xref: /OK3568_Linux_fs/kernel/fs/f2fs/data.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/data.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/buffer_head.h>
11 #include <linux/mpage.h>
12 #include <linux/writeback.h>
13 #include <linux/backing-dev.h>
14 #include <linux/pagevec.h>
15 #include <linux/blkdev.h>
16 #include <linux/bio.h>
17 #include <linux/blk-crypto.h>
18 #include <linux/swap.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22 #include <linux/sched/signal.h>
23 #include <linux/fiemap.h>
24 
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include <trace/events/f2fs.h>
29 #include <trace/events/android_fs.h>
30 
31 #define NUM_PREALLOC_POST_READ_CTXS	128
32 
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static struct kmem_cache *bio_entry_slab;
35 static mempool_t *bio_post_read_ctx_pool;
36 static struct bio_set f2fs_bioset;
37 
38 #define	F2FS_BIO_POOL_SIZE	NR_CURSEG_TYPE
39 
f2fs_init_bioset(void)40 int __init f2fs_init_bioset(void)
41 {
42 	if (bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 					0, BIOSET_NEED_BVECS))
44 		return -ENOMEM;
45 	return 0;
46 }
47 
f2fs_destroy_bioset(void)48 void f2fs_destroy_bioset(void)
49 {
50 	bioset_exit(&f2fs_bioset);
51 }
52 
__is_cp_guaranteed(struct page * page)53 static bool __is_cp_guaranteed(struct page *page)
54 {
55 	struct address_space *mapping = page->mapping;
56 	struct inode *inode;
57 	struct f2fs_sb_info *sbi;
58 
59 	if (!mapping)
60 		return false;
61 
62 	inode = mapping->host;
63 	sbi = F2FS_I_SB(inode);
64 
65 	if (inode->i_ino == F2FS_META_INO(sbi) ||
66 			inode->i_ino == F2FS_NODE_INO(sbi) ||
67 			S_ISDIR(inode->i_mode))
68 		return true;
69 
70 	if (f2fs_is_compressed_page(page))
71 		return false;
72 	if ((S_ISREG(inode->i_mode) &&
73 			(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
74 			page_private_gcing(page))
75 		return true;
76 	return false;
77 }
78 
__read_io_type(struct page * page)79 static enum count_type __read_io_type(struct page *page)
80 {
81 	struct address_space *mapping = page_file_mapping(page);
82 
83 	if (mapping) {
84 		struct inode *inode = mapping->host;
85 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
86 
87 		if (inode->i_ino == F2FS_META_INO(sbi))
88 			return F2FS_RD_META;
89 
90 		if (inode->i_ino == F2FS_NODE_INO(sbi))
91 			return F2FS_RD_NODE;
92 	}
93 	return F2FS_RD_DATA;
94 }
95 
96 /* postprocessing steps for read bios */
97 enum bio_post_read_step {
98 #ifdef CONFIG_FS_ENCRYPTION
99 	STEP_DECRYPT	= 1 << 0,
100 #else
101 	STEP_DECRYPT	= 0,	/* compile out the decryption-related code */
102 #endif
103 #ifdef CONFIG_F2FS_FS_COMPRESSION
104 	STEP_DECOMPRESS	= 1 << 1,
105 #else
106 	STEP_DECOMPRESS	= 0,	/* compile out the decompression-related code */
107 #endif
108 #ifdef CONFIG_FS_VERITY
109 	STEP_VERITY	= 1 << 2,
110 #else
111 	STEP_VERITY	= 0,	/* compile out the verity-related code */
112 #endif
113 };
114 
115 struct bio_post_read_ctx {
116 	struct bio *bio;
117 	struct f2fs_sb_info *sbi;
118 	struct work_struct work;
119 	unsigned int enabled_steps;
120 };
121 
f2fs_finish_read_bio(struct bio * bio,bool in_task)122 static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
123 {
124 	struct bio_vec *bv;
125 	struct bvec_iter_all iter_all;
126 
127 	/*
128 	 * Update and unlock the bio's pagecache pages, and put the
129 	 * decompression context for any compressed pages.
130 	 */
131 	bio_for_each_segment_all(bv, bio, iter_all) {
132 		struct page *page = bv->bv_page;
133 
134 		if (f2fs_is_compressed_page(page)) {
135 			if (bio->bi_status)
136 				f2fs_end_read_compressed_page(page, true, 0,
137 							in_task);
138 			f2fs_put_page_dic(page, in_task);
139 			continue;
140 		}
141 
142 		/* PG_error was set if decryption or verity failed. */
143 		if (bio->bi_status || PageError(page)) {
144 			ClearPageUptodate(page);
145 			/* will re-read again later */
146 			ClearPageError(page);
147 		} else {
148 			SetPageUptodate(page);
149 		}
150 		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
151 		unlock_page(page);
152 	}
153 
154 	if (bio->bi_private)
155 		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
156 	bio_put(bio);
157 }
158 
f2fs_verify_bio(struct work_struct * work)159 static void f2fs_verify_bio(struct work_struct *work)
160 {
161 	struct bio_post_read_ctx *ctx =
162 		container_of(work, struct bio_post_read_ctx, work);
163 	struct bio *bio = ctx->bio;
164 	bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
165 
166 	/*
167 	 * fsverity_verify_bio() may call readpages() again, and while verity
168 	 * will be disabled for this, decryption and/or decompression may still
169 	 * be needed, resulting in another bio_post_read_ctx being allocated.
170 	 * So to prevent deadlocks we need to release the current ctx to the
171 	 * mempool first.  This assumes that verity is the last post-read step.
172 	 */
173 	mempool_free(ctx, bio_post_read_ctx_pool);
174 	bio->bi_private = NULL;
175 
176 	/*
177 	 * Verify the bio's pages with fs-verity.  Exclude compressed pages,
178 	 * as those were handled separately by f2fs_end_read_compressed_page().
179 	 */
180 	if (may_have_compressed_pages) {
181 		struct bio_vec *bv;
182 		struct bvec_iter_all iter_all;
183 
184 		bio_for_each_segment_all(bv, bio, iter_all) {
185 			struct page *page = bv->bv_page;
186 
187 			if (!f2fs_is_compressed_page(page) &&
188 			    !PageError(page) && !fsverity_verify_page(page))
189 				SetPageError(page);
190 		}
191 	} else {
192 		fsverity_verify_bio(bio);
193 	}
194 
195 	f2fs_finish_read_bio(bio, true);
196 }
197 
198 /*
199  * If the bio's data needs to be verified with fs-verity, then enqueue the
200  * verity work for the bio.  Otherwise finish the bio now.
201  *
202  * Note that to avoid deadlocks, the verity work can't be done on the
203  * decryption/decompression workqueue.  This is because verifying the data pages
204  * can involve reading verity metadata pages from the file, and these verity
205  * metadata pages may be encrypted and/or compressed.
206  */
f2fs_verify_and_finish_bio(struct bio * bio,bool in_task)207 static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
208 {
209 	struct bio_post_read_ctx *ctx = bio->bi_private;
210 
211 	if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
212 		INIT_WORK(&ctx->work, f2fs_verify_bio);
213 		fsverity_enqueue_verify_work(&ctx->work);
214 	} else {
215 		f2fs_finish_read_bio(bio, in_task);
216 	}
217 }
218 
219 /*
220  * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
221  * remaining page was read by @ctx->bio.
222  *
223  * Note that a bio may span clusters (even a mix of compressed and uncompressed
224  * clusters) or be for just part of a cluster.  STEP_DECOMPRESS just indicates
225  * that the bio includes at least one compressed page.  The actual decompression
226  * is done on a per-cluster basis, not a per-bio basis.
227  */
f2fs_handle_step_decompress(struct bio_post_read_ctx * ctx,bool in_task)228 static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
229 		bool in_task)
230 {
231 	struct bio_vec *bv;
232 	struct bvec_iter_all iter_all;
233 	bool all_compressed = true;
234 	block_t blkaddr = SECTOR_TO_BLOCK(ctx->bio->bi_iter.bi_sector);
235 
236 	bio_for_each_segment_all(bv, ctx->bio, iter_all) {
237 		struct page *page = bv->bv_page;
238 
239 		/* PG_error was set if decryption failed. */
240 		if (f2fs_is_compressed_page(page))
241 			f2fs_end_read_compressed_page(page, PageError(page),
242 						blkaddr, in_task);
243 		else
244 			all_compressed = false;
245 
246 		blkaddr++;
247 	}
248 
249 	/*
250 	 * Optimization: if all the bio's pages are compressed, then scheduling
251 	 * the per-bio verity work is unnecessary, as verity will be fully
252 	 * handled at the compression cluster level.
253 	 */
254 	if (all_compressed)
255 		ctx->enabled_steps &= ~STEP_VERITY;
256 }
257 
f2fs_post_read_work(struct work_struct * work)258 static void f2fs_post_read_work(struct work_struct *work)
259 {
260 	struct bio_post_read_ctx *ctx =
261 		container_of(work, struct bio_post_read_ctx, work);
262 
263 	if (ctx->enabled_steps & STEP_DECRYPT)
264 		fscrypt_decrypt_bio(ctx->bio);
265 
266 	if (ctx->enabled_steps & STEP_DECOMPRESS)
267 		f2fs_handle_step_decompress(ctx, true);
268 
269 	f2fs_verify_and_finish_bio(ctx->bio, true);
270 }
271 
f2fs_read_end_io(struct bio * bio)272 static void f2fs_read_end_io(struct bio *bio)
273 {
274 	struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
275 	struct bio_post_read_ctx *ctx = bio->bi_private;
276 	bool intask = in_task();
277 
278 	if (time_to_inject(sbi, FAULT_READ_IO)) {
279 		f2fs_show_injection_info(sbi, FAULT_READ_IO);
280 		bio->bi_status = BLK_STS_IOERR;
281 	}
282 
283 	if (bio->bi_status) {
284 		f2fs_finish_read_bio(bio, intask);
285 		return;
286 	}
287 
288 	if (ctx) {
289 		unsigned int enabled_steps = ctx->enabled_steps &
290 					(STEP_DECRYPT | STEP_DECOMPRESS);
291 
292 		/*
293 		 * If we have only decompression step between decompression and
294 		 * decrypt, we don't need post processing for this.
295 		 */
296 		if (enabled_steps == STEP_DECOMPRESS &&
297 				!f2fs_low_mem_mode(sbi)) {
298 			f2fs_handle_step_decompress(ctx, intask);
299 		} else if (enabled_steps) {
300 			INIT_WORK(&ctx->work, f2fs_post_read_work);
301 			queue_work(ctx->sbi->post_read_wq, &ctx->work);
302 			return;
303 		}
304 	}
305 
306 	f2fs_verify_and_finish_bio(bio, intask);
307 }
308 
f2fs_write_end_io(struct bio * bio)309 static void f2fs_write_end_io(struct bio *bio)
310 {
311 	struct f2fs_sb_info *sbi = bio->bi_private;
312 	struct bio_vec *bvec;
313 	struct bvec_iter_all iter_all;
314 
315 	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
316 		f2fs_show_injection_info(sbi, FAULT_WRITE_IO);
317 		bio->bi_status = BLK_STS_IOERR;
318 	}
319 
320 	bio_for_each_segment_all(bvec, bio, iter_all) {
321 		struct page *page = bvec->bv_page;
322 		enum count_type type = WB_DATA_TYPE(page);
323 
324 		if (page_private_dummy(page)) {
325 			clear_page_private_dummy(page);
326 			unlock_page(page);
327 			mempool_free(page, sbi->write_io_dummy);
328 
329 			if (unlikely(bio->bi_status))
330 				f2fs_stop_checkpoint(sbi, true,
331 						STOP_CP_REASON_WRITE_FAIL);
332 			continue;
333 		}
334 
335 		fscrypt_finalize_bounce_page(&page);
336 
337 #ifdef CONFIG_F2FS_FS_COMPRESSION
338 		if (f2fs_is_compressed_page(page)) {
339 			f2fs_compress_write_end_io(bio, page);
340 			continue;
341 		}
342 #endif
343 
344 		if (unlikely(bio->bi_status)) {
345 			mapping_set_error(page->mapping, -EIO);
346 			if (type == F2FS_WB_CP_DATA)
347 				f2fs_stop_checkpoint(sbi, true,
348 						STOP_CP_REASON_WRITE_FAIL);
349 		}
350 
351 		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
352 					page->index != nid_of_node(page));
353 
354 		dec_page_count(sbi, type);
355 		if (f2fs_in_warm_node_list(sbi, page))
356 			f2fs_del_fsync_node_entry(sbi, page);
357 		clear_page_private_gcing(page);
358 		end_page_writeback(page);
359 	}
360 	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
361 				wq_has_sleeper(&sbi->cp_wait))
362 		wake_up(&sbi->cp_wait);
363 
364 	bio_put(bio);
365 }
366 
f2fs_target_device(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)367 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
368 				block_t blk_addr, struct bio *bio)
369 {
370 	struct block_device *bdev = sbi->sb->s_bdev;
371 	int i;
372 
373 	if (f2fs_is_multi_device(sbi)) {
374 		for (i = 0; i < sbi->s_ndevs; i++) {
375 			if (FDEV(i).start_blk <= blk_addr &&
376 			    FDEV(i).end_blk >= blk_addr) {
377 				blk_addr -= FDEV(i).start_blk;
378 				bdev = FDEV(i).bdev;
379 				break;
380 			}
381 		}
382 	}
383 	if (bio) {
384 		bio_set_dev(bio, bdev);
385 		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
386 	}
387 	return bdev;
388 }
389 
f2fs_target_device_index(struct f2fs_sb_info * sbi,block_t blkaddr)390 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
391 {
392 	int i;
393 
394 	if (!f2fs_is_multi_device(sbi))
395 		return 0;
396 
397 	for (i = 0; i < sbi->s_ndevs; i++)
398 		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
399 			return i;
400 	return 0;
401 }
402 
403 /*
404  * Return true, if pre_bio's bdev is same as its target device.
405  */
__same_bdev(struct f2fs_sb_info * sbi,block_t blk_addr,struct bio * bio)406 static bool __same_bdev(struct f2fs_sb_info *sbi,
407 				block_t blk_addr, struct bio *bio)
408 {
409 	struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
410 	return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
411 }
412 
__bio_alloc(struct f2fs_io_info * fio,int npages)413 static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
414 {
415 	struct f2fs_sb_info *sbi = fio->sbi;
416 	struct bio *bio;
417 
418 	bio = bio_alloc_bioset(GFP_NOIO, npages, &f2fs_bioset);
419 
420 	f2fs_target_device(sbi, fio->new_blkaddr, bio);
421 	if (is_read_io(fio->op)) {
422 		bio->bi_end_io = f2fs_read_end_io;
423 		bio->bi_private = NULL;
424 	} else {
425 		bio->bi_end_io = f2fs_write_end_io;
426 		bio->bi_private = sbi;
427 		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
428 						fio->type, fio->temp);
429 	}
430 	if (fio->io_wbc)
431 		wbc_init_bio(fio->io_wbc, bio);
432 
433 	return bio;
434 }
435 
f2fs_set_bio_crypt_ctx(struct bio * bio,const struct inode * inode,pgoff_t first_idx,const struct f2fs_io_info * fio,gfp_t gfp_mask)436 static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
437 				  pgoff_t first_idx,
438 				  const struct f2fs_io_info *fio,
439 				  gfp_t gfp_mask)
440 {
441 	/*
442 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
443 	 * read/write raw data without encryption.
444 	 */
445 	if (!fio || !fio->encrypted_page)
446 		fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
447 	else if (fscrypt_inode_should_skip_dm_default_key(inode))
448 		bio_set_skip_dm_default_key(bio);
449 }
450 
f2fs_crypt_mergeable_bio(struct bio * bio,const struct inode * inode,pgoff_t next_idx,const struct f2fs_io_info * fio)451 static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
452 				     pgoff_t next_idx,
453 				     const struct f2fs_io_info *fio)
454 {
455 	/*
456 	 * The f2fs garbage collector sets ->encrypted_page when it wants to
457 	 * read/write raw data without encryption.
458 	 */
459 	if (fio && fio->encrypted_page)
460 		return !bio_has_crypt_ctx(bio) &&
461 			(bio_should_skip_dm_default_key(bio) ==
462 			 fscrypt_inode_should_skip_dm_default_key(inode));
463 
464 	return fscrypt_mergeable_bio(bio, inode, next_idx);
465 }
466 
__submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)467 static inline void __submit_bio(struct f2fs_sb_info *sbi,
468 				struct bio *bio, enum page_type type)
469 {
470 	if (!is_read_io(bio_op(bio))) {
471 		unsigned int start;
472 
473 		if (type != DATA && type != NODE)
474 			goto submit_io;
475 
476 		if (f2fs_lfs_mode(sbi) && current->plug)
477 			blk_finish_plug(current->plug);
478 
479 		if (!F2FS_IO_ALIGNED(sbi))
480 			goto submit_io;
481 
482 		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
483 		start %= F2FS_IO_SIZE(sbi);
484 
485 		if (start == 0)
486 			goto submit_io;
487 
488 		/* fill dummy pages */
489 		for (; start < F2FS_IO_SIZE(sbi); start++) {
490 			struct page *page =
491 				mempool_alloc(sbi->write_io_dummy,
492 					      GFP_NOIO | __GFP_NOFAIL);
493 			f2fs_bug_on(sbi, !page);
494 
495 			lock_page(page);
496 
497 			zero_user_segment(page, 0, PAGE_SIZE);
498 			set_page_private_dummy(page);
499 
500 			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
501 				f2fs_bug_on(sbi, 1);
502 		}
503 		/*
504 		 * In the NODE case, we lose next block address chain. So, we
505 		 * need to do checkpoint in f2fs_sync_file.
506 		 */
507 		if (type == NODE)
508 			set_sbi_flag(sbi, SBI_NEED_CP);
509 	}
510 submit_io:
511 	if (is_read_io(bio_op(bio)))
512 		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
513 	else
514 		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
515 	submit_bio(bio);
516 }
517 
f2fs_submit_bio(struct f2fs_sb_info * sbi,struct bio * bio,enum page_type type)518 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
519 				struct bio *bio, enum page_type type)
520 {
521 	__submit_bio(sbi, bio, type);
522 }
523 
__attach_io_flag(struct f2fs_io_info * fio)524 static void __attach_io_flag(struct f2fs_io_info *fio)
525 {
526 	struct f2fs_sb_info *sbi = fio->sbi;
527 	unsigned int temp_mask = (1 << NR_TEMP_TYPE) - 1;
528 	unsigned int io_flag, fua_flag, meta_flag;
529 
530 	if (fio->type == DATA)
531 		io_flag = sbi->data_io_flag;
532 	else if (fio->type == NODE)
533 		io_flag = sbi->node_io_flag;
534 	else
535 		return;
536 
537 	fua_flag = io_flag & temp_mask;
538 	meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
539 
540 	/*
541 	 * data/node io flag bits per temp:
542 	 *      REQ_META     |      REQ_FUA      |
543 	 *    5 |    4 |   3 |    2 |    1 |   0 |
544 	 * Cold | Warm | Hot | Cold | Warm | Hot |
545 	 */
546 	if ((1 << fio->temp) & meta_flag)
547 		fio->op_flags |= REQ_META;
548 	if ((1 << fio->temp) & fua_flag)
549 		fio->op_flags |= REQ_FUA;
550 }
551 
__submit_merged_bio(struct f2fs_bio_info * io)552 static void __submit_merged_bio(struct f2fs_bio_info *io)
553 {
554 	struct f2fs_io_info *fio = &io->fio;
555 
556 	if (!io->bio)
557 		return;
558 
559 	__attach_io_flag(fio);
560 	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
561 
562 	if (is_read_io(fio->op))
563 		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
564 	else
565 		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
566 
567 	__submit_bio(io->sbi, io->bio, fio->type);
568 	io->bio = NULL;
569 }
570 
__has_merged_page(struct bio * bio,struct inode * inode,struct page * page,nid_t ino)571 static bool __has_merged_page(struct bio *bio, struct inode *inode,
572 						struct page *page, nid_t ino)
573 {
574 	struct bio_vec *bvec;
575 	struct bvec_iter_all iter_all;
576 
577 	if (!bio)
578 		return false;
579 
580 	if (!inode && !page && !ino)
581 		return true;
582 
583 	bio_for_each_segment_all(bvec, bio, iter_all) {
584 		struct page *target = bvec->bv_page;
585 
586 		if (fscrypt_is_bounce_page(target)) {
587 			target = fscrypt_pagecache_page(target);
588 			if (IS_ERR(target))
589 				continue;
590 		}
591 		if (f2fs_is_compressed_page(target)) {
592 			target = f2fs_compress_control_page(target);
593 			if (IS_ERR(target))
594 				continue;
595 		}
596 
597 		if (inode && inode == target->mapping->host)
598 			return true;
599 		if (page && page == target)
600 			return true;
601 		if (ino && ino == ino_of_node(target))
602 			return true;
603 	}
604 
605 	return false;
606 }
607 
__f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type,enum temp_type temp)608 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
609 				enum page_type type, enum temp_type temp)
610 {
611 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
612 	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
613 
614 	f2fs_down_write(&io->io_rwsem);
615 
616 	/* change META to META_FLUSH in the checkpoint procedure */
617 	if (type >= META_FLUSH) {
618 		io->fio.type = META_FLUSH;
619 		io->fio.op = REQ_OP_WRITE;
620 		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
621 		if (!test_opt(sbi, NOBARRIER))
622 			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
623 	}
624 	__submit_merged_bio(io);
625 	f2fs_up_write(&io->io_rwsem);
626 }
627 
__submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type,bool force)628 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
629 				struct inode *inode, struct page *page,
630 				nid_t ino, enum page_type type, bool force)
631 {
632 	enum temp_type temp;
633 	bool ret = true;
634 
635 	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
636 		if (!force)	{
637 			enum page_type btype = PAGE_TYPE_OF_BIO(type);
638 			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
639 
640 			f2fs_down_read(&io->io_rwsem);
641 			ret = __has_merged_page(io->bio, inode, page, ino);
642 			f2fs_up_read(&io->io_rwsem);
643 		}
644 		if (ret)
645 			__f2fs_submit_merged_write(sbi, type, temp);
646 
647 		/* TODO: use HOT temp only for meta pages now. */
648 		if (type >= META)
649 			break;
650 	}
651 }
652 
f2fs_submit_merged_write(struct f2fs_sb_info * sbi,enum page_type type)653 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
654 {
655 	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
656 }
657 
f2fs_submit_merged_write_cond(struct f2fs_sb_info * sbi,struct inode * inode,struct page * page,nid_t ino,enum page_type type)658 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
659 				struct inode *inode, struct page *page,
660 				nid_t ino, enum page_type type)
661 {
662 	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
663 }
664 
f2fs_flush_merged_writes(struct f2fs_sb_info * sbi)665 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
666 {
667 	f2fs_submit_merged_write(sbi, DATA);
668 	f2fs_submit_merged_write(sbi, NODE);
669 	f2fs_submit_merged_write(sbi, META);
670 }
671 
672 /*
673  * Fill the locked page with data located in the block address.
674  * A caller needs to unlock the page on failure.
675  */
f2fs_submit_page_bio(struct f2fs_io_info * fio)676 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
677 {
678 	struct bio *bio;
679 	struct page *page = fio->encrypted_page ?
680 			fio->encrypted_page : fio->page;
681 
682 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
683 			fio->is_por ? META_POR : (__is_meta_io(fio) ?
684 			META_GENERIC : DATA_GENERIC_ENHANCE)))
685 		return -EFSCORRUPTED;
686 
687 	trace_f2fs_submit_page_bio(page, fio);
688 
689 	/* Allocate a new bio */
690 	bio = __bio_alloc(fio, 1);
691 
692 	f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
693 			       fio->page->index, fio, GFP_NOIO);
694 
695 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
696 		bio_put(bio);
697 		return -EFAULT;
698 	}
699 
700 	if (fio->io_wbc && !is_read_io(fio->op))
701 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
702 
703 	__attach_io_flag(fio);
704 	bio_set_op_attrs(bio, fio->op, fio->op_flags);
705 
706 	inc_page_count(fio->sbi, is_read_io(fio->op) ?
707 			__read_io_type(page): WB_DATA_TYPE(fio->page));
708 
709 	__submit_bio(fio->sbi, bio, fio->type);
710 	return 0;
711 }
712 
page_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,block_t last_blkaddr,block_t cur_blkaddr)713 static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
714 				block_t last_blkaddr, block_t cur_blkaddr)
715 {
716 	if (unlikely(sbi->max_io_bytes &&
717 			bio->bi_iter.bi_size >= sbi->max_io_bytes))
718 		return false;
719 	if (last_blkaddr + 1 != cur_blkaddr)
720 		return false;
721 	return __same_bdev(sbi, cur_blkaddr, bio);
722 }
723 
io_type_is_mergeable(struct f2fs_bio_info * io,struct f2fs_io_info * fio)724 static bool io_type_is_mergeable(struct f2fs_bio_info *io,
725 						struct f2fs_io_info *fio)
726 {
727 	if (io->fio.op != fio->op)
728 		return false;
729 	return io->fio.op_flags == fio->op_flags;
730 }
731 
io_is_mergeable(struct f2fs_sb_info * sbi,struct bio * bio,struct f2fs_bio_info * io,struct f2fs_io_info * fio,block_t last_blkaddr,block_t cur_blkaddr)732 static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
733 					struct f2fs_bio_info *io,
734 					struct f2fs_io_info *fio,
735 					block_t last_blkaddr,
736 					block_t cur_blkaddr)
737 {
738 	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
739 		unsigned int filled_blocks =
740 				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
741 		unsigned int io_size = F2FS_IO_SIZE(sbi);
742 		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
743 
744 		/* IOs in bio is aligned and left space of vectors is not enough */
745 		if (!(filled_blocks % io_size) && left_vecs < io_size)
746 			return false;
747 	}
748 	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
749 		return false;
750 	return io_type_is_mergeable(io, fio);
751 }
752 
add_bio_entry(struct f2fs_sb_info * sbi,struct bio * bio,struct page * page,enum temp_type temp)753 static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
754 				struct page *page, enum temp_type temp)
755 {
756 	struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
757 	struct bio_entry *be;
758 
759 	be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
760 	be->bio = bio;
761 	bio_get(bio);
762 
763 	if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
764 		f2fs_bug_on(sbi, 1);
765 
766 	f2fs_down_write(&io->bio_list_lock);
767 	list_add_tail(&be->list, &io->bio_list);
768 	f2fs_up_write(&io->bio_list_lock);
769 }
770 
del_bio_entry(struct bio_entry * be)771 static void del_bio_entry(struct bio_entry *be)
772 {
773 	list_del(&be->list);
774 	kmem_cache_free(bio_entry_slab, be);
775 }
776 
add_ipu_page(struct f2fs_io_info * fio,struct bio ** bio,struct page * page)777 static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
778 							struct page *page)
779 {
780 	struct f2fs_sb_info *sbi = fio->sbi;
781 	enum temp_type temp;
782 	bool found = false;
783 	int ret = -EAGAIN;
784 
785 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
786 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
787 		struct list_head *head = &io->bio_list;
788 		struct bio_entry *be;
789 
790 		f2fs_down_write(&io->bio_list_lock);
791 		list_for_each_entry(be, head, list) {
792 			if (be->bio != *bio)
793 				continue;
794 
795 			found = true;
796 
797 			f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
798 							    *fio->last_block,
799 							    fio->new_blkaddr));
800 			if (f2fs_crypt_mergeable_bio(*bio,
801 					fio->page->mapping->host,
802 					fio->page->index, fio) &&
803 			    bio_add_page(*bio, page, PAGE_SIZE, 0) ==
804 					PAGE_SIZE) {
805 				ret = 0;
806 				break;
807 			}
808 
809 			/* page can't be merged into bio; submit the bio */
810 			del_bio_entry(be);
811 			__submit_bio(sbi, *bio, DATA);
812 			break;
813 		}
814 		f2fs_up_write(&io->bio_list_lock);
815 	}
816 
817 	if (ret) {
818 		bio_put(*bio);
819 		*bio = NULL;
820 	}
821 
822 	return ret;
823 }
824 
f2fs_submit_merged_ipu_write(struct f2fs_sb_info * sbi,struct bio ** bio,struct page * page)825 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
826 					struct bio **bio, struct page *page)
827 {
828 	enum temp_type temp;
829 	bool found = false;
830 	struct bio *target = bio ? *bio : NULL;
831 
832 	for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
833 		struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
834 		struct list_head *head = &io->bio_list;
835 		struct bio_entry *be;
836 
837 		if (list_empty(head))
838 			continue;
839 
840 		f2fs_down_read(&io->bio_list_lock);
841 		list_for_each_entry(be, head, list) {
842 			if (target)
843 				found = (target == be->bio);
844 			else
845 				found = __has_merged_page(be->bio, NULL,
846 								page, 0);
847 			if (found)
848 				break;
849 		}
850 		f2fs_up_read(&io->bio_list_lock);
851 
852 		if (!found)
853 			continue;
854 
855 		found = false;
856 
857 		f2fs_down_write(&io->bio_list_lock);
858 		list_for_each_entry(be, head, list) {
859 			if (target)
860 				found = (target == be->bio);
861 			else
862 				found = __has_merged_page(be->bio, NULL,
863 								page, 0);
864 			if (found) {
865 				target = be->bio;
866 				del_bio_entry(be);
867 				break;
868 			}
869 		}
870 		f2fs_up_write(&io->bio_list_lock);
871 	}
872 
873 	if (found)
874 		__submit_bio(sbi, target, DATA);
875 	if (bio && *bio) {
876 		bio_put(*bio);
877 		*bio = NULL;
878 	}
879 }
880 
f2fs_merge_page_bio(struct f2fs_io_info * fio)881 int f2fs_merge_page_bio(struct f2fs_io_info *fio)
882 {
883 	struct bio *bio = *fio->bio;
884 	struct page *page = fio->encrypted_page ?
885 			fio->encrypted_page : fio->page;
886 
887 	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
888 			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
889 		return -EFSCORRUPTED;
890 
891 	trace_f2fs_submit_page_bio(page, fio);
892 
893 	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
894 						fio->new_blkaddr))
895 		f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
896 alloc_new:
897 	if (!bio) {
898 		bio = __bio_alloc(fio, BIO_MAX_PAGES);
899 		__attach_io_flag(fio);
900 		f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
901 				       fio->page->index, fio, GFP_NOIO);
902 		bio_set_op_attrs(bio, fio->op, fio->op_flags);
903 
904 		add_bio_entry(fio->sbi, bio, page, fio->temp);
905 	} else {
906 		if (add_ipu_page(fio, &bio, page))
907 			goto alloc_new;
908 	}
909 
910 	if (fio->io_wbc)
911 		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
912 
913 	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
914 
915 	*fio->last_block = fio->new_blkaddr;
916 	*fio->bio = bio;
917 
918 	return 0;
919 }
920 
f2fs_submit_page_write(struct f2fs_io_info * fio)921 void f2fs_submit_page_write(struct f2fs_io_info *fio)
922 {
923 	struct f2fs_sb_info *sbi = fio->sbi;
924 	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
925 	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
926 	struct page *bio_page;
927 
928 	f2fs_bug_on(sbi, is_read_io(fio->op));
929 
930 	f2fs_down_write(&io->io_rwsem);
931 next:
932 	if (fio->in_list) {
933 		spin_lock(&io->io_lock);
934 		if (list_empty(&io->io_list)) {
935 			spin_unlock(&io->io_lock);
936 			goto out;
937 		}
938 		fio = list_first_entry(&io->io_list,
939 						struct f2fs_io_info, list);
940 		list_del(&fio->list);
941 		spin_unlock(&io->io_lock);
942 	}
943 
944 	verify_fio_blkaddr(fio);
945 
946 	if (fio->encrypted_page)
947 		bio_page = fio->encrypted_page;
948 	else if (fio->compressed_page)
949 		bio_page = fio->compressed_page;
950 	else
951 		bio_page = fio->page;
952 
953 	/* set submitted = true as a return value */
954 	fio->submitted = true;
955 
956 	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
957 
958 	if (io->bio &&
959 	    (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
960 			      fio->new_blkaddr) ||
961 	     !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
962 				       bio_page->index, fio)))
963 		__submit_merged_bio(io);
964 alloc_new:
965 	if (io->bio == NULL) {
966 		if (F2FS_IO_ALIGNED(sbi) &&
967 				(fio->type == DATA || fio->type == NODE) &&
968 				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
969 			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
970 			fio->retry = true;
971 			goto skip;
972 		}
973 		io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
974 		f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
975 				       bio_page->index, fio, GFP_NOIO);
976 		io->fio = *fio;
977 	}
978 
979 	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
980 		__submit_merged_bio(io);
981 		goto alloc_new;
982 	}
983 
984 	if (fio->io_wbc)
985 		wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
986 
987 	io->last_block_in_bio = fio->new_blkaddr;
988 
989 	trace_f2fs_submit_page_write(fio->page, fio);
990 skip:
991 	if (fio->in_list)
992 		goto next;
993 out:
994 	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
995 				!f2fs_is_checkpoint_ready(sbi))
996 		__submit_merged_bio(io);
997 	f2fs_up_write(&io->io_rwsem);
998 }
999 
f2fs_grab_read_bio(struct inode * inode,block_t blkaddr,unsigned nr_pages,unsigned op_flag,pgoff_t first_idx,bool for_write)1000 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1001 				      unsigned nr_pages, unsigned op_flag,
1002 				      pgoff_t first_idx, bool for_write)
1003 {
1004 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1005 	struct bio *bio;
1006 	struct bio_post_read_ctx *ctx;
1007 	unsigned int post_read_steps = 0;
1008 
1009 	bio = bio_alloc_bioset(for_write ? GFP_NOIO : GFP_KERNEL,
1010 			       min_t(int, nr_pages, BIO_MAX_PAGES),
1011 			       &f2fs_bioset);
1012 	if (!bio)
1013 		return ERR_PTR(-ENOMEM);
1014 
1015 	f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1016 
1017 	f2fs_target_device(sbi, blkaddr, bio);
1018 	bio->bi_end_io = f2fs_read_end_io;
1019 	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
1020 
1021 	if (fscrypt_inode_uses_fs_layer_crypto(inode))
1022 		post_read_steps |= STEP_DECRYPT;
1023 
1024 	if (f2fs_need_verity(inode, first_idx))
1025 		post_read_steps |= STEP_VERITY;
1026 
1027 	/*
1028 	 * STEP_DECOMPRESS is handled specially, since a compressed file might
1029 	 * contain both compressed and uncompressed clusters.  We'll allocate a
1030 	 * bio_post_read_ctx if the file is compressed, but the caller is
1031 	 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1032 	 */
1033 
1034 	if (post_read_steps || f2fs_compressed_file(inode)) {
1035 		/* Due to the mempool, this never fails. */
1036 		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1037 		ctx->bio = bio;
1038 		ctx->sbi = sbi;
1039 		ctx->enabled_steps = post_read_steps;
1040 		bio->bi_private = ctx;
1041 	}
1042 
1043 	return bio;
1044 }
1045 
1046 /* This can handle encryption stuffs */
f2fs_submit_page_read(struct inode * inode,struct page * page,block_t blkaddr,int op_flags,bool for_write)1047 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1048 				 block_t blkaddr, int op_flags, bool for_write)
1049 {
1050 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1051 	struct bio *bio;
1052 
1053 	bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1054 					page->index, for_write);
1055 	if (IS_ERR(bio))
1056 		return PTR_ERR(bio);
1057 
1058 	/* wait for GCed page writeback via META_MAPPING */
1059 	f2fs_wait_on_block_writeback(inode, blkaddr);
1060 
1061 	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1062 		bio_put(bio);
1063 		return -EFAULT;
1064 	}
1065 	ClearPageError(page);
1066 	inc_page_count(sbi, F2FS_RD_DATA);
1067 	f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1068 	__submit_bio(sbi, bio, DATA);
1069 	return 0;
1070 }
1071 
__set_data_blkaddr(struct dnode_of_data * dn)1072 static void __set_data_blkaddr(struct dnode_of_data *dn)
1073 {
1074 	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1075 	__le32 *addr_array;
1076 	int base = 0;
1077 
1078 	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1079 		base = get_extra_isize(dn->inode);
1080 
1081 	/* Get physical address of data block */
1082 	addr_array = blkaddr_in_node(rn);
1083 	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1084 }
1085 
1086 /*
1087  * Lock ordering for the change of data block address:
1088  * ->data_page
1089  *  ->node_page
1090  *    update block addresses in the node page
1091  */
f2fs_set_data_blkaddr(struct dnode_of_data * dn)1092 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1093 {
1094 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1095 	__set_data_blkaddr(dn);
1096 	if (set_page_dirty(dn->node_page))
1097 		dn->node_changed = true;
1098 }
1099 
f2fs_update_data_blkaddr(struct dnode_of_data * dn,block_t blkaddr)1100 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1101 {
1102 	dn->data_blkaddr = blkaddr;
1103 	f2fs_set_data_blkaddr(dn);
1104 	f2fs_update_read_extent_cache(dn);
1105 }
1106 
1107 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
f2fs_reserve_new_blocks(struct dnode_of_data * dn,blkcnt_t count)1108 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1109 {
1110 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1111 	int err;
1112 
1113 	if (!count)
1114 		return 0;
1115 
1116 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1117 		return -EPERM;
1118 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1119 		return err;
1120 
1121 	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1122 						dn->ofs_in_node, count);
1123 
1124 	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1125 
1126 	for (; count > 0; dn->ofs_in_node++) {
1127 		block_t blkaddr = f2fs_data_blkaddr(dn);
1128 
1129 		if (blkaddr == NULL_ADDR) {
1130 			dn->data_blkaddr = NEW_ADDR;
1131 			__set_data_blkaddr(dn);
1132 			count--;
1133 		}
1134 	}
1135 
1136 	if (set_page_dirty(dn->node_page))
1137 		dn->node_changed = true;
1138 	return 0;
1139 }
1140 
1141 /* Should keep dn->ofs_in_node unchanged */
f2fs_reserve_new_block(struct dnode_of_data * dn)1142 int f2fs_reserve_new_block(struct dnode_of_data *dn)
1143 {
1144 	unsigned int ofs_in_node = dn->ofs_in_node;
1145 	int ret;
1146 
1147 	ret = f2fs_reserve_new_blocks(dn, 1);
1148 	dn->ofs_in_node = ofs_in_node;
1149 	return ret;
1150 }
1151 
f2fs_reserve_block(struct dnode_of_data * dn,pgoff_t index)1152 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1153 {
1154 	bool need_put = dn->inode_page ? false : true;
1155 	int err;
1156 
1157 	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1158 	if (err)
1159 		return err;
1160 
1161 	if (dn->data_blkaddr == NULL_ADDR)
1162 		err = f2fs_reserve_new_block(dn);
1163 	if (err || need_put)
1164 		f2fs_put_dnode(dn);
1165 	return err;
1166 }
1167 
f2fs_get_block(struct dnode_of_data * dn,pgoff_t index)1168 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
1169 {
1170 	struct extent_info ei = {0, };
1171 	struct inode *inode = dn->inode;
1172 
1173 	if (f2fs_lookup_read_extent_cache(inode, index, &ei)) {
1174 		dn->data_blkaddr = ei.blk + index - ei.fofs;
1175 		return 0;
1176 	}
1177 
1178 	return f2fs_reserve_block(dn, index);
1179 }
1180 
f2fs_get_read_data_page(struct inode * inode,pgoff_t index,int op_flags,bool for_write)1181 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1182 						int op_flags, bool for_write)
1183 {
1184 	struct address_space *mapping = inode->i_mapping;
1185 	struct dnode_of_data dn;
1186 	struct page *page;
1187 	struct extent_info ei = {0, };
1188 	int err;
1189 
1190 	page = f2fs_grab_cache_page(mapping, index, for_write);
1191 	if (!page)
1192 		return ERR_PTR(-ENOMEM);
1193 
1194 	if (f2fs_lookup_read_extent_cache(inode, index, &ei)) {
1195 		dn.data_blkaddr = ei.blk + index - ei.fofs;
1196 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1197 						DATA_GENERIC_ENHANCE_READ)) {
1198 			err = -EFSCORRUPTED;
1199 			goto put_err;
1200 		}
1201 		goto got_it;
1202 	}
1203 
1204 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1205 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1206 	if (err)
1207 		goto put_err;
1208 	f2fs_put_dnode(&dn);
1209 
1210 	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1211 		err = -ENOENT;
1212 		goto put_err;
1213 	}
1214 	if (dn.data_blkaddr != NEW_ADDR &&
1215 			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1216 						dn.data_blkaddr,
1217 						DATA_GENERIC_ENHANCE)) {
1218 		err = -EFSCORRUPTED;
1219 		goto put_err;
1220 	}
1221 got_it:
1222 	if (PageUptodate(page)) {
1223 		unlock_page(page);
1224 		return page;
1225 	}
1226 
1227 	/*
1228 	 * A new dentry page is allocated but not able to be written, since its
1229 	 * new inode page couldn't be allocated due to -ENOSPC.
1230 	 * In such the case, its blkaddr can be remained as NEW_ADDR.
1231 	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1232 	 * f2fs_init_inode_metadata.
1233 	 */
1234 	if (dn.data_blkaddr == NEW_ADDR) {
1235 		zero_user_segment(page, 0, PAGE_SIZE);
1236 		if (!PageUptodate(page))
1237 			SetPageUptodate(page);
1238 		unlock_page(page);
1239 		return page;
1240 	}
1241 
1242 	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1243 						op_flags, for_write);
1244 	if (err)
1245 		goto put_err;
1246 	return page;
1247 
1248 put_err:
1249 	f2fs_put_page(page, 1);
1250 	return ERR_PTR(err);
1251 }
1252 
f2fs_find_data_page(struct inode * inode,pgoff_t index)1253 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
1254 {
1255 	struct address_space *mapping = inode->i_mapping;
1256 	struct page *page;
1257 
1258 	page = find_get_page(mapping, index);
1259 	if (page && PageUptodate(page))
1260 		return page;
1261 	f2fs_put_page(page, 0);
1262 
1263 	page = f2fs_get_read_data_page(inode, index, 0, false);
1264 	if (IS_ERR(page))
1265 		return page;
1266 
1267 	if (PageUptodate(page))
1268 		return page;
1269 
1270 	wait_on_page_locked(page);
1271 	if (unlikely(!PageUptodate(page))) {
1272 		f2fs_put_page(page, 0);
1273 		return ERR_PTR(-EIO);
1274 	}
1275 	return page;
1276 }
1277 
1278 /*
1279  * If it tries to access a hole, return an error.
1280  * Because, the callers, functions in dir.c and GC, should be able to know
1281  * whether this page exists or not.
1282  */
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)1283 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1284 							bool for_write)
1285 {
1286 	struct address_space *mapping = inode->i_mapping;
1287 	struct page *page;
1288 repeat:
1289 	page = f2fs_get_read_data_page(inode, index, 0, for_write);
1290 	if (IS_ERR(page))
1291 		return page;
1292 
1293 	/* wait for read completion */
1294 	lock_page(page);
1295 	if (unlikely(page->mapping != mapping)) {
1296 		f2fs_put_page(page, 1);
1297 		goto repeat;
1298 	}
1299 	if (unlikely(!PageUptodate(page))) {
1300 		f2fs_put_page(page, 1);
1301 		return ERR_PTR(-EIO);
1302 	}
1303 	return page;
1304 }
1305 
1306 /*
1307  * Caller ensures that this data page is never allocated.
1308  * A new zero-filled data page is allocated in the page cache.
1309  *
1310  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1311  * f2fs_unlock_op().
1312  * Note that, ipage is set only by make_empty_dir, and if any error occur,
1313  * ipage should be released by this function.
1314  */
f2fs_get_new_data_page(struct inode * inode,struct page * ipage,pgoff_t index,bool new_i_size)1315 struct page *f2fs_get_new_data_page(struct inode *inode,
1316 		struct page *ipage, pgoff_t index, bool new_i_size)
1317 {
1318 	struct address_space *mapping = inode->i_mapping;
1319 	struct page *page;
1320 	struct dnode_of_data dn;
1321 	int err;
1322 
1323 	page = f2fs_grab_cache_page(mapping, index, true);
1324 	if (!page) {
1325 		/*
1326 		 * before exiting, we should make sure ipage will be released
1327 		 * if any error occur.
1328 		 */
1329 		f2fs_put_page(ipage, 1);
1330 		return ERR_PTR(-ENOMEM);
1331 	}
1332 
1333 	set_new_dnode(&dn, inode, ipage, NULL, 0);
1334 	err = f2fs_reserve_block(&dn, index);
1335 	if (err) {
1336 		f2fs_put_page(page, 1);
1337 		return ERR_PTR(err);
1338 	}
1339 	if (!ipage)
1340 		f2fs_put_dnode(&dn);
1341 
1342 	if (PageUptodate(page))
1343 		goto got_it;
1344 
1345 	if (dn.data_blkaddr == NEW_ADDR) {
1346 		zero_user_segment(page, 0, PAGE_SIZE);
1347 		if (!PageUptodate(page))
1348 			SetPageUptodate(page);
1349 	} else {
1350 		f2fs_put_page(page, 1);
1351 
1352 		/* if ipage exists, blkaddr should be NEW_ADDR */
1353 		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1354 		page = f2fs_get_lock_data_page(inode, index, true);
1355 		if (IS_ERR(page))
1356 			return page;
1357 	}
1358 got_it:
1359 	if (new_i_size && i_size_read(inode) <
1360 				((loff_t)(index + 1) << PAGE_SHIFT))
1361 		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1362 	return page;
1363 }
1364 
__allocate_data_block(struct dnode_of_data * dn,int seg_type)1365 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1366 {
1367 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1368 	struct f2fs_summary sum;
1369 	struct node_info ni;
1370 	block_t old_blkaddr;
1371 	blkcnt_t count = 1;
1372 	int err;
1373 
1374 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1375 		return -EPERM;
1376 
1377 	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1378 	if (err)
1379 		return err;
1380 
1381 	dn->data_blkaddr = f2fs_data_blkaddr(dn);
1382 	if (dn->data_blkaddr != NULL_ADDR)
1383 		goto alloc;
1384 
1385 	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1386 		return err;
1387 
1388 alloc:
1389 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1390 	old_blkaddr = dn->data_blkaddr;
1391 	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1392 				&sum, seg_type, NULL);
1393 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1394 		invalidate_mapping_pages(META_MAPPING(sbi),
1395 					old_blkaddr, old_blkaddr);
1396 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
1397 	}
1398 	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1399 
1400 	/*
1401 	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1402 	 * data from unwritten block via dio_read.
1403 	 */
1404 	return 0;
1405 }
1406 
f2fs_preallocate_blocks(struct kiocb * iocb,struct iov_iter * from)1407 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1408 {
1409 	struct inode *inode = file_inode(iocb->ki_filp);
1410 	struct f2fs_map_blocks map;
1411 	int flag;
1412 	int err = 0;
1413 	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1414 
1415 	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1416 	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1417 	if (map.m_len > map.m_lblk)
1418 		map.m_len -= map.m_lblk;
1419 	else
1420 		map.m_len = 0;
1421 
1422 	map.m_next_pgofs = NULL;
1423 	map.m_next_extent = NULL;
1424 	map.m_seg_type = NO_CHECK_TYPE;
1425 	map.m_may_create = true;
1426 
1427 	if (direct_io) {
1428 		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1429 		flag = f2fs_force_buffered_io(inode, iocb, from) ?
1430 					F2FS_GET_BLOCK_PRE_AIO :
1431 					F2FS_GET_BLOCK_PRE_DIO;
1432 		goto map_blocks;
1433 	}
1434 	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1435 		err = f2fs_convert_inline_inode(inode);
1436 		if (err)
1437 			return err;
1438 	}
1439 	if (f2fs_has_inline_data(inode))
1440 		return err;
1441 
1442 	flag = F2FS_GET_BLOCK_PRE_AIO;
1443 
1444 map_blocks:
1445 	err = f2fs_map_blocks(inode, &map, 1, flag);
1446 	if (map.m_len > 0 && err == -ENOSPC) {
1447 		if (!direct_io)
1448 			set_inode_flag(inode, FI_NO_PREALLOC);
1449 		err = 0;
1450 	}
1451 	return err;
1452 }
1453 
f2fs_do_map_lock(struct f2fs_sb_info * sbi,int flag,bool lock)1454 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1455 {
1456 	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1457 		if (lock)
1458 			f2fs_down_read(&sbi->node_change);
1459 		else
1460 			f2fs_up_read(&sbi->node_change);
1461 	} else {
1462 		if (lock)
1463 			f2fs_lock_op(sbi);
1464 		else
1465 			f2fs_unlock_op(sbi);
1466 	}
1467 }
1468 
1469 /*
1470  * f2fs_map_blocks() tries to find or build mapping relationship which
1471  * maps continuous logical blocks to physical blocks, and return such
1472  * info via f2fs_map_blocks structure.
1473  */
f2fs_map_blocks(struct inode * inode,struct f2fs_map_blocks * map,int create,int flag)1474 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1475 						int create, int flag)
1476 {
1477 	unsigned int maxblocks = map->m_len;
1478 	struct dnode_of_data dn;
1479 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1480 	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1481 	pgoff_t pgofs, end_offset, end;
1482 	int err = 0, ofs = 1;
1483 	unsigned int ofs_in_node, last_ofs_in_node;
1484 	blkcnt_t prealloc;
1485 	struct extent_info ei = {0, };
1486 	block_t blkaddr;
1487 	unsigned int start_pgofs;
1488 
1489 	if (!maxblocks)
1490 		return 0;
1491 
1492 	map->m_len = 0;
1493 	map->m_flags = 0;
1494 
1495 	/* it only supports block size == page size */
1496 	pgofs =	(pgoff_t)map->m_lblk;
1497 	end = pgofs + maxblocks;
1498 
1499 	if (!create && f2fs_lookup_read_extent_cache(inode, pgofs, &ei)) {
1500 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1501 							map->m_may_create)
1502 			goto next_dnode;
1503 
1504 		map->m_pblk = ei.blk + pgofs - ei.fofs;
1505 		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1506 		map->m_flags = F2FS_MAP_MAPPED;
1507 		if (map->m_next_extent)
1508 			*map->m_next_extent = pgofs + map->m_len;
1509 
1510 		/* for hardware encryption, but to avoid potential issue in future */
1511 		if (flag == F2FS_GET_BLOCK_DIO)
1512 			f2fs_wait_on_block_writeback_range(inode,
1513 						map->m_pblk, map->m_len);
1514 		goto out;
1515 	}
1516 
1517 next_dnode:
1518 	if (map->m_may_create)
1519 		f2fs_do_map_lock(sbi, flag, true);
1520 
1521 	/* When reading holes, we need its node page */
1522 	set_new_dnode(&dn, inode, NULL, NULL, 0);
1523 	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1524 	if (err) {
1525 		if (flag == F2FS_GET_BLOCK_BMAP)
1526 			map->m_pblk = 0;
1527 
1528 		if (err == -ENOENT) {
1529 			/*
1530 			 * There is one exceptional case that read_node_page()
1531 			 * may return -ENOENT due to filesystem has been
1532 			 * shutdown or cp_error, so force to convert error
1533 			 * number to EIO for such case.
1534 			 */
1535 			if (map->m_may_create &&
1536 				(is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1537 				f2fs_cp_error(sbi))) {
1538 				err = -EIO;
1539 				goto unlock_out;
1540 			}
1541 
1542 			err = 0;
1543 			if (map->m_next_pgofs)
1544 				*map->m_next_pgofs =
1545 					f2fs_get_next_page_offset(&dn, pgofs);
1546 			if (map->m_next_extent)
1547 				*map->m_next_extent =
1548 					f2fs_get_next_page_offset(&dn, pgofs);
1549 		}
1550 		goto unlock_out;
1551 	}
1552 
1553 	start_pgofs = pgofs;
1554 	prealloc = 0;
1555 	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1556 	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1557 
1558 next_block:
1559 	blkaddr = f2fs_data_blkaddr(&dn);
1560 
1561 	if (__is_valid_data_blkaddr(blkaddr) &&
1562 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1563 		err = -EFSCORRUPTED;
1564 		goto sync_out;
1565 	}
1566 
1567 	if (__is_valid_data_blkaddr(blkaddr)) {
1568 		/* use out-place-update for driect IO under LFS mode */
1569 		if (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO &&
1570 							map->m_may_create) {
1571 			err = __allocate_data_block(&dn, map->m_seg_type);
1572 			if (err)
1573 				goto sync_out;
1574 			blkaddr = dn.data_blkaddr;
1575 			set_inode_flag(inode, FI_APPEND_WRITE);
1576 		}
1577 	} else {
1578 		if (create) {
1579 			if (unlikely(f2fs_cp_error(sbi))) {
1580 				err = -EIO;
1581 				goto sync_out;
1582 			}
1583 			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1584 				if (blkaddr == NULL_ADDR) {
1585 					prealloc++;
1586 					last_ofs_in_node = dn.ofs_in_node;
1587 				}
1588 			} else {
1589 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1590 					flag != F2FS_GET_BLOCK_DIO);
1591 				err = __allocate_data_block(&dn,
1592 							map->m_seg_type);
1593 				if (!err)
1594 					set_inode_flag(inode, FI_APPEND_WRITE);
1595 			}
1596 			if (err)
1597 				goto sync_out;
1598 			map->m_flags |= F2FS_MAP_NEW;
1599 			blkaddr = dn.data_blkaddr;
1600 		} else {
1601 			if (flag == F2FS_GET_BLOCK_BMAP) {
1602 				map->m_pblk = 0;
1603 				goto sync_out;
1604 			}
1605 			if (flag == F2FS_GET_BLOCK_PRECACHE)
1606 				goto sync_out;
1607 			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1608 						blkaddr == NULL_ADDR) {
1609 				if (map->m_next_pgofs)
1610 					*map->m_next_pgofs = pgofs + 1;
1611 				goto sync_out;
1612 			}
1613 			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1614 				/* for defragment case */
1615 				if (map->m_next_pgofs)
1616 					*map->m_next_pgofs = pgofs + 1;
1617 				goto sync_out;
1618 			}
1619 		}
1620 	}
1621 
1622 	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1623 		goto skip;
1624 
1625 	if (map->m_len == 0) {
1626 		/* preallocated unwritten block should be mapped for fiemap. */
1627 		if (blkaddr == NEW_ADDR)
1628 			map->m_flags |= F2FS_MAP_UNWRITTEN;
1629 		map->m_flags |= F2FS_MAP_MAPPED;
1630 
1631 		map->m_pblk = blkaddr;
1632 		map->m_len = 1;
1633 	} else if ((map->m_pblk != NEW_ADDR &&
1634 			blkaddr == (map->m_pblk + ofs)) ||
1635 			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1636 			flag == F2FS_GET_BLOCK_PRE_DIO) {
1637 		ofs++;
1638 		map->m_len++;
1639 	} else {
1640 		goto sync_out;
1641 	}
1642 
1643 skip:
1644 	dn.ofs_in_node++;
1645 	pgofs++;
1646 
1647 	/* preallocate blocks in batch for one dnode page */
1648 	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1649 			(pgofs == end || dn.ofs_in_node == end_offset)) {
1650 
1651 		dn.ofs_in_node = ofs_in_node;
1652 		err = f2fs_reserve_new_blocks(&dn, prealloc);
1653 		if (err)
1654 			goto sync_out;
1655 
1656 		map->m_len += dn.ofs_in_node - ofs_in_node;
1657 		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1658 			err = -ENOSPC;
1659 			goto sync_out;
1660 		}
1661 		dn.ofs_in_node = end_offset;
1662 	}
1663 
1664 	if (pgofs >= end)
1665 		goto sync_out;
1666 	else if (dn.ofs_in_node < end_offset)
1667 		goto next_block;
1668 
1669 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1670 		if (map->m_flags & F2FS_MAP_MAPPED) {
1671 			unsigned int ofs = start_pgofs - map->m_lblk;
1672 
1673 			f2fs_update_read_extent_cache_range(&dn,
1674 				start_pgofs, map->m_pblk + ofs,
1675 				map->m_len - ofs);
1676 		}
1677 	}
1678 
1679 	f2fs_put_dnode(&dn);
1680 
1681 	if (map->m_may_create) {
1682 		f2fs_do_map_lock(sbi, flag, false);
1683 		f2fs_balance_fs(sbi, dn.node_changed);
1684 	}
1685 	goto next_dnode;
1686 
1687 sync_out:
1688 
1689 	/* for hardware encryption, but to avoid potential issue in future */
1690 	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1691 		f2fs_wait_on_block_writeback_range(inode,
1692 						map->m_pblk, map->m_len);
1693 
1694 	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1695 		if (map->m_flags & F2FS_MAP_MAPPED) {
1696 			unsigned int ofs = start_pgofs - map->m_lblk;
1697 
1698 			f2fs_update_read_extent_cache_range(&dn,
1699 				start_pgofs, map->m_pblk + ofs,
1700 				map->m_len - ofs);
1701 		}
1702 		if (map->m_next_extent)
1703 			*map->m_next_extent = pgofs + 1;
1704 	}
1705 	f2fs_put_dnode(&dn);
1706 unlock_out:
1707 	if (map->m_may_create) {
1708 		f2fs_do_map_lock(sbi, flag, false);
1709 		f2fs_balance_fs(sbi, dn.node_changed);
1710 	}
1711 out:
1712 	trace_f2fs_map_blocks(inode, map, err);
1713 	return err;
1714 }
1715 
f2fs_overwrite_io(struct inode * inode,loff_t pos,size_t len)1716 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1717 {
1718 	struct f2fs_map_blocks map;
1719 	block_t last_lblk;
1720 	int err;
1721 
1722 	if (pos + len > i_size_read(inode))
1723 		return false;
1724 
1725 	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1726 	map.m_next_pgofs = NULL;
1727 	map.m_next_extent = NULL;
1728 	map.m_seg_type = NO_CHECK_TYPE;
1729 	map.m_may_create = false;
1730 	last_lblk = F2FS_BLK_ALIGN(pos + len);
1731 
1732 	while (map.m_lblk < last_lblk) {
1733 		map.m_len = last_lblk - map.m_lblk;
1734 		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1735 		if (err || map.m_len == 0)
1736 			return false;
1737 		map.m_lblk += map.m_len;
1738 	}
1739 	return true;
1740 }
1741 
bytes_to_blks(struct inode * inode,u64 bytes)1742 static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1743 {
1744 	return (bytes >> inode->i_blkbits);
1745 }
1746 
blks_to_bytes(struct inode * inode,u64 blks)1747 static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1748 {
1749 	return (blks << inode->i_blkbits);
1750 }
1751 
__get_data_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create,int flag,pgoff_t * next_pgofs,int seg_type,bool may_write)1752 static int __get_data_block(struct inode *inode, sector_t iblock,
1753 			struct buffer_head *bh, int create, int flag,
1754 			pgoff_t *next_pgofs, int seg_type, bool may_write)
1755 {
1756 	struct f2fs_map_blocks map;
1757 	int err;
1758 
1759 	map.m_lblk = iblock;
1760 	map.m_len = bytes_to_blks(inode, bh->b_size);
1761 	map.m_next_pgofs = next_pgofs;
1762 	map.m_next_extent = NULL;
1763 	map.m_seg_type = seg_type;
1764 	map.m_may_create = may_write;
1765 
1766 	err = f2fs_map_blocks(inode, &map, create, flag);
1767 	if (!err) {
1768 		map_bh(bh, inode->i_sb, map.m_pblk);
1769 		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1770 		bh->b_size = blks_to_bytes(inode, map.m_len);
1771 	}
1772 	return err;
1773 }
1774 
get_data_block_dio_write(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1775 static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1776 			struct buffer_head *bh_result, int create)
1777 {
1778 	return __get_data_block(inode, iblock, bh_result, create,
1779 				F2FS_GET_BLOCK_DIO, NULL,
1780 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1781 				true);
1782 }
1783 
get_data_block_dio(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1784 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1785 			struct buffer_head *bh_result, int create)
1786 {
1787 	return __get_data_block(inode, iblock, bh_result, create,
1788 				F2FS_GET_BLOCK_DIO, NULL,
1789 				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1790 				false);
1791 }
1792 
f2fs_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)1793 static int f2fs_xattr_fiemap(struct inode *inode,
1794 				struct fiemap_extent_info *fieinfo)
1795 {
1796 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1797 	struct page *page;
1798 	struct node_info ni;
1799 	__u64 phys = 0, len;
1800 	__u32 flags;
1801 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1802 	int err = 0;
1803 
1804 	if (f2fs_has_inline_xattr(inode)) {
1805 		int offset;
1806 
1807 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1808 						inode->i_ino, false);
1809 		if (!page)
1810 			return -ENOMEM;
1811 
1812 		err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1813 		if (err) {
1814 			f2fs_put_page(page, 1);
1815 			return err;
1816 		}
1817 
1818 		phys = blks_to_bytes(inode, ni.blk_addr);
1819 		offset = offsetof(struct f2fs_inode, i_addr) +
1820 					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1821 					get_inline_xattr_addrs(inode));
1822 
1823 		phys += offset;
1824 		len = inline_xattr_size(inode);
1825 
1826 		f2fs_put_page(page, 1);
1827 
1828 		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1829 
1830 		if (!xnid)
1831 			flags |= FIEMAP_EXTENT_LAST;
1832 
1833 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1834 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1835 		if (err || err == 1)
1836 			return err;
1837 	}
1838 
1839 	if (xnid) {
1840 		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1841 		if (!page)
1842 			return -ENOMEM;
1843 
1844 		err = f2fs_get_node_info(sbi, xnid, &ni, false);
1845 		if (err) {
1846 			f2fs_put_page(page, 1);
1847 			return err;
1848 		}
1849 
1850 		phys = blks_to_bytes(inode, ni.blk_addr);
1851 		len = inode->i_sb->s_blocksize;
1852 
1853 		f2fs_put_page(page, 1);
1854 
1855 		flags = FIEMAP_EXTENT_LAST;
1856 	}
1857 
1858 	if (phys) {
1859 		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1860 		trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1861 	}
1862 
1863 	return (err < 0 ? err : 0);
1864 }
1865 
max_inode_blocks(struct inode * inode)1866 static loff_t max_inode_blocks(struct inode *inode)
1867 {
1868 	loff_t result = ADDRS_PER_INODE(inode);
1869 	loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1870 
1871 	/* two direct node blocks */
1872 	result += (leaf_count * 2);
1873 
1874 	/* two indirect node blocks */
1875 	leaf_count *= NIDS_PER_BLOCK;
1876 	result += (leaf_count * 2);
1877 
1878 	/* one double indirect node block */
1879 	leaf_count *= NIDS_PER_BLOCK;
1880 	result += leaf_count;
1881 
1882 	return result;
1883 }
1884 
f2fs_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)1885 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1886 		u64 start, u64 len)
1887 {
1888 	struct f2fs_map_blocks map;
1889 	sector_t start_blk, last_blk;
1890 	pgoff_t next_pgofs;
1891 	u64 logical = 0, phys = 0, size = 0;
1892 	u32 flags = 0;
1893 	int ret = 0;
1894 	bool compr_cluster = false, compr_appended;
1895 	unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1896 	unsigned int count_in_cluster = 0;
1897 	loff_t maxbytes;
1898 
1899 	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1900 		ret = f2fs_precache_extents(inode);
1901 		if (ret)
1902 			return ret;
1903 	}
1904 
1905 	ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1906 	if (ret)
1907 		return ret;
1908 
1909 	inode_lock(inode);
1910 
1911 	maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1912 	if (start > maxbytes) {
1913 		ret = -EFBIG;
1914 		goto out;
1915 	}
1916 
1917 	if (len > maxbytes || (maxbytes - len) < start)
1918 		len = maxbytes - start;
1919 
1920 	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1921 		ret = f2fs_xattr_fiemap(inode, fieinfo);
1922 		goto out;
1923 	}
1924 
1925 	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1926 		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1927 		if (ret != -EAGAIN)
1928 			goto out;
1929 	}
1930 
1931 	if (bytes_to_blks(inode, len) == 0)
1932 		len = blks_to_bytes(inode, 1);
1933 
1934 	start_blk = bytes_to_blks(inode, start);
1935 	last_blk = bytes_to_blks(inode, start + len - 1);
1936 
1937 next:
1938 	memset(&map, 0, sizeof(map));
1939 	map.m_lblk = start_blk;
1940 	map.m_len = bytes_to_blks(inode, len);
1941 	map.m_next_pgofs = &next_pgofs;
1942 	map.m_seg_type = NO_CHECK_TYPE;
1943 
1944 	if (compr_cluster) {
1945 		map.m_lblk += 1;
1946 		map.m_len = cluster_size - count_in_cluster;
1947 	}
1948 
1949 	ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
1950 	if (ret)
1951 		goto out;
1952 
1953 	/* HOLE */
1954 	if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1955 		start_blk = next_pgofs;
1956 
1957 		if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1958 						max_inode_blocks(inode)))
1959 			goto prep_next;
1960 
1961 		flags |= FIEMAP_EXTENT_LAST;
1962 	}
1963 
1964 	compr_appended = false;
1965 	/* In a case of compressed cluster, append this to the last extent */
1966 	if (compr_cluster && ((map.m_flags & F2FS_MAP_UNWRITTEN) ||
1967 			!(map.m_flags & F2FS_MAP_FLAGS))) {
1968 		compr_appended = true;
1969 		goto skip_fill;
1970 	}
1971 
1972 	if (size) {
1973 		flags |= FIEMAP_EXTENT_MERGED;
1974 		if (IS_ENCRYPTED(inode))
1975 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1976 
1977 		ret = fiemap_fill_next_extent(fieinfo, logical,
1978 				phys, size, flags);
1979 		trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
1980 		if (ret)
1981 			goto out;
1982 		size = 0;
1983 	}
1984 
1985 	if (start_blk > last_blk)
1986 		goto out;
1987 
1988 skip_fill:
1989 	if (map.m_pblk == COMPRESS_ADDR) {
1990 		compr_cluster = true;
1991 		count_in_cluster = 1;
1992 	} else if (compr_appended) {
1993 		unsigned int appended_blks = cluster_size -
1994 						count_in_cluster + 1;
1995 		size += blks_to_bytes(inode, appended_blks);
1996 		start_blk += appended_blks;
1997 		compr_cluster = false;
1998 	} else {
1999 		logical = blks_to_bytes(inode, start_blk);
2000 		phys = __is_valid_data_blkaddr(map.m_pblk) ?
2001 			blks_to_bytes(inode, map.m_pblk) : 0;
2002 		size = blks_to_bytes(inode, map.m_len);
2003 		flags = 0;
2004 
2005 		if (compr_cluster) {
2006 			flags = FIEMAP_EXTENT_ENCODED;
2007 			count_in_cluster += map.m_len;
2008 			if (count_in_cluster == cluster_size) {
2009 				compr_cluster = false;
2010 				size += blks_to_bytes(inode, 1);
2011 			}
2012 		} else if (map.m_flags & F2FS_MAP_UNWRITTEN) {
2013 			flags = FIEMAP_EXTENT_UNWRITTEN;
2014 		}
2015 
2016 		start_blk += bytes_to_blks(inode, size);
2017 	}
2018 
2019 prep_next:
2020 	cond_resched();
2021 	if (fatal_signal_pending(current))
2022 		ret = -EINTR;
2023 	else
2024 		goto next;
2025 out:
2026 	if (ret == 1)
2027 		ret = 0;
2028 
2029 	inode_unlock(inode);
2030 	return ret;
2031 }
2032 
f2fs_readpage_limit(struct inode * inode)2033 static inline loff_t f2fs_readpage_limit(struct inode *inode)
2034 {
2035 	if (IS_ENABLED(CONFIG_FS_VERITY) &&
2036 	    (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
2037 		return inode->i_sb->s_maxbytes;
2038 
2039 	return i_size_read(inode);
2040 }
2041 
f2fs_read_single_page(struct inode * inode,struct page * page,unsigned nr_pages,struct f2fs_map_blocks * map,struct bio ** bio_ret,sector_t * last_block_in_bio,bool is_readahead)2042 static int f2fs_read_single_page(struct inode *inode, struct page *page,
2043 					unsigned nr_pages,
2044 					struct f2fs_map_blocks *map,
2045 					struct bio **bio_ret,
2046 					sector_t *last_block_in_bio,
2047 					bool is_readahead)
2048 {
2049 	struct bio *bio = *bio_ret;
2050 	const unsigned blocksize = blks_to_bytes(inode, 1);
2051 	sector_t block_in_file;
2052 	sector_t last_block;
2053 	sector_t last_block_in_file;
2054 	sector_t block_nr;
2055 	int ret = 0;
2056 
2057 	block_in_file = (sector_t)page_index(page);
2058 	last_block = block_in_file + nr_pages;
2059 	last_block_in_file = bytes_to_blks(inode,
2060 			f2fs_readpage_limit(inode) + blocksize - 1);
2061 	if (last_block > last_block_in_file)
2062 		last_block = last_block_in_file;
2063 
2064 	/* just zeroing out page which is beyond EOF */
2065 	if (block_in_file >= last_block)
2066 		goto zero_out;
2067 	/*
2068 	 * Map blocks using the previous result first.
2069 	 */
2070 	if ((map->m_flags & F2FS_MAP_MAPPED) &&
2071 			block_in_file > map->m_lblk &&
2072 			block_in_file < (map->m_lblk + map->m_len))
2073 		goto got_it;
2074 
2075 	/*
2076 	 * Then do more f2fs_map_blocks() calls until we are
2077 	 * done with this page.
2078 	 */
2079 	map->m_lblk = block_in_file;
2080 	map->m_len = last_block - block_in_file;
2081 
2082 	ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
2083 	if (ret)
2084 		goto out;
2085 got_it:
2086 	if ((map->m_flags & F2FS_MAP_MAPPED)) {
2087 		block_nr = map->m_pblk + block_in_file - map->m_lblk;
2088 		SetPageMappedToDisk(page);
2089 
2090 		if (!PageUptodate(page) && (!PageSwapCache(page) &&
2091 					!cleancache_get_page(page))) {
2092 			SetPageUptodate(page);
2093 			goto confused;
2094 		}
2095 
2096 		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2097 						DATA_GENERIC_ENHANCE_READ)) {
2098 			ret = -EFSCORRUPTED;
2099 			goto out;
2100 		}
2101 	} else {
2102 zero_out:
2103 		zero_user_segment(page, 0, PAGE_SIZE);
2104 		if (f2fs_need_verity(inode, page->index) &&
2105 		    !fsverity_verify_page(page)) {
2106 			ret = -EIO;
2107 			goto out;
2108 		}
2109 		if (!PageUptodate(page))
2110 			SetPageUptodate(page);
2111 		unlock_page(page);
2112 		goto out;
2113 	}
2114 
2115 	/*
2116 	 * This page will go to BIO.  Do we need to send this
2117 	 * BIO off first?
2118 	 */
2119 	if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2120 				       *last_block_in_bio, block_nr) ||
2121 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2122 submit_and_realloc:
2123 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2124 		bio = NULL;
2125 	}
2126 	if (bio == NULL) {
2127 		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2128 				is_readahead ? REQ_RAHEAD : 0, page->index,
2129 				false);
2130 		if (IS_ERR(bio)) {
2131 			ret = PTR_ERR(bio);
2132 			bio = NULL;
2133 			goto out;
2134 		}
2135 	}
2136 
2137 	/*
2138 	 * If the page is under writeback, we need to wait for
2139 	 * its completion to see the correct decrypted data.
2140 	 */
2141 	f2fs_wait_on_block_writeback(inode, block_nr);
2142 
2143 	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2144 		goto submit_and_realloc;
2145 
2146 	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2147 	f2fs_update_iostat(F2FS_I_SB(inode), FS_DATA_READ_IO, F2FS_BLKSIZE);
2148 	ClearPageError(page);
2149 	*last_block_in_bio = block_nr;
2150 	goto out;
2151 confused:
2152 	if (bio) {
2153 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2154 		bio = NULL;
2155 	}
2156 	unlock_page(page);
2157 out:
2158 	*bio_ret = bio;
2159 	return ret;
2160 }
2161 
2162 #ifdef CONFIG_F2FS_FS_COMPRESSION
f2fs_read_multi_pages(struct compress_ctx * cc,struct bio ** bio_ret,unsigned nr_pages,sector_t * last_block_in_bio,bool is_readahead,bool for_write)2163 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2164 				unsigned nr_pages, sector_t *last_block_in_bio,
2165 				bool is_readahead, bool for_write)
2166 {
2167 	struct dnode_of_data dn;
2168 	struct inode *inode = cc->inode;
2169 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2170 	struct bio *bio = *bio_ret;
2171 	unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2172 	sector_t last_block_in_file;
2173 	const unsigned blocksize = blks_to_bytes(inode, 1);
2174 	struct decompress_io_ctx *dic = NULL;
2175 	struct extent_info ei = {};
2176 	bool from_dnode = true;
2177 	int i;
2178 	int ret = 0;
2179 
2180 	f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2181 
2182 	last_block_in_file = bytes_to_blks(inode,
2183 			f2fs_readpage_limit(inode) + blocksize - 1);
2184 
2185 	/* get rid of pages beyond EOF */
2186 	for (i = 0; i < cc->cluster_size; i++) {
2187 		struct page *page = cc->rpages[i];
2188 
2189 		if (!page)
2190 			continue;
2191 		if ((sector_t)page->index >= last_block_in_file) {
2192 			zero_user_segment(page, 0, PAGE_SIZE);
2193 			if (!PageUptodate(page))
2194 				SetPageUptodate(page);
2195 		} else if (!PageUptodate(page)) {
2196 			continue;
2197 		}
2198 		unlock_page(page);
2199 		if (for_write)
2200 			put_page(page);
2201 		cc->rpages[i] = NULL;
2202 		cc->nr_rpages--;
2203 	}
2204 
2205 	/* we are done since all pages are beyond EOF */
2206 	if (f2fs_cluster_is_empty(cc))
2207 		goto out;
2208 
2209 	if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2210 		from_dnode = false;
2211 
2212 	if (!from_dnode)
2213 		goto skip_reading_dnode;
2214 
2215 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2216 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2217 	if (ret)
2218 		goto out;
2219 
2220 	f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2221 
2222 skip_reading_dnode:
2223 	for (i = 1; i < cc->cluster_size; i++) {
2224 		block_t blkaddr;
2225 
2226 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2227 					dn.ofs_in_node + i) :
2228 					ei.blk + i - 1;
2229 
2230 		if (!__is_valid_data_blkaddr(blkaddr))
2231 			break;
2232 
2233 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2234 			ret = -EFAULT;
2235 			goto out_put_dnode;
2236 		}
2237 		cc->nr_cpages++;
2238 
2239 		if (!from_dnode && i >= ei.c_len)
2240 			break;
2241 	}
2242 
2243 	/* nothing to decompress */
2244 	if (cc->nr_cpages == 0) {
2245 		ret = 0;
2246 		goto out_put_dnode;
2247 	}
2248 
2249 	dic = f2fs_alloc_dic(cc);
2250 	if (IS_ERR(dic)) {
2251 		ret = PTR_ERR(dic);
2252 		goto out_put_dnode;
2253 	}
2254 
2255 	for (i = 0; i < cc->nr_cpages; i++) {
2256 		struct page *page = dic->cpages[i];
2257 		block_t blkaddr;
2258 		struct bio_post_read_ctx *ctx;
2259 
2260 		blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2261 					dn.ofs_in_node + i + 1) :
2262 					ei.blk + i;
2263 
2264 		f2fs_wait_on_block_writeback(inode, blkaddr);
2265 
2266 		if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2267 			if (atomic_dec_and_test(&dic->remaining_pages))
2268 				f2fs_decompress_cluster(dic, true);
2269 			continue;
2270 		}
2271 
2272 		if (bio && (!page_is_mergeable(sbi, bio,
2273 					*last_block_in_bio, blkaddr) ||
2274 		    !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2275 submit_and_realloc:
2276 			__submit_bio(sbi, bio, DATA);
2277 			bio = NULL;
2278 		}
2279 
2280 		if (!bio) {
2281 			bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2282 					is_readahead ? REQ_RAHEAD : 0,
2283 					page->index, for_write);
2284 			if (IS_ERR(bio)) {
2285 				ret = PTR_ERR(bio);
2286 				f2fs_decompress_end_io(dic, ret, true);
2287 				f2fs_put_dnode(&dn);
2288 				*bio_ret = NULL;
2289 				return ret;
2290 			}
2291 		}
2292 
2293 		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2294 			goto submit_and_realloc;
2295 
2296 		ctx = bio->bi_private;
2297 		ctx->enabled_steps |= STEP_DECOMPRESS;
2298 		refcount_inc(&dic->refcnt);
2299 
2300 		inc_page_count(sbi, F2FS_RD_DATA);
2301 		f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
2302 		f2fs_update_iostat(sbi, FS_CDATA_READ_IO, F2FS_BLKSIZE);
2303 		ClearPageError(page);
2304 		*last_block_in_bio = blkaddr;
2305 	}
2306 
2307 	if (from_dnode)
2308 		f2fs_put_dnode(&dn);
2309 
2310 	*bio_ret = bio;
2311 	return 0;
2312 
2313 out_put_dnode:
2314 	if (from_dnode)
2315 		f2fs_put_dnode(&dn);
2316 out:
2317 	for (i = 0; i < cc->cluster_size; i++) {
2318 		if (cc->rpages[i]) {
2319 			ClearPageUptodate(cc->rpages[i]);
2320 			ClearPageError(cc->rpages[i]);
2321 			unlock_page(cc->rpages[i]);
2322 		}
2323 	}
2324 	*bio_ret = bio;
2325 	return ret;
2326 }
2327 #endif
2328 
2329 /*
2330  * This function was originally taken from fs/mpage.c, and customized for f2fs.
2331  * Major change was from block_size == page_size in f2fs by default.
2332  */
f2fs_mpage_readpages(struct inode * inode,struct readahead_control * rac,struct page * page)2333 static int f2fs_mpage_readpages(struct inode *inode,
2334 		struct readahead_control *rac, struct page *page)
2335 {
2336 	struct bio *bio = NULL;
2337 	sector_t last_block_in_bio = 0;
2338 	struct f2fs_map_blocks map;
2339 #ifdef CONFIG_F2FS_FS_COMPRESSION
2340 	struct compress_ctx cc = {
2341 		.inode = inode,
2342 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2343 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2344 		.cluster_idx = NULL_CLUSTER,
2345 		.rpages = NULL,
2346 		.cpages = NULL,
2347 		.nr_rpages = 0,
2348 		.nr_cpages = 0,
2349 	};
2350 #endif
2351 	unsigned nr_pages = rac ? readahead_count(rac) : 1;
2352 	unsigned max_nr_pages = nr_pages;
2353 	int ret = 0;
2354 
2355 	map.m_pblk = 0;
2356 	map.m_lblk = 0;
2357 	map.m_len = 0;
2358 	map.m_flags = 0;
2359 	map.m_next_pgofs = NULL;
2360 	map.m_next_extent = NULL;
2361 	map.m_seg_type = NO_CHECK_TYPE;
2362 	map.m_may_create = false;
2363 
2364 	for (; nr_pages; nr_pages--) {
2365 		if (rac) {
2366 			page = readahead_page(rac);
2367 			prefetchw(&page->flags);
2368 		}
2369 
2370 #ifdef CONFIG_F2FS_FS_COMPRESSION
2371 		if (f2fs_compressed_file(inode)) {
2372 			/* there are remained comressed pages, submit them */
2373 			if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2374 				ret = f2fs_read_multi_pages(&cc, &bio,
2375 							max_nr_pages,
2376 							&last_block_in_bio,
2377 							rac != NULL, false);
2378 				f2fs_destroy_compress_ctx(&cc, false);
2379 				if (ret)
2380 					goto set_error_page;
2381 			}
2382 			ret = f2fs_is_compressed_cluster(inode, page->index);
2383 			if (ret < 0)
2384 				goto set_error_page;
2385 			else if (!ret)
2386 				goto read_single_page;
2387 
2388 			ret = f2fs_init_compress_ctx(&cc);
2389 			if (ret)
2390 				goto set_error_page;
2391 
2392 			f2fs_compress_ctx_add_page(&cc, page);
2393 
2394 			goto next_page;
2395 		}
2396 read_single_page:
2397 #endif
2398 
2399 		ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2400 					&bio, &last_block_in_bio, rac);
2401 		if (ret) {
2402 #ifdef CONFIG_F2FS_FS_COMPRESSION
2403 set_error_page:
2404 #endif
2405 			SetPageError(page);
2406 			zero_user_segment(page, 0, PAGE_SIZE);
2407 			unlock_page(page);
2408 		}
2409 #ifdef CONFIG_F2FS_FS_COMPRESSION
2410 next_page:
2411 #endif
2412 		if (rac)
2413 			put_page(page);
2414 
2415 #ifdef CONFIG_F2FS_FS_COMPRESSION
2416 		if (f2fs_compressed_file(inode)) {
2417 			/* last page */
2418 			if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2419 				ret = f2fs_read_multi_pages(&cc, &bio,
2420 							max_nr_pages,
2421 							&last_block_in_bio,
2422 							rac != NULL, false);
2423 				f2fs_destroy_compress_ctx(&cc, false);
2424 			}
2425 		}
2426 #endif
2427 	}
2428 	if (bio)
2429 		__submit_bio(F2FS_I_SB(inode), bio, DATA);
2430 	return ret;
2431 }
2432 
f2fs_read_data_page(struct file * file,struct page * page)2433 static int f2fs_read_data_page(struct file *file, struct page *page)
2434 {
2435 	struct inode *inode = page_file_mapping(page)->host;
2436 	int ret = -EAGAIN;
2437 
2438 	trace_f2fs_readpage(page, DATA);
2439 
2440 	if (!f2fs_is_compress_backend_ready(inode)) {
2441 		unlock_page(page);
2442 		return -EOPNOTSUPP;
2443 	}
2444 
2445 	/* If the file has inline data, try to read it directly */
2446 	if (f2fs_has_inline_data(inode))
2447 		ret = f2fs_read_inline_data(inode, page);
2448 	if (ret == -EAGAIN)
2449 		ret = f2fs_mpage_readpages(inode, NULL, page);
2450 	return ret;
2451 }
2452 
f2fs_readahead(struct readahead_control * rac)2453 static void f2fs_readahead(struct readahead_control *rac)
2454 {
2455 	struct inode *inode = rac->mapping->host;
2456 
2457 	trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2458 
2459 	if (!f2fs_is_compress_backend_ready(inode))
2460 		return;
2461 
2462 	/* If the file has inline data, skip readpages */
2463 	if (f2fs_has_inline_data(inode))
2464 		return;
2465 
2466 	f2fs_mpage_readpages(inode, rac, NULL);
2467 }
2468 
f2fs_encrypt_one_page(struct f2fs_io_info * fio)2469 int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2470 {
2471 	struct inode *inode = fio->page->mapping->host;
2472 	struct page *mpage, *page;
2473 	gfp_t gfp_flags = GFP_NOFS;
2474 
2475 	if (!f2fs_encrypted_file(inode))
2476 		return 0;
2477 
2478 	page = fio->compressed_page ? fio->compressed_page : fio->page;
2479 
2480 	/* wait for GCed page writeback via META_MAPPING */
2481 	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2482 
2483 	if (fscrypt_inode_uses_inline_crypto(inode))
2484 		return 0;
2485 
2486 retry_encrypt:
2487 	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2488 					PAGE_SIZE, 0, gfp_flags);
2489 	if (IS_ERR(fio->encrypted_page)) {
2490 		/* flush pending IOs and wait for a while in the ENOMEM case */
2491 		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2492 			f2fs_flush_merged_writes(fio->sbi);
2493 			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2494 			gfp_flags |= __GFP_NOFAIL;
2495 			goto retry_encrypt;
2496 		}
2497 		return PTR_ERR(fio->encrypted_page);
2498 	}
2499 
2500 	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2501 	if (mpage) {
2502 		if (PageUptodate(mpage))
2503 			memcpy(page_address(mpage),
2504 				page_address(fio->encrypted_page), PAGE_SIZE);
2505 		f2fs_put_page(mpage, 1);
2506 	}
2507 	return 0;
2508 }
2509 
check_inplace_update_policy(struct inode * inode,struct f2fs_io_info * fio)2510 static inline bool check_inplace_update_policy(struct inode *inode,
2511 				struct f2fs_io_info *fio)
2512 {
2513 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2514 	unsigned int policy = SM_I(sbi)->ipu_policy;
2515 
2516 	if (policy & (0x1 << F2FS_IPU_HONOR_OPU_WRITE) &&
2517 			is_inode_flag_set(inode, FI_OPU_WRITE))
2518 		return false;
2519 	if (policy & (0x1 << F2FS_IPU_FORCE))
2520 		return true;
2521 	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
2522 		return true;
2523 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
2524 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2525 		return true;
2526 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
2527 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
2528 		return true;
2529 
2530 	/*
2531 	 * IPU for rewrite async pages
2532 	 */
2533 	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
2534 			fio && fio->op == REQ_OP_WRITE &&
2535 			!(fio->op_flags & REQ_SYNC) &&
2536 			!IS_ENCRYPTED(inode))
2537 		return true;
2538 
2539 	/* this is only set during fdatasync */
2540 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
2541 			is_inode_flag_set(inode, FI_NEED_IPU))
2542 		return true;
2543 
2544 	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2545 			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2546 		return true;
2547 
2548 	return false;
2549 }
2550 
f2fs_should_update_inplace(struct inode * inode,struct f2fs_io_info * fio)2551 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2552 {
2553 	/* swap file is migrating in aligned write mode */
2554 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2555 		return false;
2556 
2557 	if (f2fs_is_pinned_file(inode))
2558 		return true;
2559 
2560 	/* if this is cold file, we should overwrite to avoid fragmentation */
2561 	if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2562 		return true;
2563 
2564 	return check_inplace_update_policy(inode, fio);
2565 }
2566 
f2fs_should_update_outplace(struct inode * inode,struct f2fs_io_info * fio)2567 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2568 {
2569 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2570 
2571 	/* The below cases were checked when setting it. */
2572 	if (f2fs_is_pinned_file(inode))
2573 		return false;
2574 	if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2575 		return true;
2576 	if (f2fs_lfs_mode(sbi))
2577 		return true;
2578 	if (S_ISDIR(inode->i_mode))
2579 		return true;
2580 	if (IS_NOQUOTA(inode))
2581 		return true;
2582 	if (f2fs_is_atomic_file(inode))
2583 		return true;
2584 
2585 	/* swap file is migrating in aligned write mode */
2586 	if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2587 		return true;
2588 
2589 	if (is_inode_flag_set(inode, FI_OPU_WRITE))
2590 		return true;
2591 
2592 	if (fio) {
2593 		if (page_private_gcing(fio->page))
2594 			return true;
2595 		if (page_private_dummy(fio->page))
2596 			return true;
2597 		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2598 			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2599 			return true;
2600 	}
2601 	return false;
2602 }
2603 
need_inplace_update(struct f2fs_io_info * fio)2604 static inline bool need_inplace_update(struct f2fs_io_info *fio)
2605 {
2606 	struct inode *inode = fio->page->mapping->host;
2607 
2608 	if (f2fs_should_update_outplace(inode, fio))
2609 		return false;
2610 
2611 	return f2fs_should_update_inplace(inode, fio);
2612 }
2613 
f2fs_do_write_data_page(struct f2fs_io_info * fio)2614 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2615 {
2616 	struct page *page = fio->page;
2617 	struct inode *inode = page->mapping->host;
2618 	struct dnode_of_data dn;
2619 	struct extent_info ei = {0, };
2620 	struct node_info ni;
2621 	bool ipu_force = false;
2622 	int err = 0;
2623 
2624 	set_new_dnode(&dn, inode, NULL, NULL, 0);
2625 	if (need_inplace_update(fio) &&
2626 	    f2fs_lookup_read_extent_cache(inode, page->index, &ei)) {
2627 		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
2628 
2629 		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2630 						DATA_GENERIC_ENHANCE))
2631 			return -EFSCORRUPTED;
2632 
2633 		ipu_force = true;
2634 		fio->need_lock = LOCK_DONE;
2635 		goto got_it;
2636 	}
2637 
2638 	/* Deadlock due to between page->lock and f2fs_lock_op */
2639 	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2640 		return -EAGAIN;
2641 
2642 	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2643 	if (err)
2644 		goto out;
2645 
2646 	fio->old_blkaddr = dn.data_blkaddr;
2647 
2648 	/* This page is already truncated */
2649 	if (fio->old_blkaddr == NULL_ADDR) {
2650 		ClearPageUptodate(page);
2651 		clear_page_private_gcing(page);
2652 		goto out_writepage;
2653 	}
2654 got_it:
2655 	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2656 		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2657 						DATA_GENERIC_ENHANCE)) {
2658 		err = -EFSCORRUPTED;
2659 		goto out_writepage;
2660 	}
2661 	/*
2662 	 * If current allocation needs SSR,
2663 	 * it had better in-place writes for updated data.
2664 	 */
2665 	if (ipu_force ||
2666 		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2667 					need_inplace_update(fio))) {
2668 		err = f2fs_encrypt_one_page(fio);
2669 		if (err)
2670 			goto out_writepage;
2671 
2672 		set_page_writeback(page);
2673 		ClearPageError(page);
2674 		f2fs_put_dnode(&dn);
2675 		if (fio->need_lock == LOCK_REQ)
2676 			f2fs_unlock_op(fio->sbi);
2677 		err = f2fs_inplace_write_data(fio);
2678 		if (err) {
2679 			if (fscrypt_inode_uses_fs_layer_crypto(inode))
2680 				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2681 			if (PageWriteback(page))
2682 				end_page_writeback(page);
2683 		} else {
2684 			set_inode_flag(inode, FI_UPDATE_WRITE);
2685 		}
2686 		trace_f2fs_do_write_data_page(fio->page, IPU);
2687 		return err;
2688 	}
2689 
2690 	if (fio->need_lock == LOCK_RETRY) {
2691 		if (!f2fs_trylock_op(fio->sbi)) {
2692 			err = -EAGAIN;
2693 			goto out_writepage;
2694 		}
2695 		fio->need_lock = LOCK_REQ;
2696 	}
2697 
2698 	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2699 	if (err)
2700 		goto out_writepage;
2701 
2702 	fio->version = ni.version;
2703 
2704 	err = f2fs_encrypt_one_page(fio);
2705 	if (err)
2706 		goto out_writepage;
2707 
2708 	set_page_writeback(page);
2709 	ClearPageError(page);
2710 
2711 	if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2712 		f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2713 
2714 	/* LFS mode write path */
2715 	f2fs_outplace_write_data(&dn, fio);
2716 	trace_f2fs_do_write_data_page(page, OPU);
2717 	set_inode_flag(inode, FI_APPEND_WRITE);
2718 	if (page->index == 0)
2719 		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2720 out_writepage:
2721 	f2fs_put_dnode(&dn);
2722 out:
2723 	if (fio->need_lock == LOCK_REQ)
2724 		f2fs_unlock_op(fio->sbi);
2725 	return err;
2726 }
2727 
f2fs_write_single_data_page(struct page * page,int * submitted,struct bio ** bio,sector_t * last_block,struct writeback_control * wbc,enum iostat_type io_type,int compr_blocks,bool allow_balance)2728 int f2fs_write_single_data_page(struct page *page, int *submitted,
2729 				struct bio **bio,
2730 				sector_t *last_block,
2731 				struct writeback_control *wbc,
2732 				enum iostat_type io_type,
2733 				int compr_blocks,
2734 				bool allow_balance)
2735 {
2736 	struct inode *inode = page->mapping->host;
2737 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2738 	loff_t i_size = i_size_read(inode);
2739 	const pgoff_t end_index = ((unsigned long long)i_size)
2740 							>> PAGE_SHIFT;
2741 	loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2742 	unsigned offset = 0;
2743 	bool need_balance_fs = false;
2744 	int err = 0;
2745 	struct f2fs_io_info fio = {
2746 		.sbi = sbi,
2747 		.ino = inode->i_ino,
2748 		.type = DATA,
2749 		.op = REQ_OP_WRITE,
2750 		.op_flags = wbc_to_write_flags(wbc),
2751 		.old_blkaddr = NULL_ADDR,
2752 		.page = page,
2753 		.encrypted_page = NULL,
2754 		.submitted = false,
2755 		.compr_blocks = compr_blocks,
2756 		.need_lock = LOCK_RETRY,
2757 		.post_read = f2fs_post_read_required(inode),
2758 		.io_type = io_type,
2759 		.io_wbc = wbc,
2760 		.bio = bio,
2761 		.last_block = last_block,
2762 	};
2763 
2764 	trace_f2fs_writepage(page, DATA);
2765 
2766 	/* we should bypass data pages to proceed the kworkder jobs */
2767 	if (unlikely(f2fs_cp_error(sbi))) {
2768 		mapping_set_error(page->mapping, -EIO);
2769 		/*
2770 		 * don't drop any dirty dentry pages for keeping lastest
2771 		 * directory structure.
2772 		 */
2773 		if (S_ISDIR(inode->i_mode))
2774 			goto redirty_out;
2775 		goto out;
2776 	}
2777 
2778 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2779 		goto redirty_out;
2780 
2781 	if (page->index < end_index ||
2782 			f2fs_verity_in_progress(inode) ||
2783 			compr_blocks)
2784 		goto write;
2785 
2786 	/*
2787 	 * If the offset is out-of-range of file size,
2788 	 * this page does not have to be written to disk.
2789 	 */
2790 	offset = i_size & (PAGE_SIZE - 1);
2791 	if ((page->index >= end_index + 1) || !offset)
2792 		goto out;
2793 
2794 	zero_user_segment(page, offset, PAGE_SIZE);
2795 write:
2796 	if (f2fs_is_drop_cache(inode))
2797 		goto out;
2798 	/* we should not write 0'th page having journal header */
2799 	if (f2fs_is_volatile_file(inode) && (!page->index ||
2800 			(!wbc->for_reclaim &&
2801 			f2fs_available_free_memory(sbi, BASE_CHECK))))
2802 		goto redirty_out;
2803 
2804 	/* Dentry/quota blocks are controlled by checkpoint */
2805 	if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2806 		/*
2807 		 * We need to wait for node_write to avoid block allocation during
2808 		 * checkpoint. This can only happen to quota writes which can cause
2809 		 * the below discard race condition.
2810 		 */
2811 		if (IS_NOQUOTA(inode))
2812 			f2fs_down_read(&sbi->node_write);
2813 
2814 		fio.need_lock = LOCK_DONE;
2815 		err = f2fs_do_write_data_page(&fio);
2816 
2817 		if (IS_NOQUOTA(inode))
2818 			f2fs_up_read(&sbi->node_write);
2819 
2820 		goto done;
2821 	}
2822 
2823 	if (!wbc->for_reclaim)
2824 		need_balance_fs = true;
2825 	else if (has_not_enough_free_secs(sbi, 0, 0))
2826 		goto redirty_out;
2827 	else
2828 		set_inode_flag(inode, FI_HOT_DATA);
2829 
2830 	err = -EAGAIN;
2831 	if (f2fs_has_inline_data(inode)) {
2832 		err = f2fs_write_inline_data(inode, page);
2833 		if (!err)
2834 			goto out;
2835 	}
2836 
2837 	if (err == -EAGAIN) {
2838 		err = f2fs_do_write_data_page(&fio);
2839 		if (err == -EAGAIN) {
2840 			fio.need_lock = LOCK_REQ;
2841 			err = f2fs_do_write_data_page(&fio);
2842 		}
2843 	}
2844 
2845 	if (err) {
2846 		file_set_keep_isize(inode);
2847 	} else {
2848 		spin_lock(&F2FS_I(inode)->i_size_lock);
2849 		if (F2FS_I(inode)->last_disk_size < psize)
2850 			F2FS_I(inode)->last_disk_size = psize;
2851 		spin_unlock(&F2FS_I(inode)->i_size_lock);
2852 	}
2853 
2854 done:
2855 	if (err && err != -ENOENT)
2856 		goto redirty_out;
2857 
2858 out:
2859 	inode_dec_dirty_pages(inode);
2860 	if (err) {
2861 		ClearPageUptodate(page);
2862 		clear_page_private_gcing(page);
2863 	}
2864 
2865 	if (wbc->for_reclaim) {
2866 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2867 		clear_inode_flag(inode, FI_HOT_DATA);
2868 		f2fs_remove_dirty_inode(inode);
2869 		submitted = NULL;
2870 	}
2871 	unlock_page(page);
2872 	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2873 			!F2FS_I(inode)->wb_task && allow_balance)
2874 		f2fs_balance_fs(sbi, need_balance_fs);
2875 
2876 	if (unlikely(f2fs_cp_error(sbi))) {
2877 		f2fs_submit_merged_write(sbi, DATA);
2878 		f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2879 		submitted = NULL;
2880 	}
2881 
2882 	if (submitted)
2883 		*submitted = fio.submitted ? 1 : 0;
2884 
2885 	return 0;
2886 
2887 redirty_out:
2888 	redirty_page_for_writepage(wbc, page);
2889 	/*
2890 	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2891 	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2892 	 * file_write_and_wait_range() will see EIO error, which is critical
2893 	 * to return value of fsync() followed by atomic_write failure to user.
2894 	 */
2895 	if (!err || wbc->for_reclaim)
2896 		return AOP_WRITEPAGE_ACTIVATE;
2897 	unlock_page(page);
2898 	return err;
2899 }
2900 
f2fs_write_data_page(struct page * page,struct writeback_control * wbc)2901 static int f2fs_write_data_page(struct page *page,
2902 					struct writeback_control *wbc)
2903 {
2904 #ifdef CONFIG_F2FS_FS_COMPRESSION
2905 	struct inode *inode = page->mapping->host;
2906 
2907 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2908 		goto out;
2909 
2910 	if (f2fs_compressed_file(inode)) {
2911 		if (f2fs_is_compressed_cluster(inode, page->index)) {
2912 			redirty_page_for_writepage(wbc, page);
2913 			return AOP_WRITEPAGE_ACTIVATE;
2914 		}
2915 	}
2916 out:
2917 #endif
2918 
2919 	return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2920 						wbc, FS_DATA_IO, 0, true);
2921 }
2922 
2923 /*
2924  * This function was copied from write_cche_pages from mm/page-writeback.c.
2925  * The major change is making write step of cold data page separately from
2926  * warm/hot data page.
2927  */
f2fs_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)2928 static int f2fs_write_cache_pages(struct address_space *mapping,
2929 					struct writeback_control *wbc,
2930 					enum iostat_type io_type)
2931 {
2932 	int ret = 0;
2933 	int done = 0, retry = 0;
2934 	struct pagevec pvec;
2935 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2936 	struct bio *bio = NULL;
2937 	sector_t last_block;
2938 #ifdef CONFIG_F2FS_FS_COMPRESSION
2939 	struct inode *inode = mapping->host;
2940 	struct compress_ctx cc = {
2941 		.inode = inode,
2942 		.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2943 		.cluster_size = F2FS_I(inode)->i_cluster_size,
2944 		.cluster_idx = NULL_CLUSTER,
2945 		.rpages = NULL,
2946 		.nr_rpages = 0,
2947 		.cpages = NULL,
2948 		.rbuf = NULL,
2949 		.cbuf = NULL,
2950 		.rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2951 		.private = NULL,
2952 	};
2953 #endif
2954 	int nr_pages;
2955 	pgoff_t index;
2956 	pgoff_t end;		/* Inclusive */
2957 	pgoff_t done_index;
2958 	int range_whole = 0;
2959 	xa_mark_t tag;
2960 	int nwritten = 0;
2961 	int submitted = 0;
2962 	int i;
2963 
2964 	pagevec_init(&pvec);
2965 
2966 	if (get_dirty_pages(mapping->host) <=
2967 				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2968 		set_inode_flag(mapping->host, FI_HOT_DATA);
2969 	else
2970 		clear_inode_flag(mapping->host, FI_HOT_DATA);
2971 
2972 	if (wbc->range_cyclic) {
2973 		index = mapping->writeback_index; /* prev offset */
2974 		end = -1;
2975 	} else {
2976 		index = wbc->range_start >> PAGE_SHIFT;
2977 		end = wbc->range_end >> PAGE_SHIFT;
2978 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2979 			range_whole = 1;
2980 	}
2981 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2982 		tag = PAGECACHE_TAG_TOWRITE;
2983 	else
2984 		tag = PAGECACHE_TAG_DIRTY;
2985 retry:
2986 	retry = 0;
2987 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2988 		tag_pages_for_writeback(mapping, index, end);
2989 	done_index = index;
2990 	while (!done && !retry && (index <= end)) {
2991 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2992 				tag);
2993 		if (nr_pages == 0)
2994 			break;
2995 
2996 		for (i = 0; i < nr_pages; i++) {
2997 			struct page *page = pvec.pages[i];
2998 			bool need_readd;
2999 readd:
3000 			need_readd = false;
3001 #ifdef CONFIG_F2FS_FS_COMPRESSION
3002 			if (f2fs_compressed_file(inode)) {
3003 				ret = f2fs_init_compress_ctx(&cc);
3004 				if (ret) {
3005 					done = 1;
3006 					break;
3007 				}
3008 
3009 				if (!f2fs_cluster_can_merge_page(&cc,
3010 								page->index)) {
3011 					ret = f2fs_write_multi_pages(&cc,
3012 						&submitted, wbc, io_type);
3013 					if (!ret)
3014 						need_readd = true;
3015 					goto result;
3016 				}
3017 
3018 				if (unlikely(f2fs_cp_error(sbi)))
3019 					goto lock_page;
3020 
3021 				if (f2fs_cluster_is_empty(&cc)) {
3022 					void *fsdata = NULL;
3023 					struct page *pagep;
3024 					int ret2;
3025 
3026 					ret2 = f2fs_prepare_compress_overwrite(
3027 							inode, &pagep,
3028 							page->index, &fsdata);
3029 					if (ret2 < 0) {
3030 						ret = ret2;
3031 						done = 1;
3032 						break;
3033 					} else if (ret2 &&
3034 						!f2fs_compress_write_end(inode,
3035 								fsdata, page->index,
3036 								1)) {
3037 						retry = 1;
3038 						break;
3039 					}
3040 				} else {
3041 					goto lock_page;
3042 				}
3043 			}
3044 #endif
3045 			/* give a priority to WB_SYNC threads */
3046 			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3047 					wbc->sync_mode == WB_SYNC_NONE) {
3048 				done = 1;
3049 				break;
3050 			}
3051 #ifdef CONFIG_F2FS_FS_COMPRESSION
3052 lock_page:
3053 #endif
3054 			done_index = page->index;
3055 retry_write:
3056 			lock_page(page);
3057 
3058 			if (unlikely(page->mapping != mapping)) {
3059 continue_unlock:
3060 				unlock_page(page);
3061 				continue;
3062 			}
3063 
3064 			if (!PageDirty(page)) {
3065 				/* someone wrote it for us */
3066 				goto continue_unlock;
3067 			}
3068 
3069 			if (PageWriteback(page)) {
3070 				if (wbc->sync_mode != WB_SYNC_NONE)
3071 					f2fs_wait_on_page_writeback(page,
3072 							DATA, true, true);
3073 				else
3074 					goto continue_unlock;
3075 			}
3076 
3077 			if (!clear_page_dirty_for_io(page))
3078 				goto continue_unlock;
3079 
3080 #ifdef CONFIG_F2FS_FS_COMPRESSION
3081 			if (f2fs_compressed_file(inode)) {
3082 				get_page(page);
3083 				f2fs_compress_ctx_add_page(&cc, page);
3084 				continue;
3085 			}
3086 #endif
3087 			ret = f2fs_write_single_data_page(page, &submitted,
3088 					&bio, &last_block, wbc, io_type,
3089 					0, true);
3090 			if (ret == AOP_WRITEPAGE_ACTIVATE)
3091 				unlock_page(page);
3092 #ifdef CONFIG_F2FS_FS_COMPRESSION
3093 result:
3094 #endif
3095 			nwritten += submitted;
3096 			wbc->nr_to_write -= submitted;
3097 
3098 			if (unlikely(ret)) {
3099 				/*
3100 				 * keep nr_to_write, since vfs uses this to
3101 				 * get # of written pages.
3102 				 */
3103 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
3104 					ret = 0;
3105 					goto next;
3106 				} else if (ret == -EAGAIN) {
3107 					ret = 0;
3108 					if (wbc->sync_mode == WB_SYNC_ALL) {
3109 						cond_resched();
3110 						congestion_wait(BLK_RW_ASYNC,
3111 							DEFAULT_IO_TIMEOUT);
3112 						goto retry_write;
3113 					}
3114 					goto next;
3115 				}
3116 				done_index = page->index + 1;
3117 				done = 1;
3118 				break;
3119 			}
3120 
3121 			if (wbc->nr_to_write <= 0 &&
3122 					wbc->sync_mode == WB_SYNC_NONE) {
3123 				done = 1;
3124 				break;
3125 			}
3126 next:
3127 			if (need_readd)
3128 				goto readd;
3129 		}
3130 		pagevec_release(&pvec);
3131 		cond_resched();
3132 	}
3133 #ifdef CONFIG_F2FS_FS_COMPRESSION
3134 	/* flush remained pages in compress cluster */
3135 	if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3136 		ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3137 		nwritten += submitted;
3138 		wbc->nr_to_write -= submitted;
3139 		if (ret) {
3140 			done = 1;
3141 			retry = 0;
3142 		}
3143 	}
3144 	if (f2fs_compressed_file(inode))
3145 		f2fs_destroy_compress_ctx(&cc, false);
3146 #endif
3147 	if (retry) {
3148 		index = 0;
3149 		end = -1;
3150 		goto retry;
3151 	}
3152 	if (wbc->range_cyclic && !done)
3153 		done_index = 0;
3154 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3155 		mapping->writeback_index = done_index;
3156 
3157 	if (nwritten)
3158 		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3159 								NULL, 0, DATA);
3160 	/* submit cached bio of IPU write */
3161 	if (bio)
3162 		f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3163 
3164 	return ret;
3165 }
3166 
__should_serialize_io(struct inode * inode,struct writeback_control * wbc)3167 static inline bool __should_serialize_io(struct inode *inode,
3168 					struct writeback_control *wbc)
3169 {
3170 	/* to avoid deadlock in path of data flush */
3171 	if (F2FS_I(inode)->wb_task)
3172 		return false;
3173 
3174 	if (!S_ISREG(inode->i_mode))
3175 		return false;
3176 	if (IS_NOQUOTA(inode))
3177 		return false;
3178 
3179 	if (f2fs_need_compress_data(inode))
3180 		return true;
3181 	if (wbc->sync_mode != WB_SYNC_ALL)
3182 		return true;
3183 	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3184 		return true;
3185 	return false;
3186 }
3187 
__f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc,enum iostat_type io_type)3188 static int __f2fs_write_data_pages(struct address_space *mapping,
3189 						struct writeback_control *wbc,
3190 						enum iostat_type io_type)
3191 {
3192 	struct inode *inode = mapping->host;
3193 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3194 	struct blk_plug plug;
3195 	int ret;
3196 	bool locked = false;
3197 
3198 	/* deal with chardevs and other special file */
3199 	if (!mapping->a_ops->writepage)
3200 		return 0;
3201 
3202 	/* skip writing if there is no dirty page in this inode */
3203 	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3204 		return 0;
3205 
3206 	/* during POR, we don't need to trigger writepage at all. */
3207 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3208 		goto skip_write;
3209 
3210 	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3211 			wbc->sync_mode == WB_SYNC_NONE &&
3212 			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3213 			f2fs_available_free_memory(sbi, DIRTY_DENTS))
3214 		goto skip_write;
3215 
3216 	/* skip writing in file defragment preparing stage */
3217 	if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3218 		goto skip_write;
3219 
3220 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3221 
3222 	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3223 	if (wbc->sync_mode == WB_SYNC_ALL)
3224 		atomic_inc(&sbi->wb_sync_req[DATA]);
3225 	else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3226 		/* to avoid potential deadlock */
3227 		if (current->plug)
3228 			blk_finish_plug(current->plug);
3229 		goto skip_write;
3230 	}
3231 
3232 	if (__should_serialize_io(inode, wbc)) {
3233 		mutex_lock(&sbi->writepages);
3234 		locked = true;
3235 	}
3236 
3237 	blk_start_plug(&plug);
3238 	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3239 	blk_finish_plug(&plug);
3240 
3241 	if (locked)
3242 		mutex_unlock(&sbi->writepages);
3243 
3244 	if (wbc->sync_mode == WB_SYNC_ALL)
3245 		atomic_dec(&sbi->wb_sync_req[DATA]);
3246 	/*
3247 	 * if some pages were truncated, we cannot guarantee its mapping->host
3248 	 * to detect pending bios.
3249 	 */
3250 
3251 	f2fs_remove_dirty_inode(inode);
3252 	return ret;
3253 
3254 skip_write:
3255 	wbc->pages_skipped += get_dirty_pages(inode);
3256 	trace_f2fs_writepages(mapping->host, wbc, DATA);
3257 	return 0;
3258 }
3259 
f2fs_write_data_pages(struct address_space * mapping,struct writeback_control * wbc)3260 static int f2fs_write_data_pages(struct address_space *mapping,
3261 			    struct writeback_control *wbc)
3262 {
3263 	struct inode *inode = mapping->host;
3264 
3265 	return __f2fs_write_data_pages(mapping, wbc,
3266 			F2FS_I(inode)->cp_task == current ?
3267 			FS_CP_DATA_IO : FS_DATA_IO);
3268 }
3269 
f2fs_write_failed(struct address_space * mapping,loff_t to)3270 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
3271 {
3272 	struct inode *inode = mapping->host;
3273 	loff_t i_size = i_size_read(inode);
3274 
3275 	if (IS_NOQUOTA(inode))
3276 		return;
3277 
3278 	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3279 	if (to > i_size && !f2fs_verity_in_progress(inode)) {
3280 		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3281 		f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
3282 
3283 		truncate_pagecache(inode, i_size);
3284 		f2fs_truncate_blocks(inode, i_size, true);
3285 
3286 		f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
3287 		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3288 	}
3289 }
3290 
prepare_write_begin(struct f2fs_sb_info * sbi,struct page * page,loff_t pos,unsigned len,block_t * blk_addr,bool * node_changed)3291 static int prepare_write_begin(struct f2fs_sb_info *sbi,
3292 			struct page *page, loff_t pos, unsigned len,
3293 			block_t *blk_addr, bool *node_changed)
3294 {
3295 	struct inode *inode = page->mapping->host;
3296 	pgoff_t index = page->index;
3297 	struct dnode_of_data dn;
3298 	struct page *ipage;
3299 	bool locked = false;
3300 	struct extent_info ei = {0, };
3301 	int err = 0;
3302 	int flag;
3303 
3304 	/*
3305 	 * we already allocated all the blocks, so we don't need to get
3306 	 * the block addresses when there is no need to fill the page.
3307 	 */
3308 	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
3309 	    !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
3310 	    !f2fs_verity_in_progress(inode))
3311 		return 0;
3312 
3313 	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
3314 	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
3315 		flag = F2FS_GET_BLOCK_DEFAULT;
3316 	else
3317 		flag = F2FS_GET_BLOCK_PRE_AIO;
3318 
3319 	if (f2fs_has_inline_data(inode) ||
3320 			(pos & PAGE_MASK) >= i_size_read(inode)) {
3321 		f2fs_do_map_lock(sbi, flag, true);
3322 		locked = true;
3323 	}
3324 
3325 restart:
3326 	/* check inline_data */
3327 	ipage = f2fs_get_node_page(sbi, inode->i_ino);
3328 	if (IS_ERR(ipage)) {
3329 		err = PTR_ERR(ipage);
3330 		goto unlock_out;
3331 	}
3332 
3333 	set_new_dnode(&dn, inode, ipage, ipage, 0);
3334 
3335 	if (f2fs_has_inline_data(inode)) {
3336 		if (pos + len <= MAX_INLINE_DATA(inode)) {
3337 			f2fs_do_read_inline_data(page, ipage);
3338 			set_inode_flag(inode, FI_DATA_EXIST);
3339 			if (inode->i_nlink)
3340 				set_page_private_inline(ipage);
3341 		} else {
3342 			err = f2fs_convert_inline_page(&dn, page);
3343 			if (err)
3344 				goto out;
3345 			if (dn.data_blkaddr == NULL_ADDR)
3346 				err = f2fs_get_block(&dn, index);
3347 		}
3348 	} else if (locked) {
3349 		err = f2fs_get_block(&dn, index);
3350 	} else {
3351 		if (f2fs_lookup_read_extent_cache(inode, index, &ei)) {
3352 			dn.data_blkaddr = ei.blk + index - ei.fofs;
3353 		} else {
3354 			/* hole case */
3355 			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3356 			if (err || dn.data_blkaddr == NULL_ADDR) {
3357 				f2fs_put_dnode(&dn);
3358 				f2fs_do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
3359 								true);
3360 				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3361 				locked = true;
3362 				goto restart;
3363 			}
3364 		}
3365 	}
3366 
3367 	/* convert_inline_page can make node_changed */
3368 	*blk_addr = dn.data_blkaddr;
3369 	*node_changed = dn.node_changed;
3370 out:
3371 	f2fs_put_dnode(&dn);
3372 unlock_out:
3373 	if (locked)
3374 		f2fs_do_map_lock(sbi, flag, false);
3375 	return err;
3376 }
3377 
f2fs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)3378 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3379 		loff_t pos, unsigned len, unsigned flags,
3380 		struct page **pagep, void **fsdata)
3381 {
3382 	struct inode *inode = mapping->host;
3383 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3384 	struct page *page = NULL;
3385 	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3386 	bool need_balance = false, drop_atomic = false;
3387 	block_t blkaddr = NULL_ADDR;
3388 	int err = 0;
3389 
3390 	/*
3391 	 * Should avoid quota operations which can make deadlock:
3392 	 * kswapd -> f2fs_evict_inode -> dquot_drop ->
3393 	 *   f2fs_dquot_commit -> f2fs_write_begin ->
3394 	 *   d_obtain_alias -> __d_alloc -> kmem_cache_alloc(GFP_KERNEL)
3395 	 */
3396 	if (trace_android_fs_datawrite_start_enabled() && !IS_NOQUOTA(inode)) {
3397 		char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3398 
3399 		path = android_fstrace_get_pathname(pathbuf,
3400 						    MAX_TRACE_PATHBUF_LEN,
3401 						    inode);
3402 		trace_android_fs_datawrite_start(inode, pos, len,
3403 						 current->pid, path,
3404 						 current->comm);
3405 	}
3406 	trace_f2fs_write_begin(inode, pos, len, flags);
3407 
3408 	if (!f2fs_is_checkpoint_ready(sbi)) {
3409 		err = -ENOSPC;
3410 		goto fail;
3411 	}
3412 
3413 	if ((f2fs_is_atomic_file(inode) &&
3414 			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
3415 			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
3416 		err = -ENOMEM;
3417 		drop_atomic = true;
3418 		goto fail;
3419 	}
3420 
3421 	/*
3422 	 * We should check this at this moment to avoid deadlock on inode page
3423 	 * and #0 page. The locking rule for inline_data conversion should be:
3424 	 * lock_page(page #0) -> lock_page(inode_page)
3425 	 */
3426 	if (index != 0) {
3427 		err = f2fs_convert_inline_inode(inode);
3428 		if (err)
3429 			goto fail;
3430 	}
3431 
3432 #ifdef CONFIG_F2FS_FS_COMPRESSION
3433 	if (f2fs_compressed_file(inode)) {
3434 		int ret;
3435 
3436 		*fsdata = NULL;
3437 
3438 		if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3439 			goto repeat;
3440 
3441 		ret = f2fs_prepare_compress_overwrite(inode, pagep,
3442 							index, fsdata);
3443 		if (ret < 0) {
3444 			err = ret;
3445 			goto fail;
3446 		} else if (ret) {
3447 			return 0;
3448 		}
3449 	}
3450 #endif
3451 
3452 repeat:
3453 	/*
3454 	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3455 	 * wait_for_stable_page. Will wait that below with our IO control.
3456 	 */
3457 	page = f2fs_pagecache_get_page(mapping, index,
3458 				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3459 	if (!page) {
3460 		err = -ENOMEM;
3461 		goto fail;
3462 	}
3463 
3464 	/* TODO: cluster can be compressed due to race with .writepage */
3465 
3466 	*pagep = page;
3467 
3468 	err = prepare_write_begin(sbi, page, pos, len,
3469 					&blkaddr, &need_balance);
3470 	if (err)
3471 		goto fail;
3472 
3473 	if (need_balance && !IS_NOQUOTA(inode) &&
3474 			has_not_enough_free_secs(sbi, 0, 0)) {
3475 		unlock_page(page);
3476 		f2fs_balance_fs(sbi, true);
3477 		lock_page(page);
3478 		if (page->mapping != mapping) {
3479 			/* The page got truncated from under us */
3480 			f2fs_put_page(page, 1);
3481 			goto repeat;
3482 		}
3483 	}
3484 
3485 	f2fs_wait_on_page_writeback(page, DATA, false, true);
3486 
3487 	if (len == PAGE_SIZE || PageUptodate(page))
3488 		return 0;
3489 
3490 	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3491 	    !f2fs_verity_in_progress(inode)) {
3492 		zero_user_segment(page, len, PAGE_SIZE);
3493 		return 0;
3494 	}
3495 
3496 	if (blkaddr == NEW_ADDR) {
3497 		zero_user_segment(page, 0, PAGE_SIZE);
3498 		SetPageUptodate(page);
3499 	} else {
3500 		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3501 				DATA_GENERIC_ENHANCE_READ)) {
3502 			err = -EFSCORRUPTED;
3503 			goto fail;
3504 		}
3505 		err = f2fs_submit_page_read(inode, page, blkaddr, 0, true);
3506 		if (err)
3507 			goto fail;
3508 
3509 		lock_page(page);
3510 		if (unlikely(page->mapping != mapping)) {
3511 			f2fs_put_page(page, 1);
3512 			goto repeat;
3513 		}
3514 		if (unlikely(!PageUptodate(page))) {
3515 			err = -EIO;
3516 			goto fail;
3517 		}
3518 	}
3519 	return 0;
3520 
3521 fail:
3522 	f2fs_put_page(page, 1);
3523 	f2fs_write_failed(mapping, pos + len);
3524 	if (drop_atomic)
3525 		f2fs_drop_inmem_pages_all(sbi, false);
3526 	return err;
3527 }
3528 
f2fs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3529 static int f2fs_write_end(struct file *file,
3530 			struct address_space *mapping,
3531 			loff_t pos, unsigned len, unsigned copied,
3532 			struct page *page, void *fsdata)
3533 {
3534 	struct inode *inode = page->mapping->host;
3535 
3536 	trace_android_fs_datawrite_end(inode, pos, len);
3537 	trace_f2fs_write_end(inode, pos, len, copied);
3538 
3539 	/*
3540 	 * This should be come from len == PAGE_SIZE, and we expect copied
3541 	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3542 	 * let generic_perform_write() try to copy data again through copied=0.
3543 	 */
3544 	if (!PageUptodate(page)) {
3545 		if (unlikely(copied != len))
3546 			copied = 0;
3547 		else
3548 			SetPageUptodate(page);
3549 	}
3550 
3551 #ifdef CONFIG_F2FS_FS_COMPRESSION
3552 	/* overwrite compressed file */
3553 	if (f2fs_compressed_file(inode) && fsdata) {
3554 		f2fs_compress_write_end(inode, fsdata, page->index, copied);
3555 		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3556 
3557 		if (pos + copied > i_size_read(inode) &&
3558 				!f2fs_verity_in_progress(inode))
3559 			f2fs_i_size_write(inode, pos + copied);
3560 		return copied;
3561 	}
3562 #endif
3563 
3564 	if (!copied)
3565 		goto unlock_out;
3566 
3567 	set_page_dirty(page);
3568 
3569 	if (pos + copied > i_size_read(inode) &&
3570 	    !f2fs_verity_in_progress(inode))
3571 		f2fs_i_size_write(inode, pos + copied);
3572 unlock_out:
3573 	f2fs_put_page(page, 1);
3574 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3575 	return copied;
3576 }
3577 
check_direct_IO(struct inode * inode,struct iov_iter * iter,loff_t offset)3578 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
3579 			   loff_t offset)
3580 {
3581 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
3582 	unsigned blkbits = i_blkbits;
3583 	unsigned blocksize_mask = (1 << blkbits) - 1;
3584 	unsigned long align = offset | iov_iter_alignment(iter);
3585 	struct block_device *bdev = inode->i_sb->s_bdev;
3586 
3587 	if (iov_iter_rw(iter) == READ && offset >= i_size_read(inode))
3588 		return 1;
3589 
3590 	if (align & blocksize_mask) {
3591 		if (bdev)
3592 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
3593 		blocksize_mask = (1 << blkbits) - 1;
3594 		if (align & blocksize_mask)
3595 			return -EINVAL;
3596 		return 1;
3597 	}
3598 	return 0;
3599 }
3600 
f2fs_dio_end_io(struct bio * bio)3601 static void f2fs_dio_end_io(struct bio *bio)
3602 {
3603 	struct f2fs_private_dio *dio = bio->bi_private;
3604 
3605 	dec_page_count(F2FS_I_SB(dio->inode),
3606 			dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3607 
3608 	bio->bi_private = dio->orig_private;
3609 	bio->bi_end_io = dio->orig_end_io;
3610 
3611 	kfree(dio);
3612 
3613 	bio_endio(bio);
3614 }
3615 
f2fs_dio_submit_bio(struct bio * bio,struct inode * inode,loff_t file_offset)3616 static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
3617 							loff_t file_offset)
3618 {
3619 	struct f2fs_private_dio *dio;
3620 	bool write = (bio_op(bio) == REQ_OP_WRITE);
3621 
3622 	dio = f2fs_kzalloc(F2FS_I_SB(inode),
3623 			sizeof(struct f2fs_private_dio), GFP_NOFS);
3624 	if (!dio)
3625 		goto out;
3626 
3627 	dio->inode = inode;
3628 	dio->orig_end_io = bio->bi_end_io;
3629 	dio->orig_private = bio->bi_private;
3630 	dio->write = write;
3631 
3632 	bio->bi_end_io = f2fs_dio_end_io;
3633 	bio->bi_private = dio;
3634 
3635 	inc_page_count(F2FS_I_SB(inode),
3636 			write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
3637 
3638 	submit_bio(bio);
3639 	return;
3640 out:
3641 	bio->bi_status = BLK_STS_IOERR;
3642 	bio_endio(bio);
3643 }
3644 
f2fs_direct_IO(struct kiocb * iocb,struct iov_iter * iter)3645 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3646 {
3647 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3648 	struct inode *inode = mapping->host;
3649 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3650 	struct f2fs_inode_info *fi = F2FS_I(inode);
3651 	size_t count = iov_iter_count(iter);
3652 	loff_t offset = iocb->ki_pos;
3653 	int rw = iov_iter_rw(iter);
3654 	int err;
3655 	enum rw_hint hint = iocb->ki_hint;
3656 	int whint_mode = F2FS_OPTION(sbi).whint_mode;
3657 	bool do_opu;
3658 
3659 	err = check_direct_IO(inode, iter, offset);
3660 	if (err)
3661 		return err < 0 ? err : 0;
3662 
3663 	if (f2fs_force_buffered_io(inode, iocb, iter))
3664 		return 0;
3665 
3666 	do_opu = allow_outplace_dio(inode, iocb, iter);
3667 
3668 	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
3669 
3670 	if (trace_android_fs_dataread_start_enabled() &&
3671 	    (rw == READ)) {
3672 		char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3673 
3674 		path = android_fstrace_get_pathname(pathbuf,
3675 						    MAX_TRACE_PATHBUF_LEN,
3676 						    inode);
3677 		trace_android_fs_dataread_start(inode, offset,
3678 						count, current->pid, path,
3679 						current->comm);
3680 	}
3681 	if (trace_android_fs_datawrite_start_enabled() &&
3682 	    (rw == WRITE)) {
3683 		char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
3684 
3685 		path = android_fstrace_get_pathname(pathbuf,
3686 						    MAX_TRACE_PATHBUF_LEN,
3687 						    inode);
3688 		trace_android_fs_datawrite_start(inode, offset, count,
3689 						 current->pid, path,
3690 						 current->comm);
3691 	}
3692 
3693 	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
3694 		iocb->ki_hint = WRITE_LIFE_NOT_SET;
3695 
3696 	if (iocb->ki_flags & IOCB_NOWAIT) {
3697 		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[rw])) {
3698 			iocb->ki_hint = hint;
3699 			err = -EAGAIN;
3700 			goto out;
3701 		}
3702 		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
3703 			f2fs_up_read(&fi->i_gc_rwsem[rw]);
3704 			iocb->ki_hint = hint;
3705 			err = -EAGAIN;
3706 			goto out;
3707 		}
3708 	} else {
3709 		f2fs_down_read(&fi->i_gc_rwsem[rw]);
3710 		if (do_opu)
3711 			f2fs_down_read(&fi->i_gc_rwsem[READ]);
3712 	}
3713 
3714 	err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3715 			iter, rw == WRITE ? get_data_block_dio_write :
3716 			get_data_block_dio, NULL, f2fs_dio_submit_bio,
3717 			rw == WRITE ? DIO_LOCKING | DIO_SKIP_HOLES :
3718 			DIO_SKIP_HOLES);
3719 
3720 	if (do_opu)
3721 		f2fs_up_read(&fi->i_gc_rwsem[READ]);
3722 
3723 	f2fs_up_read(&fi->i_gc_rwsem[rw]);
3724 
3725 	if (rw == WRITE) {
3726 		if (whint_mode == WHINT_MODE_OFF)
3727 			iocb->ki_hint = hint;
3728 		if (err > 0) {
3729 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3730 									err);
3731 			if (!do_opu)
3732 				set_inode_flag(inode, FI_UPDATE_WRITE);
3733 		} else if (err == -EIOCBQUEUED) {
3734 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
3735 						count - iov_iter_count(iter));
3736 		} else if (err < 0) {
3737 			f2fs_write_failed(mapping, offset + count);
3738 		}
3739 	} else {
3740 		if (err > 0)
3741 			f2fs_update_iostat(sbi, APP_DIRECT_READ_IO, err);
3742 		else if (err == -EIOCBQUEUED)
3743 			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_READ_IO,
3744 						count - iov_iter_count(iter));
3745 	}
3746 
3747 out:
3748 	if (trace_android_fs_dataread_start_enabled() &&
3749 	    (rw == READ))
3750 		trace_android_fs_dataread_end(inode, offset, count);
3751 	if (trace_android_fs_datawrite_start_enabled() &&
3752 	    (rw == WRITE))
3753 		trace_android_fs_datawrite_end(inode, offset, count);
3754 
3755 	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
3756 
3757 	return err;
3758 }
3759 
f2fs_invalidate_page(struct page * page,unsigned int offset,unsigned int length)3760 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3761 							unsigned int length)
3762 {
3763 	struct inode *inode = page->mapping->host;
3764 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3765 
3766 	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3767 		(offset % PAGE_SIZE || length != PAGE_SIZE))
3768 		return;
3769 
3770 	if (PageDirty(page)) {
3771 		if (inode->i_ino == F2FS_META_INO(sbi)) {
3772 			dec_page_count(sbi, F2FS_DIRTY_META);
3773 		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3774 			dec_page_count(sbi, F2FS_DIRTY_NODES);
3775 		} else {
3776 			inode_dec_dirty_pages(inode);
3777 			f2fs_remove_dirty_inode(inode);
3778 		}
3779 	}
3780 
3781 	clear_page_private_gcing(page);
3782 
3783 	if (test_opt(sbi, COMPRESS_CACHE)) {
3784 		if (f2fs_compressed_file(inode))
3785 			f2fs_invalidate_compress_pages(sbi, inode->i_ino);
3786 		if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3787 			clear_page_private_data(page);
3788 	}
3789 
3790 	if (page_private_atomic(page))
3791 		return f2fs_drop_inmem_page(inode, page);
3792 
3793 	detach_page_private(page);
3794 	set_page_private(page, 0);
3795 }
3796 
f2fs_release_page(struct page * page,gfp_t wait)3797 int f2fs_release_page(struct page *page, gfp_t wait)
3798 {
3799 	/* If this is dirty page, keep PagePrivate */
3800 	if (PageDirty(page))
3801 		return 0;
3802 
3803 	/* This is atomic written page, keep Private */
3804 	if (page_private_atomic(page))
3805 		return 0;
3806 
3807 	if (test_opt(F2FS_P_SB(page), COMPRESS_CACHE)) {
3808 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3809 		struct inode *inode = page->mapping->host;
3810 
3811 		if (f2fs_compressed_file(inode))
3812 			f2fs_invalidate_compress_pages(sbi, inode->i_ino);
3813 		if (inode->i_ino == F2FS_COMPRESS_INO(sbi))
3814 			clear_page_private_data(page);
3815 	}
3816 
3817 	clear_page_private_gcing(page);
3818 
3819 	detach_page_private(page);
3820 	set_page_private(page, 0);
3821 	return 1;
3822 }
3823 
f2fs_set_data_page_dirty(struct page * page)3824 static int f2fs_set_data_page_dirty(struct page *page)
3825 {
3826 	struct inode *inode = page_file_mapping(page)->host;
3827 
3828 	trace_f2fs_set_page_dirty(page, DATA);
3829 
3830 	if (!PageUptodate(page))
3831 		SetPageUptodate(page);
3832 	if (PageSwapCache(page))
3833 		return __set_page_dirty_nobuffers(page);
3834 
3835 	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
3836 		if (!page_private_atomic(page)) {
3837 			f2fs_register_inmem_page(inode, page);
3838 			return 1;
3839 		}
3840 		/*
3841 		 * Previously, this page has been registered, we just
3842 		 * return here.
3843 		 */
3844 		return 0;
3845 	}
3846 
3847 	if (!PageDirty(page)) {
3848 		__set_page_dirty_nobuffers(page);
3849 		f2fs_update_dirty_page(inode, page);
3850 		return 1;
3851 	}
3852 	return 0;
3853 }
3854 
3855 
f2fs_bmap_compress(struct inode * inode,sector_t block)3856 static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3857 {
3858 #ifdef CONFIG_F2FS_FS_COMPRESSION
3859 	struct dnode_of_data dn;
3860 	sector_t start_idx, blknr = 0;
3861 	int ret;
3862 
3863 	start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3864 
3865 	set_new_dnode(&dn, inode, NULL, NULL, 0);
3866 	ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3867 	if (ret)
3868 		return 0;
3869 
3870 	if (dn.data_blkaddr != COMPRESS_ADDR) {
3871 		dn.ofs_in_node += block - start_idx;
3872 		blknr = f2fs_data_blkaddr(&dn);
3873 		if (!__is_valid_data_blkaddr(blknr))
3874 			blknr = 0;
3875 	}
3876 
3877 	f2fs_put_dnode(&dn);
3878 	return blknr;
3879 #else
3880 	return 0;
3881 #endif
3882 }
3883 
3884 
f2fs_bmap(struct address_space * mapping,sector_t block)3885 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3886 {
3887 	struct inode *inode = mapping->host;
3888 	sector_t blknr = 0;
3889 
3890 	if (f2fs_has_inline_data(inode))
3891 		goto out;
3892 
3893 	/* make sure allocating whole blocks */
3894 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3895 		filemap_write_and_wait(mapping);
3896 
3897 	/* Block number less than F2FS MAX BLOCKS */
3898 	if (unlikely(block >= max_file_blocks(inode)))
3899 		goto out;
3900 
3901 	if (f2fs_compressed_file(inode)) {
3902 		blknr = f2fs_bmap_compress(inode, block);
3903 	} else {
3904 		struct f2fs_map_blocks map;
3905 
3906 		memset(&map, 0, sizeof(map));
3907 		map.m_lblk = block;
3908 		map.m_len = 1;
3909 		map.m_next_pgofs = NULL;
3910 		map.m_seg_type = NO_CHECK_TYPE;
3911 
3912 		if (!f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_BMAP))
3913 			blknr = map.m_pblk;
3914 	}
3915 out:
3916 	trace_f2fs_bmap(inode, block, blknr);
3917 	return blknr;
3918 }
3919 
3920 #ifdef CONFIG_MIGRATION
3921 #include <linux/migrate.h>
3922 
f2fs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)3923 int f2fs_migrate_page(struct address_space *mapping,
3924 		struct page *newpage, struct page *page, enum migrate_mode mode)
3925 {
3926 	int rc, extra_count;
3927 	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
3928 	bool atomic_written = page_private_atomic(page);
3929 
3930 	BUG_ON(PageWriteback(page));
3931 
3932 	/* migrating an atomic written page is safe with the inmem_lock hold */
3933 	if (atomic_written) {
3934 		if (mode != MIGRATE_SYNC)
3935 			return -EBUSY;
3936 		if (!mutex_trylock(&fi->inmem_lock))
3937 			return -EAGAIN;
3938 	}
3939 
3940 	/* one extra reference was held for atomic_write page */
3941 	extra_count = atomic_written ? 1 : 0;
3942 	rc = migrate_page_move_mapping(mapping, newpage,
3943 				page, extra_count);
3944 	if (rc != MIGRATEPAGE_SUCCESS) {
3945 		if (atomic_written)
3946 			mutex_unlock(&fi->inmem_lock);
3947 		return rc;
3948 	}
3949 
3950 	if (atomic_written) {
3951 		struct inmem_pages *cur;
3952 
3953 		list_for_each_entry(cur, &fi->inmem_pages, list)
3954 			if (cur->page == page) {
3955 				cur->page = newpage;
3956 				break;
3957 			}
3958 		mutex_unlock(&fi->inmem_lock);
3959 		put_page(page);
3960 		get_page(newpage);
3961 	}
3962 
3963 	/* guarantee to start from no stale private field */
3964 	set_page_private(newpage, 0);
3965 	if (PagePrivate(page)) {
3966 		set_page_private(newpage, page_private(page));
3967 		SetPagePrivate(newpage);
3968 		get_page(newpage);
3969 
3970 		set_page_private(page, 0);
3971 		ClearPagePrivate(page);
3972 		put_page(page);
3973 	}
3974 
3975 	if (mode != MIGRATE_SYNC_NO_COPY)
3976 		migrate_page_copy(newpage, page);
3977 	else
3978 		migrate_page_states(newpage, page);
3979 
3980 	return MIGRATEPAGE_SUCCESS;
3981 }
3982 #endif
3983 
3984 #ifdef CONFIG_SWAP
f2fs_migrate_blocks(struct inode * inode,block_t start_blk,unsigned int blkcnt)3985 static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3986 							unsigned int blkcnt)
3987 {
3988 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3989 	unsigned int blkofs;
3990 	unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3991 	unsigned int secidx = start_blk / blk_per_sec;
3992 	unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3993 	int ret = 0;
3994 
3995 	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3996 	f2fs_down_write(&F2FS_I(inode)->i_mmap_sem);
3997 
3998 	set_inode_flag(inode, FI_ALIGNED_WRITE);
3999 	set_inode_flag(inode, FI_OPU_WRITE);
4000 
4001 	for (; secidx < end_sec; secidx++) {
4002 		f2fs_down_write(&sbi->pin_sem);
4003 
4004 		f2fs_lock_op(sbi);
4005 		f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
4006 		f2fs_unlock_op(sbi);
4007 
4008 		set_inode_flag(inode, FI_SKIP_WRITES);
4009 
4010 		for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
4011 			struct page *page;
4012 			unsigned int blkidx = secidx * blk_per_sec + blkofs;
4013 
4014 			page = f2fs_get_lock_data_page(inode, blkidx, true);
4015 			if (IS_ERR(page)) {
4016 				f2fs_up_write(&sbi->pin_sem);
4017 				ret = PTR_ERR(page);
4018 				goto done;
4019 			}
4020 
4021 			set_page_dirty(page);
4022 			f2fs_put_page(page, 1);
4023 		}
4024 
4025 		clear_inode_flag(inode, FI_SKIP_WRITES);
4026 
4027 		ret = filemap_fdatawrite(inode->i_mapping);
4028 
4029 		f2fs_up_write(&sbi->pin_sem);
4030 
4031 		if (ret)
4032 			break;
4033 	}
4034 
4035 done:
4036 	clear_inode_flag(inode, FI_SKIP_WRITES);
4037 	clear_inode_flag(inode, FI_OPU_WRITE);
4038 	clear_inode_flag(inode, FI_ALIGNED_WRITE);
4039 
4040 	f2fs_up_write(&F2FS_I(inode)->i_mmap_sem);
4041 	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4042 
4043 	return ret;
4044 }
4045 
check_swap_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)4046 static int check_swap_activate(struct swap_info_struct *sis,
4047 				struct file *swap_file, sector_t *span)
4048 {
4049 	struct address_space *mapping = swap_file->f_mapping;
4050 	struct inode *inode = mapping->host;
4051 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4052 	sector_t cur_lblock;
4053 	sector_t last_lblock;
4054 	sector_t pblock;
4055 	sector_t lowest_pblock = -1;
4056 	sector_t highest_pblock = 0;
4057 	int nr_extents = 0;
4058 	unsigned long nr_pblocks;
4059 	unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
4060 	unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
4061 	unsigned int not_aligned = 0;
4062 	int ret = 0;
4063 
4064 	/*
4065 	 * Map all the blocks into the extent list.  This code doesn't try
4066 	 * to be very smart.
4067 	 */
4068 	cur_lblock = 0;
4069 	last_lblock = bytes_to_blks(inode, i_size_read(inode));
4070 
4071 	while (cur_lblock < last_lblock && cur_lblock < sis->max) {
4072 		struct f2fs_map_blocks map;
4073 retry:
4074 		cond_resched();
4075 
4076 		memset(&map, 0, sizeof(map));
4077 		map.m_lblk = cur_lblock;
4078 		map.m_len = last_lblock - cur_lblock;
4079 		map.m_next_pgofs = NULL;
4080 		map.m_next_extent = NULL;
4081 		map.m_seg_type = NO_CHECK_TYPE;
4082 		map.m_may_create = false;
4083 
4084 		ret = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_FIEMAP);
4085 		if (ret)
4086 			goto out;
4087 
4088 		/* hole */
4089 		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
4090 			f2fs_err(sbi, "Swapfile has holes");
4091 			ret = -EINVAL;
4092 			goto out;
4093 		}
4094 
4095 		pblock = map.m_pblk;
4096 		nr_pblocks = map.m_len;
4097 
4098 		if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
4099 				nr_pblocks & sec_blks_mask) {
4100 			not_aligned++;
4101 
4102 			nr_pblocks = roundup(nr_pblocks, blks_per_sec);
4103 			if (cur_lblock + nr_pblocks > sis->max)
4104 				nr_pblocks -= blks_per_sec;
4105 
4106 			if (!nr_pblocks) {
4107 				/* this extent is last one */
4108 				nr_pblocks = map.m_len;
4109 				f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
4110 				goto next;
4111 			}
4112 
4113 			ret = f2fs_migrate_blocks(inode, cur_lblock,
4114 							nr_pblocks);
4115 			if (ret)
4116 				goto out;
4117 			goto retry;
4118 		}
4119 next:
4120 		if (cur_lblock + nr_pblocks >= sis->max)
4121 			nr_pblocks = sis->max - cur_lblock;
4122 
4123 		if (cur_lblock) {	/* exclude the header page */
4124 			if (pblock < lowest_pblock)
4125 				lowest_pblock = pblock;
4126 			if (pblock + nr_pblocks - 1 > highest_pblock)
4127 				highest_pblock = pblock + nr_pblocks - 1;
4128 		}
4129 
4130 		/*
4131 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4132 		 */
4133 		ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4134 		if (ret < 0)
4135 			goto out;
4136 		nr_extents += ret;
4137 		cur_lblock += nr_pblocks;
4138 	}
4139 	ret = nr_extents;
4140 	*span = 1 + highest_pblock - lowest_pblock;
4141 	if (cur_lblock == 0)
4142 		cur_lblock = 1;	/* force Empty message */
4143 	sis->max = cur_lblock;
4144 	sis->pages = cur_lblock - 1;
4145 	sis->highest_bit = cur_lblock - 1;
4146 out:
4147 	if (not_aligned)
4148 		f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
4149 			  not_aligned, blks_per_sec * F2FS_BLKSIZE);
4150 	return ret;
4151 }
4152 
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4153 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4154 				sector_t *span)
4155 {
4156 	struct inode *inode = file_inode(file);
4157 	int ret;
4158 
4159 	if (!S_ISREG(inode->i_mode))
4160 		return -EINVAL;
4161 
4162 	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4163 		return -EROFS;
4164 
4165 	if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4166 		f2fs_err(F2FS_I_SB(inode),
4167 			"Swapfile not supported in LFS mode");
4168 		return -EINVAL;
4169 	}
4170 
4171 	ret = f2fs_convert_inline_inode(inode);
4172 	if (ret)
4173 		return ret;
4174 
4175 	if (!f2fs_disable_compressed_file(inode))
4176 		return -EINVAL;
4177 
4178 	f2fs_precache_extents(inode);
4179 
4180 	ret = check_swap_activate(sis, file, span);
4181 	if (ret < 0)
4182 		return ret;
4183 
4184 	set_inode_flag(inode, FI_PIN_FILE);
4185 	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4186 	return ret;
4187 }
4188 
f2fs_swap_deactivate(struct file * file)4189 static void f2fs_swap_deactivate(struct file *file)
4190 {
4191 	struct inode *inode = file_inode(file);
4192 
4193 	clear_inode_flag(inode, FI_PIN_FILE);
4194 }
4195 #else
f2fs_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4196 static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4197 				sector_t *span)
4198 {
4199 	return -EOPNOTSUPP;
4200 }
4201 
f2fs_swap_deactivate(struct file * file)4202 static void f2fs_swap_deactivate(struct file *file)
4203 {
4204 }
4205 #endif
4206 
4207 const struct address_space_operations f2fs_dblock_aops = {
4208 	.readpage	= f2fs_read_data_page,
4209 	.readahead	= f2fs_readahead,
4210 	.writepage	= f2fs_write_data_page,
4211 	.writepages	= f2fs_write_data_pages,
4212 	.write_begin	= f2fs_write_begin,
4213 	.write_end	= f2fs_write_end,
4214 	.set_page_dirty	= f2fs_set_data_page_dirty,
4215 	.invalidatepage	= f2fs_invalidate_page,
4216 	.releasepage	= f2fs_release_page,
4217 	.direct_IO	= f2fs_direct_IO,
4218 	.bmap		= f2fs_bmap,
4219 	.swap_activate  = f2fs_swap_activate,
4220 	.swap_deactivate = f2fs_swap_deactivate,
4221 #ifdef CONFIG_MIGRATION
4222 	.migratepage    = f2fs_migrate_page,
4223 #endif
4224 };
4225 
f2fs_clear_page_cache_dirty_tag(struct page * page)4226 void f2fs_clear_page_cache_dirty_tag(struct page *page)
4227 {
4228 	struct address_space *mapping = page_mapping(page);
4229 	unsigned long flags;
4230 
4231 	xa_lock_irqsave(&mapping->i_pages, flags);
4232 	__xa_clear_mark(&mapping->i_pages, page_index(page),
4233 						PAGECACHE_TAG_DIRTY);
4234 	xa_unlock_irqrestore(&mapping->i_pages, flags);
4235 }
4236 
f2fs_init_post_read_processing(void)4237 int __init f2fs_init_post_read_processing(void)
4238 {
4239 	bio_post_read_ctx_cache =
4240 		kmem_cache_create("f2fs_bio_post_read_ctx",
4241 				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4242 	if (!bio_post_read_ctx_cache)
4243 		goto fail;
4244 	bio_post_read_ctx_pool =
4245 		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4246 					 bio_post_read_ctx_cache);
4247 	if (!bio_post_read_ctx_pool)
4248 		goto fail_free_cache;
4249 	return 0;
4250 
4251 fail_free_cache:
4252 	kmem_cache_destroy(bio_post_read_ctx_cache);
4253 fail:
4254 	return -ENOMEM;
4255 }
4256 
f2fs_destroy_post_read_processing(void)4257 void f2fs_destroy_post_read_processing(void)
4258 {
4259 	mempool_destroy(bio_post_read_ctx_pool);
4260 	kmem_cache_destroy(bio_post_read_ctx_cache);
4261 }
4262 
f2fs_init_post_read_wq(struct f2fs_sb_info * sbi)4263 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4264 {
4265 	if (!f2fs_sb_has_encrypt(sbi) &&
4266 		!f2fs_sb_has_verity(sbi) &&
4267 		!f2fs_sb_has_compression(sbi))
4268 		return 0;
4269 
4270 	sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4271 						 WQ_UNBOUND | WQ_HIGHPRI,
4272 						 num_online_cpus());
4273 	if (!sbi->post_read_wq)
4274 		return -ENOMEM;
4275 	return 0;
4276 }
4277 
f2fs_destroy_post_read_wq(struct f2fs_sb_info * sbi)4278 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4279 {
4280 	if (sbi->post_read_wq)
4281 		destroy_workqueue(sbi->post_read_wq);
4282 }
4283 
f2fs_init_bio_entry_cache(void)4284 int __init f2fs_init_bio_entry_cache(void)
4285 {
4286 	bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4287 			sizeof(struct bio_entry));
4288 	if (!bio_entry_slab)
4289 		return -ENOMEM;
4290 	return 0;
4291 }
4292 
f2fs_destroy_bio_entry_cache(void)4293 void f2fs_destroy_bio_entry_cache(void)
4294 {
4295 	kmem_cache_destroy(bio_entry_slab);
4296 }
4297