1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c -- Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static LIST_HEAD(regulator_debug_list);
55 static bool has_full_constraints;
56
57 static struct dentry *debugfs_root;
58
59 /*
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64 struct regulator_map {
65 struct list_head list;
66 const char *dev_name; /* The dev_name() for the consumer */
67 const char *supply;
68 struct regulator_dev *regulator;
69 };
70
71 /*
72 * struct regulator_enable_gpio
73 *
74 * Management for shared enable GPIO pin
75 */
76 struct regulator_enable_gpio {
77 struct list_head list;
78 struct gpio_desc *gpiod;
79 u32 enable_count; /* a number of enabled shared GPIO */
80 u32 request_count; /* a number of requested shared GPIO */
81 };
82
83 /*
84 * struct regulator_supply_alias
85 *
86 * Used to map lookups for a supply onto an alternative device.
87 */
88 struct regulator_supply_alias {
89 struct list_head list;
90 struct device *src_dev;
91 const char *src_supply;
92 struct device *alias_dev;
93 const char *alias_supply;
94 };
95
96 struct regulator_limit_volt {
97 struct list_head list;
98 struct regulator *reg;
99 };
100
101 static int _regulator_is_enabled(struct regulator_dev *rdev);
102 static int _regulator_disable(struct regulator *regulator);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106 unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108 int min_uV, int max_uV);
109 static int regulator_balance_voltage(struct regulator_dev *rdev,
110 suspend_state_t state);
111 static struct regulator *create_regulator(struct regulator_dev *rdev,
112 struct device *dev,
113 const char *supply_name);
114 static void destroy_regulator(struct regulator *regulator);
115 static void _regulator_put(struct regulator *regulator);
116
rdev_get_name(struct regulator_dev * rdev)117 const char *rdev_get_name(struct regulator_dev *rdev)
118 {
119 if (rdev->constraints && rdev->constraints->name)
120 return rdev->constraints->name;
121 else if (rdev->desc->name)
122 return rdev->desc->name;
123 else
124 return "";
125 }
126
have_full_constraints(void)127 static bool have_full_constraints(void)
128 {
129 return has_full_constraints || of_have_populated_dt();
130 }
131
regulator_ops_is_valid(struct regulator_dev * rdev,int ops)132 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
133 {
134 if (!rdev->constraints) {
135 rdev_err(rdev, "no constraints\n");
136 return false;
137 }
138
139 if (rdev->constraints->valid_ops_mask & ops)
140 return true;
141
142 return false;
143 }
144
145 /**
146 * regulator_lock_nested - lock a single regulator
147 * @rdev: regulator source
148 * @ww_ctx: w/w mutex acquire context
149 *
150 * This function can be called many times by one task on
151 * a single regulator and its mutex will be locked only
152 * once. If a task, which is calling this function is other
153 * than the one, which initially locked the mutex, it will
154 * wait on mutex.
155 */
regulator_lock_nested(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)156 static inline int regulator_lock_nested(struct regulator_dev *rdev,
157 struct ww_acquire_ctx *ww_ctx)
158 {
159 bool lock = false;
160 int ret = 0;
161
162 mutex_lock(®ulator_nesting_mutex);
163
164 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
165 if (rdev->mutex_owner == current)
166 rdev->ref_cnt++;
167 else
168 lock = true;
169
170 if (lock) {
171 mutex_unlock(®ulator_nesting_mutex);
172 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
173 mutex_lock(®ulator_nesting_mutex);
174 }
175 } else {
176 lock = true;
177 }
178
179 if (lock && ret != -EDEADLK) {
180 rdev->ref_cnt++;
181 rdev->mutex_owner = current;
182 }
183
184 mutex_unlock(®ulator_nesting_mutex);
185
186 return ret;
187 }
188
189 /**
190 * regulator_lock - lock a single regulator
191 * @rdev: regulator source
192 *
193 * This function can be called many times by one task on
194 * a single regulator and its mutex will be locked only
195 * once. If a task, which is calling this function is other
196 * than the one, which initially locked the mutex, it will
197 * wait on mutex.
198 */
regulator_lock(struct regulator_dev * rdev)199 static void regulator_lock(struct regulator_dev *rdev)
200 {
201 regulator_lock_nested(rdev, NULL);
202 }
203
204 /**
205 * regulator_unlock - unlock a single regulator
206 * @rdev: regulator_source
207 *
208 * This function unlocks the mutex when the
209 * reference counter reaches 0.
210 */
regulator_unlock(struct regulator_dev * rdev)211 static void regulator_unlock(struct regulator_dev *rdev)
212 {
213 mutex_lock(®ulator_nesting_mutex);
214
215 if (--rdev->ref_cnt == 0) {
216 rdev->mutex_owner = NULL;
217 ww_mutex_unlock(&rdev->mutex);
218 }
219
220 WARN_ON_ONCE(rdev->ref_cnt < 0);
221
222 mutex_unlock(®ulator_nesting_mutex);
223 }
224
regulator_supply_is_couple(struct regulator_dev * rdev)225 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
226 {
227 struct regulator_dev *c_rdev;
228 int i;
229
230 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
231 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
232
233 if (rdev->supply->rdev == c_rdev)
234 return true;
235 }
236
237 return false;
238 }
239
regulator_unlock_recursive(struct regulator_dev * rdev,unsigned int n_coupled)240 static void regulator_unlock_recursive(struct regulator_dev *rdev,
241 unsigned int n_coupled)
242 {
243 struct regulator_dev *c_rdev, *supply_rdev;
244 int i, supply_n_coupled;
245
246 for (i = n_coupled; i > 0; i--) {
247 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
248
249 if (!c_rdev)
250 continue;
251
252 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
253 supply_rdev = c_rdev->supply->rdev;
254 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
255
256 regulator_unlock_recursive(supply_rdev,
257 supply_n_coupled);
258 }
259
260 regulator_unlock(c_rdev);
261 }
262 }
263
regulator_lock_recursive(struct regulator_dev * rdev,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev,struct ww_acquire_ctx * ww_ctx)264 static int regulator_lock_recursive(struct regulator_dev *rdev,
265 struct regulator_dev **new_contended_rdev,
266 struct regulator_dev **old_contended_rdev,
267 struct ww_acquire_ctx *ww_ctx)
268 {
269 struct regulator_dev *c_rdev;
270 int i, err;
271
272 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
273 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
274
275 if (!c_rdev)
276 continue;
277
278 if (c_rdev != *old_contended_rdev) {
279 err = regulator_lock_nested(c_rdev, ww_ctx);
280 if (err) {
281 if (err == -EDEADLK) {
282 *new_contended_rdev = c_rdev;
283 goto err_unlock;
284 }
285
286 /* shouldn't happen */
287 WARN_ON_ONCE(err != -EALREADY);
288 }
289 } else {
290 *old_contended_rdev = NULL;
291 }
292
293 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
294 err = regulator_lock_recursive(c_rdev->supply->rdev,
295 new_contended_rdev,
296 old_contended_rdev,
297 ww_ctx);
298 if (err) {
299 regulator_unlock(c_rdev);
300 goto err_unlock;
301 }
302 }
303 }
304
305 return 0;
306
307 err_unlock:
308 regulator_unlock_recursive(rdev, i);
309
310 return err;
311 }
312
313 /**
314 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
315 * regulators
316 * @rdev: regulator source
317 * @ww_ctx: w/w mutex acquire context
318 *
319 * Unlock all regulators related with rdev by coupling or supplying.
320 */
regulator_unlock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)321 static void regulator_unlock_dependent(struct regulator_dev *rdev,
322 struct ww_acquire_ctx *ww_ctx)
323 {
324 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
325 ww_acquire_fini(ww_ctx);
326 }
327
328 /**
329 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
330 * @rdev: regulator source
331 * @ww_ctx: w/w mutex acquire context
332 *
333 * This function as a wrapper on regulator_lock_recursive(), which locks
334 * all regulators related with rdev by coupling or supplying.
335 */
regulator_lock_dependent(struct regulator_dev * rdev,struct ww_acquire_ctx * ww_ctx)336 static void regulator_lock_dependent(struct regulator_dev *rdev,
337 struct ww_acquire_ctx *ww_ctx)
338 {
339 struct regulator_dev *new_contended_rdev = NULL;
340 struct regulator_dev *old_contended_rdev = NULL;
341 int err;
342
343 mutex_lock(®ulator_list_mutex);
344
345 ww_acquire_init(ww_ctx, ®ulator_ww_class);
346
347 do {
348 if (new_contended_rdev) {
349 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
350 old_contended_rdev = new_contended_rdev;
351 old_contended_rdev->ref_cnt++;
352 }
353
354 err = regulator_lock_recursive(rdev,
355 &new_contended_rdev,
356 &old_contended_rdev,
357 ww_ctx);
358
359 if (old_contended_rdev)
360 regulator_unlock(old_contended_rdev);
361
362 } while (err == -EDEADLK);
363
364 ww_acquire_done(ww_ctx);
365
366 mutex_unlock(®ulator_list_mutex);
367 }
368
369 /**
370 * of_get_child_regulator - get a child regulator device node
371 * based on supply name
372 * @parent: Parent device node
373 * @prop_name: Combination regulator supply name and "-supply"
374 *
375 * Traverse all child nodes.
376 * Extract the child regulator device node corresponding to the supply name.
377 * returns the device node corresponding to the regulator if found, else
378 * returns NULL.
379 */
of_get_child_regulator(struct device_node * parent,const char * prop_name)380 static struct device_node *of_get_child_regulator(struct device_node *parent,
381 const char *prop_name)
382 {
383 struct device_node *regnode = NULL;
384 struct device_node *child = NULL;
385
386 for_each_child_of_node(parent, child) {
387 regnode = of_parse_phandle(child, prop_name, 0);
388
389 if (!regnode) {
390 regnode = of_get_child_regulator(child, prop_name);
391 if (regnode)
392 goto err_node_put;
393 } else {
394 goto err_node_put;
395 }
396 }
397 return NULL;
398
399 err_node_put:
400 of_node_put(child);
401 return regnode;
402 }
403
404 /**
405 * of_get_regulator - get a regulator device node based on supply name
406 * @dev: Device pointer for the consumer (of regulator) device
407 * @supply: regulator supply name
408 *
409 * Extract the regulator device node corresponding to the supply name.
410 * returns the device node corresponding to the regulator if found, else
411 * returns NULL.
412 */
of_get_regulator(struct device * dev,const char * supply)413 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
414 {
415 struct device_node *regnode = NULL;
416 char prop_name[64]; /* 64 is max size of property name */
417
418 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
419
420 snprintf(prop_name, 64, "%s-supply", supply);
421 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
422
423 if (!regnode) {
424 regnode = of_get_child_regulator(dev->of_node, prop_name);
425 if (regnode)
426 return regnode;
427
428 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
429 prop_name, dev->of_node);
430 return NULL;
431 }
432 return regnode;
433 }
434
435 /* Platform voltage constraint check */
regulator_check_voltage(struct regulator_dev * rdev,int * min_uV,int * max_uV)436 int regulator_check_voltage(struct regulator_dev *rdev,
437 int *min_uV, int *max_uV)
438 {
439 BUG_ON(*min_uV > *max_uV);
440
441 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
442 rdev_err(rdev, "voltage operation not allowed\n");
443 return -EPERM;
444 }
445
446 if (*max_uV > rdev->constraints->max_uV)
447 *max_uV = rdev->constraints->max_uV;
448 if (*min_uV < rdev->constraints->min_uV)
449 *min_uV = rdev->constraints->min_uV;
450
451 if (*min_uV > *max_uV) {
452 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
453 *min_uV, *max_uV);
454 return -EINVAL;
455 }
456
457 return 0;
458 }
459
460 /* return 0 if the state is valid */
regulator_check_states(suspend_state_t state)461 static int regulator_check_states(suspend_state_t state)
462 {
463 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
464 }
465
466 /* Make sure we select a voltage that suits the needs of all
467 * regulator consumers
468 */
regulator_check_consumers(struct regulator_dev * rdev,int * min_uV,int * max_uV,suspend_state_t state)469 int regulator_check_consumers(struct regulator_dev *rdev,
470 int *min_uV, int *max_uV,
471 suspend_state_t state)
472 {
473 struct regulator *regulator;
474 struct regulator_voltage *voltage;
475
476 list_for_each_entry(regulator, &rdev->consumer_list, list) {
477 voltage = ®ulator->voltage[state];
478 /*
479 * Assume consumers that didn't say anything are OK
480 * with anything in the constraint range.
481 */
482 if (!voltage->min_uV && !voltage->max_uV)
483 continue;
484
485 if (*max_uV > voltage->max_uV)
486 *max_uV = voltage->max_uV;
487 if (*min_uV < voltage->min_uV)
488 *min_uV = voltage->min_uV;
489 }
490
491 if (*min_uV > *max_uV) {
492 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
493 *min_uV, *max_uV);
494 return -EINVAL;
495 }
496
497 return 0;
498 }
499
500 /* current constraint check */
regulator_check_current_limit(struct regulator_dev * rdev,int * min_uA,int * max_uA)501 static int regulator_check_current_limit(struct regulator_dev *rdev,
502 int *min_uA, int *max_uA)
503 {
504 BUG_ON(*min_uA > *max_uA);
505
506 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
507 rdev_err(rdev, "current operation not allowed\n");
508 return -EPERM;
509 }
510
511 if (*max_uA > rdev->constraints->max_uA)
512 *max_uA = rdev->constraints->max_uA;
513 if (*min_uA < rdev->constraints->min_uA)
514 *min_uA = rdev->constraints->min_uA;
515
516 if (*min_uA > *max_uA) {
517 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
518 *min_uA, *max_uA);
519 return -EINVAL;
520 }
521
522 return 0;
523 }
524
525 /* operating mode constraint check */
regulator_mode_constrain(struct regulator_dev * rdev,unsigned int * mode)526 static int regulator_mode_constrain(struct regulator_dev *rdev,
527 unsigned int *mode)
528 {
529 switch (*mode) {
530 case REGULATOR_MODE_FAST:
531 case REGULATOR_MODE_NORMAL:
532 case REGULATOR_MODE_IDLE:
533 case REGULATOR_MODE_STANDBY:
534 break;
535 default:
536 rdev_err(rdev, "invalid mode %x specified\n", *mode);
537 return -EINVAL;
538 }
539
540 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
541 rdev_err(rdev, "mode operation not allowed\n");
542 return -EPERM;
543 }
544
545 /* The modes are bitmasks, the most power hungry modes having
546 * the lowest values. If the requested mode isn't supported
547 * try higher modes. */
548 while (*mode) {
549 if (rdev->constraints->valid_modes_mask & *mode)
550 return 0;
551 *mode /= 2;
552 }
553
554 return -EINVAL;
555 }
556
557 static inline struct regulator_state *
regulator_get_suspend_state(struct regulator_dev * rdev,suspend_state_t state)558 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
559 {
560 if (rdev->constraints == NULL)
561 return NULL;
562
563 switch (state) {
564 case PM_SUSPEND_STANDBY:
565 return &rdev->constraints->state_standby;
566 case PM_SUSPEND_MEM:
567 return &rdev->constraints->state_mem;
568 case PM_SUSPEND_MAX:
569 return &rdev->constraints->state_disk;
570 default:
571 return NULL;
572 }
573 }
574
575 static const struct regulator_state *
regulator_get_suspend_state_check(struct regulator_dev * rdev,suspend_state_t state)576 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
577 {
578 const struct regulator_state *rstate;
579
580 rstate = regulator_get_suspend_state(rdev, state);
581 if (rstate == NULL)
582 return NULL;
583
584 /* If we have no suspend mode configuration don't set anything;
585 * only warn if the driver implements set_suspend_voltage or
586 * set_suspend_mode callback.
587 */
588 if (rstate->enabled != ENABLE_IN_SUSPEND &&
589 rstate->enabled != DISABLE_IN_SUSPEND) {
590 if (rdev->desc->ops->set_suspend_voltage ||
591 rdev->desc->ops->set_suspend_mode)
592 rdev_warn(rdev, "No configuration\n");
593 return NULL;
594 }
595
596 return rstate;
597 }
598
regulator_uV_show(struct device * dev,struct device_attribute * attr,char * buf)599 static ssize_t regulator_uV_show(struct device *dev,
600 struct device_attribute *attr, char *buf)
601 {
602 struct regulator_dev *rdev = dev_get_drvdata(dev);
603 int uV;
604
605 regulator_lock(rdev);
606 uV = regulator_get_voltage_rdev(rdev);
607 regulator_unlock(rdev);
608
609 if (uV < 0)
610 return uV;
611 return sprintf(buf, "%d\n", uV);
612 }
613 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
614
regulator_uA_show(struct device * dev,struct device_attribute * attr,char * buf)615 static ssize_t regulator_uA_show(struct device *dev,
616 struct device_attribute *attr, char *buf)
617 {
618 struct regulator_dev *rdev = dev_get_drvdata(dev);
619
620 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
621 }
622 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
623
name_show(struct device * dev,struct device_attribute * attr,char * buf)624 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
625 char *buf)
626 {
627 struct regulator_dev *rdev = dev_get_drvdata(dev);
628
629 return sprintf(buf, "%s\n", rdev_get_name(rdev));
630 }
631 static DEVICE_ATTR_RO(name);
632
regulator_opmode_to_str(int mode)633 static const char *regulator_opmode_to_str(int mode)
634 {
635 switch (mode) {
636 case REGULATOR_MODE_FAST:
637 return "fast";
638 case REGULATOR_MODE_NORMAL:
639 return "normal";
640 case REGULATOR_MODE_IDLE:
641 return "idle";
642 case REGULATOR_MODE_STANDBY:
643 return "standby";
644 }
645 return "unknown";
646 }
647
regulator_print_opmode(char * buf,int mode)648 static ssize_t regulator_print_opmode(char *buf, int mode)
649 {
650 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
651 }
652
regulator_opmode_show(struct device * dev,struct device_attribute * attr,char * buf)653 static ssize_t regulator_opmode_show(struct device *dev,
654 struct device_attribute *attr, char *buf)
655 {
656 struct regulator_dev *rdev = dev_get_drvdata(dev);
657
658 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
659 }
660 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
661
regulator_print_state(char * buf,int state)662 static ssize_t regulator_print_state(char *buf, int state)
663 {
664 if (state > 0)
665 return sprintf(buf, "enabled\n");
666 else if (state == 0)
667 return sprintf(buf, "disabled\n");
668 else
669 return sprintf(buf, "unknown\n");
670 }
671
regulator_state_show(struct device * dev,struct device_attribute * attr,char * buf)672 static ssize_t regulator_state_show(struct device *dev,
673 struct device_attribute *attr, char *buf)
674 {
675 struct regulator_dev *rdev = dev_get_drvdata(dev);
676 ssize_t ret;
677
678 regulator_lock(rdev);
679 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
680 regulator_unlock(rdev);
681
682 return ret;
683 }
684 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
685
regulator_status_show(struct device * dev,struct device_attribute * attr,char * buf)686 static ssize_t regulator_status_show(struct device *dev,
687 struct device_attribute *attr, char *buf)
688 {
689 struct regulator_dev *rdev = dev_get_drvdata(dev);
690 int status;
691 char *label;
692
693 status = rdev->desc->ops->get_status(rdev);
694 if (status < 0)
695 return status;
696
697 switch (status) {
698 case REGULATOR_STATUS_OFF:
699 label = "off";
700 break;
701 case REGULATOR_STATUS_ON:
702 label = "on";
703 break;
704 case REGULATOR_STATUS_ERROR:
705 label = "error";
706 break;
707 case REGULATOR_STATUS_FAST:
708 label = "fast";
709 break;
710 case REGULATOR_STATUS_NORMAL:
711 label = "normal";
712 break;
713 case REGULATOR_STATUS_IDLE:
714 label = "idle";
715 break;
716 case REGULATOR_STATUS_STANDBY:
717 label = "standby";
718 break;
719 case REGULATOR_STATUS_BYPASS:
720 label = "bypass";
721 break;
722 case REGULATOR_STATUS_UNDEFINED:
723 label = "undefined";
724 break;
725 default:
726 return -ERANGE;
727 }
728
729 return sprintf(buf, "%s\n", label);
730 }
731 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
732
regulator_min_uA_show(struct device * dev,struct device_attribute * attr,char * buf)733 static ssize_t regulator_min_uA_show(struct device *dev,
734 struct device_attribute *attr, char *buf)
735 {
736 struct regulator_dev *rdev = dev_get_drvdata(dev);
737
738 if (!rdev->constraints)
739 return sprintf(buf, "constraint not defined\n");
740
741 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
742 }
743 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
744
regulator_max_uA_show(struct device * dev,struct device_attribute * attr,char * buf)745 static ssize_t regulator_max_uA_show(struct device *dev,
746 struct device_attribute *attr, char *buf)
747 {
748 struct regulator_dev *rdev = dev_get_drvdata(dev);
749
750 if (!rdev->constraints)
751 return sprintf(buf, "constraint not defined\n");
752
753 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
754 }
755 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
756
regulator_min_uV_show(struct device * dev,struct device_attribute * attr,char * buf)757 static ssize_t regulator_min_uV_show(struct device *dev,
758 struct device_attribute *attr, char *buf)
759 {
760 struct regulator_dev *rdev = dev_get_drvdata(dev);
761
762 if (!rdev->constraints)
763 return sprintf(buf, "constraint not defined\n");
764
765 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
766 }
767 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
768
regulator_max_uV_show(struct device * dev,struct device_attribute * attr,char * buf)769 static ssize_t regulator_max_uV_show(struct device *dev,
770 struct device_attribute *attr, char *buf)
771 {
772 struct regulator_dev *rdev = dev_get_drvdata(dev);
773
774 if (!rdev->constraints)
775 return sprintf(buf, "constraint not defined\n");
776
777 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
778 }
779 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
780
regulator_total_uA_show(struct device * dev,struct device_attribute * attr,char * buf)781 static ssize_t regulator_total_uA_show(struct device *dev,
782 struct device_attribute *attr, char *buf)
783 {
784 struct regulator_dev *rdev = dev_get_drvdata(dev);
785 struct regulator *regulator;
786 int uA = 0;
787
788 regulator_lock(rdev);
789 list_for_each_entry(regulator, &rdev->consumer_list, list) {
790 if (regulator->enable_count)
791 uA += regulator->uA_load;
792 }
793 regulator_unlock(rdev);
794 return sprintf(buf, "%d\n", uA);
795 }
796 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
797
num_users_show(struct device * dev,struct device_attribute * attr,char * buf)798 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
799 char *buf)
800 {
801 struct regulator_dev *rdev = dev_get_drvdata(dev);
802 return sprintf(buf, "%d\n", rdev->use_count);
803 }
804 static DEVICE_ATTR_RO(num_users);
805
type_show(struct device * dev,struct device_attribute * attr,char * buf)806 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
807 char *buf)
808 {
809 struct regulator_dev *rdev = dev_get_drvdata(dev);
810
811 switch (rdev->desc->type) {
812 case REGULATOR_VOLTAGE:
813 return sprintf(buf, "voltage\n");
814 case REGULATOR_CURRENT:
815 return sprintf(buf, "current\n");
816 }
817 return sprintf(buf, "unknown\n");
818 }
819 static DEVICE_ATTR_RO(type);
820
regulator_suspend_mem_uV_show(struct device * dev,struct device_attribute * attr,char * buf)821 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
822 struct device_attribute *attr, char *buf)
823 {
824 struct regulator_dev *rdev = dev_get_drvdata(dev);
825
826 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
827 }
828 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
829 regulator_suspend_mem_uV_show, NULL);
830
regulator_suspend_disk_uV_show(struct device * dev,struct device_attribute * attr,char * buf)831 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
832 struct device_attribute *attr, char *buf)
833 {
834 struct regulator_dev *rdev = dev_get_drvdata(dev);
835
836 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
837 }
838 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
839 regulator_suspend_disk_uV_show, NULL);
840
regulator_suspend_standby_uV_show(struct device * dev,struct device_attribute * attr,char * buf)841 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
842 struct device_attribute *attr, char *buf)
843 {
844 struct regulator_dev *rdev = dev_get_drvdata(dev);
845
846 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
847 }
848 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
849 regulator_suspend_standby_uV_show, NULL);
850
regulator_suspend_mem_mode_show(struct device * dev,struct device_attribute * attr,char * buf)851 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
852 struct device_attribute *attr, char *buf)
853 {
854 struct regulator_dev *rdev = dev_get_drvdata(dev);
855
856 return regulator_print_opmode(buf,
857 rdev->constraints->state_mem.mode);
858 }
859 static DEVICE_ATTR(suspend_mem_mode, 0444,
860 regulator_suspend_mem_mode_show, NULL);
861
regulator_suspend_disk_mode_show(struct device * dev,struct device_attribute * attr,char * buf)862 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
863 struct device_attribute *attr, char *buf)
864 {
865 struct regulator_dev *rdev = dev_get_drvdata(dev);
866
867 return regulator_print_opmode(buf,
868 rdev->constraints->state_disk.mode);
869 }
870 static DEVICE_ATTR(suspend_disk_mode, 0444,
871 regulator_suspend_disk_mode_show, NULL);
872
regulator_suspend_standby_mode_show(struct device * dev,struct device_attribute * attr,char * buf)873 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
874 struct device_attribute *attr, char *buf)
875 {
876 struct regulator_dev *rdev = dev_get_drvdata(dev);
877
878 return regulator_print_opmode(buf,
879 rdev->constraints->state_standby.mode);
880 }
881 static DEVICE_ATTR(suspend_standby_mode, 0444,
882 regulator_suspend_standby_mode_show, NULL);
883
regulator_suspend_mem_state_show(struct device * dev,struct device_attribute * attr,char * buf)884 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
885 struct device_attribute *attr, char *buf)
886 {
887 struct regulator_dev *rdev = dev_get_drvdata(dev);
888
889 return regulator_print_state(buf,
890 rdev->constraints->state_mem.enabled);
891 }
892 static DEVICE_ATTR(suspend_mem_state, 0444,
893 regulator_suspend_mem_state_show, NULL);
894
regulator_suspend_disk_state_show(struct device * dev,struct device_attribute * attr,char * buf)895 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
896 struct device_attribute *attr, char *buf)
897 {
898 struct regulator_dev *rdev = dev_get_drvdata(dev);
899
900 return regulator_print_state(buf,
901 rdev->constraints->state_disk.enabled);
902 }
903 static DEVICE_ATTR(suspend_disk_state, 0444,
904 regulator_suspend_disk_state_show, NULL);
905
regulator_suspend_standby_state_show(struct device * dev,struct device_attribute * attr,char * buf)906 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
907 struct device_attribute *attr, char *buf)
908 {
909 struct regulator_dev *rdev = dev_get_drvdata(dev);
910
911 return regulator_print_state(buf,
912 rdev->constraints->state_standby.enabled);
913 }
914 static DEVICE_ATTR(suspend_standby_state, 0444,
915 regulator_suspend_standby_state_show, NULL);
916
regulator_bypass_show(struct device * dev,struct device_attribute * attr,char * buf)917 static ssize_t regulator_bypass_show(struct device *dev,
918 struct device_attribute *attr, char *buf)
919 {
920 struct regulator_dev *rdev = dev_get_drvdata(dev);
921 const char *report;
922 bool bypass;
923 int ret;
924
925 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
926
927 if (ret != 0)
928 report = "unknown";
929 else if (bypass)
930 report = "enabled";
931 else
932 report = "disabled";
933
934 return sprintf(buf, "%s\n", report);
935 }
936 static DEVICE_ATTR(bypass, 0444,
937 regulator_bypass_show, NULL);
938
939 /* Calculate the new optimum regulator operating mode based on the new total
940 * consumer load. All locks held by caller */
drms_uA_update(struct regulator_dev * rdev)941 static int drms_uA_update(struct regulator_dev *rdev)
942 {
943 struct regulator *sibling;
944 int current_uA = 0, output_uV, input_uV, err;
945 unsigned int mode;
946
947 /*
948 * first check to see if we can set modes at all, otherwise just
949 * tell the consumer everything is OK.
950 */
951 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
952 rdev_dbg(rdev, "DRMS operation not allowed\n");
953 return 0;
954 }
955
956 if (!rdev->desc->ops->get_optimum_mode &&
957 !rdev->desc->ops->set_load)
958 return 0;
959
960 if (!rdev->desc->ops->set_mode &&
961 !rdev->desc->ops->set_load)
962 return -EINVAL;
963
964 /* calc total requested load */
965 list_for_each_entry(sibling, &rdev->consumer_list, list) {
966 if (sibling->enable_count)
967 current_uA += sibling->uA_load;
968 }
969
970 current_uA += rdev->constraints->system_load;
971
972 if (rdev->desc->ops->set_load) {
973 /* set the optimum mode for our new total regulator load */
974 err = rdev->desc->ops->set_load(rdev, current_uA);
975 if (err < 0)
976 rdev_err(rdev, "failed to set load %d: %pe\n",
977 current_uA, ERR_PTR(err));
978 } else {
979 /* get output voltage */
980 output_uV = regulator_get_voltage_rdev(rdev);
981 if (output_uV <= 0) {
982 rdev_err(rdev, "invalid output voltage found\n");
983 return -EINVAL;
984 }
985
986 /* get input voltage */
987 input_uV = 0;
988 if (rdev->supply)
989 input_uV = regulator_get_voltage(rdev->supply);
990 if (input_uV <= 0)
991 input_uV = rdev->constraints->input_uV;
992 if (input_uV <= 0) {
993 rdev_err(rdev, "invalid input voltage found\n");
994 return -EINVAL;
995 }
996
997 /* now get the optimum mode for our new total regulator load */
998 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
999 output_uV, current_uA);
1000
1001 /* check the new mode is allowed */
1002 err = regulator_mode_constrain(rdev, &mode);
1003 if (err < 0) {
1004 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1005 current_uA, input_uV, output_uV, ERR_PTR(err));
1006 return err;
1007 }
1008
1009 err = rdev->desc->ops->set_mode(rdev, mode);
1010 if (err < 0)
1011 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1012 mode, ERR_PTR(err));
1013 }
1014
1015 return err;
1016 }
1017
__suspend_set_state(struct regulator_dev * rdev,const struct regulator_state * rstate)1018 static int __suspend_set_state(struct regulator_dev *rdev,
1019 const struct regulator_state *rstate)
1020 {
1021 int ret = 0;
1022
1023 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1024 rdev->desc->ops->set_suspend_enable)
1025 ret = rdev->desc->ops->set_suspend_enable(rdev);
1026 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1027 rdev->desc->ops->set_suspend_disable)
1028 ret = rdev->desc->ops->set_suspend_disable(rdev);
1029 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1030 ret = 0;
1031
1032 if (ret < 0) {
1033 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1034 return ret;
1035 }
1036
1037 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1038 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1039 if (ret < 0) {
1040 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1041 return ret;
1042 }
1043 }
1044
1045 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1046 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1047 if (ret < 0) {
1048 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1049 return ret;
1050 }
1051 }
1052
1053 return ret;
1054 }
1055
suspend_set_initial_state(struct regulator_dev * rdev)1056 static int suspend_set_initial_state(struct regulator_dev *rdev)
1057 {
1058 const struct regulator_state *rstate;
1059
1060 rstate = regulator_get_suspend_state_check(rdev,
1061 rdev->constraints->initial_state);
1062 if (!rstate)
1063 return 0;
1064
1065 return __suspend_set_state(rdev, rstate);
1066 }
1067
1068 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
print_constraints_debug(struct regulator_dev * rdev)1069 static void print_constraints_debug(struct regulator_dev *rdev)
1070 {
1071 struct regulation_constraints *constraints = rdev->constraints;
1072 char buf[160] = "";
1073 size_t len = sizeof(buf) - 1;
1074 int count = 0;
1075 int ret;
1076
1077 if (constraints->min_uV && constraints->max_uV) {
1078 if (constraints->min_uV == constraints->max_uV)
1079 count += scnprintf(buf + count, len - count, "%d mV ",
1080 constraints->min_uV / 1000);
1081 else
1082 count += scnprintf(buf + count, len - count,
1083 "%d <--> %d mV ",
1084 constraints->min_uV / 1000,
1085 constraints->max_uV / 1000);
1086 }
1087
1088 if (!constraints->min_uV ||
1089 constraints->min_uV != constraints->max_uV) {
1090 ret = regulator_get_voltage_rdev(rdev);
1091 if (ret > 0)
1092 count += scnprintf(buf + count, len - count,
1093 "at %d mV ", ret / 1000);
1094 }
1095
1096 if (constraints->uV_offset)
1097 count += scnprintf(buf + count, len - count, "%dmV offset ",
1098 constraints->uV_offset / 1000);
1099
1100 if (constraints->min_uA && constraints->max_uA) {
1101 if (constraints->min_uA == constraints->max_uA)
1102 count += scnprintf(buf + count, len - count, "%d mA ",
1103 constraints->min_uA / 1000);
1104 else
1105 count += scnprintf(buf + count, len - count,
1106 "%d <--> %d mA ",
1107 constraints->min_uA / 1000,
1108 constraints->max_uA / 1000);
1109 }
1110
1111 if (!constraints->min_uA ||
1112 constraints->min_uA != constraints->max_uA) {
1113 ret = _regulator_get_current_limit(rdev);
1114 if (ret > 0)
1115 count += scnprintf(buf + count, len - count,
1116 "at %d mA ", ret / 1000);
1117 }
1118
1119 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1120 count += scnprintf(buf + count, len - count, "fast ");
1121 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1122 count += scnprintf(buf + count, len - count, "normal ");
1123 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1124 count += scnprintf(buf + count, len - count, "idle ");
1125 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1126 count += scnprintf(buf + count, len - count, "standby ");
1127
1128 if (!count)
1129 count = scnprintf(buf, len, "no parameters");
1130 else
1131 --count;
1132
1133 count += scnprintf(buf + count, len - count, ", %s",
1134 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1135
1136 rdev_dbg(rdev, "%s\n", buf);
1137 }
1138 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
print_constraints_debug(struct regulator_dev * rdev)1139 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1140 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1141
print_constraints(struct regulator_dev * rdev)1142 static void print_constraints(struct regulator_dev *rdev)
1143 {
1144 struct regulation_constraints *constraints = rdev->constraints;
1145
1146 print_constraints_debug(rdev);
1147
1148 if ((constraints->min_uV != constraints->max_uV) &&
1149 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1150 rdev_warn(rdev,
1151 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1152 }
1153
machine_constraints_voltage(struct regulator_dev * rdev,struct regulation_constraints * constraints)1154 static int machine_constraints_voltage(struct regulator_dev *rdev,
1155 struct regulation_constraints *constraints)
1156 {
1157 const struct regulator_ops *ops = rdev->desc->ops;
1158 int ret;
1159
1160 /* do we need to apply the constraint voltage */
1161 if (rdev->constraints->apply_uV &&
1162 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1163 int target_min, target_max;
1164 int current_uV = regulator_get_voltage_rdev(rdev);
1165
1166 if (current_uV == -ENOTRECOVERABLE) {
1167 /* This regulator can't be read and must be initialized */
1168 rdev_info(rdev, "Setting %d-%duV\n",
1169 rdev->constraints->min_uV,
1170 rdev->constraints->max_uV);
1171 _regulator_do_set_voltage(rdev,
1172 rdev->constraints->min_uV,
1173 rdev->constraints->max_uV);
1174 current_uV = regulator_get_voltage_rdev(rdev);
1175 }
1176
1177 if (current_uV < 0) {
1178 rdev_err(rdev,
1179 "failed to get the current voltage: %pe\n",
1180 ERR_PTR(current_uV));
1181 return current_uV;
1182 }
1183
1184 /*
1185 * If we're below the minimum voltage move up to the
1186 * minimum voltage, if we're above the maximum voltage
1187 * then move down to the maximum.
1188 */
1189 target_min = current_uV;
1190 target_max = current_uV;
1191
1192 if (current_uV < rdev->constraints->min_uV) {
1193 target_min = rdev->constraints->min_uV;
1194 target_max = rdev->constraints->min_uV;
1195 }
1196
1197 if (current_uV > rdev->constraints->max_uV) {
1198 target_min = rdev->constraints->max_uV;
1199 target_max = rdev->constraints->max_uV;
1200 }
1201
1202 if (target_min != current_uV || target_max != current_uV) {
1203 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1204 current_uV, target_min, target_max);
1205 ret = _regulator_do_set_voltage(
1206 rdev, target_min, target_max);
1207 if (ret < 0) {
1208 rdev_err(rdev,
1209 "failed to apply %d-%duV constraint: %pe\n",
1210 target_min, target_max, ERR_PTR(ret));
1211 return ret;
1212 }
1213 }
1214 }
1215
1216 /* constrain machine-level voltage specs to fit
1217 * the actual range supported by this regulator.
1218 */
1219 if (ops->list_voltage && rdev->desc->n_voltages) {
1220 int count = rdev->desc->n_voltages;
1221 int i;
1222 int min_uV = INT_MAX;
1223 int max_uV = INT_MIN;
1224 int cmin = constraints->min_uV;
1225 int cmax = constraints->max_uV;
1226
1227 /* it's safe to autoconfigure fixed-voltage supplies
1228 and the constraints are used by list_voltage. */
1229 if (count == 1 && !cmin) {
1230 cmin = 1;
1231 cmax = INT_MAX;
1232 constraints->min_uV = cmin;
1233 constraints->max_uV = cmax;
1234 }
1235
1236 /* voltage constraints are optional */
1237 if ((cmin == 0) && (cmax == 0))
1238 return 0;
1239
1240 /* else require explicit machine-level constraints */
1241 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1242 rdev_err(rdev, "invalid voltage constraints\n");
1243 return -EINVAL;
1244 }
1245
1246 /* no need to loop voltages if range is continuous */
1247 if (rdev->desc->continuous_voltage_range)
1248 return 0;
1249
1250 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1251 for (i = 0; i < count; i++) {
1252 int value;
1253
1254 value = ops->list_voltage(rdev, i);
1255 if (value <= 0)
1256 continue;
1257
1258 /* maybe adjust [min_uV..max_uV] */
1259 if (value >= cmin && value < min_uV)
1260 min_uV = value;
1261 if (value <= cmax && value > max_uV)
1262 max_uV = value;
1263 }
1264
1265 /* final: [min_uV..max_uV] valid iff constraints valid */
1266 if (max_uV < min_uV) {
1267 rdev_err(rdev,
1268 "unsupportable voltage constraints %u-%uuV\n",
1269 min_uV, max_uV);
1270 return -EINVAL;
1271 }
1272
1273 /* use regulator's subset of machine constraints */
1274 if (constraints->min_uV < min_uV) {
1275 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1276 constraints->min_uV, min_uV);
1277 constraints->min_uV = min_uV;
1278 }
1279 if (constraints->max_uV > max_uV) {
1280 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1281 constraints->max_uV, max_uV);
1282 constraints->max_uV = max_uV;
1283 }
1284 }
1285
1286 return 0;
1287 }
1288
machine_constraints_current(struct regulator_dev * rdev,struct regulation_constraints * constraints)1289 static int machine_constraints_current(struct regulator_dev *rdev,
1290 struct regulation_constraints *constraints)
1291 {
1292 const struct regulator_ops *ops = rdev->desc->ops;
1293 int ret;
1294
1295 if (!constraints->min_uA && !constraints->max_uA)
1296 return 0;
1297
1298 if (constraints->min_uA > constraints->max_uA) {
1299 rdev_err(rdev, "Invalid current constraints\n");
1300 return -EINVAL;
1301 }
1302
1303 if (!ops->set_current_limit || !ops->get_current_limit) {
1304 rdev_warn(rdev, "Operation of current configuration missing\n");
1305 return 0;
1306 }
1307
1308 /* Set regulator current in constraints range */
1309 ret = ops->set_current_limit(rdev, constraints->min_uA,
1310 constraints->max_uA);
1311 if (ret < 0) {
1312 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1313 return ret;
1314 }
1315
1316 return 0;
1317 }
1318
1319 static int _regulator_do_enable(struct regulator_dev *rdev);
1320
1321 /**
1322 * set_machine_constraints - sets regulator constraints
1323 * @rdev: regulator source
1324 *
1325 * Allows platform initialisation code to define and constrain
1326 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1327 * Constraints *must* be set by platform code in order for some
1328 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1329 * set_mode.
1330 */
set_machine_constraints(struct regulator_dev * rdev)1331 static int set_machine_constraints(struct regulator_dev *rdev)
1332 {
1333 int ret = 0;
1334 const struct regulator_ops *ops = rdev->desc->ops;
1335
1336 ret = machine_constraints_voltage(rdev, rdev->constraints);
1337 if (ret != 0)
1338 return ret;
1339
1340 ret = machine_constraints_current(rdev, rdev->constraints);
1341 if (ret != 0)
1342 return ret;
1343
1344 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1345 ret = ops->set_input_current_limit(rdev,
1346 rdev->constraints->ilim_uA);
1347 if (ret < 0) {
1348 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1349 return ret;
1350 }
1351 }
1352
1353 /* do we need to setup our suspend state */
1354 if (rdev->constraints->initial_state) {
1355 ret = suspend_set_initial_state(rdev);
1356 if (ret < 0) {
1357 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1358 return ret;
1359 }
1360 }
1361
1362 if (rdev->constraints->initial_mode) {
1363 if (!ops->set_mode) {
1364 rdev_err(rdev, "no set_mode operation\n");
1365 return -EINVAL;
1366 }
1367
1368 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1369 if (ret < 0) {
1370 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1371 return ret;
1372 }
1373 } else if (rdev->constraints->system_load) {
1374 /*
1375 * We'll only apply the initial system load if an
1376 * initial mode wasn't specified.
1377 */
1378 drms_uA_update(rdev);
1379 }
1380
1381 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1382 && ops->set_ramp_delay) {
1383 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1384 if (ret < 0) {
1385 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1386 return ret;
1387 }
1388 }
1389
1390 if (rdev->constraints->pull_down && ops->set_pull_down) {
1391 ret = ops->set_pull_down(rdev);
1392 if (ret < 0) {
1393 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1394 return ret;
1395 }
1396 }
1397
1398 if (rdev->constraints->soft_start && ops->set_soft_start) {
1399 ret = ops->set_soft_start(rdev);
1400 if (ret < 0) {
1401 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1402 return ret;
1403 }
1404 }
1405
1406 if (rdev->constraints->over_current_protection
1407 && ops->set_over_current_protection) {
1408 ret = ops->set_over_current_protection(rdev);
1409 if (ret < 0) {
1410 rdev_err(rdev, "failed to set over current protection: %pe\n",
1411 ERR_PTR(ret));
1412 return ret;
1413 }
1414 }
1415
1416 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1417 bool ad_state = (rdev->constraints->active_discharge ==
1418 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1419
1420 ret = ops->set_active_discharge(rdev, ad_state);
1421 if (ret < 0) {
1422 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1423 return ret;
1424 }
1425 }
1426
1427 /* If the constraints say the regulator should be on at this point
1428 * and we have control then make sure it is enabled.
1429 */
1430 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1431 /* If we want to enable this regulator, make sure that we know
1432 * the supplying regulator.
1433 */
1434 if (rdev->supply_name && !rdev->supply)
1435 return -EPROBE_DEFER;
1436
1437 if (rdev->supply) {
1438 ret = regulator_enable(rdev->supply);
1439 if (ret < 0) {
1440 _regulator_put(rdev->supply);
1441 rdev->supply = NULL;
1442 return ret;
1443 }
1444 }
1445
1446 ret = _regulator_do_enable(rdev);
1447 if (ret < 0 && ret != -EINVAL) {
1448 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1449 return ret;
1450 }
1451
1452 if (rdev->constraints->always_on)
1453 rdev->use_count++;
1454 }
1455
1456 print_constraints(rdev);
1457 return 0;
1458 }
1459
1460 /**
1461 * set_supply - set regulator supply regulator
1462 * @rdev: regulator name
1463 * @supply_rdev: supply regulator name
1464 *
1465 * Called by platform initialisation code to set the supply regulator for this
1466 * regulator. This ensures that a regulators supply will also be enabled by the
1467 * core if it's child is enabled.
1468 */
set_supply(struct regulator_dev * rdev,struct regulator_dev * supply_rdev)1469 static int set_supply(struct regulator_dev *rdev,
1470 struct regulator_dev *supply_rdev)
1471 {
1472 int err;
1473
1474 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1475
1476 if (!try_module_get(supply_rdev->owner))
1477 return -ENODEV;
1478
1479 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1480 if (rdev->supply == NULL) {
1481 err = -ENOMEM;
1482 return err;
1483 }
1484 supply_rdev->open_count++;
1485
1486 return 0;
1487 }
1488
1489 /**
1490 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1491 * @rdev: regulator source
1492 * @consumer_dev_name: dev_name() string for device supply applies to
1493 * @supply: symbolic name for supply
1494 *
1495 * Allows platform initialisation code to map physical regulator
1496 * sources to symbolic names for supplies for use by devices. Devices
1497 * should use these symbolic names to request regulators, avoiding the
1498 * need to provide board-specific regulator names as platform data.
1499 */
set_consumer_device_supply(struct regulator_dev * rdev,const char * consumer_dev_name,const char * supply)1500 static int set_consumer_device_supply(struct regulator_dev *rdev,
1501 const char *consumer_dev_name,
1502 const char *supply)
1503 {
1504 struct regulator_map *node, *new_node;
1505 int has_dev;
1506
1507 if (supply == NULL)
1508 return -EINVAL;
1509
1510 if (consumer_dev_name != NULL)
1511 has_dev = 1;
1512 else
1513 has_dev = 0;
1514
1515 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1516 if (new_node == NULL)
1517 return -ENOMEM;
1518
1519 new_node->regulator = rdev;
1520 new_node->supply = supply;
1521
1522 if (has_dev) {
1523 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1524 if (new_node->dev_name == NULL) {
1525 kfree(new_node);
1526 return -ENOMEM;
1527 }
1528 }
1529
1530 mutex_lock(®ulator_list_mutex);
1531 list_for_each_entry(node, ®ulator_map_list, list) {
1532 if (node->dev_name && consumer_dev_name) {
1533 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1534 continue;
1535 } else if (node->dev_name || consumer_dev_name) {
1536 continue;
1537 }
1538
1539 if (strcmp(node->supply, supply) != 0)
1540 continue;
1541
1542 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1543 consumer_dev_name,
1544 dev_name(&node->regulator->dev),
1545 node->regulator->desc->name,
1546 supply,
1547 dev_name(&rdev->dev), rdev_get_name(rdev));
1548 goto fail;
1549 }
1550
1551 list_add(&new_node->list, ®ulator_map_list);
1552 mutex_unlock(®ulator_list_mutex);
1553
1554 return 0;
1555
1556 fail:
1557 mutex_unlock(®ulator_list_mutex);
1558 kfree(new_node->dev_name);
1559 kfree(new_node);
1560 return -EBUSY;
1561 }
1562
unset_regulator_supplies(struct regulator_dev * rdev)1563 static void unset_regulator_supplies(struct regulator_dev *rdev)
1564 {
1565 struct regulator_map *node, *n;
1566
1567 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1568 if (rdev == node->regulator) {
1569 list_del(&node->list);
1570 kfree(node->dev_name);
1571 kfree(node);
1572 }
1573 }
1574 }
1575
1576 #ifdef CONFIG_DEBUG_FS
constraint_flags_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1577 static ssize_t constraint_flags_read_file(struct file *file,
1578 char __user *user_buf,
1579 size_t count, loff_t *ppos)
1580 {
1581 const struct regulator *regulator = file->private_data;
1582 const struct regulation_constraints *c = regulator->rdev->constraints;
1583 char *buf;
1584 ssize_t ret;
1585
1586 if (!c)
1587 return 0;
1588
1589 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1590 if (!buf)
1591 return -ENOMEM;
1592
1593 ret = snprintf(buf, PAGE_SIZE,
1594 "always_on: %u\n"
1595 "boot_on: %u\n"
1596 "apply_uV: %u\n"
1597 "ramp_disable: %u\n"
1598 "soft_start: %u\n"
1599 "pull_down: %u\n"
1600 "over_current_protection: %u\n",
1601 c->always_on,
1602 c->boot_on,
1603 c->apply_uV,
1604 c->ramp_disable,
1605 c->soft_start,
1606 c->pull_down,
1607 c->over_current_protection);
1608
1609 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1610 kfree(buf);
1611
1612 return ret;
1613 }
1614
1615 #endif
1616
1617 static const struct file_operations constraint_flags_fops = {
1618 #ifdef CONFIG_DEBUG_FS
1619 .open = simple_open,
1620 .read = constraint_flags_read_file,
1621 .llseek = default_llseek,
1622 #endif
1623 };
1624
1625 #define REG_STR_SIZE 64
1626
create_regulator(struct regulator_dev * rdev,struct device * dev,const char * supply_name)1627 static struct regulator *create_regulator(struct regulator_dev *rdev,
1628 struct device *dev,
1629 const char *supply_name)
1630 {
1631 struct regulator *regulator;
1632 int err = 0;
1633
1634 if (dev) {
1635 char buf[REG_STR_SIZE];
1636 int size;
1637
1638 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1639 dev->kobj.name, supply_name);
1640 if (size >= REG_STR_SIZE)
1641 return NULL;
1642
1643 supply_name = kstrdup(buf, GFP_KERNEL);
1644 if (supply_name == NULL)
1645 return NULL;
1646 } else {
1647 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1648 if (supply_name == NULL)
1649 return NULL;
1650 }
1651
1652 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1653 if (regulator == NULL) {
1654 kfree(supply_name);
1655 return NULL;
1656 }
1657
1658 regulator->rdev = rdev;
1659 regulator->supply_name = supply_name;
1660
1661 regulator_lock(rdev);
1662 list_add(®ulator->list, &rdev->consumer_list);
1663 regulator_unlock(rdev);
1664
1665 if (dev) {
1666 regulator->dev = dev;
1667
1668 /* Add a link to the device sysfs entry */
1669 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1670 supply_name);
1671 if (err) {
1672 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1673 dev->kobj.name, ERR_PTR(err));
1674 /* non-fatal */
1675 }
1676 }
1677
1678 if (err != -EEXIST)
1679 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1680 if (!regulator->debugfs) {
1681 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1682 } else {
1683 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1684 ®ulator->uA_load);
1685 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1686 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1687 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1688 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1689 debugfs_create_file("constraint_flags", 0444,
1690 regulator->debugfs, regulator,
1691 &constraint_flags_fops);
1692 }
1693
1694 /*
1695 * Check now if the regulator is an always on regulator - if
1696 * it is then we don't need to do nearly so much work for
1697 * enable/disable calls.
1698 */
1699 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1700 _regulator_is_enabled(rdev))
1701 regulator->always_on = true;
1702
1703 return regulator;
1704 }
1705
_regulator_get_enable_time(struct regulator_dev * rdev)1706 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1707 {
1708 if (rdev->constraints && rdev->constraints->enable_time)
1709 return rdev->constraints->enable_time;
1710 if (rdev->desc->ops->enable_time)
1711 return rdev->desc->ops->enable_time(rdev);
1712 return rdev->desc->enable_time;
1713 }
1714
regulator_find_supply_alias(struct device * dev,const char * supply)1715 static struct regulator_supply_alias *regulator_find_supply_alias(
1716 struct device *dev, const char *supply)
1717 {
1718 struct regulator_supply_alias *map;
1719
1720 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1721 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1722 return map;
1723
1724 return NULL;
1725 }
1726
regulator_supply_alias(struct device ** dev,const char ** supply)1727 static void regulator_supply_alias(struct device **dev, const char **supply)
1728 {
1729 struct regulator_supply_alias *map;
1730
1731 map = regulator_find_supply_alias(*dev, *supply);
1732 if (map) {
1733 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1734 *supply, map->alias_supply,
1735 dev_name(map->alias_dev));
1736 *dev = map->alias_dev;
1737 *supply = map->alias_supply;
1738 }
1739 }
1740
regulator_match(struct device * dev,const void * data)1741 static int regulator_match(struct device *dev, const void *data)
1742 {
1743 struct regulator_dev *r = dev_to_rdev(dev);
1744
1745 return strcmp(rdev_get_name(r), data) == 0;
1746 }
1747
regulator_lookup_by_name(const char * name)1748 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1749 {
1750 struct device *dev;
1751
1752 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1753
1754 return dev ? dev_to_rdev(dev) : NULL;
1755 }
1756
1757 /**
1758 * regulator_dev_lookup - lookup a regulator device.
1759 * @dev: device for regulator "consumer".
1760 * @supply: Supply name or regulator ID.
1761 *
1762 * If successful, returns a struct regulator_dev that corresponds to the name
1763 * @supply and with the embedded struct device refcount incremented by one.
1764 * The refcount must be dropped by calling put_device().
1765 * On failure one of the following ERR-PTR-encoded values is returned:
1766 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1767 * in the future.
1768 */
regulator_dev_lookup(struct device * dev,const char * supply)1769 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1770 const char *supply)
1771 {
1772 struct regulator_dev *r = NULL;
1773 struct device_node *node;
1774 struct regulator_map *map;
1775 const char *devname = NULL;
1776
1777 regulator_supply_alias(&dev, &supply);
1778
1779 /* first do a dt based lookup */
1780 if (dev && dev->of_node) {
1781 node = of_get_regulator(dev, supply);
1782 if (node) {
1783 r = of_find_regulator_by_node(node);
1784 if (r)
1785 return r;
1786
1787 /*
1788 * We have a node, but there is no device.
1789 * assume it has not registered yet.
1790 */
1791 return ERR_PTR(-EPROBE_DEFER);
1792 }
1793 }
1794
1795 /* if not found, try doing it non-dt way */
1796 if (dev)
1797 devname = dev_name(dev);
1798
1799 mutex_lock(®ulator_list_mutex);
1800 list_for_each_entry(map, ®ulator_map_list, list) {
1801 /* If the mapping has a device set up it must match */
1802 if (map->dev_name &&
1803 (!devname || strcmp(map->dev_name, devname)))
1804 continue;
1805
1806 if (strcmp(map->supply, supply) == 0 &&
1807 get_device(&map->regulator->dev)) {
1808 r = map->regulator;
1809 break;
1810 }
1811 }
1812 mutex_unlock(®ulator_list_mutex);
1813
1814 if (r)
1815 return r;
1816
1817 r = regulator_lookup_by_name(supply);
1818 if (r)
1819 return r;
1820
1821 return ERR_PTR(-ENODEV);
1822 }
1823
regulator_resolve_supply(struct regulator_dev * rdev)1824 static int regulator_resolve_supply(struct regulator_dev *rdev)
1825 {
1826 struct regulator_dev *r;
1827 struct device *dev = rdev->dev.parent;
1828 int ret = 0;
1829
1830 /* No supply to resolve? */
1831 if (!rdev->supply_name)
1832 return 0;
1833
1834 /* Supply already resolved? (fast-path without locking contention) */
1835 if (rdev->supply)
1836 return 0;
1837
1838 r = regulator_dev_lookup(dev, rdev->supply_name);
1839 if (IS_ERR(r)) {
1840 ret = PTR_ERR(r);
1841
1842 /* Did the lookup explicitly defer for us? */
1843 if (ret == -EPROBE_DEFER)
1844 goto out;
1845
1846 if (have_full_constraints()) {
1847 r = dummy_regulator_rdev;
1848 get_device(&r->dev);
1849 } else {
1850 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1851 rdev->supply_name, rdev->desc->name);
1852 ret = -EPROBE_DEFER;
1853 goto out;
1854 }
1855 }
1856
1857 if (r == rdev) {
1858 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1859 rdev->desc->name, rdev->supply_name);
1860 if (!have_full_constraints()) {
1861 ret = -EINVAL;
1862 goto out;
1863 }
1864 r = dummy_regulator_rdev;
1865 get_device(&r->dev);
1866 }
1867
1868 /*
1869 * If the supply's parent device is not the same as the
1870 * regulator's parent device, then ensure the parent device
1871 * is bound before we resolve the supply, in case the parent
1872 * device get probe deferred and unregisters the supply.
1873 */
1874 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1875 if (!device_is_bound(r->dev.parent)) {
1876 put_device(&r->dev);
1877 ret = -EPROBE_DEFER;
1878 goto out;
1879 }
1880 }
1881
1882 /* Recursively resolve the supply of the supply */
1883 ret = regulator_resolve_supply(r);
1884 if (ret < 0) {
1885 put_device(&r->dev);
1886 goto out;
1887 }
1888
1889 /*
1890 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1891 * between rdev->supply null check and setting rdev->supply in
1892 * set_supply() from concurrent tasks.
1893 */
1894 regulator_lock(rdev);
1895
1896 /* Supply just resolved by a concurrent task? */
1897 if (rdev->supply) {
1898 regulator_unlock(rdev);
1899 put_device(&r->dev);
1900 goto out;
1901 }
1902
1903 ret = set_supply(rdev, r);
1904 if (ret < 0) {
1905 regulator_unlock(rdev);
1906 put_device(&r->dev);
1907 goto out;
1908 }
1909
1910 regulator_unlock(rdev);
1911
1912 /*
1913 * In set_machine_constraints() we may have turned this regulator on
1914 * but we couldn't propagate to the supply if it hadn't been resolved
1915 * yet. Do it now.
1916 */
1917 if (rdev->use_count) {
1918 ret = regulator_enable(rdev->supply);
1919 if (ret < 0) {
1920 _regulator_put(rdev->supply);
1921 rdev->supply = NULL;
1922 goto out;
1923 }
1924 }
1925
1926 out:
1927 return ret;
1928 }
1929
1930 /* Internal regulator request function */
_regulator_get(struct device * dev,const char * id,enum regulator_get_type get_type)1931 struct regulator *_regulator_get(struct device *dev, const char *id,
1932 enum regulator_get_type get_type)
1933 {
1934 struct regulator_dev *rdev;
1935 struct regulator *regulator;
1936 struct device_link *link;
1937 int ret;
1938
1939 if (get_type >= MAX_GET_TYPE) {
1940 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1941 return ERR_PTR(-EINVAL);
1942 }
1943
1944 if (id == NULL) {
1945 pr_err("get() with no identifier\n");
1946 return ERR_PTR(-EINVAL);
1947 }
1948
1949 rdev = regulator_dev_lookup(dev, id);
1950 if (IS_ERR(rdev)) {
1951 ret = PTR_ERR(rdev);
1952
1953 /*
1954 * If regulator_dev_lookup() fails with error other
1955 * than -ENODEV our job here is done, we simply return it.
1956 */
1957 if (ret != -ENODEV)
1958 return ERR_PTR(ret);
1959
1960 if (!have_full_constraints()) {
1961 dev_warn(dev,
1962 "incomplete constraints, dummy supplies not allowed\n");
1963 return ERR_PTR(-ENODEV);
1964 }
1965
1966 switch (get_type) {
1967 case NORMAL_GET:
1968 /*
1969 * Assume that a regulator is physically present and
1970 * enabled, even if it isn't hooked up, and just
1971 * provide a dummy.
1972 */
1973 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1974 rdev = dummy_regulator_rdev;
1975 get_device(&rdev->dev);
1976 break;
1977
1978 case EXCLUSIVE_GET:
1979 dev_warn(dev,
1980 "dummy supplies not allowed for exclusive requests\n");
1981 fallthrough;
1982
1983 default:
1984 return ERR_PTR(-ENODEV);
1985 }
1986 }
1987
1988 if (rdev->exclusive) {
1989 regulator = ERR_PTR(-EPERM);
1990 put_device(&rdev->dev);
1991 return regulator;
1992 }
1993
1994 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1995 regulator = ERR_PTR(-EBUSY);
1996 put_device(&rdev->dev);
1997 return regulator;
1998 }
1999
2000 mutex_lock(®ulator_list_mutex);
2001 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2002 mutex_unlock(®ulator_list_mutex);
2003
2004 if (ret != 0) {
2005 regulator = ERR_PTR(-EPROBE_DEFER);
2006 put_device(&rdev->dev);
2007 return regulator;
2008 }
2009
2010 ret = regulator_resolve_supply(rdev);
2011 if (ret < 0) {
2012 regulator = ERR_PTR(ret);
2013 put_device(&rdev->dev);
2014 return regulator;
2015 }
2016
2017 if (!try_module_get(rdev->owner)) {
2018 regulator = ERR_PTR(-EPROBE_DEFER);
2019 put_device(&rdev->dev);
2020 return regulator;
2021 }
2022
2023 regulator = create_regulator(rdev, dev, id);
2024 if (regulator == NULL) {
2025 regulator = ERR_PTR(-ENOMEM);
2026 module_put(rdev->owner);
2027 put_device(&rdev->dev);
2028 return regulator;
2029 }
2030
2031 rdev->open_count++;
2032 if (get_type == EXCLUSIVE_GET) {
2033 rdev->exclusive = 1;
2034
2035 ret = _regulator_is_enabled(rdev);
2036 if (ret > 0) {
2037 rdev->use_count = 1;
2038 regulator->enable_count = 1;
2039 } else {
2040 rdev->use_count = 0;
2041 regulator->enable_count = 0;
2042 }
2043 }
2044
2045 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2046 if (!IS_ERR_OR_NULL(link))
2047 regulator->device_link = true;
2048
2049 return regulator;
2050 }
2051
2052 /**
2053 * regulator_get - lookup and obtain a reference to a regulator.
2054 * @dev: device for regulator "consumer"
2055 * @id: Supply name or regulator ID.
2056 *
2057 * Returns a struct regulator corresponding to the regulator producer,
2058 * or IS_ERR() condition containing errno.
2059 *
2060 * Use of supply names configured via regulator_set_device_supply() is
2061 * strongly encouraged. It is recommended that the supply name used
2062 * should match the name used for the supply and/or the relevant
2063 * device pins in the datasheet.
2064 */
regulator_get(struct device * dev,const char * id)2065 struct regulator *regulator_get(struct device *dev, const char *id)
2066 {
2067 return _regulator_get(dev, id, NORMAL_GET);
2068 }
2069 EXPORT_SYMBOL_GPL(regulator_get);
2070
2071 /**
2072 * regulator_get_exclusive - obtain exclusive access to a regulator.
2073 * @dev: device for regulator "consumer"
2074 * @id: Supply name or regulator ID.
2075 *
2076 * Returns a struct regulator corresponding to the regulator producer,
2077 * or IS_ERR() condition containing errno. Other consumers will be
2078 * unable to obtain this regulator while this reference is held and the
2079 * use count for the regulator will be initialised to reflect the current
2080 * state of the regulator.
2081 *
2082 * This is intended for use by consumers which cannot tolerate shared
2083 * use of the regulator such as those which need to force the
2084 * regulator off for correct operation of the hardware they are
2085 * controlling.
2086 *
2087 * Use of supply names configured via regulator_set_device_supply() is
2088 * strongly encouraged. It is recommended that the supply name used
2089 * should match the name used for the supply and/or the relevant
2090 * device pins in the datasheet.
2091 */
regulator_get_exclusive(struct device * dev,const char * id)2092 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2093 {
2094 return _regulator_get(dev, id, EXCLUSIVE_GET);
2095 }
2096 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2097
2098 /**
2099 * regulator_get_optional - obtain optional access to a regulator.
2100 * @dev: device for regulator "consumer"
2101 * @id: Supply name or regulator ID.
2102 *
2103 * Returns a struct regulator corresponding to the regulator producer,
2104 * or IS_ERR() condition containing errno.
2105 *
2106 * This is intended for use by consumers for devices which can have
2107 * some supplies unconnected in normal use, such as some MMC devices.
2108 * It can allow the regulator core to provide stub supplies for other
2109 * supplies requested using normal regulator_get() calls without
2110 * disrupting the operation of drivers that can handle absent
2111 * supplies.
2112 *
2113 * Use of supply names configured via regulator_set_device_supply() is
2114 * strongly encouraged. It is recommended that the supply name used
2115 * should match the name used for the supply and/or the relevant
2116 * device pins in the datasheet.
2117 */
regulator_get_optional(struct device * dev,const char * id)2118 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2119 {
2120 return _regulator_get(dev, id, OPTIONAL_GET);
2121 }
2122 EXPORT_SYMBOL_GPL(regulator_get_optional);
2123
destroy_regulator(struct regulator * regulator)2124 static void destroy_regulator(struct regulator *regulator)
2125 {
2126 struct regulator_dev *rdev = regulator->rdev;
2127
2128 debugfs_remove_recursive(regulator->debugfs);
2129
2130 if (regulator->dev) {
2131 if (regulator->device_link)
2132 device_link_remove(regulator->dev, &rdev->dev);
2133
2134 /* remove any sysfs entries */
2135 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2136 }
2137
2138 regulator_lock(rdev);
2139 list_del(®ulator->list);
2140
2141 rdev->open_count--;
2142 rdev->exclusive = 0;
2143 regulator_unlock(rdev);
2144
2145 kfree_const(regulator->supply_name);
2146 kfree(regulator);
2147 }
2148
2149 /* regulator_list_mutex lock held by regulator_put() */
_regulator_put(struct regulator * regulator)2150 static void _regulator_put(struct regulator *regulator)
2151 {
2152 struct regulator_dev *rdev;
2153
2154 if (IS_ERR_OR_NULL(regulator))
2155 return;
2156
2157 lockdep_assert_held_once(®ulator_list_mutex);
2158
2159 /* Docs say you must disable before calling regulator_put() */
2160 WARN_ON(regulator->enable_count);
2161
2162 rdev = regulator->rdev;
2163
2164 destroy_regulator(regulator);
2165
2166 module_put(rdev->owner);
2167 put_device(&rdev->dev);
2168 }
2169
2170 /**
2171 * regulator_put - "free" the regulator source
2172 * @regulator: regulator source
2173 *
2174 * Note: drivers must ensure that all regulator_enable calls made on this
2175 * regulator source are balanced by regulator_disable calls prior to calling
2176 * this function.
2177 */
regulator_put(struct regulator * regulator)2178 void regulator_put(struct regulator *regulator)
2179 {
2180 mutex_lock(®ulator_list_mutex);
2181 _regulator_put(regulator);
2182 mutex_unlock(®ulator_list_mutex);
2183 }
2184 EXPORT_SYMBOL_GPL(regulator_put);
2185
2186 /**
2187 * regulator_register_supply_alias - Provide device alias for supply lookup
2188 *
2189 * @dev: device that will be given as the regulator "consumer"
2190 * @id: Supply name or regulator ID
2191 * @alias_dev: device that should be used to lookup the supply
2192 * @alias_id: Supply name or regulator ID that should be used to lookup the
2193 * supply
2194 *
2195 * All lookups for id on dev will instead be conducted for alias_id on
2196 * alias_dev.
2197 */
regulator_register_supply_alias(struct device * dev,const char * id,struct device * alias_dev,const char * alias_id)2198 int regulator_register_supply_alias(struct device *dev, const char *id,
2199 struct device *alias_dev,
2200 const char *alias_id)
2201 {
2202 struct regulator_supply_alias *map;
2203
2204 map = regulator_find_supply_alias(dev, id);
2205 if (map)
2206 return -EEXIST;
2207
2208 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2209 if (!map)
2210 return -ENOMEM;
2211
2212 map->src_dev = dev;
2213 map->src_supply = id;
2214 map->alias_dev = alias_dev;
2215 map->alias_supply = alias_id;
2216
2217 list_add(&map->list, ®ulator_supply_alias_list);
2218
2219 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2220 id, dev_name(dev), alias_id, dev_name(alias_dev));
2221
2222 return 0;
2223 }
2224 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2225
2226 /**
2227 * regulator_unregister_supply_alias - Remove device alias
2228 *
2229 * @dev: device that will be given as the regulator "consumer"
2230 * @id: Supply name or regulator ID
2231 *
2232 * Remove a lookup alias if one exists for id on dev.
2233 */
regulator_unregister_supply_alias(struct device * dev,const char * id)2234 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2235 {
2236 struct regulator_supply_alias *map;
2237
2238 map = regulator_find_supply_alias(dev, id);
2239 if (map) {
2240 list_del(&map->list);
2241 kfree(map);
2242 }
2243 }
2244 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2245
2246 /**
2247 * regulator_bulk_register_supply_alias - register multiple aliases
2248 *
2249 * @dev: device that will be given as the regulator "consumer"
2250 * @id: List of supply names or regulator IDs
2251 * @alias_dev: device that should be used to lookup the supply
2252 * @alias_id: List of supply names or regulator IDs that should be used to
2253 * lookup the supply
2254 * @num_id: Number of aliases to register
2255 *
2256 * @return 0 on success, an errno on failure.
2257 *
2258 * This helper function allows drivers to register several supply
2259 * aliases in one operation. If any of the aliases cannot be
2260 * registered any aliases that were registered will be removed
2261 * before returning to the caller.
2262 */
regulator_bulk_register_supply_alias(struct device * dev,const char * const * id,struct device * alias_dev,const char * const * alias_id,int num_id)2263 int regulator_bulk_register_supply_alias(struct device *dev,
2264 const char *const *id,
2265 struct device *alias_dev,
2266 const char *const *alias_id,
2267 int num_id)
2268 {
2269 int i;
2270 int ret;
2271
2272 for (i = 0; i < num_id; ++i) {
2273 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2274 alias_id[i]);
2275 if (ret < 0)
2276 goto err;
2277 }
2278
2279 return 0;
2280
2281 err:
2282 dev_err(dev,
2283 "Failed to create supply alias %s,%s -> %s,%s\n",
2284 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2285
2286 while (--i >= 0)
2287 regulator_unregister_supply_alias(dev, id[i]);
2288
2289 return ret;
2290 }
2291 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2292
2293 /**
2294 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2295 *
2296 * @dev: device that will be given as the regulator "consumer"
2297 * @id: List of supply names or regulator IDs
2298 * @num_id: Number of aliases to unregister
2299 *
2300 * This helper function allows drivers to unregister several supply
2301 * aliases in one operation.
2302 */
regulator_bulk_unregister_supply_alias(struct device * dev,const char * const * id,int num_id)2303 void regulator_bulk_unregister_supply_alias(struct device *dev,
2304 const char *const *id,
2305 int num_id)
2306 {
2307 int i;
2308
2309 for (i = 0; i < num_id; ++i)
2310 regulator_unregister_supply_alias(dev, id[i]);
2311 }
2312 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2313
2314
2315 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
regulator_ena_gpio_request(struct regulator_dev * rdev,const struct regulator_config * config)2316 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2317 const struct regulator_config *config)
2318 {
2319 struct regulator_enable_gpio *pin, *new_pin;
2320 struct gpio_desc *gpiod;
2321
2322 gpiod = config->ena_gpiod;
2323 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2324
2325 mutex_lock(®ulator_list_mutex);
2326
2327 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2328 if (pin->gpiod == gpiod) {
2329 rdev_dbg(rdev, "GPIO is already used\n");
2330 goto update_ena_gpio_to_rdev;
2331 }
2332 }
2333
2334 if (new_pin == NULL) {
2335 mutex_unlock(®ulator_list_mutex);
2336 return -ENOMEM;
2337 }
2338
2339 pin = new_pin;
2340 new_pin = NULL;
2341
2342 pin->gpiod = gpiod;
2343 list_add(&pin->list, ®ulator_ena_gpio_list);
2344
2345 update_ena_gpio_to_rdev:
2346 pin->request_count++;
2347 rdev->ena_pin = pin;
2348
2349 mutex_unlock(®ulator_list_mutex);
2350 kfree(new_pin);
2351
2352 return 0;
2353 }
2354
regulator_ena_gpio_free(struct regulator_dev * rdev)2355 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2356 {
2357 struct regulator_enable_gpio *pin, *n;
2358
2359 if (!rdev->ena_pin)
2360 return;
2361
2362 /* Free the GPIO only in case of no use */
2363 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2364 if (pin != rdev->ena_pin)
2365 continue;
2366
2367 if (--pin->request_count)
2368 break;
2369
2370 gpiod_put(pin->gpiod);
2371 list_del(&pin->list);
2372 kfree(pin);
2373 break;
2374 }
2375
2376 rdev->ena_pin = NULL;
2377 }
2378
2379 /**
2380 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2381 * @rdev: regulator_dev structure
2382 * @enable: enable GPIO at initial use?
2383 *
2384 * GPIO is enabled in case of initial use. (enable_count is 0)
2385 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2386 */
regulator_ena_gpio_ctrl(struct regulator_dev * rdev,bool enable)2387 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2388 {
2389 struct regulator_enable_gpio *pin = rdev->ena_pin;
2390
2391 if (!pin)
2392 return -EINVAL;
2393
2394 if (enable) {
2395 /* Enable GPIO at initial use */
2396 if (pin->enable_count == 0)
2397 gpiod_set_value_cansleep(pin->gpiod, 1);
2398
2399 pin->enable_count++;
2400 } else {
2401 if (pin->enable_count > 1) {
2402 pin->enable_count--;
2403 return 0;
2404 }
2405
2406 /* Disable GPIO if not used */
2407 if (pin->enable_count <= 1) {
2408 gpiod_set_value_cansleep(pin->gpiod, 0);
2409 pin->enable_count = 0;
2410 }
2411 }
2412
2413 return 0;
2414 }
2415
2416 /**
2417 * _regulator_enable_delay - a delay helper function
2418 * @delay: time to delay in microseconds
2419 *
2420 * Delay for the requested amount of time as per the guidelines in:
2421 *
2422 * Documentation/timers/timers-howto.rst
2423 *
2424 * The assumption here is that regulators will never be enabled in
2425 * atomic context and therefore sleeping functions can be used.
2426 */
_regulator_enable_delay(unsigned int delay)2427 static void _regulator_enable_delay(unsigned int delay)
2428 {
2429 unsigned int ms = delay / 1000;
2430 unsigned int us = delay % 1000;
2431
2432 if (ms > 0) {
2433 /*
2434 * For small enough values, handle super-millisecond
2435 * delays in the usleep_range() call below.
2436 */
2437 if (ms < 20)
2438 us += ms * 1000;
2439 else
2440 msleep(ms);
2441 }
2442
2443 /*
2444 * Give the scheduler some room to coalesce with any other
2445 * wakeup sources. For delays shorter than 10 us, don't even
2446 * bother setting up high-resolution timers and just busy-
2447 * loop.
2448 */
2449 if (us >= 10)
2450 usleep_range(us, us + 100);
2451 else
2452 udelay(us);
2453 }
2454
2455 /**
2456 * _regulator_check_status_enabled
2457 *
2458 * A helper function to check if the regulator status can be interpreted
2459 * as 'regulator is enabled'.
2460 * @rdev: the regulator device to check
2461 *
2462 * Return:
2463 * * 1 - if status shows regulator is in enabled state
2464 * * 0 - if not enabled state
2465 * * Error Value - as received from ops->get_status()
2466 */
_regulator_check_status_enabled(struct regulator_dev * rdev)2467 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2468 {
2469 int ret = rdev->desc->ops->get_status(rdev);
2470
2471 if (ret < 0) {
2472 rdev_info(rdev, "get_status returned error: %d\n", ret);
2473 return ret;
2474 }
2475
2476 switch (ret) {
2477 case REGULATOR_STATUS_OFF:
2478 case REGULATOR_STATUS_ERROR:
2479 case REGULATOR_STATUS_UNDEFINED:
2480 return 0;
2481 default:
2482 return 1;
2483 }
2484 }
2485
_regulator_do_enable(struct regulator_dev * rdev)2486 static int _regulator_do_enable(struct regulator_dev *rdev)
2487 {
2488 int ret, delay;
2489
2490 /* Query before enabling in case configuration dependent. */
2491 ret = _regulator_get_enable_time(rdev);
2492 if (ret >= 0) {
2493 delay = ret;
2494 } else {
2495 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2496 delay = 0;
2497 }
2498
2499 trace_regulator_enable(rdev_get_name(rdev));
2500
2501 if (rdev->desc->off_on_delay) {
2502 /* if needed, keep a distance of off_on_delay from last time
2503 * this regulator was disabled.
2504 */
2505 unsigned long start_jiffy = jiffies;
2506 unsigned long intended, max_delay, remaining;
2507
2508 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2509 intended = rdev->last_off_jiffy + max_delay;
2510
2511 if (time_before(start_jiffy, intended)) {
2512 /* calc remaining jiffies to deal with one-time
2513 * timer wrapping.
2514 * in case of multiple timer wrapping, either it can be
2515 * detected by out-of-range remaining, or it cannot be
2516 * detected and we get a penalty of
2517 * _regulator_enable_delay().
2518 */
2519 remaining = intended - start_jiffy;
2520 if (remaining <= max_delay)
2521 _regulator_enable_delay(
2522 jiffies_to_usecs(remaining));
2523 }
2524 }
2525
2526 if (rdev->ena_pin) {
2527 if (!rdev->ena_gpio_state) {
2528 ret = regulator_ena_gpio_ctrl(rdev, true);
2529 if (ret < 0)
2530 return ret;
2531 rdev->ena_gpio_state = 1;
2532 }
2533 } else if (rdev->desc->ops->enable) {
2534 ret = rdev->desc->ops->enable(rdev);
2535 if (ret < 0)
2536 return ret;
2537 } else {
2538 return -EINVAL;
2539 }
2540
2541 /* Allow the regulator to ramp; it would be useful to extend
2542 * this for bulk operations so that the regulators can ramp
2543 * together. */
2544 trace_regulator_enable_delay(rdev_get_name(rdev));
2545
2546 /* If poll_enabled_time is set, poll upto the delay calculated
2547 * above, delaying poll_enabled_time uS to check if the regulator
2548 * actually got enabled.
2549 * If the regulator isn't enabled after enable_delay has
2550 * expired, return -ETIMEDOUT.
2551 */
2552 if (rdev->desc->poll_enabled_time) {
2553 int time_remaining = delay;
2554
2555 while (time_remaining > 0) {
2556 _regulator_enable_delay(rdev->desc->poll_enabled_time);
2557
2558 if (rdev->desc->ops->get_status) {
2559 ret = _regulator_check_status_enabled(rdev);
2560 if (ret < 0)
2561 return ret;
2562 else if (ret)
2563 break;
2564 } else if (rdev->desc->ops->is_enabled(rdev))
2565 break;
2566
2567 time_remaining -= rdev->desc->poll_enabled_time;
2568 }
2569
2570 if (time_remaining <= 0) {
2571 rdev_err(rdev, "Enabled check timed out\n");
2572 return -ETIMEDOUT;
2573 }
2574 } else {
2575 _regulator_enable_delay(delay);
2576 }
2577
2578 trace_regulator_enable_complete(rdev_get_name(rdev));
2579
2580 return 0;
2581 }
2582
2583 /**
2584 * _regulator_handle_consumer_enable - handle that a consumer enabled
2585 * @regulator: regulator source
2586 *
2587 * Some things on a regulator consumer (like the contribution towards total
2588 * load on the regulator) only have an effect when the consumer wants the
2589 * regulator enabled. Explained in example with two consumers of the same
2590 * regulator:
2591 * consumer A: set_load(100); => total load = 0
2592 * consumer A: regulator_enable(); => total load = 100
2593 * consumer B: set_load(1000); => total load = 100
2594 * consumer B: regulator_enable(); => total load = 1100
2595 * consumer A: regulator_disable(); => total_load = 1000
2596 *
2597 * This function (together with _regulator_handle_consumer_disable) is
2598 * responsible for keeping track of the refcount for a given regulator consumer
2599 * and applying / unapplying these things.
2600 *
2601 * Returns 0 upon no error; -error upon error.
2602 */
_regulator_handle_consumer_enable(struct regulator * regulator)2603 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2604 {
2605 int ret;
2606 struct regulator_dev *rdev = regulator->rdev;
2607
2608 lockdep_assert_held_once(&rdev->mutex.base);
2609
2610 regulator->enable_count++;
2611 if (regulator->uA_load && regulator->enable_count == 1) {
2612 ret = drms_uA_update(rdev);
2613 if (ret)
2614 regulator->enable_count--;
2615 return ret;
2616 }
2617
2618 return 0;
2619 }
2620
2621 /**
2622 * _regulator_handle_consumer_disable - handle that a consumer disabled
2623 * @regulator: regulator source
2624 *
2625 * The opposite of _regulator_handle_consumer_enable().
2626 *
2627 * Returns 0 upon no error; -error upon error.
2628 */
_regulator_handle_consumer_disable(struct regulator * regulator)2629 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2630 {
2631 struct regulator_dev *rdev = regulator->rdev;
2632
2633 lockdep_assert_held_once(&rdev->mutex.base);
2634
2635 if (!regulator->enable_count) {
2636 rdev_err(rdev, "Underflow of regulator enable count\n");
2637 return -EINVAL;
2638 }
2639
2640 regulator->enable_count--;
2641 if (regulator->uA_load && regulator->enable_count == 0)
2642 return drms_uA_update(rdev);
2643
2644 return 0;
2645 }
2646
2647 /* locks held by regulator_enable() */
_regulator_enable(struct regulator * regulator)2648 static int _regulator_enable(struct regulator *regulator)
2649 {
2650 struct regulator_dev *rdev = regulator->rdev;
2651 int ret;
2652
2653 lockdep_assert_held_once(&rdev->mutex.base);
2654
2655 if (rdev->use_count == 0 && rdev->supply) {
2656 ret = _regulator_enable(rdev->supply);
2657 if (ret < 0)
2658 return ret;
2659 }
2660
2661 /* balance only if there are regulators coupled */
2662 if (rdev->coupling_desc.n_coupled > 1) {
2663 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2664 if (ret < 0)
2665 goto err_disable_supply;
2666 }
2667
2668 ret = _regulator_handle_consumer_enable(regulator);
2669 if (ret < 0)
2670 goto err_disable_supply;
2671
2672 if (rdev->use_count == 0) {
2673 /* The regulator may on if it's not switchable or left on */
2674 ret = _regulator_is_enabled(rdev);
2675 if (ret == -EINVAL || ret == 0) {
2676 if (!regulator_ops_is_valid(rdev,
2677 REGULATOR_CHANGE_STATUS)) {
2678 ret = -EPERM;
2679 goto err_consumer_disable;
2680 }
2681
2682 ret = _regulator_do_enable(rdev);
2683 if (ret < 0)
2684 goto err_consumer_disable;
2685
2686 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2687 NULL);
2688 } else if (ret < 0) {
2689 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2690 goto err_consumer_disable;
2691 }
2692 /* Fallthrough on positive return values - already enabled */
2693 }
2694
2695 rdev->use_count++;
2696
2697 return 0;
2698
2699 err_consumer_disable:
2700 _regulator_handle_consumer_disable(regulator);
2701
2702 err_disable_supply:
2703 if (rdev->use_count == 0 && rdev->supply)
2704 _regulator_disable(rdev->supply);
2705
2706 return ret;
2707 }
2708
2709 /**
2710 * regulator_enable - enable regulator output
2711 * @regulator: regulator source
2712 *
2713 * Request that the regulator be enabled with the regulator output at
2714 * the predefined voltage or current value. Calls to regulator_enable()
2715 * must be balanced with calls to regulator_disable().
2716 *
2717 * NOTE: the output value can be set by other drivers, boot loader or may be
2718 * hardwired in the regulator.
2719 */
regulator_enable(struct regulator * regulator)2720 int regulator_enable(struct regulator *regulator)
2721 {
2722 struct regulator_dev *rdev = regulator->rdev;
2723 struct ww_acquire_ctx ww_ctx;
2724 int ret;
2725
2726 regulator_lock_dependent(rdev, &ww_ctx);
2727 ret = _regulator_enable(regulator);
2728 regulator_unlock_dependent(rdev, &ww_ctx);
2729
2730 return ret;
2731 }
2732 EXPORT_SYMBOL_GPL(regulator_enable);
2733
_regulator_do_disable(struct regulator_dev * rdev)2734 static int _regulator_do_disable(struct regulator_dev *rdev)
2735 {
2736 int ret;
2737
2738 trace_regulator_disable(rdev_get_name(rdev));
2739
2740 if (rdev->ena_pin) {
2741 if (rdev->ena_gpio_state) {
2742 ret = regulator_ena_gpio_ctrl(rdev, false);
2743 if (ret < 0)
2744 return ret;
2745 rdev->ena_gpio_state = 0;
2746 }
2747
2748 } else if (rdev->desc->ops->disable) {
2749 ret = rdev->desc->ops->disable(rdev);
2750 if (ret != 0)
2751 return ret;
2752 }
2753
2754 /* cares about last_off_jiffy only if off_on_delay is required by
2755 * device.
2756 */
2757 if (rdev->desc->off_on_delay)
2758 rdev->last_off_jiffy = jiffies;
2759
2760 trace_regulator_disable_complete(rdev_get_name(rdev));
2761
2762 return 0;
2763 }
2764
2765 /* locks held by regulator_disable() */
_regulator_disable(struct regulator * regulator)2766 static int _regulator_disable(struct regulator *regulator)
2767 {
2768 struct regulator_dev *rdev = regulator->rdev;
2769 int ret = 0;
2770
2771 lockdep_assert_held_once(&rdev->mutex.base);
2772
2773 if (WARN(rdev->use_count <= 0,
2774 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2775 return -EIO;
2776
2777 /* are we the last user and permitted to disable ? */
2778 if (rdev->use_count == 1 &&
2779 (rdev->constraints && !rdev->constraints->always_on)) {
2780
2781 /* we are last user */
2782 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2783 ret = _notifier_call_chain(rdev,
2784 REGULATOR_EVENT_PRE_DISABLE,
2785 NULL);
2786 if (ret & NOTIFY_STOP_MASK)
2787 return -EINVAL;
2788
2789 ret = _regulator_do_disable(rdev);
2790 if (ret < 0) {
2791 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2792 _notifier_call_chain(rdev,
2793 REGULATOR_EVENT_ABORT_DISABLE,
2794 NULL);
2795 return ret;
2796 }
2797 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2798 NULL);
2799 }
2800
2801 rdev->use_count = 0;
2802 } else if (rdev->use_count > 1) {
2803 rdev->use_count--;
2804 }
2805
2806 if (ret == 0)
2807 ret = _regulator_handle_consumer_disable(regulator);
2808
2809 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2810 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2811
2812 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2813 ret = _regulator_disable(rdev->supply);
2814
2815 return ret;
2816 }
2817
2818 /**
2819 * regulator_disable - disable regulator output
2820 * @regulator: regulator source
2821 *
2822 * Disable the regulator output voltage or current. Calls to
2823 * regulator_enable() must be balanced with calls to
2824 * regulator_disable().
2825 *
2826 * NOTE: this will only disable the regulator output if no other consumer
2827 * devices have it enabled, the regulator device supports disabling and
2828 * machine constraints permit this operation.
2829 */
regulator_disable(struct regulator * regulator)2830 int regulator_disable(struct regulator *regulator)
2831 {
2832 struct regulator_dev *rdev = regulator->rdev;
2833 struct ww_acquire_ctx ww_ctx;
2834 int ret;
2835
2836 regulator_lock_dependent(rdev, &ww_ctx);
2837 ret = _regulator_disable(regulator);
2838 regulator_unlock_dependent(rdev, &ww_ctx);
2839
2840 return ret;
2841 }
2842 EXPORT_SYMBOL_GPL(regulator_disable);
2843
2844 /* locks held by regulator_force_disable() */
_regulator_force_disable(struct regulator_dev * rdev)2845 static int _regulator_force_disable(struct regulator_dev *rdev)
2846 {
2847 int ret = 0;
2848
2849 lockdep_assert_held_once(&rdev->mutex.base);
2850
2851 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2852 REGULATOR_EVENT_PRE_DISABLE, NULL);
2853 if (ret & NOTIFY_STOP_MASK)
2854 return -EINVAL;
2855
2856 ret = _regulator_do_disable(rdev);
2857 if (ret < 0) {
2858 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2859 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2860 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2861 return ret;
2862 }
2863
2864 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2865 REGULATOR_EVENT_DISABLE, NULL);
2866
2867 return 0;
2868 }
2869
2870 /**
2871 * regulator_force_disable - force disable regulator output
2872 * @regulator: regulator source
2873 *
2874 * Forcibly disable the regulator output voltage or current.
2875 * NOTE: this *will* disable the regulator output even if other consumer
2876 * devices have it enabled. This should be used for situations when device
2877 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2878 */
regulator_force_disable(struct regulator * regulator)2879 int regulator_force_disable(struct regulator *regulator)
2880 {
2881 struct regulator_dev *rdev = regulator->rdev;
2882 struct ww_acquire_ctx ww_ctx;
2883 int ret;
2884
2885 regulator_lock_dependent(rdev, &ww_ctx);
2886
2887 ret = _regulator_force_disable(regulator->rdev);
2888
2889 if (rdev->coupling_desc.n_coupled > 1)
2890 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2891
2892 if (regulator->uA_load) {
2893 regulator->uA_load = 0;
2894 ret = drms_uA_update(rdev);
2895 }
2896
2897 if (rdev->use_count != 0 && rdev->supply)
2898 _regulator_disable(rdev->supply);
2899
2900 regulator_unlock_dependent(rdev, &ww_ctx);
2901
2902 return ret;
2903 }
2904 EXPORT_SYMBOL_GPL(regulator_force_disable);
2905
regulator_disable_work(struct work_struct * work)2906 static void regulator_disable_work(struct work_struct *work)
2907 {
2908 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2909 disable_work.work);
2910 struct ww_acquire_ctx ww_ctx;
2911 int count, i, ret;
2912 struct regulator *regulator;
2913 int total_count = 0;
2914
2915 regulator_lock_dependent(rdev, &ww_ctx);
2916
2917 /*
2918 * Workqueue functions queue the new work instance while the previous
2919 * work instance is being processed. Cancel the queued work instance
2920 * as the work instance under processing does the job of the queued
2921 * work instance.
2922 */
2923 cancel_delayed_work(&rdev->disable_work);
2924
2925 list_for_each_entry(regulator, &rdev->consumer_list, list) {
2926 count = regulator->deferred_disables;
2927
2928 if (!count)
2929 continue;
2930
2931 total_count += count;
2932 regulator->deferred_disables = 0;
2933
2934 for (i = 0; i < count; i++) {
2935 ret = _regulator_disable(regulator);
2936 if (ret != 0)
2937 rdev_err(rdev, "Deferred disable failed: %pe\n",
2938 ERR_PTR(ret));
2939 }
2940 }
2941 WARN_ON(!total_count);
2942
2943 if (rdev->coupling_desc.n_coupled > 1)
2944 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2945
2946 regulator_unlock_dependent(rdev, &ww_ctx);
2947 }
2948
2949 /**
2950 * regulator_disable_deferred - disable regulator output with delay
2951 * @regulator: regulator source
2952 * @ms: milliseconds until the regulator is disabled
2953 *
2954 * Execute regulator_disable() on the regulator after a delay. This
2955 * is intended for use with devices that require some time to quiesce.
2956 *
2957 * NOTE: this will only disable the regulator output if no other consumer
2958 * devices have it enabled, the regulator device supports disabling and
2959 * machine constraints permit this operation.
2960 */
regulator_disable_deferred(struct regulator * regulator,int ms)2961 int regulator_disable_deferred(struct regulator *regulator, int ms)
2962 {
2963 struct regulator_dev *rdev = regulator->rdev;
2964
2965 if (!ms)
2966 return regulator_disable(regulator);
2967
2968 regulator_lock(rdev);
2969 regulator->deferred_disables++;
2970 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2971 msecs_to_jiffies(ms));
2972 regulator_unlock(rdev);
2973
2974 return 0;
2975 }
2976 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2977
_regulator_is_enabled(struct regulator_dev * rdev)2978 static int _regulator_is_enabled(struct regulator_dev *rdev)
2979 {
2980 /* A GPIO control always takes precedence */
2981 if (rdev->ena_pin)
2982 return rdev->ena_gpio_state;
2983
2984 /* If we don't know then assume that the regulator is always on */
2985 if (!rdev->desc->ops->is_enabled)
2986 return 1;
2987
2988 return rdev->desc->ops->is_enabled(rdev);
2989 }
2990
_regulator_list_voltage(struct regulator_dev * rdev,unsigned selector,int lock)2991 static int _regulator_list_voltage(struct regulator_dev *rdev,
2992 unsigned selector, int lock)
2993 {
2994 const struct regulator_ops *ops = rdev->desc->ops;
2995 int ret;
2996
2997 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2998 return rdev->desc->fixed_uV;
2999
3000 if (ops->list_voltage) {
3001 if (selector >= rdev->desc->n_voltages)
3002 return -EINVAL;
3003 if (lock)
3004 regulator_lock(rdev);
3005 ret = ops->list_voltage(rdev, selector);
3006 if (lock)
3007 regulator_unlock(rdev);
3008 } else if (rdev->is_switch && rdev->supply) {
3009 ret = _regulator_list_voltage(rdev->supply->rdev,
3010 selector, lock);
3011 } else {
3012 return -EINVAL;
3013 }
3014
3015 if (ret > 0) {
3016 if (ret < rdev->constraints->min_uV)
3017 ret = 0;
3018 else if (ret > rdev->constraints->max_uV)
3019 ret = 0;
3020 }
3021
3022 return ret;
3023 }
3024
3025 /**
3026 * regulator_is_enabled - is the regulator output enabled
3027 * @regulator: regulator source
3028 *
3029 * Returns positive if the regulator driver backing the source/client
3030 * has requested that the device be enabled, zero if it hasn't, else a
3031 * negative errno code.
3032 *
3033 * Note that the device backing this regulator handle can have multiple
3034 * users, so it might be enabled even if regulator_enable() was never
3035 * called for this particular source.
3036 */
regulator_is_enabled(struct regulator * regulator)3037 int regulator_is_enabled(struct regulator *regulator)
3038 {
3039 int ret;
3040
3041 if (regulator->always_on)
3042 return 1;
3043
3044 regulator_lock(regulator->rdev);
3045 ret = _regulator_is_enabled(regulator->rdev);
3046 regulator_unlock(regulator->rdev);
3047
3048 return ret;
3049 }
3050 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3051
3052 /**
3053 * regulator_count_voltages - count regulator_list_voltage() selectors
3054 * @regulator: regulator source
3055 *
3056 * Returns number of selectors, or negative errno. Selectors are
3057 * numbered starting at zero, and typically correspond to bitfields
3058 * in hardware registers.
3059 */
regulator_count_voltages(struct regulator * regulator)3060 int regulator_count_voltages(struct regulator *regulator)
3061 {
3062 struct regulator_dev *rdev = regulator->rdev;
3063
3064 if (rdev->desc->n_voltages)
3065 return rdev->desc->n_voltages;
3066
3067 if (!rdev->is_switch || !rdev->supply)
3068 return -EINVAL;
3069
3070 return regulator_count_voltages(rdev->supply);
3071 }
3072 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3073
3074 /**
3075 * regulator_list_voltage - enumerate supported voltages
3076 * @regulator: regulator source
3077 * @selector: identify voltage to list
3078 * Context: can sleep
3079 *
3080 * Returns a voltage that can be passed to @regulator_set_voltage(),
3081 * zero if this selector code can't be used on this system, or a
3082 * negative errno.
3083 */
regulator_list_voltage(struct regulator * regulator,unsigned selector)3084 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3085 {
3086 return _regulator_list_voltage(regulator->rdev, selector, 1);
3087 }
3088 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3089
3090 /**
3091 * regulator_get_regmap - get the regulator's register map
3092 * @regulator: regulator source
3093 *
3094 * Returns the register map for the given regulator, or an ERR_PTR value
3095 * if the regulator doesn't use regmap.
3096 */
regulator_get_regmap(struct regulator * regulator)3097 struct regmap *regulator_get_regmap(struct regulator *regulator)
3098 {
3099 struct regmap *map = regulator->rdev->regmap;
3100
3101 return map ? map : ERR_PTR(-EOPNOTSUPP);
3102 }
3103
3104 /**
3105 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3106 * @regulator: regulator source
3107 * @vsel_reg: voltage selector register, output parameter
3108 * @vsel_mask: mask for voltage selector bitfield, output parameter
3109 *
3110 * Returns the hardware register offset and bitmask used for setting the
3111 * regulator voltage. This might be useful when configuring voltage-scaling
3112 * hardware or firmware that can make I2C requests behind the kernel's back,
3113 * for example.
3114 *
3115 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3116 * and 0 is returned, otherwise a negative errno is returned.
3117 */
regulator_get_hardware_vsel_register(struct regulator * regulator,unsigned * vsel_reg,unsigned * vsel_mask)3118 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3119 unsigned *vsel_reg,
3120 unsigned *vsel_mask)
3121 {
3122 struct regulator_dev *rdev = regulator->rdev;
3123 const struct regulator_ops *ops = rdev->desc->ops;
3124
3125 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3126 return -EOPNOTSUPP;
3127
3128 *vsel_reg = rdev->desc->vsel_reg;
3129 *vsel_mask = rdev->desc->vsel_mask;
3130
3131 return 0;
3132 }
3133 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3134
3135 /**
3136 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3137 * @regulator: regulator source
3138 * @selector: identify voltage to list
3139 *
3140 * Converts the selector to a hardware-specific voltage selector that can be
3141 * directly written to the regulator registers. The address of the voltage
3142 * register can be determined by calling @regulator_get_hardware_vsel_register.
3143 *
3144 * On error a negative errno is returned.
3145 */
regulator_list_hardware_vsel(struct regulator * regulator,unsigned selector)3146 int regulator_list_hardware_vsel(struct regulator *regulator,
3147 unsigned selector)
3148 {
3149 struct regulator_dev *rdev = regulator->rdev;
3150 const struct regulator_ops *ops = rdev->desc->ops;
3151
3152 if (selector >= rdev->desc->n_voltages)
3153 return -EINVAL;
3154 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3155 return -EOPNOTSUPP;
3156
3157 return selector;
3158 }
3159 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3160
3161 /**
3162 * regulator_get_linear_step - return the voltage step size between VSEL values
3163 * @regulator: regulator source
3164 *
3165 * Returns the voltage step size between VSEL values for linear
3166 * regulators, or return 0 if the regulator isn't a linear regulator.
3167 */
regulator_get_linear_step(struct regulator * regulator)3168 unsigned int regulator_get_linear_step(struct regulator *regulator)
3169 {
3170 struct regulator_dev *rdev = regulator->rdev;
3171
3172 return rdev->desc->uV_step;
3173 }
3174 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3175
3176 /**
3177 * regulator_is_supported_voltage - check if a voltage range can be supported
3178 *
3179 * @regulator: Regulator to check.
3180 * @min_uV: Minimum required voltage in uV.
3181 * @max_uV: Maximum required voltage in uV.
3182 *
3183 * Returns a boolean.
3184 */
regulator_is_supported_voltage(struct regulator * regulator,int min_uV,int max_uV)3185 int regulator_is_supported_voltage(struct regulator *regulator,
3186 int min_uV, int max_uV)
3187 {
3188 struct regulator_dev *rdev = regulator->rdev;
3189 int i, voltages, ret;
3190
3191 /* If we can't change voltage check the current voltage */
3192 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3193 ret = regulator_get_voltage(regulator);
3194 if (ret >= 0)
3195 return min_uV <= ret && ret <= max_uV;
3196 else
3197 return ret;
3198 }
3199
3200 /* Any voltage within constrains range is fine? */
3201 if (rdev->desc->continuous_voltage_range)
3202 return min_uV >= rdev->constraints->min_uV &&
3203 max_uV <= rdev->constraints->max_uV;
3204
3205 ret = regulator_count_voltages(regulator);
3206 if (ret < 0)
3207 return 0;
3208 voltages = ret;
3209
3210 for (i = 0; i < voltages; i++) {
3211 ret = regulator_list_voltage(regulator, i);
3212
3213 if (ret >= min_uV && ret <= max_uV)
3214 return 1;
3215 }
3216
3217 return 0;
3218 }
3219 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3220
regulator_map_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3221 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3222 int max_uV)
3223 {
3224 const struct regulator_desc *desc = rdev->desc;
3225
3226 if (desc->ops->map_voltage)
3227 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3228
3229 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3230 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3231
3232 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3233 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3234
3235 if (desc->ops->list_voltage ==
3236 regulator_list_voltage_pickable_linear_range)
3237 return regulator_map_voltage_pickable_linear_range(rdev,
3238 min_uV, max_uV);
3239
3240 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3241 }
3242
_regulator_call_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,unsigned * selector)3243 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3244 int min_uV, int max_uV,
3245 unsigned *selector)
3246 {
3247 struct pre_voltage_change_data data;
3248 int ret;
3249
3250 data.old_uV = regulator_get_voltage_rdev(rdev);
3251 data.min_uV = min_uV;
3252 data.max_uV = max_uV;
3253 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3254 &data);
3255 if (ret & NOTIFY_STOP_MASK)
3256 return -EINVAL;
3257
3258 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3259 if (ret >= 0)
3260 return ret;
3261
3262 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3263 (void *)data.old_uV);
3264
3265 return ret;
3266 }
3267
_regulator_call_set_voltage_sel(struct regulator_dev * rdev,int uV,unsigned selector)3268 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3269 int uV, unsigned selector)
3270 {
3271 struct pre_voltage_change_data data;
3272 int ret;
3273
3274 data.old_uV = regulator_get_voltage_rdev(rdev);
3275 data.min_uV = uV;
3276 data.max_uV = uV;
3277 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3278 &data);
3279 if (ret & NOTIFY_STOP_MASK)
3280 return -EINVAL;
3281
3282 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3283 if (ret >= 0)
3284 return ret;
3285
3286 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3287 (void *)data.old_uV);
3288
3289 return ret;
3290 }
3291
_regulator_set_voltage_sel_step(struct regulator_dev * rdev,int uV,int new_selector)3292 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3293 int uV, int new_selector)
3294 {
3295 const struct regulator_ops *ops = rdev->desc->ops;
3296 int diff, old_sel, curr_sel, ret;
3297
3298 /* Stepping is only needed if the regulator is enabled. */
3299 if (!_regulator_is_enabled(rdev))
3300 goto final_set;
3301
3302 if (!ops->get_voltage_sel)
3303 return -EINVAL;
3304
3305 old_sel = ops->get_voltage_sel(rdev);
3306 if (old_sel < 0)
3307 return old_sel;
3308
3309 diff = new_selector - old_sel;
3310 if (diff == 0)
3311 return 0; /* No change needed. */
3312
3313 if (diff > 0) {
3314 /* Stepping up. */
3315 for (curr_sel = old_sel + rdev->desc->vsel_step;
3316 curr_sel < new_selector;
3317 curr_sel += rdev->desc->vsel_step) {
3318 /*
3319 * Call the callback directly instead of using
3320 * _regulator_call_set_voltage_sel() as we don't
3321 * want to notify anyone yet. Same in the branch
3322 * below.
3323 */
3324 ret = ops->set_voltage_sel(rdev, curr_sel);
3325 if (ret)
3326 goto try_revert;
3327 }
3328 } else {
3329 /* Stepping down. */
3330 for (curr_sel = old_sel - rdev->desc->vsel_step;
3331 curr_sel > new_selector;
3332 curr_sel -= rdev->desc->vsel_step) {
3333 ret = ops->set_voltage_sel(rdev, curr_sel);
3334 if (ret)
3335 goto try_revert;
3336 }
3337 }
3338
3339 final_set:
3340 /* The final selector will trigger the notifiers. */
3341 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3342
3343 try_revert:
3344 /*
3345 * At least try to return to the previous voltage if setting a new
3346 * one failed.
3347 */
3348 (void)ops->set_voltage_sel(rdev, old_sel);
3349 return ret;
3350 }
3351
_regulator_set_voltage_time(struct regulator_dev * rdev,int old_uV,int new_uV)3352 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3353 int old_uV, int new_uV)
3354 {
3355 unsigned int ramp_delay = 0;
3356
3357 if (rdev->constraints->ramp_delay)
3358 ramp_delay = rdev->constraints->ramp_delay;
3359 else if (rdev->desc->ramp_delay)
3360 ramp_delay = rdev->desc->ramp_delay;
3361 else if (rdev->constraints->settling_time)
3362 return rdev->constraints->settling_time;
3363 else if (rdev->constraints->settling_time_up &&
3364 (new_uV > old_uV))
3365 return rdev->constraints->settling_time_up;
3366 else if (rdev->constraints->settling_time_down &&
3367 (new_uV < old_uV))
3368 return rdev->constraints->settling_time_down;
3369
3370 if (ramp_delay == 0) {
3371 rdev_dbg(rdev, "ramp_delay not set\n");
3372 return 0;
3373 }
3374
3375 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3376 }
3377
_regulator_do_set_voltage(struct regulator_dev * rdev,int min_uV,int max_uV)3378 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3379 int min_uV, int max_uV)
3380 {
3381 int ret;
3382 int delay = 0;
3383 int best_val = 0;
3384 unsigned int selector;
3385 int old_selector = -1;
3386 const struct regulator_ops *ops = rdev->desc->ops;
3387 int old_uV = regulator_get_voltage_rdev(rdev);
3388
3389 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3390
3391 min_uV += rdev->constraints->uV_offset;
3392 max_uV += rdev->constraints->uV_offset;
3393
3394 /*
3395 * If we can't obtain the old selector there is not enough
3396 * info to call set_voltage_time_sel().
3397 */
3398 if (_regulator_is_enabled(rdev) &&
3399 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3400 old_selector = ops->get_voltage_sel(rdev);
3401 if (old_selector < 0)
3402 return old_selector;
3403 }
3404
3405 if (ops->set_voltage) {
3406 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3407 &selector);
3408
3409 if (ret >= 0) {
3410 if (ops->list_voltage)
3411 best_val = ops->list_voltage(rdev,
3412 selector);
3413 else
3414 best_val = regulator_get_voltage_rdev(rdev);
3415 }
3416
3417 } else if (ops->set_voltage_sel) {
3418 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3419 if (ret >= 0) {
3420 best_val = ops->list_voltage(rdev, ret);
3421 if (min_uV <= best_val && max_uV >= best_val) {
3422 selector = ret;
3423 if (old_selector == selector)
3424 ret = 0;
3425 else if (rdev->desc->vsel_step)
3426 ret = _regulator_set_voltage_sel_step(
3427 rdev, best_val, selector);
3428 else
3429 ret = _regulator_call_set_voltage_sel(
3430 rdev, best_val, selector);
3431 } else {
3432 ret = -EINVAL;
3433 }
3434 }
3435 } else {
3436 ret = -EINVAL;
3437 }
3438
3439 if (ret)
3440 goto out;
3441
3442 if (ops->set_voltage_time_sel) {
3443 /*
3444 * Call set_voltage_time_sel if successfully obtained
3445 * old_selector
3446 */
3447 if (old_selector >= 0 && old_selector != selector)
3448 delay = ops->set_voltage_time_sel(rdev, old_selector,
3449 selector);
3450 } else {
3451 if (old_uV != best_val) {
3452 if (ops->set_voltage_time)
3453 delay = ops->set_voltage_time(rdev, old_uV,
3454 best_val);
3455 else
3456 delay = _regulator_set_voltage_time(rdev,
3457 old_uV,
3458 best_val);
3459 }
3460 }
3461
3462 if (delay < 0) {
3463 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3464 delay = 0;
3465 }
3466
3467 /* Insert any necessary delays */
3468 if (delay >= 1000) {
3469 mdelay(delay / 1000);
3470 udelay(delay % 1000);
3471 } else if (delay) {
3472 udelay(delay);
3473 }
3474
3475 if (best_val >= 0) {
3476 unsigned long data = best_val;
3477
3478 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3479 (void *)data);
3480 }
3481
3482 out:
3483 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3484
3485 return ret;
3486 }
3487
_regulator_do_set_suspend_voltage(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3488 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3489 int min_uV, int max_uV, suspend_state_t state)
3490 {
3491 struct regulator_state *rstate;
3492 int uV, sel;
3493
3494 rstate = regulator_get_suspend_state(rdev, state);
3495 if (rstate == NULL)
3496 return -EINVAL;
3497
3498 if (min_uV < rstate->min_uV)
3499 min_uV = rstate->min_uV;
3500 if (max_uV > rstate->max_uV)
3501 max_uV = rstate->max_uV;
3502
3503 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3504 if (sel < 0)
3505 return sel;
3506
3507 uV = rdev->desc->ops->list_voltage(rdev, sel);
3508 if (uV >= min_uV && uV <= max_uV)
3509 rstate->uV = uV;
3510
3511 return 0;
3512 }
3513
regulator_set_voltage_unlocked(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)3514 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3515 int min_uV, int max_uV,
3516 suspend_state_t state)
3517 {
3518 struct regulator_dev *rdev = regulator->rdev;
3519 struct regulator_voltage *voltage = ®ulator->voltage[state];
3520 int ret = 0;
3521 int old_min_uV, old_max_uV;
3522 int current_uV;
3523
3524 /* If we're setting the same range as last time the change
3525 * should be a noop (some cpufreq implementations use the same
3526 * voltage for multiple frequencies, for example).
3527 */
3528 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3529 goto out;
3530
3531 /* If we're trying to set a range that overlaps the current voltage,
3532 * return successfully even though the regulator does not support
3533 * changing the voltage.
3534 */
3535 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3536 current_uV = regulator_get_voltage_rdev(rdev);
3537 if (min_uV <= current_uV && current_uV <= max_uV) {
3538 voltage->min_uV = min_uV;
3539 voltage->max_uV = max_uV;
3540 goto out;
3541 }
3542 }
3543
3544 /* sanity check */
3545 if (!rdev->desc->ops->set_voltage &&
3546 !rdev->desc->ops->set_voltage_sel) {
3547 ret = -EINVAL;
3548 goto out;
3549 }
3550
3551 /* constraints check */
3552 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3553 if (ret < 0)
3554 goto out;
3555
3556 /* restore original values in case of error */
3557 old_min_uV = voltage->min_uV;
3558 old_max_uV = voltage->max_uV;
3559 voltage->min_uV = min_uV;
3560 voltage->max_uV = max_uV;
3561
3562 /* for not coupled regulators this will just set the voltage */
3563 ret = regulator_balance_voltage(rdev, state);
3564 if (ret < 0) {
3565 voltage->min_uV = old_min_uV;
3566 voltage->max_uV = old_max_uV;
3567 }
3568
3569 out:
3570 return ret;
3571 }
3572
regulator_set_voltage_rdev(struct regulator_dev * rdev,int min_uV,int max_uV,suspend_state_t state)3573 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3574 int max_uV, suspend_state_t state)
3575 {
3576 int best_supply_uV = 0;
3577 int supply_change_uV = 0;
3578 int ret;
3579
3580 if (rdev->supply &&
3581 regulator_ops_is_valid(rdev->supply->rdev,
3582 REGULATOR_CHANGE_VOLTAGE) &&
3583 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3584 rdev->desc->ops->get_voltage_sel))) {
3585 int current_supply_uV;
3586 int selector;
3587
3588 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3589 if (selector < 0) {
3590 ret = selector;
3591 goto out;
3592 }
3593
3594 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3595 if (best_supply_uV < 0) {
3596 ret = best_supply_uV;
3597 goto out;
3598 }
3599
3600 best_supply_uV += rdev->desc->min_dropout_uV;
3601
3602 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3603 if (current_supply_uV < 0) {
3604 ret = current_supply_uV;
3605 goto out;
3606 }
3607
3608 supply_change_uV = best_supply_uV - current_supply_uV;
3609 }
3610
3611 if (supply_change_uV > 0) {
3612 ret = regulator_set_voltage_unlocked(rdev->supply,
3613 best_supply_uV, INT_MAX, state);
3614 if (ret) {
3615 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3616 ERR_PTR(ret));
3617 goto out;
3618 }
3619 }
3620
3621 if (state == PM_SUSPEND_ON)
3622 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3623 else
3624 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3625 max_uV, state);
3626 if (ret < 0)
3627 goto out;
3628
3629 if (supply_change_uV < 0) {
3630 ret = regulator_set_voltage_unlocked(rdev->supply,
3631 best_supply_uV, INT_MAX, state);
3632 if (ret)
3633 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3634 ERR_PTR(ret));
3635 /* No need to fail here */
3636 ret = 0;
3637 }
3638
3639 out:
3640 return ret;
3641 }
3642 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3643
regulator_limit_voltage_step(struct regulator_dev * rdev,int * current_uV,int * min_uV)3644 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3645 int *current_uV, int *min_uV)
3646 {
3647 struct regulation_constraints *constraints = rdev->constraints;
3648
3649 /* Limit voltage change only if necessary */
3650 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3651 return 1;
3652
3653 if (*current_uV < 0) {
3654 *current_uV = regulator_get_voltage_rdev(rdev);
3655
3656 if (*current_uV < 0)
3657 return *current_uV;
3658 }
3659
3660 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3661 return 1;
3662
3663 /* Clamp target voltage within the given step */
3664 if (*current_uV < *min_uV)
3665 *min_uV = min(*current_uV + constraints->max_uV_step,
3666 *min_uV);
3667 else
3668 *min_uV = max(*current_uV - constraints->max_uV_step,
3669 *min_uV);
3670
3671 return 0;
3672 }
3673
regulator_get_optimal_voltage(struct regulator_dev * rdev,int * current_uV,int * min_uV,int * max_uV,suspend_state_t state,int n_coupled)3674 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3675 int *current_uV,
3676 int *min_uV, int *max_uV,
3677 suspend_state_t state,
3678 int n_coupled)
3679 {
3680 struct coupling_desc *c_desc = &rdev->coupling_desc;
3681 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3682 struct regulation_constraints *constraints = rdev->constraints;
3683 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3684 int max_current_uV = 0, min_current_uV = INT_MAX;
3685 int highest_min_uV = 0, target_uV, possible_uV;
3686 int i, ret, max_spread;
3687 bool done;
3688
3689 *current_uV = -1;
3690
3691 /*
3692 * If there are no coupled regulators, simply set the voltage
3693 * demanded by consumers.
3694 */
3695 if (n_coupled == 1) {
3696 /*
3697 * If consumers don't provide any demands, set voltage
3698 * to min_uV
3699 */
3700 desired_min_uV = constraints->min_uV;
3701 desired_max_uV = constraints->max_uV;
3702
3703 ret = regulator_check_consumers(rdev,
3704 &desired_min_uV,
3705 &desired_max_uV, state);
3706 if (ret < 0)
3707 return ret;
3708
3709 possible_uV = desired_min_uV;
3710 done = true;
3711
3712 goto finish;
3713 }
3714
3715 /* Find highest min desired voltage */
3716 for (i = 0; i < n_coupled; i++) {
3717 int tmp_min = 0;
3718 int tmp_max = INT_MAX;
3719
3720 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3721
3722 ret = regulator_check_consumers(c_rdevs[i],
3723 &tmp_min,
3724 &tmp_max, state);
3725 if (ret < 0)
3726 return ret;
3727
3728 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3729 if (ret < 0)
3730 return ret;
3731
3732 highest_min_uV = max(highest_min_uV, tmp_min);
3733
3734 if (i == 0) {
3735 desired_min_uV = tmp_min;
3736 desired_max_uV = tmp_max;
3737 }
3738 }
3739
3740 max_spread = constraints->max_spread[0];
3741
3742 /*
3743 * Let target_uV be equal to the desired one if possible.
3744 * If not, set it to minimum voltage, allowed by other coupled
3745 * regulators.
3746 */
3747 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3748
3749 /*
3750 * Find min and max voltages, which currently aren't violating
3751 * max_spread.
3752 */
3753 for (i = 1; i < n_coupled; i++) {
3754 int tmp_act;
3755
3756 if (!_regulator_is_enabled(c_rdevs[i]))
3757 continue;
3758
3759 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3760 if (tmp_act < 0)
3761 return tmp_act;
3762
3763 min_current_uV = min(tmp_act, min_current_uV);
3764 max_current_uV = max(tmp_act, max_current_uV);
3765 }
3766
3767 /* There aren't any other regulators enabled */
3768 if (max_current_uV == 0) {
3769 possible_uV = target_uV;
3770 } else {
3771 /*
3772 * Correct target voltage, so as it currently isn't
3773 * violating max_spread
3774 */
3775 possible_uV = max(target_uV, max_current_uV - max_spread);
3776 possible_uV = min(possible_uV, min_current_uV + max_spread);
3777 }
3778
3779 if (possible_uV > desired_max_uV)
3780 return -EINVAL;
3781
3782 done = (possible_uV == target_uV);
3783 desired_min_uV = possible_uV;
3784
3785 finish:
3786 /* Apply max_uV_step constraint if necessary */
3787 if (state == PM_SUSPEND_ON) {
3788 ret = regulator_limit_voltage_step(rdev, current_uV,
3789 &desired_min_uV);
3790 if (ret < 0)
3791 return ret;
3792
3793 if (ret == 0)
3794 done = false;
3795 }
3796
3797 /* Set current_uV if wasn't done earlier in the code and if necessary */
3798 if (n_coupled > 1 && *current_uV == -1) {
3799
3800 if (_regulator_is_enabled(rdev)) {
3801 ret = regulator_get_voltage_rdev(rdev);
3802 if (ret < 0)
3803 return ret;
3804
3805 *current_uV = ret;
3806 } else {
3807 *current_uV = desired_min_uV;
3808 }
3809 }
3810
3811 *min_uV = desired_min_uV;
3812 *max_uV = desired_max_uV;
3813
3814 return done;
3815 }
3816
regulator_do_balance_voltage(struct regulator_dev * rdev,suspend_state_t state,bool skip_coupled)3817 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3818 suspend_state_t state, bool skip_coupled)
3819 {
3820 struct regulator_dev **c_rdevs;
3821 struct regulator_dev *best_rdev;
3822 struct coupling_desc *c_desc = &rdev->coupling_desc;
3823 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3824 unsigned int delta, best_delta;
3825 unsigned long c_rdev_done = 0;
3826 bool best_c_rdev_done;
3827
3828 c_rdevs = c_desc->coupled_rdevs;
3829 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3830
3831 /*
3832 * Find the best possible voltage change on each loop. Leave the loop
3833 * if there isn't any possible change.
3834 */
3835 do {
3836 best_c_rdev_done = false;
3837 best_delta = 0;
3838 best_min_uV = 0;
3839 best_max_uV = 0;
3840 best_c_rdev = 0;
3841 best_rdev = NULL;
3842
3843 /*
3844 * Find highest difference between optimal voltage
3845 * and current voltage.
3846 */
3847 for (i = 0; i < n_coupled; i++) {
3848 /*
3849 * optimal_uV is the best voltage that can be set for
3850 * i-th regulator at the moment without violating
3851 * max_spread constraint in order to balance
3852 * the coupled voltages.
3853 */
3854 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3855
3856 if (test_bit(i, &c_rdev_done))
3857 continue;
3858
3859 ret = regulator_get_optimal_voltage(c_rdevs[i],
3860 ¤t_uV,
3861 &optimal_uV,
3862 &optimal_max_uV,
3863 state, n_coupled);
3864 if (ret < 0)
3865 goto out;
3866
3867 delta = abs(optimal_uV - current_uV);
3868
3869 if (delta && best_delta <= delta) {
3870 best_c_rdev_done = ret;
3871 best_delta = delta;
3872 best_rdev = c_rdevs[i];
3873 best_min_uV = optimal_uV;
3874 best_max_uV = optimal_max_uV;
3875 best_c_rdev = i;
3876 }
3877 }
3878
3879 /* Nothing to change, return successfully */
3880 if (!best_rdev) {
3881 ret = 0;
3882 goto out;
3883 }
3884
3885 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3886 best_max_uV, state);
3887
3888 if (ret < 0)
3889 goto out;
3890
3891 if (best_c_rdev_done)
3892 set_bit(best_c_rdev, &c_rdev_done);
3893
3894 } while (n_coupled > 1);
3895
3896 out:
3897 return ret;
3898 }
3899
regulator_balance_voltage(struct regulator_dev * rdev,suspend_state_t state)3900 static int regulator_balance_voltage(struct regulator_dev *rdev,
3901 suspend_state_t state)
3902 {
3903 struct coupling_desc *c_desc = &rdev->coupling_desc;
3904 struct regulator_coupler *coupler = c_desc->coupler;
3905 bool skip_coupled = false;
3906
3907 /*
3908 * If system is in a state other than PM_SUSPEND_ON, don't check
3909 * other coupled regulators.
3910 */
3911 if (state != PM_SUSPEND_ON)
3912 skip_coupled = true;
3913
3914 if (c_desc->n_resolved < c_desc->n_coupled) {
3915 rdev_err(rdev, "Not all coupled regulators registered\n");
3916 return -EPERM;
3917 }
3918
3919 /* Invoke custom balancer for customized couplers */
3920 if (coupler && coupler->balance_voltage)
3921 return coupler->balance_voltage(coupler, rdev, state);
3922
3923 return regulator_do_balance_voltage(rdev, state, skip_coupled);
3924 }
3925
3926 /**
3927 * regulator_set_voltage - set regulator output voltage
3928 * @regulator: regulator source
3929 * @min_uV: Minimum required voltage in uV
3930 * @max_uV: Maximum acceptable voltage in uV
3931 *
3932 * Sets a voltage regulator to the desired output voltage. This can be set
3933 * during any regulator state. IOW, regulator can be disabled or enabled.
3934 *
3935 * If the regulator is enabled then the voltage will change to the new value
3936 * immediately otherwise if the regulator is disabled the regulator will
3937 * output at the new voltage when enabled.
3938 *
3939 * NOTE: If the regulator is shared between several devices then the lowest
3940 * request voltage that meets the system constraints will be used.
3941 * Regulator system constraints must be set for this regulator before
3942 * calling this function otherwise this call will fail.
3943 */
regulator_set_voltage(struct regulator * regulator,int min_uV,int max_uV)3944 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3945 {
3946 struct ww_acquire_ctx ww_ctx;
3947 int ret;
3948
3949 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3950
3951 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3952 PM_SUSPEND_ON);
3953
3954 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3955
3956 return ret;
3957 }
3958 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3959
regulator_suspend_toggle(struct regulator_dev * rdev,suspend_state_t state,bool en)3960 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3961 suspend_state_t state, bool en)
3962 {
3963 struct regulator_state *rstate;
3964
3965 rstate = regulator_get_suspend_state(rdev, state);
3966 if (rstate == NULL)
3967 return -EINVAL;
3968
3969 if (!rstate->changeable)
3970 return -EPERM;
3971
3972 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3973
3974 return 0;
3975 }
3976
regulator_suspend_enable(struct regulator_dev * rdev,suspend_state_t state)3977 int regulator_suspend_enable(struct regulator_dev *rdev,
3978 suspend_state_t state)
3979 {
3980 return regulator_suspend_toggle(rdev, state, true);
3981 }
3982 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3983
regulator_suspend_disable(struct regulator_dev * rdev,suspend_state_t state)3984 int regulator_suspend_disable(struct regulator_dev *rdev,
3985 suspend_state_t state)
3986 {
3987 struct regulator *regulator;
3988 struct regulator_voltage *voltage;
3989
3990 /*
3991 * if any consumer wants this regulator device keeping on in
3992 * suspend states, don't set it as disabled.
3993 */
3994 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3995 voltage = ®ulator->voltage[state];
3996 if (voltage->min_uV || voltage->max_uV)
3997 return 0;
3998 }
3999
4000 return regulator_suspend_toggle(rdev, state, false);
4001 }
4002 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4003
_regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4004 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4005 int min_uV, int max_uV,
4006 suspend_state_t state)
4007 {
4008 struct regulator_dev *rdev = regulator->rdev;
4009 struct regulator_state *rstate;
4010
4011 rstate = regulator_get_suspend_state(rdev, state);
4012 if (rstate == NULL)
4013 return -EINVAL;
4014
4015 if (rstate->min_uV == rstate->max_uV) {
4016 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4017 return -EPERM;
4018 }
4019
4020 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4021 }
4022
regulator_set_suspend_voltage(struct regulator * regulator,int min_uV,int max_uV,suspend_state_t state)4023 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4024 int max_uV, suspend_state_t state)
4025 {
4026 struct ww_acquire_ctx ww_ctx;
4027 int ret;
4028
4029 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4030 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4031 return -EINVAL;
4032
4033 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4034
4035 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4036 max_uV, state);
4037
4038 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4039
4040 return ret;
4041 }
4042 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4043
4044 /**
4045 * regulator_set_voltage_time - get raise/fall time
4046 * @regulator: regulator source
4047 * @old_uV: starting voltage in microvolts
4048 * @new_uV: target voltage in microvolts
4049 *
4050 * Provided with the starting and ending voltage, this function attempts to
4051 * calculate the time in microseconds required to rise or fall to this new
4052 * voltage.
4053 */
regulator_set_voltage_time(struct regulator * regulator,int old_uV,int new_uV)4054 int regulator_set_voltage_time(struct regulator *regulator,
4055 int old_uV, int new_uV)
4056 {
4057 struct regulator_dev *rdev = regulator->rdev;
4058 const struct regulator_ops *ops = rdev->desc->ops;
4059 int old_sel = -1;
4060 int new_sel = -1;
4061 int voltage;
4062 int i;
4063
4064 if (ops->set_voltage_time)
4065 return ops->set_voltage_time(rdev, old_uV, new_uV);
4066 else if (!ops->set_voltage_time_sel)
4067 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4068
4069 /* Currently requires operations to do this */
4070 if (!ops->list_voltage || !rdev->desc->n_voltages)
4071 return -EINVAL;
4072
4073 for (i = 0; i < rdev->desc->n_voltages; i++) {
4074 /* We only look for exact voltage matches here */
4075 voltage = regulator_list_voltage(regulator, i);
4076 if (voltage < 0)
4077 return -EINVAL;
4078 if (voltage == 0)
4079 continue;
4080 if (voltage == old_uV)
4081 old_sel = i;
4082 if (voltage == new_uV)
4083 new_sel = i;
4084 }
4085
4086 if (old_sel < 0 || new_sel < 0)
4087 return -EINVAL;
4088
4089 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4090 }
4091 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4092
4093 /**
4094 * regulator_set_voltage_time_sel - get raise/fall time
4095 * @rdev: regulator source device
4096 * @old_selector: selector for starting voltage
4097 * @new_selector: selector for target voltage
4098 *
4099 * Provided with the starting and target voltage selectors, this function
4100 * returns time in microseconds required to rise or fall to this new voltage
4101 *
4102 * Drivers providing ramp_delay in regulation_constraints can use this as their
4103 * set_voltage_time_sel() operation.
4104 */
regulator_set_voltage_time_sel(struct regulator_dev * rdev,unsigned int old_selector,unsigned int new_selector)4105 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4106 unsigned int old_selector,
4107 unsigned int new_selector)
4108 {
4109 int old_volt, new_volt;
4110
4111 /* sanity check */
4112 if (!rdev->desc->ops->list_voltage)
4113 return -EINVAL;
4114
4115 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4116 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4117
4118 if (rdev->desc->ops->set_voltage_time)
4119 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4120 new_volt);
4121 else
4122 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4123 }
4124 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4125
4126 /**
4127 * regulator_sync_voltage - re-apply last regulator output voltage
4128 * @regulator: regulator source
4129 *
4130 * Re-apply the last configured voltage. This is intended to be used
4131 * where some external control source the consumer is cooperating with
4132 * has caused the configured voltage to change.
4133 */
regulator_sync_voltage(struct regulator * regulator)4134 int regulator_sync_voltage(struct regulator *regulator)
4135 {
4136 struct regulator_dev *rdev = regulator->rdev;
4137 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4138 int ret, min_uV, max_uV;
4139
4140 regulator_lock(rdev);
4141
4142 if (!rdev->desc->ops->set_voltage &&
4143 !rdev->desc->ops->set_voltage_sel) {
4144 ret = -EINVAL;
4145 goto out;
4146 }
4147
4148 /* This is only going to work if we've had a voltage configured. */
4149 if (!voltage->min_uV && !voltage->max_uV) {
4150 ret = -EINVAL;
4151 goto out;
4152 }
4153
4154 min_uV = voltage->min_uV;
4155 max_uV = voltage->max_uV;
4156
4157 /* This should be a paranoia check... */
4158 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4159 if (ret < 0)
4160 goto out;
4161
4162 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4163 if (ret < 0)
4164 goto out;
4165
4166 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4167
4168 out:
4169 regulator_unlock(rdev);
4170 return ret;
4171 }
4172 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4173
regulator_get_voltage_rdev(struct regulator_dev * rdev)4174 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4175 {
4176 int sel, ret;
4177 bool bypassed;
4178
4179 if (rdev->desc->ops->get_bypass) {
4180 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4181 if (ret < 0)
4182 return ret;
4183 if (bypassed) {
4184 /* if bypassed the regulator must have a supply */
4185 if (!rdev->supply) {
4186 rdev_err(rdev,
4187 "bypassed regulator has no supply!\n");
4188 return -EPROBE_DEFER;
4189 }
4190
4191 return regulator_get_voltage_rdev(rdev->supply->rdev);
4192 }
4193 }
4194
4195 if (rdev->desc->ops->get_voltage_sel) {
4196 sel = rdev->desc->ops->get_voltage_sel(rdev);
4197 if (sel < 0)
4198 return sel;
4199 ret = rdev->desc->ops->list_voltage(rdev, sel);
4200 } else if (rdev->desc->ops->get_voltage) {
4201 ret = rdev->desc->ops->get_voltage(rdev);
4202 } else if (rdev->desc->ops->list_voltage) {
4203 ret = rdev->desc->ops->list_voltage(rdev, 0);
4204 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4205 ret = rdev->desc->fixed_uV;
4206 } else if (rdev->supply) {
4207 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4208 } else if (rdev->supply_name) {
4209 return -EPROBE_DEFER;
4210 } else {
4211 return -EINVAL;
4212 }
4213
4214 if (ret < 0)
4215 return ret;
4216 return ret - rdev->constraints->uV_offset;
4217 }
4218 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4219
4220 /**
4221 * regulator_get_voltage - get regulator output voltage
4222 * @regulator: regulator source
4223 *
4224 * This returns the current regulator voltage in uV.
4225 *
4226 * NOTE: If the regulator is disabled it will return the voltage value. This
4227 * function should not be used to determine regulator state.
4228 */
regulator_get_voltage(struct regulator * regulator)4229 int regulator_get_voltage(struct regulator *regulator)
4230 {
4231 struct ww_acquire_ctx ww_ctx;
4232 int ret;
4233
4234 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4235 ret = regulator_get_voltage_rdev(regulator->rdev);
4236 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4237
4238 return ret;
4239 }
4240 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4241
4242 /**
4243 * regulator_set_current_limit - set regulator output current limit
4244 * @regulator: regulator source
4245 * @min_uA: Minimum supported current in uA
4246 * @max_uA: Maximum supported current in uA
4247 *
4248 * Sets current sink to the desired output current. This can be set during
4249 * any regulator state. IOW, regulator can be disabled or enabled.
4250 *
4251 * If the regulator is enabled then the current will change to the new value
4252 * immediately otherwise if the regulator is disabled the regulator will
4253 * output at the new current when enabled.
4254 *
4255 * NOTE: Regulator system constraints must be set for this regulator before
4256 * calling this function otherwise this call will fail.
4257 */
regulator_set_current_limit(struct regulator * regulator,int min_uA,int max_uA)4258 int regulator_set_current_limit(struct regulator *regulator,
4259 int min_uA, int max_uA)
4260 {
4261 struct regulator_dev *rdev = regulator->rdev;
4262 int ret;
4263
4264 regulator_lock(rdev);
4265
4266 /* sanity check */
4267 if (!rdev->desc->ops->set_current_limit) {
4268 ret = -EINVAL;
4269 goto out;
4270 }
4271
4272 /* constraints check */
4273 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4274 if (ret < 0)
4275 goto out;
4276
4277 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4278 out:
4279 regulator_unlock(rdev);
4280 return ret;
4281 }
4282 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4283
_regulator_get_current_limit_unlocked(struct regulator_dev * rdev)4284 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4285 {
4286 /* sanity check */
4287 if (!rdev->desc->ops->get_current_limit)
4288 return -EINVAL;
4289
4290 return rdev->desc->ops->get_current_limit(rdev);
4291 }
4292
_regulator_get_current_limit(struct regulator_dev * rdev)4293 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4294 {
4295 int ret;
4296
4297 regulator_lock(rdev);
4298 ret = _regulator_get_current_limit_unlocked(rdev);
4299 regulator_unlock(rdev);
4300
4301 return ret;
4302 }
4303
4304 /**
4305 * regulator_get_current_limit - get regulator output current
4306 * @regulator: regulator source
4307 *
4308 * This returns the current supplied by the specified current sink in uA.
4309 *
4310 * NOTE: If the regulator is disabled it will return the current value. This
4311 * function should not be used to determine regulator state.
4312 */
regulator_get_current_limit(struct regulator * regulator)4313 int regulator_get_current_limit(struct regulator *regulator)
4314 {
4315 return _regulator_get_current_limit(regulator->rdev);
4316 }
4317 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4318
4319 /**
4320 * regulator_set_mode - set regulator operating mode
4321 * @regulator: regulator source
4322 * @mode: operating mode - one of the REGULATOR_MODE constants
4323 *
4324 * Set regulator operating mode to increase regulator efficiency or improve
4325 * regulation performance.
4326 *
4327 * NOTE: Regulator system constraints must be set for this regulator before
4328 * calling this function otherwise this call will fail.
4329 */
regulator_set_mode(struct regulator * regulator,unsigned int mode)4330 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4331 {
4332 struct regulator_dev *rdev = regulator->rdev;
4333 int ret;
4334 int regulator_curr_mode;
4335
4336 regulator_lock(rdev);
4337
4338 /* sanity check */
4339 if (!rdev->desc->ops->set_mode) {
4340 ret = -EINVAL;
4341 goto out;
4342 }
4343
4344 /* return if the same mode is requested */
4345 if (rdev->desc->ops->get_mode) {
4346 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4347 if (regulator_curr_mode == mode) {
4348 ret = 0;
4349 goto out;
4350 }
4351 }
4352
4353 /* constraints check */
4354 ret = regulator_mode_constrain(rdev, &mode);
4355 if (ret < 0)
4356 goto out;
4357
4358 ret = rdev->desc->ops->set_mode(rdev, mode);
4359 out:
4360 regulator_unlock(rdev);
4361 return ret;
4362 }
4363 EXPORT_SYMBOL_GPL(regulator_set_mode);
4364
_regulator_get_mode_unlocked(struct regulator_dev * rdev)4365 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4366 {
4367 /* sanity check */
4368 if (!rdev->desc->ops->get_mode)
4369 return -EINVAL;
4370
4371 return rdev->desc->ops->get_mode(rdev);
4372 }
4373
_regulator_get_mode(struct regulator_dev * rdev)4374 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4375 {
4376 int ret;
4377
4378 regulator_lock(rdev);
4379 ret = _regulator_get_mode_unlocked(rdev);
4380 regulator_unlock(rdev);
4381
4382 return ret;
4383 }
4384
4385 /**
4386 * regulator_get_mode - get regulator operating mode
4387 * @regulator: regulator source
4388 *
4389 * Get the current regulator operating mode.
4390 */
regulator_get_mode(struct regulator * regulator)4391 unsigned int regulator_get_mode(struct regulator *regulator)
4392 {
4393 return _regulator_get_mode(regulator->rdev);
4394 }
4395 EXPORT_SYMBOL_GPL(regulator_get_mode);
4396
_regulator_get_error_flags(struct regulator_dev * rdev,unsigned int * flags)4397 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4398 unsigned int *flags)
4399 {
4400 int ret;
4401
4402 regulator_lock(rdev);
4403
4404 /* sanity check */
4405 if (!rdev->desc->ops->get_error_flags) {
4406 ret = -EINVAL;
4407 goto out;
4408 }
4409
4410 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4411 out:
4412 regulator_unlock(rdev);
4413 return ret;
4414 }
4415
4416 /**
4417 * regulator_get_error_flags - get regulator error information
4418 * @regulator: regulator source
4419 * @flags: pointer to store error flags
4420 *
4421 * Get the current regulator error information.
4422 */
regulator_get_error_flags(struct regulator * regulator,unsigned int * flags)4423 int regulator_get_error_flags(struct regulator *regulator,
4424 unsigned int *flags)
4425 {
4426 return _regulator_get_error_flags(regulator->rdev, flags);
4427 }
4428 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4429
4430 /**
4431 * regulator_set_load - set regulator load
4432 * @regulator: regulator source
4433 * @uA_load: load current
4434 *
4435 * Notifies the regulator core of a new device load. This is then used by
4436 * DRMS (if enabled by constraints) to set the most efficient regulator
4437 * operating mode for the new regulator loading.
4438 *
4439 * Consumer devices notify their supply regulator of the maximum power
4440 * they will require (can be taken from device datasheet in the power
4441 * consumption tables) when they change operational status and hence power
4442 * state. Examples of operational state changes that can affect power
4443 * consumption are :-
4444 *
4445 * o Device is opened / closed.
4446 * o Device I/O is about to begin or has just finished.
4447 * o Device is idling in between work.
4448 *
4449 * This information is also exported via sysfs to userspace.
4450 *
4451 * DRMS will sum the total requested load on the regulator and change
4452 * to the most efficient operating mode if platform constraints allow.
4453 *
4454 * NOTE: when a regulator consumer requests to have a regulator
4455 * disabled then any load that consumer requested no longer counts
4456 * toward the total requested load. If the regulator is re-enabled
4457 * then the previously requested load will start counting again.
4458 *
4459 * If a regulator is an always-on regulator then an individual consumer's
4460 * load will still be removed if that consumer is fully disabled.
4461 *
4462 * On error a negative errno is returned.
4463 */
regulator_set_load(struct regulator * regulator,int uA_load)4464 int regulator_set_load(struct regulator *regulator, int uA_load)
4465 {
4466 struct regulator_dev *rdev = regulator->rdev;
4467 int old_uA_load;
4468 int ret = 0;
4469
4470 regulator_lock(rdev);
4471 old_uA_load = regulator->uA_load;
4472 regulator->uA_load = uA_load;
4473 if (regulator->enable_count && old_uA_load != uA_load) {
4474 ret = drms_uA_update(rdev);
4475 if (ret < 0)
4476 regulator->uA_load = old_uA_load;
4477 }
4478 regulator_unlock(rdev);
4479
4480 return ret;
4481 }
4482 EXPORT_SYMBOL_GPL(regulator_set_load);
4483
4484 /**
4485 * regulator_allow_bypass - allow the regulator to go into bypass mode
4486 *
4487 * @regulator: Regulator to configure
4488 * @enable: enable or disable bypass mode
4489 *
4490 * Allow the regulator to go into bypass mode if all other consumers
4491 * for the regulator also enable bypass mode and the machine
4492 * constraints allow this. Bypass mode means that the regulator is
4493 * simply passing the input directly to the output with no regulation.
4494 */
regulator_allow_bypass(struct regulator * regulator,bool enable)4495 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4496 {
4497 struct regulator_dev *rdev = regulator->rdev;
4498 const char *name = rdev_get_name(rdev);
4499 int ret = 0;
4500
4501 if (!rdev->desc->ops->set_bypass)
4502 return 0;
4503
4504 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4505 return 0;
4506
4507 regulator_lock(rdev);
4508
4509 if (enable && !regulator->bypass) {
4510 rdev->bypass_count++;
4511
4512 if (rdev->bypass_count == rdev->open_count) {
4513 trace_regulator_bypass_enable(name);
4514
4515 ret = rdev->desc->ops->set_bypass(rdev, enable);
4516 if (ret != 0)
4517 rdev->bypass_count--;
4518 else
4519 trace_regulator_bypass_enable_complete(name);
4520 }
4521
4522 } else if (!enable && regulator->bypass) {
4523 rdev->bypass_count--;
4524
4525 if (rdev->bypass_count != rdev->open_count) {
4526 trace_regulator_bypass_disable(name);
4527
4528 ret = rdev->desc->ops->set_bypass(rdev, enable);
4529 if (ret != 0)
4530 rdev->bypass_count++;
4531 else
4532 trace_regulator_bypass_disable_complete(name);
4533 }
4534 }
4535
4536 if (ret == 0)
4537 regulator->bypass = enable;
4538
4539 regulator_unlock(rdev);
4540
4541 return ret;
4542 }
4543 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4544
4545 /**
4546 * regulator_register_notifier - register regulator event notifier
4547 * @regulator: regulator source
4548 * @nb: notifier block
4549 *
4550 * Register notifier block to receive regulator events.
4551 */
regulator_register_notifier(struct regulator * regulator,struct notifier_block * nb)4552 int regulator_register_notifier(struct regulator *regulator,
4553 struct notifier_block *nb)
4554 {
4555 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4556 nb);
4557 }
4558 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4559
4560 /**
4561 * regulator_unregister_notifier - unregister regulator event notifier
4562 * @regulator: regulator source
4563 * @nb: notifier block
4564 *
4565 * Unregister regulator event notifier block.
4566 */
regulator_unregister_notifier(struct regulator * regulator,struct notifier_block * nb)4567 int regulator_unregister_notifier(struct regulator *regulator,
4568 struct notifier_block *nb)
4569 {
4570 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4571 nb);
4572 }
4573 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4574
4575 /* notify regulator consumers and downstream regulator consumers.
4576 * Note mutex must be held by caller.
4577 */
_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4578 static int _notifier_call_chain(struct regulator_dev *rdev,
4579 unsigned long event, void *data)
4580 {
4581 /* call rdev chain first */
4582 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4583 }
4584
4585 /**
4586 * regulator_bulk_get - get multiple regulator consumers
4587 *
4588 * @dev: Device to supply
4589 * @num_consumers: Number of consumers to register
4590 * @consumers: Configuration of consumers; clients are stored here.
4591 *
4592 * @return 0 on success, an errno on failure.
4593 *
4594 * This helper function allows drivers to get several regulator
4595 * consumers in one operation. If any of the regulators cannot be
4596 * acquired then any regulators that were allocated will be freed
4597 * before returning to the caller.
4598 */
regulator_bulk_get(struct device * dev,int num_consumers,struct regulator_bulk_data * consumers)4599 int regulator_bulk_get(struct device *dev, int num_consumers,
4600 struct regulator_bulk_data *consumers)
4601 {
4602 int i;
4603 int ret;
4604
4605 for (i = 0; i < num_consumers; i++)
4606 consumers[i].consumer = NULL;
4607
4608 for (i = 0; i < num_consumers; i++) {
4609 consumers[i].consumer = regulator_get(dev,
4610 consumers[i].supply);
4611 if (IS_ERR(consumers[i].consumer)) {
4612 ret = PTR_ERR(consumers[i].consumer);
4613 consumers[i].consumer = NULL;
4614 goto err;
4615 }
4616 }
4617
4618 return 0;
4619
4620 err:
4621 if (ret != -EPROBE_DEFER)
4622 dev_err(dev, "Failed to get supply '%s': %pe\n",
4623 consumers[i].supply, ERR_PTR(ret));
4624 else
4625 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4626 consumers[i].supply);
4627
4628 while (--i >= 0)
4629 regulator_put(consumers[i].consumer);
4630
4631 return ret;
4632 }
4633 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4634
regulator_bulk_enable_async(void * data,async_cookie_t cookie)4635 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4636 {
4637 struct regulator_bulk_data *bulk = data;
4638
4639 bulk->ret = regulator_enable(bulk->consumer);
4640 }
4641
4642 /**
4643 * regulator_bulk_enable - enable multiple regulator consumers
4644 *
4645 * @num_consumers: Number of consumers
4646 * @consumers: Consumer data; clients are stored here.
4647 * @return 0 on success, an errno on failure
4648 *
4649 * This convenience API allows consumers to enable multiple regulator
4650 * clients in a single API call. If any consumers cannot be enabled
4651 * then any others that were enabled will be disabled again prior to
4652 * return.
4653 */
regulator_bulk_enable(int num_consumers,struct regulator_bulk_data * consumers)4654 int regulator_bulk_enable(int num_consumers,
4655 struct regulator_bulk_data *consumers)
4656 {
4657 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4658 int i;
4659 int ret = 0;
4660
4661 for (i = 0; i < num_consumers; i++) {
4662 async_schedule_domain(regulator_bulk_enable_async,
4663 &consumers[i], &async_domain);
4664 }
4665
4666 async_synchronize_full_domain(&async_domain);
4667
4668 /* If any consumer failed we need to unwind any that succeeded */
4669 for (i = 0; i < num_consumers; i++) {
4670 if (consumers[i].ret != 0) {
4671 ret = consumers[i].ret;
4672 goto err;
4673 }
4674 }
4675
4676 return 0;
4677
4678 err:
4679 for (i = 0; i < num_consumers; i++) {
4680 if (consumers[i].ret < 0)
4681 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4682 ERR_PTR(consumers[i].ret));
4683 else
4684 regulator_disable(consumers[i].consumer);
4685 }
4686
4687 return ret;
4688 }
4689 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4690
4691 /**
4692 * regulator_bulk_disable - disable multiple regulator consumers
4693 *
4694 * @num_consumers: Number of consumers
4695 * @consumers: Consumer data; clients are stored here.
4696 * @return 0 on success, an errno on failure
4697 *
4698 * This convenience API allows consumers to disable multiple regulator
4699 * clients in a single API call. If any consumers cannot be disabled
4700 * then any others that were disabled will be enabled again prior to
4701 * return.
4702 */
regulator_bulk_disable(int num_consumers,struct regulator_bulk_data * consumers)4703 int regulator_bulk_disable(int num_consumers,
4704 struct regulator_bulk_data *consumers)
4705 {
4706 int i;
4707 int ret, r;
4708
4709 for (i = num_consumers - 1; i >= 0; --i) {
4710 ret = regulator_disable(consumers[i].consumer);
4711 if (ret != 0)
4712 goto err;
4713 }
4714
4715 return 0;
4716
4717 err:
4718 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4719 for (++i; i < num_consumers; ++i) {
4720 r = regulator_enable(consumers[i].consumer);
4721 if (r != 0)
4722 pr_err("Failed to re-enable %s: %pe\n",
4723 consumers[i].supply, ERR_PTR(r));
4724 }
4725
4726 return ret;
4727 }
4728 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4729
4730 /**
4731 * regulator_bulk_force_disable - force disable multiple regulator consumers
4732 *
4733 * @num_consumers: Number of consumers
4734 * @consumers: Consumer data; clients are stored here.
4735 * @return 0 on success, an errno on failure
4736 *
4737 * This convenience API allows consumers to forcibly disable multiple regulator
4738 * clients in a single API call.
4739 * NOTE: This should be used for situations when device damage will
4740 * likely occur if the regulators are not disabled (e.g. over temp).
4741 * Although regulator_force_disable function call for some consumers can
4742 * return error numbers, the function is called for all consumers.
4743 */
regulator_bulk_force_disable(int num_consumers,struct regulator_bulk_data * consumers)4744 int regulator_bulk_force_disable(int num_consumers,
4745 struct regulator_bulk_data *consumers)
4746 {
4747 int i;
4748 int ret = 0;
4749
4750 for (i = 0; i < num_consumers; i++) {
4751 consumers[i].ret =
4752 regulator_force_disable(consumers[i].consumer);
4753
4754 /* Store first error for reporting */
4755 if (consumers[i].ret && !ret)
4756 ret = consumers[i].ret;
4757 }
4758
4759 return ret;
4760 }
4761 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4762
4763 /**
4764 * regulator_bulk_free - free multiple regulator consumers
4765 *
4766 * @num_consumers: Number of consumers
4767 * @consumers: Consumer data; clients are stored here.
4768 *
4769 * This convenience API allows consumers to free multiple regulator
4770 * clients in a single API call.
4771 */
regulator_bulk_free(int num_consumers,struct regulator_bulk_data * consumers)4772 void regulator_bulk_free(int num_consumers,
4773 struct regulator_bulk_data *consumers)
4774 {
4775 int i;
4776
4777 for (i = 0; i < num_consumers; i++) {
4778 regulator_put(consumers[i].consumer);
4779 consumers[i].consumer = NULL;
4780 }
4781 }
4782 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4783
4784 /**
4785 * regulator_notifier_call_chain - call regulator event notifier
4786 * @rdev: regulator source
4787 * @event: notifier block
4788 * @data: callback-specific data.
4789 *
4790 * Called by regulator drivers to notify clients a regulator event has
4791 * occurred.
4792 */
regulator_notifier_call_chain(struct regulator_dev * rdev,unsigned long event,void * data)4793 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4794 unsigned long event, void *data)
4795 {
4796 _notifier_call_chain(rdev, event, data);
4797 return NOTIFY_DONE;
4798
4799 }
4800 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4801
4802 /**
4803 * regulator_mode_to_status - convert a regulator mode into a status
4804 *
4805 * @mode: Mode to convert
4806 *
4807 * Convert a regulator mode into a status.
4808 */
regulator_mode_to_status(unsigned int mode)4809 int regulator_mode_to_status(unsigned int mode)
4810 {
4811 switch (mode) {
4812 case REGULATOR_MODE_FAST:
4813 return REGULATOR_STATUS_FAST;
4814 case REGULATOR_MODE_NORMAL:
4815 return REGULATOR_STATUS_NORMAL;
4816 case REGULATOR_MODE_IDLE:
4817 return REGULATOR_STATUS_IDLE;
4818 case REGULATOR_MODE_STANDBY:
4819 return REGULATOR_STATUS_STANDBY;
4820 default:
4821 return REGULATOR_STATUS_UNDEFINED;
4822 }
4823 }
4824 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4825
4826 static struct attribute *regulator_dev_attrs[] = {
4827 &dev_attr_name.attr,
4828 &dev_attr_num_users.attr,
4829 &dev_attr_type.attr,
4830 &dev_attr_microvolts.attr,
4831 &dev_attr_microamps.attr,
4832 &dev_attr_opmode.attr,
4833 &dev_attr_state.attr,
4834 &dev_attr_status.attr,
4835 &dev_attr_bypass.attr,
4836 &dev_attr_requested_microamps.attr,
4837 &dev_attr_min_microvolts.attr,
4838 &dev_attr_max_microvolts.attr,
4839 &dev_attr_min_microamps.attr,
4840 &dev_attr_max_microamps.attr,
4841 &dev_attr_suspend_standby_state.attr,
4842 &dev_attr_suspend_mem_state.attr,
4843 &dev_attr_suspend_disk_state.attr,
4844 &dev_attr_suspend_standby_microvolts.attr,
4845 &dev_attr_suspend_mem_microvolts.attr,
4846 &dev_attr_suspend_disk_microvolts.attr,
4847 &dev_attr_suspend_standby_mode.attr,
4848 &dev_attr_suspend_mem_mode.attr,
4849 &dev_attr_suspend_disk_mode.attr,
4850 NULL
4851 };
4852
4853 /*
4854 * To avoid cluttering sysfs (and memory) with useless state, only
4855 * create attributes that can be meaningfully displayed.
4856 */
regulator_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)4857 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4858 struct attribute *attr, int idx)
4859 {
4860 struct device *dev = kobj_to_dev(kobj);
4861 struct regulator_dev *rdev = dev_to_rdev(dev);
4862 const struct regulator_ops *ops = rdev->desc->ops;
4863 umode_t mode = attr->mode;
4864
4865 /* these three are always present */
4866 if (attr == &dev_attr_name.attr ||
4867 attr == &dev_attr_num_users.attr ||
4868 attr == &dev_attr_type.attr)
4869 return mode;
4870
4871 /* some attributes need specific methods to be displayed */
4872 if (attr == &dev_attr_microvolts.attr) {
4873 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4874 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4875 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4876 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4877 return mode;
4878 return 0;
4879 }
4880
4881 if (attr == &dev_attr_microamps.attr)
4882 return ops->get_current_limit ? mode : 0;
4883
4884 if (attr == &dev_attr_opmode.attr)
4885 return ops->get_mode ? mode : 0;
4886
4887 if (attr == &dev_attr_state.attr)
4888 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4889
4890 if (attr == &dev_attr_status.attr)
4891 return ops->get_status ? mode : 0;
4892
4893 if (attr == &dev_attr_bypass.attr)
4894 return ops->get_bypass ? mode : 0;
4895
4896 /* constraints need specific supporting methods */
4897 if (attr == &dev_attr_min_microvolts.attr ||
4898 attr == &dev_attr_max_microvolts.attr)
4899 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4900
4901 if (attr == &dev_attr_min_microamps.attr ||
4902 attr == &dev_attr_max_microamps.attr)
4903 return ops->set_current_limit ? mode : 0;
4904
4905 if (attr == &dev_attr_suspend_standby_state.attr ||
4906 attr == &dev_attr_suspend_mem_state.attr ||
4907 attr == &dev_attr_suspend_disk_state.attr)
4908 return mode;
4909
4910 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4911 attr == &dev_attr_suspend_mem_microvolts.attr ||
4912 attr == &dev_attr_suspend_disk_microvolts.attr)
4913 return ops->set_suspend_voltage ? mode : 0;
4914
4915 if (attr == &dev_attr_suspend_standby_mode.attr ||
4916 attr == &dev_attr_suspend_mem_mode.attr ||
4917 attr == &dev_attr_suspend_disk_mode.attr)
4918 return ops->set_suspend_mode ? mode : 0;
4919
4920 return mode;
4921 }
4922
4923 static const struct attribute_group regulator_dev_group = {
4924 .attrs = regulator_dev_attrs,
4925 .is_visible = regulator_attr_is_visible,
4926 };
4927
4928 static const struct attribute_group *regulator_dev_groups[] = {
4929 ®ulator_dev_group,
4930 NULL
4931 };
4932
4933 #ifdef CONFIG_DEBUG_FS
4934 static void rdev_deinit_debugfs(struct regulator_dev *rdev);
4935 #else
rdev_deinit_debugfs(struct regulator_dev * rdev)4936 static inline void rdev_deinit_debugfs(struct regulator_dev *rdev)
4937 {
4938 }
4939 #endif
4940
regulator_dev_release(struct device * dev)4941 static void regulator_dev_release(struct device *dev)
4942 {
4943 struct regulator_dev *rdev = dev_get_drvdata(dev);
4944
4945 rdev_deinit_debugfs(rdev);
4946 kfree(rdev->constraints);
4947 of_node_put(rdev->dev.of_node);
4948 kfree(rdev);
4949 }
4950
4951 #ifdef CONFIG_DEBUG_FS
4952
4953 #define MAX_DEBUG_BUF_LEN 50
4954 #define REGULATOR_ALLOW_WRITE_DEBUGFS
4955
4956 #ifdef REGULATOR_ALLOW_WRITE_DEBUGFS
4957
reg_debug_enable_set(void * data,u64 val)4958 static int reg_debug_enable_set(void *data, u64 val)
4959 {
4960 struct regulator *regulator = data;
4961 int ret;
4962
4963 if (val) {
4964 ret = regulator_enable(regulator);
4965 if (ret)
4966 rdev_err(regulator->rdev, "enable failed, ret=%d\n",
4967 ret);
4968 } else {
4969 ret = regulator_disable(regulator);
4970 if (ret)
4971 rdev_err(regulator->rdev, "disable failed, ret=%d\n",
4972 ret);
4973 }
4974
4975 return ret;
4976 }
4977
reg_debug_force_disable_set(void * data,u64 val)4978 static int reg_debug_force_disable_set(void *data, u64 val)
4979 {
4980 struct regulator *regulator = data;
4981 int ret = 0;
4982
4983 if (val > 0) {
4984 ret = regulator_force_disable(regulator);
4985 if (ret)
4986 rdev_err(regulator->rdev, "force_disable failed, ret=%d\n",
4987 ret);
4988 }
4989
4990 return ret;
4991 }
4992
4993
reg_debug_voltage_write(struct file * file,const char __user * ubuf,size_t count,loff_t * ppos)4994 static ssize_t reg_debug_voltage_write(struct file *file,
4995 const char __user *ubuf,
4996 size_t count,
4997 loff_t *ppos)
4998 {
4999 struct regulator *regulator = file->private_data;
5000 struct regulator_dev *rdev = regulator->rdev;
5001 struct regulator *reg;
5002
5003 char buf[MAX_DEBUG_BUF_LEN];
5004 int ret;
5005 int min_uV, max_uV = -1;
5006
5007 if (count < MAX_DEBUG_BUF_LEN) {
5008 if (copy_from_user(buf, ubuf, count))
5009 return -EFAULT;
5010
5011 buf[count] = '\0';
5012 ret = kstrtoint(buf, 10, &min_uV);
5013
5014 /* Check that target voltage were specified. */
5015 if (ret || min_uV < 0) {
5016 rdev_err(regulator->rdev, "incorrect values specified: \"%s\"; should be: \"target_uV\"\n",
5017 buf);
5018 return -EINVAL;
5019 }
5020
5021 max_uV = rdev->constraints->max_uV;
5022
5023 list_for_each_entry(reg, &rdev->consumer_list, list) {
5024 if ((!reg->voltage->min_uV && !reg->voltage->max_uV) ||
5025 (reg == regulator))
5026 continue;
5027 reg->voltage->min_uV = min_uV;
5028 reg->voltage->max_uV = max_uV;
5029 }
5030
5031 ret = regulator_set_voltage(regulator, min_uV, max_uV);
5032 if (ret) {
5033 rdev_err(regulator->rdev, "set voltage(%d, %d) failed, ret=%d\n",
5034 min_uV, max_uV, ret);
5035 return ret;
5036 }
5037 } else {
5038 rdev_err(regulator->rdev, "voltage request string exceeds maximum buffer size\n");
5039 return -EINVAL;
5040 }
5041
5042 return count;
5043 }
5044
reg_debug_mode_set(void * data,u64 val)5045 static int reg_debug_mode_set(void *data, u64 val)
5046 {
5047 struct regulator *regulator = data;
5048 unsigned int mode = val;
5049 int ret;
5050
5051 ret = regulator_set_mode(regulator, mode);
5052 if (ret)
5053 rdev_err(regulator->rdev, "set mode=%u failed, ret=%d\n",
5054 mode, ret);
5055
5056 return ret;
5057 }
5058
reg_debug_set_load(void * data,u64 val)5059 static int reg_debug_set_load(void *data, u64 val)
5060 {
5061 struct regulator *regulator = data;
5062 int load = val;
5063 int ret;
5064
5065 ret = regulator_set_load(regulator, load);
5066 if (ret)
5067 rdev_err(regulator->rdev, "set load=%d failed, ret=%d\n",
5068 load, ret);
5069
5070 return ret;
5071 }
5072
5073 #else
5074 #define reg_debug_enable_set NULL
5075 #define reg_debug_force_disable_set NULL
5076 #define reg_debug_voltage_write NULL
5077 #define reg_debug_mode_set NULL
5078 #define reg_debug_set_load NULL
5079 #endif
5080
reg_debug_enable_get(void * data,u64 * val)5081 static int reg_debug_enable_get(void *data, u64 *val)
5082 {
5083 struct regulator *regulator = data;
5084
5085 *val = regulator_is_enabled(regulator);
5086
5087 return 0;
5088 }
5089 DEFINE_DEBUGFS_ATTRIBUTE(reg_enable_fops, reg_debug_enable_get,
5090 reg_debug_enable_set, "%llu\n");
5091
5092
5093 DEFINE_DEBUGFS_ATTRIBUTE(reg_force_disable_fops, reg_debug_enable_get,
5094 reg_debug_force_disable_set, "%llu\n");
5095
reg_debug_voltage_read(struct file * file,char __user * ubuf,size_t count,loff_t * ppos)5096 static ssize_t reg_debug_voltage_read(struct file *file, char __user *ubuf,
5097 size_t count, loff_t *ppos)
5098 {
5099 struct regulator *regulator = file->private_data;
5100 char buf[MAX_DEBUG_BUF_LEN];
5101 int voltage, ret;
5102
5103 voltage = regulator_get_voltage(regulator);
5104
5105 ret = snprintf(buf, MAX_DEBUG_BUF_LEN - 1, "%d\n", voltage);
5106
5107 return simple_read_from_buffer(ubuf, count, ppos, buf, ret);
5108 }
5109
reg_debug_voltage_open(struct inode * inode,struct file * file)5110 static int reg_debug_voltage_open(struct inode *inode, struct file *file)
5111 {
5112 file->private_data = inode->i_private;
5113
5114 return 0;
5115 }
5116
5117 static const struct file_operations reg_voltage_fops = {
5118 .write = reg_debug_voltage_write,
5119 .open = reg_debug_voltage_open,
5120 .read = reg_debug_voltage_read,
5121 };
5122
reg_debug_mode_get(void * data,u64 * val)5123 static int reg_debug_mode_get(void *data, u64 *val)
5124 {
5125 struct regulator *regulator = data;
5126 int mode;
5127
5128 mode = regulator_get_mode(regulator);
5129 if (mode < 0) {
5130 rdev_err(regulator->rdev, "get mode failed, ret=%d\n", mode);
5131 return mode;
5132 }
5133
5134 *val = mode;
5135
5136 return 0;
5137 }
5138 DEFINE_DEBUGFS_ATTRIBUTE(reg_mode_fops, reg_debug_mode_get, reg_debug_mode_set,
5139 "%llu\n");
5140
5141 DEFINE_DEBUGFS_ATTRIBUTE(reg_set_load_fops, reg_debug_mode_get,
5142 reg_debug_set_load, "%llu\n");
5143
reg_debug_consumers_show(struct seq_file * m,void * v)5144 static int reg_debug_consumers_show(struct seq_file *m, void *v)
5145 {
5146 struct regulator_dev *rdev = m->private;
5147 struct regulator *reg;
5148 const char *supply_name;
5149
5150 regulator_lock(rdev);
5151
5152 /* Print a header if there are consumers. */
5153 if (rdev->open_count)
5154 seq_printf(m, "%-32s Min_uV Max_uV load_uA\n",
5155 "Device-Supply");
5156
5157 list_for_each_entry(reg, &rdev->consumer_list, list) {
5158 if (reg->supply_name)
5159 supply_name = reg->supply_name;
5160 else
5161 supply_name = "(null)-(null)";
5162
5163 seq_printf(m, "%-32s %8d %8d %8d\n", supply_name,
5164 reg->voltage->min_uV, reg->voltage->max_uV, reg->uA_load);
5165 }
5166
5167 regulator_unlock(rdev);
5168
5169 return 0;
5170 }
5171
reg_debug_consumers_open(struct inode * inode,struct file * file)5172 static int reg_debug_consumers_open(struct inode *inode, struct file *file)
5173 {
5174 return single_open(file, reg_debug_consumers_show, inode->i_private);
5175 }
5176
5177 static const struct file_operations reg_consumers_fops = {
5178 .owner = THIS_MODULE,
5179 .open = reg_debug_consumers_open,
5180 .read = seq_read,
5181 .llseek = seq_lseek,
5182 .release = single_release,
5183 };
5184
rdev_deinit_debugfs(struct regulator_dev * rdev)5185 static void rdev_deinit_debugfs(struct regulator_dev *rdev)
5186 {
5187 struct regulator_limit_volt *reg_debug, *n;
5188
5189 debugfs_remove_recursive(rdev->debugfs);
5190
5191 list_for_each_entry_safe(reg_debug, n, ®ulator_debug_list, list) {
5192 if (reg_debug->reg->rdev == rdev) {
5193 reg_debug->reg->debugfs = NULL;
5194 list_del(®_debug->list);
5195 regulator_put(reg_debug->reg);
5196 kfree(reg_debug);
5197 }
5198 }
5199 }
5200
rdev_init_debugfs(struct regulator_dev * rdev)5201 static void rdev_init_debugfs(struct regulator_dev *rdev)
5202 {
5203 struct device *parent = rdev->dev.parent;
5204 const char *rname = rdev_get_name(rdev);
5205 char name[NAME_MAX];
5206 struct regulator *regulator;
5207 const struct regulator_ops *ops;
5208 struct regulator_limit_volt *reg_debug;
5209 mode_t mode;
5210
5211 /* Avoid duplicate debugfs directory names */
5212 if (parent && rname == rdev->desc->name) {
5213 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5214 rname);
5215 rname = name;
5216 }
5217
5218 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5219 if (!rdev->debugfs) {
5220 rdev_warn(rdev, "Failed to create debugfs directory\n");
5221 return;
5222 }
5223
5224 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5225 &rdev->use_count);
5226 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5227 &rdev->open_count);
5228 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5229 &rdev->bypass_count);
5230 debugfs_create_file("consumers", 0444, rdev->debugfs, rdev,
5231 ®_consumers_fops);
5232
5233 regulator = regulator_get(NULL, rdev_get_name(rdev));
5234 if (IS_ERR(regulator)) {
5235 rdev_err(rdev, "regulator get failed, ret=%ld\n",
5236 PTR_ERR(regulator));
5237 return;
5238 }
5239
5240 reg_debug = kzalloc(sizeof(*reg_debug), GFP_KERNEL);
5241 if (reg_debug == NULL) {
5242 regulator_put(regulator);
5243 return;
5244 }
5245 reg_debug->reg = regulator;
5246 list_add(®_debug->list, ®ulator_debug_list);
5247
5248 ops = rdev->desc->ops;
5249
5250 mode = 0444;
5251 #ifdef REGULATOR_ALLOW_WRITE_DEBUGFS
5252 mode |= 0200;
5253 #endif
5254 debugfs_create_file("enable", mode, rdev->debugfs, regulator,
5255 ®_enable_fops);
5256
5257 mode = 0;
5258 if (ops->is_enabled)
5259 mode |= 0444;
5260 #ifdef REGULATOR_ALLOW_WRITE_DEBUGFS
5261 if (ops->disable)
5262 mode |= 0200;
5263 #endif
5264 if (mode)
5265 debugfs_create_file("force_disable", mode, rdev->debugfs,
5266 regulator, ®_force_disable_fops);
5267
5268 mode = 0;
5269 if (ops->get_voltage || ops->get_voltage_sel)
5270 mode |= 0444;
5271 #ifdef REGULATOR_ALLOW_WRITE_DEBUGFS
5272 if (ops->set_voltage || ops->set_voltage_sel)
5273 mode |= 0200;
5274 #endif
5275 if (mode)
5276 debugfs_create_file("voltage", mode, rdev->debugfs, regulator,
5277 ®_voltage_fops);
5278
5279 mode = 0;
5280 if (ops->get_mode)
5281 mode |= 0444;
5282 #ifdef REGULATOR_ALLOW_WRITE_DEBUGFS
5283 if (ops->set_mode)
5284 mode |= 0200;
5285 #endif
5286 if (mode)
5287 debugfs_create_file("mode", mode, rdev->debugfs, regulator,
5288 ®_mode_fops);
5289
5290 mode = 0;
5291 if (ops->get_mode)
5292 mode |= 0444;
5293 #ifdef REGULATOR_ALLOW_WRITE_DEBUGFS
5294 if (ops->set_load || (ops->get_optimum_mode && ops->set_mode))
5295 mode |= 0200;
5296 #endif
5297 if (mode)
5298 debugfs_create_file("load", mode, rdev->debugfs, regulator,
5299 ®_set_load_fops);
5300 }
5301
5302 #else
rdev_init_debugfs(struct regulator_dev * rdev)5303 static inline void rdev_init_debugfs(struct regulator_dev *rdev)
5304 {
5305 }
5306 #endif
5307
regulator_register_resolve_supply(struct device * dev,void * data)5308 static int regulator_register_resolve_supply(struct device *dev, void *data)
5309 {
5310 struct regulator_dev *rdev = dev_to_rdev(dev);
5311
5312 if (regulator_resolve_supply(rdev))
5313 rdev_dbg(rdev, "unable to resolve supply\n");
5314
5315 return 0;
5316 }
5317
regulator_coupler_register(struct regulator_coupler * coupler)5318 int regulator_coupler_register(struct regulator_coupler *coupler)
5319 {
5320 mutex_lock(®ulator_list_mutex);
5321 list_add_tail(&coupler->list, ®ulator_coupler_list);
5322 mutex_unlock(®ulator_list_mutex);
5323
5324 return 0;
5325 }
5326
5327 static struct regulator_coupler *
regulator_find_coupler(struct regulator_dev * rdev)5328 regulator_find_coupler(struct regulator_dev *rdev)
5329 {
5330 struct regulator_coupler *coupler;
5331 int err;
5332
5333 /*
5334 * Note that regulators are appended to the list and the generic
5335 * coupler is registered first, hence it will be attached at last
5336 * if nobody cared.
5337 */
5338 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5339 err = coupler->attach_regulator(coupler, rdev);
5340 if (!err) {
5341 if (!coupler->balance_voltage &&
5342 rdev->coupling_desc.n_coupled > 2)
5343 goto err_unsupported;
5344
5345 return coupler;
5346 }
5347
5348 if (err < 0)
5349 return ERR_PTR(err);
5350
5351 if (err == 1)
5352 continue;
5353
5354 break;
5355 }
5356
5357 return ERR_PTR(-EINVAL);
5358
5359 err_unsupported:
5360 if (coupler->detach_regulator)
5361 coupler->detach_regulator(coupler, rdev);
5362
5363 rdev_err(rdev,
5364 "Voltage balancing for multiple regulator couples is unimplemented\n");
5365
5366 return ERR_PTR(-EPERM);
5367 }
5368
regulator_resolve_coupling(struct regulator_dev * rdev)5369 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5370 {
5371 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5372 struct coupling_desc *c_desc = &rdev->coupling_desc;
5373 int n_coupled = c_desc->n_coupled;
5374 struct regulator_dev *c_rdev;
5375 int i;
5376
5377 for (i = 1; i < n_coupled; i++) {
5378 /* already resolved */
5379 if (c_desc->coupled_rdevs[i])
5380 continue;
5381
5382 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5383
5384 if (!c_rdev)
5385 continue;
5386
5387 if (c_rdev->coupling_desc.coupler != coupler) {
5388 rdev_err(rdev, "coupler mismatch with %s\n",
5389 rdev_get_name(c_rdev));
5390 return;
5391 }
5392
5393 c_desc->coupled_rdevs[i] = c_rdev;
5394 c_desc->n_resolved++;
5395
5396 regulator_resolve_coupling(c_rdev);
5397 }
5398 }
5399
regulator_remove_coupling(struct regulator_dev * rdev)5400 static void regulator_remove_coupling(struct regulator_dev *rdev)
5401 {
5402 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5403 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5404 struct regulator_dev *__c_rdev, *c_rdev;
5405 unsigned int __n_coupled, n_coupled;
5406 int i, k;
5407 int err;
5408
5409 n_coupled = c_desc->n_coupled;
5410
5411 for (i = 1; i < n_coupled; i++) {
5412 c_rdev = c_desc->coupled_rdevs[i];
5413
5414 if (!c_rdev)
5415 continue;
5416
5417 regulator_lock(c_rdev);
5418
5419 __c_desc = &c_rdev->coupling_desc;
5420 __n_coupled = __c_desc->n_coupled;
5421
5422 for (k = 1; k < __n_coupled; k++) {
5423 __c_rdev = __c_desc->coupled_rdevs[k];
5424
5425 if (__c_rdev == rdev) {
5426 __c_desc->coupled_rdevs[k] = NULL;
5427 __c_desc->n_resolved--;
5428 break;
5429 }
5430 }
5431
5432 regulator_unlock(c_rdev);
5433
5434 c_desc->coupled_rdevs[i] = NULL;
5435 c_desc->n_resolved--;
5436 }
5437
5438 if (coupler && coupler->detach_regulator) {
5439 err = coupler->detach_regulator(coupler, rdev);
5440 if (err)
5441 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5442 ERR_PTR(err));
5443 }
5444
5445 kfree(rdev->coupling_desc.coupled_rdevs);
5446 rdev->coupling_desc.coupled_rdevs = NULL;
5447 }
5448
regulator_init_coupling(struct regulator_dev * rdev)5449 static int regulator_init_coupling(struct regulator_dev *rdev)
5450 {
5451 struct regulator_dev **coupled;
5452 int err, n_phandles;
5453
5454 if (!IS_ENABLED(CONFIG_OF))
5455 n_phandles = 0;
5456 else
5457 n_phandles = of_get_n_coupled(rdev);
5458
5459 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5460 if (!coupled)
5461 return -ENOMEM;
5462
5463 rdev->coupling_desc.coupled_rdevs = coupled;
5464
5465 /*
5466 * Every regulator should always have coupling descriptor filled with
5467 * at least pointer to itself.
5468 */
5469 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5470 rdev->coupling_desc.n_coupled = n_phandles + 1;
5471 rdev->coupling_desc.n_resolved++;
5472
5473 /* regulator isn't coupled */
5474 if (n_phandles == 0)
5475 return 0;
5476
5477 if (!of_check_coupling_data(rdev))
5478 return -EPERM;
5479
5480 mutex_lock(®ulator_list_mutex);
5481 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5482 mutex_unlock(®ulator_list_mutex);
5483
5484 if (IS_ERR(rdev->coupling_desc.coupler)) {
5485 err = PTR_ERR(rdev->coupling_desc.coupler);
5486 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5487 return err;
5488 }
5489
5490 return 0;
5491 }
5492
generic_coupler_attach(struct regulator_coupler * coupler,struct regulator_dev * rdev)5493 static int generic_coupler_attach(struct regulator_coupler *coupler,
5494 struct regulator_dev *rdev)
5495 {
5496 if (rdev->coupling_desc.n_coupled > 2) {
5497 rdev_err(rdev,
5498 "Voltage balancing for multiple regulator couples is unimplemented\n");
5499 return -EPERM;
5500 }
5501
5502 if (!rdev->constraints->always_on) {
5503 rdev_err(rdev,
5504 "Coupling of a non always-on regulator is unimplemented\n");
5505 return -ENOTSUPP;
5506 }
5507
5508 return 0;
5509 }
5510
5511 static struct regulator_coupler generic_regulator_coupler = {
5512 .attach_regulator = generic_coupler_attach,
5513 };
5514
5515 /**
5516 * regulator_register - register regulator
5517 * @regulator_desc: regulator to register
5518 * @cfg: runtime configuration for regulator
5519 *
5520 * Called by regulator drivers to register a regulator.
5521 * Returns a valid pointer to struct regulator_dev on success
5522 * or an ERR_PTR() on error.
5523 */
5524 struct regulator_dev *
regulator_register(const struct regulator_desc * regulator_desc,const struct regulator_config * cfg)5525 regulator_register(const struct regulator_desc *regulator_desc,
5526 const struct regulator_config *cfg)
5527 {
5528 const struct regulator_init_data *init_data;
5529 struct regulator_config *config = NULL;
5530 static atomic_t regulator_no = ATOMIC_INIT(-1);
5531 struct regulator_dev *rdev;
5532 bool dangling_cfg_gpiod = false;
5533 bool dangling_of_gpiod = false;
5534 struct device *dev;
5535 int ret, i;
5536
5537 if (cfg == NULL)
5538 return ERR_PTR(-EINVAL);
5539 if (cfg->ena_gpiod)
5540 dangling_cfg_gpiod = true;
5541 if (regulator_desc == NULL) {
5542 ret = -EINVAL;
5543 goto rinse;
5544 }
5545
5546 dev = cfg->dev;
5547 WARN_ON(!dev);
5548
5549 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5550 ret = -EINVAL;
5551 goto rinse;
5552 }
5553
5554 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5555 regulator_desc->type != REGULATOR_CURRENT) {
5556 ret = -EINVAL;
5557 goto rinse;
5558 }
5559
5560 /* Only one of each should be implemented */
5561 WARN_ON(regulator_desc->ops->get_voltage &&
5562 regulator_desc->ops->get_voltage_sel);
5563 WARN_ON(regulator_desc->ops->set_voltage &&
5564 regulator_desc->ops->set_voltage_sel);
5565
5566 /* If we're using selectors we must implement list_voltage. */
5567 if (regulator_desc->ops->get_voltage_sel &&
5568 !regulator_desc->ops->list_voltage) {
5569 ret = -EINVAL;
5570 goto rinse;
5571 }
5572 if (regulator_desc->ops->set_voltage_sel &&
5573 !regulator_desc->ops->list_voltage) {
5574 ret = -EINVAL;
5575 goto rinse;
5576 }
5577
5578 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5579 if (rdev == NULL) {
5580 ret = -ENOMEM;
5581 goto rinse;
5582 }
5583 device_initialize(&rdev->dev);
5584
5585 /*
5586 * Duplicate the config so the driver could override it after
5587 * parsing init data.
5588 */
5589 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5590 if (config == NULL) {
5591 ret = -ENOMEM;
5592 goto clean;
5593 }
5594
5595 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5596 &rdev->dev.of_node);
5597
5598 /*
5599 * Sometimes not all resources are probed already so we need to take
5600 * that into account. This happens most the time if the ena_gpiod comes
5601 * from a gpio extender or something else.
5602 */
5603 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5604 ret = -EPROBE_DEFER;
5605 goto clean;
5606 }
5607
5608 /*
5609 * We need to keep track of any GPIO descriptor coming from the
5610 * device tree until we have handled it over to the core. If the
5611 * config that was passed in to this function DOES NOT contain
5612 * a descriptor, and the config after this call DOES contain
5613 * a descriptor, we definitely got one from parsing the device
5614 * tree.
5615 */
5616 if (!cfg->ena_gpiod && config->ena_gpiod)
5617 dangling_of_gpiod = true;
5618 if (!init_data) {
5619 init_data = config->init_data;
5620 rdev->dev.of_node = of_node_get(config->of_node);
5621 }
5622
5623 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5624 rdev->reg_data = config->driver_data;
5625 rdev->owner = regulator_desc->owner;
5626 rdev->desc = regulator_desc;
5627 if (config->regmap)
5628 rdev->regmap = config->regmap;
5629 else if (dev_get_regmap(dev, NULL))
5630 rdev->regmap = dev_get_regmap(dev, NULL);
5631 else if (dev->parent)
5632 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5633 INIT_LIST_HEAD(&rdev->consumer_list);
5634 INIT_LIST_HEAD(&rdev->list);
5635 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5636 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5637
5638 /* preform any regulator specific init */
5639 if (init_data && init_data->regulator_init) {
5640 ret = init_data->regulator_init(rdev->reg_data);
5641 if (ret < 0)
5642 goto clean;
5643 }
5644
5645 if (config->ena_gpiod) {
5646 ret = regulator_ena_gpio_request(rdev, config);
5647 if (ret != 0) {
5648 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5649 ERR_PTR(ret));
5650 goto clean;
5651 }
5652 /* The regulator core took over the GPIO descriptor */
5653 dangling_cfg_gpiod = false;
5654 dangling_of_gpiod = false;
5655 }
5656
5657 /* register with sysfs */
5658 rdev->dev.class = ®ulator_class;
5659 rdev->dev.parent = dev;
5660 dev_set_name(&rdev->dev, "regulator.%lu",
5661 (unsigned long) atomic_inc_return(®ulator_no));
5662 dev_set_drvdata(&rdev->dev, rdev);
5663
5664 /* set regulator constraints */
5665 if (init_data)
5666 rdev->constraints = kmemdup(&init_data->constraints,
5667 sizeof(*rdev->constraints),
5668 GFP_KERNEL);
5669 else
5670 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5671 GFP_KERNEL);
5672 if (!rdev->constraints) {
5673 ret = -ENOMEM;
5674 goto wash;
5675 }
5676
5677 if (init_data && init_data->supply_regulator)
5678 rdev->supply_name = init_data->supply_regulator;
5679 else if (regulator_desc->supply_name)
5680 rdev->supply_name = regulator_desc->supply_name;
5681
5682 ret = set_machine_constraints(rdev);
5683 if (ret == -EPROBE_DEFER) {
5684 /* Regulator might be in bypass mode and so needs its supply
5685 * to set the constraints */
5686 /* FIXME: this currently triggers a chicken-and-egg problem
5687 * when creating -SUPPLY symlink in sysfs to a regulator
5688 * that is just being created */
5689 ret = regulator_resolve_supply(rdev);
5690 if (!ret)
5691 ret = set_machine_constraints(rdev);
5692 else
5693 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5694 ERR_PTR(ret));
5695 }
5696 if (ret < 0)
5697 goto wash;
5698
5699 ret = regulator_init_coupling(rdev);
5700 if (ret < 0)
5701 goto wash;
5702
5703 /* add consumers devices */
5704 if (init_data) {
5705 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5706 ret = set_consumer_device_supply(rdev,
5707 init_data->consumer_supplies[i].dev_name,
5708 init_data->consumer_supplies[i].supply);
5709 if (ret < 0) {
5710 dev_err(dev, "Failed to set supply %s\n",
5711 init_data->consumer_supplies[i].supply);
5712 goto unset_supplies;
5713 }
5714 }
5715 }
5716
5717 if (!rdev->desc->ops->get_voltage &&
5718 !rdev->desc->ops->list_voltage &&
5719 !rdev->desc->fixed_uV)
5720 rdev->is_switch = true;
5721
5722 ret = device_add(&rdev->dev);
5723 if (ret != 0)
5724 goto unset_supplies;
5725
5726 rdev_init_debugfs(rdev);
5727
5728 /* try to resolve regulators coupling since a new one was registered */
5729 mutex_lock(®ulator_list_mutex);
5730 regulator_resolve_coupling(rdev);
5731 mutex_unlock(®ulator_list_mutex);
5732
5733 /* try to resolve regulators supply since a new one was registered */
5734 class_for_each_device(®ulator_class, NULL, NULL,
5735 regulator_register_resolve_supply);
5736 kfree(config);
5737 return rdev;
5738
5739 unset_supplies:
5740 mutex_lock(®ulator_list_mutex);
5741 unset_regulator_supplies(rdev);
5742 regulator_remove_coupling(rdev);
5743 mutex_unlock(®ulator_list_mutex);
5744 wash:
5745 kfree(rdev->coupling_desc.coupled_rdevs);
5746 mutex_lock(®ulator_list_mutex);
5747 regulator_ena_gpio_free(rdev);
5748 mutex_unlock(®ulator_list_mutex);
5749 put_device(&rdev->dev);
5750 rdev = NULL;
5751 clean:
5752 if (dangling_of_gpiod)
5753 gpiod_put(config->ena_gpiod);
5754 if (rdev && rdev->dev.of_node)
5755 of_node_put(rdev->dev.of_node);
5756 kfree(rdev);
5757 kfree(config);
5758 rinse:
5759 if (dangling_cfg_gpiod)
5760 gpiod_put(cfg->ena_gpiod);
5761 return ERR_PTR(ret);
5762 }
5763 EXPORT_SYMBOL_GPL(regulator_register);
5764
5765 /**
5766 * regulator_unregister - unregister regulator
5767 * @rdev: regulator to unregister
5768 *
5769 * Called by regulator drivers to unregister a regulator.
5770 */
regulator_unregister(struct regulator_dev * rdev)5771 void regulator_unregister(struct regulator_dev *rdev)
5772 {
5773 if (rdev == NULL)
5774 return;
5775
5776 if (rdev->supply) {
5777 while (rdev->use_count--)
5778 regulator_disable(rdev->supply);
5779 regulator_put(rdev->supply);
5780 }
5781
5782 flush_work(&rdev->disable_work.work);
5783
5784 mutex_lock(®ulator_list_mutex);
5785
5786 WARN_ON(rdev->open_count);
5787 regulator_remove_coupling(rdev);
5788 unset_regulator_supplies(rdev);
5789 list_del(&rdev->list);
5790 regulator_ena_gpio_free(rdev);
5791 device_unregister(&rdev->dev);
5792
5793 mutex_unlock(®ulator_list_mutex);
5794 }
5795 EXPORT_SYMBOL_GPL(regulator_unregister);
5796
5797 #ifdef CONFIG_SUSPEND
5798 /**
5799 * regulator_suspend - prepare regulators for system wide suspend
5800 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5801 *
5802 * Configure each regulator with it's suspend operating parameters for state.
5803 */
regulator_suspend(struct device * dev)5804 static int regulator_suspend(struct device *dev)
5805 {
5806 struct regulator_dev *rdev = dev_to_rdev(dev);
5807 suspend_state_t state = pm_suspend_target_state;
5808 int ret;
5809 const struct regulator_state *rstate;
5810
5811 rstate = regulator_get_suspend_state_check(rdev, state);
5812 if (!rstate)
5813 return 0;
5814
5815 regulator_lock(rdev);
5816 ret = __suspend_set_state(rdev, rstate);
5817 regulator_unlock(rdev);
5818
5819 return ret;
5820 }
5821
regulator_resume(struct device * dev)5822 static int regulator_resume(struct device *dev)
5823 {
5824 suspend_state_t state = pm_suspend_target_state;
5825 struct regulator_dev *rdev = dev_to_rdev(dev);
5826 struct regulator_state *rstate;
5827 int ret = 0;
5828
5829 rstate = regulator_get_suspend_state(rdev, state);
5830 if (rstate == NULL)
5831 return 0;
5832
5833 /* Avoid grabbing the lock if we don't need to */
5834 if (!rdev->desc->ops->resume)
5835 return 0;
5836
5837 regulator_lock(rdev);
5838
5839 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5840 rstate->enabled == DISABLE_IN_SUSPEND)
5841 ret = rdev->desc->ops->resume(rdev);
5842
5843 regulator_unlock(rdev);
5844
5845 return ret;
5846 }
5847 #else /* !CONFIG_SUSPEND */
5848
5849 #define regulator_suspend NULL
5850 #define regulator_resume NULL
5851
5852 #endif /* !CONFIG_SUSPEND */
5853
5854 #ifdef CONFIG_PM
5855 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5856 .suspend = regulator_suspend,
5857 .resume = regulator_resume,
5858 };
5859 #endif
5860
5861 struct class regulator_class = {
5862 .name = "regulator",
5863 .dev_release = regulator_dev_release,
5864 .dev_groups = regulator_dev_groups,
5865 #ifdef CONFIG_PM
5866 .pm = ®ulator_pm_ops,
5867 #endif
5868 };
5869 /**
5870 * regulator_has_full_constraints - the system has fully specified constraints
5871 *
5872 * Calling this function will cause the regulator API to disable all
5873 * regulators which have a zero use count and don't have an always_on
5874 * constraint in a late_initcall.
5875 *
5876 * The intention is that this will become the default behaviour in a
5877 * future kernel release so users are encouraged to use this facility
5878 * now.
5879 */
regulator_has_full_constraints(void)5880 void regulator_has_full_constraints(void)
5881 {
5882 has_full_constraints = 1;
5883 }
5884 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5885
5886 /**
5887 * rdev_get_drvdata - get rdev regulator driver data
5888 * @rdev: regulator
5889 *
5890 * Get rdev regulator driver private data. This call can be used in the
5891 * regulator driver context.
5892 */
rdev_get_drvdata(struct regulator_dev * rdev)5893 void *rdev_get_drvdata(struct regulator_dev *rdev)
5894 {
5895 return rdev->reg_data;
5896 }
5897 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5898
5899 /**
5900 * regulator_get_drvdata - get regulator driver data
5901 * @regulator: regulator
5902 *
5903 * Get regulator driver private data. This call can be used in the consumer
5904 * driver context when non API regulator specific functions need to be called.
5905 */
regulator_get_drvdata(struct regulator * regulator)5906 void *regulator_get_drvdata(struct regulator *regulator)
5907 {
5908 return regulator->rdev->reg_data;
5909 }
5910 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5911
5912 /**
5913 * regulator_set_drvdata - set regulator driver data
5914 * @regulator: regulator
5915 * @data: data
5916 */
regulator_set_drvdata(struct regulator * regulator,void * data)5917 void regulator_set_drvdata(struct regulator *regulator, void *data)
5918 {
5919 regulator->rdev->reg_data = data;
5920 }
5921 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5922
5923 /**
5924 * regulator_get_id - get regulator ID
5925 * @rdev: regulator
5926 */
rdev_get_id(struct regulator_dev * rdev)5927 int rdev_get_id(struct regulator_dev *rdev)
5928 {
5929 return rdev->desc->id;
5930 }
5931 EXPORT_SYMBOL_GPL(rdev_get_id);
5932
rdev_get_dev(struct regulator_dev * rdev)5933 struct device *rdev_get_dev(struct regulator_dev *rdev)
5934 {
5935 return &rdev->dev;
5936 }
5937 EXPORT_SYMBOL_GPL(rdev_get_dev);
5938
rdev_get_regmap(struct regulator_dev * rdev)5939 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5940 {
5941 return rdev->regmap;
5942 }
5943 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5944
regulator_get_init_drvdata(struct regulator_init_data * reg_init_data)5945 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5946 {
5947 return reg_init_data->driver_data;
5948 }
5949 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5950
5951 #ifdef CONFIG_DEBUG_FS
supply_map_show(struct seq_file * sf,void * data)5952 static int supply_map_show(struct seq_file *sf, void *data)
5953 {
5954 struct regulator_map *map;
5955
5956 list_for_each_entry(map, ®ulator_map_list, list) {
5957 seq_printf(sf, "%s -> %s.%s\n",
5958 rdev_get_name(map->regulator), map->dev_name,
5959 map->supply);
5960 }
5961
5962 return 0;
5963 }
5964 DEFINE_SHOW_ATTRIBUTE(supply_map);
5965
5966 struct summary_data {
5967 struct seq_file *s;
5968 struct regulator_dev *parent;
5969 int level;
5970 };
5971
5972 static void regulator_summary_show_subtree(struct seq_file *s,
5973 struct regulator_dev *rdev,
5974 int level);
5975
regulator_summary_show_children(struct device * dev,void * data)5976 static int regulator_summary_show_children(struct device *dev, void *data)
5977 {
5978 struct regulator_dev *rdev = dev_to_rdev(dev);
5979 struct summary_data *summary_data = data;
5980
5981 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5982 regulator_summary_show_subtree(summary_data->s, rdev,
5983 summary_data->level + 1);
5984
5985 return 0;
5986 }
5987
regulator_summary_show_subtree(struct seq_file * s,struct regulator_dev * rdev,int level)5988 static void regulator_summary_show_subtree(struct seq_file *s,
5989 struct regulator_dev *rdev,
5990 int level)
5991 {
5992 struct regulation_constraints *c;
5993 struct regulator *consumer;
5994 struct summary_data summary_data;
5995 unsigned int opmode;
5996
5997 if (!rdev)
5998 return;
5999
6000 opmode = _regulator_get_mode_unlocked(rdev);
6001 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
6002 level * 3 + 1, "",
6003 30 - level * 3, rdev_get_name(rdev),
6004 rdev->use_count, rdev->open_count, rdev->bypass_count,
6005 regulator_opmode_to_str(opmode));
6006
6007 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
6008 seq_printf(s, "%5dmA ",
6009 _regulator_get_current_limit_unlocked(rdev) / 1000);
6010
6011 c = rdev->constraints;
6012 if (c) {
6013 switch (rdev->desc->type) {
6014 case REGULATOR_VOLTAGE:
6015 seq_printf(s, "%5dmV %5dmV ",
6016 c->min_uV / 1000, c->max_uV / 1000);
6017 break;
6018 case REGULATOR_CURRENT:
6019 seq_printf(s, "%5dmA %5dmA ",
6020 c->min_uA / 1000, c->max_uA / 1000);
6021 break;
6022 }
6023 }
6024
6025 seq_puts(s, "\n");
6026
6027 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6028 if (consumer->dev && consumer->dev->class == ®ulator_class)
6029 continue;
6030
6031 seq_printf(s, "%*s%-*s ",
6032 (level + 1) * 3 + 1, "",
6033 30 - (level + 1) * 3,
6034 consumer->supply_name ? consumer->supply_name :
6035 consumer->dev ? dev_name(consumer->dev) : "deviceless");
6036
6037 switch (rdev->desc->type) {
6038 case REGULATOR_VOLTAGE:
6039 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6040 consumer->enable_count,
6041 consumer->uA_load / 1000,
6042 consumer->uA_load && !consumer->enable_count ?
6043 '*' : ' ',
6044 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6045 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6046 break;
6047 case REGULATOR_CURRENT:
6048 break;
6049 }
6050
6051 seq_puts(s, "\n");
6052 }
6053
6054 summary_data.s = s;
6055 summary_data.level = level;
6056 summary_data.parent = rdev;
6057
6058 class_for_each_device(®ulator_class, NULL, &summary_data,
6059 regulator_summary_show_children);
6060 }
6061
6062 struct summary_lock_data {
6063 struct ww_acquire_ctx *ww_ctx;
6064 struct regulator_dev **new_contended_rdev;
6065 struct regulator_dev **old_contended_rdev;
6066 };
6067
regulator_summary_lock_one(struct device * dev,void * data)6068 static int regulator_summary_lock_one(struct device *dev, void *data)
6069 {
6070 struct regulator_dev *rdev = dev_to_rdev(dev);
6071 struct summary_lock_data *lock_data = data;
6072 int ret = 0;
6073
6074 if (rdev != *lock_data->old_contended_rdev) {
6075 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6076
6077 if (ret == -EDEADLK)
6078 *lock_data->new_contended_rdev = rdev;
6079 else
6080 WARN_ON_ONCE(ret);
6081 } else {
6082 *lock_data->old_contended_rdev = NULL;
6083 }
6084
6085 return ret;
6086 }
6087
regulator_summary_unlock_one(struct device * dev,void * data)6088 static int regulator_summary_unlock_one(struct device *dev, void *data)
6089 {
6090 struct regulator_dev *rdev = dev_to_rdev(dev);
6091 struct summary_lock_data *lock_data = data;
6092
6093 if (lock_data) {
6094 if (rdev == *lock_data->new_contended_rdev)
6095 return -EDEADLK;
6096 }
6097
6098 regulator_unlock(rdev);
6099
6100 return 0;
6101 }
6102
regulator_summary_lock_all(struct ww_acquire_ctx * ww_ctx,struct regulator_dev ** new_contended_rdev,struct regulator_dev ** old_contended_rdev)6103 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6104 struct regulator_dev **new_contended_rdev,
6105 struct regulator_dev **old_contended_rdev)
6106 {
6107 struct summary_lock_data lock_data;
6108 int ret;
6109
6110 lock_data.ww_ctx = ww_ctx;
6111 lock_data.new_contended_rdev = new_contended_rdev;
6112 lock_data.old_contended_rdev = old_contended_rdev;
6113
6114 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6115 regulator_summary_lock_one);
6116 if (ret)
6117 class_for_each_device(®ulator_class, NULL, &lock_data,
6118 regulator_summary_unlock_one);
6119
6120 return ret;
6121 }
6122
regulator_summary_lock(struct ww_acquire_ctx * ww_ctx)6123 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6124 {
6125 struct regulator_dev *new_contended_rdev = NULL;
6126 struct regulator_dev *old_contended_rdev = NULL;
6127 int err;
6128
6129 mutex_lock(®ulator_list_mutex);
6130
6131 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6132
6133 do {
6134 if (new_contended_rdev) {
6135 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6136 old_contended_rdev = new_contended_rdev;
6137 old_contended_rdev->ref_cnt++;
6138 }
6139
6140 err = regulator_summary_lock_all(ww_ctx,
6141 &new_contended_rdev,
6142 &old_contended_rdev);
6143
6144 if (old_contended_rdev)
6145 regulator_unlock(old_contended_rdev);
6146
6147 } while (err == -EDEADLK);
6148
6149 ww_acquire_done(ww_ctx);
6150 }
6151
regulator_summary_unlock(struct ww_acquire_ctx * ww_ctx)6152 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6153 {
6154 class_for_each_device(®ulator_class, NULL, NULL,
6155 regulator_summary_unlock_one);
6156 ww_acquire_fini(ww_ctx);
6157
6158 mutex_unlock(®ulator_list_mutex);
6159 }
6160
regulator_summary_show_roots(struct device * dev,void * data)6161 static int regulator_summary_show_roots(struct device *dev, void *data)
6162 {
6163 struct regulator_dev *rdev = dev_to_rdev(dev);
6164 struct seq_file *s = data;
6165
6166 if (!rdev->supply)
6167 regulator_summary_show_subtree(s, rdev, 0);
6168
6169 return 0;
6170 }
6171
regulator_summary_show(struct seq_file * s,void * data)6172 static int regulator_summary_show(struct seq_file *s, void *data)
6173 {
6174 struct ww_acquire_ctx ww_ctx;
6175
6176 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6177 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6178
6179 regulator_summary_lock(&ww_ctx);
6180
6181 class_for_each_device(®ulator_class, NULL, s,
6182 regulator_summary_show_roots);
6183
6184 regulator_summary_unlock(&ww_ctx);
6185
6186 return 0;
6187 }
6188 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6189 #endif /* CONFIG_DEBUG_FS */
6190
regulator_init(void)6191 static int __init regulator_init(void)
6192 {
6193 int ret;
6194
6195 ret = class_register(®ulator_class);
6196
6197 debugfs_root = debugfs_create_dir("regulator", NULL);
6198 if (!debugfs_root)
6199 pr_warn("regulator: Failed to create debugfs directory\n");
6200
6201 #ifdef CONFIG_DEBUG_FS
6202 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6203 &supply_map_fops);
6204
6205 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6206 NULL, ®ulator_summary_fops);
6207 #endif
6208 regulator_dummy_init();
6209
6210 regulator_coupler_register(&generic_regulator_coupler);
6211
6212 return ret;
6213 }
6214
6215 /* init early to allow our consumers to complete system booting */
6216 #ifdef CONFIG_ROCKCHIP_THUNDER_BOOT
6217 core_initcall_sync(regulator_init);
6218 #else
6219 core_initcall(regulator_init);
6220 #endif
6221
regulator_late_cleanup(struct device * dev,void * data)6222 static int regulator_late_cleanup(struct device *dev, void *data)
6223 {
6224 struct regulator_dev *rdev = dev_to_rdev(dev);
6225 struct regulation_constraints *c = rdev->constraints;
6226 int ret;
6227
6228 if (c && c->always_on)
6229 return 0;
6230
6231 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6232 return 0;
6233
6234 regulator_lock(rdev);
6235
6236 if (rdev->use_count)
6237 goto unlock;
6238
6239 /* If reading the status failed, assume that it's off. */
6240 if (_regulator_is_enabled(rdev) <= 0)
6241 goto unlock;
6242
6243 if (have_full_constraints()) {
6244 /* We log since this may kill the system if it goes
6245 * wrong. */
6246 rdev_info(rdev, "disabling\n");
6247 ret = _regulator_do_disable(rdev);
6248 if (ret != 0)
6249 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6250 } else {
6251 /* The intention is that in future we will
6252 * assume that full constraints are provided
6253 * so warn even if we aren't going to do
6254 * anything here.
6255 */
6256 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6257 }
6258
6259 unlock:
6260 regulator_unlock(rdev);
6261
6262 return 0;
6263 }
6264
regulator_init_complete_work_function(struct work_struct * work)6265 static void regulator_init_complete_work_function(struct work_struct *work)
6266 {
6267 /*
6268 * Regulators may had failed to resolve their input supplies
6269 * when were registered, either because the input supply was
6270 * not registered yet or because its parent device was not
6271 * bound yet. So attempt to resolve the input supplies for
6272 * pending regulators before trying to disable unused ones.
6273 */
6274 class_for_each_device(®ulator_class, NULL, NULL,
6275 regulator_register_resolve_supply);
6276
6277 /* If we have a full configuration then disable any regulators
6278 * we have permission to change the status for and which are
6279 * not in use or always_on. This is effectively the default
6280 * for DT and ACPI as they have full constraints.
6281 */
6282 class_for_each_device(®ulator_class, NULL, NULL,
6283 regulator_late_cleanup);
6284 }
6285
6286 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6287 regulator_init_complete_work_function);
6288
regulator_init_complete(void)6289 static int __init regulator_init_complete(void)
6290 {
6291 /*
6292 * Since DT doesn't provide an idiomatic mechanism for
6293 * enabling full constraints and since it's much more natural
6294 * with DT to provide them just assume that a DT enabled
6295 * system has full constraints.
6296 */
6297 if (of_have_populated_dt())
6298 has_full_constraints = true;
6299
6300 /*
6301 * We punt completion for an arbitrary amount of time since
6302 * systems like distros will load many drivers from userspace
6303 * so consumers might not always be ready yet, this is
6304 * particularly an issue with laptops where this might bounce
6305 * the display off then on. Ideally we'd get a notification
6306 * from userspace when this happens but we don't so just wait
6307 * a bit and hope we waited long enough. It'd be better if
6308 * we'd only do this on systems that need it, and a kernel
6309 * command line option might be useful.
6310 */
6311 schedule_delayed_work(®ulator_init_complete_work,
6312 msecs_to_jiffies(30000));
6313
6314 return 0;
6315 }
6316 late_initcall_sync(regulator_init_complete);
6317