1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * f_fs.c -- user mode file system API for USB composite function controllers
4 *
5 * Copyright (C) 2010 Samsung Electronics
6 * Author: Michal Nazarewicz <mina86@mina86.com>
7 *
8 * Based on inode.c (GadgetFS) which was:
9 * Copyright (C) 2003-2004 David Brownell
10 * Copyright (C) 2003 Agilent Technologies
11 */
12
13
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/fs_parser.h>
21 #include <linux/hid.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/scatterlist.h>
25 #include <linux/sched/signal.h>
26 #include <linux/uio.h>
27 #include <linux/vmalloc.h>
28 #include <asm/unaligned.h>
29
30 #include <linux/usb/ccid.h>
31 #include <linux/usb/composite.h>
32 #include <linux/usb/functionfs.h>
33
34 #include <linux/aio.h>
35 #include <linux/kthread.h>
36 #include <linux/poll.h>
37 #include <linux/eventfd.h>
38
39 #include "u_fs.h"
40 #include "u_f.h"
41 #include "u_os_desc.h"
42 #include "configfs.h"
43
44 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */
45
46 /* Reference counter handling */
47 static void ffs_data_get(struct ffs_data *ffs);
48 static void ffs_data_put(struct ffs_data *ffs);
49 /* Creates new ffs_data object. */
50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
51 __attribute__((malloc));
52
53 /* Opened counter handling. */
54 static void ffs_data_opened(struct ffs_data *ffs);
55 static void ffs_data_closed(struct ffs_data *ffs);
56
57 /* Called with ffs->mutex held; take over ownership of data. */
58 static int __must_check
59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
60 static int __must_check
61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
62
63
64 /* The function structure ***************************************************/
65
66 struct ffs_ep;
67
68 struct ffs_function {
69 struct usb_configuration *conf;
70 struct usb_gadget *gadget;
71 struct ffs_data *ffs;
72
73 struct ffs_ep *eps;
74 u8 eps_revmap[32];
75 short *interfaces_nums;
76
77 struct usb_function function;
78 };
79
80
ffs_func_from_usb(struct usb_function * f)81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
82 {
83 return container_of(f, struct ffs_function, function);
84 }
85
86
87 static inline enum ffs_setup_state
ffs_setup_state_clear_cancelled(struct ffs_data * ffs)88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
89 {
90 return (enum ffs_setup_state)
91 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
92 }
93
94
95 static void ffs_func_eps_disable(struct ffs_function *func);
96 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
97
98 static int ffs_func_bind(struct usb_configuration *,
99 struct usb_function *);
100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
101 static void ffs_func_disable(struct usb_function *);
102 static int ffs_func_setup(struct usb_function *,
103 const struct usb_ctrlrequest *);
104 static bool ffs_func_req_match(struct usb_function *,
105 const struct usb_ctrlrequest *,
106 bool config0);
107 static void ffs_func_suspend(struct usb_function *);
108 static void ffs_func_resume(struct usb_function *);
109
110
111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
113
114
115 /* The endpoints structures *************************************************/
116
117 struct ffs_ep {
118 struct usb_ep *ep; /* P: ffs->eps_lock */
119 struct usb_request *req; /* P: epfile->mutex */
120
121 /* [0]: full speed, [1]: high speed, [2]: super speed */
122 struct usb_endpoint_descriptor *descs[3];
123
124 u8 num;
125 };
126
127 struct ffs_epfile {
128 /* Protects ep->ep and ep->req. */
129 struct mutex mutex;
130
131 struct ffs_data *ffs;
132 struct ffs_ep *ep; /* P: ffs->eps_lock */
133
134 struct dentry *dentry;
135
136 /*
137 * Buffer for holding data from partial reads which may happen since
138 * we’re rounding user read requests to a multiple of a max packet size.
139 *
140 * The pointer is initialised with NULL value and may be set by
141 * __ffs_epfile_read_data function to point to a temporary buffer.
142 *
143 * In normal operation, calls to __ffs_epfile_read_buffered will consume
144 * data from said buffer and eventually free it. Importantly, while the
145 * function is using the buffer, it sets the pointer to NULL. This is
146 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
147 * can never run concurrently (they are synchronised by epfile->mutex)
148 * so the latter will not assign a new value to the pointer.
149 *
150 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
151 * valid) and sets the pointer to READ_BUFFER_DROP value. This special
152 * value is crux of the synchronisation between ffs_func_eps_disable and
153 * __ffs_epfile_read_data.
154 *
155 * Once __ffs_epfile_read_data is about to finish it will try to set the
156 * pointer back to its old value (as described above), but seeing as the
157 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
158 * the buffer.
159 *
160 * == State transitions ==
161 *
162 * • ptr == NULL: (initial state)
163 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
164 * ◦ __ffs_epfile_read_buffered: nop
165 * ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
166 * ◦ reading finishes: n/a, not in ‘and reading’ state
167 * • ptr == DROP:
168 * ◦ __ffs_epfile_read_buffer_free: nop
169 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL
170 * ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
171 * ◦ reading finishes: n/a, not in ‘and reading’ state
172 * • ptr == buf:
173 * ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
174 * ◦ __ffs_epfile_read_buffered: go to ptr == NULL and reading
175 * ◦ __ffs_epfile_read_data: n/a, __ffs_epfile_read_buffered
176 * is always called first
177 * ◦ reading finishes: n/a, not in ‘and reading’ state
178 * • ptr == NULL and reading:
179 * ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
180 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
181 * ◦ __ffs_epfile_read_data: n/a, mutex is held
182 * ◦ reading finishes and …
183 * … all data read: free buf, go to ptr == NULL
184 * … otherwise: go to ptr == buf and reading
185 * • ptr == DROP and reading:
186 * ◦ __ffs_epfile_read_buffer_free: nop
187 * ◦ __ffs_epfile_read_buffered: n/a, mutex is held
188 * ◦ __ffs_epfile_read_data: n/a, mutex is held
189 * ◦ reading finishes: free buf, go to ptr == DROP
190 */
191 struct ffs_buffer *read_buffer;
192 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
193
194 char name[5];
195
196 unsigned char in; /* P: ffs->eps_lock */
197 unsigned char isoc; /* P: ffs->eps_lock */
198
199 unsigned char _pad;
200 };
201
202 struct ffs_buffer {
203 size_t length;
204 char *data;
205 char storage[];
206 };
207
208 /* ffs_io_data structure ***************************************************/
209
210 struct ffs_io_data {
211 bool aio;
212 bool read;
213
214 struct kiocb *kiocb;
215 struct iov_iter data;
216 const void *to_free;
217 char *buf;
218
219 struct mm_struct *mm;
220 struct work_struct work;
221
222 struct usb_ep *ep;
223 struct usb_request *req;
224 struct sg_table sgt;
225 bool use_sg;
226
227 struct ffs_data *ffs;
228
229 int status;
230 struct completion done;
231 };
232
233 struct ffs_desc_helper {
234 struct ffs_data *ffs;
235 unsigned interfaces_count;
236 unsigned eps_count;
237 };
238
239 static int __must_check ffs_epfiles_create(struct ffs_data *ffs);
240 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
241
242 static struct dentry *
243 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
244 const struct file_operations *fops);
245
246 /* Devices management *******************************************************/
247
248 DEFINE_MUTEX(ffs_lock);
249 EXPORT_SYMBOL_GPL(ffs_lock);
250
251 static struct ffs_dev *_ffs_find_dev(const char *name);
252 static struct ffs_dev *_ffs_alloc_dev(void);
253 static void _ffs_free_dev(struct ffs_dev *dev);
254 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
255 static void ffs_release_dev(struct ffs_dev *ffs_dev);
256 static int ffs_ready(struct ffs_data *ffs);
257 static void ffs_closed(struct ffs_data *ffs);
258
259 /* Misc helper functions ****************************************************/
260
261 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
262 __attribute__((warn_unused_result, nonnull));
263 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
264 __attribute__((warn_unused_result, nonnull));
265
266
267 /* Control file aka ep0 *****************************************************/
268
ffs_ep0_complete(struct usb_ep * ep,struct usb_request * req)269 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
270 {
271 struct ffs_data *ffs = req->context;
272
273 complete(&ffs->ep0req_completion);
274 }
275
__ffs_ep0_queue_wait(struct ffs_data * ffs,char * data,size_t len)276 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
277 __releases(&ffs->ev.waitq.lock)
278 {
279 struct usb_request *req = ffs->ep0req;
280 int ret;
281
282 if (!req) {
283 spin_unlock_irq(&ffs->ev.waitq.lock);
284 return -EINVAL;
285 }
286
287 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength);
288
289 spin_unlock_irq(&ffs->ev.waitq.lock);
290
291 req->buf = data;
292 req->length = len;
293
294 /*
295 * UDC layer requires to provide a buffer even for ZLP, but should
296 * not use it at all. Let's provide some poisoned pointer to catch
297 * possible bug in the driver.
298 */
299 if (req->buf == NULL)
300 req->buf = (void *)0xDEADBABE;
301
302 reinit_completion(&ffs->ep0req_completion);
303
304 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
305 if (unlikely(ret < 0))
306 return ret;
307
308 ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
309 if (unlikely(ret)) {
310 usb_ep_dequeue(ffs->gadget->ep0, req);
311 return -EINTR;
312 }
313
314 ffs->setup_state = FFS_NO_SETUP;
315 return req->status ? req->status : req->actual;
316 }
317
__ffs_ep0_stall(struct ffs_data * ffs)318 static int __ffs_ep0_stall(struct ffs_data *ffs)
319 {
320 if (ffs->ev.can_stall) {
321 pr_vdebug("ep0 stall\n");
322 usb_ep_set_halt(ffs->gadget->ep0);
323 ffs->setup_state = FFS_NO_SETUP;
324 return -EL2HLT;
325 } else {
326 pr_debug("bogus ep0 stall!\n");
327 return -ESRCH;
328 }
329 }
330
ffs_ep0_write(struct file * file,const char __user * buf,size_t len,loff_t * ptr)331 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
332 size_t len, loff_t *ptr)
333 {
334 struct ffs_data *ffs = file->private_data;
335 ssize_t ret;
336 char *data;
337
338 ENTER();
339
340 /* Fast check if setup was canceled */
341 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
342 return -EIDRM;
343
344 /* Acquire mutex */
345 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
346 if (unlikely(ret < 0))
347 return ret;
348
349 /* Check state */
350 switch (ffs->state) {
351 case FFS_READ_DESCRIPTORS:
352 case FFS_READ_STRINGS:
353 /* Copy data */
354 if (unlikely(len < 16)) {
355 ret = -EINVAL;
356 break;
357 }
358
359 data = ffs_prepare_buffer(buf, len);
360 if (IS_ERR(data)) {
361 ret = PTR_ERR(data);
362 break;
363 }
364
365 /* Handle data */
366 if (ffs->state == FFS_READ_DESCRIPTORS) {
367 pr_info("read descriptors\n");
368 ret = __ffs_data_got_descs(ffs, data, len);
369 if (unlikely(ret < 0))
370 break;
371
372 ffs->state = FFS_READ_STRINGS;
373 ret = len;
374 } else {
375 pr_info("read strings\n");
376 ret = __ffs_data_got_strings(ffs, data, len);
377 if (unlikely(ret < 0))
378 break;
379
380 ret = ffs_epfiles_create(ffs);
381 if (unlikely(ret)) {
382 ffs->state = FFS_CLOSING;
383 break;
384 }
385
386 ffs->state = FFS_ACTIVE;
387 mutex_unlock(&ffs->mutex);
388
389 ret = ffs_ready(ffs);
390 if (unlikely(ret < 0)) {
391 ffs->state = FFS_CLOSING;
392 return ret;
393 }
394
395 return len;
396 }
397 break;
398
399 case FFS_ACTIVE:
400 data = NULL;
401 /*
402 * We're called from user space, we can use _irq
403 * rather then _irqsave
404 */
405 spin_lock_irq(&ffs->ev.waitq.lock);
406 switch (ffs_setup_state_clear_cancelled(ffs)) {
407 case FFS_SETUP_CANCELLED:
408 ret = -EIDRM;
409 goto done_spin;
410
411 case FFS_NO_SETUP:
412 ret = -ESRCH;
413 goto done_spin;
414
415 case FFS_SETUP_PENDING:
416 break;
417 }
418
419 /* FFS_SETUP_PENDING */
420 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
421 spin_unlock_irq(&ffs->ev.waitq.lock);
422 ret = __ffs_ep0_stall(ffs);
423 break;
424 }
425
426 /* FFS_SETUP_PENDING and not stall */
427 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
428
429 spin_unlock_irq(&ffs->ev.waitq.lock);
430
431 data = ffs_prepare_buffer(buf, len);
432 if (IS_ERR(data)) {
433 ret = PTR_ERR(data);
434 break;
435 }
436
437 spin_lock_irq(&ffs->ev.waitq.lock);
438
439 /*
440 * We are guaranteed to be still in FFS_ACTIVE state
441 * but the state of setup could have changed from
442 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
443 * to check for that. If that happened we copied data
444 * from user space in vain but it's unlikely.
445 *
446 * For sure we are not in FFS_NO_SETUP since this is
447 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
448 * transition can be performed and it's protected by
449 * mutex.
450 */
451 if (ffs_setup_state_clear_cancelled(ffs) ==
452 FFS_SETUP_CANCELLED) {
453 ret = -EIDRM;
454 done_spin:
455 spin_unlock_irq(&ffs->ev.waitq.lock);
456 } else {
457 /* unlocks spinlock */
458 ret = __ffs_ep0_queue_wait(ffs, data, len);
459 }
460 kfree(data);
461 break;
462
463 default:
464 ret = -EBADFD;
465 break;
466 }
467
468 mutex_unlock(&ffs->mutex);
469 return ret;
470 }
471
472 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
__ffs_ep0_read_events(struct ffs_data * ffs,char __user * buf,size_t n)473 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
474 size_t n)
475 __releases(&ffs->ev.waitq.lock)
476 {
477 /*
478 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
479 * size of ffs->ev.types array (which is four) so that's how much space
480 * we reserve.
481 */
482 struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
483 const size_t size = n * sizeof *events;
484 unsigned i = 0;
485
486 memset(events, 0, size);
487
488 do {
489 events[i].type = ffs->ev.types[i];
490 if (events[i].type == FUNCTIONFS_SETUP) {
491 events[i].u.setup = ffs->ev.setup;
492 ffs->setup_state = FFS_SETUP_PENDING;
493 }
494 } while (++i < n);
495
496 ffs->ev.count -= n;
497 if (ffs->ev.count)
498 memmove(ffs->ev.types, ffs->ev.types + n,
499 ffs->ev.count * sizeof *ffs->ev.types);
500
501 spin_unlock_irq(&ffs->ev.waitq.lock);
502 mutex_unlock(&ffs->mutex);
503
504 return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
505 }
506
ffs_ep0_read(struct file * file,char __user * buf,size_t len,loff_t * ptr)507 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
508 size_t len, loff_t *ptr)
509 {
510 struct ffs_data *ffs = file->private_data;
511 char *data = NULL;
512 size_t n;
513 int ret;
514
515 ENTER();
516
517 /* Fast check if setup was canceled */
518 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
519 return -EIDRM;
520
521 /* Acquire mutex */
522 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
523 if (unlikely(ret < 0))
524 return ret;
525
526 /* Check state */
527 if (ffs->state != FFS_ACTIVE) {
528 ret = -EBADFD;
529 goto done_mutex;
530 }
531
532 /*
533 * We're called from user space, we can use _irq rather then
534 * _irqsave
535 */
536 spin_lock_irq(&ffs->ev.waitq.lock);
537
538 switch (ffs_setup_state_clear_cancelled(ffs)) {
539 case FFS_SETUP_CANCELLED:
540 ret = -EIDRM;
541 break;
542
543 case FFS_NO_SETUP:
544 n = len / sizeof(struct usb_functionfs_event);
545 if (unlikely(!n)) {
546 ret = -EINVAL;
547 break;
548 }
549
550 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
551 ret = -EAGAIN;
552 break;
553 }
554
555 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
556 ffs->ev.count)) {
557 ret = -EINTR;
558 break;
559 }
560
561 /* unlocks spinlock */
562 return __ffs_ep0_read_events(ffs, buf,
563 min(n, (size_t)ffs->ev.count));
564
565 case FFS_SETUP_PENDING:
566 if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
567 spin_unlock_irq(&ffs->ev.waitq.lock);
568 ret = __ffs_ep0_stall(ffs);
569 goto done_mutex;
570 }
571
572 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
573
574 spin_unlock_irq(&ffs->ev.waitq.lock);
575
576 if (likely(len)) {
577 data = kmalloc(ALIGN(len, cache_line_size()), GFP_KERNEL);
578 if (unlikely(!data)) {
579 ret = -ENOMEM;
580 goto done_mutex;
581 }
582 }
583
584 spin_lock_irq(&ffs->ev.waitq.lock);
585
586 /* See ffs_ep0_write() */
587 if (ffs_setup_state_clear_cancelled(ffs) ==
588 FFS_SETUP_CANCELLED) {
589 ret = -EIDRM;
590 break;
591 }
592
593 /* unlocks spinlock */
594 ret = __ffs_ep0_queue_wait(ffs, data, len);
595 if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
596 ret = -EFAULT;
597 goto done_mutex;
598
599 default:
600 ret = -EBADFD;
601 break;
602 }
603
604 spin_unlock_irq(&ffs->ev.waitq.lock);
605 done_mutex:
606 mutex_unlock(&ffs->mutex);
607 kfree(data);
608 return ret;
609 }
610
ffs_ep0_open(struct inode * inode,struct file * file)611 static int ffs_ep0_open(struct inode *inode, struct file *file)
612 {
613 struct ffs_data *ffs = inode->i_private;
614
615 ENTER();
616
617 if (unlikely(ffs->state == FFS_CLOSING))
618 return -EBUSY;
619
620 file->private_data = ffs;
621 ffs_data_opened(ffs);
622
623 return stream_open(inode, file);
624 }
625
ffs_ep0_release(struct inode * inode,struct file * file)626 static int ffs_ep0_release(struct inode *inode, struct file *file)
627 {
628 struct ffs_data *ffs = file->private_data;
629
630 ENTER();
631
632 ffs_data_closed(ffs);
633
634 return 0;
635 }
636
ffs_ep0_ioctl(struct file * file,unsigned code,unsigned long value)637 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
638 {
639 struct ffs_data *ffs = file->private_data;
640 struct usb_gadget *gadget = ffs->gadget;
641 long ret;
642
643 ENTER();
644
645 if (code == FUNCTIONFS_INTERFACE_REVMAP) {
646 struct ffs_function *func = ffs->func;
647 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
648 } else if (gadget && gadget->ops->ioctl) {
649 ret = gadget->ops->ioctl(gadget, code, value);
650 } else {
651 ret = -ENOTTY;
652 }
653
654 return ret;
655 }
656
ffs_ep0_poll(struct file * file,poll_table * wait)657 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
658 {
659 struct ffs_data *ffs = file->private_data;
660 __poll_t mask = EPOLLWRNORM;
661 int ret;
662
663 poll_wait(file, &ffs->ev.waitq, wait);
664
665 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
666 if (unlikely(ret < 0))
667 return mask;
668
669 switch (ffs->state) {
670 case FFS_READ_DESCRIPTORS:
671 case FFS_READ_STRINGS:
672 mask |= EPOLLOUT;
673 break;
674
675 case FFS_ACTIVE:
676 switch (ffs->setup_state) {
677 case FFS_NO_SETUP:
678 if (ffs->ev.count)
679 mask |= EPOLLIN;
680 break;
681
682 case FFS_SETUP_PENDING:
683 case FFS_SETUP_CANCELLED:
684 mask |= (EPOLLIN | EPOLLOUT);
685 break;
686 }
687 case FFS_CLOSING:
688 break;
689 case FFS_DEACTIVATED:
690 break;
691 }
692
693 mutex_unlock(&ffs->mutex);
694
695 return mask;
696 }
697
698 static const struct file_operations ffs_ep0_operations = {
699 .llseek = no_llseek,
700
701 .open = ffs_ep0_open,
702 .write = ffs_ep0_write,
703 .read = ffs_ep0_read,
704 .release = ffs_ep0_release,
705 .unlocked_ioctl = ffs_ep0_ioctl,
706 .poll = ffs_ep0_poll,
707 };
708
709
710 /* "Normal" endpoints operations ********************************************/
711
ffs_epfile_io_complete(struct usb_ep * _ep,struct usb_request * req)712 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
713 {
714 struct ffs_io_data *io_data = req->context;
715
716 ENTER();
717 if (req->status)
718 io_data->status = req->status;
719 else
720 io_data->status = req->actual;
721
722 complete(&io_data->done);
723 }
724
ffs_copy_to_iter(void * data,int data_len,struct iov_iter * iter)725 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
726 {
727 ssize_t ret = copy_to_iter(data, data_len, iter);
728 if (likely(ret == data_len))
729 return ret;
730
731 if (unlikely(iov_iter_count(iter)))
732 return -EFAULT;
733
734 /*
735 * Dear user space developer!
736 *
737 * TL;DR: To stop getting below error message in your kernel log, change
738 * user space code using functionfs to align read buffers to a max
739 * packet size.
740 *
741 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
742 * packet size. When unaligned buffer is passed to functionfs, it
743 * internally uses a larger, aligned buffer so that such UDCs are happy.
744 *
745 * Unfortunately, this means that host may send more data than was
746 * requested in read(2) system call. f_fs doesn’t know what to do with
747 * that excess data so it simply drops it.
748 *
749 * Was the buffer aligned in the first place, no such problem would
750 * happen.
751 *
752 * Data may be dropped only in AIO reads. Synchronous reads are handled
753 * by splitting a request into multiple parts. This splitting may still
754 * be a problem though so it’s likely best to align the buffer
755 * regardless of it being AIO or not..
756 *
757 * This only affects OUT endpoints, i.e. reading data with a read(2),
758 * aio_read(2) etc. system calls. Writing data to an IN endpoint is not
759 * affected.
760 */
761 pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
762 "Align read buffer size to max packet size to avoid the problem.\n",
763 data_len, ret);
764
765 return ret;
766 }
767
768 /*
769 * allocate a virtually contiguous buffer and create a scatterlist describing it
770 * @sg_table - pointer to a place to be filled with sg_table contents
771 * @size - required buffer size
772 */
ffs_build_sg_list(struct sg_table * sgt,size_t sz)773 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
774 {
775 struct page **pages;
776 void *vaddr, *ptr;
777 unsigned int n_pages;
778 int i;
779
780 vaddr = vmalloc(sz);
781 if (!vaddr)
782 return NULL;
783
784 n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
785 pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
786 if (!pages) {
787 vfree(vaddr);
788
789 return NULL;
790 }
791 for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
792 pages[i] = vmalloc_to_page(ptr);
793
794 if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
795 kvfree(pages);
796 vfree(vaddr);
797
798 return NULL;
799 }
800 kvfree(pages);
801
802 return vaddr;
803 }
804
ffs_alloc_buffer(struct ffs_io_data * io_data,size_t data_len)805 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
806 size_t data_len)
807 {
808 if (io_data->use_sg)
809 return ffs_build_sg_list(&io_data->sgt, data_len);
810
811 return kmalloc(ALIGN(data_len, cache_line_size()), GFP_KERNEL);
812 }
813
ffs_free_buffer(struct ffs_io_data * io_data)814 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
815 {
816 if (!io_data->buf)
817 return;
818
819 if (io_data->use_sg) {
820 sg_free_table(&io_data->sgt);
821 vfree(io_data->buf);
822 } else {
823 kfree(io_data->buf);
824 }
825 }
826
ffs_user_copy_worker(struct work_struct * work)827 static void ffs_user_copy_worker(struct work_struct *work)
828 {
829 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
830 work);
831 int ret = io_data->req->status ? io_data->req->status :
832 io_data->req->actual;
833 bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
834
835 if (io_data->read && ret > 0) {
836 kthread_use_mm(io_data->mm);
837 ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
838 kthread_unuse_mm(io_data->mm);
839 }
840
841 io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
842
843 if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
844 eventfd_signal(io_data->ffs->ffs_eventfd, 1);
845
846 usb_ep_free_request(io_data->ep, io_data->req);
847
848 if (io_data->read)
849 kfree(io_data->to_free);
850 ffs_free_buffer(io_data);
851 kfree(io_data);
852 }
853
ffs_epfile_async_io_complete(struct usb_ep * _ep,struct usb_request * req)854 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
855 struct usb_request *req)
856 {
857 struct ffs_io_data *io_data = req->context;
858 struct ffs_data *ffs = io_data->ffs;
859
860 ENTER();
861
862 INIT_WORK(&io_data->work, ffs_user_copy_worker);
863 queue_work(ffs->io_completion_wq, &io_data->work);
864 }
865
__ffs_epfile_read_buffer_free(struct ffs_epfile * epfile)866 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
867 {
868 /*
869 * See comment in struct ffs_epfile for full read_buffer pointer
870 * synchronisation story.
871 */
872 struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
873 if (buf && buf != READ_BUFFER_DROP)
874 kfree(buf);
875 }
876
877 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_buffered(struct ffs_epfile * epfile,struct iov_iter * iter)878 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
879 struct iov_iter *iter)
880 {
881 /*
882 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
883 * the buffer while we are using it. See comment in struct ffs_epfile
884 * for full read_buffer pointer synchronisation story.
885 */
886 struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
887 ssize_t ret;
888 if (!buf || buf == READ_BUFFER_DROP)
889 return 0;
890
891 ret = copy_to_iter(buf->data, buf->length, iter);
892 if (buf->length == ret) {
893 kfree(buf);
894 return ret;
895 }
896
897 if (unlikely(iov_iter_count(iter))) {
898 ret = -EFAULT;
899 } else {
900 buf->length -= ret;
901 buf->data += ret;
902 }
903
904 if (cmpxchg(&epfile->read_buffer, NULL, buf))
905 kfree(buf);
906
907 return ret;
908 }
909
910 /* Assumes epfile->mutex is held. */
__ffs_epfile_read_data(struct ffs_epfile * epfile,void * data,int data_len,struct iov_iter * iter)911 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
912 void *data, int data_len,
913 struct iov_iter *iter)
914 {
915 struct ffs_buffer *buf;
916
917 ssize_t ret = copy_to_iter(data, data_len, iter);
918 if (likely(data_len == ret))
919 return ret;
920
921 if (unlikely(iov_iter_count(iter)))
922 return -EFAULT;
923
924 /* See ffs_copy_to_iter for more context. */
925 pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
926 data_len, ret);
927
928 data_len -= ret;
929 buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
930 if (!buf)
931 return -ENOMEM;
932 buf->length = data_len;
933 buf->data = buf->storage;
934 memcpy(buf->storage, data + ret, data_len);
935
936 /*
937 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
938 * ffs_func_eps_disable has been called in the meanwhile). See comment
939 * in struct ffs_epfile for full read_buffer pointer synchronisation
940 * story.
941 */
942 if (unlikely(cmpxchg(&epfile->read_buffer, NULL, buf)))
943 kfree(buf);
944
945 return ret;
946 }
947
ffs_epfile_io(struct file * file,struct ffs_io_data * io_data)948 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
949 {
950 struct ffs_epfile *epfile = file->private_data;
951 struct usb_request *req;
952 struct ffs_ep *ep;
953 char *data = NULL;
954 ssize_t ret, data_len = -EINVAL;
955 int halt;
956
957 /* Are we still active? */
958 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
959 return -ENODEV;
960
961 /* Wait for endpoint to be enabled */
962 ep = epfile->ep;
963 if (!ep) {
964 if (file->f_flags & O_NONBLOCK)
965 return -EAGAIN;
966
967 ret = wait_event_interruptible(
968 epfile->ffs->wait, (ep = epfile->ep));
969 if (ret)
970 return -EINTR;
971 }
972
973 /* Do we halt? */
974 halt = (!io_data->read == !epfile->in);
975 if (halt && epfile->isoc)
976 return -EINVAL;
977
978 /* We will be using request and read_buffer */
979 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
980 if (unlikely(ret))
981 goto error;
982
983 /* Allocate & copy */
984 if (!halt) {
985 struct usb_gadget *gadget;
986
987 /*
988 * Do we have buffered data from previous partial read? Check
989 * that for synchronous case only because we do not have
990 * facility to ‘wake up’ a pending asynchronous read and push
991 * buffered data to it which we would need to make things behave
992 * consistently.
993 */
994 if (!io_data->aio && io_data->read) {
995 ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
996 if (ret)
997 goto error_mutex;
998 }
999
1000 /*
1001 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
1002 * before the waiting completes, so do not assign to 'gadget'
1003 * earlier
1004 */
1005 gadget = epfile->ffs->gadget;
1006
1007 spin_lock_irq(&epfile->ffs->eps_lock);
1008 /* In the meantime, endpoint got disabled or changed. */
1009 if (epfile->ep != ep) {
1010 ret = -ESHUTDOWN;
1011 goto error_lock;
1012 }
1013 data_len = iov_iter_count(&io_data->data);
1014 /*
1015 * Controller may require buffer size to be aligned to
1016 * maxpacketsize of an out endpoint.
1017 */
1018 if (io_data->read)
1019 data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1020
1021 io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1022 spin_unlock_irq(&epfile->ffs->eps_lock);
1023
1024 data = ffs_alloc_buffer(io_data, data_len);
1025 if (unlikely(!data)) {
1026 ret = -ENOMEM;
1027 goto error_mutex;
1028 }
1029 if (!io_data->read &&
1030 !copy_from_iter_full(data, data_len, &io_data->data)) {
1031 ret = -EFAULT;
1032 goto error_mutex;
1033 }
1034 }
1035
1036 spin_lock_irq(&epfile->ffs->eps_lock);
1037
1038 if (epfile->ep != ep) {
1039 /* In the meantime, endpoint got disabled or changed. */
1040 ret = -ESHUTDOWN;
1041 } else if (halt) {
1042 ret = usb_ep_set_halt(ep->ep);
1043 if (!ret)
1044 ret = -EBADMSG;
1045 } else if (unlikely(data_len == -EINVAL)) {
1046 /*
1047 * Sanity Check: even though data_len can't be used
1048 * uninitialized at the time I write this comment, some
1049 * compilers complain about this situation.
1050 * In order to keep the code clean from warnings, data_len is
1051 * being initialized to -EINVAL during its declaration, which
1052 * means we can't rely on compiler anymore to warn no future
1053 * changes won't result in data_len being used uninitialized.
1054 * For such reason, we're adding this redundant sanity check
1055 * here.
1056 */
1057 WARN(1, "%s: data_len == -EINVAL\n", __func__);
1058 ret = -EINVAL;
1059 } else if (!io_data->aio) {
1060 bool interrupted = false;
1061
1062 req = ep->req;
1063 if (io_data->use_sg) {
1064 req->buf = NULL;
1065 req->sg = io_data->sgt.sgl;
1066 req->num_sgs = io_data->sgt.nents;
1067 } else {
1068 req->buf = data;
1069 req->num_sgs = 0;
1070 }
1071 req->length = data_len;
1072
1073 io_data->buf = data;
1074
1075 init_completion(&io_data->done);
1076 req->context = io_data;
1077 req->complete = ffs_epfile_io_complete;
1078
1079 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1080 if (unlikely(ret < 0))
1081 goto error_lock;
1082
1083 spin_unlock_irq(&epfile->ffs->eps_lock);
1084
1085 if (unlikely(wait_for_completion_interruptible(&io_data->done))) {
1086 spin_lock_irq(&epfile->ffs->eps_lock);
1087 if (epfile->ep != ep) {
1088 ret = -ESHUTDOWN;
1089 goto error_lock;
1090 }
1091 /*
1092 * To avoid race condition with ffs_epfile_io_complete,
1093 * dequeue the request first then check
1094 * status. usb_ep_dequeue API should guarantee no race
1095 * condition with req->complete callback.
1096 */
1097 usb_ep_dequeue(ep->ep, req);
1098 spin_unlock_irq(&epfile->ffs->eps_lock);
1099 wait_for_completion(&io_data->done);
1100 interrupted = io_data->status < 0;
1101 }
1102
1103 if (interrupted)
1104 ret = -EINTR;
1105 else if (io_data->read && io_data->status > 0)
1106 ret = __ffs_epfile_read_data(epfile, data, io_data->status,
1107 &io_data->data);
1108 else
1109 ret = io_data->status;
1110 goto error_mutex;
1111 } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1112 ret = -ENOMEM;
1113 } else {
1114 if (io_data->use_sg) {
1115 req->buf = NULL;
1116 req->sg = io_data->sgt.sgl;
1117 req->num_sgs = io_data->sgt.nents;
1118 } else {
1119 req->buf = data;
1120 req->num_sgs = 0;
1121 }
1122 req->length = data_len;
1123
1124 io_data->buf = data;
1125 io_data->ep = ep->ep;
1126 io_data->req = req;
1127 io_data->ffs = epfile->ffs;
1128
1129 req->context = io_data;
1130 req->complete = ffs_epfile_async_io_complete;
1131
1132 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1133 if (unlikely(ret)) {
1134 io_data->req = NULL;
1135 usb_ep_free_request(ep->ep, req);
1136 goto error_lock;
1137 }
1138
1139 ret = -EIOCBQUEUED;
1140 /*
1141 * Do not kfree the buffer in this function. It will be freed
1142 * by ffs_user_copy_worker.
1143 */
1144 data = NULL;
1145 }
1146
1147 error_lock:
1148 spin_unlock_irq(&epfile->ffs->eps_lock);
1149 error_mutex:
1150 mutex_unlock(&epfile->mutex);
1151 error:
1152 if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1153 ffs_free_buffer(io_data);
1154 return ret;
1155 }
1156
1157 static int
ffs_epfile_open(struct inode * inode,struct file * file)1158 ffs_epfile_open(struct inode *inode, struct file *file)
1159 {
1160 struct ffs_epfile *epfile = inode->i_private;
1161
1162 ENTER();
1163
1164 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1165 return -ENODEV;
1166
1167 file->private_data = epfile;
1168 ffs_data_opened(epfile->ffs);
1169
1170 return stream_open(inode, file);
1171 }
1172
ffs_aio_cancel(struct kiocb * kiocb)1173 static int ffs_aio_cancel(struct kiocb *kiocb)
1174 {
1175 struct ffs_io_data *io_data = kiocb->private;
1176 struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1177 unsigned long flags;
1178 int value;
1179
1180 ENTER();
1181
1182 spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1183
1184 if (likely(io_data && io_data->ep && io_data->req))
1185 value = usb_ep_dequeue(io_data->ep, io_data->req);
1186 else
1187 value = -EINVAL;
1188
1189 spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1190
1191 return value;
1192 }
1193
ffs_epfile_write_iter(struct kiocb * kiocb,struct iov_iter * from)1194 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1195 {
1196 struct ffs_io_data io_data, *p = &io_data;
1197 ssize_t res;
1198
1199 ENTER();
1200
1201 if (!is_sync_kiocb(kiocb)) {
1202 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1203 if (unlikely(!p))
1204 return -ENOMEM;
1205 p->aio = true;
1206 } else {
1207 memset(p, 0, sizeof(*p));
1208 p->aio = false;
1209 }
1210
1211 p->read = false;
1212 p->kiocb = kiocb;
1213 p->data = *from;
1214 p->mm = current->mm;
1215
1216 kiocb->private = p;
1217
1218 if (p->aio)
1219 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1220
1221 res = ffs_epfile_io(kiocb->ki_filp, p);
1222 if (res == -EIOCBQUEUED)
1223 return res;
1224 if (p->aio)
1225 kfree(p);
1226 else
1227 *from = p->data;
1228 return res;
1229 }
1230
ffs_epfile_read_iter(struct kiocb * kiocb,struct iov_iter * to)1231 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1232 {
1233 struct ffs_io_data io_data, *p = &io_data;
1234 ssize_t res;
1235
1236 ENTER();
1237
1238 if (!is_sync_kiocb(kiocb)) {
1239 p = kzalloc(sizeof(io_data), GFP_KERNEL);
1240 if (unlikely(!p))
1241 return -ENOMEM;
1242 p->aio = true;
1243 } else {
1244 memset(p, 0, sizeof(*p));
1245 p->aio = false;
1246 }
1247
1248 p->read = true;
1249 p->kiocb = kiocb;
1250 if (p->aio) {
1251 p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1252 if (!p->to_free) {
1253 kfree(p);
1254 return -ENOMEM;
1255 }
1256 } else {
1257 p->data = *to;
1258 p->to_free = NULL;
1259 }
1260 p->mm = current->mm;
1261
1262 kiocb->private = p;
1263
1264 if (p->aio)
1265 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1266
1267 res = ffs_epfile_io(kiocb->ki_filp, p);
1268 if (res == -EIOCBQUEUED)
1269 return res;
1270
1271 if (p->aio) {
1272 kfree(p->to_free);
1273 kfree(p);
1274 } else {
1275 *to = p->data;
1276 }
1277 return res;
1278 }
1279
1280 static int
ffs_epfile_release(struct inode * inode,struct file * file)1281 ffs_epfile_release(struct inode *inode, struct file *file)
1282 {
1283 struct ffs_epfile *epfile = inode->i_private;
1284
1285 ENTER();
1286
1287 __ffs_epfile_read_buffer_free(epfile);
1288 ffs_data_closed(epfile->ffs);
1289
1290 return 0;
1291 }
1292
ffs_epfile_ioctl(struct file * file,unsigned code,unsigned long value)1293 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1294 unsigned long value)
1295 {
1296 struct ffs_epfile *epfile = file->private_data;
1297 struct ffs_ep *ep;
1298 int ret;
1299
1300 ENTER();
1301
1302 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1303 return -ENODEV;
1304
1305 /* Wait for endpoint to be enabled */
1306 ep = epfile->ep;
1307 if (!ep) {
1308 if (file->f_flags & O_NONBLOCK)
1309 return -EAGAIN;
1310
1311 ret = wait_event_interruptible(
1312 epfile->ffs->wait, (ep = epfile->ep));
1313 if (ret)
1314 return -EINTR;
1315 }
1316
1317 spin_lock_irq(&epfile->ffs->eps_lock);
1318
1319 /* In the meantime, endpoint got disabled or changed. */
1320 if (epfile->ep != ep) {
1321 spin_unlock_irq(&epfile->ffs->eps_lock);
1322 return -ESHUTDOWN;
1323 }
1324
1325 switch (code) {
1326 case FUNCTIONFS_FIFO_STATUS:
1327 ret = usb_ep_fifo_status(epfile->ep->ep);
1328 break;
1329 case FUNCTIONFS_FIFO_FLUSH:
1330 usb_ep_fifo_flush(epfile->ep->ep);
1331 ret = 0;
1332 break;
1333 case FUNCTIONFS_CLEAR_HALT:
1334 ret = usb_ep_clear_halt(epfile->ep->ep);
1335 break;
1336 case FUNCTIONFS_ENDPOINT_REVMAP:
1337 ret = epfile->ep->num;
1338 break;
1339 case FUNCTIONFS_ENDPOINT_DESC:
1340 {
1341 int desc_idx;
1342 struct usb_endpoint_descriptor desc1, *desc;
1343
1344 switch (epfile->ffs->gadget->speed) {
1345 case USB_SPEED_SUPER:
1346 case USB_SPEED_SUPER_PLUS:
1347 desc_idx = 2;
1348 break;
1349 case USB_SPEED_HIGH:
1350 desc_idx = 1;
1351 break;
1352 default:
1353 desc_idx = 0;
1354 }
1355
1356 desc = epfile->ep->descs[desc_idx];
1357 memcpy(&desc1, desc, desc->bLength);
1358
1359 spin_unlock_irq(&epfile->ffs->eps_lock);
1360 ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1361 if (ret)
1362 ret = -EFAULT;
1363 return ret;
1364 }
1365 default:
1366 ret = -ENOTTY;
1367 }
1368 spin_unlock_irq(&epfile->ffs->eps_lock);
1369
1370 return ret;
1371 }
1372
1373 static const struct file_operations ffs_epfile_operations = {
1374 .llseek = no_llseek,
1375
1376 .open = ffs_epfile_open,
1377 .write_iter = ffs_epfile_write_iter,
1378 .read_iter = ffs_epfile_read_iter,
1379 .release = ffs_epfile_release,
1380 .unlocked_ioctl = ffs_epfile_ioctl,
1381 .compat_ioctl = compat_ptr_ioctl,
1382 };
1383
1384
1385 /* File system and super block operations ***********************************/
1386
1387 /*
1388 * Mounting the file system creates a controller file, used first for
1389 * function configuration then later for event monitoring.
1390 */
1391
1392 static struct inode *__must_check
ffs_sb_make_inode(struct super_block * sb,void * data,const struct file_operations * fops,const struct inode_operations * iops,struct ffs_file_perms * perms)1393 ffs_sb_make_inode(struct super_block *sb, void *data,
1394 const struct file_operations *fops,
1395 const struct inode_operations *iops,
1396 struct ffs_file_perms *perms)
1397 {
1398 struct inode *inode;
1399
1400 ENTER();
1401
1402 inode = new_inode(sb);
1403
1404 if (likely(inode)) {
1405 struct timespec64 ts = current_time(inode);
1406
1407 inode->i_ino = get_next_ino();
1408 inode->i_mode = perms->mode;
1409 inode->i_uid = perms->uid;
1410 inode->i_gid = perms->gid;
1411 inode->i_atime = ts;
1412 inode->i_mtime = ts;
1413 inode->i_ctime = ts;
1414 inode->i_private = data;
1415 if (fops)
1416 inode->i_fop = fops;
1417 if (iops)
1418 inode->i_op = iops;
1419 }
1420
1421 return inode;
1422 }
1423
1424 /* Create "regular" file */
ffs_sb_create_file(struct super_block * sb,const char * name,void * data,const struct file_operations * fops)1425 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1426 const char *name, void *data,
1427 const struct file_operations *fops)
1428 {
1429 struct ffs_data *ffs = sb->s_fs_info;
1430 struct dentry *dentry;
1431 struct inode *inode;
1432
1433 ENTER();
1434
1435 dentry = d_alloc_name(sb->s_root, name);
1436 if (unlikely(!dentry))
1437 return NULL;
1438
1439 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1440 if (unlikely(!inode)) {
1441 dput(dentry);
1442 return NULL;
1443 }
1444
1445 d_add(dentry, inode);
1446 return dentry;
1447 }
1448
1449 /* Super block */
1450 static const struct super_operations ffs_sb_operations = {
1451 .statfs = simple_statfs,
1452 .drop_inode = generic_delete_inode,
1453 };
1454
1455 struct ffs_sb_fill_data {
1456 struct ffs_file_perms perms;
1457 umode_t root_mode;
1458 const char *dev_name;
1459 bool no_disconnect;
1460 struct ffs_data *ffs_data;
1461 };
1462
ffs_sb_fill(struct super_block * sb,struct fs_context * fc)1463 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1464 {
1465 struct ffs_sb_fill_data *data = fc->fs_private;
1466 struct inode *inode;
1467 struct ffs_data *ffs = data->ffs_data;
1468
1469 ENTER();
1470
1471 ffs->sb = sb;
1472 data->ffs_data = NULL;
1473 sb->s_fs_info = ffs;
1474 sb->s_blocksize = PAGE_SIZE;
1475 sb->s_blocksize_bits = PAGE_SHIFT;
1476 sb->s_magic = FUNCTIONFS_MAGIC;
1477 sb->s_op = &ffs_sb_operations;
1478 sb->s_time_gran = 1;
1479
1480 /* Root inode */
1481 data->perms.mode = data->root_mode;
1482 inode = ffs_sb_make_inode(sb, NULL,
1483 &simple_dir_operations,
1484 &simple_dir_inode_operations,
1485 &data->perms);
1486 sb->s_root = d_make_root(inode);
1487 if (unlikely(!sb->s_root))
1488 return -ENOMEM;
1489
1490 /* EP0 file */
1491 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1492 &ffs_ep0_operations)))
1493 return -ENOMEM;
1494
1495 return 0;
1496 }
1497
1498 enum {
1499 Opt_no_disconnect,
1500 Opt_rmode,
1501 Opt_fmode,
1502 Opt_mode,
1503 Opt_uid,
1504 Opt_gid,
1505 };
1506
1507 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1508 fsparam_bool ("no_disconnect", Opt_no_disconnect),
1509 fsparam_u32 ("rmode", Opt_rmode),
1510 fsparam_u32 ("fmode", Opt_fmode),
1511 fsparam_u32 ("mode", Opt_mode),
1512 fsparam_u32 ("uid", Opt_uid),
1513 fsparam_u32 ("gid", Opt_gid),
1514 {}
1515 };
1516
ffs_fs_parse_param(struct fs_context * fc,struct fs_parameter * param)1517 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1518 {
1519 struct ffs_sb_fill_data *data = fc->fs_private;
1520 struct fs_parse_result result;
1521 int opt;
1522
1523 ENTER();
1524
1525 opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1526 if (opt < 0)
1527 return opt;
1528
1529 switch (opt) {
1530 case Opt_no_disconnect:
1531 data->no_disconnect = result.boolean;
1532 break;
1533 case Opt_rmode:
1534 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1535 break;
1536 case Opt_fmode:
1537 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1538 break;
1539 case Opt_mode:
1540 data->root_mode = (result.uint_32 & 0555) | S_IFDIR;
1541 data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1542 break;
1543
1544 case Opt_uid:
1545 data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1546 if (!uid_valid(data->perms.uid))
1547 goto unmapped_value;
1548 break;
1549 case Opt_gid:
1550 data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1551 if (!gid_valid(data->perms.gid))
1552 goto unmapped_value;
1553 break;
1554
1555 default:
1556 return -ENOPARAM;
1557 }
1558
1559 return 0;
1560
1561 unmapped_value:
1562 return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1563 }
1564
1565 /*
1566 * Set up the superblock for a mount.
1567 */
ffs_fs_get_tree(struct fs_context * fc)1568 static int ffs_fs_get_tree(struct fs_context *fc)
1569 {
1570 struct ffs_sb_fill_data *ctx = fc->fs_private;
1571 struct ffs_data *ffs;
1572 int ret;
1573
1574 ENTER();
1575
1576 if (!fc->source)
1577 return invalf(fc, "No source specified");
1578
1579 ffs = ffs_data_new(fc->source);
1580 if (unlikely(!ffs))
1581 return -ENOMEM;
1582 ffs->file_perms = ctx->perms;
1583 ffs->no_disconnect = ctx->no_disconnect;
1584
1585 ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1586 if (unlikely(!ffs->dev_name)) {
1587 ffs_data_put(ffs);
1588 return -ENOMEM;
1589 }
1590
1591 ret = ffs_acquire_dev(ffs->dev_name, ffs);
1592 if (ret) {
1593 ffs_data_put(ffs);
1594 return ret;
1595 }
1596
1597 ctx->ffs_data = ffs;
1598 return get_tree_nodev(fc, ffs_sb_fill);
1599 }
1600
ffs_fs_free_fc(struct fs_context * fc)1601 static void ffs_fs_free_fc(struct fs_context *fc)
1602 {
1603 struct ffs_sb_fill_data *ctx = fc->fs_private;
1604
1605 if (ctx) {
1606 if (ctx->ffs_data) {
1607 ffs_data_put(ctx->ffs_data);
1608 }
1609
1610 kfree(ctx);
1611 }
1612 }
1613
1614 static const struct fs_context_operations ffs_fs_context_ops = {
1615 .free = ffs_fs_free_fc,
1616 .parse_param = ffs_fs_parse_param,
1617 .get_tree = ffs_fs_get_tree,
1618 };
1619
ffs_fs_init_fs_context(struct fs_context * fc)1620 static int ffs_fs_init_fs_context(struct fs_context *fc)
1621 {
1622 struct ffs_sb_fill_data *ctx;
1623
1624 ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1625 if (!ctx)
1626 return -ENOMEM;
1627
1628 ctx->perms.mode = S_IFREG | 0600;
1629 ctx->perms.uid = GLOBAL_ROOT_UID;
1630 ctx->perms.gid = GLOBAL_ROOT_GID;
1631 ctx->root_mode = S_IFDIR | 0500;
1632 ctx->no_disconnect = false;
1633
1634 fc->fs_private = ctx;
1635 fc->ops = &ffs_fs_context_ops;
1636 return 0;
1637 }
1638
1639 static void
ffs_fs_kill_sb(struct super_block * sb)1640 ffs_fs_kill_sb(struct super_block *sb)
1641 {
1642 ENTER();
1643
1644 kill_litter_super(sb);
1645 if (sb->s_fs_info)
1646 ffs_data_closed(sb->s_fs_info);
1647 }
1648
1649 static struct file_system_type ffs_fs_type = {
1650 .owner = THIS_MODULE,
1651 .name = "functionfs",
1652 .init_fs_context = ffs_fs_init_fs_context,
1653 .parameters = ffs_fs_fs_parameters,
1654 .kill_sb = ffs_fs_kill_sb,
1655 };
1656 MODULE_ALIAS_FS("functionfs");
1657
1658
1659 /* Driver's main init/cleanup functions *************************************/
1660
functionfs_init(void)1661 static int functionfs_init(void)
1662 {
1663 int ret;
1664
1665 ENTER();
1666
1667 ret = register_filesystem(&ffs_fs_type);
1668 if (likely(!ret))
1669 pr_info("file system registered\n");
1670 else
1671 pr_err("failed registering file system (%d)\n", ret);
1672
1673 return ret;
1674 }
1675
functionfs_cleanup(void)1676 static void functionfs_cleanup(void)
1677 {
1678 ENTER();
1679
1680 pr_info("unloading\n");
1681 unregister_filesystem(&ffs_fs_type);
1682 }
1683
1684
1685 /* ffs_data and ffs_function construction and destruction code **************/
1686
1687 static void ffs_data_clear(struct ffs_data *ffs);
1688 static void ffs_data_reset(struct ffs_data *ffs);
1689
ffs_data_get(struct ffs_data * ffs)1690 static void ffs_data_get(struct ffs_data *ffs)
1691 {
1692 ENTER();
1693
1694 refcount_inc(&ffs->ref);
1695 }
1696
ffs_data_opened(struct ffs_data * ffs)1697 static void ffs_data_opened(struct ffs_data *ffs)
1698 {
1699 ENTER();
1700
1701 refcount_inc(&ffs->ref);
1702 if (atomic_add_return(1, &ffs->opened) == 1 &&
1703 ffs->state == FFS_DEACTIVATED) {
1704 ffs->state = FFS_CLOSING;
1705 ffs_data_reset(ffs);
1706 }
1707 }
1708
ffs_data_put(struct ffs_data * ffs)1709 static void ffs_data_put(struct ffs_data *ffs)
1710 {
1711 ENTER();
1712
1713 if (unlikely(refcount_dec_and_test(&ffs->ref))) {
1714 pr_info("%s(): freeing\n", __func__);
1715 ffs_data_clear(ffs);
1716 ffs_release_dev(ffs->private_data);
1717 BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1718 swait_active(&ffs->ep0req_completion.wait) ||
1719 waitqueue_active(&ffs->wait));
1720 destroy_workqueue(ffs->io_completion_wq);
1721 kfree(ffs->dev_name);
1722 kfree(ffs);
1723 }
1724 }
1725
ffs_data_closed(struct ffs_data * ffs)1726 static void ffs_data_closed(struct ffs_data *ffs)
1727 {
1728 struct ffs_epfile *epfiles;
1729 unsigned long flags;
1730
1731 ENTER();
1732
1733 if (atomic_dec_and_test(&ffs->opened)) {
1734 if (ffs->no_disconnect) {
1735 ffs->state = FFS_DEACTIVATED;
1736 spin_lock_irqsave(&ffs->eps_lock, flags);
1737 epfiles = ffs->epfiles;
1738 ffs->epfiles = NULL;
1739 spin_unlock_irqrestore(&ffs->eps_lock,
1740 flags);
1741
1742 if (epfiles)
1743 ffs_epfiles_destroy(epfiles,
1744 ffs->eps_count);
1745
1746 if (ffs->setup_state == FFS_SETUP_PENDING)
1747 __ffs_ep0_stall(ffs);
1748 } else {
1749 ffs->state = FFS_CLOSING;
1750 ffs_data_reset(ffs);
1751 }
1752 }
1753 if (atomic_read(&ffs->opened) < 0) {
1754 ffs->state = FFS_CLOSING;
1755 ffs_data_reset(ffs);
1756 }
1757
1758 ffs_data_put(ffs);
1759 }
1760
ffs_data_new(const char * dev_name)1761 static struct ffs_data *ffs_data_new(const char *dev_name)
1762 {
1763 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1764 if (unlikely(!ffs))
1765 return NULL;
1766
1767 ENTER();
1768
1769 ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1770 if (!ffs->io_completion_wq) {
1771 kfree(ffs);
1772 return NULL;
1773 }
1774
1775 refcount_set(&ffs->ref, 1);
1776 atomic_set(&ffs->opened, 0);
1777 ffs->state = FFS_READ_DESCRIPTORS;
1778 mutex_init(&ffs->mutex);
1779 spin_lock_init(&ffs->eps_lock);
1780 init_waitqueue_head(&ffs->ev.waitq);
1781 init_waitqueue_head(&ffs->wait);
1782 init_completion(&ffs->ep0req_completion);
1783
1784 /* XXX REVISIT need to update it in some places, or do we? */
1785 ffs->ev.can_stall = 1;
1786
1787 return ffs;
1788 }
1789
ffs_data_clear(struct ffs_data * ffs)1790 static void ffs_data_clear(struct ffs_data *ffs)
1791 {
1792 struct ffs_epfile *epfiles;
1793 unsigned long flags;
1794
1795 ENTER();
1796
1797 ffs_closed(ffs);
1798
1799 BUG_ON(ffs->gadget);
1800
1801 spin_lock_irqsave(&ffs->eps_lock, flags);
1802 epfiles = ffs->epfiles;
1803 ffs->epfiles = NULL;
1804 spin_unlock_irqrestore(&ffs->eps_lock, flags);
1805
1806 /*
1807 * potential race possible between ffs_func_eps_disable
1808 * & ffs_epfile_release therefore maintaining a local
1809 * copy of epfile will save us from use-after-free.
1810 */
1811 if (epfiles) {
1812 ffs_epfiles_destroy(epfiles, ffs->eps_count);
1813 ffs->epfiles = NULL;
1814 }
1815
1816 if (ffs->ffs_eventfd) {
1817 eventfd_ctx_put(ffs->ffs_eventfd);
1818 ffs->ffs_eventfd = NULL;
1819 }
1820
1821 kfree(ffs->raw_descs_data);
1822 kfree(ffs->raw_strings);
1823 kfree(ffs->stringtabs);
1824 }
1825
ffs_data_reset(struct ffs_data * ffs)1826 static void ffs_data_reset(struct ffs_data *ffs)
1827 {
1828 ENTER();
1829
1830 ffs_data_clear(ffs);
1831
1832 ffs->raw_descs_data = NULL;
1833 ffs->raw_descs = NULL;
1834 ffs->raw_strings = NULL;
1835 ffs->stringtabs = NULL;
1836
1837 ffs->raw_descs_length = 0;
1838 ffs->fs_descs_count = 0;
1839 ffs->hs_descs_count = 0;
1840 ffs->ss_descs_count = 0;
1841
1842 ffs->strings_count = 0;
1843 ffs->interfaces_count = 0;
1844 ffs->eps_count = 0;
1845
1846 ffs->ev.count = 0;
1847
1848 ffs->state = FFS_READ_DESCRIPTORS;
1849 ffs->setup_state = FFS_NO_SETUP;
1850 ffs->flags = 0;
1851
1852 ffs->ms_os_descs_ext_prop_count = 0;
1853 ffs->ms_os_descs_ext_prop_name_len = 0;
1854 ffs->ms_os_descs_ext_prop_data_len = 0;
1855 }
1856
1857
functionfs_bind(struct ffs_data * ffs,struct usb_composite_dev * cdev)1858 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1859 {
1860 struct usb_gadget_strings **lang;
1861 int first_id;
1862
1863 ENTER();
1864
1865 if (WARN_ON(ffs->state != FFS_ACTIVE
1866 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1867 return -EBADFD;
1868
1869 first_id = usb_string_ids_n(cdev, ffs->strings_count);
1870 if (unlikely(first_id < 0))
1871 return first_id;
1872
1873 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1874 if (unlikely(!ffs->ep0req))
1875 return -ENOMEM;
1876 ffs->ep0req->complete = ffs_ep0_complete;
1877 ffs->ep0req->context = ffs;
1878
1879 lang = ffs->stringtabs;
1880 if (lang) {
1881 for (; *lang; ++lang) {
1882 struct usb_string *str = (*lang)->strings;
1883 int id = first_id;
1884 for (; str->s; ++id, ++str)
1885 str->id = id;
1886 }
1887 }
1888
1889 ffs->gadget = cdev->gadget;
1890 ffs_data_get(ffs);
1891 return 0;
1892 }
1893
functionfs_unbind(struct ffs_data * ffs)1894 static void functionfs_unbind(struct ffs_data *ffs)
1895 {
1896 ENTER();
1897
1898 if (!WARN_ON(!ffs->gadget)) {
1899 /* dequeue before freeing ep0req */
1900 usb_ep_dequeue(ffs->gadget->ep0, ffs->ep0req);
1901 mutex_lock(&ffs->mutex);
1902 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1903 ffs->ep0req = NULL;
1904 ffs->gadget = NULL;
1905 clear_bit(FFS_FL_BOUND, &ffs->flags);
1906 mutex_unlock(&ffs->mutex);
1907 ffs_data_put(ffs);
1908 }
1909 }
1910
ffs_epfiles_create(struct ffs_data * ffs)1911 static int ffs_epfiles_create(struct ffs_data *ffs)
1912 {
1913 struct ffs_epfile *epfile, *epfiles;
1914 unsigned i, count;
1915
1916 ENTER();
1917
1918 count = ffs->eps_count;
1919 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1920 if (!epfiles)
1921 return -ENOMEM;
1922
1923 epfile = epfiles;
1924 for (i = 1; i <= count; ++i, ++epfile) {
1925 epfile->ffs = ffs;
1926 mutex_init(&epfile->mutex);
1927 if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1928 sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1929 else
1930 sprintf(epfile->name, "ep%u", i);
1931 epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1932 epfile,
1933 &ffs_epfile_operations);
1934 if (unlikely(!epfile->dentry)) {
1935 ffs_epfiles_destroy(epfiles, i - 1);
1936 return -ENOMEM;
1937 }
1938 }
1939
1940 ffs->epfiles = epfiles;
1941 return 0;
1942 }
1943
ffs_epfiles_destroy(struct ffs_epfile * epfiles,unsigned count)1944 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1945 {
1946 struct ffs_epfile *epfile = epfiles;
1947
1948 ENTER();
1949
1950 for (; count; --count, ++epfile) {
1951 BUG_ON(mutex_is_locked(&epfile->mutex));
1952 if (epfile->dentry) {
1953 d_delete(epfile->dentry);
1954 dput(epfile->dentry);
1955 epfile->dentry = NULL;
1956 }
1957 }
1958
1959 kfree(epfiles);
1960 }
1961
ffs_func_eps_disable(struct ffs_function * func)1962 static void ffs_func_eps_disable(struct ffs_function *func)
1963 {
1964 struct ffs_ep *ep;
1965 struct ffs_epfile *epfile;
1966 unsigned short count;
1967 unsigned long flags;
1968
1969 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1970 count = func->ffs->eps_count;
1971 epfile = func->ffs->epfiles;
1972 ep = func->eps;
1973 while (count--) {
1974 /* pending requests get nuked */
1975 if (likely(ep->ep))
1976 usb_ep_disable(ep->ep);
1977 ++ep;
1978
1979 if (epfile) {
1980 epfile->ep = NULL;
1981 __ffs_epfile_read_buffer_free(epfile);
1982 ++epfile;
1983 }
1984 }
1985 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1986 }
1987
ffs_func_eps_enable(struct ffs_function * func)1988 static int ffs_func_eps_enable(struct ffs_function *func)
1989 {
1990 struct ffs_data *ffs;
1991 struct ffs_ep *ep;
1992 struct ffs_epfile *epfile;
1993 unsigned short count;
1994 unsigned long flags;
1995 int ret = 0;
1996
1997 spin_lock_irqsave(&func->ffs->eps_lock, flags);
1998 ffs = func->ffs;
1999 ep = func->eps;
2000 epfile = ffs->epfiles;
2001 count = ffs->eps_count;
2002 while(count--) {
2003 ep->ep->driver_data = ep;
2004
2005 ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
2006 if (ret) {
2007 pr_err("%s: config_ep_by_speed(%s) returned %d\n",
2008 __func__, ep->ep->name, ret);
2009 break;
2010 }
2011
2012 ret = usb_ep_enable(ep->ep);
2013 if (likely(!ret)) {
2014 epfile->ep = ep;
2015 epfile->in = usb_endpoint_dir_in(ep->ep->desc);
2016 epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
2017 } else {
2018 break;
2019 }
2020
2021 ++ep;
2022 ++epfile;
2023 }
2024
2025 wake_up_interruptible(&ffs->wait);
2026 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
2027
2028 return ret;
2029 }
2030
2031
2032 /* Parsing and building descriptors and strings *****************************/
2033
2034 /*
2035 * This validates if data pointed by data is a valid USB descriptor as
2036 * well as record how many interfaces, endpoints and strings are
2037 * required by given configuration. Returns address after the
2038 * descriptor or NULL if data is invalid.
2039 */
2040
2041 enum ffs_entity_type {
2042 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
2043 };
2044
2045 enum ffs_os_desc_type {
2046 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
2047 };
2048
2049 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2050 u8 *valuep,
2051 struct usb_descriptor_header *desc,
2052 void *priv);
2053
2054 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2055 struct usb_os_desc_header *h, void *data,
2056 unsigned len, void *priv);
2057
ffs_do_single_desc(char * data,unsigned len,ffs_entity_callback entity,void * priv,int * current_class)2058 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2059 ffs_entity_callback entity,
2060 void *priv, int *current_class)
2061 {
2062 struct usb_descriptor_header *_ds = (void *)data;
2063 u8 length;
2064 int ret;
2065
2066 ENTER();
2067
2068 /* At least two bytes are required: length and type */
2069 if (len < 2) {
2070 pr_vdebug("descriptor too short\n");
2071 return -EINVAL;
2072 }
2073
2074 /* If we have at least as many bytes as the descriptor takes? */
2075 length = _ds->bLength;
2076 if (len < length) {
2077 pr_vdebug("descriptor longer then available data\n");
2078 return -EINVAL;
2079 }
2080
2081 #define __entity_check_INTERFACE(val) 1
2082 #define __entity_check_STRING(val) (val)
2083 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK)
2084 #define __entity(type, val) do { \
2085 pr_vdebug("entity " #type "(%02x)\n", (val)); \
2086 if (unlikely(!__entity_check_ ##type(val))) { \
2087 pr_vdebug("invalid entity's value\n"); \
2088 return -EINVAL; \
2089 } \
2090 ret = entity(FFS_ ##type, &val, _ds, priv); \
2091 if (unlikely(ret < 0)) { \
2092 pr_debug("entity " #type "(%02x); ret = %d\n", \
2093 (val), ret); \
2094 return ret; \
2095 } \
2096 } while (0)
2097
2098 /* Parse descriptor depending on type. */
2099 switch (_ds->bDescriptorType) {
2100 case USB_DT_DEVICE:
2101 case USB_DT_CONFIG:
2102 case USB_DT_STRING:
2103 case USB_DT_DEVICE_QUALIFIER:
2104 /* function can't have any of those */
2105 pr_vdebug("descriptor reserved for gadget: %d\n",
2106 _ds->bDescriptorType);
2107 return -EINVAL;
2108
2109 case USB_DT_INTERFACE: {
2110 struct usb_interface_descriptor *ds = (void *)_ds;
2111 pr_vdebug("interface descriptor\n");
2112 if (length != sizeof *ds)
2113 goto inv_length;
2114
2115 __entity(INTERFACE, ds->bInterfaceNumber);
2116 if (ds->iInterface)
2117 __entity(STRING, ds->iInterface);
2118 *current_class = ds->bInterfaceClass;
2119 }
2120 break;
2121
2122 case USB_DT_ENDPOINT: {
2123 struct usb_endpoint_descriptor *ds = (void *)_ds;
2124 pr_vdebug("endpoint descriptor\n");
2125 if (length != USB_DT_ENDPOINT_SIZE &&
2126 length != USB_DT_ENDPOINT_AUDIO_SIZE)
2127 goto inv_length;
2128 __entity(ENDPOINT, ds->bEndpointAddress);
2129 }
2130 break;
2131
2132 case USB_TYPE_CLASS | 0x01:
2133 if (*current_class == USB_INTERFACE_CLASS_HID) {
2134 pr_vdebug("hid descriptor\n");
2135 if (length != sizeof(struct hid_descriptor))
2136 goto inv_length;
2137 break;
2138 } else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2139 pr_vdebug("ccid descriptor\n");
2140 if (length != sizeof(struct ccid_descriptor))
2141 goto inv_length;
2142 break;
2143 } else {
2144 pr_vdebug("unknown descriptor: %d for class %d\n",
2145 _ds->bDescriptorType, *current_class);
2146 return -EINVAL;
2147 }
2148
2149 case USB_DT_OTG:
2150 if (length != sizeof(struct usb_otg_descriptor))
2151 goto inv_length;
2152 break;
2153
2154 case USB_DT_INTERFACE_ASSOCIATION: {
2155 struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2156 pr_vdebug("interface association descriptor\n");
2157 if (length != sizeof *ds)
2158 goto inv_length;
2159 if (ds->iFunction)
2160 __entity(STRING, ds->iFunction);
2161 }
2162 break;
2163
2164 case USB_DT_SS_ENDPOINT_COMP:
2165 pr_vdebug("EP SS companion descriptor\n");
2166 if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2167 goto inv_length;
2168 break;
2169
2170 case USB_DT_OTHER_SPEED_CONFIG:
2171 case USB_DT_INTERFACE_POWER:
2172 case USB_DT_DEBUG:
2173 case USB_DT_SECURITY:
2174 case USB_DT_CS_RADIO_CONTROL:
2175 /* TODO */
2176 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2177 return -EINVAL;
2178
2179 default:
2180 /* We should never be here */
2181 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2182 return -EINVAL;
2183
2184 inv_length:
2185 pr_vdebug("invalid length: %d (descriptor %d)\n",
2186 _ds->bLength, _ds->bDescriptorType);
2187 return -EINVAL;
2188 }
2189
2190 #undef __entity
2191 #undef __entity_check_DESCRIPTOR
2192 #undef __entity_check_INTERFACE
2193 #undef __entity_check_STRING
2194 #undef __entity_check_ENDPOINT
2195
2196 return length;
2197 }
2198
ffs_do_descs(unsigned count,char * data,unsigned len,ffs_entity_callback entity,void * priv)2199 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2200 ffs_entity_callback entity, void *priv)
2201 {
2202 const unsigned _len = len;
2203 unsigned long num = 0;
2204 int current_class = -1;
2205
2206 ENTER();
2207
2208 for (;;) {
2209 int ret;
2210
2211 if (num == count)
2212 data = NULL;
2213
2214 /* Record "descriptor" entity */
2215 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2216 if (unlikely(ret < 0)) {
2217 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2218 num, ret);
2219 return ret;
2220 }
2221
2222 if (!data)
2223 return _len - len;
2224
2225 ret = ffs_do_single_desc(data, len, entity, priv,
2226 ¤t_class);
2227 if (unlikely(ret < 0)) {
2228 pr_debug("%s returns %d\n", __func__, ret);
2229 return ret;
2230 }
2231
2232 len -= ret;
2233 data += ret;
2234 ++num;
2235 }
2236 }
2237
__ffs_data_do_entity(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2238 static int __ffs_data_do_entity(enum ffs_entity_type type,
2239 u8 *valuep, struct usb_descriptor_header *desc,
2240 void *priv)
2241 {
2242 struct ffs_desc_helper *helper = priv;
2243 struct usb_endpoint_descriptor *d;
2244
2245 ENTER();
2246
2247 switch (type) {
2248 case FFS_DESCRIPTOR:
2249 break;
2250
2251 case FFS_INTERFACE:
2252 /*
2253 * Interfaces are indexed from zero so if we
2254 * encountered interface "n" then there are at least
2255 * "n+1" interfaces.
2256 */
2257 if (*valuep >= helper->interfaces_count)
2258 helper->interfaces_count = *valuep + 1;
2259 break;
2260
2261 case FFS_STRING:
2262 /*
2263 * Strings are indexed from 1 (0 is reserved
2264 * for languages list)
2265 */
2266 if (*valuep > helper->ffs->strings_count)
2267 helper->ffs->strings_count = *valuep;
2268 break;
2269
2270 case FFS_ENDPOINT:
2271 d = (void *)desc;
2272 helper->eps_count++;
2273 if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2274 return -EINVAL;
2275 /* Check if descriptors for any speed were already parsed */
2276 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2277 helper->ffs->eps_addrmap[helper->eps_count] =
2278 d->bEndpointAddress;
2279 else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2280 d->bEndpointAddress)
2281 return -EINVAL;
2282 break;
2283 }
2284
2285 return 0;
2286 }
2287
__ffs_do_os_desc_header(enum ffs_os_desc_type * next_type,struct usb_os_desc_header * desc)2288 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2289 struct usb_os_desc_header *desc)
2290 {
2291 u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2292 u16 w_index = le16_to_cpu(desc->wIndex);
2293
2294 if (bcd_version != 1) {
2295 pr_vdebug("unsupported os descriptors version: %d",
2296 bcd_version);
2297 return -EINVAL;
2298 }
2299 switch (w_index) {
2300 case 0x4:
2301 *next_type = FFS_OS_DESC_EXT_COMPAT;
2302 break;
2303 case 0x5:
2304 *next_type = FFS_OS_DESC_EXT_PROP;
2305 break;
2306 default:
2307 pr_vdebug("unsupported os descriptor type: %d", w_index);
2308 return -EINVAL;
2309 }
2310
2311 return sizeof(*desc);
2312 }
2313
2314 /*
2315 * Process all extended compatibility/extended property descriptors
2316 * of a feature descriptor
2317 */
ffs_do_single_os_desc(char * data,unsigned len,enum ffs_os_desc_type type,u16 feature_count,ffs_os_desc_callback entity,void * priv,struct usb_os_desc_header * h)2318 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2319 enum ffs_os_desc_type type,
2320 u16 feature_count,
2321 ffs_os_desc_callback entity,
2322 void *priv,
2323 struct usb_os_desc_header *h)
2324 {
2325 int ret;
2326 const unsigned _len = len;
2327
2328 ENTER();
2329
2330 /* loop over all ext compat/ext prop descriptors */
2331 while (feature_count--) {
2332 ret = entity(type, h, data, len, priv);
2333 if (unlikely(ret < 0)) {
2334 pr_debug("bad OS descriptor, type: %d\n", type);
2335 return ret;
2336 }
2337 data += ret;
2338 len -= ret;
2339 }
2340 return _len - len;
2341 }
2342
2343 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
ffs_do_os_descs(unsigned count,char * data,unsigned len,ffs_os_desc_callback entity,void * priv)2344 static int __must_check ffs_do_os_descs(unsigned count,
2345 char *data, unsigned len,
2346 ffs_os_desc_callback entity, void *priv)
2347 {
2348 const unsigned _len = len;
2349 unsigned long num = 0;
2350
2351 ENTER();
2352
2353 for (num = 0; num < count; ++num) {
2354 int ret;
2355 enum ffs_os_desc_type type;
2356 u16 feature_count;
2357 struct usb_os_desc_header *desc = (void *)data;
2358
2359 if (len < sizeof(*desc))
2360 return -EINVAL;
2361
2362 /*
2363 * Record "descriptor" entity.
2364 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2365 * Move the data pointer to the beginning of extended
2366 * compatibilities proper or extended properties proper
2367 * portions of the data
2368 */
2369 if (le32_to_cpu(desc->dwLength) > len)
2370 return -EINVAL;
2371
2372 ret = __ffs_do_os_desc_header(&type, desc);
2373 if (unlikely(ret < 0)) {
2374 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2375 num, ret);
2376 return ret;
2377 }
2378 /*
2379 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2380 */
2381 feature_count = le16_to_cpu(desc->wCount);
2382 if (type == FFS_OS_DESC_EXT_COMPAT &&
2383 (feature_count > 255 || desc->Reserved))
2384 return -EINVAL;
2385 len -= ret;
2386 data += ret;
2387
2388 /*
2389 * Process all function/property descriptors
2390 * of this Feature Descriptor
2391 */
2392 ret = ffs_do_single_os_desc(data, len, type,
2393 feature_count, entity, priv, desc);
2394 if (unlikely(ret < 0)) {
2395 pr_debug("%s returns %d\n", __func__, ret);
2396 return ret;
2397 }
2398
2399 len -= ret;
2400 data += ret;
2401 }
2402 return _len - len;
2403 }
2404
2405 /*
2406 * Validate contents of the buffer from userspace related to OS descriptors.
2407 */
__ffs_data_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2408 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2409 struct usb_os_desc_header *h, void *data,
2410 unsigned len, void *priv)
2411 {
2412 struct ffs_data *ffs = priv;
2413 u8 length;
2414
2415 ENTER();
2416
2417 switch (type) {
2418 case FFS_OS_DESC_EXT_COMPAT: {
2419 struct usb_ext_compat_desc *d = data;
2420 int i;
2421
2422 if (len < sizeof(*d) ||
2423 d->bFirstInterfaceNumber >= ffs->interfaces_count)
2424 return -EINVAL;
2425 if (d->Reserved1 != 1) {
2426 /*
2427 * According to the spec, Reserved1 must be set to 1
2428 * but older kernels incorrectly rejected non-zero
2429 * values. We fix it here to avoid returning EINVAL
2430 * in response to values we used to accept.
2431 */
2432 pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2433 d->Reserved1 = 1;
2434 }
2435 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2436 if (d->Reserved2[i])
2437 return -EINVAL;
2438
2439 length = sizeof(struct usb_ext_compat_desc);
2440 }
2441 break;
2442 case FFS_OS_DESC_EXT_PROP: {
2443 struct usb_ext_prop_desc *d = data;
2444 u32 type, pdl;
2445 u16 pnl;
2446
2447 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2448 return -EINVAL;
2449 length = le32_to_cpu(d->dwSize);
2450 if (len < length)
2451 return -EINVAL;
2452 type = le32_to_cpu(d->dwPropertyDataType);
2453 if (type < USB_EXT_PROP_UNICODE ||
2454 type > USB_EXT_PROP_UNICODE_MULTI) {
2455 pr_vdebug("unsupported os descriptor property type: %d",
2456 type);
2457 return -EINVAL;
2458 }
2459 pnl = le16_to_cpu(d->wPropertyNameLength);
2460 if (length < 14 + pnl) {
2461 pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2462 length, pnl, type);
2463 return -EINVAL;
2464 }
2465 pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2466 if (length != 14 + pnl + pdl) {
2467 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2468 length, pnl, pdl, type);
2469 return -EINVAL;
2470 }
2471 ++ffs->ms_os_descs_ext_prop_count;
2472 /* property name reported to the host as "WCHAR"s */
2473 ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2474 ffs->ms_os_descs_ext_prop_data_len += pdl;
2475 }
2476 break;
2477 default:
2478 pr_vdebug("unknown descriptor: %d\n", type);
2479 return -EINVAL;
2480 }
2481 return length;
2482 }
2483
__ffs_data_got_descs(struct ffs_data * ffs,char * const _data,size_t len)2484 static int __ffs_data_got_descs(struct ffs_data *ffs,
2485 char *const _data, size_t len)
2486 {
2487 char *data = _data, *raw_descs;
2488 unsigned os_descs_count = 0, counts[3], flags;
2489 int ret = -EINVAL, i;
2490 struct ffs_desc_helper helper;
2491
2492 ENTER();
2493
2494 if (get_unaligned_le32(data + 4) != len)
2495 goto error;
2496
2497 switch (get_unaligned_le32(data)) {
2498 case FUNCTIONFS_DESCRIPTORS_MAGIC:
2499 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2500 data += 8;
2501 len -= 8;
2502 break;
2503 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2504 flags = get_unaligned_le32(data + 8);
2505 ffs->user_flags = flags;
2506 if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2507 FUNCTIONFS_HAS_HS_DESC |
2508 FUNCTIONFS_HAS_SS_DESC |
2509 FUNCTIONFS_HAS_MS_OS_DESC |
2510 FUNCTIONFS_VIRTUAL_ADDR |
2511 FUNCTIONFS_EVENTFD |
2512 FUNCTIONFS_ALL_CTRL_RECIP |
2513 FUNCTIONFS_CONFIG0_SETUP)) {
2514 ret = -ENOSYS;
2515 goto error;
2516 }
2517 data += 12;
2518 len -= 12;
2519 break;
2520 default:
2521 goto error;
2522 }
2523
2524 if (flags & FUNCTIONFS_EVENTFD) {
2525 if (len < 4)
2526 goto error;
2527 ffs->ffs_eventfd =
2528 eventfd_ctx_fdget((int)get_unaligned_le32(data));
2529 if (IS_ERR(ffs->ffs_eventfd)) {
2530 ret = PTR_ERR(ffs->ffs_eventfd);
2531 ffs->ffs_eventfd = NULL;
2532 goto error;
2533 }
2534 data += 4;
2535 len -= 4;
2536 }
2537
2538 /* Read fs_count, hs_count and ss_count (if present) */
2539 for (i = 0; i < 3; ++i) {
2540 if (!(flags & (1 << i))) {
2541 counts[i] = 0;
2542 } else if (len < 4) {
2543 goto error;
2544 } else {
2545 counts[i] = get_unaligned_le32(data);
2546 data += 4;
2547 len -= 4;
2548 }
2549 }
2550 if (flags & (1 << i)) {
2551 if (len < 4) {
2552 goto error;
2553 }
2554 os_descs_count = get_unaligned_le32(data);
2555 data += 4;
2556 len -= 4;
2557 }
2558
2559 /* Read descriptors */
2560 raw_descs = data;
2561 helper.ffs = ffs;
2562 for (i = 0; i < 3; ++i) {
2563 if (!counts[i])
2564 continue;
2565 helper.interfaces_count = 0;
2566 helper.eps_count = 0;
2567 ret = ffs_do_descs(counts[i], data, len,
2568 __ffs_data_do_entity, &helper);
2569 if (ret < 0)
2570 goto error;
2571 if (!ffs->eps_count && !ffs->interfaces_count) {
2572 ffs->eps_count = helper.eps_count;
2573 ffs->interfaces_count = helper.interfaces_count;
2574 } else {
2575 if (ffs->eps_count != helper.eps_count) {
2576 ret = -EINVAL;
2577 goto error;
2578 }
2579 if (ffs->interfaces_count != helper.interfaces_count) {
2580 ret = -EINVAL;
2581 goto error;
2582 }
2583 }
2584 data += ret;
2585 len -= ret;
2586 }
2587 if (os_descs_count) {
2588 ret = ffs_do_os_descs(os_descs_count, data, len,
2589 __ffs_data_do_os_desc, ffs);
2590 if (ret < 0)
2591 goto error;
2592 data += ret;
2593 len -= ret;
2594 }
2595
2596 if (raw_descs == data || len) {
2597 ret = -EINVAL;
2598 goto error;
2599 }
2600
2601 ffs->raw_descs_data = _data;
2602 ffs->raw_descs = raw_descs;
2603 ffs->raw_descs_length = data - raw_descs;
2604 ffs->fs_descs_count = counts[0];
2605 ffs->hs_descs_count = counts[1];
2606 ffs->ss_descs_count = counts[2];
2607 ffs->ms_os_descs_count = os_descs_count;
2608
2609 return 0;
2610
2611 error:
2612 kfree(_data);
2613 return ret;
2614 }
2615
__ffs_data_got_strings(struct ffs_data * ffs,char * const _data,size_t len)2616 static int __ffs_data_got_strings(struct ffs_data *ffs,
2617 char *const _data, size_t len)
2618 {
2619 u32 str_count, needed_count, lang_count;
2620 struct usb_gadget_strings **stringtabs, *t;
2621 const char *data = _data;
2622 struct usb_string *s;
2623
2624 ENTER();
2625
2626 if (unlikely(len < 16 ||
2627 get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2628 get_unaligned_le32(data + 4) != len))
2629 goto error;
2630 str_count = get_unaligned_le32(data + 8);
2631 lang_count = get_unaligned_le32(data + 12);
2632
2633 /* if one is zero the other must be zero */
2634 if (unlikely(!str_count != !lang_count))
2635 goto error;
2636
2637 /* Do we have at least as many strings as descriptors need? */
2638 needed_count = ffs->strings_count;
2639 if (unlikely(str_count < needed_count))
2640 goto error;
2641
2642 /*
2643 * If we don't need any strings just return and free all
2644 * memory.
2645 */
2646 if (!needed_count) {
2647 kfree(_data);
2648 return 0;
2649 }
2650
2651 /* Allocate everything in one chunk so there's less maintenance. */
2652 {
2653 unsigned i = 0;
2654 vla_group(d);
2655 vla_item(d, struct usb_gadget_strings *, stringtabs,
2656 lang_count + 1);
2657 vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2658 vla_item(d, struct usb_string, strings,
2659 lang_count*(needed_count+1));
2660
2661 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2662
2663 if (unlikely(!vlabuf)) {
2664 kfree(_data);
2665 return -ENOMEM;
2666 }
2667
2668 /* Initialize the VLA pointers */
2669 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2670 t = vla_ptr(vlabuf, d, stringtab);
2671 i = lang_count;
2672 do {
2673 *stringtabs++ = t++;
2674 } while (--i);
2675 *stringtabs = NULL;
2676
2677 /* stringtabs = vlabuf = d_stringtabs for later kfree */
2678 stringtabs = vla_ptr(vlabuf, d, stringtabs);
2679 t = vla_ptr(vlabuf, d, stringtab);
2680 s = vla_ptr(vlabuf, d, strings);
2681 }
2682
2683 /* For each language */
2684 data += 16;
2685 len -= 16;
2686
2687 do { /* lang_count > 0 so we can use do-while */
2688 unsigned needed = needed_count;
2689 u32 str_per_lang = str_count;
2690
2691 if (unlikely(len < 3))
2692 goto error_free;
2693 t->language = get_unaligned_le16(data);
2694 t->strings = s;
2695 ++t;
2696
2697 data += 2;
2698 len -= 2;
2699
2700 /* For each string */
2701 do { /* str_count > 0 so we can use do-while */
2702 size_t length = strnlen(data, len);
2703
2704 if (unlikely(length == len))
2705 goto error_free;
2706
2707 /*
2708 * User may provide more strings then we need,
2709 * if that's the case we simply ignore the
2710 * rest
2711 */
2712 if (likely(needed)) {
2713 /*
2714 * s->id will be set while adding
2715 * function to configuration so for
2716 * now just leave garbage here.
2717 */
2718 s->s = data;
2719 --needed;
2720 ++s;
2721 }
2722
2723 data += length + 1;
2724 len -= length + 1;
2725 } while (--str_per_lang);
2726
2727 s->id = 0; /* terminator */
2728 s->s = NULL;
2729 ++s;
2730
2731 } while (--lang_count);
2732
2733 /* Some garbage left? */
2734 if (unlikely(len))
2735 goto error_free;
2736
2737 /* Done! */
2738 ffs->stringtabs = stringtabs;
2739 ffs->raw_strings = _data;
2740
2741 return 0;
2742
2743 error_free:
2744 kfree(stringtabs);
2745 error:
2746 kfree(_data);
2747 return -EINVAL;
2748 }
2749
2750
2751 /* Events handling and management *******************************************/
2752
__ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2753 static void __ffs_event_add(struct ffs_data *ffs,
2754 enum usb_functionfs_event_type type)
2755 {
2756 enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2757 int neg = 0;
2758
2759 /*
2760 * Abort any unhandled setup
2761 *
2762 * We do not need to worry about some cmpxchg() changing value
2763 * of ffs->setup_state without holding the lock because when
2764 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2765 * the source does nothing.
2766 */
2767 if (ffs->setup_state == FFS_SETUP_PENDING)
2768 ffs->setup_state = FFS_SETUP_CANCELLED;
2769
2770 /*
2771 * Logic of this function guarantees that there are at most four pending
2772 * evens on ffs->ev.types queue. This is important because the queue
2773 * has space for four elements only and __ffs_ep0_read_events function
2774 * depends on that limit as well. If more event types are added, those
2775 * limits have to be revisited or guaranteed to still hold.
2776 */
2777 switch (type) {
2778 case FUNCTIONFS_RESUME:
2779 rem_type2 = FUNCTIONFS_SUSPEND;
2780 fallthrough;
2781 case FUNCTIONFS_SUSPEND:
2782 case FUNCTIONFS_SETUP:
2783 rem_type1 = type;
2784 /* Discard all similar events */
2785 break;
2786
2787 case FUNCTIONFS_BIND:
2788 case FUNCTIONFS_UNBIND:
2789 case FUNCTIONFS_DISABLE:
2790 case FUNCTIONFS_ENABLE:
2791 /* Discard everything other then power management. */
2792 rem_type1 = FUNCTIONFS_SUSPEND;
2793 rem_type2 = FUNCTIONFS_RESUME;
2794 neg = 1;
2795 break;
2796
2797 default:
2798 WARN(1, "%d: unknown event, this should not happen\n", type);
2799 return;
2800 }
2801
2802 {
2803 u8 *ev = ffs->ev.types, *out = ev;
2804 unsigned n = ffs->ev.count;
2805 for (; n; --n, ++ev)
2806 if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2807 *out++ = *ev;
2808 else
2809 pr_vdebug("purging event %d\n", *ev);
2810 ffs->ev.count = out - ffs->ev.types;
2811 }
2812
2813 pr_vdebug("adding event %d\n", type);
2814 ffs->ev.types[ffs->ev.count++] = type;
2815 wake_up_locked(&ffs->ev.waitq);
2816 if (ffs->ffs_eventfd)
2817 eventfd_signal(ffs->ffs_eventfd, 1);
2818 }
2819
ffs_event_add(struct ffs_data * ffs,enum usb_functionfs_event_type type)2820 static void ffs_event_add(struct ffs_data *ffs,
2821 enum usb_functionfs_event_type type)
2822 {
2823 unsigned long flags;
2824 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2825 __ffs_event_add(ffs, type);
2826 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2827 }
2828
2829 /* Bind/unbind USB function hooks *******************************************/
2830
ffs_ep_addr2idx(struct ffs_data * ffs,u8 endpoint_address)2831 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2832 {
2833 int i;
2834
2835 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2836 if (ffs->eps_addrmap[i] == endpoint_address)
2837 return i;
2838 return -ENOENT;
2839 }
2840
__ffs_func_bind_do_descs(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2841 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2842 struct usb_descriptor_header *desc,
2843 void *priv)
2844 {
2845 struct usb_endpoint_descriptor *ds = (void *)desc;
2846 struct ffs_function *func = priv;
2847 struct ffs_ep *ffs_ep;
2848 unsigned ep_desc_id;
2849 int idx, ep_num;
2850 static const char *speed_names[] = { "full", "high", "super" };
2851
2852 if (type != FFS_DESCRIPTOR)
2853 return 0;
2854
2855 /*
2856 * If ss_descriptors is not NULL, we are reading super speed
2857 * descriptors; if hs_descriptors is not NULL, we are reading high
2858 * speed descriptors; otherwise, we are reading full speed
2859 * descriptors.
2860 */
2861 if (func->function.ss_descriptors) {
2862 ep_desc_id = 2;
2863 func->function.ss_descriptors[(long)valuep] = desc;
2864 } else if (func->function.hs_descriptors) {
2865 ep_desc_id = 1;
2866 func->function.hs_descriptors[(long)valuep] = desc;
2867 } else {
2868 ep_desc_id = 0;
2869 func->function.fs_descriptors[(long)valuep] = desc;
2870 }
2871
2872 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2873 return 0;
2874
2875 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2876 if (idx < 0)
2877 return idx;
2878
2879 ffs_ep = func->eps + idx;
2880
2881 if (unlikely(ffs_ep->descs[ep_desc_id])) {
2882 pr_err("two %sspeed descriptors for EP %d\n",
2883 speed_names[ep_desc_id],
2884 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2885 return -EINVAL;
2886 }
2887 ffs_ep->descs[ep_desc_id] = ds;
2888
2889 ffs_dump_mem(": Original ep desc", ds, ds->bLength);
2890 if (ffs_ep->ep) {
2891 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2892 if (!ds->wMaxPacketSize)
2893 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2894 } else {
2895 struct usb_request *req;
2896 struct usb_ep *ep;
2897 u8 bEndpointAddress;
2898 u16 wMaxPacketSize;
2899
2900 /*
2901 * We back up bEndpointAddress because autoconfig overwrites
2902 * it with physical endpoint address.
2903 */
2904 bEndpointAddress = ds->bEndpointAddress;
2905 /*
2906 * We back up wMaxPacketSize because autoconfig treats
2907 * endpoint descriptors as if they were full speed.
2908 */
2909 wMaxPacketSize = ds->wMaxPacketSize;
2910 pr_vdebug("autoconfig\n");
2911 ep = usb_ep_autoconfig(func->gadget, ds);
2912 if (unlikely(!ep))
2913 return -ENOTSUPP;
2914 ep->driver_data = func->eps + idx;
2915
2916 req = usb_ep_alloc_request(ep, GFP_KERNEL);
2917 if (unlikely(!req))
2918 return -ENOMEM;
2919
2920 ffs_ep->ep = ep;
2921 ffs_ep->req = req;
2922 ep_num = ((ds->bEndpointAddress & USB_ENDPOINT_DIR_MASK) >> 3) |
2923 (ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2924 func->eps_revmap[ep_num] = idx + 1;
2925 /*
2926 * If we use virtual address mapping, we restore
2927 * original bEndpointAddress value.
2928 */
2929 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2930 ds->bEndpointAddress = bEndpointAddress;
2931 /*
2932 * Restore wMaxPacketSize which was potentially
2933 * overwritten by autoconfig.
2934 */
2935 ds->wMaxPacketSize = wMaxPacketSize;
2936 }
2937 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2938
2939 return 0;
2940 }
2941
__ffs_func_bind_do_nums(enum ffs_entity_type type,u8 * valuep,struct usb_descriptor_header * desc,void * priv)2942 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2943 struct usb_descriptor_header *desc,
2944 void *priv)
2945 {
2946 struct ffs_function *func = priv;
2947 unsigned idx;
2948 u8 newValue;
2949
2950 switch (type) {
2951 default:
2952 case FFS_DESCRIPTOR:
2953 /* Handled in previous pass by __ffs_func_bind_do_descs() */
2954 return 0;
2955
2956 case FFS_INTERFACE:
2957 idx = *valuep;
2958 if (func->interfaces_nums[idx] < 0) {
2959 int id = usb_interface_id(func->conf, &func->function);
2960 if (unlikely(id < 0))
2961 return id;
2962 func->interfaces_nums[idx] = id;
2963 }
2964 newValue = func->interfaces_nums[idx];
2965 break;
2966
2967 case FFS_STRING:
2968 /* String' IDs are allocated when fsf_data is bound to cdev */
2969 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2970 break;
2971
2972 case FFS_ENDPOINT:
2973 /*
2974 * USB_DT_ENDPOINT are handled in
2975 * __ffs_func_bind_do_descs().
2976 */
2977 if (desc->bDescriptorType == USB_DT_ENDPOINT)
2978 return 0;
2979
2980 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2981 if (unlikely(!func->eps[idx].ep))
2982 return -EINVAL;
2983
2984 {
2985 struct usb_endpoint_descriptor **descs;
2986 descs = func->eps[idx].descs;
2987 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2988 }
2989 break;
2990 }
2991
2992 pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2993 *valuep = newValue;
2994 return 0;
2995 }
2996
__ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,struct usb_os_desc_header * h,void * data,unsigned len,void * priv)2997 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2998 struct usb_os_desc_header *h, void *data,
2999 unsigned len, void *priv)
3000 {
3001 struct ffs_function *func = priv;
3002 u8 length = 0;
3003
3004 switch (type) {
3005 case FFS_OS_DESC_EXT_COMPAT: {
3006 struct usb_ext_compat_desc *desc = data;
3007 struct usb_os_desc_table *t;
3008
3009 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
3010 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
3011 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
3012 ARRAY_SIZE(desc->CompatibleID) +
3013 ARRAY_SIZE(desc->SubCompatibleID));
3014 length = sizeof(*desc);
3015 }
3016 break;
3017 case FFS_OS_DESC_EXT_PROP: {
3018 struct usb_ext_prop_desc *desc = data;
3019 struct usb_os_desc_table *t;
3020 struct usb_os_desc_ext_prop *ext_prop;
3021 char *ext_prop_name;
3022 char *ext_prop_data;
3023
3024 t = &func->function.os_desc_table[h->interface];
3025 t->if_id = func->interfaces_nums[h->interface];
3026
3027 ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
3028 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
3029
3030 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
3031 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
3032 ext_prop->data_len = le32_to_cpu(*(__le32 *)
3033 usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
3034 length = ext_prop->name_len + ext_prop->data_len + 14;
3035
3036 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
3037 func->ffs->ms_os_descs_ext_prop_name_avail +=
3038 ext_prop->name_len;
3039
3040 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
3041 func->ffs->ms_os_descs_ext_prop_data_avail +=
3042 ext_prop->data_len;
3043 memcpy(ext_prop_data,
3044 usb_ext_prop_data_ptr(data, ext_prop->name_len),
3045 ext_prop->data_len);
3046 /* unicode data reported to the host as "WCHAR"s */
3047 switch (ext_prop->type) {
3048 case USB_EXT_PROP_UNICODE:
3049 case USB_EXT_PROP_UNICODE_ENV:
3050 case USB_EXT_PROP_UNICODE_LINK:
3051 case USB_EXT_PROP_UNICODE_MULTI:
3052 ext_prop->data_len *= 2;
3053 break;
3054 }
3055 ext_prop->data = ext_prop_data;
3056
3057 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3058 ext_prop->name_len);
3059 /* property name reported to the host as "WCHAR"s */
3060 ext_prop->name_len *= 2;
3061 ext_prop->name = ext_prop_name;
3062
3063 t->os_desc->ext_prop_len +=
3064 ext_prop->name_len + ext_prop->data_len + 14;
3065 ++t->os_desc->ext_prop_count;
3066 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3067 }
3068 break;
3069 default:
3070 pr_vdebug("unknown descriptor: %d\n", type);
3071 }
3072
3073 return length;
3074 }
3075
ffs_do_functionfs_bind(struct usb_function * f,struct usb_configuration * c)3076 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3077 struct usb_configuration *c)
3078 {
3079 struct ffs_function *func = ffs_func_from_usb(f);
3080 struct f_fs_opts *ffs_opts =
3081 container_of(f->fi, struct f_fs_opts, func_inst);
3082 struct ffs_data *ffs_data;
3083 int ret;
3084
3085 ENTER();
3086
3087 /*
3088 * Legacy gadget triggers binding in functionfs_ready_callback,
3089 * which already uses locking; taking the same lock here would
3090 * cause a deadlock.
3091 *
3092 * Configfs-enabled gadgets however do need ffs_dev_lock.
3093 */
3094 if (!ffs_opts->no_configfs)
3095 ffs_dev_lock();
3096 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3097 ffs_data = ffs_opts->dev->ffs_data;
3098 if (!ffs_opts->no_configfs)
3099 ffs_dev_unlock();
3100 if (ret)
3101 return ERR_PTR(ret);
3102
3103 func->ffs = ffs_data;
3104 func->conf = c;
3105 func->gadget = c->cdev->gadget;
3106
3107 /*
3108 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3109 * configurations are bound in sequence with list_for_each_entry,
3110 * in each configuration its functions are bound in sequence
3111 * with list_for_each_entry, so we assume no race condition
3112 * with regard to ffs_opts->bound access
3113 */
3114 if (!ffs_opts->refcnt) {
3115 ret = functionfs_bind(func->ffs, c->cdev);
3116 if (ret)
3117 return ERR_PTR(ret);
3118 }
3119 ffs_opts->refcnt++;
3120 func->function.strings = func->ffs->stringtabs;
3121
3122 return ffs_opts;
3123 }
3124
_ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3125 static int _ffs_func_bind(struct usb_configuration *c,
3126 struct usb_function *f)
3127 {
3128 struct ffs_function *func = ffs_func_from_usb(f);
3129 struct ffs_data *ffs = func->ffs;
3130
3131 const int full = !!func->ffs->fs_descs_count;
3132 const int high = !!func->ffs->hs_descs_count;
3133 const int super = !!func->ffs->ss_descs_count;
3134
3135 int fs_len, hs_len, ss_len, ret, i;
3136 struct ffs_ep *eps_ptr;
3137
3138 /* Make it a single chunk, less management later on */
3139 vla_group(d);
3140 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3141 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3142 full ? ffs->fs_descs_count + 1 : 0);
3143 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3144 high ? ffs->hs_descs_count + 1 : 0);
3145 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3146 super ? ffs->ss_descs_count + 1 : 0);
3147 vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3148 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3149 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3150 vla_item_with_sz(d, char[16], ext_compat,
3151 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3152 vla_item_with_sz(d, struct usb_os_desc, os_desc,
3153 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3154 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3155 ffs->ms_os_descs_ext_prop_count);
3156 vla_item_with_sz(d, char, ext_prop_name,
3157 ffs->ms_os_descs_ext_prop_name_len);
3158 vla_item_with_sz(d, char, ext_prop_data,
3159 ffs->ms_os_descs_ext_prop_data_len);
3160 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3161 char *vlabuf;
3162
3163 ENTER();
3164
3165 /* Has descriptors only for speeds gadget does not support */
3166 if (unlikely(!(full | high | super)))
3167 return -ENOTSUPP;
3168
3169 /* Allocate a single chunk, less management later on */
3170 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3171 if (unlikely(!vlabuf))
3172 return -ENOMEM;
3173
3174 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3175 ffs->ms_os_descs_ext_prop_name_avail =
3176 vla_ptr(vlabuf, d, ext_prop_name);
3177 ffs->ms_os_descs_ext_prop_data_avail =
3178 vla_ptr(vlabuf, d, ext_prop_data);
3179
3180 /* Copy descriptors */
3181 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3182 ffs->raw_descs_length);
3183
3184 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3185 eps_ptr = vla_ptr(vlabuf, d, eps);
3186 for (i = 0; i < ffs->eps_count; i++)
3187 eps_ptr[i].num = -1;
3188
3189 /* Save pointers
3190 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3191 */
3192 func->eps = vla_ptr(vlabuf, d, eps);
3193 func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3194
3195 /*
3196 * Go through all the endpoint descriptors and allocate
3197 * endpoints first, so that later we can rewrite the endpoint
3198 * numbers without worrying that it may be described later on.
3199 */
3200 if (likely(full)) {
3201 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3202 fs_len = ffs_do_descs(ffs->fs_descs_count,
3203 vla_ptr(vlabuf, d, raw_descs),
3204 d_raw_descs__sz,
3205 __ffs_func_bind_do_descs, func);
3206 if (unlikely(fs_len < 0)) {
3207 ret = fs_len;
3208 goto error;
3209 }
3210 } else {
3211 fs_len = 0;
3212 }
3213
3214 if (likely(high)) {
3215 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3216 hs_len = ffs_do_descs(ffs->hs_descs_count,
3217 vla_ptr(vlabuf, d, raw_descs) + fs_len,
3218 d_raw_descs__sz - fs_len,
3219 __ffs_func_bind_do_descs, func);
3220 if (unlikely(hs_len < 0)) {
3221 ret = hs_len;
3222 goto error;
3223 }
3224 } else {
3225 hs_len = 0;
3226 }
3227
3228 if (likely(super)) {
3229 func->function.ss_descriptors = func->function.ssp_descriptors =
3230 vla_ptr(vlabuf, d, ss_descs);
3231 ss_len = ffs_do_descs(ffs->ss_descs_count,
3232 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3233 d_raw_descs__sz - fs_len - hs_len,
3234 __ffs_func_bind_do_descs, func);
3235 if (unlikely(ss_len < 0)) {
3236 ret = ss_len;
3237 goto error;
3238 }
3239 } else {
3240 ss_len = 0;
3241 }
3242
3243 /*
3244 * Now handle interface numbers allocation and interface and
3245 * endpoint numbers rewriting. We can do that in one go
3246 * now.
3247 */
3248 ret = ffs_do_descs(ffs->fs_descs_count +
3249 (high ? ffs->hs_descs_count : 0) +
3250 (super ? ffs->ss_descs_count : 0),
3251 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3252 __ffs_func_bind_do_nums, func);
3253 if (unlikely(ret < 0))
3254 goto error;
3255
3256 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3257 if (c->cdev->use_os_string) {
3258 for (i = 0; i < ffs->interfaces_count; ++i) {
3259 struct usb_os_desc *desc;
3260
3261 desc = func->function.os_desc_table[i].os_desc =
3262 vla_ptr(vlabuf, d, os_desc) +
3263 i * sizeof(struct usb_os_desc);
3264 desc->ext_compat_id =
3265 vla_ptr(vlabuf, d, ext_compat) + i * 16;
3266 INIT_LIST_HEAD(&desc->ext_prop);
3267 }
3268 ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3269 vla_ptr(vlabuf, d, raw_descs) +
3270 fs_len + hs_len + ss_len,
3271 d_raw_descs__sz - fs_len - hs_len -
3272 ss_len,
3273 __ffs_func_bind_do_os_desc, func);
3274 if (unlikely(ret < 0))
3275 goto error;
3276 }
3277 func->function.os_desc_n =
3278 c->cdev->use_os_string ? ffs->interfaces_count : 0;
3279
3280 /* And we're done */
3281 ffs_event_add(ffs, FUNCTIONFS_BIND);
3282 return 0;
3283
3284 error:
3285 /* XXX Do we need to release all claimed endpoints here? */
3286 return ret;
3287 }
3288
ffs_func_bind(struct usb_configuration * c,struct usb_function * f)3289 static int ffs_func_bind(struct usb_configuration *c,
3290 struct usb_function *f)
3291 {
3292 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3293 struct ffs_function *func = ffs_func_from_usb(f);
3294 int ret;
3295
3296 if (IS_ERR(ffs_opts))
3297 return PTR_ERR(ffs_opts);
3298
3299 ret = _ffs_func_bind(c, f);
3300 if (ret && !--ffs_opts->refcnt)
3301 functionfs_unbind(func->ffs);
3302
3303 return ret;
3304 }
3305
3306
3307 /* Other USB function hooks *************************************************/
3308
ffs_reset_work(struct work_struct * work)3309 static void ffs_reset_work(struct work_struct *work)
3310 {
3311 struct ffs_data *ffs = container_of(work,
3312 struct ffs_data, reset_work);
3313 ffs_data_reset(ffs);
3314 }
3315
ffs_func_set_alt(struct usb_function * f,unsigned interface,unsigned alt)3316 static int ffs_func_set_alt(struct usb_function *f,
3317 unsigned interface, unsigned alt)
3318 {
3319 struct ffs_function *func = ffs_func_from_usb(f);
3320 struct ffs_data *ffs = func->ffs;
3321 int ret = 0, intf;
3322
3323 if (alt != (unsigned)-1) {
3324 intf = ffs_func_revmap_intf(func, interface);
3325 if (unlikely(intf < 0))
3326 return intf;
3327 }
3328
3329 if (ffs->func)
3330 ffs_func_eps_disable(ffs->func);
3331
3332 if (ffs->state == FFS_DEACTIVATED) {
3333 ffs->state = FFS_CLOSING;
3334 INIT_WORK(&ffs->reset_work, ffs_reset_work);
3335 schedule_work(&ffs->reset_work);
3336 return -ENODEV;
3337 }
3338
3339 if (ffs->state != FFS_ACTIVE)
3340 return -ENODEV;
3341
3342 if (alt == (unsigned)-1) {
3343 ffs->func = NULL;
3344 ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3345 return 0;
3346 }
3347
3348 ffs->func = func;
3349 ret = ffs_func_eps_enable(func);
3350 if (likely(ret >= 0))
3351 ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3352 return ret;
3353 }
3354
ffs_func_disable(struct usb_function * f)3355 static void ffs_func_disable(struct usb_function *f)
3356 {
3357 ffs_func_set_alt(f, 0, (unsigned)-1);
3358 }
3359
ffs_func_setup(struct usb_function * f,const struct usb_ctrlrequest * creq)3360 static int ffs_func_setup(struct usb_function *f,
3361 const struct usb_ctrlrequest *creq)
3362 {
3363 struct ffs_function *func = ffs_func_from_usb(f);
3364 struct ffs_data *ffs = func->ffs;
3365 unsigned long flags;
3366 int ret;
3367
3368 ENTER();
3369
3370 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3371 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest);
3372 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue));
3373 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex));
3374 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength));
3375
3376 /*
3377 * Most requests directed to interface go through here
3378 * (notable exceptions are set/get interface) so we need to
3379 * handle them. All other either handled by composite or
3380 * passed to usb_configuration->setup() (if one is set). No
3381 * matter, we will handle requests directed to endpoint here
3382 * as well (as it's straightforward). Other request recipient
3383 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3384 * is being used.
3385 */
3386 if (ffs->state != FFS_ACTIVE)
3387 return -ENODEV;
3388
3389 switch (creq->bRequestType & USB_RECIP_MASK) {
3390 case USB_RECIP_INTERFACE:
3391 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3392 if (unlikely(ret < 0))
3393 return ret;
3394 break;
3395
3396 case USB_RECIP_ENDPOINT:
3397 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3398 if (unlikely(ret < 0))
3399 return ret;
3400 if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3401 ret = func->ffs->eps_addrmap[ret];
3402 break;
3403
3404 default:
3405 if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3406 ret = le16_to_cpu(creq->wIndex);
3407 else
3408 return -EOPNOTSUPP;
3409 }
3410
3411 spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3412 ffs->ev.setup = *creq;
3413 ffs->ev.setup.wIndex = cpu_to_le16(ret);
3414 __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3415 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3416
3417 return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3418 }
3419
ffs_func_req_match(struct usb_function * f,const struct usb_ctrlrequest * creq,bool config0)3420 static bool ffs_func_req_match(struct usb_function *f,
3421 const struct usb_ctrlrequest *creq,
3422 bool config0)
3423 {
3424 struct ffs_function *func = ffs_func_from_usb(f);
3425
3426 if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3427 return false;
3428
3429 switch (creq->bRequestType & USB_RECIP_MASK) {
3430 case USB_RECIP_INTERFACE:
3431 return (ffs_func_revmap_intf(func,
3432 le16_to_cpu(creq->wIndex)) >= 0);
3433 case USB_RECIP_ENDPOINT:
3434 return (ffs_func_revmap_ep(func,
3435 le16_to_cpu(creq->wIndex)) >= 0);
3436 default:
3437 return (bool) (func->ffs->user_flags &
3438 FUNCTIONFS_ALL_CTRL_RECIP);
3439 }
3440 }
3441
ffs_func_suspend(struct usb_function * f)3442 static void ffs_func_suspend(struct usb_function *f)
3443 {
3444 ENTER();
3445 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3446 }
3447
ffs_func_resume(struct usb_function * f)3448 static void ffs_func_resume(struct usb_function *f)
3449 {
3450 ENTER();
3451 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3452 }
3453
3454
3455 /* Endpoint and interface numbers reverse mapping ***************************/
3456
ffs_func_revmap_ep(struct ffs_function * func,u8 num)3457 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3458 {
3459 int ep_num = ((num & USB_ENDPOINT_DIR_MASK) >> 3) |
3460 (num & USB_ENDPOINT_NUMBER_MASK);
3461
3462 num = func->eps_revmap[ep_num];
3463 return num ? num : -EDOM;
3464 }
3465
ffs_func_revmap_intf(struct ffs_function * func,u8 intf)3466 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3467 {
3468 short *nums = func->interfaces_nums;
3469 unsigned count = func->ffs->interfaces_count;
3470
3471 for (; count; --count, ++nums) {
3472 if (*nums >= 0 && *nums == intf)
3473 return nums - func->interfaces_nums;
3474 }
3475
3476 return -EDOM;
3477 }
3478
3479
3480 /* Devices management *******************************************************/
3481
3482 static LIST_HEAD(ffs_devices);
3483
_ffs_do_find_dev(const char * name)3484 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3485 {
3486 struct ffs_dev *dev;
3487
3488 if (!name)
3489 return NULL;
3490
3491 list_for_each_entry(dev, &ffs_devices, entry) {
3492 if (strcmp(dev->name, name) == 0)
3493 return dev;
3494 }
3495
3496 return NULL;
3497 }
3498
3499 /*
3500 * ffs_lock must be taken by the caller of this function
3501 */
_ffs_get_single_dev(void)3502 static struct ffs_dev *_ffs_get_single_dev(void)
3503 {
3504 struct ffs_dev *dev;
3505
3506 if (list_is_singular(&ffs_devices)) {
3507 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3508 if (dev->single)
3509 return dev;
3510 }
3511
3512 return NULL;
3513 }
3514
3515 /*
3516 * ffs_lock must be taken by the caller of this function
3517 */
_ffs_find_dev(const char * name)3518 static struct ffs_dev *_ffs_find_dev(const char *name)
3519 {
3520 struct ffs_dev *dev;
3521
3522 dev = _ffs_get_single_dev();
3523 if (dev)
3524 return dev;
3525
3526 return _ffs_do_find_dev(name);
3527 }
3528
3529 /* Configfs support *********************************************************/
3530
to_ffs_opts(struct config_item * item)3531 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3532 {
3533 return container_of(to_config_group(item), struct f_fs_opts,
3534 func_inst.group);
3535 }
3536
ffs_attr_release(struct config_item * item)3537 static void ffs_attr_release(struct config_item *item)
3538 {
3539 struct f_fs_opts *opts = to_ffs_opts(item);
3540
3541 usb_put_function_instance(&opts->func_inst);
3542 }
3543
3544 static struct configfs_item_operations ffs_item_ops = {
3545 .release = ffs_attr_release,
3546 };
3547
3548 static const struct config_item_type ffs_func_type = {
3549 .ct_item_ops = &ffs_item_ops,
3550 .ct_owner = THIS_MODULE,
3551 };
3552
3553
3554 /* Function registration interface ******************************************/
3555
ffs_free_inst(struct usb_function_instance * f)3556 static void ffs_free_inst(struct usb_function_instance *f)
3557 {
3558 struct f_fs_opts *opts;
3559
3560 opts = to_f_fs_opts(f);
3561 ffs_release_dev(opts->dev);
3562 ffs_dev_lock();
3563 _ffs_free_dev(opts->dev);
3564 ffs_dev_unlock();
3565 kfree(opts);
3566 }
3567
ffs_set_inst_name(struct usb_function_instance * fi,const char * name)3568 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3569 {
3570 if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3571 return -ENAMETOOLONG;
3572 return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3573 }
3574
ffs_alloc_inst(void)3575 static struct usb_function_instance *ffs_alloc_inst(void)
3576 {
3577 struct f_fs_opts *opts;
3578 struct ffs_dev *dev;
3579
3580 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3581 if (!opts)
3582 return ERR_PTR(-ENOMEM);
3583
3584 opts->func_inst.set_inst_name = ffs_set_inst_name;
3585 opts->func_inst.free_func_inst = ffs_free_inst;
3586 ffs_dev_lock();
3587 dev = _ffs_alloc_dev();
3588 ffs_dev_unlock();
3589 if (IS_ERR(dev)) {
3590 kfree(opts);
3591 return ERR_CAST(dev);
3592 }
3593 opts->dev = dev;
3594 dev->opts = opts;
3595
3596 config_group_init_type_name(&opts->func_inst.group, "",
3597 &ffs_func_type);
3598 return &opts->func_inst;
3599 }
3600
ffs_free(struct usb_function * f)3601 static void ffs_free(struct usb_function *f)
3602 {
3603 kfree(ffs_func_from_usb(f));
3604 }
3605
ffs_func_unbind(struct usb_configuration * c,struct usb_function * f)3606 static void ffs_func_unbind(struct usb_configuration *c,
3607 struct usb_function *f)
3608 {
3609 struct ffs_function *func = ffs_func_from_usb(f);
3610 struct ffs_data *ffs = func->ffs;
3611 struct f_fs_opts *opts =
3612 container_of(f->fi, struct f_fs_opts, func_inst);
3613 struct ffs_ep *ep = func->eps;
3614 unsigned count = ffs->eps_count;
3615 unsigned long flags;
3616
3617 ENTER();
3618 if (ffs->func == func) {
3619 ffs_func_eps_disable(func);
3620 ffs->func = NULL;
3621 }
3622
3623 /* Drain any pending AIO completions */
3624 drain_workqueue(ffs->io_completion_wq);
3625
3626 if (!--opts->refcnt)
3627 functionfs_unbind(ffs);
3628
3629 /* cleanup after autoconfig */
3630 spin_lock_irqsave(&func->ffs->eps_lock, flags);
3631 while (count--) {
3632 if (ep->ep && ep->req)
3633 usb_ep_free_request(ep->ep, ep->req);
3634 ep->req = NULL;
3635 ++ep;
3636 }
3637 spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3638 kfree(func->eps);
3639 func->eps = NULL;
3640 /*
3641 * eps, descriptors and interfaces_nums are allocated in the
3642 * same chunk so only one free is required.
3643 */
3644 func->function.fs_descriptors = NULL;
3645 func->function.hs_descriptors = NULL;
3646 func->function.ss_descriptors = NULL;
3647 func->function.ssp_descriptors = NULL;
3648 func->interfaces_nums = NULL;
3649
3650 ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3651 }
3652
ffs_alloc(struct usb_function_instance * fi)3653 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3654 {
3655 struct ffs_function *func;
3656
3657 ENTER();
3658
3659 func = kzalloc(sizeof(*func), GFP_KERNEL);
3660 if (unlikely(!func))
3661 return ERR_PTR(-ENOMEM);
3662
3663 func->function.name = "Function FS Gadget";
3664
3665 func->function.bind = ffs_func_bind;
3666 func->function.unbind = ffs_func_unbind;
3667 func->function.set_alt = ffs_func_set_alt;
3668 func->function.disable = ffs_func_disable;
3669 func->function.setup = ffs_func_setup;
3670 func->function.req_match = ffs_func_req_match;
3671 func->function.suspend = ffs_func_suspend;
3672 func->function.resume = ffs_func_resume;
3673 func->function.free_func = ffs_free;
3674
3675 return &func->function;
3676 }
3677
3678 /*
3679 * ffs_lock must be taken by the caller of this function
3680 */
_ffs_alloc_dev(void)3681 static struct ffs_dev *_ffs_alloc_dev(void)
3682 {
3683 struct ffs_dev *dev;
3684 int ret;
3685
3686 if (_ffs_get_single_dev())
3687 return ERR_PTR(-EBUSY);
3688
3689 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3690 if (!dev)
3691 return ERR_PTR(-ENOMEM);
3692
3693 if (list_empty(&ffs_devices)) {
3694 ret = functionfs_init();
3695 if (ret) {
3696 kfree(dev);
3697 return ERR_PTR(ret);
3698 }
3699 }
3700
3701 list_add(&dev->entry, &ffs_devices);
3702
3703 return dev;
3704 }
3705
ffs_name_dev(struct ffs_dev * dev,const char * name)3706 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3707 {
3708 struct ffs_dev *existing;
3709 int ret = 0;
3710
3711 ffs_dev_lock();
3712
3713 existing = _ffs_do_find_dev(name);
3714 if (!existing)
3715 strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3716 else if (existing != dev)
3717 ret = -EBUSY;
3718
3719 ffs_dev_unlock();
3720
3721 return ret;
3722 }
3723 EXPORT_SYMBOL_GPL(ffs_name_dev);
3724
ffs_single_dev(struct ffs_dev * dev)3725 int ffs_single_dev(struct ffs_dev *dev)
3726 {
3727 int ret;
3728
3729 ret = 0;
3730 ffs_dev_lock();
3731
3732 if (!list_is_singular(&ffs_devices))
3733 ret = -EBUSY;
3734 else
3735 dev->single = true;
3736
3737 ffs_dev_unlock();
3738 return ret;
3739 }
3740 EXPORT_SYMBOL_GPL(ffs_single_dev);
3741
3742 /*
3743 * ffs_lock must be taken by the caller of this function
3744 */
_ffs_free_dev(struct ffs_dev * dev)3745 static void _ffs_free_dev(struct ffs_dev *dev)
3746 {
3747 list_del(&dev->entry);
3748
3749 kfree(dev);
3750 if (list_empty(&ffs_devices))
3751 functionfs_cleanup();
3752 }
3753
ffs_acquire_dev(const char * dev_name,struct ffs_data * ffs_data)3754 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
3755 {
3756 int ret = 0;
3757 struct ffs_dev *ffs_dev;
3758
3759 ENTER();
3760 ffs_dev_lock();
3761
3762 ffs_dev = _ffs_find_dev(dev_name);
3763 if (!ffs_dev) {
3764 ret = -ENOENT;
3765 } else if (ffs_dev->mounted) {
3766 ret = -EBUSY;
3767 } else if (ffs_dev->ffs_acquire_dev_callback &&
3768 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
3769 ret = -ENOENT;
3770 } else {
3771 ffs_dev->mounted = true;
3772 ffs_dev->ffs_data = ffs_data;
3773 ffs_data->private_data = ffs_dev;
3774 }
3775
3776 ffs_dev_unlock();
3777 return ret;
3778 }
3779
ffs_release_dev(struct ffs_dev * ffs_dev)3780 static void ffs_release_dev(struct ffs_dev *ffs_dev)
3781 {
3782 ENTER();
3783 ffs_dev_lock();
3784
3785 if (ffs_dev && ffs_dev->mounted) {
3786 ffs_dev->mounted = false;
3787 if (ffs_dev->ffs_data) {
3788 ffs_dev->ffs_data->private_data = NULL;
3789 ffs_dev->ffs_data = NULL;
3790 }
3791
3792 if (ffs_dev->ffs_release_dev_callback)
3793 ffs_dev->ffs_release_dev_callback(ffs_dev);
3794 }
3795
3796 ffs_dev_unlock();
3797 }
3798
ffs_ready(struct ffs_data * ffs)3799 static int ffs_ready(struct ffs_data *ffs)
3800 {
3801 struct ffs_dev *ffs_obj;
3802 int ret = 0;
3803
3804 ENTER();
3805 ffs_dev_lock();
3806
3807 ffs_obj = ffs->private_data;
3808 if (!ffs_obj) {
3809 ret = -EINVAL;
3810 goto done;
3811 }
3812 if (WARN_ON(ffs_obj->desc_ready)) {
3813 ret = -EBUSY;
3814 goto done;
3815 }
3816
3817 ffs_obj->desc_ready = true;
3818
3819 if (ffs_obj->ffs_ready_callback) {
3820 ret = ffs_obj->ffs_ready_callback(ffs);
3821 if (ret)
3822 goto done;
3823 }
3824
3825 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3826 done:
3827 ffs_dev_unlock();
3828 return ret;
3829 }
3830
ffs_closed(struct ffs_data * ffs)3831 static void ffs_closed(struct ffs_data *ffs)
3832 {
3833 struct ffs_dev *ffs_obj;
3834 struct f_fs_opts *opts;
3835 struct config_item *ci;
3836
3837 ENTER();
3838 ffs_dev_lock();
3839
3840 ffs_obj = ffs->private_data;
3841 if (!ffs_obj)
3842 goto done;
3843
3844 ffs_obj->desc_ready = false;
3845
3846 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3847 ffs_obj->ffs_closed_callback)
3848 ffs_obj->ffs_closed_callback(ffs);
3849
3850 if (ffs_obj->opts)
3851 opts = ffs_obj->opts;
3852 else
3853 goto done;
3854
3855 if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3856 || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3857 goto done;
3858
3859 ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3860 ffs_dev_unlock();
3861
3862 if (test_bit(FFS_FL_BOUND, &ffs->flags))
3863 unregister_gadget_item(ci);
3864 return;
3865 done:
3866 ffs_dev_unlock();
3867 }
3868
3869 /* Misc helper functions ****************************************************/
3870
ffs_mutex_lock(struct mutex * mutex,unsigned nonblock)3871 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3872 {
3873 return nonblock
3874 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3875 : mutex_lock_interruptible(mutex);
3876 }
3877
ffs_prepare_buffer(const char __user * buf,size_t len)3878 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3879 {
3880 char *data;
3881
3882 if (unlikely(!len))
3883 return NULL;
3884
3885 data = kmalloc(len, GFP_KERNEL);
3886 if (unlikely(!data))
3887 return ERR_PTR(-ENOMEM);
3888
3889 if (unlikely(copy_from_user(data, buf, len))) {
3890 kfree(data);
3891 return ERR_PTR(-EFAULT);
3892 }
3893
3894 pr_vdebug("Buffer from user space:\n");
3895 ffs_dump_mem("", data, len);
3896
3897 return data;
3898 }
3899
3900 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3901 MODULE_LICENSE("GPL");
3902 MODULE_AUTHOR("Michal Nazarewicz");
3903