1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 * K. Y. Srinivasan <kys@microsoft.com>
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/wait.h>
13 #include <linux/sched.h>
14 #include <linux/completion.h>
15 #include <linux/string.h>
16 #include <linux/mm.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/hyperv.h>
23 #include <linux/blkdev.h>
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_host.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_tcq.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_devinfo.h>
31 #include <scsi/scsi_dbg.h>
32 #include <scsi/scsi_transport_fc.h>
33 #include <scsi/scsi_transport.h>
34
35 /*
36 * All wire protocol details (storage protocol between the guest and the host)
37 * are consolidated here.
38 *
39 * Begin protocol definitions.
40 */
41
42 /*
43 * Version history:
44 * V1 Beta: 0.1
45 * V1 RC < 2008/1/31: 1.0
46 * V1 RC > 2008/1/31: 2.0
47 * Win7: 4.2
48 * Win8: 5.1
49 * Win8.1: 6.0
50 * Win10: 6.2
51 */
52
53 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_) ((((MAJOR_) & 0xff) << 8) | \
54 (((MINOR_) & 0xff)))
55
56 #define VMSTOR_PROTO_VERSION_WIN6 VMSTOR_PROTO_VERSION(2, 0)
57 #define VMSTOR_PROTO_VERSION_WIN7 VMSTOR_PROTO_VERSION(4, 2)
58 #define VMSTOR_PROTO_VERSION_WIN8 VMSTOR_PROTO_VERSION(5, 1)
59 #define VMSTOR_PROTO_VERSION_WIN8_1 VMSTOR_PROTO_VERSION(6, 0)
60 #define VMSTOR_PROTO_VERSION_WIN10 VMSTOR_PROTO_VERSION(6, 2)
61
62 /* Packet structure describing virtual storage requests. */
63 enum vstor_packet_operation {
64 VSTOR_OPERATION_COMPLETE_IO = 1,
65 VSTOR_OPERATION_REMOVE_DEVICE = 2,
66 VSTOR_OPERATION_EXECUTE_SRB = 3,
67 VSTOR_OPERATION_RESET_LUN = 4,
68 VSTOR_OPERATION_RESET_ADAPTER = 5,
69 VSTOR_OPERATION_RESET_BUS = 6,
70 VSTOR_OPERATION_BEGIN_INITIALIZATION = 7,
71 VSTOR_OPERATION_END_INITIALIZATION = 8,
72 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9,
73 VSTOR_OPERATION_QUERY_PROPERTIES = 10,
74 VSTOR_OPERATION_ENUMERATE_BUS = 11,
75 VSTOR_OPERATION_FCHBA_DATA = 12,
76 VSTOR_OPERATION_CREATE_SUB_CHANNELS = 13,
77 VSTOR_OPERATION_MAXIMUM = 13
78 };
79
80 /*
81 * WWN packet for Fibre Channel HBA
82 */
83
84 struct hv_fc_wwn_packet {
85 u8 primary_active;
86 u8 reserved1[3];
87 u8 primary_port_wwn[8];
88 u8 primary_node_wwn[8];
89 u8 secondary_port_wwn[8];
90 u8 secondary_node_wwn[8];
91 };
92
93
94
95 /*
96 * SRB Flag Bits
97 */
98
99 #define SRB_FLAGS_QUEUE_ACTION_ENABLE 0x00000002
100 #define SRB_FLAGS_DISABLE_DISCONNECT 0x00000004
101 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER 0x00000008
102 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE 0x00000010
103 #define SRB_FLAGS_DISABLE_AUTOSENSE 0x00000020
104 #define SRB_FLAGS_DATA_IN 0x00000040
105 #define SRB_FLAGS_DATA_OUT 0x00000080
106 #define SRB_FLAGS_NO_DATA_TRANSFER 0x00000000
107 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT)
108 #define SRB_FLAGS_NO_QUEUE_FREEZE 0x00000100
109 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE 0x00000200
110 #define SRB_FLAGS_FREE_SENSE_BUFFER 0x00000400
111
112 /*
113 * This flag indicates the request is part of the workflow for processing a D3.
114 */
115 #define SRB_FLAGS_D3_PROCESSING 0x00000800
116 #define SRB_FLAGS_IS_ACTIVE 0x00010000
117 #define SRB_FLAGS_ALLOCATED_FROM_ZONE 0x00020000
118 #define SRB_FLAGS_SGLIST_FROM_POOL 0x00040000
119 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE 0x00080000
120 #define SRB_FLAGS_NO_KEEP_AWAKE 0x00100000
121 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE 0x00200000
122 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT 0x00400000
123 #define SRB_FLAGS_DONT_START_NEXT_PACKET 0x00800000
124 #define SRB_FLAGS_PORT_DRIVER_RESERVED 0x0F000000
125 #define SRB_FLAGS_CLASS_DRIVER_RESERVED 0xF0000000
126
127 #define SP_UNTAGGED ((unsigned char) ~0)
128 #define SRB_SIMPLE_TAG_REQUEST 0x20
129
130 /*
131 * Platform neutral description of a scsi request -
132 * this remains the same across the write regardless of 32/64 bit
133 * note: it's patterned off the SCSI_PASS_THROUGH structure
134 */
135 #define STORVSC_MAX_CMD_LEN 0x10
136
137 #define POST_WIN7_STORVSC_SENSE_BUFFER_SIZE 0x14
138 #define PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE 0x12
139
140 #define STORVSC_SENSE_BUFFER_SIZE 0x14
141 #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14
142
143 /*
144 * Sense buffer size changed in win8; have a run-time
145 * variable to track the size we should use. This value will
146 * likely change during protocol negotiation but it is valid
147 * to start by assuming pre-Win8.
148 */
149 static int sense_buffer_size = PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE;
150
151 /*
152 * The storage protocol version is determined during the
153 * initial exchange with the host. It will indicate which
154 * storage functionality is available in the host.
155 */
156 static int vmstor_proto_version;
157
158 #define STORVSC_LOGGING_NONE 0
159 #define STORVSC_LOGGING_ERROR 1
160 #define STORVSC_LOGGING_WARN 2
161
162 static int logging_level = STORVSC_LOGGING_ERROR;
163 module_param(logging_level, int, S_IRUGO|S_IWUSR);
164 MODULE_PARM_DESC(logging_level,
165 "Logging level, 0 - None, 1 - Error (default), 2 - Warning.");
166
do_logging(int level)167 static inline bool do_logging(int level)
168 {
169 return logging_level >= level;
170 }
171
172 #define storvsc_log(dev, level, fmt, ...) \
173 do { \
174 if (do_logging(level)) \
175 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__); \
176 } while (0)
177
178 struct vmscsi_win8_extension {
179 /*
180 * The following were added in Windows 8
181 */
182 u16 reserve;
183 u8 queue_tag;
184 u8 queue_action;
185 u32 srb_flags;
186 u32 time_out_value;
187 u32 queue_sort_ey;
188 } __packed;
189
190 struct vmscsi_request {
191 u16 length;
192 u8 srb_status;
193 u8 scsi_status;
194
195 u8 port_number;
196 u8 path_id;
197 u8 target_id;
198 u8 lun;
199
200 u8 cdb_length;
201 u8 sense_info_length;
202 u8 data_in;
203 u8 reserved;
204
205 u32 data_transfer_length;
206
207 union {
208 u8 cdb[STORVSC_MAX_CMD_LEN];
209 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE];
210 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING];
211 };
212 /*
213 * The following was added in win8.
214 */
215 struct vmscsi_win8_extension win8_extension;
216
217 } __attribute((packed));
218
219
220 /*
221 * The size of the vmscsi_request has changed in win8. The
222 * additional size is because of new elements added to the
223 * structure. These elements are valid only when we are talking
224 * to a win8 host.
225 * Track the correction to size we need to apply. This value
226 * will likely change during protocol negotiation but it is
227 * valid to start by assuming pre-Win8.
228 */
229 static int vmscsi_size_delta = sizeof(struct vmscsi_win8_extension);
230
231 /*
232 * The list of storage protocols in order of preference.
233 */
234 struct vmstor_protocol {
235 int protocol_version;
236 int sense_buffer_size;
237 int vmscsi_size_delta;
238 };
239
240
241 static const struct vmstor_protocol vmstor_protocols[] = {
242 {
243 VMSTOR_PROTO_VERSION_WIN10,
244 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
245 0
246 },
247 {
248 VMSTOR_PROTO_VERSION_WIN8_1,
249 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
250 0
251 },
252 {
253 VMSTOR_PROTO_VERSION_WIN8,
254 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
255 0
256 },
257 {
258 VMSTOR_PROTO_VERSION_WIN7,
259 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE,
260 sizeof(struct vmscsi_win8_extension),
261 },
262 {
263 VMSTOR_PROTO_VERSION_WIN6,
264 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE,
265 sizeof(struct vmscsi_win8_extension),
266 }
267 };
268
269
270 /*
271 * This structure is sent during the initialization phase to get the different
272 * properties of the channel.
273 */
274
275 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL 0x1
276
277 struct vmstorage_channel_properties {
278 u32 reserved;
279 u16 max_channel_cnt;
280 u16 reserved1;
281
282 u32 flags;
283 u32 max_transfer_bytes;
284
285 u64 reserved2;
286 } __packed;
287
288 /* This structure is sent during the storage protocol negotiations. */
289 struct vmstorage_protocol_version {
290 /* Major (MSW) and minor (LSW) version numbers. */
291 u16 major_minor;
292
293 /*
294 * Revision number is auto-incremented whenever this file is changed
295 * (See FILL_VMSTOR_REVISION macro above). Mismatch does not
296 * definitely indicate incompatibility--but it does indicate mismatched
297 * builds.
298 * This is only used on the windows side. Just set it to 0.
299 */
300 u16 revision;
301 } __packed;
302
303 /* Channel Property Flags */
304 #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1
305 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2
306
307 struct vstor_packet {
308 /* Requested operation type */
309 enum vstor_packet_operation operation;
310
311 /* Flags - see below for values */
312 u32 flags;
313
314 /* Status of the request returned from the server side. */
315 u32 status;
316
317 /* Data payload area */
318 union {
319 /*
320 * Structure used to forward SCSI commands from the
321 * client to the server.
322 */
323 struct vmscsi_request vm_srb;
324
325 /* Structure used to query channel properties. */
326 struct vmstorage_channel_properties storage_channel_properties;
327
328 /* Used during version negotiations. */
329 struct vmstorage_protocol_version version;
330
331 /* Fibre channel address packet */
332 struct hv_fc_wwn_packet wwn_packet;
333
334 /* Number of sub-channels to create */
335 u16 sub_channel_count;
336
337 /* This will be the maximum of the union members */
338 u8 buffer[0x34];
339 };
340 } __packed;
341
342 /*
343 * Packet Flags:
344 *
345 * This flag indicates that the server should send back a completion for this
346 * packet.
347 */
348
349 #define REQUEST_COMPLETION_FLAG 0x1
350
351 /* Matches Windows-end */
352 enum storvsc_request_type {
353 WRITE_TYPE = 0,
354 READ_TYPE,
355 UNKNOWN_TYPE,
356 };
357
358 /*
359 * SRB status codes and masks. In the 8-bit field, the two high order bits
360 * are flags, while the remaining 6 bits are an integer status code. The
361 * definitions here include only the subset of the integer status codes that
362 * are tested for in this driver.
363 */
364 #define SRB_STATUS_AUTOSENSE_VALID 0x80
365 #define SRB_STATUS_QUEUE_FROZEN 0x40
366
367 /* SRB status integer codes */
368 #define SRB_STATUS_SUCCESS 0x01
369 #define SRB_STATUS_ABORTED 0x02
370 #define SRB_STATUS_ERROR 0x04
371 #define SRB_STATUS_INVALID_REQUEST 0x06
372 #define SRB_STATUS_DATA_OVERRUN 0x12
373 #define SRB_STATUS_INVALID_LUN 0x20
374
375 #define SRB_STATUS(status) \
376 (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN))
377 /*
378 * This is the end of Protocol specific defines.
379 */
380
381 static int storvsc_ringbuffer_size = (128 * 1024);
382 static u32 max_outstanding_req_per_channel;
383 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth);
384
385 static int storvsc_vcpus_per_sub_channel = 4;
386
387 module_param(storvsc_ringbuffer_size, int, S_IRUGO);
388 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)");
389
390 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO);
391 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels");
392
393 static int ring_avail_percent_lowater = 10;
394 module_param(ring_avail_percent_lowater, int, S_IRUGO);
395 MODULE_PARM_DESC(ring_avail_percent_lowater,
396 "Select a channel if available ring size > this in percent");
397
398 /*
399 * Timeout in seconds for all devices managed by this driver.
400 */
401 static int storvsc_timeout = 180;
402
403 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
404 static struct scsi_transport_template *fc_transport_template;
405 #endif
406
407 static void storvsc_on_channel_callback(void *context);
408
409 #define STORVSC_MAX_LUNS_PER_TARGET 255
410 #define STORVSC_MAX_TARGETS 2
411 #define STORVSC_MAX_CHANNELS 8
412
413 #define STORVSC_FC_MAX_LUNS_PER_TARGET 255
414 #define STORVSC_FC_MAX_TARGETS 128
415 #define STORVSC_FC_MAX_CHANNELS 8
416
417 #define STORVSC_IDE_MAX_LUNS_PER_TARGET 64
418 #define STORVSC_IDE_MAX_TARGETS 1
419 #define STORVSC_IDE_MAX_CHANNELS 1
420
421 struct storvsc_cmd_request {
422 struct scsi_cmnd *cmd;
423
424 struct hv_device *device;
425
426 /* Synchronize the request/response if needed */
427 struct completion wait_event;
428
429 struct vmbus_channel_packet_multipage_buffer mpb;
430 struct vmbus_packet_mpb_array *payload;
431 u32 payload_sz;
432
433 struct vstor_packet vstor_packet;
434 };
435
436
437 /* A storvsc device is a device object that contains a vmbus channel */
438 struct storvsc_device {
439 struct hv_device *device;
440
441 bool destroy;
442 bool drain_notify;
443 atomic_t num_outstanding_req;
444 struct Scsi_Host *host;
445
446 wait_queue_head_t waiting_to_drain;
447
448 /*
449 * Each unique Port/Path/Target represents 1 channel ie scsi
450 * controller. In reality, the pathid, targetid is always 0
451 * and the port is set by us
452 */
453 unsigned int port_number;
454 unsigned char path_id;
455 unsigned char target_id;
456
457 /*
458 * Max I/O, the device can support.
459 */
460 u32 max_transfer_bytes;
461 /*
462 * Number of sub-channels we will open.
463 */
464 u16 num_sc;
465 struct vmbus_channel **stor_chns;
466 /*
467 * Mask of CPUs bound to subchannels.
468 */
469 struct cpumask alloced_cpus;
470 /*
471 * Serializes modifications of stor_chns[] from storvsc_do_io()
472 * and storvsc_change_target_cpu().
473 */
474 spinlock_t lock;
475 /* Used for vsc/vsp channel reset process */
476 struct storvsc_cmd_request init_request;
477 struct storvsc_cmd_request reset_request;
478 /*
479 * Currently active port and node names for FC devices.
480 */
481 u64 node_name;
482 u64 port_name;
483 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
484 struct fc_rport *rport;
485 #endif
486 };
487
488 struct hv_host_device {
489 struct hv_device *dev;
490 unsigned int port;
491 unsigned char path;
492 unsigned char target;
493 struct workqueue_struct *handle_error_wq;
494 struct work_struct host_scan_work;
495 struct Scsi_Host *host;
496 };
497
498 struct storvsc_scan_work {
499 struct work_struct work;
500 struct Scsi_Host *host;
501 u8 lun;
502 u8 tgt_id;
503 };
504
storvsc_device_scan(struct work_struct * work)505 static void storvsc_device_scan(struct work_struct *work)
506 {
507 struct storvsc_scan_work *wrk;
508 struct scsi_device *sdev;
509
510 wrk = container_of(work, struct storvsc_scan_work, work);
511
512 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
513 if (!sdev)
514 goto done;
515 scsi_rescan_device(&sdev->sdev_gendev);
516 scsi_device_put(sdev);
517
518 done:
519 kfree(wrk);
520 }
521
storvsc_host_scan(struct work_struct * work)522 static void storvsc_host_scan(struct work_struct *work)
523 {
524 struct Scsi_Host *host;
525 struct scsi_device *sdev;
526 struct hv_host_device *host_device =
527 container_of(work, struct hv_host_device, host_scan_work);
528
529 host = host_device->host;
530 /*
531 * Before scanning the host, first check to see if any of the
532 * currrently known devices have been hot removed. We issue a
533 * "unit ready" command against all currently known devices.
534 * This I/O will result in an error for devices that have been
535 * removed. As part of handling the I/O error, we remove the device.
536 *
537 * When a LUN is added or removed, the host sends us a signal to
538 * scan the host. Thus we are forced to discover the LUNs that
539 * may have been removed this way.
540 */
541 mutex_lock(&host->scan_mutex);
542 shost_for_each_device(sdev, host)
543 scsi_test_unit_ready(sdev, 1, 1, NULL);
544 mutex_unlock(&host->scan_mutex);
545 /*
546 * Now scan the host to discover LUNs that may have been added.
547 */
548 scsi_scan_host(host);
549 }
550
storvsc_remove_lun(struct work_struct * work)551 static void storvsc_remove_lun(struct work_struct *work)
552 {
553 struct storvsc_scan_work *wrk;
554 struct scsi_device *sdev;
555
556 wrk = container_of(work, struct storvsc_scan_work, work);
557 if (!scsi_host_get(wrk->host))
558 goto done;
559
560 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
561
562 if (sdev) {
563 scsi_remove_device(sdev);
564 scsi_device_put(sdev);
565 }
566 scsi_host_put(wrk->host);
567
568 done:
569 kfree(wrk);
570 }
571
572
573 /*
574 * We can get incoming messages from the host that are not in response to
575 * messages that we have sent out. An example of this would be messages
576 * received by the guest to notify dynamic addition/removal of LUNs. To
577 * deal with potential race conditions where the driver may be in the
578 * midst of being unloaded when we might receive an unsolicited message
579 * from the host, we have implemented a mechanism to gurantee sequential
580 * consistency:
581 *
582 * 1) Once the device is marked as being destroyed, we will fail all
583 * outgoing messages.
584 * 2) We permit incoming messages when the device is being destroyed,
585 * only to properly account for messages already sent out.
586 */
587
get_out_stor_device(struct hv_device * device)588 static inline struct storvsc_device *get_out_stor_device(
589 struct hv_device *device)
590 {
591 struct storvsc_device *stor_device;
592
593 stor_device = hv_get_drvdata(device);
594
595 if (stor_device && stor_device->destroy)
596 stor_device = NULL;
597
598 return stor_device;
599 }
600
601
storvsc_wait_to_drain(struct storvsc_device * dev)602 static inline void storvsc_wait_to_drain(struct storvsc_device *dev)
603 {
604 dev->drain_notify = true;
605 wait_event(dev->waiting_to_drain,
606 atomic_read(&dev->num_outstanding_req) == 0);
607 dev->drain_notify = false;
608 }
609
get_in_stor_device(struct hv_device * device)610 static inline struct storvsc_device *get_in_stor_device(
611 struct hv_device *device)
612 {
613 struct storvsc_device *stor_device;
614
615 stor_device = hv_get_drvdata(device);
616
617 if (!stor_device)
618 goto get_in_err;
619
620 /*
621 * If the device is being destroyed; allow incoming
622 * traffic only to cleanup outstanding requests.
623 */
624
625 if (stor_device->destroy &&
626 (atomic_read(&stor_device->num_outstanding_req) == 0))
627 stor_device = NULL;
628
629 get_in_err:
630 return stor_device;
631
632 }
633
storvsc_change_target_cpu(struct vmbus_channel * channel,u32 old,u32 new)634 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old,
635 u32 new)
636 {
637 struct storvsc_device *stor_device;
638 struct vmbus_channel *cur_chn;
639 bool old_is_alloced = false;
640 struct hv_device *device;
641 unsigned long flags;
642 int cpu;
643
644 device = channel->primary_channel ?
645 channel->primary_channel->device_obj
646 : channel->device_obj;
647 stor_device = get_out_stor_device(device);
648 if (!stor_device)
649 return;
650
651 /* See storvsc_do_io() -> get_og_chn(). */
652 spin_lock_irqsave(&stor_device->lock, flags);
653
654 /*
655 * Determines if the storvsc device has other channels assigned to
656 * the "old" CPU to update the alloced_cpus mask and the stor_chns
657 * array.
658 */
659 if (device->channel != channel && device->channel->target_cpu == old) {
660 cur_chn = device->channel;
661 old_is_alloced = true;
662 goto old_is_alloced;
663 }
664 list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) {
665 if (cur_chn == channel)
666 continue;
667 if (cur_chn->target_cpu == old) {
668 old_is_alloced = true;
669 goto old_is_alloced;
670 }
671 }
672
673 old_is_alloced:
674 if (old_is_alloced)
675 WRITE_ONCE(stor_device->stor_chns[old], cur_chn);
676 else
677 cpumask_clear_cpu(old, &stor_device->alloced_cpus);
678
679 /* "Flush" the stor_chns array. */
680 for_each_possible_cpu(cpu) {
681 if (stor_device->stor_chns[cpu] && !cpumask_test_cpu(
682 cpu, &stor_device->alloced_cpus))
683 WRITE_ONCE(stor_device->stor_chns[cpu], NULL);
684 }
685
686 WRITE_ONCE(stor_device->stor_chns[new], channel);
687 cpumask_set_cpu(new, &stor_device->alloced_cpus);
688
689 spin_unlock_irqrestore(&stor_device->lock, flags);
690 }
691
handle_sc_creation(struct vmbus_channel * new_sc)692 static void handle_sc_creation(struct vmbus_channel *new_sc)
693 {
694 struct hv_device *device = new_sc->primary_channel->device_obj;
695 struct device *dev = &device->device;
696 struct storvsc_device *stor_device;
697 struct vmstorage_channel_properties props;
698 int ret;
699
700 stor_device = get_out_stor_device(device);
701 if (!stor_device)
702 return;
703
704 memset(&props, 0, sizeof(struct vmstorage_channel_properties));
705
706 ret = vmbus_open(new_sc,
707 storvsc_ringbuffer_size,
708 storvsc_ringbuffer_size,
709 (void *)&props,
710 sizeof(struct vmstorage_channel_properties),
711 storvsc_on_channel_callback, new_sc);
712
713 /* In case vmbus_open() fails, we don't use the sub-channel. */
714 if (ret != 0) {
715 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret);
716 return;
717 }
718
719 new_sc->change_target_cpu_callback = storvsc_change_target_cpu;
720
721 /* Add the sub-channel to the array of available channels. */
722 stor_device->stor_chns[new_sc->target_cpu] = new_sc;
723 cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus);
724 }
725
handle_multichannel_storage(struct hv_device * device,int max_chns)726 static void handle_multichannel_storage(struct hv_device *device, int max_chns)
727 {
728 struct device *dev = &device->device;
729 struct storvsc_device *stor_device;
730 int num_sc;
731 struct storvsc_cmd_request *request;
732 struct vstor_packet *vstor_packet;
733 int ret, t;
734
735 /*
736 * If the number of CPUs is artificially restricted, such as
737 * with maxcpus=1 on the kernel boot line, Hyper-V could offer
738 * sub-channels >= the number of CPUs. These sub-channels
739 * should not be created. The primary channel is already created
740 * and assigned to one CPU, so check against # CPUs - 1.
741 */
742 num_sc = min((int)(num_online_cpus() - 1), max_chns);
743 if (!num_sc)
744 return;
745
746 stor_device = get_out_stor_device(device);
747 if (!stor_device)
748 return;
749
750 stor_device->num_sc = num_sc;
751 request = &stor_device->init_request;
752 vstor_packet = &request->vstor_packet;
753
754 /*
755 * Establish a handler for dealing with subchannels.
756 */
757 vmbus_set_sc_create_callback(device->channel, handle_sc_creation);
758
759 /*
760 * Request the host to create sub-channels.
761 */
762 memset(request, 0, sizeof(struct storvsc_cmd_request));
763 init_completion(&request->wait_event);
764 vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS;
765 vstor_packet->flags = REQUEST_COMPLETION_FLAG;
766 vstor_packet->sub_channel_count = num_sc;
767
768 ret = vmbus_sendpacket(device->channel, vstor_packet,
769 (sizeof(struct vstor_packet) -
770 vmscsi_size_delta),
771 (unsigned long)request,
772 VM_PKT_DATA_INBAND,
773 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
774
775 if (ret != 0) {
776 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret);
777 return;
778 }
779
780 t = wait_for_completion_timeout(&request->wait_event, 10*HZ);
781 if (t == 0) {
782 dev_err(dev, "Failed to create sub-channel: timed out\n");
783 return;
784 }
785
786 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
787 vstor_packet->status != 0) {
788 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n",
789 vstor_packet->operation, vstor_packet->status);
790 return;
791 }
792
793 /*
794 * We need to do nothing here, because vmbus_process_offer()
795 * invokes channel->sc_creation_callback, which will open and use
796 * the sub-channel(s).
797 */
798 }
799
cache_wwn(struct storvsc_device * stor_device,struct vstor_packet * vstor_packet)800 static void cache_wwn(struct storvsc_device *stor_device,
801 struct vstor_packet *vstor_packet)
802 {
803 /*
804 * Cache the currently active port and node ww names.
805 */
806 if (vstor_packet->wwn_packet.primary_active) {
807 stor_device->node_name =
808 wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn);
809 stor_device->port_name =
810 wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn);
811 } else {
812 stor_device->node_name =
813 wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn);
814 stor_device->port_name =
815 wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn);
816 }
817 }
818
819
storvsc_execute_vstor_op(struct hv_device * device,struct storvsc_cmd_request * request,bool status_check)820 static int storvsc_execute_vstor_op(struct hv_device *device,
821 struct storvsc_cmd_request *request,
822 bool status_check)
823 {
824 struct vstor_packet *vstor_packet;
825 int ret, t;
826
827 vstor_packet = &request->vstor_packet;
828
829 init_completion(&request->wait_event);
830 vstor_packet->flags = REQUEST_COMPLETION_FLAG;
831
832 ret = vmbus_sendpacket(device->channel, vstor_packet,
833 (sizeof(struct vstor_packet) -
834 vmscsi_size_delta),
835 (unsigned long)request,
836 VM_PKT_DATA_INBAND,
837 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
838 if (ret != 0)
839 return ret;
840
841 t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
842 if (t == 0)
843 return -ETIMEDOUT;
844
845 if (!status_check)
846 return ret;
847
848 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
849 vstor_packet->status != 0)
850 return -EINVAL;
851
852 return ret;
853 }
854
storvsc_channel_init(struct hv_device * device,bool is_fc)855 static int storvsc_channel_init(struct hv_device *device, bool is_fc)
856 {
857 struct storvsc_device *stor_device;
858 struct storvsc_cmd_request *request;
859 struct vstor_packet *vstor_packet;
860 int ret, i;
861 int max_chns;
862 bool process_sub_channels = false;
863
864 stor_device = get_out_stor_device(device);
865 if (!stor_device)
866 return -ENODEV;
867
868 request = &stor_device->init_request;
869 vstor_packet = &request->vstor_packet;
870
871 /*
872 * Now, initiate the vsc/vsp initialization protocol on the open
873 * channel
874 */
875 memset(request, 0, sizeof(struct storvsc_cmd_request));
876 vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION;
877 ret = storvsc_execute_vstor_op(device, request, true);
878 if (ret)
879 return ret;
880 /*
881 * Query host supported protocol version.
882 */
883
884 for (i = 0; i < ARRAY_SIZE(vmstor_protocols); i++) {
885 /* reuse the packet for version range supported */
886 memset(vstor_packet, 0, sizeof(struct vstor_packet));
887 vstor_packet->operation =
888 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION;
889
890 vstor_packet->version.major_minor =
891 vmstor_protocols[i].protocol_version;
892
893 /*
894 * The revision number is only used in Windows; set it to 0.
895 */
896 vstor_packet->version.revision = 0;
897 ret = storvsc_execute_vstor_op(device, request, false);
898 if (ret != 0)
899 return ret;
900
901 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO)
902 return -EINVAL;
903
904 if (vstor_packet->status == 0) {
905 vmstor_proto_version =
906 vmstor_protocols[i].protocol_version;
907
908 sense_buffer_size =
909 vmstor_protocols[i].sense_buffer_size;
910
911 vmscsi_size_delta =
912 vmstor_protocols[i].vmscsi_size_delta;
913
914 break;
915 }
916 }
917
918 if (vstor_packet->status != 0)
919 return -EINVAL;
920
921
922 memset(vstor_packet, 0, sizeof(struct vstor_packet));
923 vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES;
924 ret = storvsc_execute_vstor_op(device, request, true);
925 if (ret != 0)
926 return ret;
927
928 /*
929 * Check to see if multi-channel support is there.
930 * Hosts that implement protocol version of 5.1 and above
931 * support multi-channel.
932 */
933 max_chns = vstor_packet->storage_channel_properties.max_channel_cnt;
934
935 /*
936 * Allocate state to manage the sub-channels.
937 * We allocate an array based on the numbers of possible CPUs
938 * (Hyper-V does not support cpu online/offline).
939 * This Array will be sparseley populated with unique
940 * channels - primary + sub-channels.
941 * We will however populate all the slots to evenly distribute
942 * the load.
943 */
944 stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *),
945 GFP_KERNEL);
946 if (stor_device->stor_chns == NULL)
947 return -ENOMEM;
948
949 device->channel->change_target_cpu_callback = storvsc_change_target_cpu;
950
951 stor_device->stor_chns[device->channel->target_cpu] = device->channel;
952 cpumask_set_cpu(device->channel->target_cpu,
953 &stor_device->alloced_cpus);
954
955 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN8) {
956 if (vstor_packet->storage_channel_properties.flags &
957 STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL)
958 process_sub_channels = true;
959 }
960 stor_device->max_transfer_bytes =
961 vstor_packet->storage_channel_properties.max_transfer_bytes;
962
963 if (!is_fc)
964 goto done;
965
966 /*
967 * For FC devices retrieve FC HBA data.
968 */
969 memset(vstor_packet, 0, sizeof(struct vstor_packet));
970 vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA;
971 ret = storvsc_execute_vstor_op(device, request, true);
972 if (ret != 0)
973 return ret;
974
975 /*
976 * Cache the currently active port and node ww names.
977 */
978 cache_wwn(stor_device, vstor_packet);
979
980 done:
981
982 memset(vstor_packet, 0, sizeof(struct vstor_packet));
983 vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION;
984 ret = storvsc_execute_vstor_op(device, request, true);
985 if (ret != 0)
986 return ret;
987
988 if (process_sub_channels)
989 handle_multichannel_storage(device, max_chns);
990
991 return ret;
992 }
993
storvsc_handle_error(struct vmscsi_request * vm_srb,struct scsi_cmnd * scmnd,struct Scsi_Host * host,u8 asc,u8 ascq)994 static void storvsc_handle_error(struct vmscsi_request *vm_srb,
995 struct scsi_cmnd *scmnd,
996 struct Scsi_Host *host,
997 u8 asc, u8 ascq)
998 {
999 struct storvsc_scan_work *wrk;
1000 void (*process_err_fn)(struct work_struct *work);
1001 struct hv_host_device *host_dev = shost_priv(host);
1002
1003 switch (SRB_STATUS(vm_srb->srb_status)) {
1004 case SRB_STATUS_ERROR:
1005 case SRB_STATUS_ABORTED:
1006 case SRB_STATUS_INVALID_REQUEST:
1007 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) {
1008 /* Check for capacity change */
1009 if ((asc == 0x2a) && (ascq == 0x9)) {
1010 process_err_fn = storvsc_device_scan;
1011 /* Retry the I/O that triggered this. */
1012 set_host_byte(scmnd, DID_REQUEUE);
1013 goto do_work;
1014 }
1015
1016 /*
1017 * Otherwise, let upper layer deal with the
1018 * error when sense message is present
1019 */
1020 return;
1021 }
1022
1023 /*
1024 * If there is an error; offline the device since all
1025 * error recovery strategies would have already been
1026 * deployed on the host side. However, if the command
1027 * were a pass-through command deal with it appropriately.
1028 */
1029 switch (scmnd->cmnd[0]) {
1030 case ATA_16:
1031 case ATA_12:
1032 set_host_byte(scmnd, DID_PASSTHROUGH);
1033 break;
1034 /*
1035 * On some Hyper-V hosts TEST_UNIT_READY command can
1036 * return SRB_STATUS_ERROR. Let the upper level code
1037 * deal with it based on the sense information.
1038 */
1039 case TEST_UNIT_READY:
1040 break;
1041 default:
1042 set_host_byte(scmnd, DID_ERROR);
1043 }
1044 return;
1045
1046 case SRB_STATUS_INVALID_LUN:
1047 set_host_byte(scmnd, DID_NO_CONNECT);
1048 process_err_fn = storvsc_remove_lun;
1049 goto do_work;
1050
1051 }
1052 return;
1053
1054 do_work:
1055 /*
1056 * We need to schedule work to process this error; schedule it.
1057 */
1058 wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC);
1059 if (!wrk) {
1060 set_host_byte(scmnd, DID_TARGET_FAILURE);
1061 return;
1062 }
1063
1064 wrk->host = host;
1065 wrk->lun = vm_srb->lun;
1066 wrk->tgt_id = vm_srb->target_id;
1067 INIT_WORK(&wrk->work, process_err_fn);
1068 queue_work(host_dev->handle_error_wq, &wrk->work);
1069 }
1070
1071
storvsc_command_completion(struct storvsc_cmd_request * cmd_request,struct storvsc_device * stor_dev)1072 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request,
1073 struct storvsc_device *stor_dev)
1074 {
1075 struct scsi_cmnd *scmnd = cmd_request->cmd;
1076 struct scsi_sense_hdr sense_hdr;
1077 struct vmscsi_request *vm_srb;
1078 u32 data_transfer_length;
1079 struct Scsi_Host *host;
1080 u32 payload_sz = cmd_request->payload_sz;
1081 void *payload = cmd_request->payload;
1082
1083 host = stor_dev->host;
1084
1085 vm_srb = &cmd_request->vstor_packet.vm_srb;
1086 data_transfer_length = vm_srb->data_transfer_length;
1087
1088 scmnd->result = vm_srb->scsi_status;
1089
1090 if (scmnd->result) {
1091 if (scsi_normalize_sense(scmnd->sense_buffer,
1092 SCSI_SENSE_BUFFERSIZE, &sense_hdr) &&
1093 !(sense_hdr.sense_key == NOT_READY &&
1094 sense_hdr.asc == 0x03A) &&
1095 do_logging(STORVSC_LOGGING_ERROR))
1096 scsi_print_sense_hdr(scmnd->device, "storvsc",
1097 &sense_hdr);
1098 }
1099
1100 if (vm_srb->srb_status != SRB_STATUS_SUCCESS) {
1101 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc,
1102 sense_hdr.ascq);
1103 /*
1104 * The Windows driver set data_transfer_length on
1105 * SRB_STATUS_DATA_OVERRUN. On other errors, this value
1106 * is untouched. In these cases we set it to 0.
1107 */
1108 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN)
1109 data_transfer_length = 0;
1110 }
1111
1112 /* Validate data_transfer_length (from Hyper-V) */
1113 if (data_transfer_length > cmd_request->payload->range.len)
1114 data_transfer_length = cmd_request->payload->range.len;
1115
1116 scsi_set_resid(scmnd,
1117 cmd_request->payload->range.len - data_transfer_length);
1118
1119 scmnd->scsi_done(scmnd);
1120
1121 if (payload_sz >
1122 sizeof(struct vmbus_channel_packet_multipage_buffer))
1123 kfree(payload);
1124 }
1125
storvsc_on_io_completion(struct storvsc_device * stor_device,struct vstor_packet * vstor_packet,struct storvsc_cmd_request * request)1126 static void storvsc_on_io_completion(struct storvsc_device *stor_device,
1127 struct vstor_packet *vstor_packet,
1128 struct storvsc_cmd_request *request)
1129 {
1130 struct vstor_packet *stor_pkt;
1131 struct hv_device *device = stor_device->device;
1132
1133 stor_pkt = &request->vstor_packet;
1134
1135 /*
1136 * The current SCSI handling on the host side does
1137 * not correctly handle:
1138 * INQUIRY command with page code parameter set to 0x80
1139 * MODE_SENSE command with cmd[2] == 0x1c
1140 *
1141 * Setup srb and scsi status so this won't be fatal.
1142 * We do this so we can distinguish truly fatal failues
1143 * (srb status == 0x4) and off-line the device in that case.
1144 */
1145
1146 if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) ||
1147 (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) {
1148 vstor_packet->vm_srb.scsi_status = 0;
1149 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS;
1150 }
1151
1152
1153 /* Copy over the status...etc */
1154 stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status;
1155 stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status;
1156
1157 /* Validate sense_info_length (from Hyper-V) */
1158 if (vstor_packet->vm_srb.sense_info_length > sense_buffer_size)
1159 vstor_packet->vm_srb.sense_info_length = sense_buffer_size;
1160
1161 stor_pkt->vm_srb.sense_info_length =
1162 vstor_packet->vm_srb.sense_info_length;
1163
1164 if (vstor_packet->vm_srb.scsi_status != 0 ||
1165 vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS)
1166 storvsc_log(device, STORVSC_LOGGING_WARN,
1167 "cmd 0x%x scsi status 0x%x srb status 0x%x\n",
1168 stor_pkt->vm_srb.cdb[0],
1169 vstor_packet->vm_srb.scsi_status,
1170 vstor_packet->vm_srb.srb_status);
1171
1172 if ((vstor_packet->vm_srb.scsi_status & 0xFF) == 0x02) {
1173 /* CHECK_CONDITION */
1174 if (vstor_packet->vm_srb.srb_status &
1175 SRB_STATUS_AUTOSENSE_VALID) {
1176 /* autosense data available */
1177
1178 storvsc_log(device, STORVSC_LOGGING_WARN,
1179 "stor pkt %p autosense data valid - len %d\n",
1180 request, vstor_packet->vm_srb.sense_info_length);
1181
1182 memcpy(request->cmd->sense_buffer,
1183 vstor_packet->vm_srb.sense_data,
1184 vstor_packet->vm_srb.sense_info_length);
1185
1186 }
1187 }
1188
1189 stor_pkt->vm_srb.data_transfer_length =
1190 vstor_packet->vm_srb.data_transfer_length;
1191
1192 storvsc_command_completion(request, stor_device);
1193
1194 if (atomic_dec_and_test(&stor_device->num_outstanding_req) &&
1195 stor_device->drain_notify)
1196 wake_up(&stor_device->waiting_to_drain);
1197
1198
1199 }
1200
storvsc_on_receive(struct storvsc_device * stor_device,struct vstor_packet * vstor_packet,struct storvsc_cmd_request * request)1201 static void storvsc_on_receive(struct storvsc_device *stor_device,
1202 struct vstor_packet *vstor_packet,
1203 struct storvsc_cmd_request *request)
1204 {
1205 struct hv_host_device *host_dev;
1206 switch (vstor_packet->operation) {
1207 case VSTOR_OPERATION_COMPLETE_IO:
1208 storvsc_on_io_completion(stor_device, vstor_packet, request);
1209 break;
1210
1211 case VSTOR_OPERATION_REMOVE_DEVICE:
1212 case VSTOR_OPERATION_ENUMERATE_BUS:
1213 host_dev = shost_priv(stor_device->host);
1214 queue_work(
1215 host_dev->handle_error_wq, &host_dev->host_scan_work);
1216 break;
1217
1218 case VSTOR_OPERATION_FCHBA_DATA:
1219 cache_wwn(stor_device, vstor_packet);
1220 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1221 fc_host_node_name(stor_device->host) = stor_device->node_name;
1222 fc_host_port_name(stor_device->host) = stor_device->port_name;
1223 #endif
1224 break;
1225 default:
1226 break;
1227 }
1228 }
1229
storvsc_on_channel_callback(void * context)1230 static void storvsc_on_channel_callback(void *context)
1231 {
1232 struct vmbus_channel *channel = (struct vmbus_channel *)context;
1233 const struct vmpacket_descriptor *desc;
1234 struct hv_device *device;
1235 struct storvsc_device *stor_device;
1236
1237 if (channel->primary_channel != NULL)
1238 device = channel->primary_channel->device_obj;
1239 else
1240 device = channel->device_obj;
1241
1242 stor_device = get_in_stor_device(device);
1243 if (!stor_device)
1244 return;
1245
1246 foreach_vmbus_pkt(desc, channel) {
1247 void *packet = hv_pkt_data(desc);
1248 struct storvsc_cmd_request *request;
1249
1250 request = (struct storvsc_cmd_request *)
1251 ((unsigned long)desc->trans_id);
1252
1253 if (request == &stor_device->init_request ||
1254 request == &stor_device->reset_request) {
1255 memcpy(&request->vstor_packet, packet,
1256 (sizeof(struct vstor_packet) - vmscsi_size_delta));
1257 complete(&request->wait_event);
1258 } else {
1259 storvsc_on_receive(stor_device, packet, request);
1260 }
1261 }
1262 }
1263
storvsc_connect_to_vsp(struct hv_device * device,u32 ring_size,bool is_fc)1264 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size,
1265 bool is_fc)
1266 {
1267 struct vmstorage_channel_properties props;
1268 int ret;
1269
1270 memset(&props, 0, sizeof(struct vmstorage_channel_properties));
1271
1272 ret = vmbus_open(device->channel,
1273 ring_size,
1274 ring_size,
1275 (void *)&props,
1276 sizeof(struct vmstorage_channel_properties),
1277 storvsc_on_channel_callback, device->channel);
1278
1279 if (ret != 0)
1280 return ret;
1281
1282 ret = storvsc_channel_init(device, is_fc);
1283
1284 return ret;
1285 }
1286
storvsc_dev_remove(struct hv_device * device)1287 static int storvsc_dev_remove(struct hv_device *device)
1288 {
1289 struct storvsc_device *stor_device;
1290
1291 stor_device = hv_get_drvdata(device);
1292
1293 stor_device->destroy = true;
1294
1295 /* Make sure flag is set before waiting */
1296 wmb();
1297
1298 /*
1299 * At this point, all outbound traffic should be disable. We
1300 * only allow inbound traffic (responses) to proceed so that
1301 * outstanding requests can be completed.
1302 */
1303
1304 storvsc_wait_to_drain(stor_device);
1305
1306 /*
1307 * Since we have already drained, we don't need to busy wait
1308 * as was done in final_release_stor_device()
1309 * Note that we cannot set the ext pointer to NULL until
1310 * we have drained - to drain the outgoing packets, we need to
1311 * allow incoming packets.
1312 */
1313 hv_set_drvdata(device, NULL);
1314
1315 /* Close the channel */
1316 vmbus_close(device->channel);
1317
1318 kfree(stor_device->stor_chns);
1319 kfree(stor_device);
1320 return 0;
1321 }
1322
get_og_chn(struct storvsc_device * stor_device,u16 q_num)1323 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device,
1324 u16 q_num)
1325 {
1326 u16 slot = 0;
1327 u16 hash_qnum;
1328 const struct cpumask *node_mask;
1329 int num_channels, tgt_cpu;
1330
1331 if (stor_device->num_sc == 0) {
1332 stor_device->stor_chns[q_num] = stor_device->device->channel;
1333 return stor_device->device->channel;
1334 }
1335
1336 /*
1337 * Our channel array is sparsley populated and we
1338 * initiated I/O on a processor/hw-q that does not
1339 * currently have a designated channel. Fix this.
1340 * The strategy is simple:
1341 * I. Ensure NUMA locality
1342 * II. Distribute evenly (best effort)
1343 */
1344
1345 node_mask = cpumask_of_node(cpu_to_node(q_num));
1346
1347 num_channels = 0;
1348 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1349 if (cpumask_test_cpu(tgt_cpu, node_mask))
1350 num_channels++;
1351 }
1352 if (num_channels == 0) {
1353 stor_device->stor_chns[q_num] = stor_device->device->channel;
1354 return stor_device->device->channel;
1355 }
1356
1357 hash_qnum = q_num;
1358 while (hash_qnum >= num_channels)
1359 hash_qnum -= num_channels;
1360
1361 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1362 if (!cpumask_test_cpu(tgt_cpu, node_mask))
1363 continue;
1364 if (slot == hash_qnum)
1365 break;
1366 slot++;
1367 }
1368
1369 stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu];
1370
1371 return stor_device->stor_chns[q_num];
1372 }
1373
1374
storvsc_do_io(struct hv_device * device,struct storvsc_cmd_request * request,u16 q_num)1375 static int storvsc_do_io(struct hv_device *device,
1376 struct storvsc_cmd_request *request, u16 q_num)
1377 {
1378 struct storvsc_device *stor_device;
1379 struct vstor_packet *vstor_packet;
1380 struct vmbus_channel *outgoing_channel, *channel;
1381 unsigned long flags;
1382 int ret = 0;
1383 const struct cpumask *node_mask;
1384 int tgt_cpu;
1385
1386 vstor_packet = &request->vstor_packet;
1387 stor_device = get_out_stor_device(device);
1388
1389 if (!stor_device)
1390 return -ENODEV;
1391
1392
1393 request->device = device;
1394 /*
1395 * Select an appropriate channel to send the request out.
1396 */
1397 /* See storvsc_change_target_cpu(). */
1398 outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]);
1399 if (outgoing_channel != NULL) {
1400 if (outgoing_channel->target_cpu == q_num) {
1401 /*
1402 * Ideally, we want to pick a different channel if
1403 * available on the same NUMA node.
1404 */
1405 node_mask = cpumask_of_node(cpu_to_node(q_num));
1406 for_each_cpu_wrap(tgt_cpu,
1407 &stor_device->alloced_cpus, q_num + 1) {
1408 if (!cpumask_test_cpu(tgt_cpu, node_mask))
1409 continue;
1410 if (tgt_cpu == q_num)
1411 continue;
1412 channel = READ_ONCE(
1413 stor_device->stor_chns[tgt_cpu]);
1414 if (channel == NULL)
1415 continue;
1416 if (hv_get_avail_to_write_percent(
1417 &channel->outbound)
1418 > ring_avail_percent_lowater) {
1419 outgoing_channel = channel;
1420 goto found_channel;
1421 }
1422 }
1423
1424 /*
1425 * All the other channels on the same NUMA node are
1426 * busy. Try to use the channel on the current CPU
1427 */
1428 if (hv_get_avail_to_write_percent(
1429 &outgoing_channel->outbound)
1430 > ring_avail_percent_lowater)
1431 goto found_channel;
1432
1433 /*
1434 * If we reach here, all the channels on the current
1435 * NUMA node are busy. Try to find a channel in
1436 * other NUMA nodes
1437 */
1438 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1439 if (cpumask_test_cpu(tgt_cpu, node_mask))
1440 continue;
1441 channel = READ_ONCE(
1442 stor_device->stor_chns[tgt_cpu]);
1443 if (channel == NULL)
1444 continue;
1445 if (hv_get_avail_to_write_percent(
1446 &channel->outbound)
1447 > ring_avail_percent_lowater) {
1448 outgoing_channel = channel;
1449 goto found_channel;
1450 }
1451 }
1452 }
1453 } else {
1454 spin_lock_irqsave(&stor_device->lock, flags);
1455 outgoing_channel = stor_device->stor_chns[q_num];
1456 if (outgoing_channel != NULL) {
1457 spin_unlock_irqrestore(&stor_device->lock, flags);
1458 goto found_channel;
1459 }
1460 outgoing_channel = get_og_chn(stor_device, q_num);
1461 spin_unlock_irqrestore(&stor_device->lock, flags);
1462 }
1463
1464 found_channel:
1465 vstor_packet->flags |= REQUEST_COMPLETION_FLAG;
1466
1467 vstor_packet->vm_srb.length = (sizeof(struct vmscsi_request) -
1468 vmscsi_size_delta);
1469
1470
1471 vstor_packet->vm_srb.sense_info_length = sense_buffer_size;
1472
1473
1474 vstor_packet->vm_srb.data_transfer_length =
1475 request->payload->range.len;
1476
1477 vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB;
1478
1479 if (request->payload->range.len) {
1480
1481 ret = vmbus_sendpacket_mpb_desc(outgoing_channel,
1482 request->payload, request->payload_sz,
1483 vstor_packet,
1484 (sizeof(struct vstor_packet) -
1485 vmscsi_size_delta),
1486 (unsigned long)request);
1487 } else {
1488 ret = vmbus_sendpacket(outgoing_channel, vstor_packet,
1489 (sizeof(struct vstor_packet) -
1490 vmscsi_size_delta),
1491 (unsigned long)request,
1492 VM_PKT_DATA_INBAND,
1493 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1494 }
1495
1496 if (ret != 0)
1497 return ret;
1498
1499 atomic_inc(&stor_device->num_outstanding_req);
1500
1501 return ret;
1502 }
1503
storvsc_device_alloc(struct scsi_device * sdevice)1504 static int storvsc_device_alloc(struct scsi_device *sdevice)
1505 {
1506 /*
1507 * Set blist flag to permit the reading of the VPD pages even when
1508 * the target may claim SPC-2 compliance. MSFT targets currently
1509 * claim SPC-2 compliance while they implement post SPC-2 features.
1510 * With this flag we can correctly handle WRITE_SAME_16 issues.
1511 *
1512 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but
1513 * still supports REPORT LUN.
1514 */
1515 sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES;
1516
1517 return 0;
1518 }
1519
storvsc_device_configure(struct scsi_device * sdevice)1520 static int storvsc_device_configure(struct scsi_device *sdevice)
1521 {
1522 blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ));
1523
1524 sdevice->no_write_same = 1;
1525
1526 /*
1527 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3
1528 * if the device is a MSFT virtual device. If the host is
1529 * WIN10 or newer, allow write_same.
1530 */
1531 if (!strncmp(sdevice->vendor, "Msft", 4)) {
1532 switch (vmstor_proto_version) {
1533 case VMSTOR_PROTO_VERSION_WIN8:
1534 case VMSTOR_PROTO_VERSION_WIN8_1:
1535 sdevice->scsi_level = SCSI_SPC_3;
1536 break;
1537 }
1538
1539 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10)
1540 sdevice->no_write_same = 0;
1541 }
1542
1543 return 0;
1544 }
1545
storvsc_get_chs(struct scsi_device * sdev,struct block_device * bdev,sector_t capacity,int * info)1546 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev,
1547 sector_t capacity, int *info)
1548 {
1549 sector_t nsect = capacity;
1550 sector_t cylinders = nsect;
1551 int heads, sectors_pt;
1552
1553 /*
1554 * We are making up these values; let us keep it simple.
1555 */
1556 heads = 0xff;
1557 sectors_pt = 0x3f; /* Sectors per track */
1558 sector_div(cylinders, heads * sectors_pt);
1559 if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect)
1560 cylinders = 0xffff;
1561
1562 info[0] = heads;
1563 info[1] = sectors_pt;
1564 info[2] = (int)cylinders;
1565
1566 return 0;
1567 }
1568
storvsc_host_reset_handler(struct scsi_cmnd * scmnd)1569 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd)
1570 {
1571 struct hv_host_device *host_dev = shost_priv(scmnd->device->host);
1572 struct hv_device *device = host_dev->dev;
1573
1574 struct storvsc_device *stor_device;
1575 struct storvsc_cmd_request *request;
1576 struct vstor_packet *vstor_packet;
1577 int ret, t;
1578
1579
1580 stor_device = get_out_stor_device(device);
1581 if (!stor_device)
1582 return FAILED;
1583
1584 request = &stor_device->reset_request;
1585 vstor_packet = &request->vstor_packet;
1586 memset(vstor_packet, 0, sizeof(struct vstor_packet));
1587
1588 init_completion(&request->wait_event);
1589
1590 vstor_packet->operation = VSTOR_OPERATION_RESET_BUS;
1591 vstor_packet->flags = REQUEST_COMPLETION_FLAG;
1592 vstor_packet->vm_srb.path_id = stor_device->path_id;
1593
1594 ret = vmbus_sendpacket(device->channel, vstor_packet,
1595 (sizeof(struct vstor_packet) -
1596 vmscsi_size_delta),
1597 (unsigned long)&stor_device->reset_request,
1598 VM_PKT_DATA_INBAND,
1599 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1600 if (ret != 0)
1601 return FAILED;
1602
1603 t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
1604 if (t == 0)
1605 return TIMEOUT_ERROR;
1606
1607
1608 /*
1609 * At this point, all outstanding requests in the adapter
1610 * should have been flushed out and return to us
1611 * There is a potential race here where the host may be in
1612 * the process of responding when we return from here.
1613 * Just wait for all in-transit packets to be accounted for
1614 * before we return from here.
1615 */
1616 storvsc_wait_to_drain(stor_device);
1617
1618 return SUCCESS;
1619 }
1620
1621 /*
1622 * The host guarantees to respond to each command, although I/O latencies might
1623 * be unbounded on Azure. Reset the timer unconditionally to give the host a
1624 * chance to perform EH.
1625 */
storvsc_eh_timed_out(struct scsi_cmnd * scmnd)1626 static enum blk_eh_timer_return storvsc_eh_timed_out(struct scsi_cmnd *scmnd)
1627 {
1628 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1629 if (scmnd->device->host->transportt == fc_transport_template)
1630 return fc_eh_timed_out(scmnd);
1631 #endif
1632 return BLK_EH_RESET_TIMER;
1633 }
1634
storvsc_scsi_cmd_ok(struct scsi_cmnd * scmnd)1635 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd)
1636 {
1637 bool allowed = true;
1638 u8 scsi_op = scmnd->cmnd[0];
1639
1640 switch (scsi_op) {
1641 /* the host does not handle WRITE_SAME, log accident usage */
1642 case WRITE_SAME:
1643 /*
1644 * smartd sends this command and the host does not handle
1645 * this. So, don't send it.
1646 */
1647 case SET_WINDOW:
1648 scmnd->result = ILLEGAL_REQUEST << 16;
1649 allowed = false;
1650 break;
1651 default:
1652 break;
1653 }
1654 return allowed;
1655 }
1656
storvsc_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * scmnd)1657 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd)
1658 {
1659 int ret;
1660 struct hv_host_device *host_dev = shost_priv(host);
1661 struct hv_device *dev = host_dev->dev;
1662 struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd);
1663 int i;
1664 struct scatterlist *sgl;
1665 unsigned int sg_count = 0;
1666 struct vmscsi_request *vm_srb;
1667 struct scatterlist *cur_sgl;
1668 struct vmbus_packet_mpb_array *payload;
1669 u32 payload_sz;
1670 u32 length;
1671
1672 if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) {
1673 /*
1674 * On legacy hosts filter unimplemented commands.
1675 * Future hosts are expected to correctly handle
1676 * unsupported commands. Furthermore, it is
1677 * possible that some of the currently
1678 * unsupported commands maybe supported in
1679 * future versions of the host.
1680 */
1681 if (!storvsc_scsi_cmd_ok(scmnd)) {
1682 scmnd->scsi_done(scmnd);
1683 return 0;
1684 }
1685 }
1686
1687 /* Setup the cmd request */
1688 cmd_request->cmd = scmnd;
1689
1690 memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet));
1691 vm_srb = &cmd_request->vstor_packet.vm_srb;
1692 vm_srb->win8_extension.time_out_value = 60;
1693
1694 vm_srb->win8_extension.srb_flags |=
1695 SRB_FLAGS_DISABLE_SYNCH_TRANSFER;
1696
1697 if (scmnd->device->tagged_supported) {
1698 vm_srb->win8_extension.srb_flags |=
1699 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE);
1700 vm_srb->win8_extension.queue_tag = SP_UNTAGGED;
1701 vm_srb->win8_extension.queue_action = SRB_SIMPLE_TAG_REQUEST;
1702 }
1703
1704 /* Build the SRB */
1705 switch (scmnd->sc_data_direction) {
1706 case DMA_TO_DEVICE:
1707 vm_srb->data_in = WRITE_TYPE;
1708 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_OUT;
1709 break;
1710 case DMA_FROM_DEVICE:
1711 vm_srb->data_in = READ_TYPE;
1712 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_IN;
1713 break;
1714 case DMA_NONE:
1715 vm_srb->data_in = UNKNOWN_TYPE;
1716 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER;
1717 break;
1718 default:
1719 /*
1720 * This is DMA_BIDIRECTIONAL or something else we are never
1721 * supposed to see here.
1722 */
1723 WARN(1, "Unexpected data direction: %d\n",
1724 scmnd->sc_data_direction);
1725 return -EINVAL;
1726 }
1727
1728
1729 vm_srb->port_number = host_dev->port;
1730 vm_srb->path_id = scmnd->device->channel;
1731 vm_srb->target_id = scmnd->device->id;
1732 vm_srb->lun = scmnd->device->lun;
1733
1734 vm_srb->cdb_length = scmnd->cmd_len;
1735
1736 memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length);
1737
1738 sgl = (struct scatterlist *)scsi_sglist(scmnd);
1739 sg_count = scsi_sg_count(scmnd);
1740
1741 length = scsi_bufflen(scmnd);
1742 payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb;
1743 payload_sz = sizeof(cmd_request->mpb);
1744
1745 if (sg_count) {
1746 unsigned int hvpgoff = 0;
1747 unsigned long offset_in_hvpg = sgl->offset & ~HV_HYP_PAGE_MASK;
1748 unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length);
1749 u64 hvpfn;
1750
1751 if (hvpg_count > MAX_PAGE_BUFFER_COUNT) {
1752
1753 payload_sz = (hvpg_count * sizeof(u64) +
1754 sizeof(struct vmbus_packet_mpb_array));
1755 payload = kzalloc(payload_sz, GFP_ATOMIC);
1756 if (!payload)
1757 return SCSI_MLQUEUE_DEVICE_BUSY;
1758 }
1759
1760 /*
1761 * sgl is a list of PAGEs, and payload->range.pfn_array
1762 * expects the page number in the unit of HV_HYP_PAGE_SIZE (the
1763 * page size that Hyper-V uses, so here we need to divide PAGEs
1764 * into HV_HYP_PAGE in case that PAGE_SIZE > HV_HYP_PAGE_SIZE.
1765 * Besides, payload->range.offset should be the offset in one
1766 * HV_HYP_PAGE.
1767 */
1768 payload->range.len = length;
1769 payload->range.offset = offset_in_hvpg;
1770 hvpgoff = sgl->offset >> HV_HYP_PAGE_SHIFT;
1771
1772 cur_sgl = sgl;
1773 for (i = 0; i < hvpg_count; i++) {
1774 /*
1775 * 'i' is the index of hv pages in the payload and
1776 * 'hvpgoff' is the offset (in hv pages) of the first
1777 * hv page in the the first page. The relationship
1778 * between the sum of 'i' and 'hvpgoff' and the offset
1779 * (in hv pages) in a payload page ('hvpgoff_in_page')
1780 * is as follow:
1781 *
1782 * |------------------ PAGE -------------------|
1783 * | NR_HV_HYP_PAGES_IN_PAGE hvpgs in total |
1784 * |hvpg|hvpg| ... |hvpg|... |hvpg|
1785 * ^ ^ ^ ^
1786 * +-hvpgoff-+ +-hvpgoff_in_page-+
1787 * ^ |
1788 * +--------------------- i ---------------------------+
1789 */
1790 unsigned int hvpgoff_in_page =
1791 (i + hvpgoff) % NR_HV_HYP_PAGES_IN_PAGE;
1792
1793 /*
1794 * Two cases that we need to fetch a page:
1795 * 1) i == 0, the first step or
1796 * 2) hvpgoff_in_page == 0, when we reach the boundary
1797 * of a page.
1798 */
1799 if (hvpgoff_in_page == 0 || i == 0) {
1800 hvpfn = page_to_hvpfn(sg_page(cur_sgl));
1801 cur_sgl = sg_next(cur_sgl);
1802 }
1803
1804 payload->range.pfn_array[i] = hvpfn + hvpgoff_in_page;
1805 }
1806 }
1807
1808 cmd_request->payload = payload;
1809 cmd_request->payload_sz = payload_sz;
1810
1811 /* Invokes the vsc to start an IO */
1812 ret = storvsc_do_io(dev, cmd_request, get_cpu());
1813 put_cpu();
1814
1815 if (ret == -EAGAIN) {
1816 if (payload_sz > sizeof(cmd_request->mpb))
1817 kfree(payload);
1818 /* no more space */
1819 return SCSI_MLQUEUE_DEVICE_BUSY;
1820 }
1821
1822 return 0;
1823 }
1824
1825 static struct scsi_host_template scsi_driver = {
1826 .module = THIS_MODULE,
1827 .name = "storvsc_host_t",
1828 .cmd_size = sizeof(struct storvsc_cmd_request),
1829 .bios_param = storvsc_get_chs,
1830 .queuecommand = storvsc_queuecommand,
1831 .eh_host_reset_handler = storvsc_host_reset_handler,
1832 .proc_name = "storvsc_host",
1833 .eh_timed_out = storvsc_eh_timed_out,
1834 .slave_alloc = storvsc_device_alloc,
1835 .slave_configure = storvsc_device_configure,
1836 .cmd_per_lun = 2048,
1837 .this_id = -1,
1838 /* Make sure we dont get a sg segment crosses a page boundary */
1839 .dma_boundary = PAGE_SIZE-1,
1840 /* Ensure there are no gaps in presented sgls */
1841 .virt_boundary_mask = PAGE_SIZE-1,
1842 .no_write_same = 1,
1843 .track_queue_depth = 1,
1844 .change_queue_depth = storvsc_change_queue_depth,
1845 };
1846
1847 enum {
1848 SCSI_GUID,
1849 IDE_GUID,
1850 SFC_GUID,
1851 };
1852
1853 static const struct hv_vmbus_device_id id_table[] = {
1854 /* SCSI guid */
1855 { HV_SCSI_GUID,
1856 .driver_data = SCSI_GUID
1857 },
1858 /* IDE guid */
1859 { HV_IDE_GUID,
1860 .driver_data = IDE_GUID
1861 },
1862 /* Fibre Channel GUID */
1863 {
1864 HV_SYNTHFC_GUID,
1865 .driver_data = SFC_GUID
1866 },
1867 { },
1868 };
1869
1870 MODULE_DEVICE_TABLE(vmbus, id_table);
1871
1872 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID };
1873
hv_dev_is_fc(struct hv_device * hv_dev)1874 static bool hv_dev_is_fc(struct hv_device *hv_dev)
1875 {
1876 return guid_equal(&fc_guid.guid, &hv_dev->dev_type);
1877 }
1878
storvsc_probe(struct hv_device * device,const struct hv_vmbus_device_id * dev_id)1879 static int storvsc_probe(struct hv_device *device,
1880 const struct hv_vmbus_device_id *dev_id)
1881 {
1882 int ret;
1883 int num_cpus = num_online_cpus();
1884 struct Scsi_Host *host;
1885 struct hv_host_device *host_dev;
1886 bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false);
1887 bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false);
1888 int target = 0;
1889 struct storvsc_device *stor_device;
1890 int max_luns_per_target;
1891 int max_targets;
1892 int max_channels;
1893 int max_sub_channels = 0;
1894
1895 /*
1896 * Based on the windows host we are running on,
1897 * set state to properly communicate with the host.
1898 */
1899
1900 if (vmbus_proto_version < VERSION_WIN8) {
1901 max_luns_per_target = STORVSC_IDE_MAX_LUNS_PER_TARGET;
1902 max_targets = STORVSC_IDE_MAX_TARGETS;
1903 max_channels = STORVSC_IDE_MAX_CHANNELS;
1904 } else {
1905 max_luns_per_target = STORVSC_MAX_LUNS_PER_TARGET;
1906 max_targets = STORVSC_MAX_TARGETS;
1907 max_channels = STORVSC_MAX_CHANNELS;
1908 /*
1909 * On Windows8 and above, we support sub-channels for storage
1910 * on SCSI and FC controllers.
1911 * The number of sub-channels offerred is based on the number of
1912 * VCPUs in the guest.
1913 */
1914 if (!dev_is_ide)
1915 max_sub_channels =
1916 (num_cpus - 1) / storvsc_vcpus_per_sub_channel;
1917 }
1918
1919 scsi_driver.can_queue = max_outstanding_req_per_channel *
1920 (max_sub_channels + 1) *
1921 (100 - ring_avail_percent_lowater) / 100;
1922
1923 host = scsi_host_alloc(&scsi_driver,
1924 sizeof(struct hv_host_device));
1925 if (!host)
1926 return -ENOMEM;
1927
1928 host_dev = shost_priv(host);
1929 memset(host_dev, 0, sizeof(struct hv_host_device));
1930
1931 host_dev->port = host->host_no;
1932 host_dev->dev = device;
1933 host_dev->host = host;
1934
1935
1936 stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL);
1937 if (!stor_device) {
1938 ret = -ENOMEM;
1939 goto err_out0;
1940 }
1941
1942 stor_device->destroy = false;
1943 init_waitqueue_head(&stor_device->waiting_to_drain);
1944 stor_device->device = device;
1945 stor_device->host = host;
1946 spin_lock_init(&stor_device->lock);
1947 hv_set_drvdata(device, stor_device);
1948
1949 stor_device->port_number = host->host_no;
1950 ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc);
1951 if (ret)
1952 goto err_out1;
1953
1954 host_dev->path = stor_device->path_id;
1955 host_dev->target = stor_device->target_id;
1956
1957 switch (dev_id->driver_data) {
1958 case SFC_GUID:
1959 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET;
1960 host->max_id = STORVSC_FC_MAX_TARGETS;
1961 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1;
1962 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1963 host->transportt = fc_transport_template;
1964 #endif
1965 break;
1966
1967 case SCSI_GUID:
1968 host->max_lun = max_luns_per_target;
1969 host->max_id = max_targets;
1970 host->max_channel = max_channels - 1;
1971 break;
1972
1973 default:
1974 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET;
1975 host->max_id = STORVSC_IDE_MAX_TARGETS;
1976 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1;
1977 break;
1978 }
1979 /* max cmd length */
1980 host->max_cmd_len = STORVSC_MAX_CMD_LEN;
1981
1982 /*
1983 * set the table size based on the info we got
1984 * from the host.
1985 */
1986 host->sg_tablesize = (stor_device->max_transfer_bytes >> PAGE_SHIFT);
1987 /*
1988 * For non-IDE disks, the host supports multiple channels.
1989 * Set the number of HW queues we are supporting.
1990 */
1991 if (!dev_is_ide)
1992 host->nr_hw_queues = num_present_cpus();
1993
1994 /*
1995 * Set the error handler work queue.
1996 */
1997 host_dev->handle_error_wq =
1998 alloc_ordered_workqueue("storvsc_error_wq_%d",
1999 0,
2000 host->host_no);
2001 if (!host_dev->handle_error_wq) {
2002 ret = -ENOMEM;
2003 goto err_out2;
2004 }
2005 INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan);
2006 /* Register the HBA and start the scsi bus scan */
2007 ret = scsi_add_host(host, &device->device);
2008 if (ret != 0)
2009 goto err_out3;
2010
2011 if (!dev_is_ide) {
2012 scsi_scan_host(host);
2013 } else {
2014 target = (device->dev_instance.b[5] << 8 |
2015 device->dev_instance.b[4]);
2016 ret = scsi_add_device(host, 0, target, 0);
2017 if (ret)
2018 goto err_out4;
2019 }
2020 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2021 if (host->transportt == fc_transport_template) {
2022 struct fc_rport_identifiers ids = {
2023 .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR,
2024 };
2025
2026 fc_host_node_name(host) = stor_device->node_name;
2027 fc_host_port_name(host) = stor_device->port_name;
2028 stor_device->rport = fc_remote_port_add(host, 0, &ids);
2029 if (!stor_device->rport) {
2030 ret = -ENOMEM;
2031 goto err_out4;
2032 }
2033 }
2034 #endif
2035 return 0;
2036
2037 err_out4:
2038 scsi_remove_host(host);
2039
2040 err_out3:
2041 destroy_workqueue(host_dev->handle_error_wq);
2042
2043 err_out2:
2044 /*
2045 * Once we have connected with the host, we would need to
2046 * to invoke storvsc_dev_remove() to rollback this state and
2047 * this call also frees up the stor_device; hence the jump around
2048 * err_out1 label.
2049 */
2050 storvsc_dev_remove(device);
2051 goto err_out0;
2052
2053 err_out1:
2054 kfree(stor_device->stor_chns);
2055 kfree(stor_device);
2056
2057 err_out0:
2058 scsi_host_put(host);
2059 return ret;
2060 }
2061
2062 /* Change a scsi target's queue depth */
storvsc_change_queue_depth(struct scsi_device * sdev,int queue_depth)2063 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth)
2064 {
2065 if (queue_depth > scsi_driver.can_queue)
2066 queue_depth = scsi_driver.can_queue;
2067
2068 return scsi_change_queue_depth(sdev, queue_depth);
2069 }
2070
storvsc_remove(struct hv_device * dev)2071 static int storvsc_remove(struct hv_device *dev)
2072 {
2073 struct storvsc_device *stor_device = hv_get_drvdata(dev);
2074 struct Scsi_Host *host = stor_device->host;
2075 struct hv_host_device *host_dev = shost_priv(host);
2076
2077 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2078 if (host->transportt == fc_transport_template) {
2079 fc_remote_port_delete(stor_device->rport);
2080 fc_remove_host(host);
2081 }
2082 #endif
2083 destroy_workqueue(host_dev->handle_error_wq);
2084 scsi_remove_host(host);
2085 storvsc_dev_remove(dev);
2086 scsi_host_put(host);
2087
2088 return 0;
2089 }
2090
storvsc_suspend(struct hv_device * hv_dev)2091 static int storvsc_suspend(struct hv_device *hv_dev)
2092 {
2093 struct storvsc_device *stor_device = hv_get_drvdata(hv_dev);
2094 struct Scsi_Host *host = stor_device->host;
2095 struct hv_host_device *host_dev = shost_priv(host);
2096
2097 storvsc_wait_to_drain(stor_device);
2098
2099 drain_workqueue(host_dev->handle_error_wq);
2100
2101 vmbus_close(hv_dev->channel);
2102
2103 kfree(stor_device->stor_chns);
2104 stor_device->stor_chns = NULL;
2105
2106 cpumask_clear(&stor_device->alloced_cpus);
2107
2108 return 0;
2109 }
2110
storvsc_resume(struct hv_device * hv_dev)2111 static int storvsc_resume(struct hv_device *hv_dev)
2112 {
2113 int ret;
2114
2115 ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size,
2116 hv_dev_is_fc(hv_dev));
2117 return ret;
2118 }
2119
2120 static struct hv_driver storvsc_drv = {
2121 .name = KBUILD_MODNAME,
2122 .id_table = id_table,
2123 .probe = storvsc_probe,
2124 .remove = storvsc_remove,
2125 .suspend = storvsc_suspend,
2126 .resume = storvsc_resume,
2127 .driver = {
2128 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2129 },
2130 };
2131
2132 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2133 static struct fc_function_template fc_transport_functions = {
2134 .show_host_node_name = 1,
2135 .show_host_port_name = 1,
2136 };
2137 #endif
2138
storvsc_drv_init(void)2139 static int __init storvsc_drv_init(void)
2140 {
2141 int ret;
2142
2143 /*
2144 * Divide the ring buffer data size (which is 1 page less
2145 * than the ring buffer size since that page is reserved for
2146 * the ring buffer indices) by the max request size (which is
2147 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64)
2148 */
2149 max_outstanding_req_per_channel =
2150 ((storvsc_ringbuffer_size - PAGE_SIZE) /
2151 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET +
2152 sizeof(struct vstor_packet) + sizeof(u64) -
2153 vmscsi_size_delta,
2154 sizeof(u64)));
2155
2156 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2157 fc_transport_template = fc_attach_transport(&fc_transport_functions);
2158 if (!fc_transport_template)
2159 return -ENODEV;
2160 #endif
2161
2162 ret = vmbus_driver_register(&storvsc_drv);
2163
2164 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2165 if (ret)
2166 fc_release_transport(fc_transport_template);
2167 #endif
2168
2169 return ret;
2170 }
2171
storvsc_drv_exit(void)2172 static void __exit storvsc_drv_exit(void)
2173 {
2174 vmbus_driver_unregister(&storvsc_drv);
2175 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2176 fc_release_transport(fc_transport_template);
2177 #endif
2178 }
2179
2180 MODULE_LICENSE("GPL");
2181 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver");
2182 module_init(storvsc_drv_init);
2183 module_exit(storvsc_drv_exit);
2184