xref: /OK3568_Linux_fs/kernel/drivers/usb/host/xhci.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25 
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28 
29 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30 
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35 
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39 
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42 	struct xhci_segment *seg = ring->first_seg;
43 
44 	if (!td || !td->start_seg)
45 		return false;
46 	do {
47 		if (seg == td->start_seg)
48 			return true;
49 		seg = seg->next;
50 	} while (seg && seg != ring->first_seg);
51 
52 	return false;
53 }
54 
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
69 {
70 	u32	result;
71 	int	ret;
72 
73 	ret = readl_poll_timeout_atomic(ptr, result,
74 					(result & mask) == done ||
75 					result == U32_MAX,
76 					1, timeout_us);
77 	if (result == U32_MAX)		/* card removed */
78 		return -ENODEV;
79 
80 	return ret;
81 }
82 
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
xhci_quiesce(struct xhci_hcd * xhci)86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88 	u32 halted;
89 	u32 cmd;
90 	u32 mask;
91 
92 	mask = ~(XHCI_IRQS);
93 	halted = readl(&xhci->op_regs->status) & STS_HALT;
94 	if (!halted)
95 		mask &= ~CMD_RUN;
96 
97 	cmd = readl(&xhci->op_regs->command);
98 	cmd &= mask;
99 	writel(cmd, &xhci->op_regs->command);
100 }
101 
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
xhci_halt(struct xhci_hcd * xhci)110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112 	int ret;
113 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
114 	xhci_quiesce(xhci);
115 
116 	ret = xhci_handshake(&xhci->op_regs->status,
117 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
118 	if (ret) {
119 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
120 		return ret;
121 	}
122 	xhci->xhc_state |= XHCI_STATE_HALTED;
123 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
124 	return ret;
125 }
126 
127 /*
128  * Set the run bit and wait for the host to be running.
129  */
xhci_start(struct xhci_hcd * xhci)130 int xhci_start(struct xhci_hcd *xhci)
131 {
132 	u32 temp;
133 	int ret;
134 
135 	temp = readl(&xhci->op_regs->command);
136 	temp |= (CMD_RUN);
137 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
138 			temp);
139 	writel(temp, &xhci->op_regs->command);
140 
141 	/*
142 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
143 	 * running.
144 	 */
145 	ret = xhci_handshake(&xhci->op_regs->status,
146 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
147 	if (ret == -ETIMEDOUT)
148 		xhci_err(xhci, "Host took too long to start, "
149 				"waited %u microseconds.\n",
150 				XHCI_MAX_HALT_USEC);
151 	if (!ret)
152 		/* clear state flags. Including dying, halted or removing */
153 		xhci->xhc_state = 0;
154 
155 	return ret;
156 }
157 
158 /*
159  * Reset a halted HC.
160  *
161  * This resets pipelines, timers, counters, state machines, etc.
162  * Transactions will be terminated immediately, and operational registers
163  * will be set to their defaults.
164  */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)165 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
166 {
167 	u32 command;
168 	u32 state;
169 	int ret;
170 
171 	state = readl(&xhci->op_regs->status);
172 
173 	if (state == ~(u32)0) {
174 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
175 		return -ENODEV;
176 	}
177 
178 	if ((state & STS_HALT) == 0) {
179 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
180 		return 0;
181 	}
182 
183 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
184 	command = readl(&xhci->op_regs->command);
185 	command |= CMD_RESET;
186 	writel(command, &xhci->op_regs->command);
187 
188 	/* Existing Intel xHCI controllers require a delay of 1 mS,
189 	 * after setting the CMD_RESET bit, and before accessing any
190 	 * HC registers. This allows the HC to complete the
191 	 * reset operation and be ready for HC register access.
192 	 * Without this delay, the subsequent HC register access,
193 	 * may result in a system hang very rarely.
194 	 */
195 	if (xhci->quirks & XHCI_INTEL_HOST)
196 		udelay(1000);
197 
198 	ret = xhci_handshake(&xhci->op_regs->command, CMD_RESET, 0, timeout_us);
199 	if (ret)
200 		return ret;
201 
202 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
203 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
204 
205 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
206 			 "Wait for controller to be ready for doorbell rings");
207 	/*
208 	 * xHCI cannot write to any doorbells or operational registers other
209 	 * than status until the "Controller Not Ready" flag is cleared.
210 	 */
211 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
212 
213 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
214 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
215 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
216 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
217 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
218 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
219 
220 	return ret;
221 }
222 
xhci_zero_64b_regs(struct xhci_hcd * xhci)223 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
224 {
225 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
226 	int err, i;
227 	u64 val;
228 	u32 intrs;
229 
230 	/*
231 	 * Some Renesas controllers get into a weird state if they are
232 	 * reset while programmed with 64bit addresses (they will preserve
233 	 * the top half of the address in internal, non visible
234 	 * registers). You end up with half the address coming from the
235 	 * kernel, and the other half coming from the firmware. Also,
236 	 * changing the programming leads to extra accesses even if the
237 	 * controller is supposed to be halted. The controller ends up with
238 	 * a fatal fault, and is then ripe for being properly reset.
239 	 *
240 	 * Special care is taken to only apply this if the device is behind
241 	 * an iommu. Doing anything when there is no iommu is definitely
242 	 * unsafe...
243 	 */
244 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
245 		return;
246 
247 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
248 
249 	/* Clear HSEIE so that faults do not get signaled */
250 	val = readl(&xhci->op_regs->command);
251 	val &= ~CMD_HSEIE;
252 	writel(val, &xhci->op_regs->command);
253 
254 	/* Clear HSE (aka FATAL) */
255 	val = readl(&xhci->op_regs->status);
256 	val |= STS_FATAL;
257 	writel(val, &xhci->op_regs->status);
258 
259 	/* Now zero the registers, and brace for impact */
260 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
261 	if (upper_32_bits(val))
262 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
263 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
264 	if (upper_32_bits(val))
265 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
266 
267 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
268 		      ARRAY_SIZE(xhci->run_regs->ir_set));
269 
270 	for (i = 0; i < intrs; i++) {
271 		struct xhci_intr_reg __iomem *ir;
272 
273 		ir = &xhci->run_regs->ir_set[i];
274 		val = xhci_read_64(xhci, &ir->erst_base);
275 		if (upper_32_bits(val))
276 			xhci_write_64(xhci, 0, &ir->erst_base);
277 		val= xhci_read_64(xhci, &ir->erst_dequeue);
278 		if (upper_32_bits(val))
279 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
280 	}
281 
282 	/* Wait for the fault to appear. It will be cleared on reset */
283 	err = xhci_handshake(&xhci->op_regs->status,
284 			     STS_FATAL, STS_FATAL,
285 			     XHCI_MAX_HALT_USEC);
286 	if (!err)
287 		xhci_info(xhci, "Fault detected\n");
288 }
289 
290 #ifdef CONFIG_USB_PCI
291 /*
292  * Set up MSI
293  */
xhci_setup_msi(struct xhci_hcd * xhci)294 static int xhci_setup_msi(struct xhci_hcd *xhci)
295 {
296 	int ret;
297 	/*
298 	 * TODO:Check with MSI Soc for sysdev
299 	 */
300 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
301 
302 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
303 	if (ret < 0) {
304 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
305 				"failed to allocate MSI entry");
306 		return ret;
307 	}
308 
309 	ret = request_irq(pdev->irq, xhci_msi_irq,
310 				0, "xhci_hcd", xhci_to_hcd(xhci));
311 	if (ret) {
312 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
313 				"disable MSI interrupt");
314 		pci_free_irq_vectors(pdev);
315 	}
316 
317 	return ret;
318 }
319 
320 /*
321  * Set up MSI-X
322  */
xhci_setup_msix(struct xhci_hcd * xhci)323 static int xhci_setup_msix(struct xhci_hcd *xhci)
324 {
325 	int i, ret = 0;
326 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
327 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
328 
329 	/*
330 	 * calculate number of msi-x vectors supported.
331 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
332 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
333 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
334 	 *   Add additional 1 vector to ensure always available interrupt.
335 	 */
336 	xhci->msix_count = min(num_online_cpus() + 1,
337 				HCS_MAX_INTRS(xhci->hcs_params1));
338 
339 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
340 			PCI_IRQ_MSIX);
341 	if (ret < 0) {
342 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
343 				"Failed to enable MSI-X");
344 		return ret;
345 	}
346 
347 	for (i = 0; i < xhci->msix_count; i++) {
348 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
349 				"xhci_hcd", xhci_to_hcd(xhci));
350 		if (ret)
351 			goto disable_msix;
352 	}
353 
354 	hcd->msix_enabled = 1;
355 	return ret;
356 
357 disable_msix:
358 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
359 	while (--i >= 0)
360 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
361 	pci_free_irq_vectors(pdev);
362 	return ret;
363 }
364 
365 /* Free any IRQs and disable MSI-X */
xhci_cleanup_msix(struct xhci_hcd * xhci)366 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
367 {
368 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
369 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
370 
371 	if (xhci->quirks & XHCI_PLAT)
372 		return;
373 
374 	/* return if using legacy interrupt */
375 	if (hcd->irq > 0)
376 		return;
377 
378 	if (hcd->msix_enabled) {
379 		int i;
380 
381 		for (i = 0; i < xhci->msix_count; i++)
382 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
383 	} else {
384 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
385 	}
386 
387 	pci_free_irq_vectors(pdev);
388 	hcd->msix_enabled = 0;
389 }
390 
xhci_msix_sync_irqs(struct xhci_hcd * xhci)391 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
392 {
393 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
394 
395 	if (hcd->msix_enabled) {
396 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
397 		int i;
398 
399 		for (i = 0; i < xhci->msix_count; i++)
400 			synchronize_irq(pci_irq_vector(pdev, i));
401 	}
402 }
403 
xhci_try_enable_msi(struct usb_hcd * hcd)404 static int xhci_try_enable_msi(struct usb_hcd *hcd)
405 {
406 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
407 	struct pci_dev  *pdev;
408 	int ret;
409 
410 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
411 	if (xhci->quirks & XHCI_PLAT)
412 		return 0;
413 
414 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
415 	/*
416 	 * Some Fresco Logic host controllers advertise MSI, but fail to
417 	 * generate interrupts.  Don't even try to enable MSI.
418 	 */
419 	if (xhci->quirks & XHCI_BROKEN_MSI)
420 		goto legacy_irq;
421 
422 	/* unregister the legacy interrupt */
423 	if (hcd->irq)
424 		free_irq(hcd->irq, hcd);
425 	hcd->irq = 0;
426 
427 	ret = xhci_setup_msix(xhci);
428 	if (ret)
429 		/* fall back to msi*/
430 		ret = xhci_setup_msi(xhci);
431 
432 	if (!ret) {
433 		hcd->msi_enabled = 1;
434 		return 0;
435 	}
436 
437 	if (!pdev->irq) {
438 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
439 		return -EINVAL;
440 	}
441 
442  legacy_irq:
443 	if (!strlen(hcd->irq_descr))
444 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
445 			 hcd->driver->description, hcd->self.busnum);
446 
447 	/* fall back to legacy interrupt*/
448 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
449 			hcd->irq_descr, hcd);
450 	if (ret) {
451 		xhci_err(xhci, "request interrupt %d failed\n",
452 				pdev->irq);
453 		return ret;
454 	}
455 	hcd->irq = pdev->irq;
456 	return 0;
457 }
458 
459 #else
460 
xhci_try_enable_msi(struct usb_hcd * hcd)461 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
462 {
463 	return 0;
464 }
465 
xhci_cleanup_msix(struct xhci_hcd * xhci)466 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
467 {
468 }
469 
xhci_msix_sync_irqs(struct xhci_hcd * xhci)470 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
471 {
472 }
473 
474 #endif
475 
compliance_mode_recovery(struct timer_list * t)476 static void compliance_mode_recovery(struct timer_list *t)
477 {
478 	struct xhci_hcd *xhci;
479 	struct usb_hcd *hcd;
480 	struct xhci_hub *rhub;
481 	u32 temp;
482 	int i;
483 
484 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
485 	rhub = &xhci->usb3_rhub;
486 
487 	for (i = 0; i < rhub->num_ports; i++) {
488 		temp = readl(rhub->ports[i]->addr);
489 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
490 			/*
491 			 * Compliance Mode Detected. Letting USB Core
492 			 * handle the Warm Reset
493 			 */
494 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
495 					"Compliance mode detected->port %d",
496 					i + 1);
497 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
498 					"Attempting compliance mode recovery");
499 			hcd = xhci->shared_hcd;
500 
501 			if (hcd->state == HC_STATE_SUSPENDED)
502 				usb_hcd_resume_root_hub(hcd);
503 
504 			usb_hcd_poll_rh_status(hcd);
505 		}
506 	}
507 
508 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
509 		mod_timer(&xhci->comp_mode_recovery_timer,
510 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
511 }
512 
513 /*
514  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
515  * that causes ports behind that hardware to enter compliance mode sometimes.
516  * The quirk creates a timer that polls every 2 seconds the link state of
517  * each host controller's port and recovers it by issuing a Warm reset
518  * if Compliance mode is detected, otherwise the port will become "dead" (no
519  * device connections or disconnections will be detected anymore). Becasue no
520  * status event is generated when entering compliance mode (per xhci spec),
521  * this quirk is needed on systems that have the failing hardware installed.
522  */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)523 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
524 {
525 	xhci->port_status_u0 = 0;
526 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
527 		    0);
528 	xhci->comp_mode_recovery_timer.expires = jiffies +
529 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
530 
531 	add_timer(&xhci->comp_mode_recovery_timer);
532 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
533 			"Compliance mode recovery timer initialized");
534 }
535 
536 /*
537  * This function identifies the systems that have installed the SN65LVPE502CP
538  * USB3.0 re-driver and that need the Compliance Mode Quirk.
539  * Systems:
540  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
541  */
xhci_compliance_mode_recovery_timer_quirk_check(void)542 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
543 {
544 	const char *dmi_product_name, *dmi_sys_vendor;
545 
546 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
547 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
548 	if (!dmi_product_name || !dmi_sys_vendor)
549 		return false;
550 
551 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
552 		return false;
553 
554 	if (strstr(dmi_product_name, "Z420") ||
555 			strstr(dmi_product_name, "Z620") ||
556 			strstr(dmi_product_name, "Z820") ||
557 			strstr(dmi_product_name, "Z1 Workstation"))
558 		return true;
559 
560 	return false;
561 }
562 
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)563 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
564 {
565 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
566 }
567 
568 
569 /*
570  * Initialize memory for HCD and xHC (one-time init).
571  *
572  * Program the PAGESIZE register, initialize the device context array, create
573  * device contexts (?), set up a command ring segment (or two?), create event
574  * ring (one for now).
575  */
xhci_init(struct usb_hcd * hcd)576 static int xhci_init(struct usb_hcd *hcd)
577 {
578 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
579 	int retval = 0;
580 
581 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
582 	spin_lock_init(&xhci->lock);
583 	if (xhci->hci_version == 0x95 && link_quirk) {
584 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
585 				"QUIRK: Not clearing Link TRB chain bits.");
586 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
587 	} else {
588 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
589 				"xHCI doesn't need link TRB QUIRK");
590 	}
591 	retval = xhci_mem_init(xhci, GFP_KERNEL);
592 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
593 
594 	/* Initializing Compliance Mode Recovery Data If Needed */
595 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
596 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
597 		compliance_mode_recovery_timer_init(xhci);
598 	}
599 
600 	return retval;
601 }
602 
603 /*-------------------------------------------------------------------------*/
604 
605 
xhci_run_finished(struct xhci_hcd * xhci)606 static int xhci_run_finished(struct xhci_hcd *xhci)
607 {
608 	if (xhci_start(xhci)) {
609 		xhci_halt(xhci);
610 		return -ENODEV;
611 	}
612 	xhci->shared_hcd->state = HC_STATE_RUNNING;
613 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
614 
615 	if (xhci->quirks & XHCI_NEC_HOST)
616 		xhci_ring_cmd_db(xhci);
617 
618 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
619 			"Finished xhci_run for USB3 roothub");
620 	return 0;
621 }
622 
623 /*
624  * Start the HC after it was halted.
625  *
626  * This function is called by the USB core when the HC driver is added.
627  * Its opposite is xhci_stop().
628  *
629  * xhci_init() must be called once before this function can be called.
630  * Reset the HC, enable device slot contexts, program DCBAAP, and
631  * set command ring pointer and event ring pointer.
632  *
633  * Setup MSI-X vectors and enable interrupts.
634  */
xhci_run(struct usb_hcd * hcd)635 int xhci_run(struct usb_hcd *hcd)
636 {
637 	u32 temp;
638 	u64 temp_64;
639 	int ret;
640 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
641 
642 	/* Start the xHCI host controller running only after the USB 2.0 roothub
643 	 * is setup.
644 	 */
645 
646 	hcd->uses_new_polling = 1;
647 	if (!usb_hcd_is_primary_hcd(hcd))
648 		return xhci_run_finished(xhci);
649 
650 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
651 
652 	ret = xhci_try_enable_msi(hcd);
653 	if (ret)
654 		return ret;
655 
656 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
657 	temp_64 &= ~ERST_PTR_MASK;
658 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
659 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
660 
661 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
662 			"// Set the interrupt modulation register");
663 	temp = readl(&xhci->ir_set->irq_control);
664 	temp &= ~ER_IRQ_INTERVAL_MASK;
665 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
666 	writel(temp, &xhci->ir_set->irq_control);
667 
668 	/* Set the HCD state before we enable the irqs */
669 	temp = readl(&xhci->op_regs->command);
670 	temp |= (CMD_EIE);
671 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
672 			"// Enable interrupts, cmd = 0x%x.", temp);
673 	writel(temp, &xhci->op_regs->command);
674 
675 	temp = readl(&xhci->ir_set->irq_pending);
676 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
677 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
678 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
679 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
680 
681 	if (xhci->quirks & XHCI_NEC_HOST) {
682 		struct xhci_command *command;
683 
684 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
685 		if (!command)
686 			return -ENOMEM;
687 
688 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
689 				TRB_TYPE(TRB_NEC_GET_FW));
690 		if (ret)
691 			xhci_free_command(xhci, command);
692 	}
693 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
694 			"Finished xhci_run for USB2 roothub");
695 
696 	xhci_dbc_init(xhci);
697 
698 	xhci_debugfs_init(xhci);
699 
700 	return 0;
701 }
702 EXPORT_SYMBOL_GPL(xhci_run);
703 
704 /*
705  * Stop xHCI driver.
706  *
707  * This function is called by the USB core when the HC driver is removed.
708  * Its opposite is xhci_run().
709  *
710  * Disable device contexts, disable IRQs, and quiesce the HC.
711  * Reset the HC, finish any completed transactions, and cleanup memory.
712  */
xhci_stop(struct usb_hcd * hcd)713 static void xhci_stop(struct usb_hcd *hcd)
714 {
715 	u32 temp;
716 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
717 
718 	mutex_lock(&xhci->mutex);
719 
720 	/* Only halt host and free memory after both hcds are removed */
721 	if (!usb_hcd_is_primary_hcd(hcd)) {
722 		mutex_unlock(&xhci->mutex);
723 		return;
724 	}
725 
726 	xhci_dbc_exit(xhci);
727 
728 	spin_lock_irq(&xhci->lock);
729 	xhci->xhc_state |= XHCI_STATE_HALTED;
730 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
731 	xhci_halt(xhci);
732 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
733 	spin_unlock_irq(&xhci->lock);
734 
735 	xhci_cleanup_msix(xhci);
736 
737 	/* Deleting Compliance Mode Recovery Timer */
738 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
739 			(!(xhci_all_ports_seen_u0(xhci)))) {
740 		del_timer_sync(&xhci->comp_mode_recovery_timer);
741 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
742 				"%s: compliance mode recovery timer deleted",
743 				__func__);
744 	}
745 
746 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
747 		usb_amd_dev_put();
748 
749 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
750 			"// Disabling event ring interrupts");
751 	temp = readl(&xhci->op_regs->status);
752 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
753 	temp = readl(&xhci->ir_set->irq_pending);
754 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
755 
756 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
757 	xhci_mem_cleanup(xhci);
758 	xhci_debugfs_exit(xhci);
759 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
760 			"xhci_stop completed - status = %x",
761 			readl(&xhci->op_regs->status));
762 	mutex_unlock(&xhci->mutex);
763 }
764 
765 /*
766  * Shutdown HC (not bus-specific)
767  *
768  * This is called when the machine is rebooting or halting.  We assume that the
769  * machine will be powered off, and the HC's internal state will be reset.
770  * Don't bother to free memory.
771  *
772  * This will only ever be called with the main usb_hcd (the USB3 roothub).
773  */
xhci_shutdown(struct usb_hcd * hcd)774 void xhci_shutdown(struct usb_hcd *hcd)
775 {
776 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
777 
778 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
779 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
780 
781 	/* Don't poll the roothubs after shutdown. */
782 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
783 			__func__, hcd->self.busnum);
784 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
785 	del_timer_sync(&hcd->rh_timer);
786 
787 	if (xhci->shared_hcd) {
788 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
789 		del_timer_sync(&xhci->shared_hcd->rh_timer);
790 	}
791 
792 	spin_lock_irq(&xhci->lock);
793 	xhci_halt(xhci);
794 
795 	/*
796 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
797 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
798 	 */
799 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
800 	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
801 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
802 
803 	spin_unlock_irq(&xhci->lock);
804 
805 	xhci_cleanup_msix(xhci);
806 
807 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
808 			"xhci_shutdown completed - status = %x",
809 			readl(&xhci->op_regs->status));
810 }
811 EXPORT_SYMBOL_GPL(xhci_shutdown);
812 
813 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)814 static void xhci_save_registers(struct xhci_hcd *xhci)
815 {
816 	xhci->s3.command = readl(&xhci->op_regs->command);
817 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
818 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
819 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
820 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
821 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
822 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
823 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
824 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
825 }
826 
xhci_restore_registers(struct xhci_hcd * xhci)827 static void xhci_restore_registers(struct xhci_hcd *xhci)
828 {
829 	writel(xhci->s3.command, &xhci->op_regs->command);
830 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
831 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
832 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
833 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
834 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
835 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
836 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
837 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
838 }
839 
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)840 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
841 {
842 	u64	val_64;
843 
844 	/* step 2: initialize command ring buffer */
845 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
846 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
847 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
848 				      xhci->cmd_ring->dequeue) &
849 		 (u64) ~CMD_RING_RSVD_BITS) |
850 		xhci->cmd_ring->cycle_state;
851 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
852 			"// Setting command ring address to 0x%llx",
853 			(long unsigned long) val_64);
854 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
855 }
856 
857 /*
858  * The whole command ring must be cleared to zero when we suspend the host.
859  *
860  * The host doesn't save the command ring pointer in the suspend well, so we
861  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
862  * aligned, because of the reserved bits in the command ring dequeue pointer
863  * register.  Therefore, we can't just set the dequeue pointer back in the
864  * middle of the ring (TRBs are 16-byte aligned).
865  */
xhci_clear_command_ring(struct xhci_hcd * xhci)866 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
867 {
868 	struct xhci_ring *ring;
869 	struct xhci_segment *seg;
870 
871 	ring = xhci->cmd_ring;
872 	seg = ring->deq_seg;
873 	do {
874 		memset(seg->trbs, 0,
875 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
876 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
877 			cpu_to_le32(~TRB_CYCLE);
878 		seg = seg->next;
879 	} while (seg != ring->deq_seg);
880 
881 	/* Reset the software enqueue and dequeue pointers */
882 	ring->deq_seg = ring->first_seg;
883 	ring->dequeue = ring->first_seg->trbs;
884 	ring->enq_seg = ring->deq_seg;
885 	ring->enqueue = ring->dequeue;
886 
887 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
888 	/*
889 	 * Ring is now zeroed, so the HW should look for change of ownership
890 	 * when the cycle bit is set to 1.
891 	 */
892 	ring->cycle_state = 1;
893 
894 	/*
895 	 * Reset the hardware dequeue pointer.
896 	 * Yes, this will need to be re-written after resume, but we're paranoid
897 	 * and want to make sure the hardware doesn't access bogus memory
898 	 * because, say, the BIOS or an SMI started the host without changing
899 	 * the command ring pointers.
900 	 */
901 	xhci_set_cmd_ring_deq(xhci);
902 }
903 
904 /*
905  * Disable port wake bits if do_wakeup is not set.
906  *
907  * Also clear a possible internal port wake state left hanging for ports that
908  * detected termination but never successfully enumerated (trained to 0U).
909  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
910  * at enumeration clears this wake, force one here as well for unconnected ports
911  */
912 
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)913 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
914 				       struct xhci_hub *rhub,
915 				       bool do_wakeup)
916 {
917 	unsigned long flags;
918 	u32 t1, t2, portsc;
919 	int i;
920 
921 	spin_lock_irqsave(&xhci->lock, flags);
922 
923 	for (i = 0; i < rhub->num_ports; i++) {
924 		portsc = readl(rhub->ports[i]->addr);
925 		t1 = xhci_port_state_to_neutral(portsc);
926 		t2 = t1;
927 
928 		/* clear wake bits if do_wake is not set */
929 		if (!do_wakeup)
930 			t2 &= ~PORT_WAKE_BITS;
931 
932 		/* Don't touch csc bit if connected or connect change is set */
933 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
934 			t2 |= PORT_CSC;
935 
936 		if (t1 != t2) {
937 			writel(t2, rhub->ports[i]->addr);
938 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
939 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
940 		}
941 	}
942 	spin_unlock_irqrestore(&xhci->lock, flags);
943 }
944 
xhci_pending_portevent(struct xhci_hcd * xhci)945 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
946 {
947 	struct xhci_port	**ports;
948 	int			port_index;
949 	u32			status;
950 	u32			portsc;
951 
952 	status = readl(&xhci->op_regs->status);
953 	if (status & STS_EINT)
954 		return true;
955 	/*
956 	 * Checking STS_EINT is not enough as there is a lag between a change
957 	 * bit being set and the Port Status Change Event that it generated
958 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
959 	 */
960 
961 	port_index = xhci->usb2_rhub.num_ports;
962 	ports = xhci->usb2_rhub.ports;
963 	while (port_index--) {
964 		portsc = readl(ports[port_index]->addr);
965 		if (portsc & PORT_CHANGE_MASK ||
966 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
967 			return true;
968 	}
969 	port_index = xhci->usb3_rhub.num_ports;
970 	ports = xhci->usb3_rhub.ports;
971 	while (port_index--) {
972 		portsc = readl(ports[port_index]->addr);
973 		if (portsc & PORT_CHANGE_MASK ||
974 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
975 			return true;
976 	}
977 	return false;
978 }
979 
980 /*
981  * Stop HC (not bus-specific)
982  *
983  * This is called when the machine transition into S3/S4 mode.
984  *
985  */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)986 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
987 {
988 	int			rc = 0;
989 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
990 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
991 	u32			command;
992 	u32			res;
993 
994 	if (!hcd->state)
995 		return 0;
996 
997 	if (hcd->state != HC_STATE_SUSPENDED ||
998 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
999 		return -EINVAL;
1000 
1001 	/* Clear root port wake on bits if wakeup not allowed. */
1002 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
1003 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
1004 
1005 	if (!HCD_HW_ACCESSIBLE(hcd))
1006 		return 0;
1007 
1008 	xhci_dbc_suspend(xhci);
1009 
1010 	/* Don't poll the roothubs on bus suspend. */
1011 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
1012 		 __func__, hcd->self.busnum);
1013 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1014 	del_timer_sync(&hcd->rh_timer);
1015 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1016 	del_timer_sync(&xhci->shared_hcd->rh_timer);
1017 
1018 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1019 		usleep_range(1000, 1500);
1020 
1021 	spin_lock_irq(&xhci->lock);
1022 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1023 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1024 	/* step 1: stop endpoint */
1025 	/* skipped assuming that port suspend has done */
1026 
1027 	/* step 2: clear Run/Stop bit */
1028 	command = readl(&xhci->op_regs->command);
1029 	command &= ~CMD_RUN;
1030 	writel(command, &xhci->op_regs->command);
1031 
1032 	/* Some chips from Fresco Logic need an extraordinary delay */
1033 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1034 
1035 	if (xhci_handshake(&xhci->op_regs->status,
1036 		      STS_HALT, STS_HALT, delay)) {
1037 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1038 		spin_unlock_irq(&xhci->lock);
1039 		return -ETIMEDOUT;
1040 	}
1041 	xhci_clear_command_ring(xhci);
1042 
1043 	/* step 3: save registers */
1044 	xhci_save_registers(xhci);
1045 
1046 	/* step 4: set CSS flag */
1047 	command = readl(&xhci->op_regs->command);
1048 	command |= CMD_CSS;
1049 	writel(command, &xhci->op_regs->command);
1050 	xhci->broken_suspend = 0;
1051 	if (xhci_handshake(&xhci->op_regs->status,
1052 				STS_SAVE, 0, 20 * 1000)) {
1053 	/*
1054 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1055 	 * SSS bit of USBSTS and when driver tries to poll
1056 	 * to see if the xHC clears BIT(8) which never happens
1057 	 * and driver assumes that controller is not responding
1058 	 * and times out. To workaround this, its good to check
1059 	 * if SRE and HCE bits are not set (as per xhci
1060 	 * Section 5.4.2) and bypass the timeout.
1061 	 */
1062 		res = readl(&xhci->op_regs->status);
1063 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1064 		    (((res & STS_SRE) == 0) &&
1065 				((res & STS_HCE) == 0))) {
1066 			xhci->broken_suspend = 1;
1067 		} else {
1068 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1069 			spin_unlock_irq(&xhci->lock);
1070 			return -ETIMEDOUT;
1071 		}
1072 	}
1073 	spin_unlock_irq(&xhci->lock);
1074 
1075 	/*
1076 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1077 	 * is about to be suspended.
1078 	 */
1079 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1080 			(!(xhci_all_ports_seen_u0(xhci)))) {
1081 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1082 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1083 				"%s: compliance mode recovery timer deleted",
1084 				__func__);
1085 	}
1086 
1087 	/* step 5: remove core well power */
1088 	/* synchronize irq when using MSI-X */
1089 	xhci_msix_sync_irqs(xhci);
1090 
1091 	return rc;
1092 }
1093 EXPORT_SYMBOL_GPL(xhci_suspend);
1094 
1095 /*
1096  * start xHC (not bus-specific)
1097  *
1098  * This is called when the machine transition from S3/S4 mode.
1099  *
1100  */
xhci_resume(struct xhci_hcd * xhci,bool hibernated)1101 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1102 {
1103 	u32			command, temp = 0;
1104 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1105 	struct usb_hcd		*secondary_hcd;
1106 	int			retval = 0;
1107 	bool			comp_timer_running = false;
1108 	bool			pending_portevent = false;
1109 	bool			reinit_xhc = false;
1110 
1111 	if (!hcd->state)
1112 		return 0;
1113 
1114 	/* Wait a bit if either of the roothubs need to settle from the
1115 	 * transition into bus suspend.
1116 	 */
1117 
1118 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1119 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1120 		msleep(100);
1121 
1122 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1123 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1124 
1125 	spin_lock_irq(&xhci->lock);
1126 
1127 	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1128 		reinit_xhc = true;
1129 
1130 	if (!reinit_xhc) {
1131 		/*
1132 		 * Some controllers might lose power during suspend, so wait
1133 		 * for controller not ready bit to clear, just as in xHC init.
1134 		 */
1135 		retval = xhci_handshake(&xhci->op_regs->status,
1136 					STS_CNR, 0, 10 * 1000 * 1000);
1137 		if (retval) {
1138 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1139 				  retval);
1140 			spin_unlock_irq(&xhci->lock);
1141 			return retval;
1142 		}
1143 		/* step 1: restore register */
1144 		xhci_restore_registers(xhci);
1145 		/* step 2: initialize command ring buffer */
1146 		xhci_set_cmd_ring_deq(xhci);
1147 		/* step 3: restore state and start state*/
1148 		/* step 3: set CRS flag */
1149 		command = readl(&xhci->op_regs->command);
1150 		command |= CMD_CRS;
1151 		writel(command, &xhci->op_regs->command);
1152 		/*
1153 		 * Some controllers take up to 55+ ms to complete the controller
1154 		 * restore so setting the timeout to 100ms. Xhci specification
1155 		 * doesn't mention any timeout value.
1156 		 */
1157 		if (xhci_handshake(&xhci->op_regs->status,
1158 			      STS_RESTORE, 0, 100 * 1000)) {
1159 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1160 			spin_unlock_irq(&xhci->lock);
1161 			return -ETIMEDOUT;
1162 		}
1163 	}
1164 
1165 	temp = readl(&xhci->op_regs->status);
1166 
1167 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1168 	if (temp & (STS_SRE | STS_HCE)) {
1169 		reinit_xhc = true;
1170 		if (!xhci->broken_suspend)
1171 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1172 	}
1173 
1174 	if (reinit_xhc) {
1175 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1176 				!(xhci_all_ports_seen_u0(xhci))) {
1177 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1178 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1179 				"Compliance Mode Recovery Timer deleted!");
1180 		}
1181 
1182 		/* Let the USB core know _both_ roothubs lost power. */
1183 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1184 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1185 
1186 		xhci_dbg(xhci, "Stop HCD\n");
1187 		xhci_halt(xhci);
1188 		xhci_zero_64b_regs(xhci);
1189 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1190 		spin_unlock_irq(&xhci->lock);
1191 		if (retval)
1192 			return retval;
1193 		xhci_cleanup_msix(xhci);
1194 
1195 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1196 		temp = readl(&xhci->op_regs->status);
1197 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1198 		temp = readl(&xhci->ir_set->irq_pending);
1199 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1200 
1201 		xhci_dbg(xhci, "cleaning up memory\n");
1202 		xhci_mem_cleanup(xhci);
1203 		xhci_debugfs_exit(xhci);
1204 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1205 			    readl(&xhci->op_regs->status));
1206 
1207 		/* USB core calls the PCI reinit and start functions twice:
1208 		 * first with the primary HCD, and then with the secondary HCD.
1209 		 * If we don't do the same, the host will never be started.
1210 		 */
1211 		if (!usb_hcd_is_primary_hcd(hcd))
1212 			secondary_hcd = hcd;
1213 		else
1214 			secondary_hcd = xhci->shared_hcd;
1215 
1216 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1217 		retval = xhci_init(hcd->primary_hcd);
1218 		if (retval)
1219 			return retval;
1220 		comp_timer_running = true;
1221 
1222 		xhci_dbg(xhci, "Start the primary HCD\n");
1223 		retval = xhci_run(hcd->primary_hcd);
1224 		if (!retval) {
1225 			xhci_dbg(xhci, "Start the secondary HCD\n");
1226 			retval = xhci_run(secondary_hcd);
1227 		}
1228 		hcd->state = HC_STATE_SUSPENDED;
1229 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1230 		goto done;
1231 	}
1232 
1233 	/* step 4: set Run/Stop bit */
1234 	command = readl(&xhci->op_regs->command);
1235 	command |= CMD_RUN;
1236 	writel(command, &xhci->op_regs->command);
1237 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1238 		  0, 250 * 1000);
1239 
1240 	/* step 5: walk topology and initialize portsc,
1241 	 * portpmsc and portli
1242 	 */
1243 	/* this is done in bus_resume */
1244 
1245 	/* step 6: restart each of the previously
1246 	 * Running endpoints by ringing their doorbells
1247 	 */
1248 
1249 	spin_unlock_irq(&xhci->lock);
1250 
1251 	xhci_dbc_resume(xhci);
1252 
1253  done:
1254 	if (retval == 0) {
1255 		/*
1256 		 * Resume roothubs only if there are pending events.
1257 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1258 		 * the first wake signalling failed, give it that chance.
1259 		 */
1260 		pending_portevent = xhci_pending_portevent(xhci);
1261 		if (!pending_portevent) {
1262 			msleep(120);
1263 			pending_portevent = xhci_pending_portevent(xhci);
1264 		}
1265 
1266 		if (pending_portevent) {
1267 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1268 			usb_hcd_resume_root_hub(hcd);
1269 		}
1270 	}
1271 	/*
1272 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1273 	 * be re-initialized Always after a system resume. Ports are subject
1274 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1275 	 * ports have entered previously to U0 before system's suspension.
1276 	 */
1277 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1278 		compliance_mode_recovery_timer_init(xhci);
1279 
1280 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1281 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1282 
1283 	/* Re-enable port polling. */
1284 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1285 		 __func__, hcd->self.busnum);
1286 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1287 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1288 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1289 	usb_hcd_poll_rh_status(hcd);
1290 
1291 	return retval;
1292 }
1293 EXPORT_SYMBOL_GPL(xhci_resume);
1294 #endif	/* CONFIG_PM */
1295 
1296 /*-------------------------------------------------------------------------*/
1297 
1298 /*
1299  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1300  * we'll copy the actual data into the TRB address register. This is limited to
1301  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1302  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1303  */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1304 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1305 				gfp_t mem_flags)
1306 {
1307 	if (xhci_urb_suitable_for_idt(urb))
1308 		return 0;
1309 
1310 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1311 }
1312 
1313 /*
1314  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1315  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1316  * value to right shift 1 for the bitmask.
1317  *
1318  * Index  = (epnum * 2) + direction - 1,
1319  * where direction = 0 for OUT, 1 for IN.
1320  * For control endpoints, the IN index is used (OUT index is unused), so
1321  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1322  */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1323 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1324 {
1325 	unsigned int index;
1326 	if (usb_endpoint_xfer_control(desc))
1327 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1328 	else
1329 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1330 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1331 	return index;
1332 }
1333 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1334 
1335 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1336  * address from the XHCI endpoint index.
1337  */
xhci_get_endpoint_address(unsigned int ep_index)1338 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1339 {
1340 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1341 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1342 	return direction | number;
1343 }
1344 
1345 /* Find the flag for this endpoint (for use in the control context).  Use the
1346  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1347  * bit 1, etc.
1348  */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1349 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1350 {
1351 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1352 }
1353 
1354 /* Compute the last valid endpoint context index.  Basically, this is the
1355  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1356  * we find the most significant bit set in the added contexts flags.
1357  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1358  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1359  */
xhci_last_valid_endpoint(u32 added_ctxs)1360 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1361 {
1362 	return fls(added_ctxs) - 1;
1363 }
1364 
1365 /* Returns 1 if the arguments are OK;
1366  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1367  */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1368 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1369 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1370 		const char *func) {
1371 	struct xhci_hcd	*xhci;
1372 	struct xhci_virt_device	*virt_dev;
1373 
1374 	if (!hcd || (check_ep && !ep) || !udev) {
1375 		pr_debug("xHCI %s called with invalid args\n", func);
1376 		return -EINVAL;
1377 	}
1378 	if (!udev->parent) {
1379 		pr_debug("xHCI %s called for root hub\n", func);
1380 		return 0;
1381 	}
1382 
1383 	xhci = hcd_to_xhci(hcd);
1384 	if (check_virt_dev) {
1385 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1386 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1387 					func);
1388 			return -EINVAL;
1389 		}
1390 
1391 		virt_dev = xhci->devs[udev->slot_id];
1392 		if (virt_dev->udev != udev) {
1393 			xhci_dbg(xhci, "xHCI %s called with udev and "
1394 					  "virt_dev does not match\n", func);
1395 			return -EINVAL;
1396 		}
1397 	}
1398 
1399 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1400 		return -ENODEV;
1401 
1402 	return 1;
1403 }
1404 
1405 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1406 		struct usb_device *udev, struct xhci_command *command,
1407 		bool ctx_change, bool must_succeed);
1408 
1409 /*
1410  * Full speed devices may have a max packet size greater than 8 bytes, but the
1411  * USB core doesn't know that until it reads the first 8 bytes of the
1412  * descriptor.  If the usb_device's max packet size changes after that point,
1413  * we need to issue an evaluate context command and wait on it.
1414  */
xhci_check_maxpacket(struct xhci_hcd * xhci,unsigned int slot_id,unsigned int ep_index,struct urb * urb,gfp_t mem_flags)1415 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1416 		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1417 {
1418 	struct xhci_container_ctx *out_ctx;
1419 	struct xhci_input_control_ctx *ctrl_ctx;
1420 	struct xhci_ep_ctx *ep_ctx;
1421 	struct xhci_command *command;
1422 	int max_packet_size;
1423 	int hw_max_packet_size;
1424 	int ret = 0;
1425 
1426 	out_ctx = xhci->devs[slot_id]->out_ctx;
1427 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1428 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1429 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1430 	if (hw_max_packet_size != max_packet_size) {
1431 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1432 				"Max Packet Size for ep 0 changed.");
1433 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1434 				"Max packet size in usb_device = %d",
1435 				max_packet_size);
1436 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1437 				"Max packet size in xHCI HW = %d",
1438 				hw_max_packet_size);
1439 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1440 				"Issuing evaluate context command.");
1441 
1442 		/* Set up the input context flags for the command */
1443 		/* FIXME: This won't work if a non-default control endpoint
1444 		 * changes max packet sizes.
1445 		 */
1446 
1447 		command = xhci_alloc_command(xhci, true, mem_flags);
1448 		if (!command)
1449 			return -ENOMEM;
1450 
1451 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1452 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1453 		if (!ctrl_ctx) {
1454 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1455 					__func__);
1456 			ret = -ENOMEM;
1457 			goto command_cleanup;
1458 		}
1459 		/* Set up the modified control endpoint 0 */
1460 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1461 				xhci->devs[slot_id]->out_ctx, ep_index);
1462 
1463 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1464 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1465 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1466 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1467 
1468 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1469 		ctrl_ctx->drop_flags = 0;
1470 
1471 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1472 				true, false);
1473 
1474 		/* Clean up the input context for later use by bandwidth
1475 		 * functions.
1476 		 */
1477 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1478 command_cleanup:
1479 		kfree(command->completion);
1480 		kfree(command);
1481 	}
1482 	return ret;
1483 }
1484 
1485 /*
1486  * non-error returns are a promise to giveback() the urb later
1487  * we drop ownership so next owner (or urb unlink) can get it
1488  */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1489 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1490 {
1491 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1492 	unsigned long flags;
1493 	int ret = 0;
1494 	unsigned int slot_id, ep_index;
1495 	unsigned int *ep_state;
1496 	struct urb_priv	*urb_priv;
1497 	int num_tds;
1498 
1499 	if (!urb)
1500 		return -EINVAL;
1501 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1502 					true, true, __func__);
1503 	if (ret <= 0)
1504 		return ret ? ret : -EINVAL;
1505 
1506 	slot_id = urb->dev->slot_id;
1507 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1508 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1509 
1510 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1511 		if (!in_interrupt())
1512 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1513 		return -ESHUTDOWN;
1514 	}
1515 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1516 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1517 		return -ENODEV;
1518 	}
1519 
1520 	if (xhci_vendor_usb_offload_skip_urb(xhci, urb)) {
1521 		xhci_dbg(xhci, "skip urb for usb offload\n");
1522 		return -EOPNOTSUPP;
1523 	}
1524 
1525 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1526 		num_tds = urb->number_of_packets;
1527 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1528 	    urb->transfer_buffer_length > 0 &&
1529 	    urb->transfer_flags & URB_ZERO_PACKET &&
1530 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1531 		num_tds = 2;
1532 	else
1533 		num_tds = 1;
1534 
1535 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1536 	if (!urb_priv)
1537 		return -ENOMEM;
1538 
1539 	urb_priv->num_tds = num_tds;
1540 	urb_priv->num_tds_done = 0;
1541 	urb->hcpriv = urb_priv;
1542 
1543 	trace_xhci_urb_enqueue(urb);
1544 
1545 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1546 		/* Check to see if the max packet size for the default control
1547 		 * endpoint changed during FS device enumeration
1548 		 */
1549 		if (urb->dev->speed == USB_SPEED_FULL) {
1550 			ret = xhci_check_maxpacket(xhci, slot_id,
1551 					ep_index, urb, mem_flags);
1552 			if (ret < 0) {
1553 				xhci_urb_free_priv(urb_priv);
1554 				urb->hcpriv = NULL;
1555 				return ret;
1556 			}
1557 		}
1558 	}
1559 
1560 	spin_lock_irqsave(&xhci->lock, flags);
1561 
1562 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1563 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1564 			 urb->ep->desc.bEndpointAddress, urb);
1565 		ret = -ESHUTDOWN;
1566 		goto free_priv;
1567 	}
1568 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1569 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1570 			  *ep_state);
1571 		ret = -EINVAL;
1572 		goto free_priv;
1573 	}
1574 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1575 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1576 		ret = -EINVAL;
1577 		goto free_priv;
1578 	}
1579 
1580 	switch (usb_endpoint_type(&urb->ep->desc)) {
1581 
1582 	case USB_ENDPOINT_XFER_CONTROL:
1583 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1584 					 slot_id, ep_index);
1585 		break;
1586 	case USB_ENDPOINT_XFER_BULK:
1587 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1588 					 slot_id, ep_index);
1589 		break;
1590 	case USB_ENDPOINT_XFER_INT:
1591 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1592 				slot_id, ep_index);
1593 		break;
1594 	case USB_ENDPOINT_XFER_ISOC:
1595 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1596 				slot_id, ep_index);
1597 	}
1598 
1599 	if (ret) {
1600 free_priv:
1601 		xhci_urb_free_priv(urb_priv);
1602 		urb->hcpriv = NULL;
1603 	}
1604 	spin_unlock_irqrestore(&xhci->lock, flags);
1605 	return ret;
1606 }
1607 
1608 /*
1609  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1610  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1611  * should pick up where it left off in the TD, unless a Set Transfer Ring
1612  * Dequeue Pointer is issued.
1613  *
1614  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1615  * the ring.  Since the ring is a contiguous structure, they can't be physically
1616  * removed.  Instead, there are two options:
1617  *
1618  *  1) If the HC is in the middle of processing the URB to be canceled, we
1619  *     simply move the ring's dequeue pointer past those TRBs using the Set
1620  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1621  *     when drivers timeout on the last submitted URB and attempt to cancel.
1622  *
1623  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1624  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1625  *     HC will need to invalidate the any TRBs it has cached after the stop
1626  *     endpoint command, as noted in the xHCI 0.95 errata.
1627  *
1628  *  3) The TD may have completed by the time the Stop Endpoint Command
1629  *     completes, so software needs to handle that case too.
1630  *
1631  * This function should protect against the TD enqueueing code ringing the
1632  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1633  * It also needs to account for multiple cancellations on happening at the same
1634  * time for the same endpoint.
1635  *
1636  * Note that this function can be called in any context, or so says
1637  * usb_hcd_unlink_urb()
1638  */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1639 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1640 {
1641 	unsigned long flags;
1642 	int ret, i;
1643 	u32 temp;
1644 	struct xhci_hcd *xhci;
1645 	struct urb_priv	*urb_priv;
1646 	struct xhci_td *td;
1647 	unsigned int ep_index;
1648 	struct xhci_ring *ep_ring;
1649 	struct xhci_virt_ep *ep;
1650 	struct xhci_command *command;
1651 	struct xhci_virt_device *vdev;
1652 
1653 	xhci = hcd_to_xhci(hcd);
1654 	spin_lock_irqsave(&xhci->lock, flags);
1655 
1656 	trace_xhci_urb_dequeue(urb);
1657 
1658 	/* Make sure the URB hasn't completed or been unlinked already */
1659 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1660 	if (ret)
1661 		goto done;
1662 
1663 	/* give back URB now if we can't queue it for cancel */
1664 	vdev = xhci->devs[urb->dev->slot_id];
1665 	urb_priv = urb->hcpriv;
1666 	if (!vdev || !urb_priv)
1667 		goto err_giveback;
1668 
1669 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1670 	ep = &vdev->eps[ep_index];
1671 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1672 	if (!ep || !ep_ring)
1673 		goto err_giveback;
1674 
1675 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1676 	temp = readl(&xhci->op_regs->status);
1677 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1678 		xhci_hc_died(xhci);
1679 		goto done;
1680 	}
1681 
1682 	/*
1683 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1684 	 * make sure none of the ring related pointers in this URB private data
1685 	 * are touched, such as td_list, otherwise we overwrite freed data
1686 	 */
1687 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1688 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1689 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1690 			td = &urb_priv->td[i];
1691 			if (!list_empty(&td->cancelled_td_list))
1692 				list_del_init(&td->cancelled_td_list);
1693 		}
1694 		goto err_giveback;
1695 	}
1696 
1697 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1698 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1699 				"HC halted, freeing TD manually.");
1700 		for (i = urb_priv->num_tds_done;
1701 		     i < urb_priv->num_tds;
1702 		     i++) {
1703 			td = &urb_priv->td[i];
1704 			if (!list_empty(&td->td_list))
1705 				list_del_init(&td->td_list);
1706 			if (!list_empty(&td->cancelled_td_list))
1707 				list_del_init(&td->cancelled_td_list);
1708 		}
1709 		goto err_giveback;
1710 	}
1711 
1712 	i = urb_priv->num_tds_done;
1713 	if (i < urb_priv->num_tds)
1714 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1715 				"Cancel URB %p, dev %s, ep 0x%x, "
1716 				"starting at offset 0x%llx",
1717 				urb, urb->dev->devpath,
1718 				urb->ep->desc.bEndpointAddress,
1719 				(unsigned long long) xhci_trb_virt_to_dma(
1720 					urb_priv->td[i].start_seg,
1721 					urb_priv->td[i].first_trb));
1722 
1723 	for (; i < urb_priv->num_tds; i++) {
1724 		td = &urb_priv->td[i];
1725 		/* TD can already be on cancelled list if ep halted on it */
1726 		if (list_empty(&td->cancelled_td_list)) {
1727 			td->cancel_status = TD_DIRTY;
1728 			list_add_tail(&td->cancelled_td_list,
1729 				      &ep->cancelled_td_list);
1730 		}
1731 	}
1732 
1733 	/* Queue a stop endpoint command, but only if this is
1734 	 * the first cancellation to be handled.
1735 	 */
1736 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1737 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1738 		if (!command) {
1739 			ret = -ENOMEM;
1740 			goto done;
1741 		}
1742 		ep->ep_state |= EP_STOP_CMD_PENDING;
1743 		ep->stop_cmd_timer.expires = jiffies +
1744 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1745 		add_timer(&ep->stop_cmd_timer);
1746 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1747 					 ep_index, 0);
1748 		xhci_ring_cmd_db(xhci);
1749 	}
1750 done:
1751 	spin_unlock_irqrestore(&xhci->lock, flags);
1752 	return ret;
1753 
1754 err_giveback:
1755 	if (urb_priv)
1756 		xhci_urb_free_priv(urb_priv);
1757 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1758 	spin_unlock_irqrestore(&xhci->lock, flags);
1759 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1760 	return ret;
1761 }
1762 
1763 /* Drop an endpoint from a new bandwidth configuration for this device.
1764  * Only one call to this function is allowed per endpoint before
1765  * check_bandwidth() or reset_bandwidth() must be called.
1766  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1767  * add the endpoint to the schedule with possibly new parameters denoted by a
1768  * different endpoint descriptor in usb_host_endpoint.
1769  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1770  * not allowed.
1771  *
1772  * The USB core will not allow URBs to be queued to an endpoint that is being
1773  * disabled, so there's no need for mutual exclusion to protect
1774  * the xhci->devs[slot_id] structure.
1775  */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1776 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1777 		       struct usb_host_endpoint *ep)
1778 {
1779 	struct xhci_hcd *xhci;
1780 	struct xhci_container_ctx *in_ctx, *out_ctx;
1781 	struct xhci_input_control_ctx *ctrl_ctx;
1782 	unsigned int ep_index;
1783 	struct xhci_ep_ctx *ep_ctx;
1784 	u32 drop_flag;
1785 	u32 new_add_flags, new_drop_flags;
1786 	int ret;
1787 
1788 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1789 	if (ret <= 0)
1790 		return ret;
1791 	xhci = hcd_to_xhci(hcd);
1792 	if (xhci->xhc_state & XHCI_STATE_DYING)
1793 		return -ENODEV;
1794 
1795 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1796 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1797 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1798 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1799 				__func__, drop_flag);
1800 		return 0;
1801 	}
1802 
1803 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1804 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1805 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1806 	if (!ctrl_ctx) {
1807 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1808 				__func__);
1809 		return 0;
1810 	}
1811 
1812 	ep_index = xhci_get_endpoint_index(&ep->desc);
1813 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1814 	/* If the HC already knows the endpoint is disabled,
1815 	 * or the HCD has noted it is disabled, ignore this request
1816 	 */
1817 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1818 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1819 	    xhci_get_endpoint_flag(&ep->desc)) {
1820 		/* Do not warn when called after a usb_device_reset */
1821 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1822 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1823 				  __func__, ep);
1824 		return 0;
1825 	}
1826 
1827 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1828 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1829 
1830 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1831 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1832 
1833 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1834 
1835 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1836 
1837 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1838 			(unsigned int) ep->desc.bEndpointAddress,
1839 			udev->slot_id,
1840 			(unsigned int) new_drop_flags,
1841 			(unsigned int) new_add_flags);
1842 	return 0;
1843 }
1844 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1845 
1846 /* Add an endpoint to a new possible bandwidth configuration for this device.
1847  * Only one call to this function is allowed per endpoint before
1848  * check_bandwidth() or reset_bandwidth() must be called.
1849  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1850  * add the endpoint to the schedule with possibly new parameters denoted by a
1851  * different endpoint descriptor in usb_host_endpoint.
1852  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1853  * not allowed.
1854  *
1855  * The USB core will not allow URBs to be queued to an endpoint until the
1856  * configuration or alt setting is installed in the device, so there's no need
1857  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1858  */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1859 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1860 		      struct usb_host_endpoint *ep)
1861 {
1862 	struct xhci_hcd *xhci;
1863 	struct xhci_container_ctx *in_ctx;
1864 	unsigned int ep_index;
1865 	struct xhci_input_control_ctx *ctrl_ctx;
1866 	struct xhci_ep_ctx *ep_ctx;
1867 	u32 added_ctxs;
1868 	u32 new_add_flags, new_drop_flags;
1869 	struct xhci_virt_device *virt_dev;
1870 	int ret = 0;
1871 
1872 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1873 	if (ret <= 0) {
1874 		/* So we won't queue a reset ep command for a root hub */
1875 		ep->hcpriv = NULL;
1876 		return ret;
1877 	}
1878 	xhci = hcd_to_xhci(hcd);
1879 	if (xhci->xhc_state & XHCI_STATE_DYING)
1880 		return -ENODEV;
1881 
1882 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1883 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1884 		/* FIXME when we have to issue an evaluate endpoint command to
1885 		 * deal with ep0 max packet size changing once we get the
1886 		 * descriptors
1887 		 */
1888 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1889 				__func__, added_ctxs);
1890 		return 0;
1891 	}
1892 
1893 	virt_dev = xhci->devs[udev->slot_id];
1894 	in_ctx = virt_dev->in_ctx;
1895 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1896 	if (!ctrl_ctx) {
1897 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1898 				__func__);
1899 		return 0;
1900 	}
1901 
1902 	ep_index = xhci_get_endpoint_index(&ep->desc);
1903 	/* If this endpoint is already in use, and the upper layers are trying
1904 	 * to add it again without dropping it, reject the addition.
1905 	 */
1906 	if (virt_dev->eps[ep_index].ring &&
1907 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1908 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1909 				"without dropping it.\n",
1910 				(unsigned int) ep->desc.bEndpointAddress);
1911 		return -EINVAL;
1912 	}
1913 
1914 	/* If the HCD has already noted the endpoint is enabled,
1915 	 * ignore this request.
1916 	 */
1917 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1918 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1919 				__func__, ep);
1920 		return 0;
1921 	}
1922 
1923 	/*
1924 	 * Configuration and alternate setting changes must be done in
1925 	 * process context, not interrupt context (or so documenation
1926 	 * for usb_set_interface() and usb_set_configuration() claim).
1927 	 */
1928 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1929 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1930 				__func__, ep->desc.bEndpointAddress);
1931 		return -ENOMEM;
1932 	}
1933 
1934 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1935 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1936 
1937 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1938 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1939 	 * this re-adds a new state for the endpoint from the new endpoint
1940 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1941 	 * drop flags alone.
1942 	 */
1943 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1944 
1945 	/* Store the usb_device pointer for later use */
1946 	ep->hcpriv = udev;
1947 
1948 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1949 	trace_xhci_add_endpoint(ep_ctx);
1950 
1951 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1952 			(unsigned int) ep->desc.bEndpointAddress,
1953 			udev->slot_id,
1954 			(unsigned int) new_drop_flags,
1955 			(unsigned int) new_add_flags);
1956 	return 0;
1957 }
1958 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1959 
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1960 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1961 {
1962 	struct xhci_input_control_ctx *ctrl_ctx;
1963 	struct xhci_ep_ctx *ep_ctx;
1964 	struct xhci_slot_ctx *slot_ctx;
1965 	int i;
1966 
1967 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1968 	if (!ctrl_ctx) {
1969 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1970 				__func__);
1971 		return;
1972 	}
1973 
1974 	/* When a device's add flag and drop flag are zero, any subsequent
1975 	 * configure endpoint command will leave that endpoint's state
1976 	 * untouched.  Make sure we don't leave any old state in the input
1977 	 * endpoint contexts.
1978 	 */
1979 	ctrl_ctx->drop_flags = 0;
1980 	ctrl_ctx->add_flags = 0;
1981 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1982 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1983 	/* Endpoint 0 is always valid */
1984 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1985 	for (i = 1; i < 31; i++) {
1986 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1987 		ep_ctx->ep_info = 0;
1988 		ep_ctx->ep_info2 = 0;
1989 		ep_ctx->deq = 0;
1990 		ep_ctx->tx_info = 0;
1991 	}
1992 }
1993 
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)1994 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1995 		struct usb_device *udev, u32 *cmd_status)
1996 {
1997 	int ret;
1998 
1999 	switch (*cmd_status) {
2000 	case COMP_COMMAND_ABORTED:
2001 	case COMP_COMMAND_RING_STOPPED:
2002 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2003 		ret = -ETIME;
2004 		break;
2005 	case COMP_RESOURCE_ERROR:
2006 		dev_warn(&udev->dev,
2007 			 "Not enough host controller resources for new device state.\n");
2008 		ret = -ENOMEM;
2009 		/* FIXME: can we allocate more resources for the HC? */
2010 		break;
2011 	case COMP_BANDWIDTH_ERROR:
2012 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2013 		dev_warn(&udev->dev,
2014 			 "Not enough bandwidth for new device state.\n");
2015 		ret = -ENOSPC;
2016 		/* FIXME: can we go back to the old state? */
2017 		break;
2018 	case COMP_TRB_ERROR:
2019 		/* the HCD set up something wrong */
2020 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2021 				"add flag = 1, "
2022 				"and endpoint is not disabled.\n");
2023 		ret = -EINVAL;
2024 		break;
2025 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2026 		dev_warn(&udev->dev,
2027 			 "ERROR: Incompatible device for endpoint configure command.\n");
2028 		ret = -ENODEV;
2029 		break;
2030 	case COMP_SUCCESS:
2031 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2032 				"Successful Endpoint Configure command");
2033 		ret = 0;
2034 		break;
2035 	default:
2036 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2037 				*cmd_status);
2038 		ret = -EINVAL;
2039 		break;
2040 	}
2041 	return ret;
2042 }
2043 
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2044 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2045 		struct usb_device *udev, u32 *cmd_status)
2046 {
2047 	int ret;
2048 
2049 	switch (*cmd_status) {
2050 	case COMP_COMMAND_ABORTED:
2051 	case COMP_COMMAND_RING_STOPPED:
2052 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2053 		ret = -ETIME;
2054 		break;
2055 	case COMP_PARAMETER_ERROR:
2056 		dev_warn(&udev->dev,
2057 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2058 		ret = -EINVAL;
2059 		break;
2060 	case COMP_SLOT_NOT_ENABLED_ERROR:
2061 		dev_warn(&udev->dev,
2062 			"WARN: slot not enabled for evaluate context command.\n");
2063 		ret = -EINVAL;
2064 		break;
2065 	case COMP_CONTEXT_STATE_ERROR:
2066 		dev_warn(&udev->dev,
2067 			"WARN: invalid context state for evaluate context command.\n");
2068 		ret = -EINVAL;
2069 		break;
2070 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2071 		dev_warn(&udev->dev,
2072 			"ERROR: Incompatible device for evaluate context command.\n");
2073 		ret = -ENODEV;
2074 		break;
2075 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2076 		/* Max Exit Latency too large error */
2077 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2078 		ret = -EINVAL;
2079 		break;
2080 	case COMP_SUCCESS:
2081 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2082 				"Successful evaluate context command");
2083 		ret = 0;
2084 		break;
2085 	default:
2086 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2087 			*cmd_status);
2088 		ret = -EINVAL;
2089 		break;
2090 	}
2091 	return ret;
2092 }
2093 
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2094 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2095 		struct xhci_input_control_ctx *ctrl_ctx)
2096 {
2097 	u32 valid_add_flags;
2098 	u32 valid_drop_flags;
2099 
2100 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2101 	 * (bit 1).  The default control endpoint is added during the Address
2102 	 * Device command and is never removed until the slot is disabled.
2103 	 */
2104 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2105 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2106 
2107 	/* Use hweight32 to count the number of ones in the add flags, or
2108 	 * number of endpoints added.  Don't count endpoints that are changed
2109 	 * (both added and dropped).
2110 	 */
2111 	return hweight32(valid_add_flags) -
2112 		hweight32(valid_add_flags & valid_drop_flags);
2113 }
2114 
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2115 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2116 		struct xhci_input_control_ctx *ctrl_ctx)
2117 {
2118 	u32 valid_add_flags;
2119 	u32 valid_drop_flags;
2120 
2121 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2122 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2123 
2124 	return hweight32(valid_drop_flags) -
2125 		hweight32(valid_add_flags & valid_drop_flags);
2126 }
2127 
2128 /*
2129  * We need to reserve the new number of endpoints before the configure endpoint
2130  * command completes.  We can't subtract the dropped endpoints from the number
2131  * of active endpoints until the command completes because we can oversubscribe
2132  * the host in this case:
2133  *
2134  *  - the first configure endpoint command drops more endpoints than it adds
2135  *  - a second configure endpoint command that adds more endpoints is queued
2136  *  - the first configure endpoint command fails, so the config is unchanged
2137  *  - the second command may succeed, even though there isn't enough resources
2138  *
2139  * Must be called with xhci->lock held.
2140  */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2141 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2142 		struct xhci_input_control_ctx *ctrl_ctx)
2143 {
2144 	u32 added_eps;
2145 
2146 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2147 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2148 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2149 				"Not enough ep ctxs: "
2150 				"%u active, need to add %u, limit is %u.",
2151 				xhci->num_active_eps, added_eps,
2152 				xhci->limit_active_eps);
2153 		return -ENOMEM;
2154 	}
2155 	xhci->num_active_eps += added_eps;
2156 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2157 			"Adding %u ep ctxs, %u now active.", added_eps,
2158 			xhci->num_active_eps);
2159 	return 0;
2160 }
2161 
2162 /*
2163  * The configure endpoint was failed by the xHC for some other reason, so we
2164  * need to revert the resources that failed configuration would have used.
2165  *
2166  * Must be called with xhci->lock held.
2167  */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2168 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2169 		struct xhci_input_control_ctx *ctrl_ctx)
2170 {
2171 	u32 num_failed_eps;
2172 
2173 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2174 	xhci->num_active_eps -= num_failed_eps;
2175 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2176 			"Removing %u failed ep ctxs, %u now active.",
2177 			num_failed_eps,
2178 			xhci->num_active_eps);
2179 }
2180 
2181 /*
2182  * Now that the command has completed, clean up the active endpoint count by
2183  * subtracting out the endpoints that were dropped (but not changed).
2184  *
2185  * Must be called with xhci->lock held.
2186  */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2187 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2188 		struct xhci_input_control_ctx *ctrl_ctx)
2189 {
2190 	u32 num_dropped_eps;
2191 
2192 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2193 	xhci->num_active_eps -= num_dropped_eps;
2194 	if (num_dropped_eps)
2195 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2196 				"Removing %u dropped ep ctxs, %u now active.",
2197 				num_dropped_eps,
2198 				xhci->num_active_eps);
2199 }
2200 
xhci_get_block_size(struct usb_device * udev)2201 static unsigned int xhci_get_block_size(struct usb_device *udev)
2202 {
2203 	switch (udev->speed) {
2204 	case USB_SPEED_LOW:
2205 	case USB_SPEED_FULL:
2206 		return FS_BLOCK;
2207 	case USB_SPEED_HIGH:
2208 		return HS_BLOCK;
2209 	case USB_SPEED_SUPER:
2210 	case USB_SPEED_SUPER_PLUS:
2211 		return SS_BLOCK;
2212 	case USB_SPEED_UNKNOWN:
2213 	case USB_SPEED_WIRELESS:
2214 	default:
2215 		/* Should never happen */
2216 		return 1;
2217 	}
2218 }
2219 
2220 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2221 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2222 {
2223 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2224 		return LS_OVERHEAD;
2225 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2226 		return FS_OVERHEAD;
2227 	return HS_OVERHEAD;
2228 }
2229 
2230 /* If we are changing a LS/FS device under a HS hub,
2231  * make sure (if we are activating a new TT) that the HS bus has enough
2232  * bandwidth for this new TT.
2233  */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2234 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2235 		struct xhci_virt_device *virt_dev,
2236 		int old_active_eps)
2237 {
2238 	struct xhci_interval_bw_table *bw_table;
2239 	struct xhci_tt_bw_info *tt_info;
2240 
2241 	/* Find the bandwidth table for the root port this TT is attached to. */
2242 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2243 	tt_info = virt_dev->tt_info;
2244 	/* If this TT already had active endpoints, the bandwidth for this TT
2245 	 * has already been added.  Removing all periodic endpoints (and thus
2246 	 * making the TT enactive) will only decrease the bandwidth used.
2247 	 */
2248 	if (old_active_eps)
2249 		return 0;
2250 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2251 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2252 			return -ENOMEM;
2253 		return 0;
2254 	}
2255 	/* Not sure why we would have no new active endpoints...
2256 	 *
2257 	 * Maybe because of an Evaluate Context change for a hub update or a
2258 	 * control endpoint 0 max packet size change?
2259 	 * FIXME: skip the bandwidth calculation in that case.
2260 	 */
2261 	return 0;
2262 }
2263 
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2264 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2265 		struct xhci_virt_device *virt_dev)
2266 {
2267 	unsigned int bw_reserved;
2268 
2269 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2270 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2271 		return -ENOMEM;
2272 
2273 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2274 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2275 		return -ENOMEM;
2276 
2277 	return 0;
2278 }
2279 
2280 /*
2281  * This algorithm is a very conservative estimate of the worst-case scheduling
2282  * scenario for any one interval.  The hardware dynamically schedules the
2283  * packets, so we can't tell which microframe could be the limiting factor in
2284  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2285  *
2286  * Obviously, we can't solve an NP complete problem to find the minimum worst
2287  * case scenario.  Instead, we come up with an estimate that is no less than
2288  * the worst case bandwidth used for any one microframe, but may be an
2289  * over-estimate.
2290  *
2291  * We walk the requirements for each endpoint by interval, starting with the
2292  * smallest interval, and place packets in the schedule where there is only one
2293  * possible way to schedule packets for that interval.  In order to simplify
2294  * this algorithm, we record the largest max packet size for each interval, and
2295  * assume all packets will be that size.
2296  *
2297  * For interval 0, we obviously must schedule all packets for each interval.
2298  * The bandwidth for interval 0 is just the amount of data to be transmitted
2299  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2300  * the number of packets).
2301  *
2302  * For interval 1, we have two possible microframes to schedule those packets
2303  * in.  For this algorithm, if we can schedule the same number of packets for
2304  * each possible scheduling opportunity (each microframe), we will do so.  The
2305  * remaining number of packets will be saved to be transmitted in the gaps in
2306  * the next interval's scheduling sequence.
2307  *
2308  * As we move those remaining packets to be scheduled with interval 2 packets,
2309  * we have to double the number of remaining packets to transmit.  This is
2310  * because the intervals are actually powers of 2, and we would be transmitting
2311  * the previous interval's packets twice in this interval.  We also have to be
2312  * sure that when we look at the largest max packet size for this interval, we
2313  * also look at the largest max packet size for the remaining packets and take
2314  * the greater of the two.
2315  *
2316  * The algorithm continues to evenly distribute packets in each scheduling
2317  * opportunity, and push the remaining packets out, until we get to the last
2318  * interval.  Then those packets and their associated overhead are just added
2319  * to the bandwidth used.
2320  */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2321 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2322 		struct xhci_virt_device *virt_dev,
2323 		int old_active_eps)
2324 {
2325 	unsigned int bw_reserved;
2326 	unsigned int max_bandwidth;
2327 	unsigned int bw_used;
2328 	unsigned int block_size;
2329 	struct xhci_interval_bw_table *bw_table;
2330 	unsigned int packet_size = 0;
2331 	unsigned int overhead = 0;
2332 	unsigned int packets_transmitted = 0;
2333 	unsigned int packets_remaining = 0;
2334 	unsigned int i;
2335 
2336 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2337 		return xhci_check_ss_bw(xhci, virt_dev);
2338 
2339 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2340 		max_bandwidth = HS_BW_LIMIT;
2341 		/* Convert percent of bus BW reserved to blocks reserved */
2342 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2343 	} else {
2344 		max_bandwidth = FS_BW_LIMIT;
2345 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2346 	}
2347 
2348 	bw_table = virt_dev->bw_table;
2349 	/* We need to translate the max packet size and max ESIT payloads into
2350 	 * the units the hardware uses.
2351 	 */
2352 	block_size = xhci_get_block_size(virt_dev->udev);
2353 
2354 	/* If we are manipulating a LS/FS device under a HS hub, double check
2355 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2356 	 */
2357 	if (virt_dev->tt_info) {
2358 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2359 				"Recalculating BW for rootport %u",
2360 				virt_dev->real_port);
2361 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2362 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2363 					"newly activated TT.\n");
2364 			return -ENOMEM;
2365 		}
2366 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2367 				"Recalculating BW for TT slot %u port %u",
2368 				virt_dev->tt_info->slot_id,
2369 				virt_dev->tt_info->ttport);
2370 	} else {
2371 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2372 				"Recalculating BW for rootport %u",
2373 				virt_dev->real_port);
2374 	}
2375 
2376 	/* Add in how much bandwidth will be used for interval zero, or the
2377 	 * rounded max ESIT payload + number of packets * largest overhead.
2378 	 */
2379 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2380 		bw_table->interval_bw[0].num_packets *
2381 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2382 
2383 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2384 		unsigned int bw_added;
2385 		unsigned int largest_mps;
2386 		unsigned int interval_overhead;
2387 
2388 		/*
2389 		 * How many packets could we transmit in this interval?
2390 		 * If packets didn't fit in the previous interval, we will need
2391 		 * to transmit that many packets twice within this interval.
2392 		 */
2393 		packets_remaining = 2 * packets_remaining +
2394 			bw_table->interval_bw[i].num_packets;
2395 
2396 		/* Find the largest max packet size of this or the previous
2397 		 * interval.
2398 		 */
2399 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2400 			largest_mps = 0;
2401 		else {
2402 			struct xhci_virt_ep *virt_ep;
2403 			struct list_head *ep_entry;
2404 
2405 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2406 			virt_ep = list_entry(ep_entry,
2407 					struct xhci_virt_ep, bw_endpoint_list);
2408 			/* Convert to blocks, rounding up */
2409 			largest_mps = DIV_ROUND_UP(
2410 					virt_ep->bw_info.max_packet_size,
2411 					block_size);
2412 		}
2413 		if (largest_mps > packet_size)
2414 			packet_size = largest_mps;
2415 
2416 		/* Use the larger overhead of this or the previous interval. */
2417 		interval_overhead = xhci_get_largest_overhead(
2418 				&bw_table->interval_bw[i]);
2419 		if (interval_overhead > overhead)
2420 			overhead = interval_overhead;
2421 
2422 		/* How many packets can we evenly distribute across
2423 		 * (1 << (i + 1)) possible scheduling opportunities?
2424 		 */
2425 		packets_transmitted = packets_remaining >> (i + 1);
2426 
2427 		/* Add in the bandwidth used for those scheduled packets */
2428 		bw_added = packets_transmitted * (overhead + packet_size);
2429 
2430 		/* How many packets do we have remaining to transmit? */
2431 		packets_remaining = packets_remaining % (1 << (i + 1));
2432 
2433 		/* What largest max packet size should those packets have? */
2434 		/* If we've transmitted all packets, don't carry over the
2435 		 * largest packet size.
2436 		 */
2437 		if (packets_remaining == 0) {
2438 			packet_size = 0;
2439 			overhead = 0;
2440 		} else if (packets_transmitted > 0) {
2441 			/* Otherwise if we do have remaining packets, and we've
2442 			 * scheduled some packets in this interval, take the
2443 			 * largest max packet size from endpoints with this
2444 			 * interval.
2445 			 */
2446 			packet_size = largest_mps;
2447 			overhead = interval_overhead;
2448 		}
2449 		/* Otherwise carry over packet_size and overhead from the last
2450 		 * time we had a remainder.
2451 		 */
2452 		bw_used += bw_added;
2453 		if (bw_used > max_bandwidth) {
2454 			xhci_warn(xhci, "Not enough bandwidth. "
2455 					"Proposed: %u, Max: %u\n",
2456 				bw_used, max_bandwidth);
2457 			return -ENOMEM;
2458 		}
2459 	}
2460 	/*
2461 	 * Ok, we know we have some packets left over after even-handedly
2462 	 * scheduling interval 15.  We don't know which microframes they will
2463 	 * fit into, so we over-schedule and say they will be scheduled every
2464 	 * microframe.
2465 	 */
2466 	if (packets_remaining > 0)
2467 		bw_used += overhead + packet_size;
2468 
2469 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2470 		unsigned int port_index = virt_dev->real_port - 1;
2471 
2472 		/* OK, we're manipulating a HS device attached to a
2473 		 * root port bandwidth domain.  Include the number of active TTs
2474 		 * in the bandwidth used.
2475 		 */
2476 		bw_used += TT_HS_OVERHEAD *
2477 			xhci->rh_bw[port_index].num_active_tts;
2478 	}
2479 
2480 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2481 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2482 		"Available: %u " "percent",
2483 		bw_used, max_bandwidth, bw_reserved,
2484 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2485 		max_bandwidth);
2486 
2487 	bw_used += bw_reserved;
2488 	if (bw_used > max_bandwidth) {
2489 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2490 				bw_used, max_bandwidth);
2491 		return -ENOMEM;
2492 	}
2493 
2494 	bw_table->bw_used = bw_used;
2495 	return 0;
2496 }
2497 
xhci_is_async_ep(unsigned int ep_type)2498 static bool xhci_is_async_ep(unsigned int ep_type)
2499 {
2500 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2501 					ep_type != ISOC_IN_EP &&
2502 					ep_type != INT_IN_EP);
2503 }
2504 
xhci_is_sync_in_ep(unsigned int ep_type)2505 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2506 {
2507 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2508 }
2509 
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2510 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2511 {
2512 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2513 
2514 	if (ep_bw->ep_interval == 0)
2515 		return SS_OVERHEAD_BURST +
2516 			(ep_bw->mult * ep_bw->num_packets *
2517 					(SS_OVERHEAD + mps));
2518 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2519 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2520 				1 << ep_bw->ep_interval);
2521 
2522 }
2523 
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2524 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2525 		struct xhci_bw_info *ep_bw,
2526 		struct xhci_interval_bw_table *bw_table,
2527 		struct usb_device *udev,
2528 		struct xhci_virt_ep *virt_ep,
2529 		struct xhci_tt_bw_info *tt_info)
2530 {
2531 	struct xhci_interval_bw	*interval_bw;
2532 	int normalized_interval;
2533 
2534 	if (xhci_is_async_ep(ep_bw->type))
2535 		return;
2536 
2537 	if (udev->speed >= USB_SPEED_SUPER) {
2538 		if (xhci_is_sync_in_ep(ep_bw->type))
2539 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2540 				xhci_get_ss_bw_consumed(ep_bw);
2541 		else
2542 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2543 				xhci_get_ss_bw_consumed(ep_bw);
2544 		return;
2545 	}
2546 
2547 	/* SuperSpeed endpoints never get added to intervals in the table, so
2548 	 * this check is only valid for HS/FS/LS devices.
2549 	 */
2550 	if (list_empty(&virt_ep->bw_endpoint_list))
2551 		return;
2552 	/* For LS/FS devices, we need to translate the interval expressed in
2553 	 * microframes to frames.
2554 	 */
2555 	if (udev->speed == USB_SPEED_HIGH)
2556 		normalized_interval = ep_bw->ep_interval;
2557 	else
2558 		normalized_interval = ep_bw->ep_interval - 3;
2559 
2560 	if (normalized_interval == 0)
2561 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2562 	interval_bw = &bw_table->interval_bw[normalized_interval];
2563 	interval_bw->num_packets -= ep_bw->num_packets;
2564 	switch (udev->speed) {
2565 	case USB_SPEED_LOW:
2566 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2567 		break;
2568 	case USB_SPEED_FULL:
2569 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2570 		break;
2571 	case USB_SPEED_HIGH:
2572 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2573 		break;
2574 	case USB_SPEED_SUPER:
2575 	case USB_SPEED_SUPER_PLUS:
2576 	case USB_SPEED_UNKNOWN:
2577 	case USB_SPEED_WIRELESS:
2578 		/* Should never happen because only LS/FS/HS endpoints will get
2579 		 * added to the endpoint list.
2580 		 */
2581 		return;
2582 	}
2583 	if (tt_info)
2584 		tt_info->active_eps -= 1;
2585 	list_del_init(&virt_ep->bw_endpoint_list);
2586 }
2587 
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2588 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2589 		struct xhci_bw_info *ep_bw,
2590 		struct xhci_interval_bw_table *bw_table,
2591 		struct usb_device *udev,
2592 		struct xhci_virt_ep *virt_ep,
2593 		struct xhci_tt_bw_info *tt_info)
2594 {
2595 	struct xhci_interval_bw	*interval_bw;
2596 	struct xhci_virt_ep *smaller_ep;
2597 	int normalized_interval;
2598 
2599 	if (xhci_is_async_ep(ep_bw->type))
2600 		return;
2601 
2602 	if (udev->speed == USB_SPEED_SUPER) {
2603 		if (xhci_is_sync_in_ep(ep_bw->type))
2604 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2605 				xhci_get_ss_bw_consumed(ep_bw);
2606 		else
2607 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2608 				xhci_get_ss_bw_consumed(ep_bw);
2609 		return;
2610 	}
2611 
2612 	/* For LS/FS devices, we need to translate the interval expressed in
2613 	 * microframes to frames.
2614 	 */
2615 	if (udev->speed == USB_SPEED_HIGH)
2616 		normalized_interval = ep_bw->ep_interval;
2617 	else
2618 		normalized_interval = ep_bw->ep_interval - 3;
2619 
2620 	if (normalized_interval == 0)
2621 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2622 	interval_bw = &bw_table->interval_bw[normalized_interval];
2623 	interval_bw->num_packets += ep_bw->num_packets;
2624 	switch (udev->speed) {
2625 	case USB_SPEED_LOW:
2626 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2627 		break;
2628 	case USB_SPEED_FULL:
2629 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2630 		break;
2631 	case USB_SPEED_HIGH:
2632 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2633 		break;
2634 	case USB_SPEED_SUPER:
2635 	case USB_SPEED_SUPER_PLUS:
2636 	case USB_SPEED_UNKNOWN:
2637 	case USB_SPEED_WIRELESS:
2638 		/* Should never happen because only LS/FS/HS endpoints will get
2639 		 * added to the endpoint list.
2640 		 */
2641 		return;
2642 	}
2643 
2644 	if (tt_info)
2645 		tt_info->active_eps += 1;
2646 	/* Insert the endpoint into the list, largest max packet size first. */
2647 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2648 			bw_endpoint_list) {
2649 		if (ep_bw->max_packet_size >=
2650 				smaller_ep->bw_info.max_packet_size) {
2651 			/* Add the new ep before the smaller endpoint */
2652 			list_add_tail(&virt_ep->bw_endpoint_list,
2653 					&smaller_ep->bw_endpoint_list);
2654 			return;
2655 		}
2656 	}
2657 	/* Add the new endpoint at the end of the list. */
2658 	list_add_tail(&virt_ep->bw_endpoint_list,
2659 			&interval_bw->endpoints);
2660 }
2661 
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2662 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2663 		struct xhci_virt_device *virt_dev,
2664 		int old_active_eps)
2665 {
2666 	struct xhci_root_port_bw_info *rh_bw_info;
2667 	if (!virt_dev->tt_info)
2668 		return;
2669 
2670 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2671 	if (old_active_eps == 0 &&
2672 				virt_dev->tt_info->active_eps != 0) {
2673 		rh_bw_info->num_active_tts += 1;
2674 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2675 	} else if (old_active_eps != 0 &&
2676 				virt_dev->tt_info->active_eps == 0) {
2677 		rh_bw_info->num_active_tts -= 1;
2678 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2679 	}
2680 }
2681 
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2682 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2683 		struct xhci_virt_device *virt_dev,
2684 		struct xhci_container_ctx *in_ctx)
2685 {
2686 	struct xhci_bw_info ep_bw_info[31];
2687 	int i;
2688 	struct xhci_input_control_ctx *ctrl_ctx;
2689 	int old_active_eps = 0;
2690 
2691 	if (virt_dev->tt_info)
2692 		old_active_eps = virt_dev->tt_info->active_eps;
2693 
2694 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2695 	if (!ctrl_ctx) {
2696 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2697 				__func__);
2698 		return -ENOMEM;
2699 	}
2700 
2701 	for (i = 0; i < 31; i++) {
2702 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2703 			continue;
2704 
2705 		/* Make a copy of the BW info in case we need to revert this */
2706 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2707 				sizeof(ep_bw_info[i]));
2708 		/* Drop the endpoint from the interval table if the endpoint is
2709 		 * being dropped or changed.
2710 		 */
2711 		if (EP_IS_DROPPED(ctrl_ctx, i))
2712 			xhci_drop_ep_from_interval_table(xhci,
2713 					&virt_dev->eps[i].bw_info,
2714 					virt_dev->bw_table,
2715 					virt_dev->udev,
2716 					&virt_dev->eps[i],
2717 					virt_dev->tt_info);
2718 	}
2719 	/* Overwrite the information stored in the endpoints' bw_info */
2720 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2721 	for (i = 0; i < 31; i++) {
2722 		/* Add any changed or added endpoints to the interval table */
2723 		if (EP_IS_ADDED(ctrl_ctx, i))
2724 			xhci_add_ep_to_interval_table(xhci,
2725 					&virt_dev->eps[i].bw_info,
2726 					virt_dev->bw_table,
2727 					virt_dev->udev,
2728 					&virt_dev->eps[i],
2729 					virt_dev->tt_info);
2730 	}
2731 
2732 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2733 		/* Ok, this fits in the bandwidth we have.
2734 		 * Update the number of active TTs.
2735 		 */
2736 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2737 		return 0;
2738 	}
2739 
2740 	/* We don't have enough bandwidth for this, revert the stored info. */
2741 	for (i = 0; i < 31; i++) {
2742 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2743 			continue;
2744 
2745 		/* Drop the new copies of any added or changed endpoints from
2746 		 * the interval table.
2747 		 */
2748 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2749 			xhci_drop_ep_from_interval_table(xhci,
2750 					&virt_dev->eps[i].bw_info,
2751 					virt_dev->bw_table,
2752 					virt_dev->udev,
2753 					&virt_dev->eps[i],
2754 					virt_dev->tt_info);
2755 		}
2756 		/* Revert the endpoint back to its old information */
2757 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2758 				sizeof(ep_bw_info[i]));
2759 		/* Add any changed or dropped endpoints back into the table */
2760 		if (EP_IS_DROPPED(ctrl_ctx, i))
2761 			xhci_add_ep_to_interval_table(xhci,
2762 					&virt_dev->eps[i].bw_info,
2763 					virt_dev->bw_table,
2764 					virt_dev->udev,
2765 					&virt_dev->eps[i],
2766 					virt_dev->tt_info);
2767 	}
2768 	return -ENOMEM;
2769 }
2770 
2771 
2772 /* Issue a configure endpoint command or evaluate context command
2773  * and wait for it to finish.
2774  */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2775 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2776 		struct usb_device *udev,
2777 		struct xhci_command *command,
2778 		bool ctx_change, bool must_succeed)
2779 {
2780 	int ret;
2781 	unsigned long flags;
2782 	struct xhci_input_control_ctx *ctrl_ctx;
2783 	struct xhci_virt_device *virt_dev;
2784 	struct xhci_slot_ctx *slot_ctx;
2785 
2786 	if (!command)
2787 		return -EINVAL;
2788 
2789 	spin_lock_irqsave(&xhci->lock, flags);
2790 
2791 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2792 		spin_unlock_irqrestore(&xhci->lock, flags);
2793 		return -ESHUTDOWN;
2794 	}
2795 
2796 	virt_dev = xhci->devs[udev->slot_id];
2797 
2798 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2799 	if (!ctrl_ctx) {
2800 		spin_unlock_irqrestore(&xhci->lock, flags);
2801 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2802 				__func__);
2803 		return -ENOMEM;
2804 	}
2805 
2806 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2807 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2808 		spin_unlock_irqrestore(&xhci->lock, flags);
2809 		xhci_warn(xhci, "Not enough host resources, "
2810 				"active endpoint contexts = %u\n",
2811 				xhci->num_active_eps);
2812 		return -ENOMEM;
2813 	}
2814 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2815 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2816 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2817 			xhci_free_host_resources(xhci, ctrl_ctx);
2818 		spin_unlock_irqrestore(&xhci->lock, flags);
2819 		xhci_warn(xhci, "Not enough bandwidth\n");
2820 		return -ENOMEM;
2821 	}
2822 
2823 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2824 
2825 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2826 	trace_xhci_configure_endpoint(slot_ctx);
2827 
2828 	if (!ctx_change)
2829 		ret = xhci_queue_configure_endpoint(xhci, command,
2830 				command->in_ctx->dma,
2831 				udev->slot_id, must_succeed);
2832 	else
2833 		ret = xhci_queue_evaluate_context(xhci, command,
2834 				command->in_ctx->dma,
2835 				udev->slot_id, must_succeed);
2836 	if (ret < 0) {
2837 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2838 			xhci_free_host_resources(xhci, ctrl_ctx);
2839 		spin_unlock_irqrestore(&xhci->lock, flags);
2840 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2841 				"FIXME allocate a new ring segment");
2842 		return -ENOMEM;
2843 	}
2844 	xhci_ring_cmd_db(xhci);
2845 	spin_unlock_irqrestore(&xhci->lock, flags);
2846 
2847 	/* Wait for the configure endpoint command to complete */
2848 	wait_for_completion(command->completion);
2849 
2850 	if (!ctx_change)
2851 		ret = xhci_configure_endpoint_result(xhci, udev,
2852 						     &command->status);
2853 	else
2854 		ret = xhci_evaluate_context_result(xhci, udev,
2855 						   &command->status);
2856 
2857 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2858 		spin_lock_irqsave(&xhci->lock, flags);
2859 		/* If the command failed, remove the reserved resources.
2860 		 * Otherwise, clean up the estimate to include dropped eps.
2861 		 */
2862 		if (ret)
2863 			xhci_free_host_resources(xhci, ctrl_ctx);
2864 		else
2865 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2866 		spin_unlock_irqrestore(&xhci->lock, flags);
2867 	}
2868 	if (ret)
2869 		goto failed;
2870 
2871 	ret = xhci_vendor_sync_dev_ctx(xhci, udev->slot_id);
2872 	if (ret)
2873 		xhci_warn(xhci, "sync device context failed, ret=%d", ret);
2874 
2875 failed:
2876 	return ret;
2877 }
2878 
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2879 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2880 	struct xhci_virt_device *vdev, int i)
2881 {
2882 	struct xhci_virt_ep *ep = &vdev->eps[i];
2883 
2884 	if (ep->ep_state & EP_HAS_STREAMS) {
2885 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2886 				xhci_get_endpoint_address(i));
2887 		xhci_free_stream_info(xhci, ep->stream_info);
2888 		ep->stream_info = NULL;
2889 		ep->ep_state &= ~EP_HAS_STREAMS;
2890 	}
2891 }
2892 
2893 /* Called after one or more calls to xhci_add_endpoint() or
2894  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2895  * to call xhci_reset_bandwidth().
2896  *
2897  * Since we are in the middle of changing either configuration or
2898  * installing a new alt setting, the USB core won't allow URBs to be
2899  * enqueued for any endpoint on the old config or interface.  Nothing
2900  * else should be touching the xhci->devs[slot_id] structure, so we
2901  * don't need to take the xhci->lock for manipulating that.
2902  */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2903 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2904 {
2905 	int i;
2906 	int ret = 0;
2907 	struct xhci_hcd *xhci;
2908 	struct xhci_virt_device	*virt_dev;
2909 	struct xhci_input_control_ctx *ctrl_ctx;
2910 	struct xhci_slot_ctx *slot_ctx;
2911 	struct xhci_command *command;
2912 
2913 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2914 	if (ret <= 0)
2915 		return ret;
2916 	xhci = hcd_to_xhci(hcd);
2917 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2918 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2919 		return -ENODEV;
2920 
2921 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2922 	virt_dev = xhci->devs[udev->slot_id];
2923 
2924 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2925 	if (!command)
2926 		return -ENOMEM;
2927 
2928 	command->in_ctx = virt_dev->in_ctx;
2929 
2930 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2931 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2932 	if (!ctrl_ctx) {
2933 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2934 				__func__);
2935 		ret = -ENOMEM;
2936 		goto command_cleanup;
2937 	}
2938 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2939 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2940 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2941 
2942 	/* Don't issue the command if there's no endpoints to update. */
2943 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2944 	    ctrl_ctx->drop_flags == 0) {
2945 		ret = 0;
2946 		goto command_cleanup;
2947 	}
2948 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2949 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2950 	for (i = 31; i >= 1; i--) {
2951 		__le32 le32 = cpu_to_le32(BIT(i));
2952 
2953 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2954 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2955 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2956 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2957 			break;
2958 		}
2959 	}
2960 
2961 	ret = xhci_configure_endpoint(xhci, udev, command,
2962 			false, false);
2963 	if (ret)
2964 		/* Callee should call reset_bandwidth() */
2965 		goto command_cleanup;
2966 
2967 	/* Free any rings that were dropped, but not changed. */
2968 	for (i = 1; i < 31; i++) {
2969 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2970 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2971 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2972 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2973 		}
2974 	}
2975 	xhci_zero_in_ctx(xhci, virt_dev);
2976 	/*
2977 	 * Install any rings for completely new endpoints or changed endpoints,
2978 	 * and free any old rings from changed endpoints.
2979 	 */
2980 	for (i = 1; i < 31; i++) {
2981 		if (!virt_dev->eps[i].new_ring)
2982 			continue;
2983 		/* Only free the old ring if it exists.
2984 		 * It may not if this is the first add of an endpoint.
2985 		 */
2986 		if (virt_dev->eps[i].ring) {
2987 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2988 		}
2989 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2990 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2991 		virt_dev->eps[i].new_ring = NULL;
2992 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
2993 	}
2994 command_cleanup:
2995 	kfree(command->completion);
2996 	kfree(command);
2997 
2998 	return ret;
2999 }
3000 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3001 
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3002 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3003 {
3004 	struct xhci_hcd *xhci;
3005 	struct xhci_virt_device	*virt_dev;
3006 	int i, ret;
3007 
3008 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3009 	if (ret <= 0)
3010 		return;
3011 	xhci = hcd_to_xhci(hcd);
3012 
3013 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3014 	virt_dev = xhci->devs[udev->slot_id];
3015 	/* Free any rings allocated for added endpoints */
3016 	for (i = 0; i < 31; i++) {
3017 		if (virt_dev->eps[i].new_ring) {
3018 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3019 			if (xhci_vendor_is_usb_offload_enabled(xhci, virt_dev, i))
3020 				xhci_vendor_free_transfer_ring(xhci, virt_dev, i);
3021 			else
3022 				xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3023 
3024 			virt_dev->eps[i].new_ring = NULL;
3025 		}
3026 	}
3027 	xhci_zero_in_ctx(xhci, virt_dev);
3028 }
3029 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3030 
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3031 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3032 		struct xhci_container_ctx *in_ctx,
3033 		struct xhci_container_ctx *out_ctx,
3034 		struct xhci_input_control_ctx *ctrl_ctx,
3035 		u32 add_flags, u32 drop_flags)
3036 {
3037 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3038 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3039 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3040 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3041 }
3042 
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3043 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3044 				  struct usb_host_endpoint *host_ep)
3045 {
3046 	struct xhci_hcd		*xhci;
3047 	struct xhci_virt_device	*vdev;
3048 	struct xhci_virt_ep	*ep;
3049 	struct usb_device	*udev;
3050 	unsigned long		flags;
3051 	unsigned int		ep_index;
3052 
3053 	xhci = hcd_to_xhci(hcd);
3054 rescan:
3055 	spin_lock_irqsave(&xhci->lock, flags);
3056 
3057 	udev = (struct usb_device *)host_ep->hcpriv;
3058 	if (!udev || !udev->slot_id)
3059 		goto done;
3060 
3061 	vdev = xhci->devs[udev->slot_id];
3062 	if (!vdev)
3063 		goto done;
3064 
3065 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3066 	ep = &vdev->eps[ep_index];
3067 	if (!ep)
3068 		goto done;
3069 
3070 	/* wait for hub_tt_work to finish clearing hub TT */
3071 	if (ep->ep_state & EP_CLEARING_TT) {
3072 		spin_unlock_irqrestore(&xhci->lock, flags);
3073 		schedule_timeout_uninterruptible(1);
3074 		goto rescan;
3075 	}
3076 
3077 	if (ep->ep_state)
3078 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3079 			 ep->ep_state);
3080 done:
3081 	host_ep->hcpriv = NULL;
3082 	spin_unlock_irqrestore(&xhci->lock, flags);
3083 }
3084 
3085 /*
3086  * Called after usb core issues a clear halt control message.
3087  * The host side of the halt should already be cleared by a reset endpoint
3088  * command issued when the STALL event was received.
3089  *
3090  * The reset endpoint command may only be issued to endpoints in the halted
3091  * state. For software that wishes to reset the data toggle or sequence number
3092  * of an endpoint that isn't in the halted state this function will issue a
3093  * configure endpoint command with the Drop and Add bits set for the target
3094  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3095  */
3096 
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3097 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3098 		struct usb_host_endpoint *host_ep)
3099 {
3100 	struct xhci_hcd *xhci;
3101 	struct usb_device *udev;
3102 	struct xhci_virt_device *vdev;
3103 	struct xhci_virt_ep *ep;
3104 	struct xhci_input_control_ctx *ctrl_ctx;
3105 	struct xhci_command *stop_cmd, *cfg_cmd;
3106 	unsigned int ep_index;
3107 	unsigned long flags;
3108 	u32 ep_flag;
3109 	int err;
3110 
3111 	xhci = hcd_to_xhci(hcd);
3112 	if (!host_ep->hcpriv)
3113 		return;
3114 	udev = (struct usb_device *) host_ep->hcpriv;
3115 	vdev = xhci->devs[udev->slot_id];
3116 
3117 	/*
3118 	 * vdev may be lost due to xHC restore error and re-initialization
3119 	 * during S3/S4 resume. A new vdev will be allocated later by
3120 	 * xhci_discover_or_reset_device()
3121 	 */
3122 	if (!udev->slot_id || !vdev)
3123 		return;
3124 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3125 	ep = &vdev->eps[ep_index];
3126 	if (!ep)
3127 		return;
3128 
3129 	/* Bail out if toggle is already being cleared by a endpoint reset */
3130 	spin_lock_irqsave(&xhci->lock, flags);
3131 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3132 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3133 		spin_unlock_irqrestore(&xhci->lock, flags);
3134 		return;
3135 	}
3136 	spin_unlock_irqrestore(&xhci->lock, flags);
3137 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3138 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3139 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3140 		return;
3141 
3142 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3143 
3144 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3145 		return;
3146 
3147 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3148 	if (!stop_cmd)
3149 		return;
3150 
3151 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3152 	if (!cfg_cmd)
3153 		goto cleanup;
3154 
3155 	spin_lock_irqsave(&xhci->lock, flags);
3156 
3157 	/* block queuing new trbs and ringing ep doorbell */
3158 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3159 
3160 	/*
3161 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3162 	 * Driver is required to synchronously cancel all transfer request.
3163 	 * Stop the endpoint to force xHC to update the output context
3164 	 */
3165 
3166 	if (!list_empty(&ep->ring->td_list)) {
3167 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3168 		spin_unlock_irqrestore(&xhci->lock, flags);
3169 		xhci_free_command(xhci, cfg_cmd);
3170 		goto cleanup;
3171 	}
3172 
3173 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3174 					ep_index, 0);
3175 	if (err < 0) {
3176 		spin_unlock_irqrestore(&xhci->lock, flags);
3177 		xhci_free_command(xhci, cfg_cmd);
3178 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3179 				__func__, err);
3180 		goto cleanup;
3181 	}
3182 
3183 	xhci_ring_cmd_db(xhci);
3184 	spin_unlock_irqrestore(&xhci->lock, flags);
3185 
3186 	wait_for_completion(stop_cmd->completion);
3187 
3188 	err = xhci_vendor_sync_dev_ctx(xhci, udev->slot_id);
3189 	if (err) {
3190 		xhci_warn(xhci, "%s: Failed to sync device context failed, err=%d",
3191 			  __func__, err);
3192 		goto cleanup;
3193 	}
3194 
3195 	spin_lock_irqsave(&xhci->lock, flags);
3196 
3197 	/* config ep command clears toggle if add and drop ep flags are set */
3198 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3199 	if (!ctrl_ctx) {
3200 		spin_unlock_irqrestore(&xhci->lock, flags);
3201 		xhci_free_command(xhci, cfg_cmd);
3202 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3203 				__func__);
3204 		goto cleanup;
3205 	}
3206 
3207 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3208 					   ctrl_ctx, ep_flag, ep_flag);
3209 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3210 
3211 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3212 				      udev->slot_id, false);
3213 	if (err < 0) {
3214 		spin_unlock_irqrestore(&xhci->lock, flags);
3215 		xhci_free_command(xhci, cfg_cmd);
3216 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3217 				__func__, err);
3218 		goto cleanup;
3219 	}
3220 
3221 	xhci_ring_cmd_db(xhci);
3222 	spin_unlock_irqrestore(&xhci->lock, flags);
3223 
3224 	wait_for_completion(cfg_cmd->completion);
3225 
3226 	err = xhci_vendor_sync_dev_ctx(xhci, udev->slot_id);
3227 	if (err)
3228 		xhci_warn(xhci, "%s: Failed to sync device context failed, err=%d",
3229 			  __func__, err);
3230 
3231 	xhci_free_command(xhci, cfg_cmd);
3232 cleanup:
3233 	xhci_free_command(xhci, stop_cmd);
3234 	spin_lock_irqsave(&xhci->lock, flags);
3235 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3236 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3237 	spin_unlock_irqrestore(&xhci->lock, flags);
3238 }
3239 
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3240 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3241 		struct usb_device *udev, struct usb_host_endpoint *ep,
3242 		unsigned int slot_id)
3243 {
3244 	int ret;
3245 	unsigned int ep_index;
3246 	unsigned int ep_state;
3247 
3248 	if (!ep)
3249 		return -EINVAL;
3250 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3251 	if (ret <= 0)
3252 		return ret ? ret : -EINVAL;
3253 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3254 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3255 				" descriptor for ep 0x%x does not support streams\n",
3256 				ep->desc.bEndpointAddress);
3257 		return -EINVAL;
3258 	}
3259 
3260 	ep_index = xhci_get_endpoint_index(&ep->desc);
3261 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3262 	if (ep_state & EP_HAS_STREAMS ||
3263 			ep_state & EP_GETTING_STREAMS) {
3264 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3265 				"already has streams set up.\n",
3266 				ep->desc.bEndpointAddress);
3267 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3268 				"dynamic stream context array reallocation.\n");
3269 		return -EINVAL;
3270 	}
3271 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3272 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3273 				"endpoint 0x%x; URBs are pending.\n",
3274 				ep->desc.bEndpointAddress);
3275 		return -EINVAL;
3276 	}
3277 	return 0;
3278 }
3279 
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3280 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3281 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3282 {
3283 	unsigned int max_streams;
3284 
3285 	/* The stream context array size must be a power of two */
3286 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3287 	/*
3288 	 * Find out how many primary stream array entries the host controller
3289 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3290 	 * level page entries), but that's an optional feature for xHCI host
3291 	 * controllers. xHCs must support at least 4 stream IDs.
3292 	 */
3293 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3294 	if (*num_stream_ctxs > max_streams) {
3295 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3296 				max_streams);
3297 		*num_stream_ctxs = max_streams;
3298 		*num_streams = max_streams;
3299 	}
3300 }
3301 
3302 /* Returns an error code if one of the endpoint already has streams.
3303  * This does not change any data structures, it only checks and gathers
3304  * information.
3305  */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3306 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3307 		struct usb_device *udev,
3308 		struct usb_host_endpoint **eps, unsigned int num_eps,
3309 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3310 {
3311 	unsigned int max_streams;
3312 	unsigned int endpoint_flag;
3313 	int i;
3314 	int ret;
3315 
3316 	for (i = 0; i < num_eps; i++) {
3317 		ret = xhci_check_streams_endpoint(xhci, udev,
3318 				eps[i], udev->slot_id);
3319 		if (ret < 0)
3320 			return ret;
3321 
3322 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3323 		if (max_streams < (*num_streams - 1)) {
3324 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3325 					eps[i]->desc.bEndpointAddress,
3326 					max_streams);
3327 			*num_streams = max_streams+1;
3328 		}
3329 
3330 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3331 		if (*changed_ep_bitmask & endpoint_flag)
3332 			return -EINVAL;
3333 		*changed_ep_bitmask |= endpoint_flag;
3334 	}
3335 	return 0;
3336 }
3337 
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3338 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3339 		struct usb_device *udev,
3340 		struct usb_host_endpoint **eps, unsigned int num_eps)
3341 {
3342 	u32 changed_ep_bitmask = 0;
3343 	unsigned int slot_id;
3344 	unsigned int ep_index;
3345 	unsigned int ep_state;
3346 	int i;
3347 
3348 	slot_id = udev->slot_id;
3349 	if (!xhci->devs[slot_id])
3350 		return 0;
3351 
3352 	for (i = 0; i < num_eps; i++) {
3353 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3354 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3355 		/* Are streams already being freed for the endpoint? */
3356 		if (ep_state & EP_GETTING_NO_STREAMS) {
3357 			xhci_warn(xhci, "WARN Can't disable streams for "
3358 					"endpoint 0x%x, "
3359 					"streams are being disabled already\n",
3360 					eps[i]->desc.bEndpointAddress);
3361 			return 0;
3362 		}
3363 		/* Are there actually any streams to free? */
3364 		if (!(ep_state & EP_HAS_STREAMS) &&
3365 				!(ep_state & EP_GETTING_STREAMS)) {
3366 			xhci_warn(xhci, "WARN Can't disable streams for "
3367 					"endpoint 0x%x, "
3368 					"streams are already disabled!\n",
3369 					eps[i]->desc.bEndpointAddress);
3370 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3371 					"with non-streams endpoint\n");
3372 			return 0;
3373 		}
3374 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3375 	}
3376 	return changed_ep_bitmask;
3377 }
3378 
3379 /*
3380  * The USB device drivers use this function (through the HCD interface in USB
3381  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3382  * coordinate mass storage command queueing across multiple endpoints (basically
3383  * a stream ID == a task ID).
3384  *
3385  * Setting up streams involves allocating the same size stream context array
3386  * for each endpoint and issuing a configure endpoint command for all endpoints.
3387  *
3388  * Don't allow the call to succeed if one endpoint only supports one stream
3389  * (which means it doesn't support streams at all).
3390  *
3391  * Drivers may get less stream IDs than they asked for, if the host controller
3392  * hardware or endpoints claim they can't support the number of requested
3393  * stream IDs.
3394  */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3395 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3396 		struct usb_host_endpoint **eps, unsigned int num_eps,
3397 		unsigned int num_streams, gfp_t mem_flags)
3398 {
3399 	int i, ret;
3400 	struct xhci_hcd *xhci;
3401 	struct xhci_virt_device *vdev;
3402 	struct xhci_command *config_cmd;
3403 	struct xhci_input_control_ctx *ctrl_ctx;
3404 	unsigned int ep_index;
3405 	unsigned int num_stream_ctxs;
3406 	unsigned int max_packet;
3407 	unsigned long flags;
3408 	u32 changed_ep_bitmask = 0;
3409 
3410 	if (!eps)
3411 		return -EINVAL;
3412 
3413 	/* Add one to the number of streams requested to account for
3414 	 * stream 0 that is reserved for xHCI usage.
3415 	 */
3416 	num_streams += 1;
3417 	xhci = hcd_to_xhci(hcd);
3418 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3419 			num_streams);
3420 
3421 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3422 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3423 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3424 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3425 		return -ENOSYS;
3426 	}
3427 
3428 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3429 	if (!config_cmd)
3430 		return -ENOMEM;
3431 
3432 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3433 	if (!ctrl_ctx) {
3434 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3435 				__func__);
3436 		xhci_free_command(xhci, config_cmd);
3437 		return -ENOMEM;
3438 	}
3439 
3440 	/* Check to make sure all endpoints are not already configured for
3441 	 * streams.  While we're at it, find the maximum number of streams that
3442 	 * all the endpoints will support and check for duplicate endpoints.
3443 	 */
3444 	spin_lock_irqsave(&xhci->lock, flags);
3445 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3446 			num_eps, &num_streams, &changed_ep_bitmask);
3447 	if (ret < 0) {
3448 		xhci_free_command(xhci, config_cmd);
3449 		spin_unlock_irqrestore(&xhci->lock, flags);
3450 		return ret;
3451 	}
3452 	if (num_streams <= 1) {
3453 		xhci_warn(xhci, "WARN: endpoints can't handle "
3454 				"more than one stream.\n");
3455 		xhci_free_command(xhci, config_cmd);
3456 		spin_unlock_irqrestore(&xhci->lock, flags);
3457 		return -EINVAL;
3458 	}
3459 	vdev = xhci->devs[udev->slot_id];
3460 	/* Mark each endpoint as being in transition, so
3461 	 * xhci_urb_enqueue() will reject all URBs.
3462 	 */
3463 	for (i = 0; i < num_eps; i++) {
3464 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3465 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3466 	}
3467 	spin_unlock_irqrestore(&xhci->lock, flags);
3468 
3469 	/* Setup internal data structures and allocate HW data structures for
3470 	 * streams (but don't install the HW structures in the input context
3471 	 * until we're sure all memory allocation succeeded).
3472 	 */
3473 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3474 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3475 			num_stream_ctxs, num_streams);
3476 
3477 	for (i = 0; i < num_eps; i++) {
3478 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3479 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3480 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3481 				num_stream_ctxs,
3482 				num_streams,
3483 				max_packet, mem_flags);
3484 		if (!vdev->eps[ep_index].stream_info)
3485 			goto cleanup;
3486 		/* Set maxPstreams in endpoint context and update deq ptr to
3487 		 * point to stream context array. FIXME
3488 		 */
3489 	}
3490 
3491 	/* Set up the input context for a configure endpoint command. */
3492 	for (i = 0; i < num_eps; i++) {
3493 		struct xhci_ep_ctx *ep_ctx;
3494 
3495 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3496 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3497 
3498 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3499 				vdev->out_ctx, ep_index);
3500 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3501 				vdev->eps[ep_index].stream_info);
3502 	}
3503 	/* Tell the HW to drop its old copy of the endpoint context info
3504 	 * and add the updated copy from the input context.
3505 	 */
3506 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3507 			vdev->out_ctx, ctrl_ctx,
3508 			changed_ep_bitmask, changed_ep_bitmask);
3509 
3510 	/* Issue and wait for the configure endpoint command */
3511 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3512 			false, false);
3513 
3514 	/* xHC rejected the configure endpoint command for some reason, so we
3515 	 * leave the old ring intact and free our internal streams data
3516 	 * structure.
3517 	 */
3518 	if (ret < 0)
3519 		goto cleanup;
3520 
3521 	spin_lock_irqsave(&xhci->lock, flags);
3522 	for (i = 0; i < num_eps; i++) {
3523 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3524 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3525 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3526 			 udev->slot_id, ep_index);
3527 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3528 	}
3529 	xhci_free_command(xhci, config_cmd);
3530 	spin_unlock_irqrestore(&xhci->lock, flags);
3531 
3532 	for (i = 0; i < num_eps; i++) {
3533 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3534 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3535 	}
3536 	/* Subtract 1 for stream 0, which drivers can't use */
3537 	return num_streams - 1;
3538 
3539 cleanup:
3540 	/* If it didn't work, free the streams! */
3541 	for (i = 0; i < num_eps; i++) {
3542 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3543 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3544 		vdev->eps[ep_index].stream_info = NULL;
3545 		/* FIXME Unset maxPstreams in endpoint context and
3546 		 * update deq ptr to point to normal string ring.
3547 		 */
3548 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3549 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3550 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3551 	}
3552 	xhci_free_command(xhci, config_cmd);
3553 	return -ENOMEM;
3554 }
3555 
3556 /* Transition the endpoint from using streams to being a "normal" endpoint
3557  * without streams.
3558  *
3559  * Modify the endpoint context state, submit a configure endpoint command,
3560  * and free all endpoint rings for streams if that completes successfully.
3561  */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3562 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3563 		struct usb_host_endpoint **eps, unsigned int num_eps,
3564 		gfp_t mem_flags)
3565 {
3566 	int i, ret;
3567 	struct xhci_hcd *xhci;
3568 	struct xhci_virt_device *vdev;
3569 	struct xhci_command *command;
3570 	struct xhci_input_control_ctx *ctrl_ctx;
3571 	unsigned int ep_index;
3572 	unsigned long flags;
3573 	u32 changed_ep_bitmask;
3574 
3575 	xhci = hcd_to_xhci(hcd);
3576 	vdev = xhci->devs[udev->slot_id];
3577 
3578 	/* Set up a configure endpoint command to remove the streams rings */
3579 	spin_lock_irqsave(&xhci->lock, flags);
3580 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3581 			udev, eps, num_eps);
3582 	if (changed_ep_bitmask == 0) {
3583 		spin_unlock_irqrestore(&xhci->lock, flags);
3584 		return -EINVAL;
3585 	}
3586 
3587 	/* Use the xhci_command structure from the first endpoint.  We may have
3588 	 * allocated too many, but the driver may call xhci_free_streams() for
3589 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3590 	 */
3591 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3592 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3593 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3594 	if (!ctrl_ctx) {
3595 		spin_unlock_irqrestore(&xhci->lock, flags);
3596 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3597 				__func__);
3598 		return -EINVAL;
3599 	}
3600 
3601 	for (i = 0; i < num_eps; i++) {
3602 		struct xhci_ep_ctx *ep_ctx;
3603 
3604 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3605 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3606 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3607 			EP_GETTING_NO_STREAMS;
3608 
3609 		xhci_endpoint_copy(xhci, command->in_ctx,
3610 				vdev->out_ctx, ep_index);
3611 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3612 				&vdev->eps[ep_index]);
3613 	}
3614 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3615 			vdev->out_ctx, ctrl_ctx,
3616 			changed_ep_bitmask, changed_ep_bitmask);
3617 	spin_unlock_irqrestore(&xhci->lock, flags);
3618 
3619 	/* Issue and wait for the configure endpoint command,
3620 	 * which must succeed.
3621 	 */
3622 	ret = xhci_configure_endpoint(xhci, udev, command,
3623 			false, true);
3624 
3625 	/* xHC rejected the configure endpoint command for some reason, so we
3626 	 * leave the streams rings intact.
3627 	 */
3628 	if (ret < 0)
3629 		return ret;
3630 
3631 	spin_lock_irqsave(&xhci->lock, flags);
3632 	for (i = 0; i < num_eps; i++) {
3633 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3634 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3635 		vdev->eps[ep_index].stream_info = NULL;
3636 		/* FIXME Unset maxPstreams in endpoint context and
3637 		 * update deq ptr to point to normal string ring.
3638 		 */
3639 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3640 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3641 	}
3642 	spin_unlock_irqrestore(&xhci->lock, flags);
3643 
3644 	return 0;
3645 }
3646 
3647 /*
3648  * Deletes endpoint resources for endpoints that were active before a Reset
3649  * Device command, or a Disable Slot command.  The Reset Device command leaves
3650  * the control endpoint intact, whereas the Disable Slot command deletes it.
3651  *
3652  * Must be called with xhci->lock held.
3653  */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3654 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3655 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3656 {
3657 	int i;
3658 	unsigned int num_dropped_eps = 0;
3659 	unsigned int drop_flags = 0;
3660 
3661 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3662 		if (virt_dev->eps[i].ring) {
3663 			drop_flags |= 1 << i;
3664 			num_dropped_eps++;
3665 		}
3666 	}
3667 	xhci->num_active_eps -= num_dropped_eps;
3668 	if (num_dropped_eps)
3669 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3670 				"Dropped %u ep ctxs, flags = 0x%x, "
3671 				"%u now active.",
3672 				num_dropped_eps, drop_flags,
3673 				xhci->num_active_eps);
3674 }
3675 
3676 /*
3677  * This submits a Reset Device Command, which will set the device state to 0,
3678  * set the device address to 0, and disable all the endpoints except the default
3679  * control endpoint.  The USB core should come back and call
3680  * xhci_address_device(), and then re-set up the configuration.  If this is
3681  * called because of a usb_reset_and_verify_device(), then the old alternate
3682  * settings will be re-installed through the normal bandwidth allocation
3683  * functions.
3684  *
3685  * Wait for the Reset Device command to finish.  Remove all structures
3686  * associated with the endpoints that were disabled.  Clear the input device
3687  * structure? Reset the control endpoint 0 max packet size?
3688  *
3689  * If the virt_dev to be reset does not exist or does not match the udev,
3690  * it means the device is lost, possibly due to the xHC restore error and
3691  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3692  * re-allocate the device.
3693  */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3694 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3695 		struct usb_device *udev)
3696 {
3697 	int ret, i;
3698 	unsigned long flags;
3699 	struct xhci_hcd *xhci;
3700 	unsigned int slot_id;
3701 	struct xhci_virt_device *virt_dev;
3702 	struct xhci_command *reset_device_cmd;
3703 	struct xhci_slot_ctx *slot_ctx;
3704 	int old_active_eps = 0;
3705 
3706 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3707 	if (ret <= 0)
3708 		return ret;
3709 	xhci = hcd_to_xhci(hcd);
3710 	slot_id = udev->slot_id;
3711 	virt_dev = xhci->devs[slot_id];
3712 	if (!virt_dev) {
3713 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3714 				"not exist. Re-allocate the device\n", slot_id);
3715 		ret = xhci_alloc_dev(hcd, udev);
3716 		if (ret == 1)
3717 			return 0;
3718 		else
3719 			return -EINVAL;
3720 	}
3721 
3722 	if (virt_dev->tt_info)
3723 		old_active_eps = virt_dev->tt_info->active_eps;
3724 
3725 	if (virt_dev->udev != udev) {
3726 		/* If the virt_dev and the udev does not match, this virt_dev
3727 		 * may belong to another udev.
3728 		 * Re-allocate the device.
3729 		 */
3730 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3731 				"not match the udev. Re-allocate the device\n",
3732 				slot_id);
3733 		ret = xhci_alloc_dev(hcd, udev);
3734 		if (ret == 1)
3735 			return 0;
3736 		else
3737 			return -EINVAL;
3738 	}
3739 
3740 	/* If device is not setup, there is no point in resetting it */
3741 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3742 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3743 						SLOT_STATE_DISABLED)
3744 		return 0;
3745 
3746 	trace_xhci_discover_or_reset_device(slot_ctx);
3747 
3748 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3749 	/* Allocate the command structure that holds the struct completion.
3750 	 * Assume we're in process context, since the normal device reset
3751 	 * process has to wait for the device anyway.  Storage devices are
3752 	 * reset as part of error handling, so use GFP_NOIO instead of
3753 	 * GFP_KERNEL.
3754 	 */
3755 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3756 	if (!reset_device_cmd) {
3757 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3758 		return -ENOMEM;
3759 	}
3760 
3761 	/* Attempt to submit the Reset Device command to the command ring */
3762 	spin_lock_irqsave(&xhci->lock, flags);
3763 
3764 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3765 	if (ret) {
3766 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3767 		spin_unlock_irqrestore(&xhci->lock, flags);
3768 		goto command_cleanup;
3769 	}
3770 	xhci_ring_cmd_db(xhci);
3771 	spin_unlock_irqrestore(&xhci->lock, flags);
3772 
3773 	/* Wait for the Reset Device command to finish */
3774 	wait_for_completion(reset_device_cmd->completion);
3775 
3776 	ret = xhci_vendor_sync_dev_ctx(xhci, slot_id);
3777 	if (ret) {
3778 		xhci_warn(xhci, "%s: Failed to sync device context failed, err=%d",
3779 			  __func__, ret);
3780 		goto command_cleanup;
3781 	}
3782 
3783 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3784 	 * unless we tried to reset a slot ID that wasn't enabled,
3785 	 * or the device wasn't in the addressed or configured state.
3786 	 */
3787 	ret = reset_device_cmd->status;
3788 	switch (ret) {
3789 	case COMP_COMMAND_ABORTED:
3790 	case COMP_COMMAND_RING_STOPPED:
3791 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3792 		ret = -ETIME;
3793 		goto command_cleanup;
3794 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3795 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3796 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3797 				slot_id,
3798 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3799 		xhci_dbg(xhci, "Not freeing device rings.\n");
3800 		/* Don't treat this as an error.  May change my mind later. */
3801 		ret = 0;
3802 		goto command_cleanup;
3803 	case COMP_SUCCESS:
3804 		xhci_dbg(xhci, "Successful reset device command.\n");
3805 		break;
3806 	default:
3807 		if (xhci_is_vendor_info_code(xhci, ret))
3808 			break;
3809 		xhci_warn(xhci, "Unknown completion code %u for "
3810 				"reset device command.\n", ret);
3811 		ret = -EINVAL;
3812 		goto command_cleanup;
3813 	}
3814 
3815 	/* Free up host controller endpoint resources */
3816 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3817 		spin_lock_irqsave(&xhci->lock, flags);
3818 		/* Don't delete the default control endpoint resources */
3819 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3820 		spin_unlock_irqrestore(&xhci->lock, flags);
3821 	}
3822 
3823 	/* Everything but endpoint 0 is disabled, so free the rings. */
3824 	for (i = 1; i < 31; i++) {
3825 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3826 
3827 		if (ep->ep_state & EP_HAS_STREAMS) {
3828 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3829 					xhci_get_endpoint_address(i));
3830 			xhci_free_stream_info(xhci, ep->stream_info);
3831 			ep->stream_info = NULL;
3832 			ep->ep_state &= ~EP_HAS_STREAMS;
3833 		}
3834 
3835 		if (ep->ring) {
3836 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3837 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3838 		}
3839 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3840 			xhci_drop_ep_from_interval_table(xhci,
3841 					&virt_dev->eps[i].bw_info,
3842 					virt_dev->bw_table,
3843 					udev,
3844 					&virt_dev->eps[i],
3845 					virt_dev->tt_info);
3846 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3847 	}
3848 	/* If necessary, update the number of active TTs on this root port */
3849 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3850 	virt_dev->flags = 0;
3851 	ret = 0;
3852 
3853 command_cleanup:
3854 	xhci_free_command(xhci, reset_device_cmd);
3855 	return ret;
3856 }
3857 
3858 /*
3859  * At this point, the struct usb_device is about to go away, the device has
3860  * disconnected, and all traffic has been stopped and the endpoints have been
3861  * disabled.  Free any HC data structures associated with that device.
3862  */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3863 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3864 {
3865 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3866 	struct xhci_virt_device *virt_dev;
3867 	struct xhci_slot_ctx *slot_ctx;
3868 	int i, ret;
3869 
3870 	/*
3871 	 * We called pm_runtime_get_noresume when the device was attached.
3872 	 * Decrement the counter here to allow controller to runtime suspend
3873 	 * if no devices remain.
3874 	 */
3875 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3876 		pm_runtime_put_noidle(hcd->self.controller);
3877 
3878 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3879 	/* If the host is halted due to driver unload, we still need to free the
3880 	 * device.
3881 	 */
3882 	if (ret <= 0 && ret != -ENODEV)
3883 		return;
3884 
3885 	virt_dev = xhci->devs[udev->slot_id];
3886 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3887 	trace_xhci_free_dev(slot_ctx);
3888 
3889 	/* Stop any wayward timer functions (which may grab the lock) */
3890 	for (i = 0; i < 31; i++) {
3891 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3892 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3893 	}
3894 	virt_dev->udev = NULL;
3895 	xhci_disable_slot(xhci, udev->slot_id);
3896 	xhci_free_virt_device(xhci, udev->slot_id);
3897 }
3898 
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3899 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3900 {
3901 	struct xhci_command *command;
3902 	unsigned long flags;
3903 	u32 state;
3904 	int ret = 0;
3905 
3906 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3907 	if (!command)
3908 		return -ENOMEM;
3909 
3910 	xhci_debugfs_remove_slot(xhci, slot_id);
3911 
3912 	spin_lock_irqsave(&xhci->lock, flags);
3913 	/* Don't disable the slot if the host controller is dead. */
3914 	state = readl(&xhci->op_regs->status);
3915 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3916 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3917 		spin_unlock_irqrestore(&xhci->lock, flags);
3918 		kfree(command);
3919 		return -ENODEV;
3920 	}
3921 
3922 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3923 				slot_id);
3924 	if (ret) {
3925 		spin_unlock_irqrestore(&xhci->lock, flags);
3926 		kfree(command);
3927 		return ret;
3928 	}
3929 	xhci_ring_cmd_db(xhci);
3930 	spin_unlock_irqrestore(&xhci->lock, flags);
3931 
3932 	wait_for_completion(command->completion);
3933 
3934 	if (command->status != COMP_SUCCESS)
3935 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
3936 			  slot_id, command->status);
3937 
3938 	xhci_free_command(xhci, command);
3939 
3940 	return ret;
3941 }
3942 
3943 /*
3944  * Checks if we have enough host controller resources for the default control
3945  * endpoint.
3946  *
3947  * Must be called with xhci->lock held.
3948  */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)3949 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3950 {
3951 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3952 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3953 				"Not enough ep ctxs: "
3954 				"%u active, need to add 1, limit is %u.",
3955 				xhci->num_active_eps, xhci->limit_active_eps);
3956 		return -ENOMEM;
3957 	}
3958 	xhci->num_active_eps += 1;
3959 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3960 			"Adding 1 ep ctx, %u now active.",
3961 			xhci->num_active_eps);
3962 	return 0;
3963 }
3964 
3965 
3966 /*
3967  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3968  * timed out, or allocating memory failed.  Returns 1 on success.
3969  */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)3970 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3971 {
3972 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3973 	struct xhci_virt_device *vdev;
3974 	struct xhci_slot_ctx *slot_ctx;
3975 	unsigned long flags;
3976 	int ret, slot_id;
3977 	struct xhci_command *command;
3978 
3979 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3980 	if (!command)
3981 		return 0;
3982 
3983 	spin_lock_irqsave(&xhci->lock, flags);
3984 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3985 	if (ret) {
3986 		spin_unlock_irqrestore(&xhci->lock, flags);
3987 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3988 		xhci_free_command(xhci, command);
3989 		return 0;
3990 	}
3991 	xhci_ring_cmd_db(xhci);
3992 	spin_unlock_irqrestore(&xhci->lock, flags);
3993 
3994 	wait_for_completion(command->completion);
3995 	slot_id = command->slot_id;
3996 
3997 	if (!slot_id || command->status != COMP_SUCCESS) {
3998 		xhci_err(xhci, "Error while assigning device slot ID\n");
3999 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4000 				HCS_MAX_SLOTS(
4001 					readl(&xhci->cap_regs->hcs_params1)));
4002 		xhci_free_command(xhci, command);
4003 		return 0;
4004 	}
4005 
4006 	xhci_free_command(xhci, command);
4007 
4008 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4009 		spin_lock_irqsave(&xhci->lock, flags);
4010 		ret = xhci_reserve_host_control_ep_resources(xhci);
4011 		if (ret) {
4012 			spin_unlock_irqrestore(&xhci->lock, flags);
4013 			xhci_warn(xhci, "Not enough host resources, "
4014 					"active endpoint contexts = %u\n",
4015 					xhci->num_active_eps);
4016 			goto disable_slot;
4017 		}
4018 		spin_unlock_irqrestore(&xhci->lock, flags);
4019 	}
4020 	/* Use GFP_NOIO, since this function can be called from
4021 	 * xhci_discover_or_reset_device(), which may be called as part of
4022 	 * mass storage driver error handling.
4023 	 */
4024 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4025 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4026 		goto disable_slot;
4027 	}
4028 
4029 	ret = xhci_vendor_sync_dev_ctx(xhci, slot_id);
4030 	if (ret) {
4031 		xhci_warn(xhci, "%s: Failed to sync device context failed, err=%d",
4032 			  __func__, ret);
4033 		goto disable_slot;
4034 	}
4035 
4036 	vdev = xhci->devs[slot_id];
4037 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4038 	trace_xhci_alloc_dev(slot_ctx);
4039 
4040 	udev->slot_id = slot_id;
4041 
4042 	xhci_debugfs_create_slot(xhci, slot_id);
4043 
4044 	/*
4045 	 * If resetting upon resume, we can't put the controller into runtime
4046 	 * suspend if there is a device attached.
4047 	 */
4048 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4049 		pm_runtime_get_noresume(hcd->self.controller);
4050 
4051 	/* Is this a LS or FS device under a HS hub? */
4052 	/* Hub or peripherial? */
4053 	return 1;
4054 
4055 disable_slot:
4056 	xhci_disable_slot(xhci, udev->slot_id);
4057 	xhci_free_virt_device(xhci, udev->slot_id);
4058 
4059 	return 0;
4060 }
4061 
4062 /*
4063  * Issue an Address Device command and optionally send a corresponding
4064  * SetAddress request to the device.
4065  */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup)4066 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4067 			     enum xhci_setup_dev setup)
4068 {
4069 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4070 	unsigned long flags;
4071 	struct xhci_virt_device *virt_dev;
4072 	int ret = 0;
4073 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4074 	struct xhci_slot_ctx *slot_ctx;
4075 	struct xhci_input_control_ctx *ctrl_ctx;
4076 	u64 temp_64;
4077 	struct xhci_command *command = NULL;
4078 
4079 	mutex_lock(&xhci->mutex);
4080 
4081 	if (xhci->xhc_state) {	/* dying, removing or halted */
4082 		ret = -ESHUTDOWN;
4083 		goto out;
4084 	}
4085 
4086 	if (!udev->slot_id) {
4087 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4088 				"Bad Slot ID %d", udev->slot_id);
4089 		ret = -EINVAL;
4090 		goto out;
4091 	}
4092 
4093 	virt_dev = xhci->devs[udev->slot_id];
4094 
4095 	if (WARN_ON(!virt_dev)) {
4096 		/*
4097 		 * In plug/unplug torture test with an NEC controller,
4098 		 * a zero-dereference was observed once due to virt_dev = 0.
4099 		 * Print useful debug rather than crash if it is observed again!
4100 		 */
4101 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4102 			udev->slot_id);
4103 		ret = -EINVAL;
4104 		goto out;
4105 	}
4106 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4107 	trace_xhci_setup_device_slot(slot_ctx);
4108 
4109 	if (setup == SETUP_CONTEXT_ONLY) {
4110 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4111 		    SLOT_STATE_DEFAULT) {
4112 			xhci_dbg(xhci, "Slot already in default state\n");
4113 			goto out;
4114 		}
4115 	}
4116 
4117 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4118 	if (!command) {
4119 		ret = -ENOMEM;
4120 		goto out;
4121 	}
4122 
4123 	command->in_ctx = virt_dev->in_ctx;
4124 
4125 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4126 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4127 	if (!ctrl_ctx) {
4128 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4129 				__func__);
4130 		ret = -EINVAL;
4131 		goto out;
4132 	}
4133 	/*
4134 	 * If this is the first Set Address since device plug-in or
4135 	 * virt_device realloaction after a resume with an xHCI power loss,
4136 	 * then set up the slot context.
4137 	 */
4138 	if (!slot_ctx->dev_info)
4139 		xhci_setup_addressable_virt_dev(xhci, udev);
4140 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4141 	else
4142 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4143 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4144 	ctrl_ctx->drop_flags = 0;
4145 
4146 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4147 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4148 
4149 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4150 	spin_lock_irqsave(&xhci->lock, flags);
4151 	trace_xhci_setup_device(virt_dev);
4152 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4153 					udev->slot_id, setup);
4154 	if (ret) {
4155 		spin_unlock_irqrestore(&xhci->lock, flags);
4156 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4157 				"FIXME: allocate a command ring segment");
4158 		goto out;
4159 	}
4160 	xhci_ring_cmd_db(xhci);
4161 	spin_unlock_irqrestore(&xhci->lock, flags);
4162 
4163 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4164 	wait_for_completion(command->completion);
4165 
4166 	ret = xhci_vendor_sync_dev_ctx(xhci, udev->slot_id);
4167 	if (ret) {
4168 		xhci_warn(xhci, "%s: Failed to sync device context failed, err=%d",
4169 			  __func__, ret);
4170 		goto out;
4171 	}
4172 
4173 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4174 	 * the SetAddress() "recovery interval" required by USB and aborting the
4175 	 * command on a timeout.
4176 	 */
4177 	switch (command->status) {
4178 	case COMP_COMMAND_ABORTED:
4179 	case COMP_COMMAND_RING_STOPPED:
4180 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4181 		ret = -ETIME;
4182 		break;
4183 	case COMP_CONTEXT_STATE_ERROR:
4184 	case COMP_SLOT_NOT_ENABLED_ERROR:
4185 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4186 			 act, udev->slot_id);
4187 		ret = -EINVAL;
4188 		break;
4189 	case COMP_USB_TRANSACTION_ERROR:
4190 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4191 
4192 		mutex_unlock(&xhci->mutex);
4193 		ret = xhci_disable_slot(xhci, udev->slot_id);
4194 		xhci_free_virt_device(xhci, udev->slot_id);
4195 		if (!ret)
4196 			xhci_alloc_dev(hcd, udev);
4197 		kfree(command->completion);
4198 		kfree(command);
4199 		return -EPROTO;
4200 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4201 		dev_warn(&udev->dev,
4202 			 "ERROR: Incompatible device for setup %s command\n", act);
4203 		ret = -ENODEV;
4204 		break;
4205 	case COMP_SUCCESS:
4206 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4207 			       "Successful setup %s command", act);
4208 		break;
4209 	default:
4210 		xhci_err(xhci,
4211 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4212 			 act, command->status);
4213 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4214 		ret = -EINVAL;
4215 		break;
4216 	}
4217 	if (ret)
4218 		goto out;
4219 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4220 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4221 			"Op regs DCBAA ptr = %#016llx", temp_64);
4222 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4223 		"Slot ID %d dcbaa entry @%p = %#016llx",
4224 		udev->slot_id,
4225 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4226 		(unsigned long long)
4227 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4228 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4229 			"Output Context DMA address = %#08llx",
4230 			(unsigned long long)virt_dev->out_ctx->dma);
4231 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4232 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4233 	/*
4234 	 * USB core uses address 1 for the roothubs, so we add one to the
4235 	 * address given back to us by the HC.
4236 	 */
4237 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4238 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4239 	/* Zero the input context control for later use */
4240 	ctrl_ctx->add_flags = 0;
4241 	ctrl_ctx->drop_flags = 0;
4242 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4243 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4244 
4245 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4246 		       "Internal device address = %d",
4247 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4248 out:
4249 	mutex_unlock(&xhci->mutex);
4250 	if (command) {
4251 		kfree(command->completion);
4252 		kfree(command);
4253 	}
4254 	return ret;
4255 }
4256 
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev)4257 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4258 {
4259 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4260 }
4261 EXPORT_SYMBOL_GPL(xhci_address_device);
4262 
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4263 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4264 {
4265 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4266 }
4267 
4268 /*
4269  * Transfer the port index into real index in the HW port status
4270  * registers. Caculate offset between the port's PORTSC register
4271  * and port status base. Divide the number of per port register
4272  * to get the real index. The raw port number bases 1.
4273  */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4274 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4275 {
4276 	struct xhci_hub *rhub;
4277 
4278 	rhub = xhci_get_rhub(hcd);
4279 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4280 }
4281 
4282 /*
4283  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4284  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4285  */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4286 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4287 			struct usb_device *udev, u16 max_exit_latency)
4288 {
4289 	struct xhci_virt_device *virt_dev;
4290 	struct xhci_command *command;
4291 	struct xhci_input_control_ctx *ctrl_ctx;
4292 	struct xhci_slot_ctx *slot_ctx;
4293 	unsigned long flags;
4294 	int ret;
4295 
4296 	spin_lock_irqsave(&xhci->lock, flags);
4297 
4298 	virt_dev = xhci->devs[udev->slot_id];
4299 
4300 	/*
4301 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4302 	 * xHC was re-initialized. Exit latency will be set later after
4303 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4304 	 */
4305 
4306 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4307 		spin_unlock_irqrestore(&xhci->lock, flags);
4308 		return 0;
4309 	}
4310 
4311 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4312 	command = xhci->lpm_command;
4313 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4314 	if (!ctrl_ctx) {
4315 		spin_unlock_irqrestore(&xhci->lock, flags);
4316 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4317 				__func__);
4318 		return -ENOMEM;
4319 	}
4320 
4321 	ret = xhci_vendor_sync_dev_ctx(xhci, udev->slot_id);
4322 	if (ret) {
4323 		spin_unlock_irqrestore(&xhci->lock, flags);
4324 		xhci_warn(xhci, "%s: Failed to sync device context failed, err=%d",
4325 			  __func__, ret);
4326 		return ret;
4327 	}
4328 
4329 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4330 	spin_unlock_irqrestore(&xhci->lock, flags);
4331 
4332 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4333 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4334 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4335 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4336 	slot_ctx->dev_state = 0;
4337 
4338 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4339 			"Set up evaluate context for LPM MEL change.");
4340 
4341 	/* Issue and wait for the evaluate context command. */
4342 	ret = xhci_configure_endpoint(xhci, udev, command,
4343 			true, true);
4344 
4345 	if (!ret) {
4346 		spin_lock_irqsave(&xhci->lock, flags);
4347 		virt_dev->current_mel = max_exit_latency;
4348 		spin_unlock_irqrestore(&xhci->lock, flags);
4349 	}
4350 	return ret;
4351 }
4352 
xhci_vendor_get_ops(struct xhci_hcd * xhci)4353 struct xhci_vendor_ops *xhci_vendor_get_ops(struct xhci_hcd *xhci)
4354 {
4355 	return xhci->vendor_ops;
4356 }
4357 EXPORT_SYMBOL_GPL(xhci_vendor_get_ops);
4358 
xhci_vendor_sync_dev_ctx(struct xhci_hcd * xhci,unsigned int slot_id)4359 int xhci_vendor_sync_dev_ctx(struct xhci_hcd *xhci, unsigned int slot_id)
4360 {
4361 	struct xhci_vendor_ops *ops = xhci_vendor_get_ops(xhci);
4362 
4363 	if (ops && ops->sync_dev_ctx)
4364 		return ops->sync_dev_ctx(xhci, slot_id);
4365 	return 0;
4366 }
4367 
xhci_vendor_usb_offload_skip_urb(struct xhci_hcd * xhci,struct urb * urb)4368 bool xhci_vendor_usb_offload_skip_urb(struct xhci_hcd *xhci, struct urb *urb)
4369 {
4370 	struct xhci_vendor_ops *ops = xhci_vendor_get_ops(xhci);
4371 
4372 	if (ops && ops->usb_offload_skip_urb)
4373 		return ops->usb_offload_skip_urb(xhci, urb);
4374 	return false;
4375 }
4376 
4377 #ifdef CONFIG_PM
4378 
4379 /* BESL to HIRD Encoding array for USB2 LPM */
4380 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4381 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4382 
4383 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4384 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4385 					struct usb_device *udev)
4386 {
4387 	int u2del, besl, besl_host;
4388 	int besl_device = 0;
4389 	u32 field;
4390 
4391 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4392 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4393 
4394 	if (field & USB_BESL_SUPPORT) {
4395 		for (besl_host = 0; besl_host < 16; besl_host++) {
4396 			if (xhci_besl_encoding[besl_host] >= u2del)
4397 				break;
4398 		}
4399 		/* Use baseline BESL value as default */
4400 		if (field & USB_BESL_BASELINE_VALID)
4401 			besl_device = USB_GET_BESL_BASELINE(field);
4402 		else if (field & USB_BESL_DEEP_VALID)
4403 			besl_device = USB_GET_BESL_DEEP(field);
4404 	} else {
4405 		if (u2del <= 50)
4406 			besl_host = 0;
4407 		else
4408 			besl_host = (u2del - 51) / 75 + 1;
4409 	}
4410 
4411 	besl = besl_host + besl_device;
4412 	if (besl > 15)
4413 		besl = 15;
4414 
4415 	return besl;
4416 }
4417 
4418 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4419 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4420 {
4421 	u32 field;
4422 	int l1;
4423 	int besld = 0;
4424 	int hirdm = 0;
4425 
4426 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4427 
4428 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4429 	l1 = udev->l1_params.timeout / 256;
4430 
4431 	/* device has preferred BESLD */
4432 	if (field & USB_BESL_DEEP_VALID) {
4433 		besld = USB_GET_BESL_DEEP(field);
4434 		hirdm = 1;
4435 	}
4436 
4437 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4438 }
4439 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4440 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4441 			struct usb_device *udev, int enable)
4442 {
4443 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4444 	struct xhci_port **ports;
4445 	__le32 __iomem	*pm_addr, *hlpm_addr;
4446 	u32		pm_val, hlpm_val, field;
4447 	unsigned int	port_num;
4448 	unsigned long	flags;
4449 	int		hird, exit_latency;
4450 	int		ret;
4451 
4452 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4453 		return -EPERM;
4454 
4455 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4456 			!udev->lpm_capable)
4457 		return -EPERM;
4458 
4459 	if (!udev->parent || udev->parent->parent ||
4460 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4461 		return -EPERM;
4462 
4463 	if (udev->usb2_hw_lpm_capable != 1)
4464 		return -EPERM;
4465 
4466 	spin_lock_irqsave(&xhci->lock, flags);
4467 
4468 	ports = xhci->usb2_rhub.ports;
4469 	port_num = udev->portnum - 1;
4470 	pm_addr = ports[port_num]->addr + PORTPMSC;
4471 	pm_val = readl(pm_addr);
4472 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4473 
4474 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4475 			enable ? "enable" : "disable", port_num + 1);
4476 
4477 	if (enable) {
4478 		/* Host supports BESL timeout instead of HIRD */
4479 		if (udev->usb2_hw_lpm_besl_capable) {
4480 			/* if device doesn't have a preferred BESL value use a
4481 			 * default one which works with mixed HIRD and BESL
4482 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4483 			 */
4484 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4485 			if ((field & USB_BESL_SUPPORT) &&
4486 			    (field & USB_BESL_BASELINE_VALID))
4487 				hird = USB_GET_BESL_BASELINE(field);
4488 			else
4489 				hird = udev->l1_params.besl;
4490 
4491 			exit_latency = xhci_besl_encoding[hird];
4492 			spin_unlock_irqrestore(&xhci->lock, flags);
4493 
4494 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4495 			 * input context for link powermanagement evaluate
4496 			 * context commands. It is protected by hcd->bandwidth
4497 			 * mutex and is shared by all devices. We need to set
4498 			 * the max ext latency in USB 2 BESL LPM as well, so
4499 			 * use the same mutex and xhci_change_max_exit_latency()
4500 			 */
4501 			mutex_lock(hcd->bandwidth_mutex);
4502 			ret = xhci_change_max_exit_latency(xhci, udev,
4503 							   exit_latency);
4504 			mutex_unlock(hcd->bandwidth_mutex);
4505 
4506 			if (ret < 0)
4507 				return ret;
4508 			spin_lock_irqsave(&xhci->lock, flags);
4509 
4510 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4511 			writel(hlpm_val, hlpm_addr);
4512 			/* flush write */
4513 			readl(hlpm_addr);
4514 		} else {
4515 			hird = xhci_calculate_hird_besl(xhci, udev);
4516 		}
4517 
4518 		pm_val &= ~PORT_HIRD_MASK;
4519 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4520 		writel(pm_val, pm_addr);
4521 		pm_val = readl(pm_addr);
4522 		pm_val |= PORT_HLE;
4523 		writel(pm_val, pm_addr);
4524 		/* flush write */
4525 		readl(pm_addr);
4526 	} else {
4527 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4528 		writel(pm_val, pm_addr);
4529 		/* flush write */
4530 		readl(pm_addr);
4531 		if (udev->usb2_hw_lpm_besl_capable) {
4532 			spin_unlock_irqrestore(&xhci->lock, flags);
4533 			mutex_lock(hcd->bandwidth_mutex);
4534 			xhci_change_max_exit_latency(xhci, udev, 0);
4535 			mutex_unlock(hcd->bandwidth_mutex);
4536 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4537 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4538 					   100, 10000);
4539 			return 0;
4540 		}
4541 	}
4542 
4543 	spin_unlock_irqrestore(&xhci->lock, flags);
4544 	return 0;
4545 }
4546 
4547 /* check if a usb2 port supports a given extened capability protocol
4548  * only USB2 ports extended protocol capability values are cached.
4549  * Return 1 if capability is supported
4550  */
xhci_check_usb2_port_capability(struct xhci_hcd * xhci,int port,unsigned capability)4551 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4552 					   unsigned capability)
4553 {
4554 	u32 port_offset, port_count;
4555 	int i;
4556 
4557 	for (i = 0; i < xhci->num_ext_caps; i++) {
4558 		if (xhci->ext_caps[i] & capability) {
4559 			/* port offsets starts at 1 */
4560 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4561 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4562 			if (port >= port_offset &&
4563 			    port < port_offset + port_count)
4564 				return 1;
4565 		}
4566 	}
4567 	return 0;
4568 }
4569 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4570 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4571 {
4572 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4573 	int		portnum = udev->portnum - 1;
4574 
4575 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4576 		return 0;
4577 
4578 	/* we only support lpm for non-hub device connected to root hub yet */
4579 	if (!udev->parent || udev->parent->parent ||
4580 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4581 		return 0;
4582 
4583 	if (xhci->hw_lpm_support == 1 &&
4584 			xhci_check_usb2_port_capability(
4585 				xhci, portnum, XHCI_HLC)) {
4586 		udev->usb2_hw_lpm_capable = 1;
4587 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4588 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4589 		if (xhci_check_usb2_port_capability(xhci, portnum,
4590 					XHCI_BLC))
4591 			udev->usb2_hw_lpm_besl_capable = 1;
4592 	}
4593 
4594 	return 0;
4595 }
4596 
4597 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4598 
4599 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4600 static unsigned long long xhci_service_interval_to_ns(
4601 		struct usb_endpoint_descriptor *desc)
4602 {
4603 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4604 }
4605 
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4606 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4607 		enum usb3_link_state state)
4608 {
4609 	unsigned long long sel;
4610 	unsigned long long pel;
4611 	unsigned int max_sel_pel;
4612 	char *state_name;
4613 
4614 	switch (state) {
4615 	case USB3_LPM_U1:
4616 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4617 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4618 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4619 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4620 		state_name = "U1";
4621 		break;
4622 	case USB3_LPM_U2:
4623 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4624 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4625 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4626 		state_name = "U2";
4627 		break;
4628 	default:
4629 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4630 				__func__);
4631 		return USB3_LPM_DISABLED;
4632 	}
4633 
4634 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4635 		return USB3_LPM_DEVICE_INITIATED;
4636 
4637 	if (sel > max_sel_pel)
4638 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4639 				"due to long SEL %llu ms\n",
4640 				state_name, sel);
4641 	else
4642 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4643 				"due to long PEL %llu ms\n",
4644 				state_name, pel);
4645 	return USB3_LPM_DISABLED;
4646 }
4647 
4648 /* The U1 timeout should be the maximum of the following values:
4649  *  - For control endpoints, U1 system exit latency (SEL) * 3
4650  *  - For bulk endpoints, U1 SEL * 5
4651  *  - For interrupt endpoints:
4652  *    - Notification EPs, U1 SEL * 3
4653  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4654  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4655  */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4656 static unsigned long long xhci_calculate_intel_u1_timeout(
4657 		struct usb_device *udev,
4658 		struct usb_endpoint_descriptor *desc)
4659 {
4660 	unsigned long long timeout_ns;
4661 	int ep_type;
4662 	int intr_type;
4663 
4664 	ep_type = usb_endpoint_type(desc);
4665 	switch (ep_type) {
4666 	case USB_ENDPOINT_XFER_CONTROL:
4667 		timeout_ns = udev->u1_params.sel * 3;
4668 		break;
4669 	case USB_ENDPOINT_XFER_BULK:
4670 		timeout_ns = udev->u1_params.sel * 5;
4671 		break;
4672 	case USB_ENDPOINT_XFER_INT:
4673 		intr_type = usb_endpoint_interrupt_type(desc);
4674 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4675 			timeout_ns = udev->u1_params.sel * 3;
4676 			break;
4677 		}
4678 		/* Otherwise the calculation is the same as isoc eps */
4679 		fallthrough;
4680 	case USB_ENDPOINT_XFER_ISOC:
4681 		timeout_ns = xhci_service_interval_to_ns(desc);
4682 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4683 		if (timeout_ns < udev->u1_params.sel * 2)
4684 			timeout_ns = udev->u1_params.sel * 2;
4685 		break;
4686 	default:
4687 		return 0;
4688 	}
4689 
4690 	return timeout_ns;
4691 }
4692 
4693 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4694 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4695 		struct usb_device *udev,
4696 		struct usb_endpoint_descriptor *desc)
4697 {
4698 	unsigned long long timeout_ns;
4699 
4700 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4701 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4702 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4703 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4704 			return USB3_LPM_DISABLED;
4705 		}
4706 	}
4707 
4708 	if (xhci->quirks & XHCI_INTEL_HOST)
4709 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4710 	else
4711 		timeout_ns = udev->u1_params.sel;
4712 
4713 	/* The U1 timeout is encoded in 1us intervals.
4714 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4715 	 */
4716 	if (timeout_ns == USB3_LPM_DISABLED)
4717 		timeout_ns = 1;
4718 	else
4719 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4720 
4721 	/* If the necessary timeout value is bigger than what we can set in the
4722 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4723 	 */
4724 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4725 		return timeout_ns;
4726 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4727 			"due to long timeout %llu ms\n", timeout_ns);
4728 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4729 }
4730 
4731 /* The U2 timeout should be the maximum of:
4732  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4733  *  - largest bInterval of any active periodic endpoint (to avoid going
4734  *    into lower power link states between intervals).
4735  *  - the U2 Exit Latency of the device
4736  */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4737 static unsigned long long xhci_calculate_intel_u2_timeout(
4738 		struct usb_device *udev,
4739 		struct usb_endpoint_descriptor *desc)
4740 {
4741 	unsigned long long timeout_ns;
4742 	unsigned long long u2_del_ns;
4743 
4744 	timeout_ns = 10 * 1000 * 1000;
4745 
4746 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4747 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4748 		timeout_ns = xhci_service_interval_to_ns(desc);
4749 
4750 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4751 	if (u2_del_ns > timeout_ns)
4752 		timeout_ns = u2_del_ns;
4753 
4754 	return timeout_ns;
4755 }
4756 
4757 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4758 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4759 		struct usb_device *udev,
4760 		struct usb_endpoint_descriptor *desc)
4761 {
4762 	unsigned long long timeout_ns;
4763 
4764 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4765 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4766 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4767 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4768 			return USB3_LPM_DISABLED;
4769 		}
4770 	}
4771 
4772 	if (xhci->quirks & XHCI_INTEL_HOST)
4773 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4774 	else
4775 		timeout_ns = udev->u2_params.sel;
4776 
4777 	/* The U2 timeout is encoded in 256us intervals */
4778 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4779 	/* If the necessary timeout value is bigger than what we can set in the
4780 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4781 	 */
4782 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4783 		return timeout_ns;
4784 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4785 			"due to long timeout %llu ms\n", timeout_ns);
4786 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4787 }
4788 
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4789 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4790 		struct usb_device *udev,
4791 		struct usb_endpoint_descriptor *desc,
4792 		enum usb3_link_state state,
4793 		u16 *timeout)
4794 {
4795 	if (state == USB3_LPM_U1)
4796 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4797 	else if (state == USB3_LPM_U2)
4798 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4799 
4800 	return USB3_LPM_DISABLED;
4801 }
4802 
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4803 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4804 		struct usb_device *udev,
4805 		struct usb_endpoint_descriptor *desc,
4806 		enum usb3_link_state state,
4807 		u16 *timeout)
4808 {
4809 	u16 alt_timeout;
4810 
4811 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4812 		desc, state, timeout);
4813 
4814 	/* If we found we can't enable hub-initiated LPM, and
4815 	 * the U1 or U2 exit latency was too high to allow
4816 	 * device-initiated LPM as well, then we will disable LPM
4817 	 * for this device, so stop searching any further.
4818 	 */
4819 	if (alt_timeout == USB3_LPM_DISABLED) {
4820 		*timeout = alt_timeout;
4821 		return -E2BIG;
4822 	}
4823 	if (alt_timeout > *timeout)
4824 		*timeout = alt_timeout;
4825 	return 0;
4826 }
4827 
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4828 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4829 		struct usb_device *udev,
4830 		struct usb_host_interface *alt,
4831 		enum usb3_link_state state,
4832 		u16 *timeout)
4833 {
4834 	int j;
4835 
4836 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4837 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4838 					&alt->endpoint[j].desc, state, timeout))
4839 			return -E2BIG;
4840 		continue;
4841 	}
4842 	return 0;
4843 }
4844 
xhci_check_intel_tier_policy(struct usb_device * udev,enum usb3_link_state state)4845 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4846 		enum usb3_link_state state)
4847 {
4848 	struct usb_device *parent;
4849 	unsigned int num_hubs;
4850 
4851 	if (state == USB3_LPM_U2)
4852 		return 0;
4853 
4854 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4855 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4856 			parent = parent->parent)
4857 		num_hubs++;
4858 
4859 	if (num_hubs < 2)
4860 		return 0;
4861 
4862 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4863 			" below second-tier hub.\n");
4864 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4865 			"to decrease power consumption.\n");
4866 	return -E2BIG;
4867 }
4868 
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4869 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4870 		struct usb_device *udev,
4871 		enum usb3_link_state state)
4872 {
4873 	if (xhci->quirks & XHCI_INTEL_HOST)
4874 		return xhci_check_intel_tier_policy(udev, state);
4875 	else
4876 		return 0;
4877 }
4878 
4879 /* Returns the U1 or U2 timeout that should be enabled.
4880  * If the tier check or timeout setting functions return with a non-zero exit
4881  * code, that means the timeout value has been finalized and we shouldn't look
4882  * at any more endpoints.
4883  */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4884 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4885 			struct usb_device *udev, enum usb3_link_state state)
4886 {
4887 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4888 	struct usb_host_config *config;
4889 	char *state_name;
4890 	int i;
4891 	u16 timeout = USB3_LPM_DISABLED;
4892 
4893 	if (state == USB3_LPM_U1)
4894 		state_name = "U1";
4895 	else if (state == USB3_LPM_U2)
4896 		state_name = "U2";
4897 	else {
4898 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4899 				state);
4900 		return timeout;
4901 	}
4902 
4903 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4904 		return timeout;
4905 
4906 	/* Gather some information about the currently installed configuration
4907 	 * and alternate interface settings.
4908 	 */
4909 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4910 			state, &timeout))
4911 		return timeout;
4912 
4913 	config = udev->actconfig;
4914 	if (!config)
4915 		return timeout;
4916 
4917 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4918 		struct usb_driver *driver;
4919 		struct usb_interface *intf = config->interface[i];
4920 
4921 		if (!intf)
4922 			continue;
4923 
4924 		/* Check if any currently bound drivers want hub-initiated LPM
4925 		 * disabled.
4926 		 */
4927 		if (intf->dev.driver) {
4928 			driver = to_usb_driver(intf->dev.driver);
4929 			if (driver && driver->disable_hub_initiated_lpm) {
4930 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4931 					state_name, driver->name);
4932 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4933 								      state);
4934 				if (timeout == USB3_LPM_DISABLED)
4935 					return timeout;
4936 			}
4937 		}
4938 
4939 		/* Not sure how this could happen... */
4940 		if (!intf->cur_altsetting)
4941 			continue;
4942 
4943 		if (xhci_update_timeout_for_interface(xhci, udev,
4944 					intf->cur_altsetting,
4945 					state, &timeout))
4946 			return timeout;
4947 	}
4948 	return timeout;
4949 }
4950 
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4951 static int calculate_max_exit_latency(struct usb_device *udev,
4952 		enum usb3_link_state state_changed,
4953 		u16 hub_encoded_timeout)
4954 {
4955 	unsigned long long u1_mel_us = 0;
4956 	unsigned long long u2_mel_us = 0;
4957 	unsigned long long mel_us = 0;
4958 	bool disabling_u1;
4959 	bool disabling_u2;
4960 	bool enabling_u1;
4961 	bool enabling_u2;
4962 
4963 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4964 			hub_encoded_timeout == USB3_LPM_DISABLED);
4965 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4966 			hub_encoded_timeout == USB3_LPM_DISABLED);
4967 
4968 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4969 			hub_encoded_timeout != USB3_LPM_DISABLED);
4970 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4971 			hub_encoded_timeout != USB3_LPM_DISABLED);
4972 
4973 	/* If U1 was already enabled and we're not disabling it,
4974 	 * or we're going to enable U1, account for the U1 max exit latency.
4975 	 */
4976 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4977 			enabling_u1)
4978 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4979 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4980 			enabling_u2)
4981 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4982 
4983 	if (u1_mel_us > u2_mel_us)
4984 		mel_us = u1_mel_us;
4985 	else
4986 		mel_us = u2_mel_us;
4987 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4988 	if (mel_us > MAX_EXIT) {
4989 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4990 				"is too big.\n", mel_us);
4991 		return -E2BIG;
4992 	}
4993 	return mel_us;
4994 }
4995 
4996 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4997 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4998 			struct usb_device *udev, enum usb3_link_state state)
4999 {
5000 	struct xhci_hcd	*xhci;
5001 	u16 hub_encoded_timeout;
5002 	int mel;
5003 	int ret;
5004 
5005 	xhci = hcd_to_xhci(hcd);
5006 	/* The LPM timeout values are pretty host-controller specific, so don't
5007 	 * enable hub-initiated timeouts unless the vendor has provided
5008 	 * information about their timeout algorithm.
5009 	 */
5010 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5011 			!xhci->devs[udev->slot_id])
5012 		return USB3_LPM_DISABLED;
5013 
5014 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5015 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5016 	if (mel < 0) {
5017 		/* Max Exit Latency is too big, disable LPM. */
5018 		hub_encoded_timeout = USB3_LPM_DISABLED;
5019 		mel = 0;
5020 	}
5021 
5022 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5023 	if (ret)
5024 		return ret;
5025 	return hub_encoded_timeout;
5026 }
5027 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5028 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5029 			struct usb_device *udev, enum usb3_link_state state)
5030 {
5031 	struct xhci_hcd	*xhci;
5032 	u16 mel;
5033 
5034 	xhci = hcd_to_xhci(hcd);
5035 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5036 			!xhci->devs[udev->slot_id])
5037 		return 0;
5038 
5039 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5040 	return xhci_change_max_exit_latency(xhci, udev, mel);
5041 }
5042 #else /* CONFIG_PM */
5043 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5044 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5045 				struct usb_device *udev, int enable)
5046 {
5047 	return 0;
5048 }
5049 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5050 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5051 {
5052 	return 0;
5053 }
5054 
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5055 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5056 			struct usb_device *udev, enum usb3_link_state state)
5057 {
5058 	return USB3_LPM_DISABLED;
5059 }
5060 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5061 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5062 			struct usb_device *udev, enum usb3_link_state state)
5063 {
5064 	return 0;
5065 }
5066 #endif	/* CONFIG_PM */
5067 
5068 /*-------------------------------------------------------------------------*/
5069 
5070 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5071  * internal data structures for the device.
5072  */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5073 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5074 			struct usb_tt *tt, gfp_t mem_flags)
5075 {
5076 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5077 	struct xhci_virt_device *vdev;
5078 	struct xhci_command *config_cmd;
5079 	struct xhci_input_control_ctx *ctrl_ctx;
5080 	struct xhci_slot_ctx *slot_ctx;
5081 	unsigned long flags;
5082 	unsigned think_time;
5083 	int ret;
5084 
5085 	/* Ignore root hubs */
5086 	if (!hdev->parent)
5087 		return 0;
5088 
5089 	vdev = xhci->devs[hdev->slot_id];
5090 	if (!vdev) {
5091 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5092 		return -EINVAL;
5093 	}
5094 
5095 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5096 	if (!config_cmd)
5097 		return -ENOMEM;
5098 
5099 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5100 	if (!ctrl_ctx) {
5101 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5102 				__func__);
5103 		xhci_free_command(xhci, config_cmd);
5104 		return -ENOMEM;
5105 	}
5106 
5107 	spin_lock_irqsave(&xhci->lock, flags);
5108 	if (hdev->speed == USB_SPEED_HIGH &&
5109 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5110 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5111 		xhci_free_command(xhci, config_cmd);
5112 		spin_unlock_irqrestore(&xhci->lock, flags);
5113 		return -ENOMEM;
5114 	}
5115 
5116 	ret = xhci_vendor_sync_dev_ctx(xhci, hdev->slot_id);
5117 	if (ret) {
5118 		xhci_warn(xhci, "%s: Failed to sync device context failed, err=%d",
5119 			  __func__, ret);
5120 		xhci_free_command(xhci, config_cmd);
5121 		spin_unlock_irqrestore(&xhci->lock, flags);
5122 		return ret;
5123 	}
5124 
5125 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5126 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5127 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5128 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5129 	/*
5130 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5131 	 * but it may be already set to 1 when setup an xHCI virtual
5132 	 * device, so clear it anyway.
5133 	 */
5134 	if (tt->multi)
5135 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5136 	else if (hdev->speed == USB_SPEED_FULL)
5137 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5138 
5139 	if (xhci->hci_version > 0x95) {
5140 		xhci_dbg(xhci, "xHCI version %x needs hub "
5141 				"TT think time and number of ports\n",
5142 				(unsigned int) xhci->hci_version);
5143 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5144 		/* Set TT think time - convert from ns to FS bit times.
5145 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5146 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5147 		 *
5148 		 * xHCI 1.0: this field shall be 0 if the device is not a
5149 		 * High-spped hub.
5150 		 */
5151 		think_time = tt->think_time;
5152 		if (think_time != 0)
5153 			think_time = (think_time / 666) - 1;
5154 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5155 			slot_ctx->tt_info |=
5156 				cpu_to_le32(TT_THINK_TIME(think_time));
5157 	} else {
5158 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5159 				"TT think time or number of ports\n",
5160 				(unsigned int) xhci->hci_version);
5161 	}
5162 	slot_ctx->dev_state = 0;
5163 	spin_unlock_irqrestore(&xhci->lock, flags);
5164 
5165 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5166 			(xhci->hci_version > 0x95) ?
5167 			"configure endpoint" : "evaluate context");
5168 
5169 	/* Issue and wait for the configure endpoint or
5170 	 * evaluate context command.
5171 	 */
5172 	if (xhci->hci_version > 0x95)
5173 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5174 				false, false);
5175 	else
5176 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5177 				true, false);
5178 
5179 	xhci_free_command(xhci, config_cmd);
5180 	return ret;
5181 }
5182 
xhci_get_frame(struct usb_hcd * hcd)5183 static int xhci_get_frame(struct usb_hcd *hcd)
5184 {
5185 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5186 	/* EHCI mods by the periodic size.  Why? */
5187 	return readl(&xhci->run_regs->microframe_index) >> 3;
5188 }
5189 
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5190 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5191 {
5192 	struct xhci_hcd		*xhci;
5193 	/*
5194 	 * TODO: Check with DWC3 clients for sysdev according to
5195 	 * quirks
5196 	 */
5197 	struct device		*dev = hcd->self.sysdev;
5198 	unsigned int		minor_rev;
5199 	int			retval;
5200 
5201 	/* Accept arbitrarily long scatter-gather lists */
5202 	hcd->self.sg_tablesize = ~0;
5203 
5204 	/* support to build packet from discontinuous buffers */
5205 	hcd->self.no_sg_constraint = 1;
5206 
5207 	/* XHCI controllers don't stop the ep queue on short packets :| */
5208 	hcd->self.no_stop_on_short = 1;
5209 
5210 	xhci = hcd_to_xhci(hcd);
5211 
5212 	if (usb_hcd_is_primary_hcd(hcd)) {
5213 		xhci->main_hcd = hcd;
5214 		xhci->usb2_rhub.hcd = hcd;
5215 		/* Mark the first roothub as being USB 2.0.
5216 		 * The xHCI driver will register the USB 3.0 roothub.
5217 		 */
5218 		hcd->speed = HCD_USB2;
5219 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5220 		/*
5221 		 * USB 2.0 roothub under xHCI has an integrated TT,
5222 		 * (rate matching hub) as opposed to having an OHCI/UHCI
5223 		 * companion controller.
5224 		 */
5225 		hcd->has_tt = 1;
5226 	} else {
5227 		/*
5228 		 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5229 		 * should return 0x31 for sbrn, or that the minor revision
5230 		 * is a two digit BCD containig minor and sub-minor numbers.
5231 		 * This was later clarified in xHCI 1.2.
5232 		 *
5233 		 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5234 		 * minor revision set to 0x1 instead of 0x10.
5235 		 */
5236 		if (xhci->usb3_rhub.min_rev == 0x1)
5237 			minor_rev = 1;
5238 		else
5239 			minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5240 
5241 		switch (minor_rev) {
5242 		case 2:
5243 			hcd->speed = HCD_USB32;
5244 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5245 			hcd->self.root_hub->rx_lanes = 2;
5246 			hcd->self.root_hub->tx_lanes = 2;
5247 			break;
5248 		case 1:
5249 			hcd->speed = HCD_USB31;
5250 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5251 			break;
5252 		}
5253 		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5254 			  minor_rev,
5255 			  minor_rev ? "Enhanced " : "");
5256 
5257 		xhci->usb3_rhub.hcd = hcd;
5258 		/* xHCI private pointer was set in xhci_pci_probe for the second
5259 		 * registered roothub.
5260 		 */
5261 		return 0;
5262 	}
5263 
5264 	mutex_init(&xhci->mutex);
5265 	xhci->cap_regs = hcd->regs;
5266 	xhci->op_regs = hcd->regs +
5267 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5268 	xhci->run_regs = hcd->regs +
5269 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5270 	/* Cache read-only capability registers */
5271 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5272 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5273 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5274 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5275 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5276 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5277 	if (xhci->hci_version > 0x100)
5278 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5279 
5280 	xhci->quirks |= quirks;
5281 
5282 	get_quirks(dev, xhci);
5283 
5284 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5285 	 * success event after a short transfer. This quirk will ignore such
5286 	 * spurious event.
5287 	 */
5288 	if (xhci->hci_version > 0x96)
5289 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5290 
5291 	/* Make sure the HC is halted. */
5292 	retval = xhci_halt(xhci);
5293 	if (retval)
5294 		return retval;
5295 
5296 	xhci_zero_64b_regs(xhci);
5297 
5298 	xhci_dbg(xhci, "Resetting HCD\n");
5299 	/* Reset the internal HC memory state and registers. */
5300 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5301 	if (retval)
5302 		return retval;
5303 	xhci_dbg(xhci, "Reset complete\n");
5304 
5305 	/*
5306 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5307 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5308 	 * address memory pointers actually. So, this driver clears the AC64
5309 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5310 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5311 	 */
5312 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5313 		xhci->hcc_params &= ~BIT(0);
5314 
5315 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5316 	 * if xHC supports 64-bit addressing */
5317 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5318 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5319 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5320 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5321 	} else {
5322 		/*
5323 		 * This is to avoid error in cases where a 32-bit USB
5324 		 * controller is used on a 64-bit capable system.
5325 		 */
5326 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5327 		if (retval)
5328 			return retval;
5329 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5330 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5331 	}
5332 
5333 	xhci_dbg(xhci, "Calling HCD init\n");
5334 	/* Initialize HCD and host controller data structures. */
5335 	retval = xhci_init(hcd);
5336 	if (retval)
5337 		return retval;
5338 	xhci_dbg(xhci, "Called HCD init\n");
5339 
5340 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5341 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5342 
5343 	return 0;
5344 }
5345 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5346 
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5347 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5348 		struct usb_host_endpoint *ep)
5349 {
5350 	struct xhci_hcd *xhci;
5351 	struct usb_device *udev;
5352 	unsigned int slot_id;
5353 	unsigned int ep_index;
5354 	unsigned long flags;
5355 
5356 	xhci = hcd_to_xhci(hcd);
5357 
5358 	spin_lock_irqsave(&xhci->lock, flags);
5359 	udev = (struct usb_device *)ep->hcpriv;
5360 	slot_id = udev->slot_id;
5361 	ep_index = xhci_get_endpoint_index(&ep->desc);
5362 
5363 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5364 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5365 	spin_unlock_irqrestore(&xhci->lock, flags);
5366 }
5367 
5368 static const struct hc_driver xhci_hc_driver = {
5369 	.description =		"xhci-hcd",
5370 	.product_desc =		"xHCI Host Controller",
5371 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5372 
5373 	/*
5374 	 * generic hardware linkage
5375 	 */
5376 	.irq =			xhci_irq,
5377 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5378 				HCD_BH,
5379 
5380 	/*
5381 	 * basic lifecycle operations
5382 	 */
5383 	.reset =		NULL, /* set in xhci_init_driver() */
5384 	.start =		xhci_run,
5385 	.stop =			xhci_stop,
5386 	.shutdown =		xhci_shutdown,
5387 
5388 	/*
5389 	 * managing i/o requests and associated device resources
5390 	 */
5391 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5392 	.urb_enqueue =		xhci_urb_enqueue,
5393 	.urb_dequeue =		xhci_urb_dequeue,
5394 	.alloc_dev =		xhci_alloc_dev,
5395 	.free_dev =		xhci_free_dev,
5396 	.alloc_streams =	xhci_alloc_streams,
5397 	.free_streams =		xhci_free_streams,
5398 	.add_endpoint =		xhci_add_endpoint,
5399 	.drop_endpoint =	xhci_drop_endpoint,
5400 	.endpoint_disable =	xhci_endpoint_disable,
5401 	.endpoint_reset =	xhci_endpoint_reset,
5402 	.check_bandwidth =	xhci_check_bandwidth,
5403 	.reset_bandwidth =	xhci_reset_bandwidth,
5404 	.address_device =	xhci_address_device,
5405 	.enable_device =	xhci_enable_device,
5406 	.update_hub_device =	xhci_update_hub_device,
5407 	.reset_device =		xhci_discover_or_reset_device,
5408 
5409 	/*
5410 	 * scheduling support
5411 	 */
5412 	.get_frame_number =	xhci_get_frame,
5413 
5414 	/*
5415 	 * root hub support
5416 	 */
5417 	.hub_control =		xhci_hub_control,
5418 	.hub_status_data =	xhci_hub_status_data,
5419 	.bus_suspend =		xhci_bus_suspend,
5420 	.bus_resume =		xhci_bus_resume,
5421 	.get_resuming_ports =	xhci_get_resuming_ports,
5422 
5423 	/*
5424 	 * call back when device connected and addressed
5425 	 */
5426 	.update_device =        xhci_update_device,
5427 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5428 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5429 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5430 	.find_raw_port_number =	xhci_find_raw_port_number,
5431 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5432 };
5433 
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5434 void xhci_init_driver(struct hc_driver *drv,
5435 		      const struct xhci_driver_overrides *over)
5436 {
5437 	BUG_ON(!over);
5438 
5439 	/* Copy the generic table to drv then apply the overrides */
5440 	*drv = xhci_hc_driver;
5441 
5442 	if (over) {
5443 		drv->hcd_priv_size += over->extra_priv_size;
5444 		if (over->reset)
5445 			drv->reset = over->reset;
5446 		if (over->start)
5447 			drv->start = over->start;
5448 		if (over->add_endpoint)
5449 			drv->add_endpoint = over->add_endpoint;
5450 		if (over->drop_endpoint)
5451 			drv->drop_endpoint = over->drop_endpoint;
5452 		if (over->check_bandwidth)
5453 			drv->check_bandwidth = over->check_bandwidth;
5454 		if (over->reset_bandwidth)
5455 			drv->reset_bandwidth = over->reset_bandwidth;
5456 		if (over->address_device)
5457 			drv->address_device = over->address_device;
5458 		if (over->bus_suspend)
5459 			drv->bus_suspend = over->bus_suspend;
5460 		if (over->bus_resume)
5461 			drv->bus_resume = over->bus_resume;
5462 	}
5463 }
5464 EXPORT_SYMBOL_GPL(xhci_init_driver);
5465 
5466 MODULE_DESCRIPTION(DRIVER_DESC);
5467 MODULE_AUTHOR(DRIVER_AUTHOR);
5468 MODULE_LICENSE("GPL");
5469 
xhci_hcd_init(void)5470 static int __init xhci_hcd_init(void)
5471 {
5472 	/*
5473 	 * Check the compiler generated sizes of structures that must be laid
5474 	 * out in specific ways for hardware access.
5475 	 */
5476 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5477 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5478 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5479 	/* xhci_device_control has eight fields, and also
5480 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5481 	 */
5482 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5483 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5484 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5485 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5486 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5487 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5488 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5489 
5490 	if (usb_disabled())
5491 		return -ENODEV;
5492 
5493 	xhci_debugfs_create_root();
5494 
5495 	return 0;
5496 }
5497 
5498 /*
5499  * If an init function is provided, an exit function must also be provided
5500  * to allow module unload.
5501  */
xhci_hcd_fini(void)5502 static void __exit xhci_hcd_fini(void)
5503 {
5504 	xhci_debugfs_remove_root();
5505 }
5506 
5507 module_init(xhci_hcd_init);
5508 module_exit(xhci_hcd_fini);
5509