1 // SPDX-License-Identifier: (GPL-2.0+ OR MIT)
2 /*
3 * Copyright (c) 2021 Rockchip Electronics Co., Ltd
4 *
5 * author:
6 * Ding Wei, leo.ding@rock-chips.com
7 *
8 */
9
10 #include <asm/cacheflush.h>
11 #include <linux/delay.h>
12 #include <linux/devfreq.h>
13 #include <linux/devfreq_cooling.h>
14 #include <linux/iopoll.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/types.h>
19 #include <linux/of_platform.h>
20 #include <linux/of_address.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/uaccess.h>
24 #include <linux/regmap.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/proc_fs.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/nospec.h>
29 #include <linux/workqueue.h>
30 #include <linux/dma-iommu.h>
31 #include <soc/rockchip/pm_domains.h>
32 #include <soc/rockchip/rockchip_ipa.h>
33 #include <soc/rockchip/rockchip_opp_select.h>
34 #include <soc/rockchip/rockchip_system_monitor.h>
35
36 #include "mpp_debug.h"
37 #include "mpp_iommu.h"
38 #include "mpp_common.h"
39
40 #define RKVENC_DRIVER_NAME "mpp_rkvenc2"
41
42 #define RKVENC_SESSION_MAX_BUFFERS 40
43 #define RKVENC_MAX_CORE_NUM 4
44 #define RKVENC_MAX_DCHS_ID 4
45 #define RKVENC_MAX_SLICE_FIFO_LEN 256
46 #define RKVENC_SCLR_DONE_STA BIT(2)
47
48 #define to_rkvenc_info(info) \
49 container_of(info, struct rkvenc_hw_info, hw)
50 #define to_rkvenc_task(ctx) \
51 container_of(ctx, struct rkvenc_task, mpp_task)
52 #define to_rkvenc_dev(dev) \
53 container_of(dev, struct rkvenc_dev, mpp)
54
55
56 enum RKVENC_FORMAT_TYPE {
57 RKVENC_FMT_BASE = 0x0000,
58 RKVENC_FMT_H264E = RKVENC_FMT_BASE + 0,
59 RKVENC_FMT_H265E = RKVENC_FMT_BASE + 1,
60 RKVENC_FMT_JPEGE = RKVENC_FMT_BASE + 2,
61
62 RKVENC_FMT_OSD_BASE = 0x1000,
63 RKVENC_FMT_H264E_OSD = RKVENC_FMT_OSD_BASE + 0,
64 RKVENC_FMT_H265E_OSD = RKVENC_FMT_OSD_BASE + 1,
65 RKVENC_FMT_JPEGE_OSD = RKVENC_FMT_OSD_BASE + 2,
66 RKVENC_FMT_BUTT,
67 };
68
69 enum RKVENC_CLASS_TYPE {
70 RKVENC_CLASS_BASE = 0, /* base */
71 RKVENC_CLASS_PIC = 1, /* picture configure */
72 RKVENC_CLASS_RC = 2, /* rate control */
73 RKVENC_CLASS_PAR = 3, /* parameter */
74 RKVENC_CLASS_SQI = 4, /* subjective Adjust */
75 RKVENC_CLASS_SCL = 5, /* scaling list */
76 RKVENC_CLASS_OSD = 6, /* osd */
77 RKVENC_CLASS_ST = 7, /* status */
78 RKVENC_CLASS_DEBUG = 8, /* debug */
79 RKVENC_CLASS_BUTT,
80 };
81
82 enum RKVENC_CLASS_FD_TYPE {
83 RKVENC_CLASS_FD_BASE = 0, /* base */
84 RKVENC_CLASS_FD_OSD = 1, /* osd */
85 RKVENC_CLASS_FD_BUTT,
86 };
87
88 struct rkvenc_reg_msg {
89 u32 base_s;
90 u32 base_e;
91 };
92
93 struct rkvenc_hw_info {
94 struct mpp_hw_info hw;
95 /* for register range check */
96 u32 reg_class;
97 struct rkvenc_reg_msg reg_msg[RKVENC_CLASS_BUTT];
98 /* for fd translate */
99 u32 fd_class;
100 struct {
101 u32 class;
102 u32 base_fmt;
103 } fd_reg[RKVENC_CLASS_FD_BUTT];
104 /* for get format */
105 struct {
106 u32 class;
107 u32 base;
108 u32 bitpos;
109 u32 bitlen;
110 } fmt_reg;
111 /* register info */
112 u32 enc_start_base;
113 u32 enc_clr_base;
114 u32 int_en_base;
115 u32 int_mask_base;
116 u32 int_clr_base;
117 u32 int_sta_base;
118 u32 enc_wdg_base;
119 u32 err_mask;
120 };
121
122 #define INT_STA_ENC_DONE_STA BIT(0)
123 #define INT_STA_SCLR_DONE_STA BIT(2)
124 #define INT_STA_SLC_DONE_STA BIT(3)
125 #define INT_STA_BSF_OFLW_STA BIT(4)
126 #define INT_STA_BRSP_OTSD_STA BIT(5)
127 #define INT_STA_WBUS_ERR_STA BIT(6)
128 #define INT_STA_RBUS_ERR_STA BIT(7)
129 #define INT_STA_WDG_STA BIT(8)
130
131 #define DCHS_REG_OFFSET (0x304)
132 #define DCHS_CLASS_OFFSET (33)
133 #define DCHS_TXE (0x10)
134 #define DCHS_RXE (0x20)
135
136 /* dual core hand-shake info */
137 union rkvenc2_dual_core_handshake_id {
138 u64 val;
139 struct {
140 u32 txid : 2;
141 u32 rxid : 2;
142 u32 txe : 1;
143 u32 rxe : 1;
144 u32 working : 1;
145 u32 reserve0 : 1;
146 u32 txid_orig : 2;
147 u32 rxid_orig : 2;
148 u32 txid_map : 2;
149 u32 rxid_map : 2;
150 u32 offset : 11;
151 u32 reserve1 : 1;
152 u32 txe_orig : 1;
153 u32 rxe_orig : 1;
154 u32 txe_map : 1;
155 u32 rxe_map : 1;
156 u32 session_id;
157 };
158 };
159
160 #define RKVENC2_REG_INT_EN (8)
161 #define RKVENC2_BIT_SLICE_DONE_EN BIT(3)
162
163 #define RKVENC2_REG_INT_MASK (9)
164 #define RKVENC2_BIT_SLICE_DONE_MASK BIT(3)
165
166 #define RKVENC2_REG_EXT_LINE_BUF_BASE (22)
167
168 #define RKVENC2_REG_ENC_PIC (32)
169 #define RKVENC2_BIT_ENC_STND BIT(0)
170 #define RKVENC2_BIT_VAL_H264 0
171 #define RKVENC2_BIT_VAL_H265 1
172 #define RKVENC2_BIT_SLEN_FIFO BIT(30)
173
174 #define RKVENC2_REG_SLI_SPLIT (56)
175 #define RKVENC2_BIT_SLI_SPLIT BIT(0)
176 #define RKVENC2_BIT_SLI_FLUSH BIT(15)
177
178 #define RKVENC2_REG_SLICE_NUM_BASE (0x4034)
179 #define RKVENC2_REG_SLICE_LEN_BASE (0x4038)
180
181 #define RKVENC2_REG_ST_BSB (0x402c)
182 #define RKVENC2_REG_ADR_BSBT (0x2b0)
183 #define RKVENC2_REG_ADR_BSBB (0x2b4)
184 #define RKVENC2_REG_ADR_BSBR (0x2b8)
185 #define RKVENC2_REG_ADR_BSBS (0x2bc)
186
187 union rkvenc2_slice_len_info {
188 u32 val;
189
190 struct {
191 u32 slice_len : 31;
192 u32 last : 1;
193 };
194 };
195
196 struct rkvenc_poll_slice_cfg {
197 s32 poll_type;
198 s32 poll_ret;
199 s32 count_max;
200 s32 count_ret;
201 union rkvenc2_slice_len_info slice_info[];
202 };
203
204 struct rkvenc_task {
205 struct mpp_task mpp_task;
206 int fmt;
207 struct rkvenc_hw_info *hw_info;
208
209 /* class register */
210 struct {
211 u32 valid;
212 u32 *data;
213 u32 size;
214 } reg[RKVENC_CLASS_BUTT];
215 /* register offset info */
216 struct reg_offset_info off_inf;
217
218 enum MPP_CLOCK_MODE clk_mode;
219 u32 irq_status;
220 /* req for current task */
221 u32 w_req_cnt;
222 struct mpp_request w_reqs[MPP_MAX_MSG_NUM];
223 u32 r_req_cnt;
224 struct mpp_request r_reqs[MPP_MAX_MSG_NUM];
225 struct mpp_dma_buffer *table;
226
227 union rkvenc2_dual_core_handshake_id dchs_id;
228
229 /* split output / slice mode info */
230 u32 task_split;
231 u32 task_split_done;
232 u32 last_slice_found;
233 u32 slice_wr_cnt;
234 u32 slice_rd_cnt;
235 DECLARE_KFIFO(slice_info, union rkvenc2_slice_len_info, RKVENC_MAX_SLICE_FIFO_LEN);
236
237 /* jpege bitstream */
238 struct mpp_dma_buffer *bs_buf;
239 u32 offset_bs;
240 };
241
242 #define RKVENC_MAX_RCB_NUM (4)
243
244 struct rcb_info_elem {
245 u32 index;
246 u32 size;
247 };
248
249 struct rkvenc2_rcb_info {
250 u32 cnt;
251 struct rcb_info_elem elem[RKVENC_MAX_RCB_NUM];
252 };
253
254 struct rkvenc2_session_priv {
255 struct rw_semaphore rw_sem;
256 /* codec info from user */
257 struct {
258 /* show mode */
259 u32 flag;
260 /* item data */
261 u64 val;
262 } codec_info[ENC_INFO_BUTT];
263 /* rcb_info for sram */
264 struct rkvenc2_rcb_info rcb_inf;
265 };
266
267 struct rkvenc_dev {
268 struct mpp_dev mpp;
269 struct rkvenc_hw_info *hw_info;
270
271 struct mpp_clk_info aclk_info;
272 struct mpp_clk_info hclk_info;
273 struct mpp_clk_info core_clk_info;
274 u32 default_max_load;
275 #ifdef CONFIG_ROCKCHIP_MPP_PROC_FS
276 struct proc_dir_entry *procfs;
277 #endif
278 struct reset_control *rst_a;
279 struct reset_control *rst_h;
280 struct reset_control *rst_core;
281 /* for ccu */
282 struct rkvenc_ccu *ccu;
283 struct list_head core_link;
284
285 /* internal rcb-memory */
286 u32 sram_size;
287 u32 sram_used;
288 dma_addr_t sram_iova;
289 u32 sram_enabled;
290 struct page *rcb_page;
291
292 u32 bs_overflow;
293
294 #ifdef CONFIG_PM_DEVFREQ
295 struct rockchip_opp_info opp_info;
296 struct monitor_dev_info *mdev_info;
297 #endif
298 };
299
300 struct rkvenc_ccu {
301 u32 core_num;
302 /* lock for core attach */
303 struct mutex lock;
304 struct list_head core_list;
305 struct mpp_dev *main_core;
306
307 spinlock_t lock_dchs;
308 union rkvenc2_dual_core_handshake_id dchs[RKVENC_MAX_CORE_NUM];
309 };
310
311 static struct rkvenc_hw_info rkvenc_v2_hw_info = {
312 .hw = {
313 .reg_num = 254,
314 .reg_id = 0,
315 .reg_en = 4,
316 .reg_start = 160,
317 .reg_end = 253,
318 },
319 .reg_class = RKVENC_CLASS_BUTT,
320 .reg_msg[RKVENC_CLASS_BASE] = {
321 .base_s = 0x0000,
322 .base_e = 0x0058,
323 },
324 .reg_msg[RKVENC_CLASS_PIC] = {
325 .base_s = 0x0280,
326 .base_e = 0x03f4,
327 },
328 .reg_msg[RKVENC_CLASS_RC] = {
329 .base_s = 0x1000,
330 .base_e = 0x10e0,
331 },
332 .reg_msg[RKVENC_CLASS_PAR] = {
333 .base_s = 0x1700,
334 .base_e = 0x1cd4,
335 },
336 .reg_msg[RKVENC_CLASS_SQI] = {
337 .base_s = 0x2000,
338 .base_e = 0x21e4,
339 },
340 .reg_msg[RKVENC_CLASS_SCL] = {
341 .base_s = 0x2200,
342 .base_e = 0x2c98,
343 },
344 .reg_msg[RKVENC_CLASS_OSD] = {
345 .base_s = 0x3000,
346 .base_e = 0x347c,
347 },
348 .reg_msg[RKVENC_CLASS_ST] = {
349 .base_s = 0x4000,
350 .base_e = 0x42cc,
351 },
352 .reg_msg[RKVENC_CLASS_DEBUG] = {
353 .base_s = 0x5000,
354 .base_e = 0x5354,
355 },
356 .fd_class = RKVENC_CLASS_FD_BUTT,
357 .fd_reg[RKVENC_CLASS_FD_BASE] = {
358 .class = RKVENC_CLASS_PIC,
359 .base_fmt = RKVENC_FMT_BASE,
360 },
361 .fd_reg[RKVENC_CLASS_FD_OSD] = {
362 .class = RKVENC_CLASS_OSD,
363 .base_fmt = RKVENC_FMT_OSD_BASE,
364 },
365 .fmt_reg = {
366 .class = RKVENC_CLASS_PIC,
367 .base = 0x0300,
368 .bitpos = 0,
369 .bitlen = 1,
370 },
371 .enc_start_base = 0x0010,
372 .enc_clr_base = 0x0014,
373 .int_en_base = 0x0020,
374 .int_mask_base = 0x0024,
375 .int_clr_base = 0x0028,
376 .int_sta_base = 0x002c,
377 .enc_wdg_base = 0x0038,
378 .err_mask = 0x03f0,
379 };
380
381 static struct rkvenc_hw_info rkvenc_540c_hw_info = {
382 .hw = {
383 .reg_num = 254,
384 .reg_id = 0,
385 .reg_en = 4,
386 .reg_start = 160,
387 .reg_end = 253,
388 },
389 .reg_class = RKVENC_CLASS_BUTT,
390 .reg_msg[RKVENC_CLASS_BASE] = {
391 .base_s = 0x0000,
392 .base_e = 0x0120,
393 },
394 .reg_msg[RKVENC_CLASS_PIC] = {
395 .base_s = 0x0270,
396 .base_e = 0x0480,
397 },
398 .reg_msg[RKVENC_CLASS_RC] = {
399 .base_s = 0x1000,
400 .base_e = 0x110c,
401 },
402 .reg_msg[RKVENC_CLASS_PAR] = {
403 .base_s = 0x1700,
404 .base_e = 0x19cc,
405 },
406 .reg_msg[RKVENC_CLASS_SQI] = {
407 .base_s = 0x2000,
408 .base_e = 0x20fc,
409 },
410 .reg_msg[RKVENC_CLASS_SCL] = {
411 .base_s = 0x21e0,
412 .base_e = 0x2dfc,
413 },
414 .reg_msg[RKVENC_CLASS_OSD] = {
415 .base_s = 0x3000,
416 .base_e = 0x326c,
417 },
418 .reg_msg[RKVENC_CLASS_ST] = {
419 .base_s = 0x4000,
420 .base_e = 0x424c,
421 },
422 .reg_msg[RKVENC_CLASS_DEBUG] = {
423 .base_s = 0x5000,
424 .base_e = 0x5354,
425 },
426 .fd_class = RKVENC_CLASS_FD_BUTT,
427 .fd_reg[RKVENC_CLASS_FD_BASE] = {
428 .class = RKVENC_CLASS_PIC,
429 .base_fmt = RKVENC_FMT_BASE,
430 },
431 .fd_reg[RKVENC_CLASS_FD_OSD] = {
432 .class = RKVENC_CLASS_OSD,
433 .base_fmt = RKVENC_FMT_OSD_BASE,
434 },
435 .fmt_reg = {
436 .class = RKVENC_CLASS_PIC,
437 .base = 0x0300,
438 .bitpos = 0,
439 .bitlen = 2,
440 },
441 .enc_start_base = 0x0010,
442 .enc_clr_base = 0x0014,
443 .int_en_base = 0x0020,
444 .int_mask_base = 0x0024,
445 .int_clr_base = 0x0028,
446 .int_sta_base = 0x002c,
447 .enc_wdg_base = 0x0038,
448 .err_mask = 0x27d0,
449 };
450 /*
451 * file handle translate information for v2
452 */
453 static const u16 trans_tbl_h264e_v2[] = {
454 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
455 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
456 20, 21, 22, 23,
457 };
458
459 static const u16 trans_tbl_h264e_v2_osd[] = {
460 20, 21, 22, 23, 24, 25, 26, 27,
461 };
462
463 static const u16 trans_tbl_h265e_v2[] = {
464 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
465 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
466 20, 21, 22, 23,
467 };
468
469 static const u16 trans_tbl_h265e_v2_osd[] = {
470 20, 21, 22, 23, 24, 25, 26, 27,
471 };
472
473 /*
474 * file handle translate information for 540c
475 */
476 static const u16 trans_tbl_h264e_540c[] = {
477 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
478 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
479 // /* renc and ref wrap */
480 // 24, 25, 26, 27,
481 };
482
483 static const u16 trans_tbl_h264e_540c_osd[] = {
484 3, 4, 12, 13, 21, 22, 30, 31,
485 39, 40, 48, 49, 57, 58, 66, 67,
486 };
487
488 static const u16 trans_tbl_h265e_540c[] = {
489 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
490 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
491 };
492
493 static const u16 trans_tbl_h265e_540c_osd[] = {
494 3, 4, 12, 13, 21, 22, 30, 31,
495 39, 40, 48, 49, 57, 58, 66, 67,
496 };
497
498 static const u16 trans_tbl_jpege[] = {
499 100, 101, 102, 103, 104, 105, 106, 107,
500 108, 109, 110,
501 };
502
503 static const u16 trans_tbl_jpege_osd[] = {
504 81, 82, 90, 91, 99, 100, 108, 109,
505 117, 118, 126, 127, 135, 136, 144, 145,
506 };
507
508 static struct mpp_trans_info trans_rkvenc_v2[] = {
509 [RKVENC_FMT_H264E] = {
510 .count = ARRAY_SIZE(trans_tbl_h264e_v2),
511 .table = trans_tbl_h264e_v2,
512 },
513 [RKVENC_FMT_H264E_OSD] = {
514 .count = ARRAY_SIZE(trans_tbl_h264e_v2_osd),
515 .table = trans_tbl_h264e_v2_osd,
516 },
517 [RKVENC_FMT_H265E] = {
518 .count = ARRAY_SIZE(trans_tbl_h265e_v2),
519 .table = trans_tbl_h265e_v2,
520 },
521 [RKVENC_FMT_H265E_OSD] = {
522 .count = ARRAY_SIZE(trans_tbl_h265e_v2_osd),
523 .table = trans_tbl_h265e_v2_osd,
524 },
525 };
526
527 static struct mpp_trans_info trans_rkvenc_540c[] = {
528 [RKVENC_FMT_H264E] = {
529 .count = ARRAY_SIZE(trans_tbl_h264e_540c),
530 .table = trans_tbl_h264e_540c,
531 },
532 [RKVENC_FMT_H264E_OSD] = {
533 .count = ARRAY_SIZE(trans_tbl_h264e_540c_osd),
534 .table = trans_tbl_h264e_540c_osd,
535 },
536 [RKVENC_FMT_H265E] = {
537 .count = ARRAY_SIZE(trans_tbl_h265e_540c),
538 .table = trans_tbl_h265e_540c,
539 },
540 [RKVENC_FMT_H265E_OSD] = {
541 .count = ARRAY_SIZE(trans_tbl_h265e_540c_osd),
542 .table = trans_tbl_h265e_540c_osd,
543 },
544 [RKVENC_FMT_JPEGE] = {
545 .count = ARRAY_SIZE(trans_tbl_jpege),
546 .table = trans_tbl_jpege,
547 },
548 [RKVENC_FMT_JPEGE_OSD] = {
549 .count = ARRAY_SIZE(trans_tbl_jpege_osd),
550 .table = trans_tbl_jpege_osd,
551 },
552 };
553
req_over_class(struct mpp_request * req,struct rkvenc_task * task,int class)554 static bool req_over_class(struct mpp_request *req,
555 struct rkvenc_task *task, int class)
556 {
557 bool ret;
558 u32 base_s, base_e, req_e;
559 struct rkvenc_hw_info *hw = task->hw_info;
560
561 base_s = hw->reg_msg[class].base_s;
562 base_e = hw->reg_msg[class].base_e;
563 req_e = req->offset + req->size - sizeof(u32);
564
565 ret = (req->offset <= base_e && req_e >= base_s) ? true : false;
566
567 return ret;
568 }
569
rkvenc_free_class_msg(struct rkvenc_task * task)570 static int rkvenc_free_class_msg(struct rkvenc_task *task)
571 {
572 u32 i;
573 u32 reg_class = task->hw_info->reg_class;
574
575 for (i = 0; i < reg_class; i++) {
576 kfree(task->reg[i].data);
577 task->reg[i].data = NULL;
578 task->reg[i].size = 0;
579 }
580
581 return 0;
582 }
583
rkvenc_alloc_class_msg(struct rkvenc_task * task,int class)584 static int rkvenc_alloc_class_msg(struct rkvenc_task *task, int class)
585 {
586 u32 *data;
587 struct rkvenc_hw_info *hw = task->hw_info;
588
589 if (!task->reg[class].data) {
590 u32 base_s = hw->reg_msg[class].base_s;
591 u32 base_e = hw->reg_msg[class].base_e;
592 u32 class_size = base_e - base_s + sizeof(u32);
593
594 data = kzalloc(class_size, GFP_KERNEL);
595 if (!data)
596 return -ENOMEM;
597 task->reg[class].data = data;
598 task->reg[class].size = class_size;
599 }
600
601 return 0;
602 }
603
rkvenc_update_req(struct rkvenc_task * task,int class,struct mpp_request * req_in,struct mpp_request * req_out)604 static int rkvenc_update_req(struct rkvenc_task *task, int class,
605 struct mpp_request *req_in,
606 struct mpp_request *req_out)
607 {
608 u32 base_s, base_e, req_e, s, e;
609 struct rkvenc_hw_info *hw = task->hw_info;
610
611 base_s = hw->reg_msg[class].base_s;
612 base_e = hw->reg_msg[class].base_e;
613 req_e = req_in->offset + req_in->size - sizeof(u32);
614 s = max(req_in->offset, base_s);
615 e = min(req_e, base_e);
616
617 req_out->offset = s;
618 req_out->size = e - s + sizeof(u32);
619 req_out->data = (u8 *)req_in->data + (s - req_in->offset);
620
621 return 0;
622 }
623
rkvenc_get_class_msg(struct rkvenc_task * task,u32 addr,struct mpp_request * msg)624 static int rkvenc_get_class_msg(struct rkvenc_task *task,
625 u32 addr, struct mpp_request *msg)
626 {
627 int i;
628 bool found = false;
629 u32 base_s, base_e;
630 struct rkvenc_hw_info *hw = task->hw_info;
631
632 if (!msg)
633 return -EINVAL;
634
635 memset(msg, 0, sizeof(*msg));
636 for (i = 0; i < hw->reg_class; i++) {
637 base_s = hw->reg_msg[i].base_s;
638 base_e = hw->reg_msg[i].base_e;
639 if (addr >= base_s && addr < base_e) {
640 found = true;
641 msg->offset = base_s;
642 msg->size = task->reg[i].size;
643 msg->data = task->reg[i].data;
644 break;
645 }
646 }
647
648 return (found ? 0 : (-EINVAL));
649 }
650
rkvenc_get_class_reg(struct rkvenc_task * task,u32 addr)651 static u32 *rkvenc_get_class_reg(struct rkvenc_task *task, u32 addr)
652 {
653 int i;
654 u8 *reg = NULL;
655 u32 base_s, base_e;
656 struct rkvenc_hw_info *hw = task->hw_info;
657
658 for (i = 0; i < hw->reg_class; i++) {
659 base_s = hw->reg_msg[i].base_s;
660 base_e = hw->reg_msg[i].base_e;
661 if (addr >= base_s && addr < base_e) {
662 reg = (u8 *)task->reg[i].data + (addr - base_s);
663 break;
664 }
665 }
666
667 return (u32 *)reg;
668 }
669
rkvenc2_extract_rcb_info(struct rkvenc2_rcb_info * rcb_inf,struct mpp_request * req)670 static int rkvenc2_extract_rcb_info(struct rkvenc2_rcb_info *rcb_inf,
671 struct mpp_request *req)
672 {
673 int max_size = ARRAY_SIZE(rcb_inf->elem);
674 int cnt = req->size / sizeof(rcb_inf->elem[0]);
675
676 if (req->size > sizeof(rcb_inf->elem)) {
677 mpp_err("count %d,max_size %d\n", cnt, max_size);
678 return -EINVAL;
679 }
680 if (copy_from_user(rcb_inf->elem, req->data, req->size)) {
681 mpp_err("copy_from_user failed\n");
682 return -EINVAL;
683 }
684 rcb_inf->cnt = cnt;
685
686 return 0;
687 }
688
rkvenc_extract_task_msg(struct mpp_session * session,struct rkvenc_task * task,struct mpp_task_msgs * msgs)689 static int rkvenc_extract_task_msg(struct mpp_session *session,
690 struct rkvenc_task *task,
691 struct mpp_task_msgs *msgs)
692 {
693 int ret;
694 u32 i, j;
695 struct mpp_request *req;
696 struct rkvenc_hw_info *hw = task->hw_info;
697
698 mpp_debug_enter();
699
700 for (i = 0; i < msgs->req_cnt; i++) {
701 req = &msgs->reqs[i];
702 if (!req->size)
703 continue;
704
705 switch (req->cmd) {
706 case MPP_CMD_SET_REG_WRITE: {
707 void *data;
708 struct mpp_request *wreq;
709
710 for (j = 0; j < hw->reg_class; j++) {
711 if (!req_over_class(req, task, j))
712 continue;
713
714 ret = rkvenc_alloc_class_msg(task, j);
715 if (ret) {
716 mpp_err("alloc class msg %d fail.\n", j);
717 goto fail;
718 }
719 wreq = &task->w_reqs[task->w_req_cnt];
720 rkvenc_update_req(task, j, req, wreq);
721 data = rkvenc_get_class_reg(task, wreq->offset);
722 if (!data) {
723 mpp_err("get class reg fail, offset %08x\n", wreq->offset);
724 ret = -EINVAL;
725 goto fail;
726 }
727 if (copy_from_user(data, wreq->data, wreq->size)) {
728 mpp_err("copy_from_user fail, offset %08x\n", wreq->offset);
729 ret = -EIO;
730 goto fail;
731 }
732 task->reg[j].valid = 1;
733 task->w_req_cnt++;
734 }
735 } break;
736 case MPP_CMD_SET_REG_READ: {
737 struct mpp_request *rreq;
738
739 for (j = 0; j < hw->reg_class; j++) {
740 if (!req_over_class(req, task, j))
741 continue;
742
743 ret = rkvenc_alloc_class_msg(task, j);
744 if (ret) {
745 mpp_err("alloc class msg reg %d fail.\n", j);
746 goto fail;
747 }
748 rreq = &task->r_reqs[task->r_req_cnt];
749 rkvenc_update_req(task, j, req, rreq);
750 task->reg[j].valid = 1;
751 task->r_req_cnt++;
752 }
753 } break;
754 case MPP_CMD_SET_REG_ADDR_OFFSET: {
755 mpp_extract_reg_offset_info(&task->off_inf, req);
756 } break;
757 case MPP_CMD_SET_RCB_INFO: {
758 struct rkvenc2_session_priv *priv = session->priv;
759
760 if (priv)
761 rkvenc2_extract_rcb_info(&priv->rcb_inf, req);
762 } break;
763 default:
764 break;
765 }
766 }
767 mpp_debug(DEBUG_TASK_INFO, "w_req_cnt=%d, r_req_cnt=%d\n",
768 task->w_req_cnt, task->r_req_cnt);
769
770 mpp_debug_enter();
771 return 0;
772
773 fail:
774 rkvenc_free_class_msg(task);
775
776 mpp_debug_enter();
777 return ret;
778 }
779
rkvenc_task_get_format(struct mpp_dev * mpp,struct rkvenc_task * task)780 static int rkvenc_task_get_format(struct mpp_dev *mpp,
781 struct rkvenc_task *task)
782 {
783 u32 offset, val;
784
785 struct rkvenc_hw_info *hw = task->hw_info;
786 u32 class = hw->fmt_reg.class;
787 u32 *class_reg = task->reg[class].data;
788 u32 class_size = task->reg[class].size;
789 u32 class_base = hw->reg_msg[class].base_s;
790 u32 bitpos = hw->fmt_reg.bitpos;
791 u32 bitlen = hw->fmt_reg.bitlen;
792
793 if (!class_reg || !class_size)
794 return -EINVAL;
795
796 offset = hw->fmt_reg.base - class_base;
797 val = class_reg[offset/sizeof(u32)];
798 task->fmt = (val >> bitpos) & ((1 << bitlen) - 1);
799
800 return 0;
801 }
802
rkvenc2_set_rcbbuf(struct mpp_dev * mpp,struct mpp_session * session,struct rkvenc_task * task)803 static int rkvenc2_set_rcbbuf(struct mpp_dev *mpp, struct mpp_session *session,
804 struct rkvenc_task *task)
805 {
806 struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
807 struct rkvenc2_session_priv *priv = session->priv;
808 u32 sram_enabled = 0;
809
810 mpp_debug_enter();
811
812 if (priv && enc->sram_iova) {
813 int i;
814 u32 *reg;
815 u32 reg_idx, rcb_size, rcb_offset;
816 struct rkvenc2_rcb_info *rcb_inf = &priv->rcb_inf;
817
818 rcb_offset = 0;
819 for (i = 0; i < rcb_inf->cnt; i++) {
820 reg_idx = rcb_inf->elem[i].index;
821 rcb_size = rcb_inf->elem[i].size;
822
823 if (rcb_offset > enc->sram_size ||
824 (rcb_offset + rcb_size) > enc->sram_used)
825 continue;
826
827 mpp_debug(DEBUG_SRAM_INFO, "rcb: reg %d offset %d, size %d\n",
828 reg_idx, rcb_offset, rcb_size);
829
830 reg = rkvenc_get_class_reg(task, reg_idx * sizeof(u32));
831 if (reg)
832 *reg = enc->sram_iova + rcb_offset;
833
834 rcb_offset += rcb_size;
835 sram_enabled = 1;
836 }
837 }
838 if (enc->sram_enabled != sram_enabled) {
839 mpp_debug(DEBUG_SRAM_INFO, "sram %s\n", sram_enabled ? "enabled" : "disabled");
840 enc->sram_enabled = sram_enabled;
841 }
842
843 mpp_debug_leave();
844
845 return 0;
846 }
847
rkvenc2_setup_task_id(u32 session_id,struct rkvenc_task * task)848 static void rkvenc2_setup_task_id(u32 session_id, struct rkvenc_task *task)
849 {
850 u32 val = task->reg[RKVENC_CLASS_PIC].data[DCHS_CLASS_OFFSET];
851
852 /* always enable tx */
853 val |= DCHS_TXE;
854
855 task->reg[RKVENC_CLASS_PIC].data[DCHS_CLASS_OFFSET] = val;
856 task->dchs_id.val = (((u64)session_id << 32) | val);
857
858 task->dchs_id.txid_orig = task->dchs_id.txid;
859 task->dchs_id.rxid_orig = task->dchs_id.rxid;
860 task->dchs_id.txid_map = task->dchs_id.txid;
861 task->dchs_id.rxid_map = task->dchs_id.rxid;
862
863 task->dchs_id.txe_orig = task->dchs_id.txe;
864 task->dchs_id.rxe_orig = task->dchs_id.rxe;
865 task->dchs_id.txe_map = task->dchs_id.txe;
866 task->dchs_id.rxe_map = task->dchs_id.rxe;
867 }
868
rkvenc2_check_split_task(struct rkvenc_task * task)869 static void rkvenc2_check_split_task(struct rkvenc_task *task)
870 {
871 u32 slen_fifo_en = 0;
872 u32 sli_split_en = 0;
873
874 if (task->reg[RKVENC_CLASS_PIC].valid) {
875 u32 *reg = task->reg[RKVENC_CLASS_PIC].data;
876 u32 enc_stnd = reg[RKVENC2_REG_ENC_PIC] & RKVENC2_BIT_ENC_STND;
877
878 slen_fifo_en = (reg[RKVENC2_REG_ENC_PIC] & RKVENC2_BIT_SLEN_FIFO) ? 1 : 0;
879 sli_split_en = (reg[RKVENC2_REG_SLI_SPLIT] & RKVENC2_BIT_SLI_SPLIT) ? 1 : 0;
880
881 /*
882 * FIXUP: rkvenc2 hardware bug:
883 * H.264 encoding has bug when external line buffer and slice flush both
884 * are enabled.
885 */
886 if (sli_split_en && slen_fifo_en &&
887 enc_stnd == RKVENC2_BIT_VAL_H264 &&
888 reg[RKVENC2_REG_EXT_LINE_BUF_BASE])
889 reg[RKVENC2_REG_SLI_SPLIT] &= ~RKVENC2_BIT_SLI_FLUSH;
890 }
891
892 task->task_split = sli_split_en && slen_fifo_en;
893
894 if (task->task_split)
895 INIT_KFIFO(task->slice_info);
896 }
897
rkvenc_alloc_task(struct mpp_session * session,struct mpp_task_msgs * msgs)898 static void *rkvenc_alloc_task(struct mpp_session *session,
899 struct mpp_task_msgs *msgs)
900 {
901 int ret;
902 struct rkvenc_task *task;
903 struct mpp_task *mpp_task;
904 struct mpp_dev *mpp = session->mpp;
905
906 mpp_debug_enter();
907
908 task = kzalloc(sizeof(*task), GFP_KERNEL);
909 if (!task)
910 return NULL;
911
912 mpp_task = &task->mpp_task;
913 mpp_task_init(session, mpp_task);
914 mpp_task->hw_info = mpp->var->hw_info;
915 task->hw_info = to_rkvenc_info(mpp_task->hw_info);
916 /* extract reqs for current task */
917 ret = rkvenc_extract_task_msg(session, task, msgs);
918 if (ret)
919 goto free_task;
920 mpp_task->reg = task->reg[0].data;
921 /* get format */
922 ret = rkvenc_task_get_format(mpp, task);
923 if (ret)
924 goto free_task;
925 /* process fd in register */
926 if (!(msgs->flags & MPP_FLAGS_REG_FD_NO_TRANS)) {
927 u32 i, j;
928 int cnt;
929 u32 off;
930 const u16 *tbl;
931 struct rkvenc_hw_info *hw = task->hw_info;
932 int fd_bs = -1;
933
934 for (i = 0; i < hw->fd_class; i++) {
935 u32 class = hw->fd_reg[i].class;
936 u32 fmt = hw->fd_reg[i].base_fmt + task->fmt;
937 u32 *reg = task->reg[class].data;
938 u32 ss = hw->reg_msg[class].base_s / sizeof(u32);
939
940 if (!reg)
941 continue;
942
943 if (fmt == RKVENC_FMT_JPEGE && class == RKVENC_CLASS_PIC && fd_bs == -1) {
944 int bs_index;
945
946 bs_index = mpp->var->trans_info[fmt].table[2];
947 fd_bs = reg[bs_index];
948 task->offset_bs = mpp_query_reg_offset_info(&task->off_inf,
949 bs_index + ss);
950 }
951
952 ret = mpp_translate_reg_address(session, mpp_task, fmt, reg, NULL);
953 if (ret)
954 goto fail;
955
956 cnt = mpp->var->trans_info[fmt].count;
957 tbl = mpp->var->trans_info[fmt].table;
958 for (j = 0; j < cnt; j++) {
959 off = mpp_query_reg_offset_info(&task->off_inf, tbl[j] + ss);
960 mpp_debug(DEBUG_IOMMU, "reg[%d] + offset %d\n", tbl[j] + ss, off);
961 reg[tbl[j]] += off;
962 }
963 }
964
965 if (fd_bs >= 0) {
966 struct mpp_dma_buffer *bs_buf =
967 mpp_dma_find_buffer_fd(session->dma, fd_bs);
968
969 if (bs_buf && task->offset_bs > 0)
970 mpp_dma_buf_sync(bs_buf, 0, task->offset_bs, DMA_TO_DEVICE, false);
971 task->bs_buf = bs_buf;
972 }
973 }
974 rkvenc2_setup_task_id(session->index, task);
975 task->clk_mode = CLK_MODE_NORMAL;
976 rkvenc2_check_split_task(task);
977
978 mpp_debug_leave();
979
980 return mpp_task;
981
982 fail:
983 mpp_task_dump_mem_region(mpp, mpp_task);
984 mpp_task_dump_reg(mpp, mpp_task);
985 mpp_task_finalize(session, mpp_task);
986 /* free class register buffer */
987 rkvenc_free_class_msg(task);
988 free_task:
989 kfree(task);
990
991 return NULL;
992 }
993
rkvenc2_prepare(struct mpp_dev * mpp,struct mpp_task * mpp_task)994 static void *rkvenc2_prepare(struct mpp_dev *mpp, struct mpp_task *mpp_task)
995 {
996 struct mpp_taskqueue *queue = mpp->queue;
997 unsigned long core_idle;
998 unsigned long flags;
999 u32 core_id_max;
1000 s32 core_id;
1001 u32 i;
1002
1003 spin_lock_irqsave(&queue->running_lock, flags);
1004
1005 core_idle = queue->core_idle;
1006 core_id_max = queue->core_id_max;
1007
1008 for (i = 0; i <= core_id_max; i++) {
1009 struct mpp_dev *mpp = queue->cores[i];
1010
1011 if (mpp && mpp->disable)
1012 clear_bit(i, &core_idle);
1013 }
1014
1015 core_id = find_first_bit(&core_idle, core_id_max + 1);
1016
1017 if (core_id >= core_id_max + 1 || !queue->cores[core_id]) {
1018 mpp_task = NULL;
1019 mpp_dbg_core("core %d all busy %lx\n", core_id, core_idle);
1020 } else {
1021 struct rkvenc_task *task = to_rkvenc_task(mpp_task);
1022
1023 clear_bit(core_id, &queue->core_idle);
1024 mpp_task->mpp = queue->cores[core_id];
1025 mpp_task->core_id = core_id;
1026 rkvenc2_set_rcbbuf(mpp_task->mpp, mpp_task->session, task);
1027 mpp_dbg_core("core %d set idle %lx -> %lx\n", core_id,
1028 core_idle, queue->core_idle);
1029 }
1030
1031 spin_unlock_irqrestore(&queue->running_lock, flags);
1032
1033 return mpp_task;
1034 }
1035
rkvenc2_patch_dchs(struct rkvenc_dev * enc,struct rkvenc_task * task)1036 static void rkvenc2_patch_dchs(struct rkvenc_dev *enc, struct rkvenc_task *task)
1037 {
1038 struct rkvenc_ccu *ccu;
1039 union rkvenc2_dual_core_handshake_id *dchs;
1040 union rkvenc2_dual_core_handshake_id *task_dchs = &task->dchs_id;
1041 int core_num;
1042 int core_id = enc->mpp.core_id;
1043 unsigned long flags;
1044 int i;
1045
1046 if (!enc->ccu)
1047 return;
1048
1049 if (core_id >= RKVENC_MAX_CORE_NUM) {
1050 dev_err(enc->mpp.dev, "invalid core id %d max %d\n",
1051 core_id, RKVENC_MAX_CORE_NUM);
1052 return;
1053 }
1054
1055 ccu = enc->ccu;
1056 dchs = ccu->dchs;
1057 core_num = ccu->core_num;
1058
1059 spin_lock_irqsave(&ccu->lock_dchs, flags);
1060
1061 if (dchs[core_id].working) {
1062 spin_unlock_irqrestore(&ccu->lock_dchs, flags);
1063
1064 mpp_err("can not config when core %d is still working\n", core_id);
1065 return;
1066 }
1067
1068 if (mpp_debug_unlikely(DEBUG_CORE))
1069 pr_info("core tx:rx 0 %s %d:%d %d:%d -- 1 %s %d:%d %d:%d -- task %d %d:%d %d:%d\n",
1070 dchs[0].working ? "work" : "idle",
1071 dchs[0].txid, dchs[0].txe, dchs[0].rxid, dchs[0].rxe,
1072 dchs[1].working ? "work" : "idle",
1073 dchs[1].txid, dchs[1].txe, dchs[1].rxid, dchs[1].rxe,
1074 core_id, task_dchs->txid, task_dchs->txe,
1075 task_dchs->rxid, task_dchs->rxe);
1076
1077 /* always use new id as */
1078 {
1079 struct mpp_task *mpp_task = &task->mpp_task;
1080 unsigned long id_valid = (unsigned long)-1;
1081 int txid_map = -1;
1082 int rxid_map = -1;
1083
1084 /* scan all used id */
1085 for (i = 0; i < core_num; i++) {
1086 if (!dchs[i].working)
1087 continue;
1088
1089 clear_bit(dchs[i].txid_map, &id_valid);
1090 clear_bit(dchs[i].rxid_map, &id_valid);
1091 }
1092
1093 if (task_dchs->rxe) {
1094 for (i = 0; i < core_num; i++) {
1095 if (i == core_id)
1096 continue;
1097
1098 if (!dchs[i].working)
1099 continue;
1100
1101 if (task_dchs->session_id != dchs[i].session_id)
1102 continue;
1103
1104 if (task_dchs->rxid_orig != dchs[i].txid_orig)
1105 continue;
1106
1107 rxid_map = dchs[i].txid_map;
1108 break;
1109 }
1110 }
1111
1112 txid_map = find_first_bit(&id_valid, RKVENC_MAX_DCHS_ID);
1113 if (txid_map == RKVENC_MAX_DCHS_ID) {
1114 spin_unlock_irqrestore(&ccu->lock_dchs, flags);
1115
1116 mpp_err("task %d:%d on core %d failed to find a txid\n",
1117 mpp_task->session->pid, mpp_task->task_id,
1118 mpp_task->core_id);
1119 return;
1120 }
1121
1122 clear_bit(txid_map, &id_valid);
1123 task_dchs->txid_map = txid_map;
1124
1125 if (rxid_map < 0) {
1126 rxid_map = find_first_bit(&id_valid, RKVENC_MAX_DCHS_ID);
1127 if (rxid_map == RKVENC_MAX_DCHS_ID) {
1128 spin_unlock_irqrestore(&ccu->lock_dchs, flags);
1129
1130 mpp_err("task %d:%d on core %d failed to find a rxid\n",
1131 mpp_task->session->pid, mpp_task->task_id,
1132 mpp_task->core_id);
1133 return;
1134 }
1135
1136 task_dchs->rxe_map = 0;
1137 }
1138
1139 task_dchs->rxid_map = rxid_map;
1140 }
1141
1142 task_dchs->txid = task_dchs->txid_map;
1143 task_dchs->rxid = task_dchs->rxid_map;
1144 task_dchs->rxe = task_dchs->rxe_map;
1145
1146 dchs[core_id].val = task_dchs->val;
1147 task->reg[RKVENC_CLASS_PIC].data[DCHS_CLASS_OFFSET] = task_dchs->val;
1148
1149 dchs[core_id].working = 1;
1150
1151 spin_unlock_irqrestore(&ccu->lock_dchs, flags);
1152 }
1153
rkvenc2_update_dchs(struct rkvenc_dev * enc,struct rkvenc_task * task)1154 static void rkvenc2_update_dchs(struct rkvenc_dev *enc, struct rkvenc_task *task)
1155 {
1156 struct rkvenc_ccu *ccu = enc->ccu;
1157 int core_id = enc->mpp.core_id;
1158 unsigned long flags;
1159
1160 if (!ccu)
1161 return;
1162
1163 if (core_id >= RKVENC_MAX_CORE_NUM) {
1164 dev_err(enc->mpp.dev, "invalid core id %d max %d\n",
1165 core_id, RKVENC_MAX_CORE_NUM);
1166 return;
1167 }
1168
1169 spin_lock_irqsave(&ccu->lock_dchs, flags);
1170 ccu->dchs[core_id].val = 0;
1171
1172 if (mpp_debug_unlikely(DEBUG_CORE)) {
1173 union rkvenc2_dual_core_handshake_id *dchs = ccu->dchs;
1174 union rkvenc2_dual_core_handshake_id *task_dchs = &task->dchs_id;
1175
1176 pr_info("core %d task done\n", core_id);
1177 pr_info("core tx:rx 0 %s %d:%d %d:%d -- 1 %s %d:%d %d:%d -- task %d %d:%d %d:%d\n",
1178 dchs[0].working ? "work" : "idle",
1179 dchs[0].txid, dchs[0].txe, dchs[0].rxid, dchs[0].rxe,
1180 dchs[1].working ? "work" : "idle",
1181 dchs[1].txid, dchs[1].txe, dchs[1].rxid, dchs[1].rxe,
1182 core_id, task_dchs->txid, task_dchs->txe,
1183 task_dchs->rxid, task_dchs->rxe);
1184 }
1185
1186 spin_unlock_irqrestore(&ccu->lock_dchs, flags);
1187 }
1188
rkvenc_run(struct mpp_dev * mpp,struct mpp_task * mpp_task)1189 static int rkvenc_run(struct mpp_dev *mpp, struct mpp_task *mpp_task)
1190 {
1191 u32 i, j;
1192 u32 start_val = 0;
1193 struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1194 struct rkvenc_task *task = to_rkvenc_task(mpp_task);
1195 struct rkvenc_hw_info *hw = enc->hw_info;
1196 u32 timing_en = mpp->srv->timing_en;
1197
1198 mpp_debug_enter();
1199
1200 /* Add force clear to avoid pagefault */
1201 mpp_write(mpp, hw->enc_clr_base, 0x2);
1202 udelay(5);
1203 mpp_write(mpp, hw->enc_clr_base, 0x0);
1204
1205 /* clear hardware counter */
1206 mpp_write_relaxed(mpp, 0x5300, 0x2);
1207
1208 rkvenc2_patch_dchs(enc, task);
1209
1210 for (i = 0; i < task->w_req_cnt; i++) {
1211 int ret;
1212 u32 s, e, off;
1213 u32 *regs;
1214
1215 struct mpp_request msg;
1216 struct mpp_request *req = &task->w_reqs[i];
1217
1218 ret = rkvenc_get_class_msg(task, req->offset, &msg);
1219 if (ret)
1220 return -EINVAL;
1221
1222 s = (req->offset - msg.offset) / sizeof(u32);
1223 e = s + req->size / sizeof(u32);
1224 regs = (u32 *)msg.data;
1225 for (j = s; j < e; j++) {
1226 off = msg.offset + j * sizeof(u32);
1227 if (off == enc->hw_info->enc_start_base) {
1228 start_val = regs[j];
1229 continue;
1230 }
1231 mpp_write_relaxed(mpp, off, regs[j]);
1232 }
1233 }
1234
1235 if (mpp_debug_unlikely(DEBUG_CORE))
1236 dev_info(mpp->dev, "core %d dchs %08x\n", mpp->core_id,
1237 mpp_read_relaxed(&enc->mpp, DCHS_REG_OFFSET));
1238
1239 /* flush tlb before starting hardware */
1240 mpp_iommu_flush_tlb(mpp->iommu_info);
1241
1242 /* init current task */
1243 mpp->cur_task = mpp_task;
1244
1245 mpp_task_run_begin(mpp_task, timing_en, MPP_WORK_TIMEOUT_DELAY);
1246
1247 /* Flush the register before the start the device */
1248 wmb();
1249
1250 mpp_write(mpp, enc->hw_info->enc_start_base, start_val);
1251
1252 mpp_task_run_end(mpp_task, timing_en);
1253
1254 mpp_debug_leave();
1255
1256 return 0;
1257 }
1258
rkvenc2_read_slice_len(struct mpp_dev * mpp,struct rkvenc_task * task)1259 static void rkvenc2_read_slice_len(struct mpp_dev *mpp, struct rkvenc_task *task)
1260 {
1261 u32 last = mpp_read_relaxed(mpp, 0x002c) & INT_STA_ENC_DONE_STA;
1262 u32 sli_num = mpp_read_relaxed(mpp, RKVENC2_REG_SLICE_NUM_BASE);
1263 union rkvenc2_slice_len_info slice_info;
1264 u32 task_id = task->mpp_task.task_id;
1265 u32 i;
1266
1267 mpp_dbg_slice("task %d wr %3d len start %s\n", task_id,
1268 sli_num, last ? "last" : "");
1269
1270 for (i = 0; i < sli_num; i++) {
1271 slice_info.val = mpp_read_relaxed(mpp, RKVENC2_REG_SLICE_LEN_BASE);
1272
1273 if (last && i == sli_num - 1) {
1274 task->last_slice_found = 1;
1275 slice_info.last = 1;
1276 }
1277
1278 mpp_dbg_slice("task %d wr %3d len %d %s\n", task_id,
1279 task->slice_wr_cnt, slice_info.slice_len,
1280 slice_info.last ? "last" : "");
1281
1282 kfifo_in(&task->slice_info, &slice_info, 1);
1283 task->slice_wr_cnt++;
1284 }
1285
1286 /* Fixup for async between last flag and slice number register */
1287 if (last && !task->last_slice_found) {
1288 mpp_dbg_slice("task %d mark last slice\n", task_id);
1289 slice_info.last = 1;
1290 slice_info.slice_len = 0;
1291 kfifo_in(&task->slice_info, &slice_info, 1);
1292 }
1293 }
1294
rkvenc_irq(struct mpp_dev * mpp)1295 static int rkvenc_irq(struct mpp_dev *mpp)
1296 {
1297 struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1298 struct rkvenc_hw_info *hw = enc->hw_info;
1299 struct mpp_task *mpp_task = NULL;
1300 struct rkvenc_task *task = NULL;
1301 u32 int_clear = 1;
1302 u32 irq_mask = 0;
1303 int ret = IRQ_NONE;
1304
1305 mpp_debug_enter();
1306
1307 mpp->irq_status = mpp_read(mpp, hw->int_sta_base);
1308 if (!mpp->irq_status)
1309 return ret;
1310
1311 if (mpp->cur_task) {
1312 mpp_task = mpp->cur_task;
1313 task = to_rkvenc_task(mpp_task);
1314 }
1315
1316 if (mpp->irq_status & INT_STA_ENC_DONE_STA) {
1317 if (task) {
1318 if (task->task_split)
1319 rkvenc2_read_slice_len(mpp, task);
1320
1321 wake_up(&mpp_task->wait);
1322 }
1323
1324 irq_mask = INT_STA_ENC_DONE_STA;
1325 ret = IRQ_WAKE_THREAD;
1326 if (enc->bs_overflow) {
1327 mpp->irq_status |= INT_STA_BSF_OFLW_STA;
1328 enc->bs_overflow = 0;
1329 }
1330 } else if (mpp->irq_status & INT_STA_SLC_DONE_STA) {
1331 if (task && task->task_split) {
1332 mpp_time_part_diff(mpp_task);
1333
1334 rkvenc2_read_slice_len(mpp, task);
1335 wake_up(&mpp_task->wait);
1336 }
1337
1338 irq_mask = INT_STA_ENC_DONE_STA;
1339 int_clear = 0;
1340 } else if (mpp->irq_status & INT_STA_BSF_OFLW_STA) {
1341 u32 bs_rd = mpp_read(mpp, RKVENC2_REG_ADR_BSBR);
1342 u32 bs_wr = mpp_read(mpp, RKVENC2_REG_ST_BSB);
1343 u32 bs_top = mpp_read(mpp, RKVENC2_REG_ADR_BSBT);
1344 u32 bs_bot = mpp_read(mpp, RKVENC2_REG_ADR_BSBB);
1345
1346 if (mpp_task)
1347 dev_err(mpp->dev, "task %d found bitstream overflow [%#08x %#08x %#08x %#08x]\n",
1348 mpp_task->task_index, bs_top, bs_bot, bs_wr, bs_rd);
1349 bs_wr += 128;
1350 if (bs_wr >= bs_top)
1351 bs_wr = bs_bot;
1352 /* clear int first */
1353 mpp_write(mpp, hw->int_clr_base, mpp->irq_status);
1354 /* update write addr for enc continue */
1355 mpp_write(mpp, RKVENC2_REG_ADR_BSBS, bs_wr);
1356 enc->bs_overflow = 1;
1357 irq_mask = 0;
1358 int_clear = 0;
1359 ret = IRQ_HANDLED;
1360 } else {
1361 dev_err(mpp->dev, "found error status %08x\n", mpp->irq_status);
1362
1363 irq_mask = mpp->irq_status;
1364 ret = IRQ_WAKE_THREAD;
1365 }
1366
1367 if (irq_mask)
1368 mpp_write(mpp, hw->int_mask_base, irq_mask);
1369
1370 if (int_clear) {
1371 mpp_write(mpp, hw->int_clr_base, mpp->irq_status);
1372 udelay(5);
1373 mpp_write(mpp, hw->int_sta_base, 0);
1374 }
1375
1376 mpp_debug_leave();
1377
1378 return ret;
1379 }
1380
rkvenc_isr(struct mpp_dev * mpp)1381 static int rkvenc_isr(struct mpp_dev *mpp)
1382 {
1383 struct rkvenc_task *task;
1384 struct mpp_task *mpp_task;
1385 struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1386 struct mpp_taskqueue *queue = mpp->queue;
1387 unsigned long core_idle;
1388
1389 mpp_debug_enter();
1390
1391 /* FIXME use a spin lock here */
1392 if (!mpp->cur_task) {
1393 dev_err(mpp->dev, "no current task\n");
1394 return IRQ_HANDLED;
1395 }
1396
1397 mpp_task = mpp->cur_task;
1398 mpp_time_diff(mpp_task);
1399 mpp->cur_task = NULL;
1400
1401 if (mpp_task->mpp && mpp_task->mpp != mpp)
1402 dev_err(mpp->dev, "mismatch core dev %p:%p\n", mpp_task->mpp, mpp);
1403
1404 task = to_rkvenc_task(mpp_task);
1405 task->irq_status = mpp->irq_status;
1406
1407 rkvenc2_update_dchs(enc, task);
1408
1409 mpp_debug(DEBUG_IRQ_STATUS, "%s irq_status: %08x\n",
1410 dev_name(mpp->dev), task->irq_status);
1411
1412 if (task->irq_status & enc->hw_info->err_mask) {
1413 atomic_inc(&mpp->reset_request);
1414
1415 /* dump register */
1416 if (mpp_debug_unlikely(DEBUG_DUMP_ERR_REG))
1417 mpp_task_dump_hw_reg(mpp);
1418 }
1419
1420 mpp_task_finish(mpp_task->session, mpp_task);
1421
1422 core_idle = queue->core_idle;
1423 set_bit(mpp->core_id, &queue->core_idle);
1424
1425 mpp_dbg_core("core %d isr idle %lx -> %lx\n", mpp->core_id, core_idle,
1426 queue->core_idle);
1427
1428 mpp_debug_leave();
1429
1430 return IRQ_HANDLED;
1431 }
1432
rkvenc_finish(struct mpp_dev * mpp,struct mpp_task * mpp_task)1433 static int rkvenc_finish(struct mpp_dev *mpp, struct mpp_task *mpp_task)
1434 {
1435 u32 i, j;
1436 u32 *reg;
1437 struct rkvenc_task *task = to_rkvenc_task(mpp_task);
1438
1439 mpp_debug_enter();
1440
1441 for (i = 0; i < task->r_req_cnt; i++) {
1442 int ret;
1443 int s, e;
1444 struct mpp_request msg;
1445 struct mpp_request *req = &task->r_reqs[i];
1446
1447 ret = rkvenc_get_class_msg(task, req->offset, &msg);
1448 if (ret)
1449 return -EINVAL;
1450 s = (req->offset - msg.offset) / sizeof(u32);
1451 e = s + req->size / sizeof(u32);
1452 reg = (u32 *)msg.data;
1453 for (j = s; j < e; j++)
1454 reg[j] = mpp_read_relaxed(mpp, msg.offset + j * sizeof(u32));
1455
1456 }
1457
1458 if (task->bs_buf) {
1459 u32 bs_size = mpp_read(mpp, 0x4064);
1460
1461 mpp_dma_buf_sync(task->bs_buf, 0, bs_size / 8 + task->offset_bs,
1462 DMA_FROM_DEVICE, true);
1463 }
1464
1465 /* revert hack for irq status */
1466 reg = rkvenc_get_class_reg(task, task->hw_info->int_sta_base);
1467 if (reg)
1468 *reg = task->irq_status;
1469
1470 mpp_debug_leave();
1471
1472 return 0;
1473 }
1474
rkvenc_result(struct mpp_dev * mpp,struct mpp_task * mpp_task,struct mpp_task_msgs * msgs)1475 static int rkvenc_result(struct mpp_dev *mpp,
1476 struct mpp_task *mpp_task,
1477 struct mpp_task_msgs *msgs)
1478 {
1479 u32 i;
1480 struct rkvenc_task *task = to_rkvenc_task(mpp_task);
1481
1482 mpp_debug_enter();
1483
1484 for (i = 0; i < task->r_req_cnt; i++) {
1485 struct mpp_request *req = &task->r_reqs[i];
1486 u32 *reg = rkvenc_get_class_reg(task, req->offset);
1487
1488 if (!reg)
1489 return -EINVAL;
1490 if (copy_to_user(req->data, reg, req->size)) {
1491 mpp_err("copy_to_user reg fail\n");
1492 return -EIO;
1493 }
1494 }
1495
1496 mpp_debug_leave();
1497
1498 return 0;
1499 }
1500
rkvenc_free_task(struct mpp_session * session,struct mpp_task * mpp_task)1501 static int rkvenc_free_task(struct mpp_session *session,
1502 struct mpp_task *mpp_task)
1503 {
1504 struct rkvenc_task *task = to_rkvenc_task(mpp_task);
1505
1506 mpp_task_finalize(session, mpp_task);
1507 rkvenc_free_class_msg(task);
1508 kfree(task);
1509
1510 return 0;
1511 }
1512
rkvenc_control(struct mpp_session * session,struct mpp_request * req)1513 static int rkvenc_control(struct mpp_session *session, struct mpp_request *req)
1514 {
1515 switch (req->cmd) {
1516 case MPP_CMD_SEND_CODEC_INFO: {
1517 int i;
1518 int cnt;
1519 struct codec_info_elem elem;
1520 struct rkvenc2_session_priv *priv;
1521
1522 if (!session || !session->priv) {
1523 mpp_err("session info null\n");
1524 return -EINVAL;
1525 }
1526 priv = session->priv;
1527
1528 cnt = req->size / sizeof(elem);
1529 cnt = (cnt > ENC_INFO_BUTT) ? ENC_INFO_BUTT : cnt;
1530 mpp_debug(DEBUG_IOCTL, "codec info count %d\n", cnt);
1531 for (i = 0; i < cnt; i++) {
1532 if (copy_from_user(&elem, req->data + i * sizeof(elem), sizeof(elem))) {
1533 mpp_err("copy_from_user failed\n");
1534 continue;
1535 }
1536 if (elem.type > ENC_INFO_BASE && elem.type < ENC_INFO_BUTT &&
1537 elem.flag > CODEC_INFO_FLAG_NULL && elem.flag < CODEC_INFO_FLAG_BUTT) {
1538 elem.type = array_index_nospec(elem.type, ENC_INFO_BUTT);
1539 priv->codec_info[elem.type].flag = elem.flag;
1540 priv->codec_info[elem.type].val = elem.data;
1541 } else {
1542 mpp_err("codec info invalid, type %d, flag %d\n",
1543 elem.type, elem.flag);
1544 }
1545 }
1546 } break;
1547 default: {
1548 mpp_err("unknown mpp ioctl cmd %x\n", req->cmd);
1549 } break;
1550 }
1551
1552 return 0;
1553 }
1554
rkvenc_free_session(struct mpp_session * session)1555 static int rkvenc_free_session(struct mpp_session *session)
1556 {
1557 if (session && session->priv) {
1558 kfree(session->priv);
1559 session->priv = NULL;
1560 }
1561
1562 return 0;
1563 }
1564
rkvenc_init_session(struct mpp_session * session)1565 static int rkvenc_init_session(struct mpp_session *session)
1566 {
1567 struct rkvenc2_session_priv *priv;
1568
1569 if (!session) {
1570 mpp_err("session is null\n");
1571 return -EINVAL;
1572 }
1573
1574 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1575 if (!priv)
1576 return -ENOMEM;
1577
1578 init_rwsem(&priv->rw_sem);
1579 session->priv = priv;
1580
1581 return 0;
1582 }
1583
1584 #ifdef CONFIG_ROCKCHIP_MPP_PROC_FS
rkvenc_procfs_remove(struct mpp_dev * mpp)1585 static int rkvenc_procfs_remove(struct mpp_dev *mpp)
1586 {
1587 struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1588
1589 if (enc->procfs) {
1590 proc_remove(enc->procfs);
1591 enc->procfs = NULL;
1592 }
1593
1594 return 0;
1595 }
1596
rkvenc_dump_session(struct mpp_session * session,struct seq_file * seq)1597 static int rkvenc_dump_session(struct mpp_session *session, struct seq_file *seq)
1598 {
1599 int i;
1600 struct rkvenc2_session_priv *priv = session->priv;
1601
1602 down_read(&priv->rw_sem);
1603 /* item name */
1604 seq_puts(seq, "------------------------------------------------------");
1605 seq_puts(seq, "------------------------------------------------------\n");
1606 seq_printf(seq, "|%8s|", (const char *)"session");
1607 seq_printf(seq, "%8s|", (const char *)"device");
1608 for (i = ENC_INFO_BASE; i < ENC_INFO_BUTT; i++) {
1609 bool show = priv->codec_info[i].flag;
1610
1611 if (show)
1612 seq_printf(seq, "%8s|", enc_info_item_name[i]);
1613 }
1614 seq_puts(seq, "\n");
1615 /* item data*/
1616 seq_printf(seq, "|%8d|", session->index);
1617 seq_printf(seq, "%8s|", mpp_device_name[session->device_type]);
1618 for (i = ENC_INFO_BASE; i < ENC_INFO_BUTT; i++) {
1619 u32 flag = priv->codec_info[i].flag;
1620
1621 if (!flag)
1622 continue;
1623 if (flag == CODEC_INFO_FLAG_NUMBER) {
1624 u32 data = priv->codec_info[i].val;
1625
1626 seq_printf(seq, "%8d|", data);
1627 } else if (flag == CODEC_INFO_FLAG_STRING) {
1628 const char *name = (const char *)&priv->codec_info[i].val;
1629
1630 seq_printf(seq, "%8s|", name);
1631 } else {
1632 seq_printf(seq, "%8s|", (const char *)"null");
1633 }
1634 }
1635 seq_puts(seq, "\n");
1636 up_read(&priv->rw_sem);
1637
1638 return 0;
1639 }
1640
rkvenc_show_session_info(struct seq_file * seq,void * offset)1641 static int rkvenc_show_session_info(struct seq_file *seq, void *offset)
1642 {
1643 struct mpp_session *session = NULL, *n;
1644 struct mpp_dev *mpp = seq->private;
1645
1646 mutex_lock(&mpp->srv->session_lock);
1647 list_for_each_entry_safe(session, n,
1648 &mpp->srv->session_list,
1649 service_link) {
1650 if (session->device_type != MPP_DEVICE_RKVENC)
1651 continue;
1652 if (!session->priv)
1653 continue;
1654 if (mpp->dev_ops->dump_session)
1655 mpp->dev_ops->dump_session(session, seq);
1656 }
1657 mutex_unlock(&mpp->srv->session_lock);
1658
1659 return 0;
1660 }
1661
rkvenc_procfs_init(struct mpp_dev * mpp)1662 static int rkvenc_procfs_init(struct mpp_dev *mpp)
1663 {
1664 struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1665 char name[32];
1666
1667 if (!mpp->dev || !mpp->dev->of_node || !mpp->dev->of_node->name ||
1668 !mpp->srv || !mpp->srv->procfs)
1669 return -EINVAL;
1670
1671 snprintf(name, sizeof(name) - 1, "%s%d",
1672 mpp->dev->of_node->name, mpp->core_id);
1673
1674 enc->procfs = proc_mkdir(name, mpp->srv->procfs);
1675 if (IS_ERR_OR_NULL(enc->procfs)) {
1676 mpp_err("failed on open procfs\n");
1677 enc->procfs = NULL;
1678 return -EIO;
1679 }
1680
1681 /* for common mpp_dev options */
1682 mpp_procfs_create_common(enc->procfs, mpp);
1683
1684 /* for debug */
1685 mpp_procfs_create_u32("aclk", 0644,
1686 enc->procfs, &enc->aclk_info.debug_rate_hz);
1687 mpp_procfs_create_u32("clk_core", 0644,
1688 enc->procfs, &enc->core_clk_info.debug_rate_hz);
1689 mpp_procfs_create_u32("session_buffers", 0644,
1690 enc->procfs, &mpp->session_max_buffers);
1691 /* for show session info */
1692 proc_create_single_data("sessions-info", 0444,
1693 enc->procfs, rkvenc_show_session_info, mpp);
1694
1695 return 0;
1696 }
1697
rkvenc_procfs_ccu_init(struct mpp_dev * mpp)1698 static int rkvenc_procfs_ccu_init(struct mpp_dev *mpp)
1699 {
1700 struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1701
1702 if (!enc->procfs)
1703 goto done;
1704
1705 done:
1706 return 0;
1707 }
1708 #else
rkvenc_procfs_remove(struct mpp_dev * mpp)1709 static inline int rkvenc_procfs_remove(struct mpp_dev *mpp)
1710 {
1711 return 0;
1712 }
1713
rkvenc_procfs_init(struct mpp_dev * mpp)1714 static inline int rkvenc_procfs_init(struct mpp_dev *mpp)
1715 {
1716 return 0;
1717 }
1718
rkvenc_procfs_ccu_init(struct mpp_dev * mpp)1719 static inline int rkvenc_procfs_ccu_init(struct mpp_dev *mpp)
1720 {
1721 return 0;
1722 }
1723 #endif
1724
1725 #ifdef CONFIG_PM_DEVFREQ
rk3588_venc_set_read_margin(struct device * dev,struct rockchip_opp_info * opp_info,u32 rm)1726 static int rk3588_venc_set_read_margin(struct device *dev,
1727 struct rockchip_opp_info *opp_info,
1728 u32 rm)
1729 {
1730 if (!opp_info->grf || !opp_info->volt_rm_tbl)
1731 return 0;
1732
1733 if (rm == opp_info->current_rm || rm == UINT_MAX)
1734 return 0;
1735
1736 dev_dbg(dev, "set rm to %d\n", rm);
1737
1738 regmap_write(opp_info->grf, 0x214, 0x001c0000 | (rm << 2));
1739 regmap_write(opp_info->grf, 0x218, 0x001c0000 | (rm << 2));
1740 regmap_write(opp_info->grf, 0x220, 0x003c0000 | (rm << 2));
1741 regmap_write(opp_info->grf, 0x224, 0x003c0000 | (rm << 2));
1742
1743 opp_info->current_rm = rm;
1744
1745 return 0;
1746 }
1747
1748 static const struct rockchip_opp_data rk3588_venc_opp_data = {
1749 .set_read_margin = rk3588_venc_set_read_margin,
1750 };
1751
1752 static const struct of_device_id rockchip_rkvenc_of_match[] = {
1753 {
1754 .compatible = "rockchip,rk3588",
1755 .data = (void *)&rk3588_venc_opp_data,
1756 },
1757 {},
1758 };
1759
1760 static struct monitor_dev_profile venc_mdevp = {
1761 .type = MONITOR_TYPE_DEV,
1762 .update_volt = rockchip_monitor_check_rate_volt,
1763 };
1764
rkvenc_devfreq_init(struct mpp_dev * mpp)1765 static int rkvenc_devfreq_init(struct mpp_dev *mpp)
1766 {
1767 struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1768 struct clk *clk_core = enc->core_clk_info.clk;
1769 struct device *dev = mpp->dev;
1770 struct opp_table *reg_table = NULL;
1771 struct opp_table *clk_table = NULL;
1772 const char *const reg_names[] = { "venc", "mem" };
1773 int ret = 0;
1774
1775 if (!clk_core)
1776 return 0;
1777
1778 if (of_find_property(dev->of_node, "venc-supply", NULL) &&
1779 of_find_property(dev->of_node, "mem-supply", NULL)) {
1780 reg_table = dev_pm_opp_set_regulators(dev, reg_names, 2);
1781 if (IS_ERR(reg_table))
1782 return PTR_ERR(reg_table);
1783 } else {
1784 reg_table = dev_pm_opp_set_regulators(dev, reg_names, 1);
1785 if (IS_ERR(reg_table))
1786 return PTR_ERR(reg_table);
1787 }
1788
1789 clk_table = dev_pm_opp_set_clkname(dev, "clk_core");
1790 if (IS_ERR(clk_table))
1791 return PTR_ERR(clk_table);
1792
1793 rockchip_get_opp_data(rockchip_rkvenc_of_match, &enc->opp_info);
1794 ret = rockchip_init_opp_table(dev, &enc->opp_info, "leakage", "venc");
1795 if (ret) {
1796 dev_err(dev, "failed to init_opp_table\n");
1797 return ret;
1798 }
1799
1800 enc->mdev_info = rockchip_system_monitor_register(dev, &venc_mdevp);
1801 if (IS_ERR(enc->mdev_info)) {
1802 dev_dbg(dev, "without system monitor\n");
1803 enc->mdev_info = NULL;
1804 }
1805
1806 return ret;
1807 }
1808
rkvenc_devfreq_remove(struct mpp_dev * mpp)1809 static int rkvenc_devfreq_remove(struct mpp_dev *mpp)
1810 {
1811 struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1812
1813 if (enc->mdev_info)
1814 rockchip_system_monitor_unregister(enc->mdev_info);
1815
1816 return 0;
1817 }
1818 #endif
1819
rkvenc_init(struct mpp_dev * mpp)1820 static int rkvenc_init(struct mpp_dev *mpp)
1821 {
1822 struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1823 int ret = 0;
1824
1825 mpp->grf_info = &mpp->srv->grf_infos[MPP_DRIVER_RKVENC];
1826
1827 /* Get clock info from dtsi */
1828 ret = mpp_get_clk_info(mpp, &enc->aclk_info, "aclk_vcodec");
1829 if (ret)
1830 mpp_err("failed on clk_get aclk_vcodec\n");
1831 ret = mpp_get_clk_info(mpp, &enc->hclk_info, "hclk_vcodec");
1832 if (ret)
1833 mpp_err("failed on clk_get hclk_vcodec\n");
1834 ret = mpp_get_clk_info(mpp, &enc->core_clk_info, "clk_core");
1835 if (ret)
1836 mpp_err("failed on clk_get clk_core\n");
1837 /* Get normal max workload from dtsi */
1838 of_property_read_u32(mpp->dev->of_node,
1839 "rockchip,default-max-load",
1840 &enc->default_max_load);
1841 /* Set default rates */
1842 mpp_set_clk_info_rate_hz(&enc->aclk_info, CLK_MODE_DEFAULT, 300 * MHZ);
1843 mpp_set_clk_info_rate_hz(&enc->core_clk_info, CLK_MODE_DEFAULT, 600 * MHZ);
1844
1845 /* Get reset control from dtsi */
1846 enc->rst_a = mpp_reset_control_get(mpp, RST_TYPE_A, "video_a");
1847 if (!enc->rst_a)
1848 mpp_err("No aclk reset resource define\n");
1849 enc->rst_h = mpp_reset_control_get(mpp, RST_TYPE_H, "video_h");
1850 if (!enc->rst_h)
1851 mpp_err("No hclk reset resource define\n");
1852 enc->rst_core = mpp_reset_control_get(mpp, RST_TYPE_CORE, "video_core");
1853 if (!enc->rst_core)
1854 mpp_err("No core reset resource define\n");
1855
1856 #ifdef CONFIG_PM_DEVFREQ
1857 ret = rkvenc_devfreq_init(mpp);
1858 if (ret)
1859 mpp_err("failed to add venc devfreq\n");
1860 #endif
1861
1862 return 0;
1863 }
1864
rkvenc_exit(struct mpp_dev * mpp)1865 static int rkvenc_exit(struct mpp_dev *mpp)
1866 {
1867 #ifdef CONFIG_PM_DEVFREQ
1868 rkvenc_devfreq_remove(mpp);
1869 #endif
1870
1871 return 0;
1872 }
1873
rkvenc_soft_reset(struct mpp_dev * mpp)1874 static int rkvenc_soft_reset(struct mpp_dev *mpp)
1875 {
1876 struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1877 struct rkvenc_hw_info *hw = enc->hw_info;
1878 u32 rst_status = 0;
1879 int ret = 0;
1880
1881 /* safe reset */
1882 mpp_write(mpp, hw->int_mask_base, 0x3FF);
1883 mpp_write(mpp, hw->enc_clr_base, 0x1);
1884 ret = readl_relaxed_poll_timeout(mpp->reg_base + hw->int_sta_base,
1885 rst_status,
1886 rst_status & RKVENC_SCLR_DONE_STA,
1887 0, 5);
1888 mpp_write(mpp, hw->int_clr_base, 0xffffffff);
1889 mpp_write(mpp, hw->int_sta_base, 0);
1890
1891 return ret;
1892
1893 }
1894
rkvenc_reset(struct mpp_dev * mpp)1895 static int rkvenc_reset(struct mpp_dev *mpp)
1896 {
1897 struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1898 int ret = 0;
1899 struct mpp_taskqueue *queue = mpp->queue;
1900
1901 mpp_debug_enter();
1902
1903 /* safe reset first*/
1904 ret = rkvenc_soft_reset(mpp);
1905
1906 /* cru reset */
1907 if (ret && enc->rst_a && enc->rst_h && enc->rst_core) {
1908 mpp_err("soft reset timeout, use cru reset\n");
1909 mpp_pmu_idle_request(mpp, true);
1910 mpp_safe_reset(enc->rst_a);
1911 mpp_safe_reset(enc->rst_h);
1912 mpp_safe_reset(enc->rst_core);
1913 udelay(5);
1914 mpp_safe_unreset(enc->rst_a);
1915 mpp_safe_unreset(enc->rst_h);
1916 mpp_safe_unreset(enc->rst_core);
1917 mpp_pmu_idle_request(mpp, false);
1918 }
1919
1920 set_bit(mpp->core_id, &queue->core_idle);
1921 if (enc->ccu)
1922 enc->ccu->dchs[mpp->core_id].val = 0;
1923
1924 mpp_dbg_core("core %d reset idle %lx\n", mpp->core_id, queue->core_idle);
1925
1926 mpp_debug_leave();
1927
1928 return 0;
1929 }
1930
rkvenc_clk_on(struct mpp_dev * mpp)1931 static int rkvenc_clk_on(struct mpp_dev *mpp)
1932 {
1933 struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1934
1935 mpp_clk_safe_enable(enc->aclk_info.clk);
1936 mpp_clk_safe_enable(enc->hclk_info.clk);
1937 mpp_clk_safe_enable(enc->core_clk_info.clk);
1938
1939 return 0;
1940 }
1941
rkvenc_clk_off(struct mpp_dev * mpp)1942 static int rkvenc_clk_off(struct mpp_dev *mpp)
1943 {
1944 struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1945
1946 clk_disable_unprepare(enc->aclk_info.clk);
1947 clk_disable_unprepare(enc->hclk_info.clk);
1948 clk_disable_unprepare(enc->core_clk_info.clk);
1949
1950 return 0;
1951 }
1952
rkvenc_set_freq(struct mpp_dev * mpp,struct mpp_task * mpp_task)1953 static int rkvenc_set_freq(struct mpp_dev *mpp, struct mpp_task *mpp_task)
1954 {
1955 struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1956 struct rkvenc_task *task = to_rkvenc_task(mpp_task);
1957
1958 mpp_clk_set_rate(&enc->aclk_info, task->clk_mode);
1959 mpp_clk_set_rate(&enc->core_clk_info, task->clk_mode);
1960
1961 return 0;
1962 }
1963
1964 #define RKVENC2_WORK_TIMEOUT_DELAY (200)
1965 #define RKVENC2_WAIT_TIMEOUT_DELAY (2000)
1966
rkvenc2_task_pop_pending(struct mpp_task * task)1967 static void rkvenc2_task_pop_pending(struct mpp_task *task)
1968 {
1969 struct mpp_session *session = task->session;
1970
1971 mutex_lock(&session->pending_lock);
1972 list_del_init(&task->pending_link);
1973 mutex_unlock(&session->pending_lock);
1974
1975 kref_put(&task->ref, mpp_free_task);
1976 }
1977
rkvenc2_task_default_process(struct mpp_dev * mpp,struct mpp_task * task)1978 static int rkvenc2_task_default_process(struct mpp_dev *mpp,
1979 struct mpp_task *task)
1980 {
1981 int ret = 0;
1982
1983 if (mpp->dev_ops && mpp->dev_ops->result)
1984 ret = mpp->dev_ops->result(mpp, task, NULL);
1985
1986 mpp_debug_func(DEBUG_TASK_INFO, "kref_read %d, ret %d\n",
1987 kref_read(&task->ref), ret);
1988
1989 rkvenc2_task_pop_pending(task);
1990
1991 return ret;
1992 }
1993
1994 #define RKVENC2_TIMEOUT_DUMP_REG_START (0x5100)
1995 #define RKVENC2_TIMEOUT_DUMP_REG_END (0x5160)
1996
rkvenc2_task_timeout_process(struct mpp_session * session,struct mpp_task * task)1997 static void rkvenc2_task_timeout_process(struct mpp_session *session,
1998 struct mpp_task *task)
1999 {
2000 atomic_inc(&task->abort_request);
2001 set_bit(TASK_STATE_ABORT, &task->state);
2002
2003 mpp_err("session %d:%d count %d task %d ref %d timeout\n",
2004 session->pid, session->index, atomic_read(&session->task_count),
2005 task->task_id, kref_read(&task->ref));
2006
2007 if (task->mpp) {
2008 struct mpp_dev *mpp = task->mpp;
2009 u32 start = RKVENC2_TIMEOUT_DUMP_REG_START;
2010 u32 end = RKVENC2_TIMEOUT_DUMP_REG_END;
2011 u32 offset;
2012
2013 dev_err(mpp->dev, "core %d dump timeout status:\n", mpp->core_id);
2014
2015 for (offset = start; offset < end; offset += sizeof(u32))
2016 mpp_reg_show(mpp, offset);
2017 }
2018
2019 rkvenc2_task_pop_pending(task);
2020 }
2021
rkvenc2_wait_result(struct mpp_session * session,struct mpp_task_msgs * msgs)2022 static int rkvenc2_wait_result(struct mpp_session *session,
2023 struct mpp_task_msgs *msgs)
2024 {
2025 struct rkvenc_poll_slice_cfg cfg;
2026 struct rkvenc_task *enc_task;
2027 struct mpp_request *req;
2028 struct mpp_task *task;
2029 struct mpp_dev *mpp;
2030 union rkvenc2_slice_len_info slice_info;
2031 u32 task_id;
2032 int ret = 0;
2033
2034 mutex_lock(&session->pending_lock);
2035 task = list_first_entry_or_null(&session->pending_list,
2036 struct mpp_task,
2037 pending_link);
2038 mutex_unlock(&session->pending_lock);
2039 if (!task) {
2040 mpp_err("session %p pending list is empty!\n", session);
2041 return -EIO;
2042 }
2043
2044 mpp = mpp_get_task_used_device(task, session);
2045 enc_task = to_rkvenc_task(task);
2046 task_id = task->task_id;
2047
2048 req = cmpxchg(&msgs->poll_req, msgs->poll_req, NULL);
2049
2050 if (!enc_task->task_split || enc_task->task_split_done) {
2051 task_done_ret:
2052 ret = wait_event_timeout(task->wait,
2053 test_bit(TASK_STATE_DONE, &task->state),
2054 msecs_to_jiffies(RKVENC2_WAIT_TIMEOUT_DELAY));
2055
2056 if (ret > 0)
2057 return rkvenc2_task_default_process(mpp, task);
2058
2059 rkvenc2_task_timeout_process(session, task);
2060 return ret;
2061 }
2062
2063 /* not slice return just wait all slice length */
2064 if (!req) {
2065 do {
2066 ret = wait_event_timeout(task->wait,
2067 kfifo_out(&enc_task->slice_info, &slice_info, 1),
2068 msecs_to_jiffies(RKVENC2_WORK_TIMEOUT_DELAY));
2069 if (ret > 0) {
2070 mpp_dbg_slice("task %d rd %3d len %d %s\n",
2071 task_id, enc_task->slice_rd_cnt, slice_info.slice_len,
2072 slice_info.last ? "last" : "");
2073
2074 enc_task->slice_rd_cnt++;
2075
2076 if (slice_info.last)
2077 goto task_done_ret;
2078
2079 continue;
2080 }
2081
2082 rkvenc2_task_timeout_process(session, task);
2083 return ret;
2084 } while (1);
2085 }
2086
2087 if (copy_from_user(&cfg, req->data, sizeof(cfg))) {
2088 mpp_err("copy_from_user failed\n");
2089 return -EINVAL;
2090 }
2091
2092 mpp_dbg_slice("task %d poll irq %d:%d\n", task->task_id,
2093 cfg.count_max, cfg.count_ret);
2094 cfg.count_ret = 0;
2095
2096 /* handle slice mode poll return */
2097 do {
2098 ret = wait_event_timeout(task->wait,
2099 kfifo_out(&enc_task->slice_info, &slice_info, 1),
2100 msecs_to_jiffies(RKVENC2_WORK_TIMEOUT_DELAY));
2101 if (ret > 0) {
2102 mpp_dbg_slice("core %d task %d rd %3d len %d %s\n", task_id,
2103 mpp->core_id, enc_task->slice_rd_cnt, slice_info.slice_len,
2104 slice_info.last ? "last" : "");
2105 enc_task->slice_rd_cnt++;
2106 if (cfg.count_ret < cfg.count_max) {
2107 struct rkvenc_poll_slice_cfg __user *ucfg =
2108 (struct rkvenc_poll_slice_cfg __user *)(req->data);
2109 u32 __user *dst = (u32 __user *)(ucfg + 1);
2110
2111 /* Do NOT return here when put_user error. Just continue */
2112 if (put_user(slice_info.val, dst + cfg.count_ret))
2113 ret = -EFAULT;
2114
2115 cfg.count_ret++;
2116 if (put_user(cfg.count_ret, &ucfg->count_ret))
2117 ret = -EFAULT;
2118 }
2119
2120 if (slice_info.last) {
2121 enc_task->task_split_done = 1;
2122 goto task_done_ret;
2123 }
2124
2125 if (cfg.count_ret >= cfg.count_max)
2126 return 0;
2127
2128 if (ret < 0)
2129 return ret;
2130 }
2131 } while (ret > 0);
2132
2133 rkvenc2_task_timeout_process(session, task);
2134
2135 return ret;
2136 }
2137
2138 static struct mpp_hw_ops rkvenc_hw_ops = {
2139 .init = rkvenc_init,
2140 .exit = rkvenc_exit,
2141 .clk_on = rkvenc_clk_on,
2142 .clk_off = rkvenc_clk_off,
2143 .set_freq = rkvenc_set_freq,
2144 .reset = rkvenc_reset,
2145 };
2146
2147 static struct mpp_dev_ops rkvenc_dev_ops_v2 = {
2148 .wait_result = rkvenc2_wait_result,
2149 .alloc_task = rkvenc_alloc_task,
2150 .run = rkvenc_run,
2151 .irq = rkvenc_irq,
2152 .isr = rkvenc_isr,
2153 .finish = rkvenc_finish,
2154 .result = rkvenc_result,
2155 .free_task = rkvenc_free_task,
2156 .ioctl = rkvenc_control,
2157 .init_session = rkvenc_init_session,
2158 .free_session = rkvenc_free_session,
2159 .dump_session = rkvenc_dump_session,
2160 };
2161
2162 static struct mpp_dev_ops rkvenc_ccu_dev_ops = {
2163 .wait_result = rkvenc2_wait_result,
2164 .alloc_task = rkvenc_alloc_task,
2165 .prepare = rkvenc2_prepare,
2166 .run = rkvenc_run,
2167 .irq = rkvenc_irq,
2168 .isr = rkvenc_isr,
2169 .finish = rkvenc_finish,
2170 .result = rkvenc_result,
2171 .free_task = rkvenc_free_task,
2172 .ioctl = rkvenc_control,
2173 .init_session = rkvenc_init_session,
2174 .free_session = rkvenc_free_session,
2175 .dump_session = rkvenc_dump_session,
2176 };
2177
2178
2179 static const struct mpp_dev_var rkvenc_v2_data = {
2180 .device_type = MPP_DEVICE_RKVENC,
2181 .hw_info = &rkvenc_v2_hw_info.hw,
2182 .trans_info = trans_rkvenc_v2,
2183 .hw_ops = &rkvenc_hw_ops,
2184 .dev_ops = &rkvenc_dev_ops_v2,
2185 };
2186
2187 static const struct mpp_dev_var rkvenc_540c_data = {
2188 .device_type = MPP_DEVICE_RKVENC,
2189 .hw_info = &rkvenc_540c_hw_info.hw,
2190 .trans_info = trans_rkvenc_540c,
2191 .hw_ops = &rkvenc_hw_ops,
2192 .dev_ops = &rkvenc_dev_ops_v2,
2193 };
2194
2195 static const struct mpp_dev_var rkvenc_ccu_data = {
2196 .device_type = MPP_DEVICE_RKVENC,
2197 .hw_info = &rkvenc_v2_hw_info.hw,
2198 .trans_info = trans_rkvenc_v2,
2199 .hw_ops = &rkvenc_hw_ops,
2200 .dev_ops = &rkvenc_ccu_dev_ops,
2201 };
2202
2203 static const struct of_device_id mpp_rkvenc_dt_match[] = {
2204 {
2205 .compatible = "rockchip,rkv-encoder-v2",
2206 .data = &rkvenc_v2_data,
2207 },
2208 #ifdef CONFIG_CPU_RK3528
2209 {
2210 .compatible = "rockchip,rkv-encoder-rk3528",
2211 .data = &rkvenc_540c_data,
2212 },
2213 #endif
2214 #ifdef CONFIG_CPU_RK3562
2215 {
2216 .compatible = "rockchip,rkv-encoder-rk3562",
2217 .data = &rkvenc_540c_data,
2218 },
2219 #endif
2220 #ifdef CONFIG_CPU_RK3588
2221 {
2222 .compatible = "rockchip,rkv-encoder-v2-core",
2223 .data = &rkvenc_ccu_data,
2224 },
2225 {
2226 .compatible = "rockchip,rkv-encoder-v2-ccu",
2227 },
2228 #endif
2229 {},
2230 };
2231
rkvenc_ccu_probe(struct platform_device * pdev)2232 static int rkvenc_ccu_probe(struct platform_device *pdev)
2233 {
2234 struct rkvenc_ccu *ccu;
2235 struct device *dev = &pdev->dev;
2236
2237 ccu = devm_kzalloc(dev, sizeof(*ccu), GFP_KERNEL);
2238 if (!ccu)
2239 return -ENOMEM;
2240
2241 platform_set_drvdata(pdev, ccu);
2242
2243 mutex_init(&ccu->lock);
2244 INIT_LIST_HEAD(&ccu->core_list);
2245 spin_lock_init(&ccu->lock_dchs);
2246
2247 return 0;
2248 }
2249
rkvenc_attach_ccu(struct device * dev,struct rkvenc_dev * enc)2250 static int rkvenc_attach_ccu(struct device *dev, struct rkvenc_dev *enc)
2251 {
2252 struct device_node *np;
2253 struct platform_device *pdev;
2254 struct rkvenc_ccu *ccu;
2255
2256 mpp_debug_enter();
2257
2258 np = of_parse_phandle(dev->of_node, "rockchip,ccu", 0);
2259 if (!np || !of_device_is_available(np))
2260 return -ENODEV;
2261
2262 pdev = of_find_device_by_node(np);
2263 of_node_put(np);
2264 if (!pdev)
2265 return -ENODEV;
2266
2267 ccu = platform_get_drvdata(pdev);
2268 if (!ccu)
2269 return -ENOMEM;
2270
2271 INIT_LIST_HEAD(&enc->core_link);
2272 mutex_lock(&ccu->lock);
2273 ccu->core_num++;
2274 list_add_tail(&enc->core_link, &ccu->core_list);
2275 mutex_unlock(&ccu->lock);
2276
2277 /* attach the ccu-domain to current core */
2278 if (!ccu->main_core) {
2279 /**
2280 * set the first device for the main-core,
2281 * then the domain of the main-core named ccu-domain
2282 */
2283 ccu->main_core = &enc->mpp;
2284 } else {
2285 struct mpp_iommu_info *ccu_info, *cur_info;
2286
2287 /* set the ccu-domain for current device */
2288 ccu_info = ccu->main_core->iommu_info;
2289 cur_info = enc->mpp.iommu_info;
2290
2291 if (cur_info) {
2292 cur_info->domain = ccu_info->domain;
2293 cur_info->rw_sem = ccu_info->rw_sem;
2294 }
2295 mpp_iommu_attach(cur_info);
2296
2297 /* increase main core message capacity */
2298 ccu->main_core->msgs_cap++;
2299 enc->mpp.msgs_cap = 0;
2300 }
2301 enc->ccu = ccu;
2302
2303 dev_info(dev, "attach ccu as core %d\n", enc->mpp.core_id);
2304 mpp_debug_enter();
2305
2306 return 0;
2307 }
2308
rkvenc2_alloc_rcbbuf(struct platform_device * pdev,struct rkvenc_dev * enc)2309 static int rkvenc2_alloc_rcbbuf(struct platform_device *pdev, struct rkvenc_dev *enc)
2310 {
2311 int ret;
2312 u32 vals[2];
2313 dma_addr_t iova;
2314 u32 sram_used, sram_size;
2315 struct device_node *sram_np;
2316 struct resource sram_res;
2317 resource_size_t sram_start, sram_end;
2318 struct iommu_domain *domain;
2319 struct device *dev = &pdev->dev;
2320
2321 /* get rcb iova start and size */
2322 ret = device_property_read_u32_array(dev, "rockchip,rcb-iova", vals, 2);
2323 if (ret)
2324 return ret;
2325
2326 iova = PAGE_ALIGN(vals[0]);
2327 sram_used = PAGE_ALIGN(vals[1]);
2328 if (!sram_used) {
2329 dev_err(dev, "sram rcb invalid.\n");
2330 return -EINVAL;
2331 }
2332 /* alloc reserve iova for rcb */
2333 ret = iommu_dma_reserve_iova(dev, iova, sram_used);
2334 if (ret) {
2335 dev_err(dev, "alloc rcb iova error.\n");
2336 return ret;
2337 }
2338 /* get sram device node */
2339 sram_np = of_parse_phandle(dev->of_node, "rockchip,sram", 0);
2340 if (!sram_np) {
2341 dev_err(dev, "could not find phandle sram\n");
2342 return -ENODEV;
2343 }
2344 /* get sram start and size */
2345 ret = of_address_to_resource(sram_np, 0, &sram_res);
2346 of_node_put(sram_np);
2347 if (ret) {
2348 dev_err(dev, "find sram res error\n");
2349 return ret;
2350 }
2351 /* check sram start and size is PAGE_SIZE align */
2352 sram_start = round_up(sram_res.start, PAGE_SIZE);
2353 sram_end = round_down(sram_res.start + resource_size(&sram_res), PAGE_SIZE);
2354 if (sram_end <= sram_start) {
2355 dev_err(dev, "no available sram, phy_start %pa, phy_end %pa\n",
2356 &sram_start, &sram_end);
2357 return -ENOMEM;
2358 }
2359 sram_size = sram_end - sram_start;
2360 sram_size = sram_used < sram_size ? sram_used : sram_size;
2361 /* iova map to sram */
2362 domain = enc->mpp.iommu_info->domain;
2363 ret = iommu_map(domain, iova, sram_start, sram_size, IOMMU_READ | IOMMU_WRITE);
2364 if (ret) {
2365 dev_err(dev, "sram iommu_map error.\n");
2366 return ret;
2367 }
2368 /* alloc dma for the remaining buffer, sram + dma */
2369 if (sram_size < sram_used) {
2370 struct page *page;
2371 size_t page_size = PAGE_ALIGN(sram_used - sram_size);
2372
2373 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(page_size));
2374 if (!page) {
2375 dev_err(dev, "unable to allocate pages\n");
2376 ret = -ENOMEM;
2377 goto err_sram_map;
2378 }
2379 /* iova map to dma */
2380 ret = iommu_map(domain, iova + sram_size, page_to_phys(page),
2381 page_size, IOMMU_READ | IOMMU_WRITE);
2382 if (ret) {
2383 dev_err(dev, "page iommu_map error.\n");
2384 __free_pages(page, get_order(page_size));
2385 goto err_sram_map;
2386 }
2387 enc->rcb_page = page;
2388 }
2389
2390 enc->sram_size = sram_size;
2391 enc->sram_used = sram_used;
2392 enc->sram_iova = iova;
2393 enc->sram_enabled = -1;
2394 dev_info(dev, "sram_start %pa\n", &sram_start);
2395 dev_info(dev, "sram_iova %pad\n", &enc->sram_iova);
2396 dev_info(dev, "sram_size %u\n", enc->sram_size);
2397 dev_info(dev, "sram_used %u\n", enc->sram_used);
2398
2399 return 0;
2400
2401 err_sram_map:
2402 iommu_unmap(domain, iova, sram_size);
2403
2404 return ret;
2405 }
2406
rkvenc2_iommu_fault_handle(struct iommu_domain * iommu,struct device * iommu_dev,unsigned long iova,int status,void * arg)2407 static int rkvenc2_iommu_fault_handle(struct iommu_domain *iommu,
2408 struct device *iommu_dev,
2409 unsigned long iova, int status, void *arg)
2410 {
2411 struct mpp_dev *mpp = (struct mpp_dev *)arg;
2412 struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
2413 struct mpp_task *mpp_task = mpp->cur_task;
2414
2415 dev_info(mpp->dev, "core %d page fault found dchs %08x\n",
2416 mpp->core_id, mpp_read_relaxed(&enc->mpp, DCHS_REG_OFFSET));
2417
2418 if (mpp_task)
2419 mpp_task_dump_mem_region(mpp, mpp_task);
2420
2421 return 0;
2422 }
2423
rkvenc_core_probe(struct platform_device * pdev)2424 static int rkvenc_core_probe(struct platform_device *pdev)
2425 {
2426 int ret = 0;
2427 struct device *dev = &pdev->dev;
2428 struct rkvenc_dev *enc = NULL;
2429 struct mpp_dev *mpp = NULL;
2430
2431 enc = devm_kzalloc(dev, sizeof(*enc), GFP_KERNEL);
2432 if (!enc)
2433 return -ENOMEM;
2434
2435 mpp = &enc->mpp;
2436 platform_set_drvdata(pdev, mpp);
2437
2438 if (pdev->dev.of_node) {
2439 struct device_node *np = pdev->dev.of_node;
2440 const struct of_device_id *match = NULL;
2441
2442 match = of_match_node(mpp_rkvenc_dt_match, np);
2443 if (match)
2444 mpp->var = (struct mpp_dev_var *)match->data;
2445
2446 mpp->core_id = of_alias_get_id(np, "rkvenc");
2447 }
2448
2449 ret = mpp_dev_probe(mpp, pdev);
2450 if (ret)
2451 return ret;
2452
2453 /* attach core to ccu */
2454 ret = rkvenc_attach_ccu(dev, enc);
2455 if (ret) {
2456 dev_err(dev, "attach ccu failed\n");
2457 return ret;
2458 }
2459 rkvenc2_alloc_rcbbuf(pdev, enc);
2460
2461 ret = devm_request_threaded_irq(dev, mpp->irq,
2462 mpp_dev_irq,
2463 mpp_dev_isr_sched,
2464 IRQF_SHARED,
2465 dev_name(dev), mpp);
2466 if (ret) {
2467 dev_err(dev, "register interrupter runtime failed\n");
2468 return -EINVAL;
2469 }
2470 mpp->session_max_buffers = RKVENC_SESSION_MAX_BUFFERS;
2471 enc->hw_info = to_rkvenc_info(mpp->var->hw_info);
2472 if (mpp->iommu_info)
2473 mpp->iommu_info->hdl = rkvenc2_iommu_fault_handle;
2474 rkvenc_procfs_init(mpp);
2475 rkvenc_procfs_ccu_init(mpp);
2476
2477 /* if current is main-core, register current device to mpp service */
2478 if (mpp == enc->ccu->main_core)
2479 mpp_dev_register_srv(mpp, mpp->srv);
2480
2481 return 0;
2482 }
2483
rkvenc_probe_default(struct platform_device * pdev)2484 static int rkvenc_probe_default(struct platform_device *pdev)
2485 {
2486 int ret = 0;
2487 struct device *dev = &pdev->dev;
2488 struct rkvenc_dev *enc = NULL;
2489 struct mpp_dev *mpp = NULL;
2490 const struct of_device_id *match = NULL;
2491
2492 enc = devm_kzalloc(dev, sizeof(*enc), GFP_KERNEL);
2493 if (!enc)
2494 return -ENOMEM;
2495
2496 mpp = &enc->mpp;
2497 platform_set_drvdata(pdev, mpp);
2498
2499 if (pdev->dev.of_node) {
2500 match = of_match_node(mpp_rkvenc_dt_match, pdev->dev.of_node);
2501 if (match)
2502 mpp->var = (struct mpp_dev_var *)match->data;
2503 }
2504
2505 ret = mpp_dev_probe(mpp, pdev);
2506 if (ret)
2507 return ret;
2508
2509 rkvenc2_alloc_rcbbuf(pdev, enc);
2510
2511 ret = devm_request_threaded_irq(dev, mpp->irq,
2512 mpp_dev_irq,
2513 mpp_dev_isr_sched,
2514 IRQF_SHARED,
2515 dev_name(dev), mpp);
2516 if (ret) {
2517 dev_err(dev, "register interrupter runtime failed\n");
2518 goto failed_get_irq;
2519 }
2520 mpp->session_max_buffers = RKVENC_SESSION_MAX_BUFFERS;
2521 enc->hw_info = to_rkvenc_info(mpp->var->hw_info);
2522 rkvenc_procfs_init(mpp);
2523 mpp_dev_register_srv(mpp, mpp->srv);
2524
2525 return 0;
2526
2527 failed_get_irq:
2528 mpp_dev_remove(mpp);
2529
2530 return ret;
2531 }
2532
rkvenc_probe(struct platform_device * pdev)2533 static int rkvenc_probe(struct platform_device *pdev)
2534 {
2535 int ret = 0;
2536 struct device *dev = &pdev->dev;
2537 struct device_node *np = dev->of_node;
2538
2539 dev_info(dev, "probing start\n");
2540
2541 if (strstr(np->name, "ccu"))
2542 ret = rkvenc_ccu_probe(pdev);
2543 else if (strstr(np->name, "core"))
2544 ret = rkvenc_core_probe(pdev);
2545 else
2546 ret = rkvenc_probe_default(pdev);
2547
2548 dev_info(dev, "probing finish\n");
2549
2550 return ret;
2551 }
2552
rkvenc2_free_rcbbuf(struct platform_device * pdev,struct rkvenc_dev * enc)2553 static int rkvenc2_free_rcbbuf(struct platform_device *pdev, struct rkvenc_dev *enc)
2554 {
2555 struct iommu_domain *domain;
2556
2557 if (enc->rcb_page) {
2558 size_t page_size = PAGE_ALIGN(enc->sram_used - enc->sram_size);
2559 int order = min(get_order(page_size), MAX_ORDER);
2560
2561 __free_pages(enc->rcb_page, order);
2562 }
2563 if (enc->sram_iova) {
2564 domain = enc->mpp.iommu_info->domain;
2565 iommu_unmap(domain, enc->sram_iova, enc->sram_used);
2566 }
2567
2568 return 0;
2569 }
2570
rkvenc_remove(struct platform_device * pdev)2571 static int rkvenc_remove(struct platform_device *pdev)
2572 {
2573 struct device *dev = &pdev->dev;
2574 struct device_node *np = dev->of_node;
2575
2576 if (strstr(np->name, "ccu")) {
2577 dev_info(dev, "remove ccu\n");
2578 } else if (strstr(np->name, "core")) {
2579 struct mpp_dev *mpp = dev_get_drvdata(dev);
2580 struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
2581
2582 dev_info(dev, "remove core\n");
2583 if (enc->ccu) {
2584 mutex_lock(&enc->ccu->lock);
2585 list_del_init(&enc->core_link);
2586 enc->ccu->core_num--;
2587 mutex_unlock(&enc->ccu->lock);
2588 }
2589 rkvenc2_free_rcbbuf(pdev, enc);
2590 mpp_dev_remove(&enc->mpp);
2591 rkvenc_procfs_remove(&enc->mpp);
2592 } else {
2593 struct mpp_dev *mpp = dev_get_drvdata(dev);
2594 struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
2595
2596 dev_info(dev, "remove device\n");
2597 rkvenc2_free_rcbbuf(pdev, enc);
2598 mpp_dev_remove(mpp);
2599 rkvenc_procfs_remove(mpp);
2600 }
2601
2602 return 0;
2603 }
2604
rkvenc_shutdown(struct platform_device * pdev)2605 static void rkvenc_shutdown(struct platform_device *pdev)
2606 {
2607 struct device *dev = &pdev->dev;
2608
2609 if (!strstr(dev_name(dev), "ccu"))
2610 mpp_dev_shutdown(pdev);
2611 }
2612
2613 struct platform_driver rockchip_rkvenc2_driver = {
2614 .probe = rkvenc_probe,
2615 .remove = rkvenc_remove,
2616 .shutdown = rkvenc_shutdown,
2617 .driver = {
2618 .name = RKVENC_DRIVER_NAME,
2619 .of_match_table = of_match_ptr(mpp_rkvenc_dt_match),
2620 },
2621 };
2622