xref: /OK3568_Linux_fs/kernel/drivers/usb/gadget/function/f_fs.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/fs_parser.h>
21 #include <linux/hid.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/scatterlist.h>
25 #include <linux/sched/signal.h>
26 #include <linux/uio.h>
27 #include <linux/vmalloc.h>
28 #include <asm/unaligned.h>
29 
30 #include <linux/usb/ccid.h>
31 #include <linux/usb/composite.h>
32 #include <linux/usb/functionfs.h>
33 
34 #include <linux/aio.h>
35 #include <linux/kthread.h>
36 #include <linux/poll.h>
37 #include <linux/eventfd.h>
38 
39 #include "u_fs.h"
40 #include "u_f.h"
41 #include "u_os_desc.h"
42 #include "configfs.h"
43 
44 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
45 
46 /* Reference counter handling */
47 static void ffs_data_get(struct ffs_data *ffs);
48 static void ffs_data_put(struct ffs_data *ffs);
49 /* Creates new ffs_data object. */
50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
51 	__attribute__((malloc));
52 
53 /* Opened counter handling. */
54 static void ffs_data_opened(struct ffs_data *ffs);
55 static void ffs_data_closed(struct ffs_data *ffs);
56 
57 /* Called with ffs->mutex held; take over ownership of data. */
58 static int __must_check
59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
60 static int __must_check
61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
62 
63 
64 /* The function structure ***************************************************/
65 
66 struct ffs_ep;
67 
68 struct ffs_function {
69 	struct usb_configuration	*conf;
70 	struct usb_gadget		*gadget;
71 	struct ffs_data			*ffs;
72 
73 	struct ffs_ep			*eps;
74 	u8				eps_revmap[32];
75 	short				*interfaces_nums;
76 
77 	struct usb_function		function;
78 };
79 
80 
ffs_func_from_usb(struct usb_function * f)81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
82 {
83 	return container_of(f, struct ffs_function, function);
84 }
85 
86 
87 static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data * ffs)88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
89 {
90 	return (enum ffs_setup_state)
91 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
92 }
93 
94 
95 static void ffs_func_eps_disable(struct ffs_function *func);
96 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
97 
98 static int ffs_func_bind(struct usb_configuration *,
99 			 struct usb_function *);
100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
101 static void ffs_func_disable(struct usb_function *);
102 static int ffs_func_setup(struct usb_function *,
103 			  const struct usb_ctrlrequest *);
104 static bool ffs_func_req_match(struct usb_function *,
105 			       const struct usb_ctrlrequest *,
106 			       bool config0);
107 static void ffs_func_suspend(struct usb_function *);
108 static void ffs_func_resume(struct usb_function *);
109 
110 
111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
113 
114 
115 /* The endpoints structures *************************************************/
116 
117 struct ffs_ep {
118 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
119 	struct usb_request		*req;	/* P: epfile->mutex */
120 
121 	/* [0]: full speed, [1]: high speed, [2]: super speed */
122 	struct usb_endpoint_descriptor	*descs[3];
123 
124 	u8				num;
125 };
126 
127 struct ffs_epfile {
128 	/* Protects ep->ep and ep->req. */
129 	struct mutex			mutex;
130 
131 	struct ffs_data			*ffs;
132 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
133 
134 	struct dentry			*dentry;
135 
136 	/*
137 	 * Buffer for holding data from partial reads which may happen since
138 	 * we’re rounding user read requests to a multiple of a max packet size.
139 	 *
140 	 * The pointer is initialised with NULL value and may be set by
141 	 * __ffs_epfile_read_data function to point to a temporary buffer.
142 	 *
143 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
144 	 * data from said buffer and eventually free it.  Importantly, while the
145 	 * function is using the buffer, it sets the pointer to NULL.  This is
146 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
147 	 * can never run concurrently (they are synchronised by epfile->mutex)
148 	 * so the latter will not assign a new value to the pointer.
149 	 *
150 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
151 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
152 	 * value is crux of the synchronisation between ffs_func_eps_disable and
153 	 * __ffs_epfile_read_data.
154 	 *
155 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
156 	 * pointer back to its old value (as described above), but seeing as the
157 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
158 	 * the buffer.
159 	 *
160 	 * == State transitions ==
161 	 *
162 	 * • ptr == NULL:  (initial state)
163 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
164 	 *   ◦ __ffs_epfile_read_buffered:    nop
165 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
166 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
167 	 * • ptr == DROP:
168 	 *   ◦ __ffs_epfile_read_buffer_free: nop
169 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
170 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
171 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
172 	 * • ptr == buf:
173 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
174 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
175 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
176 	 *                                    is always called first
177 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
178 	 * • ptr == NULL and reading:
179 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
180 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
181 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
182 	 *   ◦ reading finishes and …
183 	 *     … all data read:               free buf, go to ptr == NULL
184 	 *     … otherwise:                   go to ptr == buf and reading
185 	 * • ptr == DROP and reading:
186 	 *   ◦ __ffs_epfile_read_buffer_free: nop
187 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
188 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
189 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
190 	 */
191 	struct ffs_buffer		*read_buffer;
192 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
193 
194 	char				name[5];
195 
196 	unsigned char			in;	/* P: ffs->eps_lock */
197 	unsigned char			isoc;	/* P: ffs->eps_lock */
198 
199 	unsigned char			_pad;
200 };
201 
202 struct ffs_buffer {
203 	size_t length;
204 	char *data;
205 	char storage[];
206 };
207 
208 /*  ffs_io_data structure ***************************************************/
209 
210 struct ffs_io_data {
211 	bool aio;
212 	bool read;
213 
214 	struct kiocb *kiocb;
215 	struct iov_iter data;
216 	const void *to_free;
217 	char *buf;
218 
219 	struct mm_struct *mm;
220 	struct work_struct work;
221 
222 	struct usb_ep *ep;
223 	struct usb_request *req;
224 	struct sg_table sgt;
225 	bool use_sg;
226 
227 	struct ffs_data *ffs;
228 
229 	int status;
230 	struct completion done;
231 };
232 
233 struct ffs_desc_helper {
234 	struct ffs_data *ffs;
235 	unsigned interfaces_count;
236 	unsigned eps_count;
237 };
238 
239 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
240 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
241 
242 static struct dentry *
243 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
244 		   const struct file_operations *fops);
245 
246 /* Devices management *******************************************************/
247 
248 DEFINE_MUTEX(ffs_lock);
249 EXPORT_SYMBOL_GPL(ffs_lock);
250 
251 static struct ffs_dev *_ffs_find_dev(const char *name);
252 static struct ffs_dev *_ffs_alloc_dev(void);
253 static void _ffs_free_dev(struct ffs_dev *dev);
254 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
255 static void ffs_release_dev(struct ffs_dev *ffs_dev);
256 static int ffs_ready(struct ffs_data *ffs);
257 static void ffs_closed(struct ffs_data *ffs);
258 
259 /* Misc helper functions ****************************************************/
260 
261 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
262 	__attribute__((warn_unused_result, nonnull));
263 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
264 	__attribute__((warn_unused_result, nonnull));
265 
266 
267 /* Control file aka ep0 *****************************************************/
268 
ffs_ep0_complete(struct usb_ep * ep,struct usb_request * req)269 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
270 {
271 	struct ffs_data *ffs = req->context;
272 
273 	complete(&ffs->ep0req_completion);
274 }
275 
__ffs_ep0_queue_wait(struct ffs_data * ffs,char * data,size_t len)276 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
277 	__releases(&ffs->ev.waitq.lock)
278 {
279 	struct usb_request *req = ffs->ep0req;
280 	int ret;
281 
282 	if (!req) {
283 		spin_unlock_irq(&ffs->ev.waitq.lock);
284 		return -EINVAL;
285 	}
286 
287 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
288 
289 	spin_unlock_irq(&ffs->ev.waitq.lock);
290 
291 	req->buf      = data;
292 	req->length   = len;
293 
294 	/*
295 	 * UDC layer requires to provide a buffer even for ZLP, but should
296 	 * not use it at all. Let's provide some poisoned pointer to catch
297 	 * possible bug in the driver.
298 	 */
299 	if (req->buf == NULL)
300 		req->buf = (void *)0xDEADBABE;
301 
302 	reinit_completion(&ffs->ep0req_completion);
303 
304 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
305 	if (unlikely(ret < 0))
306 		return ret;
307 
308 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
309 	if (unlikely(ret)) {
310 		usb_ep_dequeue(ffs->gadget->ep0, req);
311 		return -EINTR;
312 	}
313 
314 	ffs->setup_state = FFS_NO_SETUP;
315 	return req->status ? req->status : req->actual;
316 }
317 
__ffs_ep0_stall(struct ffs_data * ffs)318 static int __ffs_ep0_stall(struct ffs_data *ffs)
319 {
320 	if (ffs->ev.can_stall) {
321 		pr_vdebug("ep0 stall\n");
322 		usb_ep_set_halt(ffs->gadget->ep0);
323 		ffs->setup_state = FFS_NO_SETUP;
324 		return -EL2HLT;
325 	} else {
326 		pr_debug("bogus ep0 stall!\n");
327 		return -ESRCH;
328 	}
329 }
330 
ffs_ep0_write(struct file * file,const char __user * buf,size_t len,loff_t * ptr)331 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
332 			     size_t len, loff_t *ptr)
333 {
334 	struct ffs_data *ffs = file->private_data;
335 	ssize_t ret;
336 	char *data;
337 
338 	ENTER();
339 
340 	/* Fast check if setup was canceled */
341 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
342 		return -EIDRM;
343 
344 	/* Acquire mutex */
345 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
346 	if (unlikely(ret < 0))
347 		return ret;
348 
349 	/* Check state */
350 	switch (ffs->state) {
351 	case FFS_READ_DESCRIPTORS:
352 	case FFS_READ_STRINGS:
353 		/* Copy data */
354 		if (unlikely(len < 16)) {
355 			ret = -EINVAL;
356 			break;
357 		}
358 
359 		data = ffs_prepare_buffer(buf, len);
360 		if (IS_ERR(data)) {
361 			ret = PTR_ERR(data);
362 			break;
363 		}
364 
365 		/* Handle data */
366 		if (ffs->state == FFS_READ_DESCRIPTORS) {
367 			pr_info("read descriptors\n");
368 			ret = __ffs_data_got_descs(ffs, data, len);
369 			if (unlikely(ret < 0))
370 				break;
371 
372 			ffs->state = FFS_READ_STRINGS;
373 			ret = len;
374 		} else {
375 			pr_info("read strings\n");
376 			ret = __ffs_data_got_strings(ffs, data, len);
377 			if (unlikely(ret < 0))
378 				break;
379 
380 			ret = ffs_epfiles_create(ffs);
381 			if (unlikely(ret)) {
382 				ffs->state = FFS_CLOSING;
383 				break;
384 			}
385 
386 			ffs->state = FFS_ACTIVE;
387 			mutex_unlock(&ffs->mutex);
388 
389 			ret = ffs_ready(ffs);
390 			if (unlikely(ret < 0)) {
391 				ffs->state = FFS_CLOSING;
392 				return ret;
393 			}
394 
395 			return len;
396 		}
397 		break;
398 
399 	case FFS_ACTIVE:
400 		data = NULL;
401 		/*
402 		 * We're called from user space, we can use _irq
403 		 * rather then _irqsave
404 		 */
405 		spin_lock_irq(&ffs->ev.waitq.lock);
406 		switch (ffs_setup_state_clear_cancelled(ffs)) {
407 		case FFS_SETUP_CANCELLED:
408 			ret = -EIDRM;
409 			goto done_spin;
410 
411 		case FFS_NO_SETUP:
412 			ret = -ESRCH;
413 			goto done_spin;
414 
415 		case FFS_SETUP_PENDING:
416 			break;
417 		}
418 
419 		/* FFS_SETUP_PENDING */
420 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
421 			spin_unlock_irq(&ffs->ev.waitq.lock);
422 			ret = __ffs_ep0_stall(ffs);
423 			break;
424 		}
425 
426 		/* FFS_SETUP_PENDING and not stall */
427 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
428 
429 		spin_unlock_irq(&ffs->ev.waitq.lock);
430 
431 		data = ffs_prepare_buffer(buf, len);
432 		if (IS_ERR(data)) {
433 			ret = PTR_ERR(data);
434 			break;
435 		}
436 
437 		spin_lock_irq(&ffs->ev.waitq.lock);
438 
439 		/*
440 		 * We are guaranteed to be still in FFS_ACTIVE state
441 		 * but the state of setup could have changed from
442 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
443 		 * to check for that.  If that happened we copied data
444 		 * from user space in vain but it's unlikely.
445 		 *
446 		 * For sure we are not in FFS_NO_SETUP since this is
447 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
448 		 * transition can be performed and it's protected by
449 		 * mutex.
450 		 */
451 		if (ffs_setup_state_clear_cancelled(ffs) ==
452 		    FFS_SETUP_CANCELLED) {
453 			ret = -EIDRM;
454 done_spin:
455 			spin_unlock_irq(&ffs->ev.waitq.lock);
456 		} else {
457 			/* unlocks spinlock */
458 			ret = __ffs_ep0_queue_wait(ffs, data, len);
459 		}
460 		kfree(data);
461 		break;
462 
463 	default:
464 		ret = -EBADFD;
465 		break;
466 	}
467 
468 	mutex_unlock(&ffs->mutex);
469 	return ret;
470 }
471 
472 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
__ffs_ep0_read_events(struct ffs_data * ffs,char __user * buf,size_t n)473 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
474 				     size_t n)
475 	__releases(&ffs->ev.waitq.lock)
476 {
477 	/*
478 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
479 	 * size of ffs->ev.types array (which is four) so that's how much space
480 	 * we reserve.
481 	 */
482 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
483 	const size_t size = n * sizeof *events;
484 	unsigned i = 0;
485 
486 	memset(events, 0, size);
487 
488 	do {
489 		events[i].type = ffs->ev.types[i];
490 		if (events[i].type == FUNCTIONFS_SETUP) {
491 			events[i].u.setup = ffs->ev.setup;
492 			ffs->setup_state = FFS_SETUP_PENDING;
493 		}
494 	} while (++i < n);
495 
496 	ffs->ev.count -= n;
497 	if (ffs->ev.count)
498 		memmove(ffs->ev.types, ffs->ev.types + n,
499 			ffs->ev.count * sizeof *ffs->ev.types);
500 
501 	spin_unlock_irq(&ffs->ev.waitq.lock);
502 	mutex_unlock(&ffs->mutex);
503 
504 	return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
505 }
506 
ffs_ep0_read(struct file * file,char __user * buf,size_t len,loff_t * ptr)507 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
508 			    size_t len, loff_t *ptr)
509 {
510 	struct ffs_data *ffs = file->private_data;
511 	char *data = NULL;
512 	size_t n;
513 	int ret;
514 
515 	ENTER();
516 
517 	/* Fast check if setup was canceled */
518 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
519 		return -EIDRM;
520 
521 	/* Acquire mutex */
522 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
523 	if (unlikely(ret < 0))
524 		return ret;
525 
526 	/* Check state */
527 	if (ffs->state != FFS_ACTIVE) {
528 		ret = -EBADFD;
529 		goto done_mutex;
530 	}
531 
532 	/*
533 	 * We're called from user space, we can use _irq rather then
534 	 * _irqsave
535 	 */
536 	spin_lock_irq(&ffs->ev.waitq.lock);
537 
538 	switch (ffs_setup_state_clear_cancelled(ffs)) {
539 	case FFS_SETUP_CANCELLED:
540 		ret = -EIDRM;
541 		break;
542 
543 	case FFS_NO_SETUP:
544 		n = len / sizeof(struct usb_functionfs_event);
545 		if (unlikely(!n)) {
546 			ret = -EINVAL;
547 			break;
548 		}
549 
550 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
551 			ret = -EAGAIN;
552 			break;
553 		}
554 
555 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
556 							ffs->ev.count)) {
557 			ret = -EINTR;
558 			break;
559 		}
560 
561 		/* unlocks spinlock */
562 		return __ffs_ep0_read_events(ffs, buf,
563 					     min(n, (size_t)ffs->ev.count));
564 
565 	case FFS_SETUP_PENDING:
566 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
567 			spin_unlock_irq(&ffs->ev.waitq.lock);
568 			ret = __ffs_ep0_stall(ffs);
569 			goto done_mutex;
570 		}
571 
572 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
573 
574 		spin_unlock_irq(&ffs->ev.waitq.lock);
575 
576 		if (likely(len)) {
577 			data = kmalloc(ALIGN(len, cache_line_size()), GFP_KERNEL);
578 			if (unlikely(!data)) {
579 				ret = -ENOMEM;
580 				goto done_mutex;
581 			}
582 		}
583 
584 		spin_lock_irq(&ffs->ev.waitq.lock);
585 
586 		/* See ffs_ep0_write() */
587 		if (ffs_setup_state_clear_cancelled(ffs) ==
588 		    FFS_SETUP_CANCELLED) {
589 			ret = -EIDRM;
590 			break;
591 		}
592 
593 		/* unlocks spinlock */
594 		ret = __ffs_ep0_queue_wait(ffs, data, len);
595 		if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
596 			ret = -EFAULT;
597 		goto done_mutex;
598 
599 	default:
600 		ret = -EBADFD;
601 		break;
602 	}
603 
604 	spin_unlock_irq(&ffs->ev.waitq.lock);
605 done_mutex:
606 	mutex_unlock(&ffs->mutex);
607 	kfree(data);
608 	return ret;
609 }
610 
ffs_ep0_open(struct inode * inode,struct file * file)611 static int ffs_ep0_open(struct inode *inode, struct file *file)
612 {
613 	struct ffs_data *ffs = inode->i_private;
614 
615 	ENTER();
616 
617 	if (unlikely(ffs->state == FFS_CLOSING))
618 		return -EBUSY;
619 
620 	file->private_data = ffs;
621 	ffs_data_opened(ffs);
622 
623 	return stream_open(inode, file);
624 }
625 
ffs_ep0_release(struct inode * inode,struct file * file)626 static int ffs_ep0_release(struct inode *inode, struct file *file)
627 {
628 	struct ffs_data *ffs = file->private_data;
629 
630 	ENTER();
631 
632 	ffs_data_closed(ffs);
633 
634 	return 0;
635 }
636 
ffs_ep0_ioctl(struct file * file,unsigned code,unsigned long value)637 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
638 {
639 	struct ffs_data *ffs = file->private_data;
640 	struct usb_gadget *gadget = ffs->gadget;
641 	long ret;
642 
643 	ENTER();
644 
645 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
646 		struct ffs_function *func = ffs->func;
647 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
648 	} else if (gadget && gadget->ops->ioctl) {
649 		ret = gadget->ops->ioctl(gadget, code, value);
650 	} else {
651 		ret = -ENOTTY;
652 	}
653 
654 	return ret;
655 }
656 
ffs_ep0_poll(struct file * file,poll_table * wait)657 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
658 {
659 	struct ffs_data *ffs = file->private_data;
660 	__poll_t mask = EPOLLWRNORM;
661 	int ret;
662 
663 	poll_wait(file, &ffs->ev.waitq, wait);
664 
665 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
666 	if (unlikely(ret < 0))
667 		return mask;
668 
669 	switch (ffs->state) {
670 	case FFS_READ_DESCRIPTORS:
671 	case FFS_READ_STRINGS:
672 		mask |= EPOLLOUT;
673 		break;
674 
675 	case FFS_ACTIVE:
676 		switch (ffs->setup_state) {
677 		case FFS_NO_SETUP:
678 			if (ffs->ev.count)
679 				mask |= EPOLLIN;
680 			break;
681 
682 		case FFS_SETUP_PENDING:
683 		case FFS_SETUP_CANCELLED:
684 			mask |= (EPOLLIN | EPOLLOUT);
685 			break;
686 		}
687 	case FFS_CLOSING:
688 		break;
689 	case FFS_DEACTIVATED:
690 		break;
691 	}
692 
693 	mutex_unlock(&ffs->mutex);
694 
695 	return mask;
696 }
697 
698 static const struct file_operations ffs_ep0_operations = {
699 	.llseek =	no_llseek,
700 
701 	.open =		ffs_ep0_open,
702 	.write =	ffs_ep0_write,
703 	.read =		ffs_ep0_read,
704 	.release =	ffs_ep0_release,
705 	.unlocked_ioctl =	ffs_ep0_ioctl,
706 	.poll =		ffs_ep0_poll,
707 };
708 
709 
710 /* "Normal" endpoints operations ********************************************/
711 
ffs_epfile_io_complete(struct usb_ep * _ep,struct usb_request * req)712 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
713 {
714 	struct ffs_io_data *io_data = req->context;
715 
716 	ENTER();
717 	if (req->status)
718 		io_data->status = req->status;
719 	else
720 		io_data->status = req->actual;
721 
722 	complete(&io_data->done);
723 }
724 
ffs_copy_to_iter(void * data,int data_len,struct iov_iter * iter)725 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
726 {
727 	ssize_t ret = copy_to_iter(data, data_len, iter);
728 	if (likely(ret == data_len))
729 		return ret;
730 
731 	if (unlikely(iov_iter_count(iter)))
732 		return -EFAULT;
733 
734 	/*
735 	 * Dear user space developer!
736 	 *
737 	 * TL;DR: To stop getting below error message in your kernel log, change
738 	 * user space code using functionfs to align read buffers to a max
739 	 * packet size.
740 	 *
741 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
742 	 * packet size.  When unaligned buffer is passed to functionfs, it
743 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
744 	 *
745 	 * Unfortunately, this means that host may send more data than was
746 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
747 	 * that excess data so it simply drops it.
748 	 *
749 	 * Was the buffer aligned in the first place, no such problem would
750 	 * happen.
751 	 *
752 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
753 	 * by splitting a request into multiple parts.  This splitting may still
754 	 * be a problem though so it’s likely best to align the buffer
755 	 * regardless of it being AIO or not..
756 	 *
757 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
758 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
759 	 * affected.
760 	 */
761 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
762 	       "Align read buffer size to max packet size to avoid the problem.\n",
763 	       data_len, ret);
764 
765 	return ret;
766 }
767 
768 /*
769  * allocate a virtually contiguous buffer and create a scatterlist describing it
770  * @sg_table	- pointer to a place to be filled with sg_table contents
771  * @size	- required buffer size
772  */
ffs_build_sg_list(struct sg_table * sgt,size_t sz)773 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
774 {
775 	struct page **pages;
776 	void *vaddr, *ptr;
777 	unsigned int n_pages;
778 	int i;
779 
780 	vaddr = vmalloc(sz);
781 	if (!vaddr)
782 		return NULL;
783 
784 	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
785 	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
786 	if (!pages) {
787 		vfree(vaddr);
788 
789 		return NULL;
790 	}
791 	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
792 		pages[i] = vmalloc_to_page(ptr);
793 
794 	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
795 		kvfree(pages);
796 		vfree(vaddr);
797 
798 		return NULL;
799 	}
800 	kvfree(pages);
801 
802 	return vaddr;
803 }
804 
ffs_alloc_buffer(struct ffs_io_data * io_data,size_t data_len)805 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
806 	size_t data_len)
807 {
808 	if (io_data->use_sg)
809 		return ffs_build_sg_list(&io_data->sgt, data_len);
810 
811 	return kmalloc(ALIGN(data_len, cache_line_size()), GFP_KERNEL);
812 }
813 
ffs_free_buffer(struct ffs_io_data * io_data)814 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
815 {
816 	if (!io_data->buf)
817 		return;
818 
819 	if (io_data->use_sg) {
820 		sg_free_table(&io_data->sgt);
821 		vfree(io_data->buf);
822 	} else {
823 		kfree(io_data->buf);
824 	}
825 }
826 
ffs_user_copy_worker(struct work_struct * work)827 static void ffs_user_copy_worker(struct work_struct *work)
828 {
829 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
830 						   work);
831 	int ret = io_data->req->status ? io_data->req->status :
832 					 io_data->req->actual;
833 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
834 
835 	if (io_data->read && ret > 0) {
836 		kthread_use_mm(io_data->mm);
837 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
838 		kthread_unuse_mm(io_data->mm);
839 	}
840 
841 	io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
842 
843 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
844 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
845 
846 	usb_ep_free_request(io_data->ep, io_data->req);
847 
848 	if (io_data->read)
849 		kfree(io_data->to_free);
850 	ffs_free_buffer(io_data);
851 	kfree(io_data);
852 }
853 
ffs_epfile_async_io_complete(struct usb_ep * _ep,struct usb_request * req)854 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
855 					 struct usb_request *req)
856 {
857 	struct ffs_io_data *io_data = req->context;
858 	struct ffs_data *ffs = io_data->ffs;
859 
860 	ENTER();
861 
862 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
863 	queue_work(ffs->io_completion_wq, &io_data->work);
864 }
865 
__ffs_epfile_read_buffer_free(struct ffs_epfile * epfile)866 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
867 {
868 	/*
869 	 * See comment in struct ffs_epfile for full read_buffer pointer
870 	 * synchronisation story.
871 	 */
872 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
873 	if (buf && buf != READ_BUFFER_DROP)
874 		kfree(buf);
875 }
876 
877 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_buffered(struct ffs_epfile * epfile,struct iov_iter * iter)878 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
879 					  struct iov_iter *iter)
880 {
881 	/*
882 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
883 	 * the buffer while we are using it.  See comment in struct ffs_epfile
884 	 * for full read_buffer pointer synchronisation story.
885 	 */
886 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
887 	ssize_t ret;
888 	if (!buf || buf == READ_BUFFER_DROP)
889 		return 0;
890 
891 	ret = copy_to_iter(buf->data, buf->length, iter);
892 	if (buf->length == ret) {
893 		kfree(buf);
894 		return ret;
895 	}
896 
897 	if (unlikely(iov_iter_count(iter))) {
898 		ret = -EFAULT;
899 	} else {
900 		buf->length -= ret;
901 		buf->data += ret;
902 	}
903 
904 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
905 		kfree(buf);
906 
907 	return ret;
908 }
909 
910 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_data(struct ffs_epfile * epfile,void * data,int data_len,struct iov_iter * iter)911 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
912 				      void *data, int data_len,
913 				      struct iov_iter *iter)
914 {
915 	struct ffs_buffer *buf;
916 
917 	ssize_t ret = copy_to_iter(data, data_len, iter);
918 	if (likely(data_len == ret))
919 		return ret;
920 
921 	if (unlikely(iov_iter_count(iter)))
922 		return -EFAULT;
923 
924 	/* See ffs_copy_to_iter for more context. */
925 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
926 		data_len, ret);
927 
928 	data_len -= ret;
929 	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
930 	if (!buf)
931 		return -ENOMEM;
932 	buf->length = data_len;
933 	buf->data = buf->storage;
934 	memcpy(buf->storage, data + ret, data_len);
935 
936 	/*
937 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
938 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
939 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
940 	 * story.
941 	 */
942 	if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
943 		kfree(buf);
944 
945 	return ret;
946 }
947 
ffs_epfile_io(struct file * file,struct ffs_io_data * io_data)948 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
949 {
950 	struct ffs_epfile *epfile = file->private_data;
951 	struct usb_request *req;
952 	struct ffs_ep *ep;
953 	char *data = NULL;
954 	ssize_t ret, data_len = -EINVAL;
955 	int halt;
956 
957 	/* Are we still active? */
958 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
959 		return -ENODEV;
960 
961 	/* Wait for endpoint to be enabled */
962 	ep = epfile->ep;
963 	if (!ep) {
964 		if (file->f_flags & O_NONBLOCK)
965 			return -EAGAIN;
966 
967 		ret = wait_event_interruptible(
968 				epfile->ffs->wait, (ep = epfile->ep));
969 		if (ret)
970 			return -EINTR;
971 	}
972 
973 	/* Do we halt? */
974 	halt = (!io_data->read == !epfile->in);
975 	if (halt && epfile->isoc)
976 		return -EINVAL;
977 
978 	/* We will be using request and read_buffer */
979 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
980 	if (unlikely(ret))
981 		goto error;
982 
983 	/* Allocate & copy */
984 	if (!halt) {
985 		struct usb_gadget *gadget;
986 
987 		/*
988 		 * Do we have buffered data from previous partial read?  Check
989 		 * that for synchronous case only because we do not have
990 		 * facility to ‘wake up’ a pending asynchronous read and push
991 		 * buffered data to it which we would need to make things behave
992 		 * consistently.
993 		 */
994 		if (!io_data->aio && io_data->read) {
995 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
996 			if (ret)
997 				goto error_mutex;
998 		}
999 
1000 		/*
1001 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1002 		 * before the waiting completes, so do not assign to 'gadget'
1003 		 * earlier
1004 		 */
1005 		gadget = epfile->ffs->gadget;
1006 
1007 		spin_lock_irq(&epfile->ffs->eps_lock);
1008 		/* In the meantime, endpoint got disabled or changed. */
1009 		if (epfile->ep != ep) {
1010 			ret = -ESHUTDOWN;
1011 			goto error_lock;
1012 		}
1013 		data_len = iov_iter_count(&io_data->data);
1014 		/*
1015 		 * Controller may require buffer size to be aligned to
1016 		 * maxpacketsize of an out endpoint.
1017 		 */
1018 		if (io_data->read)
1019 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1020 
1021 		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1022 		spin_unlock_irq(&epfile->ffs->eps_lock);
1023 
1024 		data = ffs_alloc_buffer(io_data, data_len);
1025 		if (unlikely(!data)) {
1026 			ret = -ENOMEM;
1027 			goto error_mutex;
1028 		}
1029 		if (!io_data->read &&
1030 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1031 			ret = -EFAULT;
1032 			goto error_mutex;
1033 		}
1034 	}
1035 
1036 	spin_lock_irq(&epfile->ffs->eps_lock);
1037 
1038 	if (epfile->ep != ep) {
1039 		/* In the meantime, endpoint got disabled or changed. */
1040 		ret = -ESHUTDOWN;
1041 	} else if (halt) {
1042 		ret = usb_ep_set_halt(ep->ep);
1043 		if (!ret)
1044 			ret = -EBADMSG;
1045 	} else if (unlikely(data_len == -EINVAL)) {
1046 		/*
1047 		 * Sanity Check: even though data_len can't be used
1048 		 * uninitialized at the time I write this comment, some
1049 		 * compilers complain about this situation.
1050 		 * In order to keep the code clean from warnings, data_len is
1051 		 * being initialized to -EINVAL during its declaration, which
1052 		 * means we can't rely on compiler anymore to warn no future
1053 		 * changes won't result in data_len being used uninitialized.
1054 		 * For such reason, we're adding this redundant sanity check
1055 		 * here.
1056 		 */
1057 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1058 		ret = -EINVAL;
1059 	} else if (!io_data->aio) {
1060 		bool interrupted = false;
1061 
1062 		req = ep->req;
1063 		if (io_data->use_sg) {
1064 			req->buf = NULL;
1065 			req->sg	= io_data->sgt.sgl;
1066 			req->num_sgs = io_data->sgt.nents;
1067 		} else {
1068 			req->buf = data;
1069 			req->num_sgs = 0;
1070 		}
1071 		req->length = data_len;
1072 
1073 		io_data->buf = data;
1074 
1075 		init_completion(&io_data->done);
1076 		req->context  = io_data;
1077 		req->complete = ffs_epfile_io_complete;
1078 
1079 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1080 		if (unlikely(ret < 0))
1081 			goto error_lock;
1082 
1083 		spin_unlock_irq(&epfile->ffs->eps_lock);
1084 
1085 		if (unlikely(wait_for_completion_interruptible(&io_data->done))) {
1086 			spin_lock_irq(&epfile->ffs->eps_lock);
1087 			if (epfile->ep != ep) {
1088 				ret = -ESHUTDOWN;
1089 				goto error_lock;
1090 			}
1091 			/*
1092 			 * To avoid race condition with ffs_epfile_io_complete,
1093 			 * dequeue the request first then check
1094 			 * status. usb_ep_dequeue API should guarantee no race
1095 			 * condition with req->complete callback.
1096 			 */
1097 			usb_ep_dequeue(ep->ep, req);
1098 			spin_unlock_irq(&epfile->ffs->eps_lock);
1099 			wait_for_completion(&io_data->done);
1100 			interrupted = io_data->status < 0;
1101 		}
1102 
1103 		if (interrupted)
1104 			ret = -EINTR;
1105 		else if (io_data->read && io_data->status > 0)
1106 			ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1107 						     &io_data->data);
1108 		else
1109 			ret = io_data->status;
1110 		goto error_mutex;
1111 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1112 		ret = -ENOMEM;
1113 	} else {
1114 		if (io_data->use_sg) {
1115 			req->buf = NULL;
1116 			req->sg	= io_data->sgt.sgl;
1117 			req->num_sgs = io_data->sgt.nents;
1118 		} else {
1119 			req->buf = data;
1120 			req->num_sgs = 0;
1121 		}
1122 		req->length = data_len;
1123 
1124 		io_data->buf = data;
1125 		io_data->ep = ep->ep;
1126 		io_data->req = req;
1127 		io_data->ffs = epfile->ffs;
1128 
1129 		req->context  = io_data;
1130 		req->complete = ffs_epfile_async_io_complete;
1131 
1132 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1133 		if (unlikely(ret)) {
1134 			io_data->req = NULL;
1135 			usb_ep_free_request(ep->ep, req);
1136 			goto error_lock;
1137 		}
1138 
1139 		ret = -EIOCBQUEUED;
1140 		/*
1141 		 * Do not kfree the buffer in this function.  It will be freed
1142 		 * by ffs_user_copy_worker.
1143 		 */
1144 		data = NULL;
1145 	}
1146 
1147 error_lock:
1148 	spin_unlock_irq(&epfile->ffs->eps_lock);
1149 error_mutex:
1150 	mutex_unlock(&epfile->mutex);
1151 error:
1152 	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1153 		ffs_free_buffer(io_data);
1154 	return ret;
1155 }
1156 
1157 static int
ffs_epfile_open(struct inode * inode,struct file * file)1158 ffs_epfile_open(struct inode *inode, struct file *file)
1159 {
1160 	struct ffs_epfile *epfile = inode->i_private;
1161 
1162 	ENTER();
1163 
1164 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1165 		return -ENODEV;
1166 
1167 	file->private_data = epfile;
1168 	ffs_data_opened(epfile->ffs);
1169 
1170 	return stream_open(inode, file);
1171 }
1172 
ffs_aio_cancel(struct kiocb * kiocb)1173 static int ffs_aio_cancel(struct kiocb *kiocb)
1174 {
1175 	struct ffs_io_data *io_data = kiocb->private;
1176 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1177 	unsigned long flags;
1178 	int value;
1179 
1180 	ENTER();
1181 
1182 	spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1183 
1184 	if (likely(io_data && io_data->ep && io_data->req))
1185 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1186 	else
1187 		value = -EINVAL;
1188 
1189 	spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1190 
1191 	return value;
1192 }
1193 
ffs_epfile_write_iter(struct kiocb * kiocb,struct iov_iter * from)1194 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1195 {
1196 	struct ffs_io_data io_data, *p = &io_data;
1197 	ssize_t res;
1198 
1199 	ENTER();
1200 
1201 	if (!is_sync_kiocb(kiocb)) {
1202 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1203 		if (unlikely(!p))
1204 			return -ENOMEM;
1205 		p->aio = true;
1206 	} else {
1207 		memset(p, 0, sizeof(*p));
1208 		p->aio = false;
1209 	}
1210 
1211 	p->read = false;
1212 	p->kiocb = kiocb;
1213 	p->data = *from;
1214 	p->mm = current->mm;
1215 
1216 	kiocb->private = p;
1217 
1218 	if (p->aio)
1219 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1220 
1221 	res = ffs_epfile_io(kiocb->ki_filp, p);
1222 	if (res == -EIOCBQUEUED)
1223 		return res;
1224 	if (p->aio)
1225 		kfree(p);
1226 	else
1227 		*from = p->data;
1228 	return res;
1229 }
1230 
ffs_epfile_read_iter(struct kiocb * kiocb,struct iov_iter * to)1231 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1232 {
1233 	struct ffs_io_data io_data, *p = &io_data;
1234 	ssize_t res;
1235 
1236 	ENTER();
1237 
1238 	if (!is_sync_kiocb(kiocb)) {
1239 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1240 		if (unlikely(!p))
1241 			return -ENOMEM;
1242 		p->aio = true;
1243 	} else {
1244 		memset(p, 0, sizeof(*p));
1245 		p->aio = false;
1246 	}
1247 
1248 	p->read = true;
1249 	p->kiocb = kiocb;
1250 	if (p->aio) {
1251 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1252 		if (!p->to_free) {
1253 			kfree(p);
1254 			return -ENOMEM;
1255 		}
1256 	} else {
1257 		p->data = *to;
1258 		p->to_free = NULL;
1259 	}
1260 	p->mm = current->mm;
1261 
1262 	kiocb->private = p;
1263 
1264 	if (p->aio)
1265 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1266 
1267 	res = ffs_epfile_io(kiocb->ki_filp, p);
1268 	if (res == -EIOCBQUEUED)
1269 		return res;
1270 
1271 	if (p->aio) {
1272 		kfree(p->to_free);
1273 		kfree(p);
1274 	} else {
1275 		*to = p->data;
1276 	}
1277 	return res;
1278 }
1279 
1280 static int
ffs_epfile_release(struct inode * inode,struct file * file)1281 ffs_epfile_release(struct inode *inode, struct file *file)
1282 {
1283 	struct ffs_epfile *epfile = inode->i_private;
1284 
1285 	ENTER();
1286 
1287 	__ffs_epfile_read_buffer_free(epfile);
1288 	ffs_data_closed(epfile->ffs);
1289 
1290 	return 0;
1291 }
1292 
ffs_epfile_ioctl(struct file * file,unsigned code,unsigned long value)1293 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1294 			     unsigned long value)
1295 {
1296 	struct ffs_epfile *epfile = file->private_data;
1297 	struct ffs_ep *ep;
1298 	int ret;
1299 
1300 	ENTER();
1301 
1302 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1303 		return -ENODEV;
1304 
1305 	/* Wait for endpoint to be enabled */
1306 	ep = epfile->ep;
1307 	if (!ep) {
1308 		if (file->f_flags & O_NONBLOCK)
1309 			return -EAGAIN;
1310 
1311 		ret = wait_event_interruptible(
1312 				epfile->ffs->wait, (ep = epfile->ep));
1313 		if (ret)
1314 			return -EINTR;
1315 	}
1316 
1317 	spin_lock_irq(&epfile->ffs->eps_lock);
1318 
1319 	/* In the meantime, endpoint got disabled or changed. */
1320 	if (epfile->ep != ep) {
1321 		spin_unlock_irq(&epfile->ffs->eps_lock);
1322 		return -ESHUTDOWN;
1323 	}
1324 
1325 	switch (code) {
1326 	case FUNCTIONFS_FIFO_STATUS:
1327 		ret = usb_ep_fifo_status(epfile->ep->ep);
1328 		break;
1329 	case FUNCTIONFS_FIFO_FLUSH:
1330 		usb_ep_fifo_flush(epfile->ep->ep);
1331 		ret = 0;
1332 		break;
1333 	case FUNCTIONFS_CLEAR_HALT:
1334 		ret = usb_ep_clear_halt(epfile->ep->ep);
1335 		break;
1336 	case FUNCTIONFS_ENDPOINT_REVMAP:
1337 		ret = epfile->ep->num;
1338 		break;
1339 	case FUNCTIONFS_ENDPOINT_DESC:
1340 	{
1341 		int desc_idx;
1342 		struct usb_endpoint_descriptor desc1, *desc;
1343 
1344 		switch (epfile->ffs->gadget->speed) {
1345 		case USB_SPEED_SUPER:
1346 		case USB_SPEED_SUPER_PLUS:
1347 			desc_idx = 2;
1348 			break;
1349 		case USB_SPEED_HIGH:
1350 			desc_idx = 1;
1351 			break;
1352 		default:
1353 			desc_idx = 0;
1354 		}
1355 
1356 		desc = epfile->ep->descs[desc_idx];
1357 		memcpy(&desc1, desc, desc->bLength);
1358 
1359 		spin_unlock_irq(&epfile->ffs->eps_lock);
1360 		ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1361 		if (ret)
1362 			ret = -EFAULT;
1363 		return ret;
1364 	}
1365 	default:
1366 		ret = -ENOTTY;
1367 	}
1368 	spin_unlock_irq(&epfile->ffs->eps_lock);
1369 
1370 	return ret;
1371 }
1372 
1373 static const struct file_operations ffs_epfile_operations = {
1374 	.llseek =	no_llseek,
1375 
1376 	.open =		ffs_epfile_open,
1377 	.write_iter =	ffs_epfile_write_iter,
1378 	.read_iter =	ffs_epfile_read_iter,
1379 	.release =	ffs_epfile_release,
1380 	.unlocked_ioctl =	ffs_epfile_ioctl,
1381 	.compat_ioctl = compat_ptr_ioctl,
1382 };
1383 
1384 
1385 /* File system and super block operations ***********************************/
1386 
1387 /*
1388  * Mounting the file system creates a controller file, used first for
1389  * function configuration then later for event monitoring.
1390  */
1391 
1392 static struct inode *__must_check
ffs_sb_make_inode(struct super_block * sb,void * data,const struct file_operations * fops,const struct inode_operations * iops,struct ffs_file_perms * perms)1393 ffs_sb_make_inode(struct super_block *sb, void *data,
1394 		  const struct file_operations *fops,
1395 		  const struct inode_operations *iops,
1396 		  struct ffs_file_perms *perms)
1397 {
1398 	struct inode *inode;
1399 
1400 	ENTER();
1401 
1402 	inode = new_inode(sb);
1403 
1404 	if (likely(inode)) {
1405 		struct timespec64 ts = current_time(inode);
1406 
1407 		inode->i_ino	 = get_next_ino();
1408 		inode->i_mode    = perms->mode;
1409 		inode->i_uid     = perms->uid;
1410 		inode->i_gid     = perms->gid;
1411 		inode->i_atime   = ts;
1412 		inode->i_mtime   = ts;
1413 		inode->i_ctime   = ts;
1414 		inode->i_private = data;
1415 		if (fops)
1416 			inode->i_fop = fops;
1417 		if (iops)
1418 			inode->i_op  = iops;
1419 	}
1420 
1421 	return inode;
1422 }
1423 
1424 /* Create "regular" file */
ffs_sb_create_file(struct super_block * sb,const char * name,void * data,const struct file_operations * fops)1425 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1426 					const char *name, void *data,
1427 					const struct file_operations *fops)
1428 {
1429 	struct ffs_data	*ffs = sb->s_fs_info;
1430 	struct dentry	*dentry;
1431 	struct inode	*inode;
1432 
1433 	ENTER();
1434 
1435 	dentry = d_alloc_name(sb->s_root, name);
1436 	if (unlikely(!dentry))
1437 		return NULL;
1438 
1439 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1440 	if (unlikely(!inode)) {
1441 		dput(dentry);
1442 		return NULL;
1443 	}
1444 
1445 	d_add(dentry, inode);
1446 	return dentry;
1447 }
1448 
1449 /* Super block */
1450 static const struct super_operations ffs_sb_operations = {
1451 	.statfs =	simple_statfs,
1452 	.drop_inode =	generic_delete_inode,
1453 };
1454 
1455 struct ffs_sb_fill_data {
1456 	struct ffs_file_perms perms;
1457 	umode_t root_mode;
1458 	const char *dev_name;
1459 	bool no_disconnect;
1460 	struct ffs_data *ffs_data;
1461 };
1462 
ffs_sb_fill(struct super_block * sb,struct fs_context * fc)1463 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1464 {
1465 	struct ffs_sb_fill_data *data = fc->fs_private;
1466 	struct inode	*inode;
1467 	struct ffs_data	*ffs = data->ffs_data;
1468 
1469 	ENTER();
1470 
1471 	ffs->sb              = sb;
1472 	data->ffs_data       = NULL;
1473 	sb->s_fs_info        = ffs;
1474 	sb->s_blocksize      = PAGE_SIZE;
1475 	sb->s_blocksize_bits = PAGE_SHIFT;
1476 	sb->s_magic          = FUNCTIONFS_MAGIC;
1477 	sb->s_op             = &ffs_sb_operations;
1478 	sb->s_time_gran      = 1;
1479 
1480 	/* Root inode */
1481 	data->perms.mode = data->root_mode;
1482 	inode = ffs_sb_make_inode(sb, NULL,
1483 				  &simple_dir_operations,
1484 				  &simple_dir_inode_operations,
1485 				  &data->perms);
1486 	sb->s_root = d_make_root(inode);
1487 	if (unlikely(!sb->s_root))
1488 		return -ENOMEM;
1489 
1490 	/* EP0 file */
1491 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1492 					 &ffs_ep0_operations)))
1493 		return -ENOMEM;
1494 
1495 	return 0;
1496 }
1497 
1498 enum {
1499 	Opt_no_disconnect,
1500 	Opt_rmode,
1501 	Opt_fmode,
1502 	Opt_mode,
1503 	Opt_uid,
1504 	Opt_gid,
1505 };
1506 
1507 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1508 	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1509 	fsparam_u32	("rmode",		Opt_rmode),
1510 	fsparam_u32	("fmode",		Opt_fmode),
1511 	fsparam_u32	("mode",		Opt_mode),
1512 	fsparam_u32	("uid",			Opt_uid),
1513 	fsparam_u32	("gid",			Opt_gid),
1514 	{}
1515 };
1516 
ffs_fs_parse_param(struct fs_context * fc,struct fs_parameter * param)1517 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1518 {
1519 	struct ffs_sb_fill_data *data = fc->fs_private;
1520 	struct fs_parse_result result;
1521 	int opt;
1522 
1523 	ENTER();
1524 
1525 	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1526 	if (opt < 0)
1527 		return opt;
1528 
1529 	switch (opt) {
1530 	case Opt_no_disconnect:
1531 		data->no_disconnect = result.boolean;
1532 		break;
1533 	case Opt_rmode:
1534 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1535 		break;
1536 	case Opt_fmode:
1537 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1538 		break;
1539 	case Opt_mode:
1540 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1541 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1542 		break;
1543 
1544 	case Opt_uid:
1545 		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1546 		if (!uid_valid(data->perms.uid))
1547 			goto unmapped_value;
1548 		break;
1549 	case Opt_gid:
1550 		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1551 		if (!gid_valid(data->perms.gid))
1552 			goto unmapped_value;
1553 		break;
1554 
1555 	default:
1556 		return -ENOPARAM;
1557 	}
1558 
1559 	return 0;
1560 
1561 unmapped_value:
1562 	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1563 }
1564 
1565 /*
1566  * Set up the superblock for a mount.
1567  */
ffs_fs_get_tree(struct fs_context * fc)1568 static int ffs_fs_get_tree(struct fs_context *fc)
1569 {
1570 	struct ffs_sb_fill_data *ctx = fc->fs_private;
1571 	struct ffs_data	*ffs;
1572 	int ret;
1573 
1574 	ENTER();
1575 
1576 	if (!fc->source)
1577 		return invalf(fc, "No source specified");
1578 
1579 	ffs = ffs_data_new(fc->source);
1580 	if (unlikely(!ffs))
1581 		return -ENOMEM;
1582 	ffs->file_perms = ctx->perms;
1583 	ffs->no_disconnect = ctx->no_disconnect;
1584 
1585 	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1586 	if (unlikely(!ffs->dev_name)) {
1587 		ffs_data_put(ffs);
1588 		return -ENOMEM;
1589 	}
1590 
1591 	ret = ffs_acquire_dev(ffs->dev_name, ffs);
1592 	if (ret) {
1593 		ffs_data_put(ffs);
1594 		return ret;
1595 	}
1596 
1597 	ctx->ffs_data = ffs;
1598 	return get_tree_nodev(fc, ffs_sb_fill);
1599 }
1600 
ffs_fs_free_fc(struct fs_context * fc)1601 static void ffs_fs_free_fc(struct fs_context *fc)
1602 {
1603 	struct ffs_sb_fill_data *ctx = fc->fs_private;
1604 
1605 	if (ctx) {
1606 		if (ctx->ffs_data) {
1607 			ffs_data_put(ctx->ffs_data);
1608 		}
1609 
1610 		kfree(ctx);
1611 	}
1612 }
1613 
1614 static const struct fs_context_operations ffs_fs_context_ops = {
1615 	.free		= ffs_fs_free_fc,
1616 	.parse_param	= ffs_fs_parse_param,
1617 	.get_tree	= ffs_fs_get_tree,
1618 };
1619 
ffs_fs_init_fs_context(struct fs_context * fc)1620 static int ffs_fs_init_fs_context(struct fs_context *fc)
1621 {
1622 	struct ffs_sb_fill_data *ctx;
1623 
1624 	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1625 	if (!ctx)
1626 		return -ENOMEM;
1627 
1628 	ctx->perms.mode = S_IFREG | 0600;
1629 	ctx->perms.uid = GLOBAL_ROOT_UID;
1630 	ctx->perms.gid = GLOBAL_ROOT_GID;
1631 	ctx->root_mode = S_IFDIR | 0500;
1632 	ctx->no_disconnect = false;
1633 
1634 	fc->fs_private = ctx;
1635 	fc->ops = &ffs_fs_context_ops;
1636 	return 0;
1637 }
1638 
1639 static void
ffs_fs_kill_sb(struct super_block * sb)1640 ffs_fs_kill_sb(struct super_block *sb)
1641 {
1642 	ENTER();
1643 
1644 	kill_litter_super(sb);
1645 	if (sb->s_fs_info)
1646 		ffs_data_closed(sb->s_fs_info);
1647 }
1648 
1649 static struct file_system_type ffs_fs_type = {
1650 	.owner		= THIS_MODULE,
1651 	.name		= "functionfs",
1652 	.init_fs_context = ffs_fs_init_fs_context,
1653 	.parameters	= ffs_fs_fs_parameters,
1654 	.kill_sb	= ffs_fs_kill_sb,
1655 };
1656 MODULE_ALIAS_FS("functionfs");
1657 
1658 
1659 /* Driver's main init/cleanup functions *************************************/
1660 
functionfs_init(void)1661 static int functionfs_init(void)
1662 {
1663 	int ret;
1664 
1665 	ENTER();
1666 
1667 	ret = register_filesystem(&ffs_fs_type);
1668 	if (likely(!ret))
1669 		pr_info("file system registered\n");
1670 	else
1671 		pr_err("failed registering file system (%d)\n", ret);
1672 
1673 	return ret;
1674 }
1675 
functionfs_cleanup(void)1676 static void functionfs_cleanup(void)
1677 {
1678 	ENTER();
1679 
1680 	pr_info("unloading\n");
1681 	unregister_filesystem(&ffs_fs_type);
1682 }
1683 
1684 
1685 /* ffs_data and ffs_function construction and destruction code **************/
1686 
1687 static void ffs_data_clear(struct ffs_data *ffs);
1688 static void ffs_data_reset(struct ffs_data *ffs);
1689 
ffs_data_get(struct ffs_data * ffs)1690 static void ffs_data_get(struct ffs_data *ffs)
1691 {
1692 	ENTER();
1693 
1694 	refcount_inc(&ffs->ref);
1695 }
1696 
ffs_data_opened(struct ffs_data * ffs)1697 static void ffs_data_opened(struct ffs_data *ffs)
1698 {
1699 	ENTER();
1700 
1701 	refcount_inc(&ffs->ref);
1702 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1703 			ffs->state == FFS_DEACTIVATED) {
1704 		ffs->state = FFS_CLOSING;
1705 		ffs_data_reset(ffs);
1706 	}
1707 }
1708 
ffs_data_put(struct ffs_data * ffs)1709 static void ffs_data_put(struct ffs_data *ffs)
1710 {
1711 	ENTER();
1712 
1713 	if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1714 		pr_info("%s(): freeing\n", __func__);
1715 		ffs_data_clear(ffs);
1716 		ffs_release_dev(ffs->private_data);
1717 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1718 		       swait_active(&ffs->ep0req_completion.wait) ||
1719 		       waitqueue_active(&ffs->wait));
1720 		destroy_workqueue(ffs->io_completion_wq);
1721 		kfree(ffs->dev_name);
1722 		kfree(ffs);
1723 	}
1724 }
1725 
ffs_data_closed(struct ffs_data * ffs)1726 static void ffs_data_closed(struct ffs_data *ffs)
1727 {
1728 	struct ffs_epfile *epfiles;
1729 	unsigned long flags;
1730 
1731 	ENTER();
1732 
1733 	if (atomic_dec_and_test(&ffs->opened)) {
1734 		if (ffs->no_disconnect) {
1735 			ffs->state = FFS_DEACTIVATED;
1736 			spin_lock_irqsave(&ffs->eps_lock, flags);
1737 			epfiles = ffs->epfiles;
1738 			ffs->epfiles = NULL;
1739 			spin_unlock_irqrestore(&ffs->eps_lock,
1740 							flags);
1741 
1742 			if (epfiles)
1743 				ffs_epfiles_destroy(epfiles,
1744 						 ffs->eps_count);
1745 
1746 			if (ffs->setup_state == FFS_SETUP_PENDING)
1747 				__ffs_ep0_stall(ffs);
1748 		} else {
1749 			ffs->state = FFS_CLOSING;
1750 			ffs_data_reset(ffs);
1751 		}
1752 	}
1753 	if (atomic_read(&ffs->opened) < 0) {
1754 		ffs->state = FFS_CLOSING;
1755 		ffs_data_reset(ffs);
1756 	}
1757 
1758 	ffs_data_put(ffs);
1759 }
1760 
ffs_data_new(const char * dev_name)1761 static struct ffs_data *ffs_data_new(const char *dev_name)
1762 {
1763 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1764 	if (unlikely(!ffs))
1765 		return NULL;
1766 
1767 	ENTER();
1768 
1769 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1770 	if (!ffs->io_completion_wq) {
1771 		kfree(ffs);
1772 		return NULL;
1773 	}
1774 
1775 	refcount_set(&ffs->ref, 1);
1776 	atomic_set(&ffs->opened, 0);
1777 	ffs->state = FFS_READ_DESCRIPTORS;
1778 	mutex_init(&ffs->mutex);
1779 	spin_lock_init(&ffs->eps_lock);
1780 	init_waitqueue_head(&ffs->ev.waitq);
1781 	init_waitqueue_head(&ffs->wait);
1782 	init_completion(&ffs->ep0req_completion);
1783 
1784 	/* XXX REVISIT need to update it in some places, or do we? */
1785 	ffs->ev.can_stall = 1;
1786 
1787 	return ffs;
1788 }
1789 
ffs_data_clear(struct ffs_data * ffs)1790 static void ffs_data_clear(struct ffs_data *ffs)
1791 {
1792 	struct ffs_epfile *epfiles;
1793 	unsigned long flags;
1794 
1795 	ENTER();
1796 
1797 	ffs_closed(ffs);
1798 
1799 	BUG_ON(ffs->gadget);
1800 
1801 	spin_lock_irqsave(&ffs->eps_lock, flags);
1802 	epfiles = ffs->epfiles;
1803 	ffs->epfiles = NULL;
1804 	spin_unlock_irqrestore(&ffs->eps_lock, flags);
1805 
1806 	/*
1807 	 * potential race possible between ffs_func_eps_disable
1808 	 * & ffs_epfile_release therefore maintaining a local
1809 	 * copy of epfile will save us from use-after-free.
1810 	 */
1811 	if (epfiles) {
1812 		ffs_epfiles_destroy(epfiles, ffs->eps_count);
1813 		ffs->epfiles = NULL;
1814 	}
1815 
1816 	if (ffs->ffs_eventfd) {
1817 		eventfd_ctx_put(ffs->ffs_eventfd);
1818 		ffs->ffs_eventfd = NULL;
1819 	}
1820 
1821 	kfree(ffs->raw_descs_data);
1822 	kfree(ffs->raw_strings);
1823 	kfree(ffs->stringtabs);
1824 }
1825 
ffs_data_reset(struct ffs_data * ffs)1826 static void ffs_data_reset(struct ffs_data *ffs)
1827 {
1828 	ENTER();
1829 
1830 	ffs_data_clear(ffs);
1831 
1832 	ffs->raw_descs_data = NULL;
1833 	ffs->raw_descs = NULL;
1834 	ffs->raw_strings = NULL;
1835 	ffs->stringtabs = NULL;
1836 
1837 	ffs->raw_descs_length = 0;
1838 	ffs->fs_descs_count = 0;
1839 	ffs->hs_descs_count = 0;
1840 	ffs->ss_descs_count = 0;
1841 
1842 	ffs->strings_count = 0;
1843 	ffs->interfaces_count = 0;
1844 	ffs->eps_count = 0;
1845 
1846 	ffs->ev.count = 0;
1847 
1848 	ffs->state = FFS_READ_DESCRIPTORS;
1849 	ffs->setup_state = FFS_NO_SETUP;
1850 	ffs->flags = 0;
1851 
1852 	ffs->ms_os_descs_ext_prop_count = 0;
1853 	ffs->ms_os_descs_ext_prop_name_len = 0;
1854 	ffs->ms_os_descs_ext_prop_data_len = 0;
1855 }
1856 
1857 
functionfs_bind(struct ffs_data * ffs,struct usb_composite_dev * cdev)1858 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1859 {
1860 	struct usb_gadget_strings **lang;
1861 	int first_id;
1862 
1863 	ENTER();
1864 
1865 	if (WARN_ON(ffs->state != FFS_ACTIVE
1866 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1867 		return -EBADFD;
1868 
1869 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1870 	if (unlikely(first_id < 0))
1871 		return first_id;
1872 
1873 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1874 	if (unlikely(!ffs->ep0req))
1875 		return -ENOMEM;
1876 	ffs->ep0req->complete = ffs_ep0_complete;
1877 	ffs->ep0req->context = ffs;
1878 
1879 	lang = ffs->stringtabs;
1880 	if (lang) {
1881 		for (; *lang; ++lang) {
1882 			struct usb_string *str = (*lang)->strings;
1883 			int id = first_id;
1884 			for (; str->s; ++id, ++str)
1885 				str->id = id;
1886 		}
1887 	}
1888 
1889 	ffs->gadget = cdev->gadget;
1890 	ffs_data_get(ffs);
1891 	return 0;
1892 }
1893 
functionfs_unbind(struct ffs_data * ffs)1894 static void functionfs_unbind(struct ffs_data *ffs)
1895 {
1896 	ENTER();
1897 
1898 	if (!WARN_ON(!ffs->gadget)) {
1899 		/* dequeue before freeing ep0req */
1900 		usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
1901 		mutex_lock(&ffs->mutex);
1902 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1903 		ffs->ep0req = NULL;
1904 		ffs->gadget = NULL;
1905 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1906 		mutex_unlock(&ffs->mutex);
1907 		ffs_data_put(ffs);
1908 	}
1909 }
1910 
ffs_epfiles_create(struct ffs_data * ffs)1911 static int ffs_epfiles_create(struct ffs_data *ffs)
1912 {
1913 	struct ffs_epfile *epfile, *epfiles;
1914 	unsigned i, count;
1915 
1916 	ENTER();
1917 
1918 	count = ffs->eps_count;
1919 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1920 	if (!epfiles)
1921 		return -ENOMEM;
1922 
1923 	epfile = epfiles;
1924 	for (i = 1; i <= count; ++i, ++epfile) {
1925 		epfile->ffs = ffs;
1926 		mutex_init(&epfile->mutex);
1927 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1928 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1929 		else
1930 			sprintf(epfile->name, "ep%u", i);
1931 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1932 						 epfile,
1933 						 &ffs_epfile_operations);
1934 		if (unlikely(!epfile->dentry)) {
1935 			ffs_epfiles_destroy(epfiles, i - 1);
1936 			return -ENOMEM;
1937 		}
1938 	}
1939 
1940 	ffs->epfiles = epfiles;
1941 	return 0;
1942 }
1943 
ffs_epfiles_destroy(struct ffs_epfile * epfiles,unsigned count)1944 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1945 {
1946 	struct ffs_epfile *epfile = epfiles;
1947 
1948 	ENTER();
1949 
1950 	for (; count; --count, ++epfile) {
1951 		BUG_ON(mutex_is_locked(&epfile->mutex));
1952 		if (epfile->dentry) {
1953 			d_delete(epfile->dentry);
1954 			dput(epfile->dentry);
1955 			epfile->dentry = NULL;
1956 		}
1957 	}
1958 
1959 	kfree(epfiles);
1960 }
1961 
ffs_func_eps_disable(struct ffs_function * func)1962 static void ffs_func_eps_disable(struct ffs_function *func)
1963 {
1964 	struct ffs_ep *ep;
1965 	struct ffs_epfile *epfile;
1966 	unsigned short count;
1967 	unsigned long flags;
1968 
1969 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1970 	count = func->ffs->eps_count;
1971 	epfile = func->ffs->epfiles;
1972 	ep = func->eps;
1973 	while (count--) {
1974 		/* pending requests get nuked */
1975 		if (likely(ep->ep))
1976 			usb_ep_disable(ep->ep);
1977 		++ep;
1978 
1979 		if (epfile) {
1980 			epfile->ep = NULL;
1981 			__ffs_epfile_read_buffer_free(epfile);
1982 			++epfile;
1983 		}
1984 	}
1985 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1986 }
1987 
ffs_func_eps_enable(struct ffs_function * func)1988 static int ffs_func_eps_enable(struct ffs_function *func)
1989 {
1990 	struct ffs_data *ffs;
1991 	struct ffs_ep *ep;
1992 	struct ffs_epfile *epfile;
1993 	unsigned short count;
1994 	unsigned long flags;
1995 	int ret = 0;
1996 
1997 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1998 	ffs = func->ffs;
1999 	ep = func->eps;
2000 	epfile = ffs->epfiles;
2001 	count = ffs->eps_count;
2002 	while(count--) {
2003 		ep->ep->driver_data = ep;
2004 
2005 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2006 		if (ret) {
2007 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2008 					__func__, ep->ep->name, ret);
2009 			break;
2010 		}
2011 
2012 		ret = usb_ep_enable(ep->ep);
2013 		if (likely(!ret)) {
2014 			epfile->ep = ep;
2015 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2016 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2017 		} else {
2018 			break;
2019 		}
2020 
2021 		++ep;
2022 		++epfile;
2023 	}
2024 
2025 	wake_up_interruptible(&ffs->wait);
2026 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2027 
2028 	return ret;
2029 }
2030 
2031 
2032 /* Parsing and building descriptors and strings *****************************/
2033 
2034 /*
2035  * This validates if data pointed by data is a valid USB descriptor as
2036  * well as record how many interfaces, endpoints and strings are
2037  * required by given configuration.  Returns address after the
2038  * descriptor or NULL if data is invalid.
2039  */
2040 
2041 enum ffs_entity_type {
2042 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2043 };
2044 
2045 enum ffs_os_desc_type {
2046 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2047 };
2048 
2049 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2050 				   u8 *valuep,
2051 				   struct usb_descriptor_header *desc,
2052 				   void *priv);
2053 
2054 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2055 				    struct usb_os_desc_header *h, void *data,
2056 				    unsigned len, void *priv);
2057 
ffs_do_single_desc(char * data,unsigned len,ffs_entity_callback entity,void * priv,int * current_class)2058 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2059 					   ffs_entity_callback entity,
2060 					   void *priv, int *current_class)
2061 {
2062 	struct usb_descriptor_header *_ds = (void *)data;
2063 	u8 length;
2064 	int ret;
2065 
2066 	ENTER();
2067 
2068 	/* At least two bytes are required: length and type */
2069 	if (len < 2) {
2070 		pr_vdebug("descriptor too short\n");
2071 		return -EINVAL;
2072 	}
2073 
2074 	/* If we have at least as many bytes as the descriptor takes? */
2075 	length = _ds->bLength;
2076 	if (len < length) {
2077 		pr_vdebug("descriptor longer then available data\n");
2078 		return -EINVAL;
2079 	}
2080 
2081 #define __entity_check_INTERFACE(val)  1
2082 #define __entity_check_STRING(val)     (val)
2083 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2084 #define __entity(type, val) do {					\
2085 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2086 		if (unlikely(!__entity_check_ ##type(val))) {		\
2087 			pr_vdebug("invalid entity's value\n");		\
2088 			return -EINVAL;					\
2089 		}							\
2090 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2091 		if (unlikely(ret < 0)) {				\
2092 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2093 				 (val), ret);				\
2094 			return ret;					\
2095 		}							\
2096 	} while (0)
2097 
2098 	/* Parse descriptor depending on type. */
2099 	switch (_ds->bDescriptorType) {
2100 	case USB_DT_DEVICE:
2101 	case USB_DT_CONFIG:
2102 	case USB_DT_STRING:
2103 	case USB_DT_DEVICE_QUALIFIER:
2104 		/* function can't have any of those */
2105 		pr_vdebug("descriptor reserved for gadget: %d\n",
2106 		      _ds->bDescriptorType);
2107 		return -EINVAL;
2108 
2109 	case USB_DT_INTERFACE: {
2110 		struct usb_interface_descriptor *ds = (void *)_ds;
2111 		pr_vdebug("interface descriptor\n");
2112 		if (length != sizeof *ds)
2113 			goto inv_length;
2114 
2115 		__entity(INTERFACE, ds->bInterfaceNumber);
2116 		if (ds->iInterface)
2117 			__entity(STRING, ds->iInterface);
2118 		*current_class = ds->bInterfaceClass;
2119 	}
2120 		break;
2121 
2122 	case USB_DT_ENDPOINT: {
2123 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2124 		pr_vdebug("endpoint descriptor\n");
2125 		if (length != USB_DT_ENDPOINT_SIZE &&
2126 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2127 			goto inv_length;
2128 		__entity(ENDPOINT, ds->bEndpointAddress);
2129 	}
2130 		break;
2131 
2132 	case USB_TYPE_CLASS | 0x01:
2133                 if (*current_class == USB_INTERFACE_CLASS_HID) {
2134 			pr_vdebug("hid descriptor\n");
2135 			if (length != sizeof(struct hid_descriptor))
2136 				goto inv_length;
2137 			break;
2138 		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2139 			pr_vdebug("ccid descriptor\n");
2140 			if (length != sizeof(struct ccid_descriptor))
2141 				goto inv_length;
2142 			break;
2143 		} else {
2144 			pr_vdebug("unknown descriptor: %d for class %d\n",
2145 			      _ds->bDescriptorType, *current_class);
2146 			return -EINVAL;
2147 		}
2148 
2149 	case USB_DT_OTG:
2150 		if (length != sizeof(struct usb_otg_descriptor))
2151 			goto inv_length;
2152 		break;
2153 
2154 	case USB_DT_INTERFACE_ASSOCIATION: {
2155 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2156 		pr_vdebug("interface association descriptor\n");
2157 		if (length != sizeof *ds)
2158 			goto inv_length;
2159 		if (ds->iFunction)
2160 			__entity(STRING, ds->iFunction);
2161 	}
2162 		break;
2163 
2164 	case USB_DT_SS_ENDPOINT_COMP:
2165 		pr_vdebug("EP SS companion descriptor\n");
2166 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2167 			goto inv_length;
2168 		break;
2169 
2170 	case USB_DT_OTHER_SPEED_CONFIG:
2171 	case USB_DT_INTERFACE_POWER:
2172 	case USB_DT_DEBUG:
2173 	case USB_DT_SECURITY:
2174 	case USB_DT_CS_RADIO_CONTROL:
2175 		/* TODO */
2176 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2177 		return -EINVAL;
2178 
2179 	default:
2180 		/* We should never be here */
2181 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2182 		return -EINVAL;
2183 
2184 inv_length:
2185 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2186 			  _ds->bLength, _ds->bDescriptorType);
2187 		return -EINVAL;
2188 	}
2189 
2190 #undef __entity
2191 #undef __entity_check_DESCRIPTOR
2192 #undef __entity_check_INTERFACE
2193 #undef __entity_check_STRING
2194 #undef __entity_check_ENDPOINT
2195 
2196 	return length;
2197 }
2198 
ffs_do_descs(unsigned count,char * data,unsigned len,ffs_entity_callback entity,void * priv)2199 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2200 				     ffs_entity_callback entity, void *priv)
2201 {
2202 	const unsigned _len = len;
2203 	unsigned long num = 0;
2204 	int current_class = -1;
2205 
2206 	ENTER();
2207 
2208 	for (;;) {
2209 		int ret;
2210 
2211 		if (num == count)
2212 			data = NULL;
2213 
2214 		/* Record "descriptor" entity */
2215 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2216 		if (unlikely(ret < 0)) {
2217 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2218 				 num, ret);
2219 			return ret;
2220 		}
2221 
2222 		if (!data)
2223 			return _len - len;
2224 
2225 		ret = ffs_do_single_desc(data, len, entity, priv,
2226 			&current_class);
2227 		if (unlikely(ret < 0)) {
2228 			pr_debug("%s returns %d\n", __func__, ret);
2229 			return ret;
2230 		}
2231 
2232 		len -= ret;
2233 		data += ret;
2234 		++num;
2235 	}
2236 }
2237 
__ffs_data_do_entity(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2238 static int __ffs_data_do_entity(enum ffs_entity_type type,
2239 				u8 *valuep, struct usb_descriptor_header *desc,
2240 				void *priv)
2241 {
2242 	struct ffs_desc_helper *helper = priv;
2243 	struct usb_endpoint_descriptor *d;
2244 
2245 	ENTER();
2246 
2247 	switch (type) {
2248 	case FFS_DESCRIPTOR:
2249 		break;
2250 
2251 	case FFS_INTERFACE:
2252 		/*
2253 		 * Interfaces are indexed from zero so if we
2254 		 * encountered interface "n" then there are at least
2255 		 * "n+1" interfaces.
2256 		 */
2257 		if (*valuep >= helper->interfaces_count)
2258 			helper->interfaces_count = *valuep + 1;
2259 		break;
2260 
2261 	case FFS_STRING:
2262 		/*
2263 		 * Strings are indexed from 1 (0 is reserved
2264 		 * for languages list)
2265 		 */
2266 		if (*valuep > helper->ffs->strings_count)
2267 			helper->ffs->strings_count = *valuep;
2268 		break;
2269 
2270 	case FFS_ENDPOINT:
2271 		d = (void *)desc;
2272 		helper->eps_count++;
2273 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2274 			return -EINVAL;
2275 		/* Check if descriptors for any speed were already parsed */
2276 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2277 			helper->ffs->eps_addrmap[helper->eps_count] =
2278 				d->bEndpointAddress;
2279 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2280 				d->bEndpointAddress)
2281 			return -EINVAL;
2282 		break;
2283 	}
2284 
2285 	return 0;
2286 }
2287 
__ffs_do_os_desc_header(enum ffs_os_desc_type * next_type,struct usb_os_desc_header * desc)2288 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2289 				   struct usb_os_desc_header *desc)
2290 {
2291 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2292 	u16 w_index = le16_to_cpu(desc->wIndex);
2293 
2294 	if (bcd_version != 1) {
2295 		pr_vdebug("unsupported os descriptors version: %d",
2296 			  bcd_version);
2297 		return -EINVAL;
2298 	}
2299 	switch (w_index) {
2300 	case 0x4:
2301 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2302 		break;
2303 	case 0x5:
2304 		*next_type = FFS_OS_DESC_EXT_PROP;
2305 		break;
2306 	default:
2307 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2308 		return -EINVAL;
2309 	}
2310 
2311 	return sizeof(*desc);
2312 }
2313 
2314 /*
2315  * Process all extended compatibility/extended property descriptors
2316  * of a feature descriptor
2317  */
ffs_do_single_os_desc(char * data,unsigned len,enum ffs_os_desc_type type,u16 feature_count,ffs_os_desc_callback entity,void * priv,struct usb_os_desc_header * h)2318 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2319 					      enum ffs_os_desc_type type,
2320 					      u16 feature_count,
2321 					      ffs_os_desc_callback entity,
2322 					      void *priv,
2323 					      struct usb_os_desc_header *h)
2324 {
2325 	int ret;
2326 	const unsigned _len = len;
2327 
2328 	ENTER();
2329 
2330 	/* loop over all ext compat/ext prop descriptors */
2331 	while (feature_count--) {
2332 		ret = entity(type, h, data, len, priv);
2333 		if (unlikely(ret < 0)) {
2334 			pr_debug("bad OS descriptor, type: %d\n", type);
2335 			return ret;
2336 		}
2337 		data += ret;
2338 		len -= ret;
2339 	}
2340 	return _len - len;
2341 }
2342 
2343 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
ffs_do_os_descs(unsigned count,char * data,unsigned len,ffs_os_desc_callback entity,void * priv)2344 static int __must_check ffs_do_os_descs(unsigned count,
2345 					char *data, unsigned len,
2346 					ffs_os_desc_callback entity, void *priv)
2347 {
2348 	const unsigned _len = len;
2349 	unsigned long num = 0;
2350 
2351 	ENTER();
2352 
2353 	for (num = 0; num < count; ++num) {
2354 		int ret;
2355 		enum ffs_os_desc_type type;
2356 		u16 feature_count;
2357 		struct usb_os_desc_header *desc = (void *)data;
2358 
2359 		if (len < sizeof(*desc))
2360 			return -EINVAL;
2361 
2362 		/*
2363 		 * Record "descriptor" entity.
2364 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2365 		 * Move the data pointer to the beginning of extended
2366 		 * compatibilities proper or extended properties proper
2367 		 * portions of the data
2368 		 */
2369 		if (le32_to_cpu(desc->dwLength) > len)
2370 			return -EINVAL;
2371 
2372 		ret = __ffs_do_os_desc_header(&type, desc);
2373 		if (unlikely(ret < 0)) {
2374 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2375 				 num, ret);
2376 			return ret;
2377 		}
2378 		/*
2379 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2380 		 */
2381 		feature_count = le16_to_cpu(desc->wCount);
2382 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2383 		    (feature_count > 255 || desc->Reserved))
2384 				return -EINVAL;
2385 		len -= ret;
2386 		data += ret;
2387 
2388 		/*
2389 		 * Process all function/property descriptors
2390 		 * of this Feature Descriptor
2391 		 */
2392 		ret = ffs_do_single_os_desc(data, len, type,
2393 					    feature_count, entity, priv, desc);
2394 		if (unlikely(ret < 0)) {
2395 			pr_debug("%s returns %d\n", __func__, ret);
2396 			return ret;
2397 		}
2398 
2399 		len -= ret;
2400 		data += ret;
2401 	}
2402 	return _len - len;
2403 }
2404 
2405 /*
2406  * Validate contents of the buffer from userspace related to OS descriptors.
2407  */
__ffs_data_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2408 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2409 				 struct usb_os_desc_header *h, void *data,
2410 				 unsigned len, void *priv)
2411 {
2412 	struct ffs_data *ffs = priv;
2413 	u8 length;
2414 
2415 	ENTER();
2416 
2417 	switch (type) {
2418 	case FFS_OS_DESC_EXT_COMPAT: {
2419 		struct usb_ext_compat_desc *d = data;
2420 		int i;
2421 
2422 		if (len < sizeof(*d) ||
2423 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2424 			return -EINVAL;
2425 		if (d->Reserved1 != 1) {
2426 			/*
2427 			 * According to the spec, Reserved1 must be set to 1
2428 			 * but older kernels incorrectly rejected non-zero
2429 			 * values.  We fix it here to avoid returning EINVAL
2430 			 * in response to values we used to accept.
2431 			 */
2432 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2433 			d->Reserved1 = 1;
2434 		}
2435 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2436 			if (d->Reserved2[i])
2437 				return -EINVAL;
2438 
2439 		length = sizeof(struct usb_ext_compat_desc);
2440 	}
2441 		break;
2442 	case FFS_OS_DESC_EXT_PROP: {
2443 		struct usb_ext_prop_desc *d = data;
2444 		u32 type, pdl;
2445 		u16 pnl;
2446 
2447 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2448 			return -EINVAL;
2449 		length = le32_to_cpu(d->dwSize);
2450 		if (len < length)
2451 			return -EINVAL;
2452 		type = le32_to_cpu(d->dwPropertyDataType);
2453 		if (type < USB_EXT_PROP_UNICODE ||
2454 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2455 			pr_vdebug("unsupported os descriptor property type: %d",
2456 				  type);
2457 			return -EINVAL;
2458 		}
2459 		pnl = le16_to_cpu(d->wPropertyNameLength);
2460 		if (length < 14 + pnl) {
2461 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2462 				  length, pnl, type);
2463 			return -EINVAL;
2464 		}
2465 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2466 		if (length != 14 + pnl + pdl) {
2467 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2468 				  length, pnl, pdl, type);
2469 			return -EINVAL;
2470 		}
2471 		++ffs->ms_os_descs_ext_prop_count;
2472 		/* property name reported to the host as "WCHAR"s */
2473 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2474 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2475 	}
2476 		break;
2477 	default:
2478 		pr_vdebug("unknown descriptor: %d\n", type);
2479 		return -EINVAL;
2480 	}
2481 	return length;
2482 }
2483 
__ffs_data_got_descs(struct ffs_data * ffs,char * const _data,size_t len)2484 static int __ffs_data_got_descs(struct ffs_data *ffs,
2485 				char *const _data, size_t len)
2486 {
2487 	char *data = _data, *raw_descs;
2488 	unsigned os_descs_count = 0, counts[3], flags;
2489 	int ret = -EINVAL, i;
2490 	struct ffs_desc_helper helper;
2491 
2492 	ENTER();
2493 
2494 	if (get_unaligned_le32(data + 4) != len)
2495 		goto error;
2496 
2497 	switch (get_unaligned_le32(data)) {
2498 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2499 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2500 		data += 8;
2501 		len  -= 8;
2502 		break;
2503 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2504 		flags = get_unaligned_le32(data + 8);
2505 		ffs->user_flags = flags;
2506 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2507 			      FUNCTIONFS_HAS_HS_DESC |
2508 			      FUNCTIONFS_HAS_SS_DESC |
2509 			      FUNCTIONFS_HAS_MS_OS_DESC |
2510 			      FUNCTIONFS_VIRTUAL_ADDR |
2511 			      FUNCTIONFS_EVENTFD |
2512 			      FUNCTIONFS_ALL_CTRL_RECIP |
2513 			      FUNCTIONFS_CONFIG0_SETUP)) {
2514 			ret = -ENOSYS;
2515 			goto error;
2516 		}
2517 		data += 12;
2518 		len  -= 12;
2519 		break;
2520 	default:
2521 		goto error;
2522 	}
2523 
2524 	if (flags & FUNCTIONFS_EVENTFD) {
2525 		if (len < 4)
2526 			goto error;
2527 		ffs->ffs_eventfd =
2528 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2529 		if (IS_ERR(ffs->ffs_eventfd)) {
2530 			ret = PTR_ERR(ffs->ffs_eventfd);
2531 			ffs->ffs_eventfd = NULL;
2532 			goto error;
2533 		}
2534 		data += 4;
2535 		len  -= 4;
2536 	}
2537 
2538 	/* Read fs_count, hs_count and ss_count (if present) */
2539 	for (i = 0; i < 3; ++i) {
2540 		if (!(flags & (1 << i))) {
2541 			counts[i] = 0;
2542 		} else if (len < 4) {
2543 			goto error;
2544 		} else {
2545 			counts[i] = get_unaligned_le32(data);
2546 			data += 4;
2547 			len  -= 4;
2548 		}
2549 	}
2550 	if (flags & (1 << i)) {
2551 		if (len < 4) {
2552 			goto error;
2553 		}
2554 		os_descs_count = get_unaligned_le32(data);
2555 		data += 4;
2556 		len -= 4;
2557 	}
2558 
2559 	/* Read descriptors */
2560 	raw_descs = data;
2561 	helper.ffs = ffs;
2562 	for (i = 0; i < 3; ++i) {
2563 		if (!counts[i])
2564 			continue;
2565 		helper.interfaces_count = 0;
2566 		helper.eps_count = 0;
2567 		ret = ffs_do_descs(counts[i], data, len,
2568 				   __ffs_data_do_entity, &helper);
2569 		if (ret < 0)
2570 			goto error;
2571 		if (!ffs->eps_count && !ffs->interfaces_count) {
2572 			ffs->eps_count = helper.eps_count;
2573 			ffs->interfaces_count = helper.interfaces_count;
2574 		} else {
2575 			if (ffs->eps_count != helper.eps_count) {
2576 				ret = -EINVAL;
2577 				goto error;
2578 			}
2579 			if (ffs->interfaces_count != helper.interfaces_count) {
2580 				ret = -EINVAL;
2581 				goto error;
2582 			}
2583 		}
2584 		data += ret;
2585 		len  -= ret;
2586 	}
2587 	if (os_descs_count) {
2588 		ret = ffs_do_os_descs(os_descs_count, data, len,
2589 				      __ffs_data_do_os_desc, ffs);
2590 		if (ret < 0)
2591 			goto error;
2592 		data += ret;
2593 		len -= ret;
2594 	}
2595 
2596 	if (raw_descs == data || len) {
2597 		ret = -EINVAL;
2598 		goto error;
2599 	}
2600 
2601 	ffs->raw_descs_data	= _data;
2602 	ffs->raw_descs		= raw_descs;
2603 	ffs->raw_descs_length	= data - raw_descs;
2604 	ffs->fs_descs_count	= counts[0];
2605 	ffs->hs_descs_count	= counts[1];
2606 	ffs->ss_descs_count	= counts[2];
2607 	ffs->ms_os_descs_count	= os_descs_count;
2608 
2609 	return 0;
2610 
2611 error:
2612 	kfree(_data);
2613 	return ret;
2614 }
2615 
__ffs_data_got_strings(struct ffs_data * ffs,char * const _data,size_t len)2616 static int __ffs_data_got_strings(struct ffs_data *ffs,
2617 				  char *const _data, size_t len)
2618 {
2619 	u32 str_count, needed_count, lang_count;
2620 	struct usb_gadget_strings **stringtabs, *t;
2621 	const char *data = _data;
2622 	struct usb_string *s;
2623 
2624 	ENTER();
2625 
2626 	if (unlikely(len < 16 ||
2627 		     get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2628 		     get_unaligned_le32(data + 4) != len))
2629 		goto error;
2630 	str_count  = get_unaligned_le32(data + 8);
2631 	lang_count = get_unaligned_le32(data + 12);
2632 
2633 	/* if one is zero the other must be zero */
2634 	if (unlikely(!str_count != !lang_count))
2635 		goto error;
2636 
2637 	/* Do we have at least as many strings as descriptors need? */
2638 	needed_count = ffs->strings_count;
2639 	if (unlikely(str_count < needed_count))
2640 		goto error;
2641 
2642 	/*
2643 	 * If we don't need any strings just return and free all
2644 	 * memory.
2645 	 */
2646 	if (!needed_count) {
2647 		kfree(_data);
2648 		return 0;
2649 	}
2650 
2651 	/* Allocate everything in one chunk so there's less maintenance. */
2652 	{
2653 		unsigned i = 0;
2654 		vla_group(d);
2655 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2656 			lang_count + 1);
2657 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2658 		vla_item(d, struct usb_string, strings,
2659 			lang_count*(needed_count+1));
2660 
2661 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2662 
2663 		if (unlikely(!vlabuf)) {
2664 			kfree(_data);
2665 			return -ENOMEM;
2666 		}
2667 
2668 		/* Initialize the VLA pointers */
2669 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2670 		t = vla_ptr(vlabuf, d, stringtab);
2671 		i = lang_count;
2672 		do {
2673 			*stringtabs++ = t++;
2674 		} while (--i);
2675 		*stringtabs = NULL;
2676 
2677 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2678 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2679 		t = vla_ptr(vlabuf, d, stringtab);
2680 		s = vla_ptr(vlabuf, d, strings);
2681 	}
2682 
2683 	/* For each language */
2684 	data += 16;
2685 	len -= 16;
2686 
2687 	do { /* lang_count > 0 so we can use do-while */
2688 		unsigned needed = needed_count;
2689 		u32 str_per_lang = str_count;
2690 
2691 		if (unlikely(len < 3))
2692 			goto error_free;
2693 		t->language = get_unaligned_le16(data);
2694 		t->strings  = s;
2695 		++t;
2696 
2697 		data += 2;
2698 		len -= 2;
2699 
2700 		/* For each string */
2701 		do { /* str_count > 0 so we can use do-while */
2702 			size_t length = strnlen(data, len);
2703 
2704 			if (unlikely(length == len))
2705 				goto error_free;
2706 
2707 			/*
2708 			 * User may provide more strings then we need,
2709 			 * if that's the case we simply ignore the
2710 			 * rest
2711 			 */
2712 			if (likely(needed)) {
2713 				/*
2714 				 * s->id will be set while adding
2715 				 * function to configuration so for
2716 				 * now just leave garbage here.
2717 				 */
2718 				s->s = data;
2719 				--needed;
2720 				++s;
2721 			}
2722 
2723 			data += length + 1;
2724 			len -= length + 1;
2725 		} while (--str_per_lang);
2726 
2727 		s->id = 0;   /* terminator */
2728 		s->s = NULL;
2729 		++s;
2730 
2731 	} while (--lang_count);
2732 
2733 	/* Some garbage left? */
2734 	if (unlikely(len))
2735 		goto error_free;
2736 
2737 	/* Done! */
2738 	ffs->stringtabs = stringtabs;
2739 	ffs->raw_strings = _data;
2740 
2741 	return 0;
2742 
2743 error_free:
2744 	kfree(stringtabs);
2745 error:
2746 	kfree(_data);
2747 	return -EINVAL;
2748 }
2749 
2750 
2751 /* Events handling and management *******************************************/
2752 
__ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2753 static void __ffs_event_add(struct ffs_data *ffs,
2754 			    enum usb_functionfs_event_type type)
2755 {
2756 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2757 	int neg = 0;
2758 
2759 	/*
2760 	 * Abort any unhandled setup
2761 	 *
2762 	 * We do not need to worry about some cmpxchg() changing value
2763 	 * of ffs->setup_state without holding the lock because when
2764 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2765 	 * the source does nothing.
2766 	 */
2767 	if (ffs->setup_state == FFS_SETUP_PENDING)
2768 		ffs->setup_state = FFS_SETUP_CANCELLED;
2769 
2770 	/*
2771 	 * Logic of this function guarantees that there are at most four pending
2772 	 * evens on ffs->ev.types queue.  This is important because the queue
2773 	 * has space for four elements only and __ffs_ep0_read_events function
2774 	 * depends on that limit as well.  If more event types are added, those
2775 	 * limits have to be revisited or guaranteed to still hold.
2776 	 */
2777 	switch (type) {
2778 	case FUNCTIONFS_RESUME:
2779 		rem_type2 = FUNCTIONFS_SUSPEND;
2780 		fallthrough;
2781 	case FUNCTIONFS_SUSPEND:
2782 	case FUNCTIONFS_SETUP:
2783 		rem_type1 = type;
2784 		/* Discard all similar events */
2785 		break;
2786 
2787 	case FUNCTIONFS_BIND:
2788 	case FUNCTIONFS_UNBIND:
2789 	case FUNCTIONFS_DISABLE:
2790 	case FUNCTIONFS_ENABLE:
2791 		/* Discard everything other then power management. */
2792 		rem_type1 = FUNCTIONFS_SUSPEND;
2793 		rem_type2 = FUNCTIONFS_RESUME;
2794 		neg = 1;
2795 		break;
2796 
2797 	default:
2798 		WARN(1, "%d: unknown event, this should not happen\n", type);
2799 		return;
2800 	}
2801 
2802 	{
2803 		u8 *ev  = ffs->ev.types, *out = ev;
2804 		unsigned n = ffs->ev.count;
2805 		for (; n; --n, ++ev)
2806 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2807 				*out++ = *ev;
2808 			else
2809 				pr_vdebug("purging event %d\n", *ev);
2810 		ffs->ev.count = out - ffs->ev.types;
2811 	}
2812 
2813 	pr_vdebug("adding event %d\n", type);
2814 	ffs->ev.types[ffs->ev.count++] = type;
2815 	wake_up_locked(&ffs->ev.waitq);
2816 	if (ffs->ffs_eventfd)
2817 		eventfd_signal(ffs->ffs_eventfd, 1);
2818 }
2819 
ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2820 static void ffs_event_add(struct ffs_data *ffs,
2821 			  enum usb_functionfs_event_type type)
2822 {
2823 	unsigned long flags;
2824 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2825 	__ffs_event_add(ffs, type);
2826 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2827 }
2828 
2829 /* Bind/unbind USB function hooks *******************************************/
2830 
ffs_ep_addr2idx(struct ffs_data * ffs,u8 endpoint_address)2831 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2832 {
2833 	int i;
2834 
2835 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2836 		if (ffs->eps_addrmap[i] == endpoint_address)
2837 			return i;
2838 	return -ENOENT;
2839 }
2840 
__ffs_func_bind_do_descs(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2841 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2842 				    struct usb_descriptor_header *desc,
2843 				    void *priv)
2844 {
2845 	struct usb_endpoint_descriptor *ds = (void *)desc;
2846 	struct ffs_function *func = priv;
2847 	struct ffs_ep *ffs_ep;
2848 	unsigned ep_desc_id;
2849 	int idx, ep_num;
2850 	static const char *speed_names[] = { "full", "high", "super" };
2851 
2852 	if (type != FFS_DESCRIPTOR)
2853 		return 0;
2854 
2855 	/*
2856 	 * If ss_descriptors is not NULL, we are reading super speed
2857 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2858 	 * speed descriptors; otherwise, we are reading full speed
2859 	 * descriptors.
2860 	 */
2861 	if (func->function.ss_descriptors) {
2862 		ep_desc_id = 2;
2863 		func->function.ss_descriptors[(long)valuep] = desc;
2864 	} else if (func->function.hs_descriptors) {
2865 		ep_desc_id = 1;
2866 		func->function.hs_descriptors[(long)valuep] = desc;
2867 	} else {
2868 		ep_desc_id = 0;
2869 		func->function.fs_descriptors[(long)valuep]    = desc;
2870 	}
2871 
2872 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2873 		return 0;
2874 
2875 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2876 	if (idx < 0)
2877 		return idx;
2878 
2879 	ffs_ep = func->eps + idx;
2880 
2881 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2882 		pr_err("two %sspeed descriptors for EP %d\n",
2883 			  speed_names[ep_desc_id],
2884 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2885 		return -EINVAL;
2886 	}
2887 	ffs_ep->descs[ep_desc_id] = ds;
2888 
2889 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2890 	if (ffs_ep->ep) {
2891 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2892 		if (!ds->wMaxPacketSize)
2893 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2894 	} else {
2895 		struct usb_request *req;
2896 		struct usb_ep *ep;
2897 		u8 bEndpointAddress;
2898 		u16 wMaxPacketSize;
2899 
2900 		/*
2901 		 * We back up bEndpointAddress because autoconfig overwrites
2902 		 * it with physical endpoint address.
2903 		 */
2904 		bEndpointAddress = ds->bEndpointAddress;
2905 		/*
2906 		 * We back up wMaxPacketSize because autoconfig treats
2907 		 * endpoint descriptors as if they were full speed.
2908 		 */
2909 		wMaxPacketSize = ds->wMaxPacketSize;
2910 		pr_vdebug("autoconfig\n");
2911 		ep = usb_ep_autoconfig(func->gadget, ds);
2912 		if (unlikely(!ep))
2913 			return -ENOTSUPP;
2914 		ep->driver_data = func->eps + idx;
2915 
2916 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2917 		if (unlikely(!req))
2918 			return -ENOMEM;
2919 
2920 		ffs_ep->ep  = ep;
2921 		ffs_ep->req = req;
2922 		ep_num = ((ds->bEndpointAddress & USB_ENDPOINT_DIR_MASK) >> 3) |
2923 			 (ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2924 		func->eps_revmap[ep_num] = idx + 1;
2925 		/*
2926 		 * If we use virtual address mapping, we restore
2927 		 * original bEndpointAddress value.
2928 		 */
2929 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2930 			ds->bEndpointAddress = bEndpointAddress;
2931 		/*
2932 		 * Restore wMaxPacketSize which was potentially
2933 		 * overwritten by autoconfig.
2934 		 */
2935 		ds->wMaxPacketSize = wMaxPacketSize;
2936 	}
2937 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2938 
2939 	return 0;
2940 }
2941 
__ffs_func_bind_do_nums(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2942 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2943 				   struct usb_descriptor_header *desc,
2944 				   void *priv)
2945 {
2946 	struct ffs_function *func = priv;
2947 	unsigned idx;
2948 	u8 newValue;
2949 
2950 	switch (type) {
2951 	default:
2952 	case FFS_DESCRIPTOR:
2953 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2954 		return 0;
2955 
2956 	case FFS_INTERFACE:
2957 		idx = *valuep;
2958 		if (func->interfaces_nums[idx] < 0) {
2959 			int id = usb_interface_id(func->conf, &func->function);
2960 			if (unlikely(id < 0))
2961 				return id;
2962 			func->interfaces_nums[idx] = id;
2963 		}
2964 		newValue = func->interfaces_nums[idx];
2965 		break;
2966 
2967 	case FFS_STRING:
2968 		/* String' IDs are allocated when fsf_data is bound to cdev */
2969 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2970 		break;
2971 
2972 	case FFS_ENDPOINT:
2973 		/*
2974 		 * USB_DT_ENDPOINT are handled in
2975 		 * __ffs_func_bind_do_descs().
2976 		 */
2977 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2978 			return 0;
2979 
2980 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2981 		if (unlikely(!func->eps[idx].ep))
2982 			return -EINVAL;
2983 
2984 		{
2985 			struct usb_endpoint_descriptor **descs;
2986 			descs = func->eps[idx].descs;
2987 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2988 		}
2989 		break;
2990 	}
2991 
2992 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2993 	*valuep = newValue;
2994 	return 0;
2995 }
2996 
__ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2997 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2998 				      struct usb_os_desc_header *h, void *data,
2999 				      unsigned len, void *priv)
3000 {
3001 	struct ffs_function *func = priv;
3002 	u8 length = 0;
3003 
3004 	switch (type) {
3005 	case FFS_OS_DESC_EXT_COMPAT: {
3006 		struct usb_ext_compat_desc *desc = data;
3007 		struct usb_os_desc_table *t;
3008 
3009 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3010 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3011 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
3012 		       ARRAY_SIZE(desc->CompatibleID) +
3013 		       ARRAY_SIZE(desc->SubCompatibleID));
3014 		length = sizeof(*desc);
3015 	}
3016 		break;
3017 	case FFS_OS_DESC_EXT_PROP: {
3018 		struct usb_ext_prop_desc *desc = data;
3019 		struct usb_os_desc_table *t;
3020 		struct usb_os_desc_ext_prop *ext_prop;
3021 		char *ext_prop_name;
3022 		char *ext_prop_data;
3023 
3024 		t = &func->function.os_desc_table[h->interface];
3025 		t->if_id = func->interfaces_nums[h->interface];
3026 
3027 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3028 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3029 
3030 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3031 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3032 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
3033 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3034 		length = ext_prop->name_len + ext_prop->data_len + 14;
3035 
3036 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3037 		func->ffs->ms_os_descs_ext_prop_name_avail +=
3038 			ext_prop->name_len;
3039 
3040 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3041 		func->ffs->ms_os_descs_ext_prop_data_avail +=
3042 			ext_prop->data_len;
3043 		memcpy(ext_prop_data,
3044 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
3045 		       ext_prop->data_len);
3046 		/* unicode data reported to the host as "WCHAR"s */
3047 		switch (ext_prop->type) {
3048 		case USB_EXT_PROP_UNICODE:
3049 		case USB_EXT_PROP_UNICODE_ENV:
3050 		case USB_EXT_PROP_UNICODE_LINK:
3051 		case USB_EXT_PROP_UNICODE_MULTI:
3052 			ext_prop->data_len *= 2;
3053 			break;
3054 		}
3055 		ext_prop->data = ext_prop_data;
3056 
3057 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3058 		       ext_prop->name_len);
3059 		/* property name reported to the host as "WCHAR"s */
3060 		ext_prop->name_len *= 2;
3061 		ext_prop->name = ext_prop_name;
3062 
3063 		t->os_desc->ext_prop_len +=
3064 			ext_prop->name_len + ext_prop->data_len + 14;
3065 		++t->os_desc->ext_prop_count;
3066 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3067 	}
3068 		break;
3069 	default:
3070 		pr_vdebug("unknown descriptor: %d\n", type);
3071 	}
3072 
3073 	return length;
3074 }
3075 
ffs_do_functionfs_bind(struct usb_function * f,struct usb_configuration * c)3076 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3077 						struct usb_configuration *c)
3078 {
3079 	struct ffs_function *func = ffs_func_from_usb(f);
3080 	struct f_fs_opts *ffs_opts =
3081 		container_of(f->fi, struct f_fs_opts, func_inst);
3082 	struct ffs_data *ffs_data;
3083 	int ret;
3084 
3085 	ENTER();
3086 
3087 	/*
3088 	 * Legacy gadget triggers binding in functionfs_ready_callback,
3089 	 * which already uses locking; taking the same lock here would
3090 	 * cause a deadlock.
3091 	 *
3092 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3093 	 */
3094 	if (!ffs_opts->no_configfs)
3095 		ffs_dev_lock();
3096 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3097 	ffs_data = ffs_opts->dev->ffs_data;
3098 	if (!ffs_opts->no_configfs)
3099 		ffs_dev_unlock();
3100 	if (ret)
3101 		return ERR_PTR(ret);
3102 
3103 	func->ffs = ffs_data;
3104 	func->conf = c;
3105 	func->gadget = c->cdev->gadget;
3106 
3107 	/*
3108 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3109 	 * configurations are bound in sequence with list_for_each_entry,
3110 	 * in each configuration its functions are bound in sequence
3111 	 * with list_for_each_entry, so we assume no race condition
3112 	 * with regard to ffs_opts->bound access
3113 	 */
3114 	if (!ffs_opts->refcnt) {
3115 		ret = functionfs_bind(func->ffs, c->cdev);
3116 		if (ret)
3117 			return ERR_PTR(ret);
3118 	}
3119 	ffs_opts->refcnt++;
3120 	func->function.strings = func->ffs->stringtabs;
3121 
3122 	return ffs_opts;
3123 }
3124 
_ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3125 static int _ffs_func_bind(struct usb_configuration *c,
3126 			  struct usb_function *f)
3127 {
3128 	struct ffs_function *func = ffs_func_from_usb(f);
3129 	struct ffs_data *ffs = func->ffs;
3130 
3131 	const int full = !!func->ffs->fs_descs_count;
3132 	const int high = !!func->ffs->hs_descs_count;
3133 	const int super = !!func->ffs->ss_descs_count;
3134 
3135 	int fs_len, hs_len, ss_len, ret, i;
3136 	struct ffs_ep *eps_ptr;
3137 
3138 	/* Make it a single chunk, less management later on */
3139 	vla_group(d);
3140 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3141 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3142 		full ? ffs->fs_descs_count + 1 : 0);
3143 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3144 		high ? ffs->hs_descs_count + 1 : 0);
3145 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3146 		super ? ffs->ss_descs_count + 1 : 0);
3147 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3148 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3149 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3150 	vla_item_with_sz(d, char[16], ext_compat,
3151 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3152 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3153 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3154 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3155 			 ffs->ms_os_descs_ext_prop_count);
3156 	vla_item_with_sz(d, char, ext_prop_name,
3157 			 ffs->ms_os_descs_ext_prop_name_len);
3158 	vla_item_with_sz(d, char, ext_prop_data,
3159 			 ffs->ms_os_descs_ext_prop_data_len);
3160 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3161 	char *vlabuf;
3162 
3163 	ENTER();
3164 
3165 	/* Has descriptors only for speeds gadget does not support */
3166 	if (unlikely(!(full | high | super)))
3167 		return -ENOTSUPP;
3168 
3169 	/* Allocate a single chunk, less management later on */
3170 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3171 	if (unlikely(!vlabuf))
3172 		return -ENOMEM;
3173 
3174 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3175 	ffs->ms_os_descs_ext_prop_name_avail =
3176 		vla_ptr(vlabuf, d, ext_prop_name);
3177 	ffs->ms_os_descs_ext_prop_data_avail =
3178 		vla_ptr(vlabuf, d, ext_prop_data);
3179 
3180 	/* Copy descriptors  */
3181 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3182 	       ffs->raw_descs_length);
3183 
3184 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3185 	eps_ptr = vla_ptr(vlabuf, d, eps);
3186 	for (i = 0; i < ffs->eps_count; i++)
3187 		eps_ptr[i].num = -1;
3188 
3189 	/* Save pointers
3190 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3191 	*/
3192 	func->eps             = vla_ptr(vlabuf, d, eps);
3193 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3194 
3195 	/*
3196 	 * Go through all the endpoint descriptors and allocate
3197 	 * endpoints first, so that later we can rewrite the endpoint
3198 	 * numbers without worrying that it may be described later on.
3199 	 */
3200 	if (likely(full)) {
3201 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3202 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3203 				      vla_ptr(vlabuf, d, raw_descs),
3204 				      d_raw_descs__sz,
3205 				      __ffs_func_bind_do_descs, func);
3206 		if (unlikely(fs_len < 0)) {
3207 			ret = fs_len;
3208 			goto error;
3209 		}
3210 	} else {
3211 		fs_len = 0;
3212 	}
3213 
3214 	if (likely(high)) {
3215 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3216 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3217 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3218 				      d_raw_descs__sz - fs_len,
3219 				      __ffs_func_bind_do_descs, func);
3220 		if (unlikely(hs_len < 0)) {
3221 			ret = hs_len;
3222 			goto error;
3223 		}
3224 	} else {
3225 		hs_len = 0;
3226 	}
3227 
3228 	if (likely(super)) {
3229 		func->function.ss_descriptors = func->function.ssp_descriptors =
3230 			vla_ptr(vlabuf, d, ss_descs);
3231 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3232 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3233 				d_raw_descs__sz - fs_len - hs_len,
3234 				__ffs_func_bind_do_descs, func);
3235 		if (unlikely(ss_len < 0)) {
3236 			ret = ss_len;
3237 			goto error;
3238 		}
3239 	} else {
3240 		ss_len = 0;
3241 	}
3242 
3243 	/*
3244 	 * Now handle interface numbers allocation and interface and
3245 	 * endpoint numbers rewriting.  We can do that in one go
3246 	 * now.
3247 	 */
3248 	ret = ffs_do_descs(ffs->fs_descs_count +
3249 			   (high ? ffs->hs_descs_count : 0) +
3250 			   (super ? ffs->ss_descs_count : 0),
3251 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3252 			   __ffs_func_bind_do_nums, func);
3253 	if (unlikely(ret < 0))
3254 		goto error;
3255 
3256 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3257 	if (c->cdev->use_os_string) {
3258 		for (i = 0; i < ffs->interfaces_count; ++i) {
3259 			struct usb_os_desc *desc;
3260 
3261 			desc = func->function.os_desc_table[i].os_desc =
3262 				vla_ptr(vlabuf, d, os_desc) +
3263 				i * sizeof(struct usb_os_desc);
3264 			desc->ext_compat_id =
3265 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3266 			INIT_LIST_HEAD(&desc->ext_prop);
3267 		}
3268 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3269 				      vla_ptr(vlabuf, d, raw_descs) +
3270 				      fs_len + hs_len + ss_len,
3271 				      d_raw_descs__sz - fs_len - hs_len -
3272 				      ss_len,
3273 				      __ffs_func_bind_do_os_desc, func);
3274 		if (unlikely(ret < 0))
3275 			goto error;
3276 	}
3277 	func->function.os_desc_n =
3278 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3279 
3280 	/* And we're done */
3281 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3282 	return 0;
3283 
3284 error:
3285 	/* XXX Do we need to release all claimed endpoints here? */
3286 	return ret;
3287 }
3288 
ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3289 static int ffs_func_bind(struct usb_configuration *c,
3290 			 struct usb_function *f)
3291 {
3292 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3293 	struct ffs_function *func = ffs_func_from_usb(f);
3294 	int ret;
3295 
3296 	if (IS_ERR(ffs_opts))
3297 		return PTR_ERR(ffs_opts);
3298 
3299 	ret = _ffs_func_bind(c, f);
3300 	if (ret && !--ffs_opts->refcnt)
3301 		functionfs_unbind(func->ffs);
3302 
3303 	return ret;
3304 }
3305 
3306 
3307 /* Other USB function hooks *************************************************/
3308 
ffs_reset_work(struct work_struct * work)3309 static void ffs_reset_work(struct work_struct *work)
3310 {
3311 	struct ffs_data *ffs = container_of(work,
3312 		struct ffs_data, reset_work);
3313 	ffs_data_reset(ffs);
3314 }
3315 
ffs_func_set_alt(struct usb_function * f,unsigned interface,unsigned alt)3316 static int ffs_func_set_alt(struct usb_function *f,
3317 			    unsigned interface, unsigned alt)
3318 {
3319 	struct ffs_function *func = ffs_func_from_usb(f);
3320 	struct ffs_data *ffs = func->ffs;
3321 	int ret = 0, intf;
3322 
3323 	if (alt != (unsigned)-1) {
3324 		intf = ffs_func_revmap_intf(func, interface);
3325 		if (unlikely(intf < 0))
3326 			return intf;
3327 	}
3328 
3329 	if (ffs->func)
3330 		ffs_func_eps_disable(ffs->func);
3331 
3332 	if (ffs->state == FFS_DEACTIVATED) {
3333 		ffs->state = FFS_CLOSING;
3334 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3335 		schedule_work(&ffs->reset_work);
3336 		return -ENODEV;
3337 	}
3338 
3339 	if (ffs->state != FFS_ACTIVE)
3340 		return -ENODEV;
3341 
3342 	if (alt == (unsigned)-1) {
3343 		ffs->func = NULL;
3344 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3345 		return 0;
3346 	}
3347 
3348 	ffs->func = func;
3349 	ret = ffs_func_eps_enable(func);
3350 	if (likely(ret >= 0))
3351 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3352 	return ret;
3353 }
3354 
ffs_func_disable(struct usb_function * f)3355 static void ffs_func_disable(struct usb_function *f)
3356 {
3357 	ffs_func_set_alt(f, 0, (unsigned)-1);
3358 }
3359 
ffs_func_setup(struct usb_function * f,const struct usb_ctrlrequest * creq)3360 static int ffs_func_setup(struct usb_function *f,
3361 			  const struct usb_ctrlrequest *creq)
3362 {
3363 	struct ffs_function *func = ffs_func_from_usb(f);
3364 	struct ffs_data *ffs = func->ffs;
3365 	unsigned long flags;
3366 	int ret;
3367 
3368 	ENTER();
3369 
3370 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3371 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3372 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3373 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3374 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3375 
3376 	/*
3377 	 * Most requests directed to interface go through here
3378 	 * (notable exceptions are set/get interface) so we need to
3379 	 * handle them.  All other either handled by composite or
3380 	 * passed to usb_configuration->setup() (if one is set).  No
3381 	 * matter, we will handle requests directed to endpoint here
3382 	 * as well (as it's straightforward).  Other request recipient
3383 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3384 	 * is being used.
3385 	 */
3386 	if (ffs->state != FFS_ACTIVE)
3387 		return -ENODEV;
3388 
3389 	switch (creq->bRequestType & USB_RECIP_MASK) {
3390 	case USB_RECIP_INTERFACE:
3391 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3392 		if (unlikely(ret < 0))
3393 			return ret;
3394 		break;
3395 
3396 	case USB_RECIP_ENDPOINT:
3397 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3398 		if (unlikely(ret < 0))
3399 			return ret;
3400 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3401 			ret = func->ffs->eps_addrmap[ret];
3402 		break;
3403 
3404 	default:
3405 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3406 			ret = le16_to_cpu(creq->wIndex);
3407 		else
3408 			return -EOPNOTSUPP;
3409 	}
3410 
3411 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3412 	ffs->ev.setup = *creq;
3413 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3414 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3415 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3416 
3417 	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3418 }
3419 
ffs_func_req_match(struct usb_function * f,const struct usb_ctrlrequest * creq,bool config0)3420 static bool ffs_func_req_match(struct usb_function *f,
3421 			       const struct usb_ctrlrequest *creq,
3422 			       bool config0)
3423 {
3424 	struct ffs_function *func = ffs_func_from_usb(f);
3425 
3426 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3427 		return false;
3428 
3429 	switch (creq->bRequestType & USB_RECIP_MASK) {
3430 	case USB_RECIP_INTERFACE:
3431 		return (ffs_func_revmap_intf(func,
3432 					     le16_to_cpu(creq->wIndex)) >= 0);
3433 	case USB_RECIP_ENDPOINT:
3434 		return (ffs_func_revmap_ep(func,
3435 					   le16_to_cpu(creq->wIndex)) >= 0);
3436 	default:
3437 		return (bool) (func->ffs->user_flags &
3438 			       FUNCTIONFS_ALL_CTRL_RECIP);
3439 	}
3440 }
3441 
ffs_func_suspend(struct usb_function * f)3442 static void ffs_func_suspend(struct usb_function *f)
3443 {
3444 	ENTER();
3445 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3446 }
3447 
ffs_func_resume(struct usb_function * f)3448 static void ffs_func_resume(struct usb_function *f)
3449 {
3450 	ENTER();
3451 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3452 }
3453 
3454 
3455 /* Endpoint and interface numbers reverse mapping ***************************/
3456 
ffs_func_revmap_ep(struct ffs_function * func,u8 num)3457 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3458 {
3459 	int ep_num = ((num & USB_ENDPOINT_DIR_MASK) >> 3) |
3460 		     (num & USB_ENDPOINT_NUMBER_MASK);
3461 
3462 	num = func->eps_revmap[ep_num];
3463 	return num ? num : -EDOM;
3464 }
3465 
ffs_func_revmap_intf(struct ffs_function * func,u8 intf)3466 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3467 {
3468 	short *nums = func->interfaces_nums;
3469 	unsigned count = func->ffs->interfaces_count;
3470 
3471 	for (; count; --count, ++nums) {
3472 		if (*nums >= 0 && *nums == intf)
3473 			return nums - func->interfaces_nums;
3474 	}
3475 
3476 	return -EDOM;
3477 }
3478 
3479 
3480 /* Devices management *******************************************************/
3481 
3482 static LIST_HEAD(ffs_devices);
3483 
_ffs_do_find_dev(const char * name)3484 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3485 {
3486 	struct ffs_dev *dev;
3487 
3488 	if (!name)
3489 		return NULL;
3490 
3491 	list_for_each_entry(dev, &ffs_devices, entry) {
3492 		if (strcmp(dev->name, name) == 0)
3493 			return dev;
3494 	}
3495 
3496 	return NULL;
3497 }
3498 
3499 /*
3500  * ffs_lock must be taken by the caller of this function
3501  */
_ffs_get_single_dev(void)3502 static struct ffs_dev *_ffs_get_single_dev(void)
3503 {
3504 	struct ffs_dev *dev;
3505 
3506 	if (list_is_singular(&ffs_devices)) {
3507 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3508 		if (dev->single)
3509 			return dev;
3510 	}
3511 
3512 	return NULL;
3513 }
3514 
3515 /*
3516  * ffs_lock must be taken by the caller of this function
3517  */
_ffs_find_dev(const char * name)3518 static struct ffs_dev *_ffs_find_dev(const char *name)
3519 {
3520 	struct ffs_dev *dev;
3521 
3522 	dev = _ffs_get_single_dev();
3523 	if (dev)
3524 		return dev;
3525 
3526 	return _ffs_do_find_dev(name);
3527 }
3528 
3529 /* Configfs support *********************************************************/
3530 
to_ffs_opts(struct config_item * item)3531 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3532 {
3533 	return container_of(to_config_group(item), struct f_fs_opts,
3534 			    func_inst.group);
3535 }
3536 
ffs_attr_release(struct config_item * item)3537 static void ffs_attr_release(struct config_item *item)
3538 {
3539 	struct f_fs_opts *opts = to_ffs_opts(item);
3540 
3541 	usb_put_function_instance(&opts->func_inst);
3542 }
3543 
3544 static struct configfs_item_operations ffs_item_ops = {
3545 	.release	= ffs_attr_release,
3546 };
3547 
3548 static const struct config_item_type ffs_func_type = {
3549 	.ct_item_ops	= &ffs_item_ops,
3550 	.ct_owner	= THIS_MODULE,
3551 };
3552 
3553 
3554 /* Function registration interface ******************************************/
3555 
ffs_free_inst(struct usb_function_instance * f)3556 static void ffs_free_inst(struct usb_function_instance *f)
3557 {
3558 	struct f_fs_opts *opts;
3559 
3560 	opts = to_f_fs_opts(f);
3561 	ffs_release_dev(opts->dev);
3562 	ffs_dev_lock();
3563 	_ffs_free_dev(opts->dev);
3564 	ffs_dev_unlock();
3565 	kfree(opts);
3566 }
3567 
ffs_set_inst_name(struct usb_function_instance * fi,const char * name)3568 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3569 {
3570 	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3571 		return -ENAMETOOLONG;
3572 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3573 }
3574 
ffs_alloc_inst(void)3575 static struct usb_function_instance *ffs_alloc_inst(void)
3576 {
3577 	struct f_fs_opts *opts;
3578 	struct ffs_dev *dev;
3579 
3580 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3581 	if (!opts)
3582 		return ERR_PTR(-ENOMEM);
3583 
3584 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3585 	opts->func_inst.free_func_inst = ffs_free_inst;
3586 	ffs_dev_lock();
3587 	dev = _ffs_alloc_dev();
3588 	ffs_dev_unlock();
3589 	if (IS_ERR(dev)) {
3590 		kfree(opts);
3591 		return ERR_CAST(dev);
3592 	}
3593 	opts->dev = dev;
3594 	dev->opts = opts;
3595 
3596 	config_group_init_type_name(&opts->func_inst.group, "",
3597 				    &ffs_func_type);
3598 	return &opts->func_inst;
3599 }
3600 
ffs_free(struct usb_function * f)3601 static void ffs_free(struct usb_function *f)
3602 {
3603 	kfree(ffs_func_from_usb(f));
3604 }
3605 
ffs_func_unbind(struct usb_configuration * c,struct usb_function * f)3606 static void ffs_func_unbind(struct usb_configuration *c,
3607 			    struct usb_function *f)
3608 {
3609 	struct ffs_function *func = ffs_func_from_usb(f);
3610 	struct ffs_data *ffs = func->ffs;
3611 	struct f_fs_opts *opts =
3612 		container_of(f->fi, struct f_fs_opts, func_inst);
3613 	struct ffs_ep *ep = func->eps;
3614 	unsigned count = ffs->eps_count;
3615 	unsigned long flags;
3616 
3617 	ENTER();
3618 	if (ffs->func == func) {
3619 		ffs_func_eps_disable(func);
3620 		ffs->func = NULL;
3621 	}
3622 
3623 	/* Drain any pending AIO completions */
3624 	drain_workqueue(ffs->io_completion_wq);
3625 
3626 	if (!--opts->refcnt)
3627 		functionfs_unbind(ffs);
3628 
3629 	/* cleanup after autoconfig */
3630 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3631 	while (count--) {
3632 		if (ep->ep && ep->req)
3633 			usb_ep_free_request(ep->ep, ep->req);
3634 		ep->req = NULL;
3635 		++ep;
3636 	}
3637 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3638 	kfree(func->eps);
3639 	func->eps = NULL;
3640 	/*
3641 	 * eps, descriptors and interfaces_nums are allocated in the
3642 	 * same chunk so only one free is required.
3643 	 */
3644 	func->function.fs_descriptors = NULL;
3645 	func->function.hs_descriptors = NULL;
3646 	func->function.ss_descriptors = NULL;
3647 	func->function.ssp_descriptors = NULL;
3648 	func->interfaces_nums = NULL;
3649 
3650 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3651 }
3652 
ffs_alloc(struct usb_function_instance * fi)3653 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3654 {
3655 	struct ffs_function *func;
3656 
3657 	ENTER();
3658 
3659 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3660 	if (unlikely(!func))
3661 		return ERR_PTR(-ENOMEM);
3662 
3663 	func->function.name    = "Function FS Gadget";
3664 
3665 	func->function.bind    = ffs_func_bind;
3666 	func->function.unbind  = ffs_func_unbind;
3667 	func->function.set_alt = ffs_func_set_alt;
3668 	func->function.disable = ffs_func_disable;
3669 	func->function.setup   = ffs_func_setup;
3670 	func->function.req_match = ffs_func_req_match;
3671 	func->function.suspend = ffs_func_suspend;
3672 	func->function.resume  = ffs_func_resume;
3673 	func->function.free_func = ffs_free;
3674 
3675 	return &func->function;
3676 }
3677 
3678 /*
3679  * ffs_lock must be taken by the caller of this function
3680  */
_ffs_alloc_dev(void)3681 static struct ffs_dev *_ffs_alloc_dev(void)
3682 {
3683 	struct ffs_dev *dev;
3684 	int ret;
3685 
3686 	if (_ffs_get_single_dev())
3687 			return ERR_PTR(-EBUSY);
3688 
3689 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3690 	if (!dev)
3691 		return ERR_PTR(-ENOMEM);
3692 
3693 	if (list_empty(&ffs_devices)) {
3694 		ret = functionfs_init();
3695 		if (ret) {
3696 			kfree(dev);
3697 			return ERR_PTR(ret);
3698 		}
3699 	}
3700 
3701 	list_add(&dev->entry, &ffs_devices);
3702 
3703 	return dev;
3704 }
3705 
ffs_name_dev(struct ffs_dev * dev,const char * name)3706 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3707 {
3708 	struct ffs_dev *existing;
3709 	int ret = 0;
3710 
3711 	ffs_dev_lock();
3712 
3713 	existing = _ffs_do_find_dev(name);
3714 	if (!existing)
3715 		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3716 	else if (existing != dev)
3717 		ret = -EBUSY;
3718 
3719 	ffs_dev_unlock();
3720 
3721 	return ret;
3722 }
3723 EXPORT_SYMBOL_GPL(ffs_name_dev);
3724 
ffs_single_dev(struct ffs_dev * dev)3725 int ffs_single_dev(struct ffs_dev *dev)
3726 {
3727 	int ret;
3728 
3729 	ret = 0;
3730 	ffs_dev_lock();
3731 
3732 	if (!list_is_singular(&ffs_devices))
3733 		ret = -EBUSY;
3734 	else
3735 		dev->single = true;
3736 
3737 	ffs_dev_unlock();
3738 	return ret;
3739 }
3740 EXPORT_SYMBOL_GPL(ffs_single_dev);
3741 
3742 /*
3743  * ffs_lock must be taken by the caller of this function
3744  */
_ffs_free_dev(struct ffs_dev * dev)3745 static void _ffs_free_dev(struct ffs_dev *dev)
3746 {
3747 	list_del(&dev->entry);
3748 
3749 	kfree(dev);
3750 	if (list_empty(&ffs_devices))
3751 		functionfs_cleanup();
3752 }
3753 
ffs_acquire_dev(const char * dev_name,struct ffs_data * ffs_data)3754 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
3755 {
3756 	int ret = 0;
3757 	struct ffs_dev *ffs_dev;
3758 
3759 	ENTER();
3760 	ffs_dev_lock();
3761 
3762 	ffs_dev = _ffs_find_dev(dev_name);
3763 	if (!ffs_dev) {
3764 		ret = -ENOENT;
3765 	} else if (ffs_dev->mounted) {
3766 		ret = -EBUSY;
3767 	} else if (ffs_dev->ffs_acquire_dev_callback &&
3768 		   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
3769 		ret = -ENOENT;
3770 	} else {
3771 		ffs_dev->mounted = true;
3772 		ffs_dev->ffs_data = ffs_data;
3773 		ffs_data->private_data = ffs_dev;
3774 	}
3775 
3776 	ffs_dev_unlock();
3777 	return ret;
3778 }
3779 
ffs_release_dev(struct ffs_dev * ffs_dev)3780 static void ffs_release_dev(struct ffs_dev *ffs_dev)
3781 {
3782 	ENTER();
3783 	ffs_dev_lock();
3784 
3785 	if (ffs_dev && ffs_dev->mounted) {
3786 		ffs_dev->mounted = false;
3787 		if (ffs_dev->ffs_data) {
3788 			ffs_dev->ffs_data->private_data = NULL;
3789 			ffs_dev->ffs_data = NULL;
3790 		}
3791 
3792 		if (ffs_dev->ffs_release_dev_callback)
3793 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3794 	}
3795 
3796 	ffs_dev_unlock();
3797 }
3798 
ffs_ready(struct ffs_data * ffs)3799 static int ffs_ready(struct ffs_data *ffs)
3800 {
3801 	struct ffs_dev *ffs_obj;
3802 	int ret = 0;
3803 
3804 	ENTER();
3805 	ffs_dev_lock();
3806 
3807 	ffs_obj = ffs->private_data;
3808 	if (!ffs_obj) {
3809 		ret = -EINVAL;
3810 		goto done;
3811 	}
3812 	if (WARN_ON(ffs_obj->desc_ready)) {
3813 		ret = -EBUSY;
3814 		goto done;
3815 	}
3816 
3817 	ffs_obj->desc_ready = true;
3818 
3819 	if (ffs_obj->ffs_ready_callback) {
3820 		ret = ffs_obj->ffs_ready_callback(ffs);
3821 		if (ret)
3822 			goto done;
3823 	}
3824 
3825 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3826 done:
3827 	ffs_dev_unlock();
3828 	return ret;
3829 }
3830 
ffs_closed(struct ffs_data * ffs)3831 static void ffs_closed(struct ffs_data *ffs)
3832 {
3833 	struct ffs_dev *ffs_obj;
3834 	struct f_fs_opts *opts;
3835 	struct config_item *ci;
3836 
3837 	ENTER();
3838 	ffs_dev_lock();
3839 
3840 	ffs_obj = ffs->private_data;
3841 	if (!ffs_obj)
3842 		goto done;
3843 
3844 	ffs_obj->desc_ready = false;
3845 
3846 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3847 	    ffs_obj->ffs_closed_callback)
3848 		ffs_obj->ffs_closed_callback(ffs);
3849 
3850 	if (ffs_obj->opts)
3851 		opts = ffs_obj->opts;
3852 	else
3853 		goto done;
3854 
3855 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3856 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3857 		goto done;
3858 
3859 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3860 	ffs_dev_unlock();
3861 
3862 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
3863 		unregister_gadget_item(ci);
3864 	return;
3865 done:
3866 	ffs_dev_unlock();
3867 }
3868 
3869 /* Misc helper functions ****************************************************/
3870 
ffs_mutex_lock(struct mutex * mutex,unsigned nonblock)3871 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3872 {
3873 	return nonblock
3874 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3875 		: mutex_lock_interruptible(mutex);
3876 }
3877 
ffs_prepare_buffer(const char __user * buf,size_t len)3878 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3879 {
3880 	char *data;
3881 
3882 	if (unlikely(!len))
3883 		return NULL;
3884 
3885 	data = kmalloc(len, GFP_KERNEL);
3886 	if (unlikely(!data))
3887 		return ERR_PTR(-ENOMEM);
3888 
3889 	if (unlikely(copy_from_user(data, buf, len))) {
3890 		kfree(data);
3891 		return ERR_PTR(-EFAULT);
3892 	}
3893 
3894 	pr_vdebug("Buffer from user space:\n");
3895 	ffs_dump_mem("", data, len);
3896 
3897 	return data;
3898 }
3899 
3900 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3901 MODULE_LICENSE("GPL");
3902 MODULE_AUTHOR("Michal Nazarewicz");
3903