xref: /OK3568_Linux_fs/kernel/drivers/video/rockchip/mpp/mpp_rkvenc2.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: (GPL-2.0+ OR MIT)
2 /*
3  * Copyright (c) 2021 Rockchip Electronics Co., Ltd
4  *
5  * author:
6  *	Ding Wei, leo.ding@rock-chips.com
7  *
8  */
9 
10 #include <asm/cacheflush.h>
11 #include <linux/delay.h>
12 #include <linux/devfreq.h>
13 #include <linux/devfreq_cooling.h>
14 #include <linux/iopoll.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/types.h>
19 #include <linux/of_platform.h>
20 #include <linux/of_address.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/uaccess.h>
24 #include <linux/regmap.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/proc_fs.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/nospec.h>
29 #include <linux/workqueue.h>
30 #include <linux/dma-iommu.h>
31 #include <soc/rockchip/pm_domains.h>
32 #include <soc/rockchip/rockchip_ipa.h>
33 #include <soc/rockchip/rockchip_opp_select.h>
34 #include <soc/rockchip/rockchip_system_monitor.h>
35 
36 #include "mpp_debug.h"
37 #include "mpp_iommu.h"
38 #include "mpp_common.h"
39 
40 #define RKVENC_DRIVER_NAME			"mpp_rkvenc2"
41 
42 #define	RKVENC_SESSION_MAX_BUFFERS		40
43 #define RKVENC_MAX_CORE_NUM			4
44 #define RKVENC_MAX_DCHS_ID			4
45 #define RKVENC_MAX_SLICE_FIFO_LEN		256
46 #define RKVENC_SCLR_DONE_STA			BIT(2)
47 
48 #define to_rkvenc_info(info)		\
49 		container_of(info, struct rkvenc_hw_info, hw)
50 #define to_rkvenc_task(ctx)		\
51 		container_of(ctx, struct rkvenc_task, mpp_task)
52 #define to_rkvenc_dev(dev)		\
53 		container_of(dev, struct rkvenc_dev, mpp)
54 
55 
56 enum RKVENC_FORMAT_TYPE {
57 	RKVENC_FMT_BASE		= 0x0000,
58 	RKVENC_FMT_H264E	= RKVENC_FMT_BASE + 0,
59 	RKVENC_FMT_H265E	= RKVENC_FMT_BASE + 1,
60 	RKVENC_FMT_JPEGE	= RKVENC_FMT_BASE + 2,
61 
62 	RKVENC_FMT_OSD_BASE	= 0x1000,
63 	RKVENC_FMT_H264E_OSD	= RKVENC_FMT_OSD_BASE + 0,
64 	RKVENC_FMT_H265E_OSD	= RKVENC_FMT_OSD_BASE + 1,
65 	RKVENC_FMT_JPEGE_OSD	= RKVENC_FMT_OSD_BASE + 2,
66 	RKVENC_FMT_BUTT,
67 };
68 
69 enum RKVENC_CLASS_TYPE {
70 	RKVENC_CLASS_BASE	= 0,	/* base */
71 	RKVENC_CLASS_PIC	= 1,	/* picture configure */
72 	RKVENC_CLASS_RC		= 2,	/* rate control */
73 	RKVENC_CLASS_PAR	= 3,	/* parameter */
74 	RKVENC_CLASS_SQI	= 4,	/* subjective Adjust */
75 	RKVENC_CLASS_SCL	= 5,	/* scaling list */
76 	RKVENC_CLASS_OSD	= 6,	/* osd */
77 	RKVENC_CLASS_ST		= 7,	/* status */
78 	RKVENC_CLASS_DEBUG	= 8,	/* debug */
79 	RKVENC_CLASS_BUTT,
80 };
81 
82 enum RKVENC_CLASS_FD_TYPE {
83 	RKVENC_CLASS_FD_BASE	= 0,	/* base */
84 	RKVENC_CLASS_FD_OSD	= 1,	/* osd */
85 	RKVENC_CLASS_FD_BUTT,
86 };
87 
88 struct rkvenc_reg_msg {
89 	u32 base_s;
90 	u32 base_e;
91 };
92 
93 struct rkvenc_hw_info {
94 	struct mpp_hw_info hw;
95 	/* for register range check */
96 	u32 reg_class;
97 	struct rkvenc_reg_msg reg_msg[RKVENC_CLASS_BUTT];
98 	/* for fd translate */
99 	u32 fd_class;
100 	struct {
101 		u32 class;
102 		u32 base_fmt;
103 	} fd_reg[RKVENC_CLASS_FD_BUTT];
104 	/* for get format */
105 	struct {
106 		u32 class;
107 		u32 base;
108 		u32 bitpos;
109 		u32 bitlen;
110 	} fmt_reg;
111 	/* register info */
112 	u32 enc_start_base;
113 	u32 enc_clr_base;
114 	u32 int_en_base;
115 	u32 int_mask_base;
116 	u32 int_clr_base;
117 	u32 int_sta_base;
118 	u32 enc_wdg_base;
119 	u32 err_mask;
120 };
121 
122 #define INT_STA_ENC_DONE_STA	BIT(0)
123 #define INT_STA_SCLR_DONE_STA	BIT(2)
124 #define INT_STA_SLC_DONE_STA	BIT(3)
125 #define INT_STA_BSF_OFLW_STA	BIT(4)
126 #define INT_STA_BRSP_OTSD_STA	BIT(5)
127 #define INT_STA_WBUS_ERR_STA	BIT(6)
128 #define INT_STA_RBUS_ERR_STA	BIT(7)
129 #define INT_STA_WDG_STA		BIT(8)
130 
131 #define DCHS_REG_OFFSET		(0x304)
132 #define DCHS_CLASS_OFFSET	(33)
133 #define DCHS_TXE		(0x10)
134 #define DCHS_RXE		(0x20)
135 
136 /* dual core hand-shake info */
137 union rkvenc2_dual_core_handshake_id {
138 	u64 val;
139 	struct {
140 		u32 txid	: 2;
141 		u32 rxid	: 2;
142 		u32 txe		: 1;
143 		u32 rxe		: 1;
144 		u32 working	: 1;
145 		u32 reserve0	: 1;
146 		u32 txid_orig	: 2;
147 		u32 rxid_orig	: 2;
148 		u32 txid_map	: 2;
149 		u32 rxid_map	: 2;
150 		u32 offset	: 11;
151 		u32 reserve1	: 1;
152 		u32 txe_orig	: 1;
153 		u32 rxe_orig	: 1;
154 		u32 txe_map	: 1;
155 		u32 rxe_map	: 1;
156 		u32 session_id;
157 	};
158 };
159 
160 #define RKVENC2_REG_INT_EN		(8)
161 #define RKVENC2_BIT_SLICE_DONE_EN	BIT(3)
162 
163 #define RKVENC2_REG_INT_MASK		(9)
164 #define RKVENC2_BIT_SLICE_DONE_MASK	BIT(3)
165 
166 #define RKVENC2_REG_EXT_LINE_BUF_BASE	(22)
167 
168 #define RKVENC2_REG_ENC_PIC		(32)
169 #define RKVENC2_BIT_ENC_STND		BIT(0)
170 #define RKVENC2_BIT_VAL_H264		0
171 #define RKVENC2_BIT_VAL_H265		1
172 #define RKVENC2_BIT_SLEN_FIFO		BIT(30)
173 
174 #define RKVENC2_REG_SLI_SPLIT		(56)
175 #define RKVENC2_BIT_SLI_SPLIT		BIT(0)
176 #define RKVENC2_BIT_SLI_FLUSH		BIT(15)
177 
178 #define RKVENC2_REG_SLICE_NUM_BASE	(0x4034)
179 #define RKVENC2_REG_SLICE_LEN_BASE	(0x4038)
180 
181 #define RKVENC2_REG_ST_BSB		(0x402c)
182 #define RKVENC2_REG_ADR_BSBT		(0x2b0)
183 #define RKVENC2_REG_ADR_BSBB		(0x2b4)
184 #define RKVENC2_REG_ADR_BSBR		(0x2b8)
185 #define RKVENC2_REG_ADR_BSBS		(0x2bc)
186 
187 union rkvenc2_slice_len_info {
188 	u32 val;
189 
190 	struct {
191 		u32 slice_len	: 31;
192 		u32 last	: 1;
193 	};
194 };
195 
196 struct rkvenc_poll_slice_cfg {
197 	s32 poll_type;
198 	s32 poll_ret;
199 	s32 count_max;
200 	s32 count_ret;
201 	union rkvenc2_slice_len_info slice_info[];
202 };
203 
204 struct rkvenc_task {
205 	struct mpp_task mpp_task;
206 	int fmt;
207 	struct rkvenc_hw_info *hw_info;
208 
209 	/* class register */
210 	struct {
211 		u32 valid;
212 		u32 *data;
213 		u32 size;
214 	} reg[RKVENC_CLASS_BUTT];
215 	/* register offset info */
216 	struct reg_offset_info off_inf;
217 
218 	enum MPP_CLOCK_MODE clk_mode;
219 	u32 irq_status;
220 	/* req for current task */
221 	u32 w_req_cnt;
222 	struct mpp_request w_reqs[MPP_MAX_MSG_NUM];
223 	u32 r_req_cnt;
224 	struct mpp_request r_reqs[MPP_MAX_MSG_NUM];
225 	struct mpp_dma_buffer *table;
226 
227 	union rkvenc2_dual_core_handshake_id dchs_id;
228 
229 	/* split output / slice mode info */
230 	u32 task_split;
231 	u32 task_split_done;
232 	u32 last_slice_found;
233 	u32 slice_wr_cnt;
234 	u32 slice_rd_cnt;
235 	DECLARE_KFIFO(slice_info, union rkvenc2_slice_len_info, RKVENC_MAX_SLICE_FIFO_LEN);
236 
237 	/* jpege bitstream */
238 	struct mpp_dma_buffer *bs_buf;
239 	u32 offset_bs;
240 };
241 
242 #define RKVENC_MAX_RCB_NUM		(4)
243 
244 struct rcb_info_elem {
245 	u32 index;
246 	u32 size;
247 };
248 
249 struct rkvenc2_rcb_info {
250 	u32 cnt;
251 	struct rcb_info_elem elem[RKVENC_MAX_RCB_NUM];
252 };
253 
254 struct rkvenc2_session_priv {
255 	struct rw_semaphore rw_sem;
256 	/* codec info from user */
257 	struct {
258 		/* show mode */
259 		u32 flag;
260 		/* item data */
261 		u64 val;
262 	} codec_info[ENC_INFO_BUTT];
263 	/* rcb_info for sram */
264 	struct rkvenc2_rcb_info rcb_inf;
265 };
266 
267 struct rkvenc_dev {
268 	struct mpp_dev mpp;
269 	struct rkvenc_hw_info *hw_info;
270 
271 	struct mpp_clk_info aclk_info;
272 	struct mpp_clk_info hclk_info;
273 	struct mpp_clk_info core_clk_info;
274 	u32 default_max_load;
275 #ifdef CONFIG_ROCKCHIP_MPP_PROC_FS
276 	struct proc_dir_entry *procfs;
277 #endif
278 	struct reset_control *rst_a;
279 	struct reset_control *rst_h;
280 	struct reset_control *rst_core;
281 	/* for ccu */
282 	struct rkvenc_ccu *ccu;
283 	struct list_head core_link;
284 
285 	/* internal rcb-memory */
286 	u32 sram_size;
287 	u32 sram_used;
288 	dma_addr_t sram_iova;
289 	u32 sram_enabled;
290 	struct page *rcb_page;
291 
292 	u32 bs_overflow;
293 
294 #ifdef CONFIG_PM_DEVFREQ
295 	struct rockchip_opp_info opp_info;
296 	struct monitor_dev_info *mdev_info;
297 #endif
298 };
299 
300 struct rkvenc_ccu {
301 	u32 core_num;
302 	/* lock for core attach */
303 	struct mutex lock;
304 	struct list_head core_list;
305 	struct mpp_dev *main_core;
306 
307 	spinlock_t lock_dchs;
308 	union rkvenc2_dual_core_handshake_id dchs[RKVENC_MAX_CORE_NUM];
309 };
310 
311 static struct rkvenc_hw_info rkvenc_v2_hw_info = {
312 	.hw = {
313 		.reg_num = 254,
314 		.reg_id = 0,
315 		.reg_en = 4,
316 		.reg_start = 160,
317 		.reg_end = 253,
318 	},
319 	.reg_class = RKVENC_CLASS_BUTT,
320 	.reg_msg[RKVENC_CLASS_BASE] = {
321 		.base_s = 0x0000,
322 		.base_e = 0x0058,
323 	},
324 	.reg_msg[RKVENC_CLASS_PIC] = {
325 		.base_s = 0x0280,
326 		.base_e = 0x03f4,
327 	},
328 	.reg_msg[RKVENC_CLASS_RC] = {
329 		.base_s = 0x1000,
330 		.base_e = 0x10e0,
331 	},
332 	.reg_msg[RKVENC_CLASS_PAR] = {
333 		.base_s = 0x1700,
334 		.base_e = 0x1cd4,
335 	},
336 	.reg_msg[RKVENC_CLASS_SQI] = {
337 		.base_s = 0x2000,
338 		.base_e = 0x21e4,
339 	},
340 	.reg_msg[RKVENC_CLASS_SCL] = {
341 		.base_s = 0x2200,
342 		.base_e = 0x2c98,
343 	},
344 	.reg_msg[RKVENC_CLASS_OSD] = {
345 		.base_s = 0x3000,
346 		.base_e = 0x347c,
347 	},
348 	.reg_msg[RKVENC_CLASS_ST] = {
349 		.base_s = 0x4000,
350 		.base_e = 0x42cc,
351 	},
352 	.reg_msg[RKVENC_CLASS_DEBUG] = {
353 		.base_s = 0x5000,
354 		.base_e = 0x5354,
355 	},
356 	.fd_class = RKVENC_CLASS_FD_BUTT,
357 	.fd_reg[RKVENC_CLASS_FD_BASE] = {
358 		.class = RKVENC_CLASS_PIC,
359 		.base_fmt = RKVENC_FMT_BASE,
360 	},
361 	.fd_reg[RKVENC_CLASS_FD_OSD] = {
362 		.class = RKVENC_CLASS_OSD,
363 		.base_fmt = RKVENC_FMT_OSD_BASE,
364 	},
365 	.fmt_reg = {
366 		.class = RKVENC_CLASS_PIC,
367 		.base = 0x0300,
368 		.bitpos = 0,
369 		.bitlen = 1,
370 	},
371 	.enc_start_base = 0x0010,
372 	.enc_clr_base = 0x0014,
373 	.int_en_base = 0x0020,
374 	.int_mask_base = 0x0024,
375 	.int_clr_base = 0x0028,
376 	.int_sta_base = 0x002c,
377 	.enc_wdg_base = 0x0038,
378 	.err_mask = 0x03f0,
379 };
380 
381 static struct rkvenc_hw_info rkvenc_540c_hw_info = {
382 	.hw = {
383 		.reg_num = 254,
384 		.reg_id = 0,
385 		.reg_en = 4,
386 		.reg_start = 160,
387 		.reg_end = 253,
388 	},
389 	.reg_class = RKVENC_CLASS_BUTT,
390 	.reg_msg[RKVENC_CLASS_BASE] = {
391 		.base_s = 0x0000,
392 		.base_e = 0x0120,
393 	},
394 	.reg_msg[RKVENC_CLASS_PIC] = {
395 		.base_s = 0x0270,
396 		.base_e = 0x0480,
397 	},
398 	.reg_msg[RKVENC_CLASS_RC] = {
399 		.base_s = 0x1000,
400 		.base_e = 0x110c,
401 	},
402 	.reg_msg[RKVENC_CLASS_PAR] = {
403 		.base_s = 0x1700,
404 		.base_e = 0x19cc,
405 	},
406 	.reg_msg[RKVENC_CLASS_SQI] = {
407 		.base_s = 0x2000,
408 		.base_e = 0x20fc,
409 	},
410 	.reg_msg[RKVENC_CLASS_SCL] = {
411 		.base_s = 0x21e0,
412 		.base_e = 0x2dfc,
413 	},
414 	.reg_msg[RKVENC_CLASS_OSD] = {
415 		.base_s = 0x3000,
416 		.base_e = 0x326c,
417 	},
418 	.reg_msg[RKVENC_CLASS_ST] = {
419 		.base_s = 0x4000,
420 		.base_e = 0x424c,
421 	},
422 	.reg_msg[RKVENC_CLASS_DEBUG] = {
423 		.base_s = 0x5000,
424 		.base_e = 0x5354,
425 	},
426 	.fd_class = RKVENC_CLASS_FD_BUTT,
427 	.fd_reg[RKVENC_CLASS_FD_BASE] = {
428 		.class = RKVENC_CLASS_PIC,
429 		.base_fmt = RKVENC_FMT_BASE,
430 	},
431 	.fd_reg[RKVENC_CLASS_FD_OSD] = {
432 		.class = RKVENC_CLASS_OSD,
433 		.base_fmt = RKVENC_FMT_OSD_BASE,
434 	},
435 	.fmt_reg = {
436 		.class = RKVENC_CLASS_PIC,
437 		.base = 0x0300,
438 		.bitpos = 0,
439 		.bitlen = 2,
440 	},
441 	.enc_start_base = 0x0010,
442 	.enc_clr_base = 0x0014,
443 	.int_en_base = 0x0020,
444 	.int_mask_base = 0x0024,
445 	.int_clr_base = 0x0028,
446 	.int_sta_base = 0x002c,
447 	.enc_wdg_base = 0x0038,
448 	.err_mask = 0x27d0,
449 };
450 /*
451  * file handle translate information for v2
452  */
453 static const u16 trans_tbl_h264e_v2[] = {
454 	0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
455 	10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
456 	20, 21, 22, 23,
457 };
458 
459 static const u16 trans_tbl_h264e_v2_osd[] = {
460 	20, 21, 22, 23, 24, 25, 26, 27,
461 };
462 
463 static const u16 trans_tbl_h265e_v2[] = {
464 	0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
465 	10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
466 	20, 21, 22, 23,
467 };
468 
469 static const u16 trans_tbl_h265e_v2_osd[] = {
470 	20, 21, 22, 23, 24, 25, 26, 27,
471 };
472 
473 /*
474  * file handle translate information for 540c
475  */
476 static const u16 trans_tbl_h264e_540c[] = {
477 	4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
478 	14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
479 	// /* renc and ref wrap */
480 	// 24, 25, 26, 27,
481 };
482 
483 static const u16 trans_tbl_h264e_540c_osd[] = {
484 	3, 4, 12, 13, 21, 22, 30, 31,
485 	39, 40, 48, 49, 57, 58, 66, 67,
486 };
487 
488 static const u16 trans_tbl_h265e_540c[] = {
489 	4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
490 	14, 15, 16, 17, 18, 19, 20, 21, 22, 23
491 };
492 
493 static const u16 trans_tbl_h265e_540c_osd[] = {
494 	3, 4, 12, 13, 21, 22, 30, 31,
495 	39, 40, 48, 49, 57, 58, 66, 67,
496 };
497 
498 static const u16 trans_tbl_jpege[] = {
499 	100, 101, 102, 103, 104, 105, 106, 107,
500 	108, 109, 110,
501 };
502 
503 static const u16 trans_tbl_jpege_osd[] = {
504 	81, 82, 90, 91, 99, 100, 108, 109,
505 	117, 118, 126, 127, 135, 136, 144, 145,
506 };
507 
508 static struct mpp_trans_info trans_rkvenc_v2[] = {
509 	[RKVENC_FMT_H264E] = {
510 		.count = ARRAY_SIZE(trans_tbl_h264e_v2),
511 		.table = trans_tbl_h264e_v2,
512 	},
513 	[RKVENC_FMT_H264E_OSD] = {
514 		.count = ARRAY_SIZE(trans_tbl_h264e_v2_osd),
515 		.table = trans_tbl_h264e_v2_osd,
516 	},
517 	[RKVENC_FMT_H265E] = {
518 		.count = ARRAY_SIZE(trans_tbl_h265e_v2),
519 		.table = trans_tbl_h265e_v2,
520 	},
521 	[RKVENC_FMT_H265E_OSD] = {
522 		.count = ARRAY_SIZE(trans_tbl_h265e_v2_osd),
523 		.table = trans_tbl_h265e_v2_osd,
524 	},
525 };
526 
527 static struct mpp_trans_info trans_rkvenc_540c[] = {
528 	[RKVENC_FMT_H264E] = {
529 		.count = ARRAY_SIZE(trans_tbl_h264e_540c),
530 		.table = trans_tbl_h264e_540c,
531 	},
532 	[RKVENC_FMT_H264E_OSD] = {
533 		.count = ARRAY_SIZE(trans_tbl_h264e_540c_osd),
534 		.table = trans_tbl_h264e_540c_osd,
535 	},
536 	[RKVENC_FMT_H265E] = {
537 		.count = ARRAY_SIZE(trans_tbl_h265e_540c),
538 		.table = trans_tbl_h265e_540c,
539 	},
540 	[RKVENC_FMT_H265E_OSD] = {
541 		.count = ARRAY_SIZE(trans_tbl_h265e_540c_osd),
542 		.table = trans_tbl_h265e_540c_osd,
543 	},
544 	[RKVENC_FMT_JPEGE] = {
545 		.count = ARRAY_SIZE(trans_tbl_jpege),
546 		.table = trans_tbl_jpege,
547 	},
548 	[RKVENC_FMT_JPEGE_OSD] = {
549 		.count = ARRAY_SIZE(trans_tbl_jpege_osd),
550 		.table = trans_tbl_jpege_osd,
551 	},
552 };
553 
req_over_class(struct mpp_request * req,struct rkvenc_task * task,int class)554 static bool req_over_class(struct mpp_request *req,
555 			   struct rkvenc_task *task, int class)
556 {
557 	bool ret;
558 	u32 base_s, base_e, req_e;
559 	struct rkvenc_hw_info *hw = task->hw_info;
560 
561 	base_s = hw->reg_msg[class].base_s;
562 	base_e = hw->reg_msg[class].base_e;
563 	req_e = req->offset + req->size - sizeof(u32);
564 
565 	ret = (req->offset <= base_e && req_e >= base_s) ? true : false;
566 
567 	return ret;
568 }
569 
rkvenc_free_class_msg(struct rkvenc_task * task)570 static int rkvenc_free_class_msg(struct rkvenc_task *task)
571 {
572 	u32 i;
573 	u32 reg_class = task->hw_info->reg_class;
574 
575 	for (i = 0; i < reg_class; i++) {
576 		kfree(task->reg[i].data);
577 		task->reg[i].data = NULL;
578 		task->reg[i].size = 0;
579 	}
580 
581 	return 0;
582 }
583 
rkvenc_alloc_class_msg(struct rkvenc_task * task,int class)584 static int rkvenc_alloc_class_msg(struct rkvenc_task *task, int class)
585 {
586 	u32 *data;
587 	struct rkvenc_hw_info *hw = task->hw_info;
588 
589 	if (!task->reg[class].data) {
590 		u32 base_s = hw->reg_msg[class].base_s;
591 		u32 base_e = hw->reg_msg[class].base_e;
592 		u32 class_size = base_e - base_s + sizeof(u32);
593 
594 		data = kzalloc(class_size, GFP_KERNEL);
595 		if (!data)
596 			return -ENOMEM;
597 		task->reg[class].data = data;
598 		task->reg[class].size = class_size;
599 	}
600 
601 	return 0;
602 }
603 
rkvenc_update_req(struct rkvenc_task * task,int class,struct mpp_request * req_in,struct mpp_request * req_out)604 static int rkvenc_update_req(struct rkvenc_task *task, int class,
605 			     struct mpp_request *req_in,
606 			     struct mpp_request *req_out)
607 {
608 	u32 base_s, base_e, req_e, s, e;
609 	struct rkvenc_hw_info *hw = task->hw_info;
610 
611 	base_s = hw->reg_msg[class].base_s;
612 	base_e = hw->reg_msg[class].base_e;
613 	req_e = req_in->offset + req_in->size - sizeof(u32);
614 	s = max(req_in->offset, base_s);
615 	e = min(req_e, base_e);
616 
617 	req_out->offset = s;
618 	req_out->size = e - s + sizeof(u32);
619 	req_out->data = (u8 *)req_in->data + (s - req_in->offset);
620 
621 	return 0;
622 }
623 
rkvenc_get_class_msg(struct rkvenc_task * task,u32 addr,struct mpp_request * msg)624 static int rkvenc_get_class_msg(struct rkvenc_task *task,
625 				u32 addr, struct mpp_request *msg)
626 {
627 	int i;
628 	bool found = false;
629 	u32 base_s, base_e;
630 	struct rkvenc_hw_info *hw = task->hw_info;
631 
632 	if (!msg)
633 		return -EINVAL;
634 
635 	memset(msg, 0, sizeof(*msg));
636 	for (i = 0; i < hw->reg_class; i++) {
637 		base_s = hw->reg_msg[i].base_s;
638 		base_e = hw->reg_msg[i].base_e;
639 		if (addr >= base_s && addr < base_e) {
640 			found = true;
641 			msg->offset = base_s;
642 			msg->size = task->reg[i].size;
643 			msg->data = task->reg[i].data;
644 			break;
645 		}
646 	}
647 
648 	return (found ? 0 : (-EINVAL));
649 }
650 
rkvenc_get_class_reg(struct rkvenc_task * task,u32 addr)651 static u32 *rkvenc_get_class_reg(struct rkvenc_task *task, u32 addr)
652 {
653 	int i;
654 	u8 *reg = NULL;
655 	u32 base_s, base_e;
656 	struct rkvenc_hw_info *hw = task->hw_info;
657 
658 	for (i = 0; i < hw->reg_class; i++) {
659 		base_s = hw->reg_msg[i].base_s;
660 		base_e = hw->reg_msg[i].base_e;
661 		if (addr >= base_s && addr < base_e) {
662 			reg = (u8 *)task->reg[i].data + (addr - base_s);
663 			break;
664 		}
665 	}
666 
667 	return (u32 *)reg;
668 }
669 
rkvenc2_extract_rcb_info(struct rkvenc2_rcb_info * rcb_inf,struct mpp_request * req)670 static int rkvenc2_extract_rcb_info(struct rkvenc2_rcb_info *rcb_inf,
671 				    struct mpp_request *req)
672 {
673 	int max_size = ARRAY_SIZE(rcb_inf->elem);
674 	int cnt = req->size / sizeof(rcb_inf->elem[0]);
675 
676 	if (req->size > sizeof(rcb_inf->elem)) {
677 		mpp_err("count %d,max_size %d\n", cnt, max_size);
678 		return -EINVAL;
679 	}
680 	if (copy_from_user(rcb_inf->elem, req->data, req->size)) {
681 		mpp_err("copy_from_user failed\n");
682 		return -EINVAL;
683 	}
684 	rcb_inf->cnt = cnt;
685 
686 	return 0;
687 }
688 
rkvenc_extract_task_msg(struct mpp_session * session,struct rkvenc_task * task,struct mpp_task_msgs * msgs)689 static int rkvenc_extract_task_msg(struct mpp_session *session,
690 				   struct rkvenc_task *task,
691 				   struct mpp_task_msgs *msgs)
692 {
693 	int ret;
694 	u32 i, j;
695 	struct mpp_request *req;
696 	struct rkvenc_hw_info *hw = task->hw_info;
697 
698 	mpp_debug_enter();
699 
700 	for (i = 0; i < msgs->req_cnt; i++) {
701 		req = &msgs->reqs[i];
702 		if (!req->size)
703 			continue;
704 
705 		switch (req->cmd) {
706 		case MPP_CMD_SET_REG_WRITE: {
707 			void *data;
708 			struct mpp_request *wreq;
709 
710 			for (j = 0; j < hw->reg_class; j++) {
711 				if (!req_over_class(req, task, j))
712 					continue;
713 
714 				ret = rkvenc_alloc_class_msg(task, j);
715 				if (ret) {
716 					mpp_err("alloc class msg %d fail.\n", j);
717 					goto fail;
718 				}
719 				wreq = &task->w_reqs[task->w_req_cnt];
720 				rkvenc_update_req(task, j, req, wreq);
721 				data = rkvenc_get_class_reg(task, wreq->offset);
722 				if (!data) {
723 					mpp_err("get class reg fail, offset %08x\n", wreq->offset);
724 					ret = -EINVAL;
725 					goto fail;
726 				}
727 				if (copy_from_user(data, wreq->data, wreq->size)) {
728 					mpp_err("copy_from_user fail, offset %08x\n", wreq->offset);
729 					ret = -EIO;
730 					goto fail;
731 				}
732 				task->reg[j].valid = 1;
733 				task->w_req_cnt++;
734 			}
735 		} break;
736 		case MPP_CMD_SET_REG_READ: {
737 			struct mpp_request *rreq;
738 
739 			for (j = 0; j < hw->reg_class; j++) {
740 				if (!req_over_class(req, task, j))
741 					continue;
742 
743 				ret = rkvenc_alloc_class_msg(task, j);
744 				if (ret) {
745 					mpp_err("alloc class msg reg %d fail.\n", j);
746 					goto fail;
747 				}
748 				rreq = &task->r_reqs[task->r_req_cnt];
749 				rkvenc_update_req(task, j, req, rreq);
750 				task->reg[j].valid = 1;
751 				task->r_req_cnt++;
752 			}
753 		} break;
754 		case MPP_CMD_SET_REG_ADDR_OFFSET: {
755 			mpp_extract_reg_offset_info(&task->off_inf, req);
756 		} break;
757 		case MPP_CMD_SET_RCB_INFO: {
758 			struct rkvenc2_session_priv *priv = session->priv;
759 
760 			if (priv)
761 				rkvenc2_extract_rcb_info(&priv->rcb_inf, req);
762 		} break;
763 		default:
764 			break;
765 		}
766 	}
767 	mpp_debug(DEBUG_TASK_INFO, "w_req_cnt=%d, r_req_cnt=%d\n",
768 		  task->w_req_cnt, task->r_req_cnt);
769 
770 	mpp_debug_enter();
771 	return 0;
772 
773 fail:
774 	rkvenc_free_class_msg(task);
775 
776 	mpp_debug_enter();
777 	return ret;
778 }
779 
rkvenc_task_get_format(struct mpp_dev * mpp,struct rkvenc_task * task)780 static int rkvenc_task_get_format(struct mpp_dev *mpp,
781 				  struct rkvenc_task *task)
782 {
783 	u32 offset, val;
784 
785 	struct rkvenc_hw_info *hw = task->hw_info;
786 	u32 class = hw->fmt_reg.class;
787 	u32 *class_reg = task->reg[class].data;
788 	u32 class_size = task->reg[class].size;
789 	u32 class_base = hw->reg_msg[class].base_s;
790 	u32 bitpos = hw->fmt_reg.bitpos;
791 	u32 bitlen = hw->fmt_reg.bitlen;
792 
793 	if (!class_reg || !class_size)
794 		return -EINVAL;
795 
796 	offset = hw->fmt_reg.base - class_base;
797 	val = class_reg[offset/sizeof(u32)];
798 	task->fmt = (val >> bitpos) & ((1 << bitlen) - 1);
799 
800 	return 0;
801 }
802 
rkvenc2_set_rcbbuf(struct mpp_dev * mpp,struct mpp_session * session,struct rkvenc_task * task)803 static int rkvenc2_set_rcbbuf(struct mpp_dev *mpp, struct mpp_session *session,
804 			      struct rkvenc_task *task)
805 {
806 	struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
807 	struct rkvenc2_session_priv *priv = session->priv;
808 	u32 sram_enabled = 0;
809 
810 	mpp_debug_enter();
811 
812 	if (priv && enc->sram_iova) {
813 		int i;
814 		u32 *reg;
815 		u32 reg_idx, rcb_size, rcb_offset;
816 		struct rkvenc2_rcb_info *rcb_inf = &priv->rcb_inf;
817 
818 		rcb_offset = 0;
819 		for (i = 0; i < rcb_inf->cnt; i++) {
820 			reg_idx = rcb_inf->elem[i].index;
821 			rcb_size = rcb_inf->elem[i].size;
822 
823 			if (rcb_offset > enc->sram_size ||
824 			    (rcb_offset + rcb_size) > enc->sram_used)
825 				continue;
826 
827 			mpp_debug(DEBUG_SRAM_INFO, "rcb: reg %d offset %d, size %d\n",
828 				  reg_idx, rcb_offset, rcb_size);
829 
830 			reg = rkvenc_get_class_reg(task, reg_idx * sizeof(u32));
831 			if (reg)
832 				*reg = enc->sram_iova + rcb_offset;
833 
834 			rcb_offset += rcb_size;
835 			sram_enabled = 1;
836 		}
837 	}
838 	if (enc->sram_enabled != sram_enabled) {
839 		mpp_debug(DEBUG_SRAM_INFO, "sram %s\n", sram_enabled ? "enabled" : "disabled");
840 		enc->sram_enabled = sram_enabled;
841 	}
842 
843 	mpp_debug_leave();
844 
845 	return 0;
846 }
847 
rkvenc2_setup_task_id(u32 session_id,struct rkvenc_task * task)848 static void rkvenc2_setup_task_id(u32 session_id, struct rkvenc_task *task)
849 {
850 	u32 val = task->reg[RKVENC_CLASS_PIC].data[DCHS_CLASS_OFFSET];
851 
852 	/* always enable tx */
853 	val |= DCHS_TXE;
854 
855 	task->reg[RKVENC_CLASS_PIC].data[DCHS_CLASS_OFFSET] = val;
856 	task->dchs_id.val = (((u64)session_id << 32) | val);
857 
858 	task->dchs_id.txid_orig = task->dchs_id.txid;
859 	task->dchs_id.rxid_orig = task->dchs_id.rxid;
860 	task->dchs_id.txid_map = task->dchs_id.txid;
861 	task->dchs_id.rxid_map = task->dchs_id.rxid;
862 
863 	task->dchs_id.txe_orig = task->dchs_id.txe;
864 	task->dchs_id.rxe_orig = task->dchs_id.rxe;
865 	task->dchs_id.txe_map = task->dchs_id.txe;
866 	task->dchs_id.rxe_map = task->dchs_id.rxe;
867 }
868 
rkvenc2_check_split_task(struct rkvenc_task * task)869 static void rkvenc2_check_split_task(struct rkvenc_task *task)
870 {
871 	u32 slen_fifo_en = 0;
872 	u32 sli_split_en = 0;
873 
874 	if (task->reg[RKVENC_CLASS_PIC].valid) {
875 		u32 *reg = task->reg[RKVENC_CLASS_PIC].data;
876 		u32 enc_stnd = reg[RKVENC2_REG_ENC_PIC] & RKVENC2_BIT_ENC_STND;
877 
878 		slen_fifo_en = (reg[RKVENC2_REG_ENC_PIC] & RKVENC2_BIT_SLEN_FIFO) ? 1 : 0;
879 		sli_split_en = (reg[RKVENC2_REG_SLI_SPLIT] & RKVENC2_BIT_SLI_SPLIT) ? 1 : 0;
880 
881 		/*
882 		 * FIXUP: rkvenc2 hardware bug:
883 		 * H.264 encoding has bug when external line buffer and slice flush both
884 		 * are enabled.
885 		 */
886 		if (sli_split_en && slen_fifo_en &&
887 		    enc_stnd == RKVENC2_BIT_VAL_H264 &&
888 		    reg[RKVENC2_REG_EXT_LINE_BUF_BASE])
889 			reg[RKVENC2_REG_SLI_SPLIT] &= ~RKVENC2_BIT_SLI_FLUSH;
890 	}
891 
892 	task->task_split = sli_split_en && slen_fifo_en;
893 
894 	if (task->task_split)
895 		INIT_KFIFO(task->slice_info);
896 }
897 
rkvenc_alloc_task(struct mpp_session * session,struct mpp_task_msgs * msgs)898 static void *rkvenc_alloc_task(struct mpp_session *session,
899 			       struct mpp_task_msgs *msgs)
900 {
901 	int ret;
902 	struct rkvenc_task *task;
903 	struct mpp_task *mpp_task;
904 	struct mpp_dev *mpp = session->mpp;
905 
906 	mpp_debug_enter();
907 
908 	task = kzalloc(sizeof(*task), GFP_KERNEL);
909 	if (!task)
910 		return NULL;
911 
912 	mpp_task = &task->mpp_task;
913 	mpp_task_init(session, mpp_task);
914 	mpp_task->hw_info = mpp->var->hw_info;
915 	task->hw_info = to_rkvenc_info(mpp_task->hw_info);
916 	/* extract reqs for current task */
917 	ret = rkvenc_extract_task_msg(session, task, msgs);
918 	if (ret)
919 		goto free_task;
920 	mpp_task->reg = task->reg[0].data;
921 	/* get format */
922 	ret = rkvenc_task_get_format(mpp, task);
923 	if (ret)
924 		goto free_task;
925 	/* process fd in register */
926 	if (!(msgs->flags & MPP_FLAGS_REG_FD_NO_TRANS)) {
927 		u32 i, j;
928 		int cnt;
929 		u32 off;
930 		const u16 *tbl;
931 		struct rkvenc_hw_info *hw = task->hw_info;
932 		int fd_bs = -1;
933 
934 		for (i = 0; i < hw->fd_class; i++) {
935 			u32 class = hw->fd_reg[i].class;
936 			u32 fmt = hw->fd_reg[i].base_fmt + task->fmt;
937 			u32 *reg = task->reg[class].data;
938 			u32 ss = hw->reg_msg[class].base_s / sizeof(u32);
939 
940 			if (!reg)
941 				continue;
942 
943 			if (fmt == RKVENC_FMT_JPEGE && class == RKVENC_CLASS_PIC && fd_bs == -1) {
944 				int bs_index;
945 
946 				bs_index = mpp->var->trans_info[fmt].table[2];
947 				fd_bs = reg[bs_index];
948 				task->offset_bs = mpp_query_reg_offset_info(&task->off_inf,
949 									    bs_index + ss);
950 			}
951 
952 			ret = mpp_translate_reg_address(session, mpp_task, fmt, reg, NULL);
953 			if (ret)
954 				goto fail;
955 
956 			cnt = mpp->var->trans_info[fmt].count;
957 			tbl = mpp->var->trans_info[fmt].table;
958 			for (j = 0; j < cnt; j++) {
959 				off = mpp_query_reg_offset_info(&task->off_inf, tbl[j] + ss);
960 				mpp_debug(DEBUG_IOMMU, "reg[%d] + offset %d\n", tbl[j] + ss, off);
961 				reg[tbl[j]] += off;
962 			}
963 		}
964 
965 		if (fd_bs >= 0) {
966 			struct mpp_dma_buffer *bs_buf =
967 					mpp_dma_find_buffer_fd(session->dma, fd_bs);
968 
969 			if (bs_buf && task->offset_bs > 0)
970 				mpp_dma_buf_sync(bs_buf, 0, task->offset_bs, DMA_TO_DEVICE, false);
971 			task->bs_buf = bs_buf;
972 		}
973 	}
974 	rkvenc2_setup_task_id(session->index, task);
975 	task->clk_mode = CLK_MODE_NORMAL;
976 	rkvenc2_check_split_task(task);
977 
978 	mpp_debug_leave();
979 
980 	return mpp_task;
981 
982 fail:
983 	mpp_task_dump_mem_region(mpp, mpp_task);
984 	mpp_task_dump_reg(mpp, mpp_task);
985 	mpp_task_finalize(session, mpp_task);
986 	/* free class register buffer */
987 	rkvenc_free_class_msg(task);
988 free_task:
989 	kfree(task);
990 
991 	return NULL;
992 }
993 
rkvenc2_prepare(struct mpp_dev * mpp,struct mpp_task * mpp_task)994 static void *rkvenc2_prepare(struct mpp_dev *mpp, struct mpp_task *mpp_task)
995 {
996 	struct mpp_taskqueue *queue = mpp->queue;
997 	unsigned long core_idle;
998 	unsigned long flags;
999 	u32 core_id_max;
1000 	s32 core_id;
1001 	u32 i;
1002 
1003 	spin_lock_irqsave(&queue->running_lock, flags);
1004 
1005 	core_idle = queue->core_idle;
1006 	core_id_max = queue->core_id_max;
1007 
1008 	for (i = 0; i <= core_id_max; i++) {
1009 		struct mpp_dev *mpp = queue->cores[i];
1010 
1011 		if (mpp && mpp->disable)
1012 			clear_bit(i, &core_idle);
1013 	}
1014 
1015 	core_id = find_first_bit(&core_idle, core_id_max + 1);
1016 
1017 	if (core_id >= core_id_max + 1 || !queue->cores[core_id]) {
1018 		mpp_task = NULL;
1019 		mpp_dbg_core("core %d all busy %lx\n", core_id, core_idle);
1020 	} else {
1021 		struct rkvenc_task *task = to_rkvenc_task(mpp_task);
1022 
1023 		clear_bit(core_id, &queue->core_idle);
1024 		mpp_task->mpp = queue->cores[core_id];
1025 		mpp_task->core_id = core_id;
1026 		rkvenc2_set_rcbbuf(mpp_task->mpp, mpp_task->session, task);
1027 		mpp_dbg_core("core %d set idle %lx -> %lx\n", core_id,
1028 			     core_idle, queue->core_idle);
1029 	}
1030 
1031 	spin_unlock_irqrestore(&queue->running_lock, flags);
1032 
1033 	return mpp_task;
1034 }
1035 
rkvenc2_patch_dchs(struct rkvenc_dev * enc,struct rkvenc_task * task)1036 static void rkvenc2_patch_dchs(struct rkvenc_dev *enc, struct rkvenc_task *task)
1037 {
1038 	struct rkvenc_ccu *ccu;
1039 	union rkvenc2_dual_core_handshake_id *dchs;
1040 	union rkvenc2_dual_core_handshake_id *task_dchs = &task->dchs_id;
1041 	int core_num;
1042 	int core_id = enc->mpp.core_id;
1043 	unsigned long flags;
1044 	int i;
1045 
1046 	if (!enc->ccu)
1047 		return;
1048 
1049 	if (core_id >= RKVENC_MAX_CORE_NUM) {
1050 		dev_err(enc->mpp.dev, "invalid core id %d max %d\n",
1051 			core_id, RKVENC_MAX_CORE_NUM);
1052 		return;
1053 	}
1054 
1055 	ccu = enc->ccu;
1056 	dchs = ccu->dchs;
1057 	core_num = ccu->core_num;
1058 
1059 	spin_lock_irqsave(&ccu->lock_dchs, flags);
1060 
1061 	if (dchs[core_id].working) {
1062 		spin_unlock_irqrestore(&ccu->lock_dchs, flags);
1063 
1064 		mpp_err("can not config when core %d is still working\n", core_id);
1065 		return;
1066 	}
1067 
1068 	if (mpp_debug_unlikely(DEBUG_CORE))
1069 		pr_info("core tx:rx 0 %s %d:%d %d:%d -- 1 %s %d:%d %d:%d -- task %d %d:%d %d:%d\n",
1070 			dchs[0].working ? "work" : "idle",
1071 			dchs[0].txid, dchs[0].txe, dchs[0].rxid, dchs[0].rxe,
1072 			dchs[1].working ? "work" : "idle",
1073 			dchs[1].txid, dchs[1].txe, dchs[1].rxid, dchs[1].rxe,
1074 			core_id, task_dchs->txid, task_dchs->txe,
1075 			task_dchs->rxid, task_dchs->rxe);
1076 
1077 	/* always use new id as  */
1078 	{
1079 		struct mpp_task *mpp_task = &task->mpp_task;
1080 		unsigned long id_valid = (unsigned long)-1;
1081 		int txid_map = -1;
1082 		int rxid_map = -1;
1083 
1084 		/* scan all used id */
1085 		for (i = 0; i < core_num; i++) {
1086 			if (!dchs[i].working)
1087 				continue;
1088 
1089 			clear_bit(dchs[i].txid_map, &id_valid);
1090 			clear_bit(dchs[i].rxid_map, &id_valid);
1091 		}
1092 
1093 		if (task_dchs->rxe) {
1094 			for (i = 0; i < core_num; i++) {
1095 				if (i == core_id)
1096 					continue;
1097 
1098 				if (!dchs[i].working)
1099 					continue;
1100 
1101 				if (task_dchs->session_id != dchs[i].session_id)
1102 					continue;
1103 
1104 				if (task_dchs->rxid_orig != dchs[i].txid_orig)
1105 					continue;
1106 
1107 				rxid_map = dchs[i].txid_map;
1108 				break;
1109 			}
1110 		}
1111 
1112 		txid_map = find_first_bit(&id_valid, RKVENC_MAX_DCHS_ID);
1113 		if (txid_map == RKVENC_MAX_DCHS_ID) {
1114 			spin_unlock_irqrestore(&ccu->lock_dchs, flags);
1115 
1116 			mpp_err("task %d:%d on core %d failed to find a txid\n",
1117 				mpp_task->session->pid, mpp_task->task_id,
1118 				mpp_task->core_id);
1119 			return;
1120 		}
1121 
1122 		clear_bit(txid_map, &id_valid);
1123 		task_dchs->txid_map = txid_map;
1124 
1125 		if (rxid_map < 0) {
1126 			rxid_map = find_first_bit(&id_valid, RKVENC_MAX_DCHS_ID);
1127 			if (rxid_map == RKVENC_MAX_DCHS_ID) {
1128 				spin_unlock_irqrestore(&ccu->lock_dchs, flags);
1129 
1130 				mpp_err("task %d:%d on core %d failed to find a rxid\n",
1131 					mpp_task->session->pid, mpp_task->task_id,
1132 					mpp_task->core_id);
1133 				return;
1134 			}
1135 
1136 			task_dchs->rxe_map = 0;
1137 		}
1138 
1139 		task_dchs->rxid_map = rxid_map;
1140 	}
1141 
1142 	task_dchs->txid = task_dchs->txid_map;
1143 	task_dchs->rxid = task_dchs->rxid_map;
1144 	task_dchs->rxe = task_dchs->rxe_map;
1145 
1146 	dchs[core_id].val = task_dchs->val;
1147 	task->reg[RKVENC_CLASS_PIC].data[DCHS_CLASS_OFFSET] = task_dchs->val;
1148 
1149 	dchs[core_id].working = 1;
1150 
1151 	spin_unlock_irqrestore(&ccu->lock_dchs, flags);
1152 }
1153 
rkvenc2_update_dchs(struct rkvenc_dev * enc,struct rkvenc_task * task)1154 static void rkvenc2_update_dchs(struct rkvenc_dev *enc, struct rkvenc_task *task)
1155 {
1156 	struct rkvenc_ccu *ccu = enc->ccu;
1157 	int core_id = enc->mpp.core_id;
1158 	unsigned long flags;
1159 
1160 	if (!ccu)
1161 		return;
1162 
1163 	if (core_id >= RKVENC_MAX_CORE_NUM) {
1164 		dev_err(enc->mpp.dev, "invalid core id %d max %d\n",
1165 			core_id, RKVENC_MAX_CORE_NUM);
1166 		return;
1167 	}
1168 
1169 	spin_lock_irqsave(&ccu->lock_dchs, flags);
1170 	ccu->dchs[core_id].val = 0;
1171 
1172 	if (mpp_debug_unlikely(DEBUG_CORE)) {
1173 		union rkvenc2_dual_core_handshake_id *dchs = ccu->dchs;
1174 		union rkvenc2_dual_core_handshake_id *task_dchs = &task->dchs_id;
1175 
1176 		pr_info("core %d task done\n", core_id);
1177 		pr_info("core tx:rx 0 %s %d:%d %d:%d -- 1 %s %d:%d %d:%d -- task %d %d:%d %d:%d\n",
1178 			dchs[0].working ? "work" : "idle",
1179 			dchs[0].txid, dchs[0].txe, dchs[0].rxid, dchs[0].rxe,
1180 			dchs[1].working ? "work" : "idle",
1181 			dchs[1].txid, dchs[1].txe, dchs[1].rxid, dchs[1].rxe,
1182 			core_id, task_dchs->txid, task_dchs->txe,
1183 			task_dchs->rxid, task_dchs->rxe);
1184 	}
1185 
1186 	spin_unlock_irqrestore(&ccu->lock_dchs, flags);
1187 }
1188 
rkvenc_run(struct mpp_dev * mpp,struct mpp_task * mpp_task)1189 static int rkvenc_run(struct mpp_dev *mpp, struct mpp_task *mpp_task)
1190 {
1191 	u32 i, j;
1192 	u32 start_val = 0;
1193 	struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1194 	struct rkvenc_task *task = to_rkvenc_task(mpp_task);
1195 	struct rkvenc_hw_info *hw = enc->hw_info;
1196 	u32 timing_en = mpp->srv->timing_en;
1197 
1198 	mpp_debug_enter();
1199 
1200 	/* Add force clear to avoid pagefault */
1201 	mpp_write(mpp, hw->enc_clr_base, 0x2);
1202 	udelay(5);
1203 	mpp_write(mpp, hw->enc_clr_base, 0x0);
1204 
1205 	/* clear hardware counter */
1206 	mpp_write_relaxed(mpp, 0x5300, 0x2);
1207 
1208 	rkvenc2_patch_dchs(enc, task);
1209 
1210 	for (i = 0; i < task->w_req_cnt; i++) {
1211 		int ret;
1212 		u32 s, e, off;
1213 		u32 *regs;
1214 
1215 		struct mpp_request msg;
1216 		struct mpp_request *req = &task->w_reqs[i];
1217 
1218 		ret = rkvenc_get_class_msg(task, req->offset, &msg);
1219 		if (ret)
1220 			return -EINVAL;
1221 
1222 		s = (req->offset - msg.offset) / sizeof(u32);
1223 		e = s + req->size / sizeof(u32);
1224 		regs = (u32 *)msg.data;
1225 		for (j = s; j < e; j++) {
1226 			off = msg.offset + j * sizeof(u32);
1227 			if (off == enc->hw_info->enc_start_base) {
1228 				start_val = regs[j];
1229 				continue;
1230 			}
1231 			mpp_write_relaxed(mpp, off, regs[j]);
1232 		}
1233 	}
1234 
1235 	if (mpp_debug_unlikely(DEBUG_CORE))
1236 		dev_info(mpp->dev, "core %d dchs %08x\n", mpp->core_id,
1237 			 mpp_read_relaxed(&enc->mpp, DCHS_REG_OFFSET));
1238 
1239 	/* flush tlb before starting hardware */
1240 	mpp_iommu_flush_tlb(mpp->iommu_info);
1241 
1242 	/* init current task */
1243 	mpp->cur_task = mpp_task;
1244 
1245 	mpp_task_run_begin(mpp_task, timing_en, MPP_WORK_TIMEOUT_DELAY);
1246 
1247 	/* Flush the register before the start the device */
1248 	wmb();
1249 
1250 	mpp_write(mpp, enc->hw_info->enc_start_base, start_val);
1251 
1252 	mpp_task_run_end(mpp_task, timing_en);
1253 
1254 	mpp_debug_leave();
1255 
1256 	return 0;
1257 }
1258 
rkvenc2_read_slice_len(struct mpp_dev * mpp,struct rkvenc_task * task)1259 static void rkvenc2_read_slice_len(struct mpp_dev *mpp, struct rkvenc_task *task)
1260 {
1261 	u32 last = mpp_read_relaxed(mpp, 0x002c) & INT_STA_ENC_DONE_STA;
1262 	u32 sli_num = mpp_read_relaxed(mpp, RKVENC2_REG_SLICE_NUM_BASE);
1263 	union rkvenc2_slice_len_info slice_info;
1264 	u32 task_id = task->mpp_task.task_id;
1265 	u32 i;
1266 
1267 	mpp_dbg_slice("task %d wr %3d len start %s\n", task_id,
1268 		      sli_num, last ? "last" : "");
1269 
1270 	for (i = 0; i < sli_num; i++) {
1271 		slice_info.val = mpp_read_relaxed(mpp, RKVENC2_REG_SLICE_LEN_BASE);
1272 
1273 		if (last && i == sli_num - 1) {
1274 			task->last_slice_found = 1;
1275 			slice_info.last = 1;
1276 		}
1277 
1278 		mpp_dbg_slice("task %d wr %3d len %d %s\n", task_id,
1279 			      task->slice_wr_cnt, slice_info.slice_len,
1280 			      slice_info.last ? "last" : "");
1281 
1282 		kfifo_in(&task->slice_info, &slice_info, 1);
1283 		task->slice_wr_cnt++;
1284 	}
1285 
1286 	/* Fixup for async between last flag and slice number register */
1287 	if (last && !task->last_slice_found) {
1288 		mpp_dbg_slice("task %d mark last slice\n", task_id);
1289 		slice_info.last = 1;
1290 		slice_info.slice_len = 0;
1291 		kfifo_in(&task->slice_info, &slice_info, 1);
1292 	}
1293 }
1294 
rkvenc_irq(struct mpp_dev * mpp)1295 static int rkvenc_irq(struct mpp_dev *mpp)
1296 {
1297 	struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1298 	struct rkvenc_hw_info *hw = enc->hw_info;
1299 	struct mpp_task *mpp_task = NULL;
1300 	struct rkvenc_task *task = NULL;
1301 	u32 int_clear = 1;
1302 	u32 irq_mask = 0;
1303 	int ret = IRQ_NONE;
1304 
1305 	mpp_debug_enter();
1306 
1307 	mpp->irq_status = mpp_read(mpp, hw->int_sta_base);
1308 	if (!mpp->irq_status)
1309 		return ret;
1310 
1311 	if (mpp->cur_task) {
1312 		mpp_task = mpp->cur_task;
1313 		task = to_rkvenc_task(mpp_task);
1314 	}
1315 
1316 	if (mpp->irq_status & INT_STA_ENC_DONE_STA) {
1317 		if (task) {
1318 			if (task->task_split)
1319 				rkvenc2_read_slice_len(mpp, task);
1320 
1321 			wake_up(&mpp_task->wait);
1322 		}
1323 
1324 		irq_mask = INT_STA_ENC_DONE_STA;
1325 		ret = IRQ_WAKE_THREAD;
1326 		if (enc->bs_overflow) {
1327 			mpp->irq_status |= INT_STA_BSF_OFLW_STA;
1328 			enc->bs_overflow = 0;
1329 		}
1330 	} else if (mpp->irq_status & INT_STA_SLC_DONE_STA) {
1331 		if (task && task->task_split) {
1332 			mpp_time_part_diff(mpp_task);
1333 
1334 			rkvenc2_read_slice_len(mpp, task);
1335 			wake_up(&mpp_task->wait);
1336 		}
1337 
1338 		irq_mask = INT_STA_ENC_DONE_STA;
1339 		int_clear = 0;
1340 	} else if (mpp->irq_status & INT_STA_BSF_OFLW_STA) {
1341 		u32 bs_rd = mpp_read(mpp, RKVENC2_REG_ADR_BSBR);
1342 		u32 bs_wr = mpp_read(mpp, RKVENC2_REG_ST_BSB);
1343 		u32 bs_top = mpp_read(mpp, RKVENC2_REG_ADR_BSBT);
1344 		u32 bs_bot = mpp_read(mpp, RKVENC2_REG_ADR_BSBB);
1345 
1346 		if (mpp_task)
1347 			dev_err(mpp->dev, "task %d found bitstream overflow [%#08x %#08x %#08x %#08x]\n",
1348 				mpp_task->task_index, bs_top, bs_bot, bs_wr, bs_rd);
1349 		bs_wr += 128;
1350 		if (bs_wr >= bs_top)
1351 			bs_wr = bs_bot;
1352 		/* clear int first */
1353 		mpp_write(mpp, hw->int_clr_base, mpp->irq_status);
1354 		/* update write addr for enc continue */
1355 		mpp_write(mpp, RKVENC2_REG_ADR_BSBS, bs_wr);
1356 		enc->bs_overflow = 1;
1357 		irq_mask = 0;
1358 		int_clear = 0;
1359 		ret = IRQ_HANDLED;
1360 	} else {
1361 		dev_err(mpp->dev, "found error status %08x\n", mpp->irq_status);
1362 
1363 		irq_mask = mpp->irq_status;
1364 		ret = IRQ_WAKE_THREAD;
1365 	}
1366 
1367 	if (irq_mask)
1368 		mpp_write(mpp, hw->int_mask_base, irq_mask);
1369 
1370 	if (int_clear) {
1371 		mpp_write(mpp, hw->int_clr_base, mpp->irq_status);
1372 		udelay(5);
1373 		mpp_write(mpp, hw->int_sta_base, 0);
1374 	}
1375 
1376 	mpp_debug_leave();
1377 
1378 	return ret;
1379 }
1380 
rkvenc_isr(struct mpp_dev * mpp)1381 static int rkvenc_isr(struct mpp_dev *mpp)
1382 {
1383 	struct rkvenc_task *task;
1384 	struct mpp_task *mpp_task;
1385 	struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1386 	struct mpp_taskqueue *queue = mpp->queue;
1387 	unsigned long core_idle;
1388 
1389 	mpp_debug_enter();
1390 
1391 	/* FIXME use a spin lock here */
1392 	if (!mpp->cur_task) {
1393 		dev_err(mpp->dev, "no current task\n");
1394 		return IRQ_HANDLED;
1395 	}
1396 
1397 	mpp_task = mpp->cur_task;
1398 	mpp_time_diff(mpp_task);
1399 	mpp->cur_task = NULL;
1400 
1401 	if (mpp_task->mpp && mpp_task->mpp != mpp)
1402 		dev_err(mpp->dev, "mismatch core dev %p:%p\n", mpp_task->mpp, mpp);
1403 
1404 	task = to_rkvenc_task(mpp_task);
1405 	task->irq_status = mpp->irq_status;
1406 
1407 	rkvenc2_update_dchs(enc, task);
1408 
1409 	mpp_debug(DEBUG_IRQ_STATUS, "%s irq_status: %08x\n",
1410 		  dev_name(mpp->dev), task->irq_status);
1411 
1412 	if (task->irq_status & enc->hw_info->err_mask) {
1413 		atomic_inc(&mpp->reset_request);
1414 
1415 		/* dump register */
1416 		if (mpp_debug_unlikely(DEBUG_DUMP_ERR_REG))
1417 			mpp_task_dump_hw_reg(mpp);
1418 	}
1419 
1420 	mpp_task_finish(mpp_task->session, mpp_task);
1421 
1422 	core_idle = queue->core_idle;
1423 	set_bit(mpp->core_id, &queue->core_idle);
1424 
1425 	mpp_dbg_core("core %d isr idle %lx -> %lx\n", mpp->core_id, core_idle,
1426 		     queue->core_idle);
1427 
1428 	mpp_debug_leave();
1429 
1430 	return IRQ_HANDLED;
1431 }
1432 
rkvenc_finish(struct mpp_dev * mpp,struct mpp_task * mpp_task)1433 static int rkvenc_finish(struct mpp_dev *mpp, struct mpp_task *mpp_task)
1434 {
1435 	u32 i, j;
1436 	u32 *reg;
1437 	struct rkvenc_task *task = to_rkvenc_task(mpp_task);
1438 
1439 	mpp_debug_enter();
1440 
1441 	for (i = 0; i < task->r_req_cnt; i++) {
1442 		int ret;
1443 		int s, e;
1444 		struct mpp_request msg;
1445 		struct mpp_request *req = &task->r_reqs[i];
1446 
1447 		ret = rkvenc_get_class_msg(task, req->offset, &msg);
1448 		if (ret)
1449 			return -EINVAL;
1450 		s = (req->offset - msg.offset) / sizeof(u32);
1451 		e = s + req->size / sizeof(u32);
1452 		reg = (u32 *)msg.data;
1453 		for (j = s; j < e; j++)
1454 			reg[j] = mpp_read_relaxed(mpp, msg.offset + j * sizeof(u32));
1455 
1456 	}
1457 
1458 	if (task->bs_buf) {
1459 		u32 bs_size = mpp_read(mpp, 0x4064);
1460 
1461 		mpp_dma_buf_sync(task->bs_buf, 0, bs_size / 8 + task->offset_bs,
1462 				 DMA_FROM_DEVICE, true);
1463 	}
1464 
1465 	/* revert hack for irq status */
1466 	reg = rkvenc_get_class_reg(task, task->hw_info->int_sta_base);
1467 	if (reg)
1468 		*reg = task->irq_status;
1469 
1470 	mpp_debug_leave();
1471 
1472 	return 0;
1473 }
1474 
rkvenc_result(struct mpp_dev * mpp,struct mpp_task * mpp_task,struct mpp_task_msgs * msgs)1475 static int rkvenc_result(struct mpp_dev *mpp,
1476 			 struct mpp_task *mpp_task,
1477 			 struct mpp_task_msgs *msgs)
1478 {
1479 	u32 i;
1480 	struct rkvenc_task *task = to_rkvenc_task(mpp_task);
1481 
1482 	mpp_debug_enter();
1483 
1484 	for (i = 0; i < task->r_req_cnt; i++) {
1485 		struct mpp_request *req = &task->r_reqs[i];
1486 		u32 *reg = rkvenc_get_class_reg(task, req->offset);
1487 
1488 		if (!reg)
1489 			return -EINVAL;
1490 		if (copy_to_user(req->data, reg, req->size)) {
1491 			mpp_err("copy_to_user reg fail\n");
1492 			return -EIO;
1493 		}
1494 	}
1495 
1496 	mpp_debug_leave();
1497 
1498 	return 0;
1499 }
1500 
rkvenc_free_task(struct mpp_session * session,struct mpp_task * mpp_task)1501 static int rkvenc_free_task(struct mpp_session *session,
1502 			    struct mpp_task *mpp_task)
1503 {
1504 	struct rkvenc_task *task = to_rkvenc_task(mpp_task);
1505 
1506 	mpp_task_finalize(session, mpp_task);
1507 	rkvenc_free_class_msg(task);
1508 	kfree(task);
1509 
1510 	return 0;
1511 }
1512 
rkvenc_control(struct mpp_session * session,struct mpp_request * req)1513 static int rkvenc_control(struct mpp_session *session, struct mpp_request *req)
1514 {
1515 	switch (req->cmd) {
1516 	case MPP_CMD_SEND_CODEC_INFO: {
1517 		int i;
1518 		int cnt;
1519 		struct codec_info_elem elem;
1520 		struct rkvenc2_session_priv *priv;
1521 
1522 		if (!session || !session->priv) {
1523 			mpp_err("session info null\n");
1524 			return -EINVAL;
1525 		}
1526 		priv = session->priv;
1527 
1528 		cnt = req->size / sizeof(elem);
1529 		cnt = (cnt > ENC_INFO_BUTT) ? ENC_INFO_BUTT : cnt;
1530 		mpp_debug(DEBUG_IOCTL, "codec info count %d\n", cnt);
1531 		for (i = 0; i < cnt; i++) {
1532 			if (copy_from_user(&elem, req->data + i * sizeof(elem), sizeof(elem))) {
1533 				mpp_err("copy_from_user failed\n");
1534 				continue;
1535 			}
1536 			if (elem.type > ENC_INFO_BASE && elem.type < ENC_INFO_BUTT &&
1537 			    elem.flag > CODEC_INFO_FLAG_NULL && elem.flag < CODEC_INFO_FLAG_BUTT) {
1538 				elem.type = array_index_nospec(elem.type, ENC_INFO_BUTT);
1539 				priv->codec_info[elem.type].flag = elem.flag;
1540 				priv->codec_info[elem.type].val = elem.data;
1541 			} else {
1542 				mpp_err("codec info invalid, type %d, flag %d\n",
1543 					elem.type, elem.flag);
1544 			}
1545 		}
1546 	} break;
1547 	default: {
1548 		mpp_err("unknown mpp ioctl cmd %x\n", req->cmd);
1549 	} break;
1550 	}
1551 
1552 	return 0;
1553 }
1554 
rkvenc_free_session(struct mpp_session * session)1555 static int rkvenc_free_session(struct mpp_session *session)
1556 {
1557 	if (session && session->priv) {
1558 		kfree(session->priv);
1559 		session->priv = NULL;
1560 	}
1561 
1562 	return 0;
1563 }
1564 
rkvenc_init_session(struct mpp_session * session)1565 static int rkvenc_init_session(struct mpp_session *session)
1566 {
1567 	struct rkvenc2_session_priv *priv;
1568 
1569 	if (!session) {
1570 		mpp_err("session is null\n");
1571 		return -EINVAL;
1572 	}
1573 
1574 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1575 	if (!priv)
1576 		return -ENOMEM;
1577 
1578 	init_rwsem(&priv->rw_sem);
1579 	session->priv = priv;
1580 
1581 	return 0;
1582 }
1583 
1584 #ifdef CONFIG_ROCKCHIP_MPP_PROC_FS
rkvenc_procfs_remove(struct mpp_dev * mpp)1585 static int rkvenc_procfs_remove(struct mpp_dev *mpp)
1586 {
1587 	struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1588 
1589 	if (enc->procfs) {
1590 		proc_remove(enc->procfs);
1591 		enc->procfs = NULL;
1592 	}
1593 
1594 	return 0;
1595 }
1596 
rkvenc_dump_session(struct mpp_session * session,struct seq_file * seq)1597 static int rkvenc_dump_session(struct mpp_session *session, struct seq_file *seq)
1598 {
1599 	int i;
1600 	struct rkvenc2_session_priv *priv = session->priv;
1601 
1602 	down_read(&priv->rw_sem);
1603 	/* item name */
1604 	seq_puts(seq, "------------------------------------------------------");
1605 	seq_puts(seq, "------------------------------------------------------\n");
1606 	seq_printf(seq, "|%8s|", (const char *)"session");
1607 	seq_printf(seq, "%8s|", (const char *)"device");
1608 	for (i = ENC_INFO_BASE; i < ENC_INFO_BUTT; i++) {
1609 		bool show = priv->codec_info[i].flag;
1610 
1611 		if (show)
1612 			seq_printf(seq, "%8s|", enc_info_item_name[i]);
1613 	}
1614 	seq_puts(seq, "\n");
1615 	/* item data*/
1616 	seq_printf(seq, "|%8d|", session->index);
1617 	seq_printf(seq, "%8s|", mpp_device_name[session->device_type]);
1618 	for (i = ENC_INFO_BASE; i < ENC_INFO_BUTT; i++) {
1619 		u32 flag = priv->codec_info[i].flag;
1620 
1621 		if (!flag)
1622 			continue;
1623 		if (flag == CODEC_INFO_FLAG_NUMBER) {
1624 			u32 data = priv->codec_info[i].val;
1625 
1626 			seq_printf(seq, "%8d|", data);
1627 		} else if (flag == CODEC_INFO_FLAG_STRING) {
1628 			const char *name = (const char *)&priv->codec_info[i].val;
1629 
1630 			seq_printf(seq, "%8s|", name);
1631 		} else {
1632 			seq_printf(seq, "%8s|", (const char *)"null");
1633 		}
1634 	}
1635 	seq_puts(seq, "\n");
1636 	up_read(&priv->rw_sem);
1637 
1638 	return 0;
1639 }
1640 
rkvenc_show_session_info(struct seq_file * seq,void * offset)1641 static int rkvenc_show_session_info(struct seq_file *seq, void *offset)
1642 {
1643 	struct mpp_session *session = NULL, *n;
1644 	struct mpp_dev *mpp = seq->private;
1645 
1646 	mutex_lock(&mpp->srv->session_lock);
1647 	list_for_each_entry_safe(session, n,
1648 				 &mpp->srv->session_list,
1649 				 service_link) {
1650 		if (session->device_type != MPP_DEVICE_RKVENC)
1651 			continue;
1652 		if (!session->priv)
1653 			continue;
1654 		if (mpp->dev_ops->dump_session)
1655 			mpp->dev_ops->dump_session(session, seq);
1656 	}
1657 	mutex_unlock(&mpp->srv->session_lock);
1658 
1659 	return 0;
1660 }
1661 
rkvenc_procfs_init(struct mpp_dev * mpp)1662 static int rkvenc_procfs_init(struct mpp_dev *mpp)
1663 {
1664 	struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1665 	char name[32];
1666 
1667 	if (!mpp->dev || !mpp->dev->of_node || !mpp->dev->of_node->name ||
1668 	    !mpp->srv || !mpp->srv->procfs)
1669 		return -EINVAL;
1670 
1671 	snprintf(name, sizeof(name) - 1, "%s%d",
1672 		 mpp->dev->of_node->name, mpp->core_id);
1673 
1674 	enc->procfs = proc_mkdir(name, mpp->srv->procfs);
1675 	if (IS_ERR_OR_NULL(enc->procfs)) {
1676 		mpp_err("failed on open procfs\n");
1677 		enc->procfs = NULL;
1678 		return -EIO;
1679 	}
1680 
1681 	/* for common mpp_dev options */
1682 	mpp_procfs_create_common(enc->procfs, mpp);
1683 
1684 	/* for debug */
1685 	mpp_procfs_create_u32("aclk", 0644,
1686 			      enc->procfs, &enc->aclk_info.debug_rate_hz);
1687 	mpp_procfs_create_u32("clk_core", 0644,
1688 			      enc->procfs, &enc->core_clk_info.debug_rate_hz);
1689 	mpp_procfs_create_u32("session_buffers", 0644,
1690 			      enc->procfs, &mpp->session_max_buffers);
1691 	/* for show session info */
1692 	proc_create_single_data("sessions-info", 0444,
1693 				enc->procfs, rkvenc_show_session_info, mpp);
1694 
1695 	return 0;
1696 }
1697 
rkvenc_procfs_ccu_init(struct mpp_dev * mpp)1698 static int rkvenc_procfs_ccu_init(struct mpp_dev *mpp)
1699 {
1700 	struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1701 
1702 	if (!enc->procfs)
1703 		goto done;
1704 
1705 done:
1706 	return 0;
1707 }
1708 #else
rkvenc_procfs_remove(struct mpp_dev * mpp)1709 static inline int rkvenc_procfs_remove(struct mpp_dev *mpp)
1710 {
1711 	return 0;
1712 }
1713 
rkvenc_procfs_init(struct mpp_dev * mpp)1714 static inline int rkvenc_procfs_init(struct mpp_dev *mpp)
1715 {
1716 	return 0;
1717 }
1718 
rkvenc_procfs_ccu_init(struct mpp_dev * mpp)1719 static inline int rkvenc_procfs_ccu_init(struct mpp_dev *mpp)
1720 {
1721 	return 0;
1722 }
1723 #endif
1724 
1725 #ifdef CONFIG_PM_DEVFREQ
rk3588_venc_set_read_margin(struct device * dev,struct rockchip_opp_info * opp_info,u32 rm)1726 static int rk3588_venc_set_read_margin(struct device *dev,
1727 				       struct rockchip_opp_info *opp_info,
1728 				       u32 rm)
1729 {
1730 	if (!opp_info->grf || !opp_info->volt_rm_tbl)
1731 		return 0;
1732 
1733 	if (rm == opp_info->current_rm || rm == UINT_MAX)
1734 		return 0;
1735 
1736 	dev_dbg(dev, "set rm to %d\n", rm);
1737 
1738 	regmap_write(opp_info->grf, 0x214, 0x001c0000 | (rm << 2));
1739 	regmap_write(opp_info->grf, 0x218, 0x001c0000 | (rm << 2));
1740 	regmap_write(opp_info->grf, 0x220, 0x003c0000 | (rm << 2));
1741 	regmap_write(opp_info->grf, 0x224, 0x003c0000 | (rm << 2));
1742 
1743 	opp_info->current_rm = rm;
1744 
1745 	return 0;
1746 }
1747 
1748 static const struct rockchip_opp_data rk3588_venc_opp_data = {
1749 	.set_read_margin = rk3588_venc_set_read_margin,
1750 };
1751 
1752 static const struct of_device_id rockchip_rkvenc_of_match[] = {
1753 	{
1754 		.compatible = "rockchip,rk3588",
1755 		.data = (void *)&rk3588_venc_opp_data,
1756 	},
1757 	{},
1758 };
1759 
1760 static struct monitor_dev_profile venc_mdevp = {
1761 	.type = MONITOR_TYPE_DEV,
1762 	.update_volt = rockchip_monitor_check_rate_volt,
1763 };
1764 
rkvenc_devfreq_init(struct mpp_dev * mpp)1765 static int rkvenc_devfreq_init(struct mpp_dev *mpp)
1766 {
1767 	struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1768 	struct clk *clk_core = enc->core_clk_info.clk;
1769 	struct device *dev = mpp->dev;
1770 	struct opp_table *reg_table = NULL;
1771 	struct opp_table *clk_table = NULL;
1772 	const char *const reg_names[] = { "venc", "mem" };
1773 	int ret = 0;
1774 
1775 	if (!clk_core)
1776 		return 0;
1777 
1778 	if (of_find_property(dev->of_node, "venc-supply", NULL) &&
1779 	    of_find_property(dev->of_node, "mem-supply", NULL)) {
1780 		reg_table = dev_pm_opp_set_regulators(dev, reg_names, 2);
1781 		if (IS_ERR(reg_table))
1782 			return PTR_ERR(reg_table);
1783 	} else {
1784 		reg_table = dev_pm_opp_set_regulators(dev, reg_names, 1);
1785 		if (IS_ERR(reg_table))
1786 			return PTR_ERR(reg_table);
1787 	}
1788 
1789 	clk_table = dev_pm_opp_set_clkname(dev, "clk_core");
1790 	if (IS_ERR(clk_table))
1791 		return PTR_ERR(clk_table);
1792 
1793 	rockchip_get_opp_data(rockchip_rkvenc_of_match, &enc->opp_info);
1794 	ret = rockchip_init_opp_table(dev, &enc->opp_info, "leakage", "venc");
1795 	if (ret) {
1796 		dev_err(dev, "failed to init_opp_table\n");
1797 		return ret;
1798 	}
1799 
1800 	enc->mdev_info = rockchip_system_monitor_register(dev, &venc_mdevp);
1801 	if (IS_ERR(enc->mdev_info)) {
1802 		dev_dbg(dev, "without system monitor\n");
1803 		enc->mdev_info = NULL;
1804 	}
1805 
1806 	return ret;
1807 }
1808 
rkvenc_devfreq_remove(struct mpp_dev * mpp)1809 static int rkvenc_devfreq_remove(struct mpp_dev *mpp)
1810 {
1811 	struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1812 
1813 	if (enc->mdev_info)
1814 		rockchip_system_monitor_unregister(enc->mdev_info);
1815 
1816 	return 0;
1817 }
1818 #endif
1819 
rkvenc_init(struct mpp_dev * mpp)1820 static int rkvenc_init(struct mpp_dev *mpp)
1821 {
1822 	struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1823 	int ret = 0;
1824 
1825 	mpp->grf_info = &mpp->srv->grf_infos[MPP_DRIVER_RKVENC];
1826 
1827 	/* Get clock info from dtsi */
1828 	ret = mpp_get_clk_info(mpp, &enc->aclk_info, "aclk_vcodec");
1829 	if (ret)
1830 		mpp_err("failed on clk_get aclk_vcodec\n");
1831 	ret = mpp_get_clk_info(mpp, &enc->hclk_info, "hclk_vcodec");
1832 	if (ret)
1833 		mpp_err("failed on clk_get hclk_vcodec\n");
1834 	ret = mpp_get_clk_info(mpp, &enc->core_clk_info, "clk_core");
1835 	if (ret)
1836 		mpp_err("failed on clk_get clk_core\n");
1837 	/* Get normal max workload from dtsi */
1838 	of_property_read_u32(mpp->dev->of_node,
1839 			     "rockchip,default-max-load",
1840 			     &enc->default_max_load);
1841 	/* Set default rates */
1842 	mpp_set_clk_info_rate_hz(&enc->aclk_info, CLK_MODE_DEFAULT, 300 * MHZ);
1843 	mpp_set_clk_info_rate_hz(&enc->core_clk_info, CLK_MODE_DEFAULT, 600 * MHZ);
1844 
1845 	/* Get reset control from dtsi */
1846 	enc->rst_a = mpp_reset_control_get(mpp, RST_TYPE_A, "video_a");
1847 	if (!enc->rst_a)
1848 		mpp_err("No aclk reset resource define\n");
1849 	enc->rst_h = mpp_reset_control_get(mpp, RST_TYPE_H, "video_h");
1850 	if (!enc->rst_h)
1851 		mpp_err("No hclk reset resource define\n");
1852 	enc->rst_core = mpp_reset_control_get(mpp, RST_TYPE_CORE, "video_core");
1853 	if (!enc->rst_core)
1854 		mpp_err("No core reset resource define\n");
1855 
1856 #ifdef CONFIG_PM_DEVFREQ
1857 	ret = rkvenc_devfreq_init(mpp);
1858 	if (ret)
1859 		mpp_err("failed to add venc devfreq\n");
1860 #endif
1861 
1862 	return 0;
1863 }
1864 
rkvenc_exit(struct mpp_dev * mpp)1865 static int rkvenc_exit(struct mpp_dev *mpp)
1866 {
1867 #ifdef CONFIG_PM_DEVFREQ
1868 	rkvenc_devfreq_remove(mpp);
1869 #endif
1870 
1871 	return 0;
1872 }
1873 
rkvenc_soft_reset(struct mpp_dev * mpp)1874 static int rkvenc_soft_reset(struct mpp_dev *mpp)
1875 {
1876 	struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1877 	struct rkvenc_hw_info *hw = enc->hw_info;
1878 	u32 rst_status = 0;
1879 	int ret = 0;
1880 
1881 	/* safe reset */
1882 	mpp_write(mpp, hw->int_mask_base, 0x3FF);
1883 	mpp_write(mpp, hw->enc_clr_base, 0x1);
1884 	ret = readl_relaxed_poll_timeout(mpp->reg_base + hw->int_sta_base,
1885 					 rst_status,
1886 					 rst_status & RKVENC_SCLR_DONE_STA,
1887 					 0, 5);
1888 	mpp_write(mpp, hw->int_clr_base, 0xffffffff);
1889 	mpp_write(mpp, hw->int_sta_base, 0);
1890 
1891 	return ret;
1892 
1893 }
1894 
rkvenc_reset(struct mpp_dev * mpp)1895 static int rkvenc_reset(struct mpp_dev *mpp)
1896 {
1897 	struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1898 	int ret = 0;
1899 	struct mpp_taskqueue *queue = mpp->queue;
1900 
1901 	mpp_debug_enter();
1902 
1903 	/* safe reset first*/
1904 	ret = rkvenc_soft_reset(mpp);
1905 
1906 	/* cru reset */
1907 	if (ret && enc->rst_a && enc->rst_h && enc->rst_core) {
1908 		mpp_err("soft reset timeout, use cru reset\n");
1909 		mpp_pmu_idle_request(mpp, true);
1910 		mpp_safe_reset(enc->rst_a);
1911 		mpp_safe_reset(enc->rst_h);
1912 		mpp_safe_reset(enc->rst_core);
1913 		udelay(5);
1914 		mpp_safe_unreset(enc->rst_a);
1915 		mpp_safe_unreset(enc->rst_h);
1916 		mpp_safe_unreset(enc->rst_core);
1917 		mpp_pmu_idle_request(mpp, false);
1918 	}
1919 
1920 	set_bit(mpp->core_id, &queue->core_idle);
1921 	if (enc->ccu)
1922 		enc->ccu->dchs[mpp->core_id].val = 0;
1923 
1924 	mpp_dbg_core("core %d reset idle %lx\n", mpp->core_id, queue->core_idle);
1925 
1926 	mpp_debug_leave();
1927 
1928 	return 0;
1929 }
1930 
rkvenc_clk_on(struct mpp_dev * mpp)1931 static int rkvenc_clk_on(struct mpp_dev *mpp)
1932 {
1933 	struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1934 
1935 	mpp_clk_safe_enable(enc->aclk_info.clk);
1936 	mpp_clk_safe_enable(enc->hclk_info.clk);
1937 	mpp_clk_safe_enable(enc->core_clk_info.clk);
1938 
1939 	return 0;
1940 }
1941 
rkvenc_clk_off(struct mpp_dev * mpp)1942 static int rkvenc_clk_off(struct mpp_dev *mpp)
1943 {
1944 	struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1945 
1946 	clk_disable_unprepare(enc->aclk_info.clk);
1947 	clk_disable_unprepare(enc->hclk_info.clk);
1948 	clk_disable_unprepare(enc->core_clk_info.clk);
1949 
1950 	return 0;
1951 }
1952 
rkvenc_set_freq(struct mpp_dev * mpp,struct mpp_task * mpp_task)1953 static int rkvenc_set_freq(struct mpp_dev *mpp, struct mpp_task *mpp_task)
1954 {
1955 	struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
1956 	struct rkvenc_task *task = to_rkvenc_task(mpp_task);
1957 
1958 	mpp_clk_set_rate(&enc->aclk_info, task->clk_mode);
1959 	mpp_clk_set_rate(&enc->core_clk_info, task->clk_mode);
1960 
1961 	return 0;
1962 }
1963 
1964 #define RKVENC2_WORK_TIMEOUT_DELAY		(200)
1965 #define RKVENC2_WAIT_TIMEOUT_DELAY		(2000)
1966 
rkvenc2_task_pop_pending(struct mpp_task * task)1967 static void rkvenc2_task_pop_pending(struct mpp_task *task)
1968 {
1969 	struct mpp_session *session = task->session;
1970 
1971 	mutex_lock(&session->pending_lock);
1972 	list_del_init(&task->pending_link);
1973 	mutex_unlock(&session->pending_lock);
1974 
1975 	kref_put(&task->ref, mpp_free_task);
1976 }
1977 
rkvenc2_task_default_process(struct mpp_dev * mpp,struct mpp_task * task)1978 static int rkvenc2_task_default_process(struct mpp_dev *mpp,
1979 					struct mpp_task *task)
1980 {
1981 	int ret = 0;
1982 
1983 	if (mpp->dev_ops && mpp->dev_ops->result)
1984 		ret = mpp->dev_ops->result(mpp, task, NULL);
1985 
1986 	mpp_debug_func(DEBUG_TASK_INFO, "kref_read %d, ret %d\n",
1987 			kref_read(&task->ref), ret);
1988 
1989 	rkvenc2_task_pop_pending(task);
1990 
1991 	return ret;
1992 }
1993 
1994 #define RKVENC2_TIMEOUT_DUMP_REG_START	(0x5100)
1995 #define RKVENC2_TIMEOUT_DUMP_REG_END	(0x5160)
1996 
rkvenc2_task_timeout_process(struct mpp_session * session,struct mpp_task * task)1997 static void rkvenc2_task_timeout_process(struct mpp_session *session,
1998 					 struct mpp_task *task)
1999 {
2000 	atomic_inc(&task->abort_request);
2001 	set_bit(TASK_STATE_ABORT, &task->state);
2002 
2003 	mpp_err("session %d:%d count %d task %d ref %d timeout\n",
2004 		session->pid, session->index, atomic_read(&session->task_count),
2005 		task->task_id, kref_read(&task->ref));
2006 
2007 	if (task->mpp) {
2008 		struct mpp_dev *mpp = task->mpp;
2009 		u32 start = RKVENC2_TIMEOUT_DUMP_REG_START;
2010 		u32 end = RKVENC2_TIMEOUT_DUMP_REG_END;
2011 		u32 offset;
2012 
2013 		dev_err(mpp->dev, "core %d dump timeout status:\n", mpp->core_id);
2014 
2015 		for (offset = start; offset < end; offset += sizeof(u32))
2016 			mpp_reg_show(mpp, offset);
2017 	}
2018 
2019 	rkvenc2_task_pop_pending(task);
2020 }
2021 
rkvenc2_wait_result(struct mpp_session * session,struct mpp_task_msgs * msgs)2022 static int rkvenc2_wait_result(struct mpp_session *session,
2023 			       struct mpp_task_msgs *msgs)
2024 {
2025 	struct rkvenc_poll_slice_cfg cfg;
2026 	struct rkvenc_task *enc_task;
2027 	struct mpp_request *req;
2028 	struct mpp_task *task;
2029 	struct mpp_dev *mpp;
2030 	union rkvenc2_slice_len_info slice_info;
2031 	u32 task_id;
2032 	int ret = 0;
2033 
2034 	mutex_lock(&session->pending_lock);
2035 	task = list_first_entry_or_null(&session->pending_list,
2036 					struct mpp_task,
2037 					pending_link);
2038 	mutex_unlock(&session->pending_lock);
2039 	if (!task) {
2040 		mpp_err("session %p pending list is empty!\n", session);
2041 		return -EIO;
2042 	}
2043 
2044 	mpp = mpp_get_task_used_device(task, session);
2045 	enc_task = to_rkvenc_task(task);
2046 	task_id = task->task_id;
2047 
2048 	req = cmpxchg(&msgs->poll_req, msgs->poll_req, NULL);
2049 
2050 	if (!enc_task->task_split || enc_task->task_split_done) {
2051 task_done_ret:
2052 		ret = wait_event_timeout(task->wait,
2053 					 test_bit(TASK_STATE_DONE, &task->state),
2054 					 msecs_to_jiffies(RKVENC2_WAIT_TIMEOUT_DELAY));
2055 
2056 		if (ret > 0)
2057 			return rkvenc2_task_default_process(mpp, task);
2058 
2059 		rkvenc2_task_timeout_process(session, task);
2060 		return ret;
2061 	}
2062 
2063 	/* not slice return just wait all slice length */
2064 	if (!req) {
2065 		do {
2066 			ret = wait_event_timeout(task->wait,
2067 						 kfifo_out(&enc_task->slice_info, &slice_info, 1),
2068 						 msecs_to_jiffies(RKVENC2_WORK_TIMEOUT_DELAY));
2069 			if (ret > 0) {
2070 				mpp_dbg_slice("task %d rd %3d len %d %s\n",
2071 					      task_id, enc_task->slice_rd_cnt, slice_info.slice_len,
2072 					      slice_info.last ? "last" : "");
2073 
2074 				enc_task->slice_rd_cnt++;
2075 
2076 				if (slice_info.last)
2077 					goto task_done_ret;
2078 
2079 				continue;
2080 			}
2081 
2082 			rkvenc2_task_timeout_process(session, task);
2083 			return ret;
2084 		} while (1);
2085 	}
2086 
2087 	if (copy_from_user(&cfg, req->data, sizeof(cfg))) {
2088 		mpp_err("copy_from_user failed\n");
2089 		return -EINVAL;
2090 	}
2091 
2092 	mpp_dbg_slice("task %d poll irq %d:%d\n", task->task_id,
2093 		      cfg.count_max, cfg.count_ret);
2094 	cfg.count_ret = 0;
2095 
2096 	/* handle slice mode poll return */
2097 	do {
2098 		ret = wait_event_timeout(task->wait,
2099 					 kfifo_out(&enc_task->slice_info, &slice_info, 1),
2100 					 msecs_to_jiffies(RKVENC2_WORK_TIMEOUT_DELAY));
2101 		if (ret > 0) {
2102 			mpp_dbg_slice("core %d task %d rd %3d len %d %s\n", task_id,
2103 				      mpp->core_id, enc_task->slice_rd_cnt, slice_info.slice_len,
2104 				      slice_info.last ? "last" : "");
2105 			enc_task->slice_rd_cnt++;
2106 			if (cfg.count_ret < cfg.count_max) {
2107 				struct rkvenc_poll_slice_cfg __user *ucfg =
2108 					(struct rkvenc_poll_slice_cfg __user *)(req->data);
2109 				u32 __user *dst = (u32 __user *)(ucfg + 1);
2110 
2111 				/* Do NOT return here when put_user error. Just continue */
2112 				if (put_user(slice_info.val, dst + cfg.count_ret))
2113 					ret = -EFAULT;
2114 
2115 				cfg.count_ret++;
2116 				if (put_user(cfg.count_ret, &ucfg->count_ret))
2117 					ret = -EFAULT;
2118 			}
2119 
2120 			if (slice_info.last) {
2121 				enc_task->task_split_done = 1;
2122 				goto task_done_ret;
2123 			}
2124 
2125 			if (cfg.count_ret >= cfg.count_max)
2126 				return 0;
2127 
2128 			if (ret < 0)
2129 				return ret;
2130 		}
2131 	} while (ret > 0);
2132 
2133 	rkvenc2_task_timeout_process(session, task);
2134 
2135 	return ret;
2136 }
2137 
2138 static struct mpp_hw_ops rkvenc_hw_ops = {
2139 	.init = rkvenc_init,
2140 	.exit = rkvenc_exit,
2141 	.clk_on = rkvenc_clk_on,
2142 	.clk_off = rkvenc_clk_off,
2143 	.set_freq = rkvenc_set_freq,
2144 	.reset = rkvenc_reset,
2145 };
2146 
2147 static struct mpp_dev_ops rkvenc_dev_ops_v2 = {
2148 	.wait_result = rkvenc2_wait_result,
2149 	.alloc_task = rkvenc_alloc_task,
2150 	.run = rkvenc_run,
2151 	.irq = rkvenc_irq,
2152 	.isr = rkvenc_isr,
2153 	.finish = rkvenc_finish,
2154 	.result = rkvenc_result,
2155 	.free_task = rkvenc_free_task,
2156 	.ioctl = rkvenc_control,
2157 	.init_session = rkvenc_init_session,
2158 	.free_session = rkvenc_free_session,
2159 	.dump_session = rkvenc_dump_session,
2160 };
2161 
2162 static struct mpp_dev_ops rkvenc_ccu_dev_ops = {
2163 	.wait_result = rkvenc2_wait_result,
2164 	.alloc_task = rkvenc_alloc_task,
2165 	.prepare = rkvenc2_prepare,
2166 	.run = rkvenc_run,
2167 	.irq = rkvenc_irq,
2168 	.isr = rkvenc_isr,
2169 	.finish = rkvenc_finish,
2170 	.result = rkvenc_result,
2171 	.free_task = rkvenc_free_task,
2172 	.ioctl = rkvenc_control,
2173 	.init_session = rkvenc_init_session,
2174 	.free_session = rkvenc_free_session,
2175 	.dump_session = rkvenc_dump_session,
2176 };
2177 
2178 
2179 static const struct mpp_dev_var rkvenc_v2_data = {
2180 	.device_type = MPP_DEVICE_RKVENC,
2181 	.hw_info = &rkvenc_v2_hw_info.hw,
2182 	.trans_info = trans_rkvenc_v2,
2183 	.hw_ops = &rkvenc_hw_ops,
2184 	.dev_ops = &rkvenc_dev_ops_v2,
2185 };
2186 
2187 static const struct mpp_dev_var rkvenc_540c_data = {
2188 	.device_type = MPP_DEVICE_RKVENC,
2189 	.hw_info = &rkvenc_540c_hw_info.hw,
2190 	.trans_info = trans_rkvenc_540c,
2191 	.hw_ops = &rkvenc_hw_ops,
2192 	.dev_ops = &rkvenc_dev_ops_v2,
2193 };
2194 
2195 static const struct mpp_dev_var rkvenc_ccu_data = {
2196 	.device_type = MPP_DEVICE_RKVENC,
2197 	.hw_info = &rkvenc_v2_hw_info.hw,
2198 	.trans_info = trans_rkvenc_v2,
2199 	.hw_ops = &rkvenc_hw_ops,
2200 	.dev_ops = &rkvenc_ccu_dev_ops,
2201 };
2202 
2203 static const struct of_device_id mpp_rkvenc_dt_match[] = {
2204 	{
2205 		.compatible = "rockchip,rkv-encoder-v2",
2206 		.data = &rkvenc_v2_data,
2207 	},
2208 #ifdef CONFIG_CPU_RK3528
2209 	{
2210 		.compatible = "rockchip,rkv-encoder-rk3528",
2211 		.data = &rkvenc_540c_data,
2212 	},
2213 #endif
2214 #ifdef CONFIG_CPU_RK3562
2215 	{
2216 		.compatible = "rockchip,rkv-encoder-rk3562",
2217 		.data = &rkvenc_540c_data,
2218 	},
2219 #endif
2220 #ifdef CONFIG_CPU_RK3588
2221 	{
2222 		.compatible = "rockchip,rkv-encoder-v2-core",
2223 		.data = &rkvenc_ccu_data,
2224 	},
2225 	{
2226 		.compatible = "rockchip,rkv-encoder-v2-ccu",
2227 	},
2228 #endif
2229 	{},
2230 };
2231 
rkvenc_ccu_probe(struct platform_device * pdev)2232 static int rkvenc_ccu_probe(struct platform_device *pdev)
2233 {
2234 	struct rkvenc_ccu *ccu;
2235 	struct device *dev = &pdev->dev;
2236 
2237 	ccu = devm_kzalloc(dev, sizeof(*ccu), GFP_KERNEL);
2238 	if (!ccu)
2239 		return -ENOMEM;
2240 
2241 	platform_set_drvdata(pdev, ccu);
2242 
2243 	mutex_init(&ccu->lock);
2244 	INIT_LIST_HEAD(&ccu->core_list);
2245 	spin_lock_init(&ccu->lock_dchs);
2246 
2247 	return 0;
2248 }
2249 
rkvenc_attach_ccu(struct device * dev,struct rkvenc_dev * enc)2250 static int rkvenc_attach_ccu(struct device *dev, struct rkvenc_dev *enc)
2251 {
2252 	struct device_node *np;
2253 	struct platform_device *pdev;
2254 	struct rkvenc_ccu *ccu;
2255 
2256 	mpp_debug_enter();
2257 
2258 	np = of_parse_phandle(dev->of_node, "rockchip,ccu", 0);
2259 	if (!np || !of_device_is_available(np))
2260 		return -ENODEV;
2261 
2262 	pdev = of_find_device_by_node(np);
2263 	of_node_put(np);
2264 	if (!pdev)
2265 		return -ENODEV;
2266 
2267 	ccu = platform_get_drvdata(pdev);
2268 	if (!ccu)
2269 		return -ENOMEM;
2270 
2271 	INIT_LIST_HEAD(&enc->core_link);
2272 	mutex_lock(&ccu->lock);
2273 	ccu->core_num++;
2274 	list_add_tail(&enc->core_link, &ccu->core_list);
2275 	mutex_unlock(&ccu->lock);
2276 
2277 	/* attach the ccu-domain to current core */
2278 	if (!ccu->main_core) {
2279 		/**
2280 		 * set the first device for the main-core,
2281 		 * then the domain of the main-core named ccu-domain
2282 		 */
2283 		ccu->main_core = &enc->mpp;
2284 	} else {
2285 		struct mpp_iommu_info *ccu_info, *cur_info;
2286 
2287 		/* set the ccu-domain for current device */
2288 		ccu_info = ccu->main_core->iommu_info;
2289 		cur_info = enc->mpp.iommu_info;
2290 
2291 		if (cur_info) {
2292 			cur_info->domain = ccu_info->domain;
2293 			cur_info->rw_sem = ccu_info->rw_sem;
2294 		}
2295 		mpp_iommu_attach(cur_info);
2296 
2297 		/* increase main core message capacity */
2298 		ccu->main_core->msgs_cap++;
2299 		enc->mpp.msgs_cap = 0;
2300 	}
2301 	enc->ccu = ccu;
2302 
2303 	dev_info(dev, "attach ccu as core %d\n", enc->mpp.core_id);
2304 	mpp_debug_enter();
2305 
2306 	return 0;
2307 }
2308 
rkvenc2_alloc_rcbbuf(struct platform_device * pdev,struct rkvenc_dev * enc)2309 static int rkvenc2_alloc_rcbbuf(struct platform_device *pdev, struct rkvenc_dev *enc)
2310 {
2311 	int ret;
2312 	u32 vals[2];
2313 	dma_addr_t iova;
2314 	u32 sram_used, sram_size;
2315 	struct device_node *sram_np;
2316 	struct resource sram_res;
2317 	resource_size_t sram_start, sram_end;
2318 	struct iommu_domain *domain;
2319 	struct device *dev = &pdev->dev;
2320 
2321 	/* get rcb iova start and size */
2322 	ret = device_property_read_u32_array(dev, "rockchip,rcb-iova", vals, 2);
2323 	if (ret)
2324 		return ret;
2325 
2326 	iova = PAGE_ALIGN(vals[0]);
2327 	sram_used = PAGE_ALIGN(vals[1]);
2328 	if (!sram_used) {
2329 		dev_err(dev, "sram rcb invalid.\n");
2330 		return -EINVAL;
2331 	}
2332 	/* alloc reserve iova for rcb */
2333 	ret = iommu_dma_reserve_iova(dev, iova, sram_used);
2334 	if (ret) {
2335 		dev_err(dev, "alloc rcb iova error.\n");
2336 		return ret;
2337 	}
2338 	/* get sram device node */
2339 	sram_np = of_parse_phandle(dev->of_node, "rockchip,sram", 0);
2340 	if (!sram_np) {
2341 		dev_err(dev, "could not find phandle sram\n");
2342 		return -ENODEV;
2343 	}
2344 	/* get sram start and size */
2345 	ret = of_address_to_resource(sram_np, 0, &sram_res);
2346 	of_node_put(sram_np);
2347 	if (ret) {
2348 		dev_err(dev, "find sram res error\n");
2349 		return ret;
2350 	}
2351 	/* check sram start and size is PAGE_SIZE align */
2352 	sram_start = round_up(sram_res.start, PAGE_SIZE);
2353 	sram_end = round_down(sram_res.start + resource_size(&sram_res), PAGE_SIZE);
2354 	if (sram_end <= sram_start) {
2355 		dev_err(dev, "no available sram, phy_start %pa, phy_end %pa\n",
2356 			&sram_start, &sram_end);
2357 		return -ENOMEM;
2358 	}
2359 	sram_size = sram_end - sram_start;
2360 	sram_size = sram_used < sram_size ? sram_used : sram_size;
2361 	/* iova map to sram */
2362 	domain = enc->mpp.iommu_info->domain;
2363 	ret = iommu_map(domain, iova, sram_start, sram_size, IOMMU_READ | IOMMU_WRITE);
2364 	if (ret) {
2365 		dev_err(dev, "sram iommu_map error.\n");
2366 		return ret;
2367 	}
2368 	/* alloc dma for the remaining buffer, sram + dma */
2369 	if (sram_size < sram_used) {
2370 		struct page *page;
2371 		size_t page_size = PAGE_ALIGN(sram_used - sram_size);
2372 
2373 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(page_size));
2374 		if (!page) {
2375 			dev_err(dev, "unable to allocate pages\n");
2376 			ret = -ENOMEM;
2377 			goto err_sram_map;
2378 		}
2379 		/* iova map to dma */
2380 		ret = iommu_map(domain, iova + sram_size, page_to_phys(page),
2381 				page_size, IOMMU_READ | IOMMU_WRITE);
2382 		if (ret) {
2383 			dev_err(dev, "page iommu_map error.\n");
2384 			__free_pages(page, get_order(page_size));
2385 			goto err_sram_map;
2386 		}
2387 		enc->rcb_page = page;
2388 	}
2389 
2390 	enc->sram_size = sram_size;
2391 	enc->sram_used = sram_used;
2392 	enc->sram_iova = iova;
2393 	enc->sram_enabled = -1;
2394 	dev_info(dev, "sram_start %pa\n", &sram_start);
2395 	dev_info(dev, "sram_iova %pad\n", &enc->sram_iova);
2396 	dev_info(dev, "sram_size %u\n", enc->sram_size);
2397 	dev_info(dev, "sram_used %u\n", enc->sram_used);
2398 
2399 	return 0;
2400 
2401 err_sram_map:
2402 	iommu_unmap(domain, iova, sram_size);
2403 
2404 	return ret;
2405 }
2406 
rkvenc2_iommu_fault_handle(struct iommu_domain * iommu,struct device * iommu_dev,unsigned long iova,int status,void * arg)2407 static int rkvenc2_iommu_fault_handle(struct iommu_domain *iommu,
2408 				      struct device *iommu_dev,
2409 				      unsigned long iova, int status, void *arg)
2410 {
2411 	struct mpp_dev *mpp = (struct mpp_dev *)arg;
2412 	struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
2413 	struct mpp_task *mpp_task = mpp->cur_task;
2414 
2415 	dev_info(mpp->dev, "core %d page fault found dchs %08x\n",
2416 		 mpp->core_id, mpp_read_relaxed(&enc->mpp, DCHS_REG_OFFSET));
2417 
2418 	if (mpp_task)
2419 		mpp_task_dump_mem_region(mpp, mpp_task);
2420 
2421 	return 0;
2422 }
2423 
rkvenc_core_probe(struct platform_device * pdev)2424 static int rkvenc_core_probe(struct platform_device *pdev)
2425 {
2426 	int ret = 0;
2427 	struct device *dev = &pdev->dev;
2428 	struct rkvenc_dev *enc = NULL;
2429 	struct mpp_dev *mpp = NULL;
2430 
2431 	enc = devm_kzalloc(dev, sizeof(*enc), GFP_KERNEL);
2432 	if (!enc)
2433 		return -ENOMEM;
2434 
2435 	mpp = &enc->mpp;
2436 	platform_set_drvdata(pdev, mpp);
2437 
2438 	if (pdev->dev.of_node) {
2439 		struct device_node *np = pdev->dev.of_node;
2440 		const struct of_device_id *match = NULL;
2441 
2442 		match = of_match_node(mpp_rkvenc_dt_match, np);
2443 		if (match)
2444 			mpp->var = (struct mpp_dev_var *)match->data;
2445 
2446 		mpp->core_id = of_alias_get_id(np, "rkvenc");
2447 	}
2448 
2449 	ret = mpp_dev_probe(mpp, pdev);
2450 	if (ret)
2451 		return ret;
2452 
2453 	/* attach core to ccu */
2454 	ret = rkvenc_attach_ccu(dev, enc);
2455 	if (ret) {
2456 		dev_err(dev, "attach ccu failed\n");
2457 		return ret;
2458 	}
2459 	rkvenc2_alloc_rcbbuf(pdev, enc);
2460 
2461 	ret = devm_request_threaded_irq(dev, mpp->irq,
2462 					mpp_dev_irq,
2463 					mpp_dev_isr_sched,
2464 					IRQF_SHARED,
2465 					dev_name(dev), mpp);
2466 	if (ret) {
2467 		dev_err(dev, "register interrupter runtime failed\n");
2468 		return -EINVAL;
2469 	}
2470 	mpp->session_max_buffers = RKVENC_SESSION_MAX_BUFFERS;
2471 	enc->hw_info = to_rkvenc_info(mpp->var->hw_info);
2472 	if (mpp->iommu_info)
2473 		mpp->iommu_info->hdl = rkvenc2_iommu_fault_handle;
2474 	rkvenc_procfs_init(mpp);
2475 	rkvenc_procfs_ccu_init(mpp);
2476 
2477 	/* if current is main-core, register current device to mpp service */
2478 	if (mpp == enc->ccu->main_core)
2479 		mpp_dev_register_srv(mpp, mpp->srv);
2480 
2481 	return 0;
2482 }
2483 
rkvenc_probe_default(struct platform_device * pdev)2484 static int rkvenc_probe_default(struct platform_device *pdev)
2485 {
2486 	int ret = 0;
2487 	struct device *dev = &pdev->dev;
2488 	struct rkvenc_dev *enc = NULL;
2489 	struct mpp_dev *mpp = NULL;
2490 	const struct of_device_id *match = NULL;
2491 
2492 	enc = devm_kzalloc(dev, sizeof(*enc), GFP_KERNEL);
2493 	if (!enc)
2494 		return -ENOMEM;
2495 
2496 	mpp = &enc->mpp;
2497 	platform_set_drvdata(pdev, mpp);
2498 
2499 	if (pdev->dev.of_node) {
2500 		match = of_match_node(mpp_rkvenc_dt_match, pdev->dev.of_node);
2501 		if (match)
2502 			mpp->var = (struct mpp_dev_var *)match->data;
2503 	}
2504 
2505 	ret = mpp_dev_probe(mpp, pdev);
2506 	if (ret)
2507 		return ret;
2508 
2509 	rkvenc2_alloc_rcbbuf(pdev, enc);
2510 
2511 	ret = devm_request_threaded_irq(dev, mpp->irq,
2512 					mpp_dev_irq,
2513 					mpp_dev_isr_sched,
2514 					IRQF_SHARED,
2515 					dev_name(dev), mpp);
2516 	if (ret) {
2517 		dev_err(dev, "register interrupter runtime failed\n");
2518 		goto failed_get_irq;
2519 	}
2520 	mpp->session_max_buffers = RKVENC_SESSION_MAX_BUFFERS;
2521 	enc->hw_info = to_rkvenc_info(mpp->var->hw_info);
2522 	rkvenc_procfs_init(mpp);
2523 	mpp_dev_register_srv(mpp, mpp->srv);
2524 
2525 	return 0;
2526 
2527 failed_get_irq:
2528 	mpp_dev_remove(mpp);
2529 
2530 	return ret;
2531 }
2532 
rkvenc_probe(struct platform_device * pdev)2533 static int rkvenc_probe(struct platform_device *pdev)
2534 {
2535 	int ret = 0;
2536 	struct device *dev = &pdev->dev;
2537 	struct device_node *np = dev->of_node;
2538 
2539 	dev_info(dev, "probing start\n");
2540 
2541 	if (strstr(np->name, "ccu"))
2542 		ret = rkvenc_ccu_probe(pdev);
2543 	else if (strstr(np->name, "core"))
2544 		ret = rkvenc_core_probe(pdev);
2545 	else
2546 		ret = rkvenc_probe_default(pdev);
2547 
2548 	dev_info(dev, "probing finish\n");
2549 
2550 	return ret;
2551 }
2552 
rkvenc2_free_rcbbuf(struct platform_device * pdev,struct rkvenc_dev * enc)2553 static int rkvenc2_free_rcbbuf(struct platform_device *pdev, struct rkvenc_dev *enc)
2554 {
2555 	struct iommu_domain *domain;
2556 
2557 	if (enc->rcb_page) {
2558 		size_t page_size = PAGE_ALIGN(enc->sram_used - enc->sram_size);
2559 		int order = min(get_order(page_size), MAX_ORDER);
2560 
2561 		__free_pages(enc->rcb_page, order);
2562 	}
2563 	if (enc->sram_iova) {
2564 		domain = enc->mpp.iommu_info->domain;
2565 		iommu_unmap(domain, enc->sram_iova, enc->sram_used);
2566 	}
2567 
2568 	return 0;
2569 }
2570 
rkvenc_remove(struct platform_device * pdev)2571 static int rkvenc_remove(struct platform_device *pdev)
2572 {
2573 	struct device *dev = &pdev->dev;
2574 	struct device_node *np = dev->of_node;
2575 
2576 	if (strstr(np->name, "ccu")) {
2577 		dev_info(dev, "remove ccu\n");
2578 	} else if (strstr(np->name, "core")) {
2579 		struct mpp_dev *mpp = dev_get_drvdata(dev);
2580 		struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
2581 
2582 		dev_info(dev, "remove core\n");
2583 		if (enc->ccu) {
2584 			mutex_lock(&enc->ccu->lock);
2585 			list_del_init(&enc->core_link);
2586 			enc->ccu->core_num--;
2587 			mutex_unlock(&enc->ccu->lock);
2588 		}
2589 		rkvenc2_free_rcbbuf(pdev, enc);
2590 		mpp_dev_remove(&enc->mpp);
2591 		rkvenc_procfs_remove(&enc->mpp);
2592 	} else {
2593 		struct mpp_dev *mpp = dev_get_drvdata(dev);
2594 		struct rkvenc_dev *enc = to_rkvenc_dev(mpp);
2595 
2596 		dev_info(dev, "remove device\n");
2597 		rkvenc2_free_rcbbuf(pdev, enc);
2598 		mpp_dev_remove(mpp);
2599 		rkvenc_procfs_remove(mpp);
2600 	}
2601 
2602 	return 0;
2603 }
2604 
rkvenc_shutdown(struct platform_device * pdev)2605 static void rkvenc_shutdown(struct platform_device *pdev)
2606 {
2607 	struct device *dev = &pdev->dev;
2608 
2609 	if (!strstr(dev_name(dev), "ccu"))
2610 		mpp_dev_shutdown(pdev);
2611 }
2612 
2613 struct platform_driver rockchip_rkvenc2_driver = {
2614 	.probe = rkvenc_probe,
2615 	.remove = rkvenc_remove,
2616 	.shutdown = rkvenc_shutdown,
2617 	.driver = {
2618 		.name = RKVENC_DRIVER_NAME,
2619 		.of_match_table = of_match_ptr(mpp_rkvenc_dt_match),
2620 	},
2621 };
2622