM_I(sbi)->nid_list_lock);
2995 		}
2996 	}
2997 
2998 	if (to_journal) {
2999 		up_write(&curseg->journal_rwsem);
3000 	} else {
3001 		__update_nat_bits(sbi, start_nid, page);
3002 		f2fs_put_page(page, 1);
3003 	}
3004 
3005 	/* Allow dirty nats by node block allocation in write_begin */
3006 	if (!set->entry_cnt) {
3007 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3008 		kmem_cache_free(nat_entry_set_slab, set);
3009 	}
3010 	return 0;
3011 }
3012 
3013 /*
3014  * This function is called during the checkpointing process.
3015  */
f2fs_flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)3016 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3017 {
3018 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3019 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3020 	struct f2fs_journal *journal = curseg->journal;
3021 	struct nat_entry_set *setvec[SETVEC_SIZE];
3022 	struct nat_entry_set *set, *tmp;
3023 	unsigned int found;
3024 	nid_t set_idx = 0;
3025 	LIST_HEAD(sets);
3026 	int err = 0;
3027 
3028 	/*
3029 	 * during unmount, let's flush nat_bits before checking
3030 	 * nat_cnt[DIRTY_NAT].
3031 	 */
3032 	if (enabled_nat_bits(sbi, cpc)) {
3033 		f2fs_down_write(&nm_i->nat_tree_lock);
3034 		remove_nats_in_journal(sbi);
3035 		f2fs_up_write(&nm_i->nat_tree_lock);
3036 	}
3037 
3038 	if (!nm_i->nat_cnt[DIRTY_NAT])
3039 		return 0;
3040 
3041 	f2fs_down_write(&nm_i->nat_tree_lock);
3042 
3043 	/*
3044 	 * if there are no enough space in journal to store dirty nat
3045 	 * entries, remove all entries from journal and merge them
3046 	 * into nat entry set.
3047 	 */
3048 	if (enabled_nat_bits(sbi, cpc) ||
3049 		!__has_cursum_space(journal,
3050 			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3051 		remove_nats_in_journal(sbi);
3052 
3053 	while ((found = __gang_lookup_nat_set(nm_i,
3054 					set_idx, SETVEC_SIZE, setvec))) {
3055 		unsigned idx;
3056 
3057 		set_idx = setvec[found - 1]->set + 1;
3058 		for (idx = 0; idx < found; idx++)
3059 			__adjust_nat_entry_set(setvec[idx], &sets,
3060 						MAX_NAT_JENTRIES(journal));
3061 	}
3062 
3063 	/* flush dirty nats in nat entry set */
3064 	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3065 		err = __flush_nat_entry_set(sbi, set, cpc);
3066 		if (err)
3067 			break;
3068 	}
3069 
3070 	f2fs_up_write(&nm_i->nat_tree_lock);
3071 	/* Allow dirty nats by node block allocation in write_begin */
3072 
3073 	return err;
3074 }
3075 
__get_nat_bitmaps(struct f2fs_sb_info * sbi)3076 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3077 {
3078 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3079 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3080 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3081 	unsigned int i;
3082 	__u64 cp_ver = cur_cp_version(ckpt);
3083 	block_t nat_bits_addr;
3084 
3085 	if (!enabled_nat_bits(sbi, NULL))
3086 		return 0;
3087 
3088 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3089 	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3090 			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3091 	if (!nm_i->nat_bits)
3092 		return -ENOMEM;
3093 
3094 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3095 						nm_i->nat_bits_blocks;
3096 	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3097 		struct page *page;
3098 
3099 		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3100 		if (IS_ERR(page))
3101 			return PTR_ERR(page);
3102 
3103 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3104 					page_address(page), F2FS_BLKSIZE);
3105 		f2fs_put_page(page, 1);
3106 	}
3107 
3108 	cp_ver |= (cur_cp_crc(ckpt) << 32);
3109 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3110 		disable_nat_bits(sbi, true);
3111 		return 0;
3112 	}
3113 
3114 	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3115 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3116 
3117 	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3118 	return 0;
3119 }
3120 
load_free_nid_bitmap(struct f2fs_sb_info * sbi)3121 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3122 {
3123 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3124 	unsigned int i = 0;
3125 	nid_t nid, last_nid;
3126 
3127 	if (!enabled_nat_bits(sbi, NULL))
3128 		return;
3129 
3130 	for (i = 0; i < nm_i->nat_blocks; i++) {
3131 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3132 		if (i >= nm_i->nat_blocks)
3133 			break;
3134 
3135 		__set_bit_le(i, nm_i->nat_block_bitmap);
3136 
3137 		nid = i * NAT_ENTRY_PER_BLOCK;
3138 		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3139 
3140 		spin_lock(&NM_I(sbi)->nid_list_lock);
3141 		for (; nid < last_nid; nid++)
3142 			update_free_nid_bitmap(sbi, nid, true, true);
3143 		spin_unlock(&NM_I(sbi)->nid_list_lock);
3144 	}
3145 
3146 	for (i = 0; i < nm_i->nat_blocks; i++) {
3147 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3148 		if (i >= nm_i->nat_blocks)
3149 			break;
3150 
3151 		__set_bit_le(i, nm_i->nat_block_bitmap);
3152 	}
3153 }
3154 
init_node_manager(struct f2fs_sb_info * sbi)3155 static int init_node_manager(struct f2fs_sb_info *sbi)
3156 {
3157 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3158 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3159 	unsigned char *version_bitmap;
3160 	unsigned int nat_segs;
3161 	int err;
3162 
3163 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3164 
3165 	/* segment_count_nat includes pair segment so divide to 2. */
3166 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3167 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3168 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3169 
3170 	/* not used nids: 0, node, meta, (and root counted as valid node) */
3171 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3172 						F2FS_RESERVED_NODE_NUM;
3173 	nm_i->nid_cnt[FREE_NID] = 0;
3174 	nm_i->nid_cnt[PREALLOC_NID] = 0;
3175 	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3176 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3177 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3178 
3179 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3180 	INIT_LIST_HEAD(&nm_i->free_nid_list);
3181 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3182 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3183 	INIT_LIST_HEAD(&nm_i->nat_entries);
3184 	spin_lock_init(&nm_i->nat_list_lock);
3185 
3186 	mutex_init(&nm_i->build_lock);
3187 	spin_lock_init(&nm_i->nid_list_lock);
3188 	init_f2fs_rwsem(&nm_i->nat_tree_lock);
3189 
3190 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3191 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3192 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3193 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3194 					GFP_KERNEL);
3195 	if (!nm_i->nat_bitmap)
3196 		return -ENOMEM;
3197 
3198 	err = __get_nat_bitmaps(sbi);
3199 	if (err)
3200 		return err;
3201 
3202 #ifdef CONFIG_F2FS_CHECK_FS
3203 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3204 					GFP_KERNEL);
3205 	if (!nm_i->nat_bitmap_mir)
3206 		return -ENOMEM;
3207 #endif
3208 
3209 	return 0;
3210 }
3211 
init_free_nid_cache(struct f2fs_sb_info * sbi)3212 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3213 {
3214 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3215 	int i;
3216 
3217 	nm_i->free_nid_bitmap =
3218 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3219 					      nm_i->nat_blocks),
3220 			      GFP_KERNEL);
3221 	if (!nm_i->free_nid_bitmap)
3222 		return -ENOMEM;
3223 
3224 	for (i = 0; i < nm_i->nat_blocks; i++) {
3225 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3226 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3227 		if (!nm_i->free_nid_bitmap[i])
3228 			return -ENOMEM;
3229 	}
3230 
3231 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3232 								GFP_KERNEL);
3233 	if (!nm_i->nat_block_bitmap)
3234 		return -ENOMEM;
3235 
3236 	nm_i->free_nid_count =
3237 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3238 					      nm_i->nat_blocks),
3239 			      GFP_KERNEL);
3240 	if (!nm_i->free_nid_count)
3241 		return -ENOMEM;
3242 	return 0;
3243 }
3244 
f2fs_build_node_manager(struct f2fs_sb_info * sbi)3245 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3246 {
3247 	int err;
3248 
3249 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3250 							GFP_KERNEL);
3251 	if (!sbi->nm_info)
3252 		return -ENOMEM;
3253 
3254 	err = init_node_manager(sbi);
3255 	if (err)
3256 		return err;
3257 
3258 	err = init_free_nid_cache(sbi);
3259 	if (err)
3260 		return err;
3261 
3262 	/* load free nid status from nat_bits table */
3263 	load_free_nid_bitmap(sbi);
3264 
3265 	return f2fs_build_free_nids(sbi, true, true);
3266 }
3267 
f2fs_destroy_node_manager(struct f2fs_sb_info * sbi)3268 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3269 {
3270 	struct f2fs_nm_info *nm_i = NM_I(sbi);
3271 	struct free_nid *i, *next_i;
3272 	struct nat_entry *natvec[NATVEC_SIZE];
3273 	struct nat_entry_set *setvec[SETVEC_SIZE];
3274 	nid_t nid = 0;
3275 	unsigned int found;
3276 
3277 	if (!nm_i)
3278 		return;
3279 
3280 	/* destroy free nid list */
3281 	spin_lock(&nm_i->nid_list_lock);
3282 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3283 		__remove_free_nid(sbi, i, FREE_NID);
3284 		spin_unlock(&nm_i->nid_list_lock);
3285 		kmem_cache_free(free_nid_slab, i);
3286 		spin_lock(&nm_i->nid_list_lock);
3287 	}
3288 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3289 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3290 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3291 	spin_unlock(&nm_i->nid_list_lock);
3292 
3293 	/* destroy nat cache */
3294 	f2fs_down_write(&nm_i->nat_tree_lock);
3295 	while ((found = __gang_lookup_nat_cache(nm_i,
3296 					nid, NATVEC_SIZE, natvec))) {
3297 		unsigned idx;
3298 
3299 		nid = nat_get_nid(natvec[found - 1]) + 1;
3300 		for (idx = 0; idx < found; idx++) {
3301 			spin_lock(&nm_i->nat_list_lock);
3302 			list_del(&natvec[idx]->list);
3303 			spin_unlock(&nm_i->nat_list_lock);
3304 
3305 			__del_from_nat_cache(nm_i, natvec[idx]);
3306 		}
3307 	}
3308 	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3309 
3310 	/* destroy nat set cache */
3311 	nid = 0;
3312 	while ((found = __gang_lookup_nat_set(nm_i,
3313 					nid, SETVEC_SIZE, setvec))) {
3314 		unsigned idx;
3315 
3316 		nid = setvec[found - 1]->set + 1;
3317 		for (idx = 0; idx < found; idx++) {
3318 			/* entry_cnt is not zero, when cp_error was occurred */
3319 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3320 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3321 			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3322 		}
3323 	}
3324 	f2fs_up_write(&nm_i->nat_tree_lock);
3325 
3326 	kvfree(nm_i->nat_block_bitmap);
3327 	if (nm_i->free_nid_bitmap) {
3328 		int i;
3329 
3330 		for (i = 0; i < nm_i->nat_blocks; i++)
3331 			kvfree(nm_i->free_nid_bitmap[i]);
3332 		kvfree(nm_i->free_nid_bitmap);
3333 	}
3334 	kvfree(nm_i->free_nid_count);
3335 
3336 	kvfree(nm_i->nat_bitmap);
3337 	kvfree(nm_i->nat_bits);
3338 #ifdef CONFIG_F2FS_CHECK_FS
3339 	kvfree(nm_i->nat_bitmap_mir);
3340 #endif
3341 	sbi->nm_info = NULL;
3342 	kfree(nm_i);
3343 }
3344 
f2fs_create_node_manager_caches(void)3345 int __init f2fs_create_node_manager_caches(void)
3346 {
3347 	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3348 			sizeof(struct nat_entry));
3349 	if (!nat_entry_slab)
3350 		goto fail;
3351 
3352 	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3353 			sizeof(struct free_nid));
3354 	if (!free_nid_slab)
3355 		goto destroy_nat_entry;
3356 
3357 	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3358 			sizeof(struct nat_entry_set));
3359 	if (!nat_entry_set_slab)
3360 		goto destroy_free_nid;
3361 
3362 	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3363 			sizeof(struct fsync_node_entry));
3364 	if (!fsync_node_entry_slab)
3365 		goto destroy_nat_entry_set;
3366 	return 0;
3367 
3368 destroy_nat_entry_set:
3369 	kmem_cache_destroy(nat_entry_set_slab);
3370 destroy_free_nid:
3371 	kmem_cache_destroy(free_nid_slab);
3372 destroy_nat_entry:
3373 	kmem_cache_destroy(nat_entry_slab);
3374 fail:
3375 	return -ENOMEM;
3376 }
3377 
f2fs_destroy_node_manager_caches(void)3378 void f2fs_destroy_node_manager_caches(void)
3379 {
3380 	kmem_cache_destroy(fsync_node_entry_slab);
3381 	kmem_cache_destroy(nat_entry_set_slab);
3382 	kmem_cache_destroy(free_nid_slab);
3383 	kmem_cache_destroy(nat_entry_slab);
3384 }
3385