xref: /OK3568_Linux_fs/kernel/drivers/usb/gadget/function/u_audio.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * u_audio.c -- interface to USB gadget "ALSA sound card" utilities
4  *
5  * Copyright (C) 2016
6  * Author: Ruslan Bilovol <ruslan.bilovol@gmail.com>
7  *
8  * Sound card implementation was cut-and-pasted with changes
9  * from f_uac2.c and has:
10  *    Copyright (C) 2011
11  *    Yadwinder Singh (yadi.brar01@gmail.com)
12  *    Jaswinder Singh (jaswinder.singh@linaro.org)
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <sound/core.h>
18 #include <sound/pcm.h>
19 #include <sound/pcm_params.h>
20 #include <sound/control.h>
21 #include <sound/tlv.h>
22 #include <linux/usb/audio.h>
23 
24 #include "u_audio.h"
25 
26 #define BUFF_SIZE_MAX	(PAGE_SIZE * 16)
27 #define PRD_SIZE_MAX	PAGE_SIZE
28 #define MIN_PERIODS	4
29 
30 enum {
31 	UAC_FBACK_CTRL,
32 	UAC_P_PITCH_CTRL,
33 	UAC_MUTE_CTRL,
34 	UAC_VOLUME_CTRL,
35 	UAC_RATE_CTRL,
36 };
37 
38 #define CLK_PPM_GROUP_SIZE	20
39 
40 /* Runtime data params for one stream */
41 struct uac_rtd_params {
42 	struct snd_uac_chip *uac; /* parent chip */
43 	bool ep_enabled; /* if the ep is enabled */
44 
45 	struct snd_pcm_substream *ss;
46 
47 	/* Ring buffer */
48 	ssize_t hw_ptr;
49 
50 	void *rbuf;
51 
52 	unsigned int pitch;	/* Stream pitch ratio to 1000000 */
53 	unsigned int max_psize;	/* MaxPacketSize of endpoint */
54 
55 	struct usb_request **reqs;
56 
57 	struct usb_request *req_fback; /* Feedback endpoint request */
58 	bool fb_ep_enabled; /* if the ep is enabled */
59 
60   /* Volume/Mute controls and their state */
61   int fu_id; /* Feature Unit ID */
62   struct snd_kcontrol *snd_kctl_volume;
63   struct snd_kcontrol *snd_kctl_mute;
64   s16 volume_min, volume_max, volume_res;
65   s16 volume;
66   int mute;
67 
68 	struct snd_kcontrol *snd_kctl_rate; /* read-only current rate */
69 	int srate; /* selected samplerate */
70 	int active; /* playback/capture running */
71 
72   spinlock_t lock; /* lock for control transfers */
73 
74 };
75 
76 struct snd_uac_chip {
77 	struct g_audio *audio_dev;
78 
79 	struct uac_rtd_params p_prm;
80 	struct uac_rtd_params c_prm;
81 
82 	struct snd_card *card;
83 	struct snd_pcm *pcm;
84 
85 	/* pre-calculated values for playback iso completion */
86 	unsigned long long p_residue_mil;
87 	unsigned int p_interval;
88 	unsigned int p_framesize;
89 };
90 
91 static const struct snd_pcm_hardware uac_pcm_hardware = {
92 	.info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER
93 		 | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID
94 		 | SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME,
95 	.rates = SNDRV_PCM_RATE_CONTINUOUS,
96 	.periods_max = BUFF_SIZE_MAX / PRD_SIZE_MAX,
97 	.buffer_bytes_max = BUFF_SIZE_MAX,
98 	.period_bytes_max = PRD_SIZE_MAX,
99 	.periods_min = MIN_PERIODS,
100 };
101 
102 static struct class *audio_class;
103 
u_audio_set_fback_frequency(enum usb_device_speed speed,struct usb_ep * out_ep,unsigned long long freq,unsigned int pitch,void * buf)104 static void u_audio_set_fback_frequency(enum usb_device_speed speed,
105 					struct usb_ep *out_ep,
106 					unsigned long long freq,
107 					unsigned int pitch,
108 					void *buf)
109 {
110 	u32 ff = 0;
111 	const struct usb_endpoint_descriptor *ep_desc;
112 
113 	/*
114 	 * Because the pitch base is 1000000, the final divider here
115 	 * will be 1000 * 1000000 = 1953125 << 9
116 	 *
117 	 * Instead of dealing with big numbers lets fold this 9 left shift
118 	 */
119 
120 	if (speed == USB_SPEED_FULL) {
121 		/*
122 		 * Full-speed feedback endpoints report frequency
123 		 * in samples/frame
124 		 * Format is encoded in Q10.10 left-justified in the 24 bits,
125 		 * so that it has a Q10.14 format.
126 		 *
127 		 * ff = (freq << 14) / 1000
128 		 */
129 		freq <<= 5;
130 	} else {
131 		/*
132 		 * High-speed feedback endpoints report frequency
133 		 * in samples/microframe.
134 		 * Format is encoded in Q12.13 fitted into four bytes so that
135 		 * the binary point is located between the second and the third
136 		 * byte fromat (that is Q16.16)
137 		 *
138 		 * ff = (freq << 16) / 8000
139 		 *
140 		 * Win10 and OSX UAC2 drivers require number of samples per packet
141 		 * in order to honor the feedback value.
142 		 * Linux snd-usb-audio detects the applied bit-shift automatically.
143 		 */
144 		ep_desc = out_ep->desc;
145 		freq <<= 4 + (ep_desc->bInterval - 1);
146 	}
147 
148 	ff = DIV_ROUND_CLOSEST_ULL((freq * pitch), 1953125);
149 
150 	*(__le32 *)buf = cpu_to_le32(ff);
151 }
152 
u_audio_iso_complete(struct usb_ep * ep,struct usb_request * req)153 static void u_audio_iso_complete(struct usb_ep *ep, struct usb_request *req)
154 {
155 	unsigned int pending;
156 	unsigned int hw_ptr;
157 	int status = req->status;
158 	struct snd_pcm_substream *substream;
159 	struct snd_pcm_runtime *runtime;
160 	struct uac_rtd_params *prm = req->context;
161 	struct snd_uac_chip *uac = prm->uac;
162 	unsigned int frames, p_pktsize;
163 	unsigned long long pitched_rate_mil, p_pktsize_residue_mil,
164 			residue_frames_mil, div_result;
165 
166 	/* i/f shutting down */
167 	if (!prm->ep_enabled) {
168 		usb_ep_free_request(ep, req);
169 		return;
170 	}
171 
172 	if (req->status == -ESHUTDOWN)
173 		return;
174 
175 	/*
176 	 * We can't really do much about bad xfers.
177 	 * Afterall, the ISOCH xfers could fail legitimately.
178 	 */
179 	if (status)
180 		pr_debug("%s: iso_complete status(%d) %d/%d\n",
181 			__func__, status, req->actual, req->length);
182 
183 	substream = prm->ss;
184 
185 	/* Do nothing if ALSA isn't active */
186 	if (!substream)
187 		goto exit;
188 
189 	snd_pcm_stream_lock(substream);
190 
191 	runtime = substream->runtime;
192 	if (!runtime || !snd_pcm_running(substream)) {
193 		snd_pcm_stream_unlock(substream);
194 		goto exit;
195 	}
196 
197 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
198 		/*
199 		 * For each IN packet, take the quotient of the current data
200 		 * rate and the endpoint's interval as the base packet size.
201 		 * If there is a residue from this division, add it to the
202 		 * residue accumulator.
203 		 */
204 		unsigned long long p_interval_mil = uac->p_interval * 1000000ULL;
205 
206 		pitched_rate_mil = (unsigned long long) prm->srate * prm->pitch;
207 		div_result = pitched_rate_mil;
208 		do_div(div_result, uac->p_interval);
209 		do_div(div_result, 1000000);
210 		frames = (unsigned int) div_result;
211 
212 		pr_debug("p_srate %d, pitch %d, interval_mil %llu, frames %d\n",
213 				prm->srate, prm->pitch, p_interval_mil, frames);
214 
215 		p_pktsize = min_t(unsigned int,
216 					uac->p_framesize * frames,
217 					ep->maxpacket);
218 
219 		if (p_pktsize < ep->maxpacket) {
220 			residue_frames_mil = pitched_rate_mil - frames * p_interval_mil;
221 			p_pktsize_residue_mil = uac->p_framesize * residue_frames_mil;
222 		} else
223 			p_pktsize_residue_mil = 0;
224 
225 		req->length = p_pktsize;
226 		uac->p_residue_mil += p_pktsize_residue_mil;
227 
228 		/*
229 		 * Whenever there are more bytes in the accumulator p_residue_mil than we
230 		 * need to add one more sample frame, increase this packet's
231 		 * size and decrease the accumulator.
232 		 */
233 		div_result = uac->p_residue_mil;
234 		do_div(div_result, uac->p_interval);
235 		do_div(div_result, 1000000);
236 		if ((unsigned int) div_result >= uac->p_framesize) {
237 			req->length += uac->p_framesize;
238 			uac->p_residue_mil -= uac->p_framesize * p_interval_mil;
239 			pr_debug("increased req length to %d\n", req->length);
240 		}
241 		pr_debug("remains uac->p_residue_mil %llu\n", uac->p_residue_mil);
242 
243 		req->actual = req->length;
244 	}
245 
246 	hw_ptr = prm->hw_ptr;
247 
248 	/* Pack USB load in ALSA ring buffer */
249 	pending = runtime->dma_bytes - hw_ptr;
250 
251 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
252 		if (unlikely(pending < req->actual)) {
253 			memcpy(req->buf, runtime->dma_area + hw_ptr, pending);
254 			memcpy(req->buf + pending, runtime->dma_area,
255 			       req->actual - pending);
256 		} else {
257 			memcpy(req->buf, runtime->dma_area + hw_ptr,
258 			       req->actual);
259 		}
260 	} else {
261 		if (unlikely(pending < req->actual)) {
262 			memcpy(runtime->dma_area + hw_ptr, req->buf, pending);
263 			memcpy(runtime->dma_area, req->buf + pending,
264 			       req->actual - pending);
265 		} else {
266 			memcpy(runtime->dma_area + hw_ptr, req->buf,
267 			       req->actual);
268 		}
269 	}
270 
271 	/* update hw_ptr after data is copied to memory */
272 	prm->hw_ptr = (hw_ptr + req->actual) % runtime->dma_bytes;
273 	hw_ptr = prm->hw_ptr;
274 	snd_pcm_stream_unlock(substream);
275 
276 	if ((hw_ptr % snd_pcm_lib_period_bytes(substream)) < req->actual)
277 		snd_pcm_period_elapsed(substream);
278 
279 exit:
280 	if (usb_ep_queue(ep, req, GFP_ATOMIC))
281 		dev_err(uac->card->dev, "%d Error!\n", __LINE__);
282 }
283 
u_audio_iso_fback_complete(struct usb_ep * ep,struct usb_request * req)284 static void u_audio_iso_fback_complete(struct usb_ep *ep,
285 				       struct usb_request *req)
286 {
287 	struct uac_rtd_params *prm = req->context;
288 	struct snd_uac_chip *uac = prm->uac;
289 	struct g_audio *audio_dev = uac->audio_dev;
290 	int status = req->status;
291 
292 	/* i/f shutting down */
293 	if (!prm->fb_ep_enabled) {
294 		kfree(req->buf);
295 		usb_ep_free_request(ep, req);
296 		return;
297 	}
298 
299 	if (req->status == -ESHUTDOWN)
300 		return;
301 
302 	/*
303 	 * We can't really do much about bad xfers.
304 	 * Afterall, the ISOCH xfers could fail legitimately.
305 	 */
306 	if (status)
307 		pr_debug("%s: iso_complete status(%d) %d/%d\n",
308 			__func__, status, req->actual, req->length);
309 
310 	u_audio_set_fback_frequency(audio_dev->gadget->speed, audio_dev->out_ep,
311 				    prm->srate, prm->pitch,
312 				    req->buf);
313 
314 	if (usb_ep_queue(ep, req, GFP_ATOMIC))
315 		dev_err(uac->card->dev, "%d Error!\n", __LINE__);
316 }
317 
uac_pcm_trigger(struct snd_pcm_substream * substream,int cmd)318 static int uac_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
319 {
320 	struct snd_uac_chip *uac = snd_pcm_substream_chip(substream);
321 	struct uac_rtd_params *prm;
322 	struct g_audio *audio_dev;
323 	struct uac_params *params;
324 	int err = 0;
325 
326 	audio_dev = uac->audio_dev;
327 	params = &audio_dev->params;
328 
329 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
330 		prm = &uac->p_prm;
331 	else
332 		prm = &uac->c_prm;
333 
334 	/* Reset */
335 	prm->hw_ptr = 0;
336 
337 	switch (cmd) {
338 	case SNDRV_PCM_TRIGGER_START:
339 	case SNDRV_PCM_TRIGGER_RESUME:
340 		prm->ss = substream;
341 		break;
342 	case SNDRV_PCM_TRIGGER_STOP:
343 	case SNDRV_PCM_TRIGGER_SUSPEND:
344 		prm->ss = NULL;
345 		break;
346 	default:
347 		err = -EINVAL;
348 	}
349 
350 	/* Clear buffer after Play stops */
351 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && !prm->ss)
352 		memset(prm->rbuf, 0, prm->max_psize * params->req_number);
353 
354 	return err;
355 }
356 
uac_pcm_pointer(struct snd_pcm_substream * substream)357 static snd_pcm_uframes_t uac_pcm_pointer(struct snd_pcm_substream *substream)
358 {
359 	struct snd_uac_chip *uac = snd_pcm_substream_chip(substream);
360 	struct uac_rtd_params *prm;
361 
362 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
363 		prm = &uac->p_prm;
364 	else
365 		prm = &uac->c_prm;
366 
367 	return bytes_to_frames(substream->runtime, prm->hw_ptr);
368 }
369 
uac_ssize_to_fmt(int ssize)370 static u64 uac_ssize_to_fmt(int ssize)
371 {
372 	u64 ret;
373 
374 	switch (ssize) {
375 	case 3:
376 		ret = SNDRV_PCM_FMTBIT_S24_3LE;
377 		break;
378 	case 4:
379 		ret = SNDRV_PCM_FMTBIT_S32_LE;
380 		break;
381 	default:
382 		ret = SNDRV_PCM_FMTBIT_S16_LE;
383 		break;
384 	}
385 
386 	return ret;
387 }
388 
uac_pcm_open(struct snd_pcm_substream * substream)389 static int uac_pcm_open(struct snd_pcm_substream *substream)
390 {
391 	struct snd_uac_chip *uac = snd_pcm_substream_chip(substream);
392 	struct snd_pcm_runtime *runtime = substream->runtime;
393 	struct g_audio *audio_dev;
394 	struct uac_params *params;
395 	struct uac_rtd_params *prm;
396 	int p_ssize, c_ssize;
397 	int p_chmask, c_chmask;
398 
399 	audio_dev = uac->audio_dev;
400 	params = &audio_dev->params;
401 	p_ssize = params->p_ssize;
402 	c_ssize = params->c_ssize;
403 	p_chmask = params->p_chmask;
404 	c_chmask = params->c_chmask;
405 	uac->p_residue_mil = 0;
406 
407 	runtime->hw = uac_pcm_hardware;
408 
409 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
410 		runtime->hw.formats = uac_ssize_to_fmt(p_ssize);
411 		runtime->hw.channels_min = num_channels(p_chmask);
412 		prm = &uac->p_prm;
413 	} else {
414 		runtime->hw.formats = uac_ssize_to_fmt(c_ssize);
415 		runtime->hw.channels_min = num_channels(c_chmask);
416 		prm = &uac->c_prm;
417 	}
418 
419 	runtime->hw.period_bytes_min = 2 * prm->max_psize
420 					/ runtime->hw.periods_min;
421 	runtime->hw.rate_min = prm->srate;
422 	runtime->hw.rate_max = runtime->hw.rate_min;
423 	runtime->hw.channels_max = runtime->hw.channels_min;
424 
425 	snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
426 
427 	return 0;
428 }
429 
430 /* ALSA cries without these function pointers */
uac_pcm_null(struct snd_pcm_substream * substream)431 static int uac_pcm_null(struct snd_pcm_substream *substream)
432 {
433 	return 0;
434 }
435 
436 static const struct snd_pcm_ops uac_pcm_ops = {
437 	.open = uac_pcm_open,
438 	.close = uac_pcm_null,
439 	.trigger = uac_pcm_trigger,
440 	.pointer = uac_pcm_pointer,
441 	.prepare = uac_pcm_null,
442 };
443 
free_ep(struct uac_rtd_params * prm,struct usb_ep * ep)444 static inline void free_ep(struct uac_rtd_params *prm, struct usb_ep *ep)
445 {
446 	struct snd_uac_chip *uac = prm->uac;
447 	struct g_audio *audio_dev;
448 	struct uac_params *params;
449 	int i;
450 
451 	if (!prm->ep_enabled)
452 		return;
453 
454 	audio_dev = uac->audio_dev;
455 	params = &audio_dev->params;
456 
457 	for (i = 0; i < params->req_number; i++) {
458 		if (prm->reqs[i]) {
459 			if (usb_ep_dequeue(ep, prm->reqs[i]))
460 				usb_ep_free_request(ep, prm->reqs[i]);
461 			/*
462 			 * If usb_ep_dequeue() cannot successfully dequeue the
463 			 * request, the request will be freed by the completion
464 			 * callback.
465 			 */
466 
467 			prm->reqs[i] = NULL;
468 		}
469 	}
470 
471 	prm->ep_enabled = false;
472 
473 	if (usb_ep_disable(ep))
474 		dev_err(uac->card->dev, "%s:%d Error!\n", __func__, __LINE__);
475 }
476 
free_ep_fback(struct uac_rtd_params * prm,struct usb_ep * ep)477 static inline void free_ep_fback(struct uac_rtd_params *prm, struct usb_ep *ep)
478 {
479 	struct snd_uac_chip *uac = prm->uac;
480 
481 	if (!prm->fb_ep_enabled)
482 		return;
483 
484 	prm->fb_ep_enabled = false;
485 
486 	if (prm->req_fback) {
487 		if (usb_ep_dequeue(ep, prm->req_fback)) {
488 			kfree(prm->req_fback->buf);
489 			usb_ep_free_request(ep, prm->req_fback);
490 		}
491 		prm->req_fback = NULL;
492 	}
493 
494 	if (usb_ep_disable(ep))
495 		dev_err(uac->card->dev, "%s:%d Error!\n", __func__, __LINE__);
496 }
497 
set_active(struct uac_rtd_params * prm,bool active)498 static void set_active(struct uac_rtd_params *prm, bool active)
499 {
500 	// notifying through the Rate ctrl
501 	struct snd_kcontrol *kctl = prm->snd_kctl_rate;
502 	unsigned long flags;
503 
504 	spin_lock_irqsave(&prm->lock, flags);
505 	if (prm->active != active) {
506 		prm->active = active;
507 		snd_ctl_notify(prm->uac->card, SNDRV_CTL_EVENT_MASK_VALUE,
508 				&kctl->id);
509 	}
510 	spin_unlock_irqrestore(&prm->lock, flags);
511 }
512 
u_audio_set_capture_srate(struct g_audio * audio_dev,int srate)513 int u_audio_set_capture_srate(struct g_audio *audio_dev, int srate)
514 {
515 	struct uac_params *params = &audio_dev->params;
516 	struct snd_uac_chip *uac = audio_dev->uac;
517 	struct uac_rtd_params *prm;
518 	int i;
519 	unsigned long flags;
520 
521 	dev_dbg(&audio_dev->gadget->dev, "%s: srate %d\n", __func__, srate);
522 	prm = &uac->c_prm;
523 	for (i = 0; i < UAC_MAX_RATES; i++) {
524 		if (params->c_srates[i] == srate) {
525 			spin_lock_irqsave(&prm->lock, flags);
526 			prm->srate = srate;
527 			audio_dev->usb_state[SET_SAMPLE_RATE_OUT] = true;
528 			schedule_work(&audio_dev->work);
529 			spin_unlock_irqrestore(&prm->lock, flags);
530 			return 0;
531 		}
532 		if (params->c_srates[i] == 0)
533 			break;
534 	}
535 
536 	return -EINVAL;
537 }
538 EXPORT_SYMBOL_GPL(u_audio_set_capture_srate);
539 
u_audio_get_capture_srate(struct g_audio * audio_dev,u32 * val)540 int u_audio_get_capture_srate(struct g_audio *audio_dev, u32 *val)
541 {
542 	struct snd_uac_chip *uac = audio_dev->uac;
543 	struct uac_rtd_params *prm;
544 	unsigned long flags;
545 
546 	prm = &uac->c_prm;
547 	spin_lock_irqsave(&prm->lock, flags);
548 	*val = prm->srate;
549 	spin_unlock_irqrestore(&prm->lock, flags);
550 	return 0;
551 }
552 EXPORT_SYMBOL_GPL(u_audio_get_capture_srate);
553 
u_audio_set_playback_srate(struct g_audio * audio_dev,int srate)554 int u_audio_set_playback_srate(struct g_audio *audio_dev, int srate)
555 {
556 	struct uac_params *params = &audio_dev->params;
557 	struct snd_uac_chip *uac = audio_dev->uac;
558 	struct uac_rtd_params *prm;
559 	int i;
560 	unsigned long flags;
561 
562 	dev_dbg(&audio_dev->gadget->dev, "%s: srate %d\n", __func__, srate);
563 	prm = &uac->p_prm;
564 	for (i = 0; i < UAC_MAX_RATES; i++) {
565 		if (params->p_srates[i] == srate) {
566 			spin_lock_irqsave(&prm->lock, flags);
567 			prm->srate = srate;
568 			audio_dev->usb_state[SET_SAMPLE_RATE_IN] = true;
569 			schedule_work(&audio_dev->work);
570 			spin_unlock_irqrestore(&prm->lock, flags);
571 			return 0;
572 		}
573 		if (params->p_srates[i] == 0)
574 			break;
575 	}
576 
577 	return -EINVAL;
578 }
579 EXPORT_SYMBOL_GPL(u_audio_set_playback_srate);
580 
u_audio_get_playback_srate(struct g_audio * audio_dev,u32 * val)581 int u_audio_get_playback_srate(struct g_audio *audio_dev, u32 *val)
582 {
583 	struct snd_uac_chip *uac = audio_dev->uac;
584 	struct uac_rtd_params *prm;
585 	unsigned long flags;
586 
587 	prm = &uac->p_prm;
588 	spin_lock_irqsave(&prm->lock, flags);
589 	*val = prm->srate;
590 	spin_unlock_irqrestore(&prm->lock, flags);
591 	return 0;
592 }
593 EXPORT_SYMBOL_GPL(u_audio_get_playback_srate);
594 
u_audio_start_capture(struct g_audio * audio_dev)595 int u_audio_start_capture(struct g_audio *audio_dev)
596 {
597 	struct snd_uac_chip *uac = audio_dev->uac;
598 	struct usb_gadget *gadget = audio_dev->gadget;
599 	struct device *dev = &gadget->dev;
600 	struct usb_request *req, *req_fback;
601 	struct usb_ep *ep, *ep_fback;
602 	struct uac_rtd_params *prm;
603 	struct uac_params *params = &audio_dev->params;
604 	int req_len, i;
605 
606 	/*
607 	 * For better compatibility on some PC Hosts which
608 	 * failed to send SetInterface(AltSet=0) to stop
609 	 * capture last time. It needs to stop capture
610 	 * prior to start capture next time.
611 	 */
612 	if (audio_dev->stream_state[STATE_OUT])
613 		u_audio_stop_capture(audio_dev);
614 
615 	audio_dev->usb_state[SET_INTERFACE_OUT] = true;
616 	audio_dev->stream_state[STATE_OUT] = true;
617 	schedule_work(&audio_dev->work);
618 
619 	prm = &uac->c_prm;
620 	dev_dbg(dev, "start capture with rate %d\n", prm->srate);
621 	ep = audio_dev->out_ep;
622 	config_ep_by_speed(gadget, &audio_dev->func, ep);
623 	req_len = ep->maxpacket;
624 
625 	prm->ep_enabled = true;
626 	usb_ep_enable(ep);
627 
628 	for (i = 0; i < params->req_number; i++) {
629 		if (!prm->reqs[i]) {
630 			req = usb_ep_alloc_request(ep, GFP_ATOMIC);
631 			if (req == NULL)
632 				return -ENOMEM;
633 
634 			prm->reqs[i] = req;
635 
636 			req->zero = 0;
637 			req->context = prm;
638 			req->length = req_len;
639 			req->complete = u_audio_iso_complete;
640 			req->buf = prm->rbuf + i * ep->maxpacket;
641 		}
642 
643 		if (usb_ep_queue(ep, prm->reqs[i], GFP_ATOMIC))
644 			dev_err(dev, "%s:%d Error!\n", __func__, __LINE__);
645 	}
646 
647 	set_active(&uac->c_prm, true);
648 
649 	ep_fback = audio_dev->in_ep_fback;
650 	if (!ep_fback)
651 		return 0;
652 
653 	/* Setup feedback endpoint */
654 	config_ep_by_speed(gadget, &audio_dev->func, ep_fback);
655 	prm->fb_ep_enabled = true;
656 	usb_ep_enable(ep_fback);
657 	req_len = ep_fback->maxpacket;
658 
659 	req_fback = usb_ep_alloc_request(ep_fback, GFP_ATOMIC);
660 	if (req_fback == NULL)
661 		return -ENOMEM;
662 
663 	prm->req_fback = req_fback;
664 	req_fback->zero = 0;
665 	req_fback->context = prm;
666 	req_fback->length = req_len;
667 	req_fback->complete = u_audio_iso_fback_complete;
668 
669 	req_fback->buf = kzalloc(req_len, GFP_ATOMIC);
670 	if (!req_fback->buf)
671 		return -ENOMEM;
672 
673 	/*
674 	 * Configure the feedback endpoint's reported frequency.
675 	 * Always start with original frequency since its deviation can't
676 	 * be meauserd at start of playback
677 	 */
678 	prm->pitch = 1000000;
679 	u_audio_set_fback_frequency(audio_dev->gadget->speed, ep,
680 				    prm->srate, prm->pitch,
681 				    req_fback->buf);
682 
683 	if (usb_ep_queue(ep_fback, req_fback, GFP_ATOMIC))
684 		dev_err(dev, "%s:%d Error!\n", __func__, __LINE__);
685 
686 	return 0;
687 }
688 EXPORT_SYMBOL_GPL(u_audio_start_capture);
689 
u_audio_stop_capture(struct g_audio * audio_dev)690 void u_audio_stop_capture(struct g_audio *audio_dev)
691 {
692 	struct snd_uac_chip *uac = audio_dev->uac;
693 
694 	set_active(&uac->c_prm, false);
695 	if (audio_dev->in_ep_fback)
696 		free_ep_fback(&uac->c_prm, audio_dev->in_ep_fback);
697 	free_ep(&uac->c_prm, audio_dev->out_ep);
698 
699 	audio_dev->usb_state[SET_INTERFACE_OUT] = true;
700 	audio_dev->stream_state[STATE_OUT] = false;
701 	schedule_work(&audio_dev->work);
702 }
703 EXPORT_SYMBOL_GPL(u_audio_stop_capture);
704 
u_audio_start_playback(struct g_audio * audio_dev)705 int u_audio_start_playback(struct g_audio *audio_dev)
706 {
707 	struct snd_uac_chip *uac = audio_dev->uac;
708 	struct usb_gadget *gadget = audio_dev->gadget;
709 	struct device *dev = &gadget->dev;
710 	struct usb_request *req;
711 	struct usb_ep *ep;
712 	struct uac_rtd_params *prm;
713 	struct uac_params *params = &audio_dev->params;
714 	unsigned int factor;
715 	const struct usb_endpoint_descriptor *ep_desc;
716 	int req_len, i;
717 	unsigned int p_pktsize;
718 
719 	/*
720 	 * For better compatibility on some PC Hosts which
721 	 * failed to send SetInterface(AltSet=0) to stop
722 	 * playback last time. It needs to stop playback
723 	 * prior to start playback next time.
724 	 */
725 	if (audio_dev->stream_state[STATE_IN])
726 		u_audio_stop_playback(audio_dev);
727 
728 	audio_dev->usb_state[SET_INTERFACE_IN] = true;
729 	audio_dev->stream_state[STATE_IN] = true;
730 	schedule_work(&audio_dev->work);
731 
732 	prm = &uac->p_prm;
733 	dev_dbg(dev, "start playback with rate %d\n", prm->srate);
734 	ep = audio_dev->in_ep;
735 	config_ep_by_speed(gadget, &audio_dev->func, ep);
736 
737 	ep_desc = ep->desc;
738 	/*
739 	 * Always start with original frequency
740 	 */
741 	prm->pitch = 1000000;
742 
743 	/* pre-calculate the playback endpoint's interval */
744 	if (gadget->speed == USB_SPEED_FULL)
745 		factor = 1000;
746 	else
747 		factor = 8000;
748 
749 	/* pre-compute some values for iso_complete() */
750 	uac->p_framesize = params->p_ssize *
751 			    num_channels(params->p_chmask);
752 	uac->p_interval = factor / (1 << (ep_desc->bInterval - 1));
753 	p_pktsize = min_t(unsigned int,
754 				uac->p_framesize *
755 					(prm->srate / uac->p_interval),
756 				ep->maxpacket);
757 
758 	req_len = p_pktsize;
759 	uac->p_residue_mil = 0;
760 
761 	prm->ep_enabled = true;
762 	usb_ep_enable(ep);
763 
764 	for (i = 0; i < params->req_number; i++) {
765 		if (!prm->reqs[i]) {
766 			req = usb_ep_alloc_request(ep, GFP_ATOMIC);
767 			if (req == NULL)
768 				return -ENOMEM;
769 
770 			prm->reqs[i] = req;
771 
772 			req->zero = 0;
773 			req->context = prm;
774 			req->length = req_len;
775 			req->complete = u_audio_iso_complete;
776 			req->buf = prm->rbuf + i * ep->maxpacket;
777 		}
778 
779 		if (usb_ep_queue(ep, prm->reqs[i], GFP_ATOMIC))
780 			dev_err(dev, "%s:%d Error!\n", __func__, __LINE__);
781 	}
782 
783 	set_active(&uac->p_prm, true);
784 
785 	return 0;
786 }
787 EXPORT_SYMBOL_GPL(u_audio_start_playback);
788 
u_audio_stop_playback(struct g_audio * audio_dev)789 void u_audio_stop_playback(struct g_audio *audio_dev)
790 {
791 	struct snd_uac_chip *uac = audio_dev->uac;
792 
793 	set_active(&uac->p_prm, false);
794 	free_ep(&uac->p_prm, audio_dev->in_ep);
795 
796 	audio_dev->usb_state[SET_INTERFACE_IN] = true;
797 	audio_dev->stream_state[STATE_IN] = false;
798 	schedule_work(&audio_dev->work);
799 }
800 EXPORT_SYMBOL_GPL(u_audio_stop_playback);
801 
u_audio_suspend(struct g_audio * audio_dev)802 void u_audio_suspend(struct g_audio *audio_dev)
803 {
804 	struct snd_uac_chip *uac = audio_dev->uac;
805 
806 	set_active(&uac->p_prm, false);
807 	set_active(&uac->c_prm, false);
808 }
809 EXPORT_SYMBOL_GPL(u_audio_suspend);
810 
u_audio_get_volume(struct g_audio * audio_dev,int playback,s16 * val)811 int u_audio_get_volume(struct g_audio *audio_dev, int playback, s16 *val)
812 {
813 	struct snd_uac_chip *uac = audio_dev->uac;
814 	struct uac_rtd_params *prm;
815 	unsigned long flags;
816 
817 	if (playback)
818 		prm = &uac->p_prm;
819 	else
820 		prm = &uac->c_prm;
821 
822 	spin_lock_irqsave(&prm->lock, flags);
823 	*val = prm->volume;
824 	spin_unlock_irqrestore(&prm->lock, flags);
825 
826 	return 0;
827 }
828 EXPORT_SYMBOL_GPL(u_audio_get_volume);
829 
u_audio_set_volume(struct g_audio * audio_dev,int playback,s16 val)830 int u_audio_set_volume(struct g_audio *audio_dev, int playback, s16 val)
831 {
832 	struct snd_uac_chip *uac = audio_dev->uac;
833 	struct uac_rtd_params *prm;
834 	unsigned long flags;
835 	int change = 0;
836 
837 	if (playback)
838 		prm = &uac->p_prm;
839 	else
840 		prm = &uac->c_prm;
841 
842 	spin_lock_irqsave(&prm->lock, flags);
843 	val = clamp(val, prm->volume_min, prm->volume_max);
844 	if (prm->volume != val) {
845 		prm->volume = val;
846 		change = 1;
847 	}
848 	spin_unlock_irqrestore(&prm->lock, flags);
849 
850 	if (change) {
851 		if (playback)
852 			audio_dev->usb_state[SET_VOLUME_IN] = true;
853 		else
854 			audio_dev->usb_state[SET_VOLUME_OUT] = true;
855 		schedule_work(&audio_dev->work);
856 
857 		snd_ctl_notify(uac->card, SNDRV_CTL_EVENT_MASK_VALUE,
858 				&prm->snd_kctl_volume->id);
859 	}
860 
861 	return 0;
862 }
863 EXPORT_SYMBOL_GPL(u_audio_set_volume);
864 
u_audio_get_mute(struct g_audio * audio_dev,int playback,int * val)865 int u_audio_get_mute(struct g_audio *audio_dev, int playback, int *val)
866 {
867 	struct snd_uac_chip *uac = audio_dev->uac;
868 	struct uac_rtd_params *prm;
869 	unsigned long flags;
870 
871 	if (playback)
872 		prm = &uac->p_prm;
873 	else
874 		prm = &uac->c_prm;
875 
876 	spin_lock_irqsave(&prm->lock, flags);
877 	*val = prm->mute;
878 	spin_unlock_irqrestore(&prm->lock, flags);
879 
880 	return 0;
881 }
882 EXPORT_SYMBOL_GPL(u_audio_get_mute);
883 
u_audio_set_mute(struct g_audio * audio_dev,int playback,int val)884 int u_audio_set_mute(struct g_audio *audio_dev, int playback, int val)
885 {
886 	struct snd_uac_chip *uac = audio_dev->uac;
887 	struct uac_rtd_params *prm;
888 	unsigned long flags;
889 	int change = 0;
890 	int mute;
891 
892 	if (playback)
893 		prm = &uac->p_prm;
894 	else
895 		prm = &uac->c_prm;
896 
897 	mute = val ? 1 : 0;
898 
899 	spin_lock_irqsave(&prm->lock, flags);
900 	if (prm->mute != mute) {
901 		prm->mute = mute;
902 		change = 1;
903 	}
904 	spin_unlock_irqrestore(&prm->lock, flags);
905 
906 	if (change) {
907 		if (playback)
908 			audio_dev->usb_state[SET_MUTE_IN] = true;
909 		else
910 			audio_dev->usb_state[SET_MUTE_OUT] = true;
911 		schedule_work(&audio_dev->work);
912 
913 		snd_ctl_notify(uac->card, SNDRV_CTL_EVENT_MASK_VALUE,
914 			       &prm->snd_kctl_mute->id);
915 	}
916 
917 	return 0;
918 }
919 EXPORT_SYMBOL_GPL(u_audio_set_mute);
920 
921 
u_audio_pitch_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)922 static int u_audio_pitch_info(struct snd_kcontrol *kcontrol,
923 				   struct snd_ctl_elem_info *uinfo)
924 {
925 	struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
926 	struct snd_uac_chip *uac = prm->uac;
927 	struct g_audio *audio_dev = uac->audio_dev;
928 	struct uac_params *params = &audio_dev->params;
929 	unsigned int pitch_min, pitch_max;
930 
931 	pitch_min = (1000 - FBACK_SLOW_MAX) * 1000;
932 	pitch_max = (1000 + params->fb_max) * 1000;
933 
934 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
935 	uinfo->count = 1;
936 	uinfo->value.integer.min = pitch_min;
937 	uinfo->value.integer.max = pitch_max;
938 	uinfo->value.integer.step = 1;
939 	return 0;
940 }
941 
u_audio_pitch_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)942 static int u_audio_pitch_get(struct snd_kcontrol *kcontrol,
943 				   struct snd_ctl_elem_value *ucontrol)
944 {
945 	struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
946 
947 	ucontrol->value.integer.value[0] = prm->pitch;
948 
949 	return 0;
950 }
951 
u_audio_pitch_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)952 static int u_audio_pitch_put(struct snd_kcontrol *kcontrol,
953 				  struct snd_ctl_elem_value *ucontrol)
954 {
955 	struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
956 	struct snd_uac_chip *uac = prm->uac;
957 	struct g_audio *audio_dev = uac->audio_dev;
958 	struct uac_params *params = &audio_dev->params;
959 	unsigned int val;
960 	unsigned int pitch_min, pitch_max;
961 	int change = 0;
962 
963 	pitch_min = (1000 - FBACK_SLOW_MAX) * 1000;
964 	pitch_max = (1000 + params->fb_max) * 1000;
965 
966 	val = ucontrol->value.integer.value[0];
967 
968 	if (val < pitch_min)
969 		val = pitch_min;
970 	if (val > pitch_max)
971 		val = pitch_max;
972 
973 	if (prm->pitch != val) {
974 		prm->pitch = val;
975 		change = 1;
976 	}
977 
978 	return change;
979 }
980 
u_audio_mute_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)981 static int u_audio_mute_info(struct snd_kcontrol *kcontrol,
982 				   struct snd_ctl_elem_info *uinfo)
983 {
984 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
985 	uinfo->count = 1;
986 	uinfo->value.integer.min = 0;
987 	uinfo->value.integer.max = 1;
988 	uinfo->value.integer.step = 1;
989 
990 	return 0;
991 }
992 
u_audio_mute_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)993 static int u_audio_mute_get(struct snd_kcontrol *kcontrol,
994 				   struct snd_ctl_elem_value *ucontrol)
995 {
996 	struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
997 	unsigned long flags;
998 
999 	spin_lock_irqsave(&prm->lock, flags);
1000 	ucontrol->value.integer.value[0] = !prm->mute;
1001 	spin_unlock_irqrestore(&prm->lock, flags);
1002 
1003 	return 0;
1004 }
1005 
u_audio_mute_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1006 static int u_audio_mute_put(struct snd_kcontrol *kcontrol,
1007 				  struct snd_ctl_elem_value *ucontrol)
1008 {
1009 	struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
1010 	struct snd_uac_chip *uac = prm->uac;
1011 	struct g_audio *audio_dev = uac->audio_dev;
1012 	unsigned int val;
1013 	unsigned long flags;
1014 	int change = 0;
1015 
1016 	val = !ucontrol->value.integer.value[0];
1017 
1018 	spin_lock_irqsave(&prm->lock, flags);
1019 	if (val != prm->mute) {
1020 		prm->mute = val;
1021 		change = 1;
1022 	}
1023 	spin_unlock_irqrestore(&prm->lock, flags);
1024 
1025 	if (change && audio_dev->notify)
1026 		audio_dev->notify(audio_dev, prm->fu_id, UAC_FU_MUTE);
1027 
1028 	return change;
1029 }
1030 
1031 /*
1032  * TLV callback for mixer volume controls
1033  */
u_audio_volume_tlv(struct snd_kcontrol * kcontrol,int op_flag,unsigned int size,unsigned int __user * _tlv)1034 static int u_audio_volume_tlv(struct snd_kcontrol *kcontrol, int op_flag,
1035 			 unsigned int size, unsigned int __user *_tlv)
1036 {
1037 	struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
1038 	DECLARE_TLV_DB_MINMAX(scale, 0, 0);
1039 
1040 	if (size < sizeof(scale))
1041 		return -ENOMEM;
1042 
1043 	/* UAC volume resolution is 1/256 dB, TLV is 1/100 dB */
1044 	scale[2] = (prm->volume_min * 100) / 256;
1045 	scale[3] = (prm->volume_max * 100) / 256;
1046 	if (copy_to_user(_tlv, scale, sizeof(scale)))
1047 		return -EFAULT;
1048 
1049 	return 0;
1050 }
1051 
u_audio_volume_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1052 static int u_audio_volume_info(struct snd_kcontrol *kcontrol,
1053 				   struct snd_ctl_elem_info *uinfo)
1054 {
1055 	struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
1056 
1057 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1058 	uinfo->count = 1;
1059 	uinfo->value.integer.min = 0;
1060 	uinfo->value.integer.max =
1061 		(prm->volume_max - prm->volume_min + prm->volume_res - 1)
1062 		/ prm->volume_res;
1063 	uinfo->value.integer.step = 1;
1064 
1065 	return 0;
1066 }
1067 
u_audio_volume_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1068 static int u_audio_volume_get(struct snd_kcontrol *kcontrol,
1069 				   struct snd_ctl_elem_value *ucontrol)
1070 {
1071 	struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
1072 	unsigned long flags;
1073 
1074 	spin_lock_irqsave(&prm->lock, flags);
1075 	ucontrol->value.integer.value[0] =
1076 			(prm->volume - prm->volume_min) / prm->volume_res;
1077 	spin_unlock_irqrestore(&prm->lock, flags);
1078 
1079 	return 0;
1080 }
1081 
u_audio_volume_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1082 static int u_audio_volume_put(struct snd_kcontrol *kcontrol,
1083 				  struct snd_ctl_elem_value *ucontrol)
1084 {
1085 	struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
1086 	struct snd_uac_chip *uac = prm->uac;
1087 	struct g_audio *audio_dev = uac->audio_dev;
1088 	unsigned int val;
1089 	s16 volume;
1090 	unsigned long flags;
1091 	int change = 0;
1092 
1093 	val = ucontrol->value.integer.value[0];
1094 
1095 	spin_lock_irqsave(&prm->lock, flags);
1096 	volume = (val * prm->volume_res) + prm->volume_min;
1097 	volume = clamp(volume, prm->volume_min, prm->volume_max);
1098 	if (volume != prm->volume) {
1099 		prm->volume = volume;
1100 		change = 1;
1101 	}
1102 	spin_unlock_irqrestore(&prm->lock, flags);
1103 
1104 	if (change && audio_dev->notify)
1105 		audio_dev->notify(audio_dev, prm->fu_id, UAC_FU_VOLUME);
1106 
1107 	return change;
1108 }
1109 
get_max_srate(const int * srates)1110 static int get_max_srate(const int *srates)
1111 {
1112 	int i, max_srate = 0;
1113 
1114 	for (i = 0; i < UAC_MAX_RATES; i++) {
1115 		if (srates[i] == 0)
1116 			break;
1117 		if (srates[i] > max_srate)
1118 			max_srate = srates[i];
1119 	}
1120 	return max_srate;
1121 }
1122 
get_min_srate(const int * srates)1123 static int get_min_srate(const int *srates)
1124 {
1125 	int i, min_srate = INT_MAX;
1126 
1127 	for (i = 0; i < UAC_MAX_RATES; i++) {
1128 		if (srates[i] == 0)
1129 			break;
1130 		if (srates[i] < min_srate)
1131 			min_srate = srates[i];
1132 	}
1133 	return min_srate;
1134 }
1135 
u_audio_rate_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)1136 static int u_audio_rate_info(struct snd_kcontrol *kcontrol,
1137 				struct snd_ctl_elem_info *uinfo)
1138 {
1139 	const int *srates;
1140 	struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
1141 	struct snd_uac_chip *uac = prm->uac;
1142 	struct g_audio *audio_dev = uac->audio_dev;
1143 	struct uac_params *params = &audio_dev->params;
1144 
1145 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1146 	uinfo->count = 1;
1147 
1148 	if (prm == &uac->c_prm)
1149 		srates = params->c_srates;
1150 	else
1151 		srates = params->p_srates;
1152 	uinfo->value.integer.min = get_min_srate(srates);
1153 	uinfo->value.integer.max = get_max_srate(srates);
1154 	return 0;
1155 }
1156 
u_audio_rate_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)1157 static int u_audio_rate_get(struct snd_kcontrol *kcontrol,
1158 						 struct snd_ctl_elem_value *ucontrol)
1159 {
1160 	struct uac_rtd_params *prm = snd_kcontrol_chip(kcontrol);
1161 	unsigned long flags;
1162 
1163 	spin_lock_irqsave(&prm->lock, flags);
1164 	if (prm->active)
1165 		ucontrol->value.integer.value[0] = prm->srate;
1166 	else
1167 		/* not active: reporting zero rate */
1168 		ucontrol->value.integer.value[0] = 0;
1169 	spin_unlock_irqrestore(&prm->lock, flags);
1170 	return 0;
1171 }
1172 
1173 static struct snd_kcontrol_new u_audio_controls[]  = {
1174   [UAC_FBACK_CTRL] {
1175     .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1176     .name =         "Capture Pitch 1000000",
1177     .info =         u_audio_pitch_info,
1178     .get =          u_audio_pitch_get,
1179     .put =          u_audio_pitch_put,
1180   },
1181 	[UAC_P_PITCH_CTRL] {
1182 		.iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1183 		.name =         "Playback Pitch 1000000",
1184 		.info =         u_audio_pitch_info,
1185 		.get =          u_audio_pitch_get,
1186 		.put =          u_audio_pitch_put,
1187 	},
1188   [UAC_MUTE_CTRL] {
1189 		.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
1190 		.name =		"", /* will be filled later */
1191 		.info =		u_audio_mute_info,
1192 		.get =		u_audio_mute_get,
1193 		.put =		u_audio_mute_put,
1194 	},
1195 	[UAC_VOLUME_CTRL] {
1196 		.iface =	SNDRV_CTL_ELEM_IFACE_MIXER,
1197 		.name =		"", /* will be filled later */
1198 		.info =		u_audio_volume_info,
1199 		.get =		u_audio_volume_get,
1200 		.put =		u_audio_volume_put,
1201 	},
1202 	[UAC_RATE_CTRL] {
1203 		.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1204 		.name =		"", /* will be filled later */
1205 		.access =	SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
1206 		.info =		u_audio_rate_info,
1207 		.get =		u_audio_rate_get,
1208 	},
1209 };
1210 
g_audio_work(struct work_struct * data)1211 static void g_audio_work(struct work_struct *data)
1212 {
1213 	struct g_audio *audio = container_of(data, struct g_audio, work);
1214 	struct usb_gadget *gadget = audio->gadget;
1215 	struct snd_uac_chip *uac = audio->uac;
1216 	struct uac_rtd_params *prm;
1217 	struct device *dev = &gadget->dev;
1218 	char *uac_event[4]  = { NULL, NULL, NULL, NULL };
1219 	char str[19];
1220 	int i;
1221 
1222 	for (i = 0; i < SET_USB_STATE_MAX; i++) {
1223 		if (!audio->usb_state[i])
1224 			continue;
1225 
1226 		switch (i) {
1227 		case SET_INTERFACE_OUT:
1228 			uac_event[0] = "USB_STATE=SET_INTERFACE";
1229 			uac_event[1] = "STREAM_DIRECTION=OUT";
1230 			uac_event[2] = audio->stream_state[STATE_OUT] ?
1231 				       "STREAM_STATE=ON" : "STREAM_STATE=OFF";
1232 			break;
1233 		case SET_INTERFACE_IN:
1234 			uac_event[0] = "USB_STATE=SET_INTERFACE";
1235 			uac_event[1] = "STREAM_DIRECTION=IN";
1236 			uac_event[2] = audio->stream_state[STATE_IN] ?
1237 				       "STREAM_STATE=ON" : "STREAM_STATE=OFF";
1238 			break;
1239 		case SET_SAMPLE_RATE_OUT:
1240 			uac_event[0] = "USB_STATE=SET_SAMPLE_RATE";
1241 			uac_event[1] = "STREAM_DIRECTION=OUT";
1242 			prm = &uac->c_prm;
1243 			snprintf(str, sizeof(str), "SAMPLE_RATE=%d",
1244 				 prm->srate);
1245 			uac_event[2] = str;
1246 			break;
1247 		case SET_SAMPLE_RATE_IN:
1248 			uac_event[0] = "USB_STATE=SET_SAMPLE_RATE";
1249 			uac_event[1] = "STREAM_DIRECTION=IN";
1250 			prm = &uac->p_prm;
1251 			snprintf(str, sizeof(str), "SAMPLE_RATE=%d",
1252 				 prm->srate);
1253 			uac_event[2] = str;
1254 			break;
1255 		case SET_MUTE_OUT:
1256 			uac_event[0] = "USB_STATE=SET_MUTE";
1257 			uac_event[1] = "STREAM_DIRECTION=OUT";
1258 			prm = &uac->c_prm;
1259 			snprintf(str, sizeof(str), "MUTE=%d", prm->mute);
1260 			uac_event[2] = str;
1261 			break;
1262 		case SET_MUTE_IN:
1263 			uac_event[0] = "USB_STATE=SET_MUTE";
1264 			uac_event[1] = "STREAM_DIRECTION=IN";
1265 			prm = &uac->p_prm;
1266 			snprintf(str, sizeof(str), "MUTE=%d", prm->mute);
1267 			uac_event[2] = str;
1268 			break;
1269 		case SET_VOLUME_OUT:
1270 			uac_event[0] = "USB_STATE=SET_VOLUME";
1271 			uac_event[1] = "STREAM_DIRECTION=OUT";
1272 			prm = &uac->c_prm;
1273 			snprintf(str, sizeof(str), "VOLUME=0x%hx", prm->volume);
1274 			uac_event[2] = str;
1275 			break;
1276 		case SET_VOLUME_IN:
1277 			uac_event[0] = "USB_STATE=SET_VOLUME";
1278 			uac_event[1] = "STREAM_DIRECTION=IN";
1279 			prm = &uac->p_prm;
1280 			snprintf(str, sizeof(str), "VOLUME=0x%hx", prm->volume);
1281 			uac_event[2] = str;
1282 			break;
1283 		case SET_AUDIO_CLK:
1284 			uac_event[0] = "USB_STATE=SET_AUDIO_CLK";
1285 			snprintf(str, sizeof(str), "PPM=%d", audio->params.ppm);
1286 			uac_event[1] = str;
1287 		default:
1288 			break;
1289 		}
1290 
1291 		audio->usb_state[i] = false;
1292 		kobject_uevent_env(&audio->device->kobj, KOBJ_CHANGE,
1293 				   uac_event);
1294 		dev_dbg(dev, "%s: sent uac uevent %s %s %s\n", __func__,
1295 			uac_event[0], uac_event[1], uac_event[2]);
1296 	}
1297 }
1298 
ppm_calculate_work(struct work_struct * data)1299 static void ppm_calculate_work(struct work_struct *data)
1300 {
1301 	struct g_audio *g_audio = container_of(data, struct g_audio,
1302 					       ppm_work.work);
1303 	struct usb_gadget *gadget = g_audio->gadget;
1304 	uint32_t frame_number, fn_msec, clk_msec;
1305 	struct frame_number_data *fn = g_audio->fn;
1306 	uint64_t time_now, time_msec_tmp;
1307 	int32_t ppm;
1308 	static int32_t ppms[CLK_PPM_GROUP_SIZE];
1309 	static int32_t ppm_sum;
1310 	int32_t cnt = fn->second % CLK_PPM_GROUP_SIZE;
1311 
1312 	time_now = ktime_get_raw();
1313 	frame_number = gadget->ops->get_frame(gadget);
1314 
1315 	if (g_audio->fn->time_last &&
1316 	    time_now - g_audio->fn->time_last > 1500000000ULL)
1317 		dev_warn(g_audio->device, "PPM work scheduled too slow!\n");
1318 
1319 	g_audio->fn->time_last = time_now;
1320 
1321 	/*
1322 	 * If usb is disconnected, the controller will not receive the
1323 	 * SoF signal and frame number will be invalid. Because we can't
1324 	 * get accurate time of disconnect and whether the gadget will be
1325 	 * plugged into the same host next time or not. We must clear all
1326 	 * statistics.
1327 	 */
1328 	if (gadget->state != USB_STATE_CONFIGURED) {
1329 		memset(g_audio->fn, 0, sizeof(*g_audio->fn));
1330 		dev_dbg(g_audio->device, "Disconnect. frame number is cleared\n");
1331 		goto out;
1332 	}
1333 
1334 	/* Fist statistic to record begin frame number and system time */
1335 	if (!g_audio->fn->second++) {
1336 		g_audio->fn->time_begin = g_audio->fn->time_last;
1337 		g_audio->fn->fn_begin = frame_number;
1338 		g_audio->fn->fn_last = frame_number;
1339 		goto out;
1340 	}
1341 
1342 	/*
1343 	 * For DWC3 Controller, only 13 bits is used to store frame(micro)
1344 	 * number. In other words, the frame number will overflow at most
1345 	 * 2.047 seconds. We add another registor fn_overflow the record
1346 	 * total frame number.
1347 	 */
1348 	if (frame_number <= g_audio->fn->fn_last)
1349 		g_audio->fn->fn_overflow++;
1350 	g_audio->fn->fn_last = frame_number;
1351 
1352 	if (!g_audio->fn->fn_overflow)
1353 		goto out;
1354 
1355 	/* The lower 3 bits represent micro number frame, we don't need it */
1356 	fn_msec = (((fn->fn_overflow - 1) << 14) +
1357 		   (BIT(14) + fn->fn_last - fn->fn_begin) + BIT(2)) >> 3;
1358 	time_msec_tmp = fn->time_last - fn->time_begin + 500000ULL;
1359 	do_div(time_msec_tmp, 1000000U);
1360 	clk_msec = (uint32_t)time_msec_tmp;
1361 
1362 	/*
1363 	 * According to the definition of ppm:
1364 	 *   host_clk = (1 + ppm / 1000000) * gadget_clk
1365 	 * we can get:
1366 	 *   ppm = (host_clk - gadget_clk) * 1000000 / gadget_clk
1367 	 */
1368 	ppm = (fn_msec > clk_msec) ?
1369 	      (fn_msec - clk_msec) * 1000000L / clk_msec :
1370 	      -((clk_msec - fn_msec) * 1000000L / clk_msec);
1371 
1372 	ppm_sum = ppm_sum - ppms[cnt] + ppm;
1373 	ppms[cnt] = ppm;
1374 
1375 	dev_dbg(g_audio->device,
1376 		"frame %u msec %u ppm_calc %d ppm_avage(%d) %d\n",
1377 		fn_msec, clk_msec, ppm, CLK_PPM_GROUP_SIZE,
1378 		ppm_sum / CLK_PPM_GROUP_SIZE);
1379 
1380 	/*
1381 	 * We calculate the average of ppm over a period of time. If the
1382 	 * latest frame number is too far from the average, no event will
1383 	 * be sent.
1384 	 */
1385 	if (abs(ppm_sum / CLK_PPM_GROUP_SIZE - ppm) < 3) {
1386 		ppm = ppm_sum > 0 ?
1387 		      (ppm_sum + CLK_PPM_GROUP_SIZE / 2) / CLK_PPM_GROUP_SIZE :
1388 		      (ppm_sum - CLK_PPM_GROUP_SIZE / 2) / CLK_PPM_GROUP_SIZE;
1389 		if (ppm != g_audio->params.ppm) {
1390 			g_audio->params.ppm = ppm;
1391 			g_audio->usb_state[SET_AUDIO_CLK] = true;
1392 			schedule_work(&g_audio->work);
1393 		}
1394 	}
1395 
1396 out:
1397 	schedule_delayed_work(&g_audio->ppm_work, 1 * HZ);
1398 }
1399 
g_audio_setup(struct g_audio * g_audio,const char * pcm_name,const char * card_name)1400 int g_audio_setup(struct g_audio *g_audio, const char *pcm_name,
1401 					const char *card_name)
1402 {
1403 	struct snd_uac_chip *uac;
1404 	struct snd_card *card;
1405 	struct snd_pcm *pcm;
1406 	struct snd_kcontrol *kctl;
1407 	struct uac_params *params;
1408 	int p_chmask, c_chmask;
1409 	int i, err;
1410 
1411 	if (!g_audio)
1412 		return -EINVAL;
1413 
1414 	uac = kzalloc(sizeof(*uac), GFP_KERNEL);
1415 	if (!uac)
1416 		return -ENOMEM;
1417 	g_audio->uac = uac;
1418 	uac->audio_dev = g_audio;
1419 
1420 	params = &g_audio->params;
1421 	p_chmask = params->p_chmask;
1422 	c_chmask = params->c_chmask;
1423 
1424 	g_audio->fn = kzalloc(sizeof(*g_audio->fn), GFP_KERNEL);
1425 	if (!g_audio->fn) {
1426 		err = -ENOMEM;
1427 		goto fail;
1428 	}
1429 
1430 	if (c_chmask) {
1431 		struct uac_rtd_params *prm = &uac->c_prm;
1432 
1433     spin_lock_init(&prm->lock);
1434     uac->c_prm.uac = uac;
1435 		prm->max_psize = g_audio->out_ep_maxpsize;
1436 		prm->srate = params->c_srates[0];
1437 
1438 		prm->reqs = kcalloc(params->req_number,
1439 				    sizeof(struct usb_request *),
1440 				    GFP_KERNEL);
1441 		if (!prm->reqs) {
1442 			err = -ENOMEM;
1443 			goto fail;
1444 		}
1445 
1446 		prm->rbuf = kcalloc(params->req_number, prm->max_psize,
1447 				GFP_KERNEL);
1448 		if (!prm->rbuf) {
1449 			prm->max_psize = 0;
1450 			err = -ENOMEM;
1451 			goto fail;
1452 		}
1453 	}
1454 
1455 	if (p_chmask) {
1456 		struct uac_rtd_params *prm = &uac->p_prm;
1457 
1458 		spin_lock_init(&prm->lock);
1459 		uac->p_prm.uac = uac;
1460 		prm->max_psize = g_audio->in_ep_maxpsize;
1461 		prm->srate = params->p_srates[0];
1462 
1463 		prm->reqs = kcalloc(params->req_number,
1464 				    sizeof(struct usb_request *),
1465 				    GFP_KERNEL);
1466 		if (!prm->reqs) {
1467 			err = -ENOMEM;
1468 			goto fail;
1469 		}
1470 
1471 		prm->rbuf = kcalloc(params->req_number, prm->max_psize,
1472 				GFP_KERNEL);
1473 		if (!prm->rbuf) {
1474 			prm->max_psize = 0;
1475 			err = -ENOMEM;
1476 			goto fail;
1477 		}
1478 	}
1479 
1480 	/* Choose any slot, with no id */
1481 	err = snd_card_new(&g_audio->gadget->dev,
1482 			-1, NULL, THIS_MODULE, 0, &card);
1483 	if (err < 0)
1484 		goto fail;
1485 
1486 	uac->card = card;
1487 
1488 	/*
1489 	 * Create first PCM device
1490 	 * Create a substream only for non-zero channel streams
1491 	 */
1492 	err = snd_pcm_new(uac->card, pcm_name, 0,
1493 			       p_chmask ? 1 : 0, c_chmask ? 1 : 0, &pcm);
1494 	if (err < 0)
1495 		goto snd_fail;
1496 
1497 	strscpy(pcm->name, pcm_name, sizeof(pcm->name));
1498 	pcm->private_data = uac;
1499 	uac->pcm = pcm;
1500 
1501 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &uac_pcm_ops);
1502 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &uac_pcm_ops);
1503 
1504 	/*
1505 	 * Create mixer and controls
1506 	 * Create only if it's required on USB side
1507 	 */
1508 	if ((c_chmask && g_audio->in_ep_fback)
1509 			|| (p_chmask && params->p_fu.id)
1510 			|| (c_chmask && params->c_fu.id))
1511 		strscpy(card->mixername, card_name, sizeof(card->driver));
1512 
1513 	if (c_chmask && g_audio->in_ep_fback) {
1514 		kctl = snd_ctl_new1(&u_audio_controls[UAC_FBACK_CTRL],
1515 				    &uac->c_prm);
1516 		if (!kctl) {
1517 			err = -ENOMEM;
1518 			goto snd_fail;
1519 		}
1520 
1521 		kctl->id.device = pcm->device;
1522 		kctl->id.subdevice = 0;
1523 
1524 		err = snd_ctl_add(card, kctl);
1525 		if (err < 0)
1526 			goto snd_fail;
1527 	}
1528 
1529 	if (p_chmask) {
1530 		kctl = snd_ctl_new1(&u_audio_controls[UAC_P_PITCH_CTRL],
1531 				    &uac->p_prm);
1532 		if (!kctl) {
1533 			err = -ENOMEM;
1534 			goto snd_fail;
1535 		}
1536 
1537 		kctl->id.device = pcm->device;
1538 		kctl->id.subdevice = 0;
1539 
1540 		err = snd_ctl_add(card, kctl);
1541 		if (err < 0)
1542 			goto snd_fail;
1543 	}
1544 
1545 	for (i = 0; i <= SNDRV_PCM_STREAM_LAST; i++) {
1546 		struct uac_rtd_params *prm;
1547 		struct uac_fu_params *fu;
1548 		char ctrl_name[24];
1549 		char *direction;
1550 
1551 		if (!pcm->streams[i].substream_count)
1552 			continue;
1553 
1554 		if (i == SNDRV_PCM_STREAM_PLAYBACK) {
1555 			prm = &uac->p_prm;
1556 			fu = &params->p_fu;
1557 			direction = "Playback";
1558 		} else {
1559 			prm = &uac->c_prm;
1560 			fu = &params->c_fu;
1561 			direction = "Capture";
1562 		}
1563 
1564 		prm->fu_id = fu->id;
1565 
1566 		if (fu->mute_present) {
1567 			snprintf(ctrl_name, sizeof(ctrl_name),
1568 					"PCM %s Switch", direction);
1569 
1570 			u_audio_controls[UAC_MUTE_CTRL].name = ctrl_name;
1571 
1572 			kctl = snd_ctl_new1(&u_audio_controls[UAC_MUTE_CTRL],
1573 					    prm);
1574 			if (!kctl) {
1575 				err = -ENOMEM;
1576 				goto snd_fail;
1577 			}
1578 
1579 			kctl->id.device = pcm->device;
1580 			kctl->id.subdevice = 0;
1581 
1582 			err = snd_ctl_add(card, kctl);
1583 			if (err < 0)
1584 				goto snd_fail;
1585 			prm->snd_kctl_mute = kctl;
1586 			prm->mute = 0;
1587 		}
1588 
1589 		if (fu->volume_present) {
1590 			snprintf(ctrl_name, sizeof(ctrl_name),
1591 					"PCM %s Volume", direction);
1592 
1593 			u_audio_controls[UAC_VOLUME_CTRL].name = ctrl_name;
1594 
1595 			kctl = snd_ctl_new1(&u_audio_controls[UAC_VOLUME_CTRL],
1596 					    prm);
1597 			if (!kctl) {
1598 				err = -ENOMEM;
1599 				goto snd_fail;
1600 			}
1601 
1602 			kctl->id.device = pcm->device;
1603 			kctl->id.subdevice = 0;
1604 
1605 
1606 			kctl->tlv.c = u_audio_volume_tlv;
1607 			kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ |
1608 					SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
1609 
1610 			err = snd_ctl_add(card, kctl);
1611 			if (err < 0)
1612 				goto snd_fail;
1613 			prm->snd_kctl_volume = kctl;
1614 			prm->volume = fu->volume_max;
1615 			prm->volume_max = fu->volume_max;
1616 			prm->volume_min = fu->volume_min;
1617 			prm->volume_res = fu->volume_res;
1618 		}
1619 
1620 		/* Add rate control */
1621 		snprintf(ctrl_name, sizeof(ctrl_name),
1622 				"%s Rate", direction);
1623 		u_audio_controls[UAC_RATE_CTRL].name = ctrl_name;
1624 
1625 		kctl = snd_ctl_new1(&u_audio_controls[UAC_RATE_CTRL], prm);
1626 		if (!kctl) {
1627 			err = -ENOMEM;
1628 			goto snd_fail;
1629 		}
1630 
1631 		kctl->id.device = pcm->device;
1632 		kctl->id.subdevice = 0;
1633 
1634 		err = snd_ctl_add(card, kctl);
1635 		if (err < 0)
1636 			goto snd_fail;
1637 		prm->snd_kctl_rate = kctl;
1638 	}
1639 
1640 	strscpy(card->driver, card_name, sizeof(card->driver));
1641 	strscpy(card->shortname, card_name, sizeof(card->shortname));
1642 	sprintf(card->longname, "%s %i", card_name, card->dev->id);
1643 
1644 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
1645 				       NULL, 0, BUFF_SIZE_MAX);
1646 
1647 	err = snd_card_register(card);
1648 	if (err < 0)
1649 		goto snd_fail;
1650 
1651 	g_audio->device = device_create(audio_class, NULL, MKDEV(0, 0), NULL,
1652 					"%s", g_audio->uac->card->longname);
1653 	if (IS_ERR(g_audio->device)) {
1654 		err = PTR_ERR(g_audio->device);
1655 		goto snd_fail;
1656 	}
1657 
1658 	INIT_WORK(&g_audio->work, g_audio_work);
1659 	INIT_DELAYED_WORK(&g_audio->ppm_work, ppm_calculate_work);
1660 	ppm_calculate_work(&g_audio->ppm_work.work);
1661 
1662 	if (!err)
1663 		return 0;
1664 
1665 snd_fail:
1666 	snd_card_free(card);
1667 fail:
1668 	kfree(uac->p_prm.reqs);
1669 	kfree(uac->c_prm.reqs);
1670 	kfree(uac->p_prm.rbuf);
1671 	kfree(uac->c_prm.rbuf);
1672 	kfree(uac);
1673 	kfree(g_audio->fn);
1674 
1675 	return err;
1676 }
1677 EXPORT_SYMBOL_GPL(g_audio_setup);
1678 
g_audio_cleanup(struct g_audio * g_audio)1679 void g_audio_cleanup(struct g_audio *g_audio)
1680 {
1681 	struct snd_uac_chip *uac;
1682 	struct snd_card *card;
1683 
1684 	if (!g_audio || !g_audio->uac)
1685 		return;
1686 
1687 	cancel_work_sync(&g_audio->work);
1688 	cancel_delayed_work_sync(&g_audio->ppm_work);
1689 	device_destroy(g_audio->device->class, g_audio->device->devt);
1690 	g_audio->device = NULL;
1691 
1692 	uac = g_audio->uac;
1693 	card = uac->card;
1694 	if (card)
1695 		snd_card_free(card);
1696 
1697 	kfree(uac->p_prm.reqs);
1698 	kfree(uac->c_prm.reqs);
1699 	kfree(uac->p_prm.rbuf);
1700 	kfree(uac->c_prm.rbuf);
1701 	kfree(uac);
1702 	kfree(g_audio->fn);
1703 }
1704 EXPORT_SYMBOL_GPL(g_audio_cleanup);
1705 
u_audio_init(void)1706 static int __init u_audio_init(void)
1707 {
1708 	int err = 0;
1709 
1710 	audio_class = class_create(THIS_MODULE, "u_audio");
1711 	if (IS_ERR(audio_class)) {
1712 		err = PTR_ERR(audio_class);
1713 		audio_class = NULL;
1714 	}
1715 
1716 	return err;
1717 }
1718 module_init(u_audio_init);
1719 
u_audio_exit(void)1720 static void __exit u_audio_exit(void)
1721 {
1722 	if (audio_class)
1723 		class_destroy(audio_class);
1724 }
1725 module_exit(u_audio_exit);
1726 
1727 MODULE_LICENSE("GPL");
1728 MODULE_DESCRIPTION("USB gadget \"ALSA sound card\" utilities");
1729 MODULE_AUTHOR("Ruslan Bilovol");
1730