xref: /OK3568_Linux_fs/kernel/drivers/pwm/core.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/pwm.h>
12 #include <linux/radix-tree.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
20 
21 #include <dt-bindings/pwm/pwm.h>
22 
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/pwm.h>
25 
26 #define MAX_PWMS 1024
27 
28 static DEFINE_MUTEX(pwm_lookup_lock);
29 static LIST_HEAD(pwm_lookup_list);
30 static DEFINE_MUTEX(pwm_lock);
31 static LIST_HEAD(pwm_chips);
32 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
33 static RADIX_TREE(pwm_tree, GFP_KERNEL);
34 
pwm_to_device(unsigned int pwm)35 static struct pwm_device *pwm_to_device(unsigned int pwm)
36 {
37 	return radix_tree_lookup(&pwm_tree, pwm);
38 }
39 
alloc_pwms(int pwm,unsigned int count)40 static int alloc_pwms(int pwm, unsigned int count)
41 {
42 	unsigned int from = 0;
43 	unsigned int start;
44 
45 	if (pwm >= MAX_PWMS)
46 		return -EINVAL;
47 
48 	if (pwm >= 0)
49 		from = pwm;
50 
51 	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
52 					   count, 0);
53 
54 	if (pwm >= 0 && start != pwm)
55 		return -EEXIST;
56 
57 	if (start + count > MAX_PWMS)
58 		return -ENOSPC;
59 
60 	return start;
61 }
62 
free_pwms(struct pwm_chip * chip)63 static void free_pwms(struct pwm_chip *chip)
64 {
65 	unsigned int i;
66 
67 	for (i = 0; i < chip->npwm; i++) {
68 		struct pwm_device *pwm = &chip->pwms[i];
69 
70 		radix_tree_delete(&pwm_tree, pwm->pwm);
71 	}
72 
73 	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
74 
75 	kfree(chip->pwms);
76 	chip->pwms = NULL;
77 }
78 
pwmchip_find_by_name(const char * name)79 static struct pwm_chip *pwmchip_find_by_name(const char *name)
80 {
81 	struct pwm_chip *chip;
82 
83 	if (!name)
84 		return NULL;
85 
86 	mutex_lock(&pwm_lock);
87 
88 	list_for_each_entry(chip, &pwm_chips, list) {
89 		const char *chip_name = dev_name(chip->dev);
90 
91 		if (chip_name && strcmp(chip_name, name) == 0) {
92 			mutex_unlock(&pwm_lock);
93 			return chip;
94 		}
95 	}
96 
97 	mutex_unlock(&pwm_lock);
98 
99 	return NULL;
100 }
101 
pwm_device_request(struct pwm_device * pwm,const char * label)102 static int pwm_device_request(struct pwm_device *pwm, const char *label)
103 {
104 	int err;
105 
106 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
107 		return -EBUSY;
108 
109 	if (!try_module_get(pwm->chip->ops->owner))
110 		return -ENODEV;
111 
112 	if (pwm->chip->ops->request) {
113 		err = pwm->chip->ops->request(pwm->chip, pwm);
114 		if (err) {
115 			module_put(pwm->chip->ops->owner);
116 			return err;
117 		}
118 	}
119 
120 	if (pwm->chip->ops->get_state) {
121 		pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state);
122 		trace_pwm_get(pwm, &pwm->state);
123 
124 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
125 			pwm->last = pwm->state;
126 	}
127 
128 	set_bit(PWMF_REQUESTED, &pwm->flags);
129 	pwm->label = label;
130 
131 	return 0;
132 }
133 
134 struct pwm_device *
of_pwm_xlate_with_flags(struct pwm_chip * pc,const struct of_phandle_args * args)135 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
136 {
137 	struct pwm_device *pwm;
138 
139 	/* check, whether the driver supports a third cell for flags */
140 	if (pc->of_pwm_n_cells < 3)
141 		return ERR_PTR(-EINVAL);
142 
143 	/* flags in the third cell are optional */
144 	if (args->args_count < 2)
145 		return ERR_PTR(-EINVAL);
146 
147 	if (args->args[0] >= pc->npwm)
148 		return ERR_PTR(-EINVAL);
149 
150 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
151 	if (IS_ERR(pwm))
152 		return pwm;
153 
154 	pwm->args.period = args->args[1];
155 	pwm->args.polarity = PWM_POLARITY_NORMAL;
156 
157 	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
158 		pwm->args.polarity = PWM_POLARITY_INVERSED;
159 
160 	return pwm;
161 }
162 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
163 
164 static struct pwm_device *
of_pwm_simple_xlate(struct pwm_chip * pc,const struct of_phandle_args * args)165 of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
166 {
167 	struct pwm_device *pwm;
168 
169 	/* sanity check driver support */
170 	if (pc->of_pwm_n_cells < 2)
171 		return ERR_PTR(-EINVAL);
172 
173 	/* all cells are required */
174 	if (args->args_count != pc->of_pwm_n_cells)
175 		return ERR_PTR(-EINVAL);
176 
177 	if (args->args[0] >= pc->npwm)
178 		return ERR_PTR(-EINVAL);
179 
180 	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
181 	if (IS_ERR(pwm))
182 		return pwm;
183 
184 	pwm->args.period = args->args[1];
185 
186 	return pwm;
187 }
188 
of_pwmchip_add(struct pwm_chip * chip)189 static void of_pwmchip_add(struct pwm_chip *chip)
190 {
191 	if (!chip->dev || !chip->dev->of_node)
192 		return;
193 
194 	if (!chip->of_xlate) {
195 		chip->of_xlate = of_pwm_simple_xlate;
196 		chip->of_pwm_n_cells = 2;
197 	}
198 
199 	of_node_get(chip->dev->of_node);
200 }
201 
of_pwmchip_remove(struct pwm_chip * chip)202 static void of_pwmchip_remove(struct pwm_chip *chip)
203 {
204 	if (chip->dev)
205 		of_node_put(chip->dev->of_node);
206 }
207 
208 /**
209  * pwm_set_chip_data() - set private chip data for a PWM
210  * @pwm: PWM device
211  * @data: pointer to chip-specific data
212  *
213  * Returns: 0 on success or a negative error code on failure.
214  */
pwm_set_chip_data(struct pwm_device * pwm,void * data)215 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
216 {
217 	if (!pwm)
218 		return -EINVAL;
219 
220 	pwm->chip_data = data;
221 
222 	return 0;
223 }
224 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
225 
226 /**
227  * pwm_get_chip_data() - get private chip data for a PWM
228  * @pwm: PWM device
229  *
230  * Returns: A pointer to the chip-private data for the PWM device.
231  */
pwm_get_chip_data(struct pwm_device * pwm)232 void *pwm_get_chip_data(struct pwm_device *pwm)
233 {
234 	return pwm ? pwm->chip_data : NULL;
235 }
236 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
237 
pwm_ops_check(const struct pwm_chip * chip)238 static bool pwm_ops_check(const struct pwm_chip *chip)
239 {
240 
241 	const struct pwm_ops *ops = chip->ops;
242 
243 	/* driver supports legacy, non-atomic operation */
244 	if (ops->config && ops->enable && ops->disable) {
245 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
246 			dev_warn(chip->dev,
247 				 "Driver needs updating to atomic API\n");
248 
249 		return true;
250 	}
251 
252 	if (!ops->apply)
253 		return false;
254 
255 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
256 		dev_warn(chip->dev,
257 			 "Please implement the .get_state() callback\n");
258 
259 	return true;
260 }
261 
262 /**
263  * pwmchip_add_with_polarity() - register a new PWM chip
264  * @chip: the PWM chip to add
265  * @polarity: initial polarity of PWM channels
266  *
267  * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
268  * will be used. The initial polarity for all channels is specified by the
269  * @polarity parameter.
270  *
271  * Returns: 0 on success or a negative error code on failure.
272  */
pwmchip_add_with_polarity(struct pwm_chip * chip,enum pwm_polarity polarity)273 int pwmchip_add_with_polarity(struct pwm_chip *chip,
274 			      enum pwm_polarity polarity)
275 {
276 	struct pwm_device *pwm;
277 	unsigned int i;
278 	int ret;
279 
280 	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
281 		return -EINVAL;
282 
283 	if (!pwm_ops_check(chip))
284 		return -EINVAL;
285 
286 	mutex_lock(&pwm_lock);
287 
288 	ret = alloc_pwms(chip->base, chip->npwm);
289 	if (ret < 0)
290 		goto out;
291 
292 	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
293 	if (!chip->pwms) {
294 		ret = -ENOMEM;
295 		goto out;
296 	}
297 
298 	chip->base = ret;
299 
300 	for (i = 0; i < chip->npwm; i++) {
301 		pwm = &chip->pwms[i];
302 
303 		pwm->chip = chip;
304 		pwm->pwm = chip->base + i;
305 		pwm->hwpwm = i;
306 		pwm->state.polarity = polarity;
307 		pwm->state.output_type = PWM_OUTPUT_FIXED;
308 
309 		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
310 	}
311 
312 	bitmap_set(allocated_pwms, chip->base, chip->npwm);
313 
314 	INIT_LIST_HEAD(&chip->list);
315 	list_add(&chip->list, &pwm_chips);
316 
317 	ret = 0;
318 
319 	if (IS_ENABLED(CONFIG_OF))
320 		of_pwmchip_add(chip);
321 
322 out:
323 	mutex_unlock(&pwm_lock);
324 
325 	if (!ret)
326 		pwmchip_sysfs_export(chip);
327 
328 	return ret;
329 }
330 EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
331 
332 /**
333  * pwmchip_add() - register a new PWM chip
334  * @chip: the PWM chip to add
335  *
336  * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
337  * will be used. The initial polarity for all channels is normal.
338  *
339  * Returns: 0 on success or a negative error code on failure.
340  */
pwmchip_add(struct pwm_chip * chip)341 int pwmchip_add(struct pwm_chip *chip)
342 {
343 	return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
344 }
345 EXPORT_SYMBOL_GPL(pwmchip_add);
346 
347 /**
348  * pwmchip_remove() - remove a PWM chip
349  * @chip: the PWM chip to remove
350  *
351  * Removes a PWM chip. This function may return busy if the PWM chip provides
352  * a PWM device that is still requested.
353  *
354  * Returns: 0 on success or a negative error code on failure.
355  */
pwmchip_remove(struct pwm_chip * chip)356 int pwmchip_remove(struct pwm_chip *chip)
357 {
358 	unsigned int i;
359 	int ret = 0;
360 
361 	pwmchip_sysfs_unexport(chip);
362 
363 	mutex_lock(&pwm_lock);
364 
365 	for (i = 0; i < chip->npwm; i++) {
366 		struct pwm_device *pwm = &chip->pwms[i];
367 
368 		if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
369 			ret = -EBUSY;
370 			goto out;
371 		}
372 	}
373 
374 	list_del_init(&chip->list);
375 
376 	if (IS_ENABLED(CONFIG_OF))
377 		of_pwmchip_remove(chip);
378 
379 	free_pwms(chip);
380 
381 out:
382 	mutex_unlock(&pwm_lock);
383 	return ret;
384 }
385 EXPORT_SYMBOL_GPL(pwmchip_remove);
386 
387 /**
388  * pwm_request() - request a PWM device
389  * @pwm: global PWM device index
390  * @label: PWM device label
391  *
392  * This function is deprecated, use pwm_get() instead.
393  *
394  * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
395  * failure.
396  */
pwm_request(int pwm,const char * label)397 struct pwm_device *pwm_request(int pwm, const char *label)
398 {
399 	struct pwm_device *dev;
400 	int err;
401 
402 	if (pwm < 0 || pwm >= MAX_PWMS)
403 		return ERR_PTR(-EINVAL);
404 
405 	mutex_lock(&pwm_lock);
406 
407 	dev = pwm_to_device(pwm);
408 	if (!dev) {
409 		dev = ERR_PTR(-EPROBE_DEFER);
410 		goto out;
411 	}
412 
413 	err = pwm_device_request(dev, label);
414 	if (err < 0)
415 		dev = ERR_PTR(err);
416 
417 out:
418 	mutex_unlock(&pwm_lock);
419 
420 	return dev;
421 }
422 EXPORT_SYMBOL_GPL(pwm_request);
423 
424 /**
425  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
426  * @chip: PWM chip
427  * @index: per-chip index of the PWM to request
428  * @label: a literal description string of this PWM
429  *
430  * Returns: A pointer to the PWM device at the given index of the given PWM
431  * chip. A negative error code is returned if the index is not valid for the
432  * specified PWM chip or if the PWM device cannot be requested.
433  */
pwm_request_from_chip(struct pwm_chip * chip,unsigned int index,const char * label)434 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
435 					 unsigned int index,
436 					 const char *label)
437 {
438 	struct pwm_device *pwm;
439 	int err;
440 
441 	if (!chip || index >= chip->npwm)
442 		return ERR_PTR(-EINVAL);
443 
444 	mutex_lock(&pwm_lock);
445 	pwm = &chip->pwms[index];
446 
447 	err = pwm_device_request(pwm, label);
448 	if (err < 0)
449 		pwm = ERR_PTR(err);
450 
451 	mutex_unlock(&pwm_lock);
452 	return pwm;
453 }
454 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
455 
456 /**
457  * pwm_free() - free a PWM device
458  * @pwm: PWM device
459  *
460  * This function is deprecated, use pwm_put() instead.
461  */
pwm_free(struct pwm_device * pwm)462 void pwm_free(struct pwm_device *pwm)
463 {
464 	pwm_put(pwm);
465 }
466 EXPORT_SYMBOL_GPL(pwm_free);
467 
pwm_apply_state_debug(struct pwm_device * pwm,const struct pwm_state * state)468 static void pwm_apply_state_debug(struct pwm_device *pwm,
469 				  const struct pwm_state *state)
470 {
471 	struct pwm_state *last = &pwm->last;
472 	struct pwm_chip *chip = pwm->chip;
473 	struct pwm_state s1, s2;
474 	int err;
475 
476 	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
477 		return;
478 
479 	/* No reasonable diagnosis possible without .get_state() */
480 	if (!chip->ops->get_state)
481 		return;
482 
483 	/*
484 	 * *state was just applied. Read out the hardware state and do some
485 	 * checks.
486 	 */
487 
488 	chip->ops->get_state(chip, pwm, &s1);
489 	trace_pwm_get(pwm, &s1);
490 
491 	/*
492 	 * The lowlevel driver either ignored .polarity (which is a bug) or as
493 	 * best effort inverted .polarity and fixed .duty_cycle respectively.
494 	 * Undo this inversion and fixup for further tests.
495 	 */
496 	if (s1.enabled && s1.polarity != state->polarity) {
497 		s2.polarity = state->polarity;
498 		s2.duty_cycle = s1.period - s1.duty_cycle;
499 		s2.period = s1.period;
500 		s2.enabled = s1.enabled;
501 	} else {
502 		s2 = s1;
503 	}
504 
505 	if (s2.polarity != state->polarity &&
506 	    state->duty_cycle < state->period)
507 		dev_warn(chip->dev, ".apply ignored .polarity\n");
508 
509 	if (state->enabled &&
510 	    last->polarity == state->polarity &&
511 	    last->period > s2.period &&
512 	    last->period <= state->period)
513 		dev_warn(chip->dev,
514 			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
515 			 state->period, s2.period, last->period);
516 
517 	if (state->enabled && state->period < s2.period)
518 		dev_warn(chip->dev,
519 			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
520 			 state->period, s2.period);
521 
522 	if (state->enabled &&
523 	    last->polarity == state->polarity &&
524 	    last->period == s2.period &&
525 	    last->duty_cycle > s2.duty_cycle &&
526 	    last->duty_cycle <= state->duty_cycle)
527 		dev_warn(chip->dev,
528 			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
529 			 state->duty_cycle, state->period,
530 			 s2.duty_cycle, s2.period,
531 			 last->duty_cycle, last->period);
532 
533 	if (state->enabled && state->duty_cycle < s2.duty_cycle)
534 		dev_warn(chip->dev,
535 			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
536 			 state->duty_cycle, state->period,
537 			 s2.duty_cycle, s2.period);
538 
539 	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
540 		dev_warn(chip->dev,
541 			 "requested disabled, but yielded enabled with duty > 0\n");
542 
543 	/* reapply the state that the driver reported being configured. */
544 	err = chip->ops->apply(chip, pwm, &s1);
545 	if (err) {
546 		*last = s1;
547 		dev_err(chip->dev, "failed to reapply current setting\n");
548 		return;
549 	}
550 
551 	trace_pwm_apply(pwm, &s1);
552 
553 	chip->ops->get_state(chip, pwm, last);
554 	trace_pwm_get(pwm, last);
555 
556 	/* reapplication of the current state should give an exact match */
557 	if (s1.enabled != last->enabled ||
558 	    s1.polarity != last->polarity ||
559 	    (s1.enabled && s1.period != last->period) ||
560 	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
561 		dev_err(chip->dev,
562 			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
563 			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
564 			last->enabled, last->polarity, last->duty_cycle,
565 			last->period);
566 	}
567 }
568 
569 /**
570  * pwm_apply_state() - atomically apply a new state to a PWM device
571  * @pwm: PWM device
572  * @state: new state to apply
573  */
pwm_apply_state(struct pwm_device * pwm,const struct pwm_state * state)574 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
575 {
576 	struct pwm_chip *chip;
577 	int err;
578 
579 	if (!pwm || !state || !state->period ||
580 	    state->duty_cycle > state->period)
581 		return -EINVAL;
582 
583 	chip = pwm->chip;
584 
585 	if (state->period == pwm->state.period &&
586 	    state->duty_cycle == pwm->state.duty_cycle &&
587 	    state->polarity == pwm->state.polarity &&
588 #ifdef CONFIG_PWM_ROCKCHIP_ONESHOT
589 	    state->oneshot_count == pwm->state.oneshot_count &&
590 #endif
591 	    state->enabled == pwm->state.enabled)
592 		return 0;
593 
594 	if (chip->ops->apply) {
595 		err = chip->ops->apply(chip, pwm, state);
596 		if (err)
597 			return err;
598 
599 		trace_pwm_apply(pwm, state);
600 
601 		pwm->state = *state;
602 
603 		/*
604 		 * only do this after pwm->state was applied as some
605 		 * implementations of .get_state depend on this
606 		 */
607 		pwm_apply_state_debug(pwm, state);
608 	} else {
609 		/*
610 		 * FIXME: restore the initial state in case of error.
611 		 */
612 		if (state->polarity != pwm->state.polarity) {
613 			if (!chip->ops->set_polarity)
614 				return -ENOTSUPP;
615 
616 			/*
617 			 * Changing the polarity of a running PWM is
618 			 * only allowed when the PWM driver implements
619 			 * ->apply().
620 			 */
621 			if (pwm->state.enabled) {
622 				chip->ops->disable(chip, pwm);
623 				pwm->state.enabled = false;
624 			}
625 
626 			err = chip->ops->set_polarity(chip, pwm,
627 						      state->polarity);
628 			if (err)
629 				return err;
630 
631 			pwm->state.polarity = state->polarity;
632 		}
633 
634 		if (state->period != pwm->state.period ||
635 		    state->duty_cycle != pwm->state.duty_cycle) {
636 			err = chip->ops->config(pwm->chip, pwm,
637 						state->duty_cycle,
638 						state->period);
639 			if (err)
640 				return err;
641 
642 			pwm->state.duty_cycle = state->duty_cycle;
643 			pwm->state.period = state->period;
644 		}
645 
646 		if (state->enabled != pwm->state.enabled) {
647 			if (state->enabled) {
648 				err = chip->ops->enable(chip, pwm);
649 				if (err)
650 					return err;
651 			} else {
652 				chip->ops->disable(chip, pwm);
653 			}
654 
655 			pwm->state.enabled = state->enabled;
656 		}
657 	}
658 
659 	return 0;
660 }
661 EXPORT_SYMBOL_GPL(pwm_apply_state);
662 
663 /**
664  * pwm_capture() - capture and report a PWM signal
665  * @pwm: PWM device
666  * @result: structure to fill with capture result
667  * @timeout: time to wait, in milliseconds, before giving up on capture
668  *
669  * Returns: 0 on success or a negative error code on failure.
670  */
pwm_capture(struct pwm_device * pwm,struct pwm_capture * result,unsigned long timeout)671 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
672 		unsigned long timeout)
673 {
674 	int err;
675 
676 	if (!pwm || !pwm->chip->ops)
677 		return -EINVAL;
678 
679 	if (!pwm->chip->ops->capture)
680 		return -ENOSYS;
681 
682 	mutex_lock(&pwm_lock);
683 	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
684 	mutex_unlock(&pwm_lock);
685 
686 	return err;
687 }
688 EXPORT_SYMBOL_GPL(pwm_capture);
689 
690 /**
691  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
692  * @pwm: PWM device
693  *
694  * This function will adjust the PWM config to the PWM arguments provided
695  * by the DT or PWM lookup table. This is particularly useful to adapt
696  * the bootloader config to the Linux one.
697  */
pwm_adjust_config(struct pwm_device * pwm)698 int pwm_adjust_config(struct pwm_device *pwm)
699 {
700 	struct pwm_state state;
701 	struct pwm_args pargs;
702 
703 	pwm_get_args(pwm, &pargs);
704 	pwm_get_state(pwm, &state);
705 
706 	/*
707 	 * If the current period is zero it means that either the PWM driver
708 	 * does not support initial state retrieval or the PWM has not yet
709 	 * been configured.
710 	 *
711 	 * In either case, we setup the new period and polarity, and assign a
712 	 * duty cycle of 0.
713 	 */
714 	if (!state.period) {
715 		state.duty_cycle = 0;
716 		state.period = pargs.period;
717 		state.polarity = pargs.polarity;
718 
719 		return pwm_apply_state(pwm, &state);
720 	}
721 
722 	/*
723 	 * Adjust the PWM duty cycle/period based on the period value provided
724 	 * in PWM args.
725 	 */
726 	if (pargs.period != state.period) {
727 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
728 
729 		do_div(dutycycle, state.period);
730 		state.duty_cycle = dutycycle;
731 		state.period = pargs.period;
732 	}
733 
734 	/*
735 	 * If the polarity changed, we should also change the duty cycle.
736 	 */
737 	if (pargs.polarity != state.polarity) {
738 		state.polarity = pargs.polarity;
739 		state.duty_cycle = state.period - state.duty_cycle;
740 	}
741 
742 	return pwm_apply_state(pwm, &state);
743 }
744 EXPORT_SYMBOL_GPL(pwm_adjust_config);
745 
of_node_to_pwmchip(struct device_node * np)746 static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
747 {
748 	struct pwm_chip *chip;
749 
750 	mutex_lock(&pwm_lock);
751 
752 	list_for_each_entry(chip, &pwm_chips, list)
753 		if (chip->dev && chip->dev->of_node == np) {
754 			mutex_unlock(&pwm_lock);
755 			return chip;
756 		}
757 
758 	mutex_unlock(&pwm_lock);
759 
760 	return ERR_PTR(-EPROBE_DEFER);
761 }
762 
pwm_device_link_add(struct device * dev,struct pwm_device * pwm)763 static struct device_link *pwm_device_link_add(struct device *dev,
764 					       struct pwm_device *pwm)
765 {
766 	struct device_link *dl;
767 
768 	if (!dev) {
769 		/*
770 		 * No device for the PWM consumer has been provided. It may
771 		 * impact the PM sequence ordering: the PWM supplier may get
772 		 * suspended before the consumer.
773 		 */
774 		dev_warn(pwm->chip->dev,
775 			 "No consumer device specified to create a link to\n");
776 		return NULL;
777 	}
778 
779 	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
780 	if (!dl) {
781 		dev_err(dev, "failed to create device link to %s\n",
782 			dev_name(pwm->chip->dev));
783 		return ERR_PTR(-EINVAL);
784 	}
785 
786 	return dl;
787 }
788 
789 /**
790  * of_pwm_get() - request a PWM via the PWM framework
791  * @dev: device for PWM consumer
792  * @np: device node to get the PWM from
793  * @con_id: consumer name
794  *
795  * Returns the PWM device parsed from the phandle and index specified in the
796  * "pwms" property of a device tree node or a negative error-code on failure.
797  * Values parsed from the device tree are stored in the returned PWM device
798  * object.
799  *
800  * If con_id is NULL, the first PWM device listed in the "pwms" property will
801  * be requested. Otherwise the "pwm-names" property is used to do a reverse
802  * lookup of the PWM index. This also means that the "pwm-names" property
803  * becomes mandatory for devices that look up the PWM device via the con_id
804  * parameter.
805  *
806  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
807  * error code on failure.
808  */
of_pwm_get(struct device * dev,struct device_node * np,const char * con_id)809 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
810 			      const char *con_id)
811 {
812 	struct pwm_device *pwm = NULL;
813 	struct of_phandle_args args;
814 	struct device_link *dl;
815 	struct pwm_chip *pc;
816 	int index = 0;
817 	int err;
818 
819 	if (con_id) {
820 		index = of_property_match_string(np, "pwm-names", con_id);
821 		if (index < 0)
822 			return ERR_PTR(index);
823 	}
824 
825 	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
826 					 &args);
827 	if (err) {
828 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
829 		return ERR_PTR(err);
830 	}
831 
832 	pc = of_node_to_pwmchip(args.np);
833 	if (IS_ERR(pc)) {
834 		if (PTR_ERR(pc) != -EPROBE_DEFER)
835 			pr_err("%s(): PWM chip not found\n", __func__);
836 
837 		pwm = ERR_CAST(pc);
838 		goto put;
839 	}
840 
841 	pwm = pc->of_xlate(pc, &args);
842 	if (IS_ERR(pwm))
843 		goto put;
844 
845 	dl = pwm_device_link_add(dev, pwm);
846 	if (IS_ERR(dl)) {
847 		/* of_xlate ended up calling pwm_request_from_chip() */
848 		pwm_free(pwm);
849 		pwm = ERR_CAST(dl);
850 		goto put;
851 	}
852 
853 	/*
854 	 * If a consumer name was not given, try to look it up from the
855 	 * "pwm-names" property if it exists. Otherwise use the name of
856 	 * the user device node.
857 	 */
858 	if (!con_id) {
859 		err = of_property_read_string_index(np, "pwm-names", index,
860 						    &con_id);
861 		if (err < 0)
862 			con_id = np->name;
863 	}
864 
865 	pwm->label = con_id;
866 
867 put:
868 	of_node_put(args.np);
869 
870 	return pwm;
871 }
872 EXPORT_SYMBOL_GPL(of_pwm_get);
873 
874 #if IS_ENABLED(CONFIG_ACPI)
device_to_pwmchip(struct device * dev)875 static struct pwm_chip *device_to_pwmchip(struct device *dev)
876 {
877 	struct pwm_chip *chip;
878 
879 	mutex_lock(&pwm_lock);
880 
881 	list_for_each_entry(chip, &pwm_chips, list) {
882 		struct acpi_device *adev = ACPI_COMPANION(chip->dev);
883 
884 		if ((chip->dev == dev) || (adev && &adev->dev == dev)) {
885 			mutex_unlock(&pwm_lock);
886 			return chip;
887 		}
888 	}
889 
890 	mutex_unlock(&pwm_lock);
891 
892 	return ERR_PTR(-EPROBE_DEFER);
893 }
894 #endif
895 
896 /**
897  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
898  * @fwnode: firmware node to get the "pwm" property from
899  *
900  * Returns the PWM device parsed from the fwnode and index specified in the
901  * "pwms" property or a negative error-code on failure.
902  * Values parsed from the device tree are stored in the returned PWM device
903  * object.
904  *
905  * This is analogous to of_pwm_get() except con_id is not yet supported.
906  * ACPI entries must look like
907  * Package () {"pwms", Package ()
908  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
909  *
910  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
911  * error code on failure.
912  */
acpi_pwm_get(struct fwnode_handle * fwnode)913 static struct pwm_device *acpi_pwm_get(struct fwnode_handle *fwnode)
914 {
915 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
916 #if IS_ENABLED(CONFIG_ACPI)
917 	struct fwnode_reference_args args;
918 	struct acpi_device *acpi;
919 	struct pwm_chip *chip;
920 	int ret;
921 
922 	memset(&args, 0, sizeof(args));
923 
924 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
925 	if (ret < 0)
926 		return ERR_PTR(ret);
927 
928 	acpi = to_acpi_device_node(args.fwnode);
929 	if (!acpi)
930 		return ERR_PTR(-EINVAL);
931 
932 	if (args.nargs < 2)
933 		return ERR_PTR(-EPROTO);
934 
935 	chip = device_to_pwmchip(&acpi->dev);
936 	if (IS_ERR(chip))
937 		return ERR_CAST(chip);
938 
939 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
940 	if (IS_ERR(pwm))
941 		return pwm;
942 
943 	pwm->args.period = args.args[1];
944 	pwm->args.polarity = PWM_POLARITY_NORMAL;
945 
946 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
947 		pwm->args.polarity = PWM_POLARITY_INVERSED;
948 #endif
949 
950 	return pwm;
951 }
952 
953 /**
954  * pwm_add_table() - register PWM device consumers
955  * @table: array of consumers to register
956  * @num: number of consumers in table
957  */
pwm_add_table(struct pwm_lookup * table,size_t num)958 void pwm_add_table(struct pwm_lookup *table, size_t num)
959 {
960 	mutex_lock(&pwm_lookup_lock);
961 
962 	while (num--) {
963 		list_add_tail(&table->list, &pwm_lookup_list);
964 		table++;
965 	}
966 
967 	mutex_unlock(&pwm_lookup_lock);
968 }
969 
970 /**
971  * pwm_remove_table() - unregister PWM device consumers
972  * @table: array of consumers to unregister
973  * @num: number of consumers in table
974  */
pwm_remove_table(struct pwm_lookup * table,size_t num)975 void pwm_remove_table(struct pwm_lookup *table, size_t num)
976 {
977 	mutex_lock(&pwm_lookup_lock);
978 
979 	while (num--) {
980 		list_del(&table->list);
981 		table++;
982 	}
983 
984 	mutex_unlock(&pwm_lookup_lock);
985 }
986 
987 /**
988  * pwm_get() - look up and request a PWM device
989  * @dev: device for PWM consumer
990  * @con_id: consumer name
991  *
992  * Lookup is first attempted using DT. If the device was not instantiated from
993  * a device tree, a PWM chip and a relative index is looked up via a table
994  * supplied by board setup code (see pwm_add_table()).
995  *
996  * Once a PWM chip has been found the specified PWM device will be requested
997  * and is ready to be used.
998  *
999  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1000  * error code on failure.
1001  */
pwm_get(struct device * dev,const char * con_id)1002 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
1003 {
1004 	const char *dev_id = dev ? dev_name(dev) : NULL;
1005 	struct pwm_device *pwm;
1006 	struct pwm_chip *chip;
1007 	struct device_link *dl;
1008 	unsigned int best = 0;
1009 	struct pwm_lookup *p, *chosen = NULL;
1010 	unsigned int match;
1011 	int err;
1012 
1013 	/* look up via DT first */
1014 	if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
1015 		return of_pwm_get(dev, dev->of_node, con_id);
1016 
1017 	/* then lookup via ACPI */
1018 	if (dev && is_acpi_node(dev->fwnode)) {
1019 		pwm = acpi_pwm_get(dev->fwnode);
1020 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
1021 			return pwm;
1022 	}
1023 
1024 	/*
1025 	 * We look up the provider in the static table typically provided by
1026 	 * board setup code. We first try to lookup the consumer device by
1027 	 * name. If the consumer device was passed in as NULL or if no match
1028 	 * was found, we try to find the consumer by directly looking it up
1029 	 * by name.
1030 	 *
1031 	 * If a match is found, the provider PWM chip is looked up by name
1032 	 * and a PWM device is requested using the PWM device per-chip index.
1033 	 *
1034 	 * The lookup algorithm was shamelessly taken from the clock
1035 	 * framework:
1036 	 *
1037 	 * We do slightly fuzzy matching here:
1038 	 *  An entry with a NULL ID is assumed to be a wildcard.
1039 	 *  If an entry has a device ID, it must match
1040 	 *  If an entry has a connection ID, it must match
1041 	 * Then we take the most specific entry - with the following order
1042 	 * of precedence: dev+con > dev only > con only.
1043 	 */
1044 	mutex_lock(&pwm_lookup_lock);
1045 
1046 	list_for_each_entry(p, &pwm_lookup_list, list) {
1047 		match = 0;
1048 
1049 		if (p->dev_id) {
1050 			if (!dev_id || strcmp(p->dev_id, dev_id))
1051 				continue;
1052 
1053 			match += 2;
1054 		}
1055 
1056 		if (p->con_id) {
1057 			if (!con_id || strcmp(p->con_id, con_id))
1058 				continue;
1059 
1060 			match += 1;
1061 		}
1062 
1063 		if (match > best) {
1064 			chosen = p;
1065 
1066 			if (match != 3)
1067 				best = match;
1068 			else
1069 				break;
1070 		}
1071 	}
1072 
1073 	mutex_unlock(&pwm_lookup_lock);
1074 
1075 	if (!chosen)
1076 		return ERR_PTR(-ENODEV);
1077 
1078 	chip = pwmchip_find_by_name(chosen->provider);
1079 
1080 	/*
1081 	 * If the lookup entry specifies a module, load the module and retry
1082 	 * the PWM chip lookup. This can be used to work around driver load
1083 	 * ordering issues if driver's can't be made to properly support the
1084 	 * deferred probe mechanism.
1085 	 */
1086 	if (!chip && chosen->module) {
1087 		err = request_module(chosen->module);
1088 		if (err == 0)
1089 			chip = pwmchip_find_by_name(chosen->provider);
1090 	}
1091 
1092 	if (!chip)
1093 		return ERR_PTR(-EPROBE_DEFER);
1094 
1095 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1096 	if (IS_ERR(pwm))
1097 		return pwm;
1098 
1099 	dl = pwm_device_link_add(dev, pwm);
1100 	if (IS_ERR(dl)) {
1101 		pwm_free(pwm);
1102 		return ERR_CAST(dl);
1103 	}
1104 
1105 	pwm->args.period = chosen->period;
1106 	pwm->args.polarity = chosen->polarity;
1107 
1108 	return pwm;
1109 }
1110 EXPORT_SYMBOL_GPL(pwm_get);
1111 
1112 /**
1113  * pwm_put() - release a PWM device
1114  * @pwm: PWM device
1115  */
pwm_put(struct pwm_device * pwm)1116 void pwm_put(struct pwm_device *pwm)
1117 {
1118 	if (!pwm)
1119 		return;
1120 
1121 	mutex_lock(&pwm_lock);
1122 
1123 	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1124 		pr_warn("PWM device already freed\n");
1125 		goto out;
1126 	}
1127 
1128 	if (pwm->chip->ops->free)
1129 		pwm->chip->ops->free(pwm->chip, pwm);
1130 
1131 	pwm_set_chip_data(pwm, NULL);
1132 	pwm->label = NULL;
1133 
1134 	module_put(pwm->chip->ops->owner);
1135 out:
1136 	mutex_unlock(&pwm_lock);
1137 }
1138 EXPORT_SYMBOL_GPL(pwm_put);
1139 
devm_pwm_release(struct device * dev,void * res)1140 static void devm_pwm_release(struct device *dev, void *res)
1141 {
1142 	pwm_put(*(struct pwm_device **)res);
1143 }
1144 
1145 /**
1146  * devm_pwm_get() - resource managed pwm_get()
1147  * @dev: device for PWM consumer
1148  * @con_id: consumer name
1149  *
1150  * This function performs like pwm_get() but the acquired PWM device will
1151  * automatically be released on driver detach.
1152  *
1153  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1154  * error code on failure.
1155  */
devm_pwm_get(struct device * dev,const char * con_id)1156 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1157 {
1158 	struct pwm_device **ptr, *pwm;
1159 
1160 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1161 	if (!ptr)
1162 		return ERR_PTR(-ENOMEM);
1163 
1164 	pwm = pwm_get(dev, con_id);
1165 	if (!IS_ERR(pwm)) {
1166 		*ptr = pwm;
1167 		devres_add(dev, ptr);
1168 	} else {
1169 		devres_free(ptr);
1170 	}
1171 
1172 	return pwm;
1173 }
1174 EXPORT_SYMBOL_GPL(devm_pwm_get);
1175 
1176 /**
1177  * devm_of_pwm_get() - resource managed of_pwm_get()
1178  * @dev: device for PWM consumer
1179  * @np: device node to get the PWM from
1180  * @con_id: consumer name
1181  *
1182  * This function performs like of_pwm_get() but the acquired PWM device will
1183  * automatically be released on driver detach.
1184  *
1185  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1186  * error code on failure.
1187  */
devm_of_pwm_get(struct device * dev,struct device_node * np,const char * con_id)1188 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1189 				   const char *con_id)
1190 {
1191 	struct pwm_device **ptr, *pwm;
1192 
1193 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1194 	if (!ptr)
1195 		return ERR_PTR(-ENOMEM);
1196 
1197 	pwm = of_pwm_get(dev, np, con_id);
1198 	if (!IS_ERR(pwm)) {
1199 		*ptr = pwm;
1200 		devres_add(dev, ptr);
1201 	} else {
1202 		devres_free(ptr);
1203 	}
1204 
1205 	return pwm;
1206 }
1207 EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1208 
1209 /**
1210  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1211  * @dev: device for PWM consumer
1212  * @fwnode: firmware node to get the PWM from
1213  * @con_id: consumer name
1214  *
1215  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1216  * acpi_pwm_get() for a detailed description.
1217  *
1218  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1219  * error code on failure.
1220  */
devm_fwnode_pwm_get(struct device * dev,struct fwnode_handle * fwnode,const char * con_id)1221 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1222 				       struct fwnode_handle *fwnode,
1223 				       const char *con_id)
1224 {
1225 	struct pwm_device **ptr, *pwm = ERR_PTR(-ENODEV);
1226 
1227 	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1228 	if (!ptr)
1229 		return ERR_PTR(-ENOMEM);
1230 
1231 	if (is_of_node(fwnode))
1232 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1233 	else if (is_acpi_node(fwnode))
1234 		pwm = acpi_pwm_get(fwnode);
1235 
1236 	if (!IS_ERR(pwm)) {
1237 		*ptr = pwm;
1238 		devres_add(dev, ptr);
1239 	} else {
1240 		devres_free(ptr);
1241 	}
1242 
1243 	return pwm;
1244 }
1245 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1246 
devm_pwm_match(struct device * dev,void * res,void * data)1247 static int devm_pwm_match(struct device *dev, void *res, void *data)
1248 {
1249 	struct pwm_device **p = res;
1250 
1251 	if (WARN_ON(!p || !*p))
1252 		return 0;
1253 
1254 	return *p == data;
1255 }
1256 
1257 /**
1258  * devm_pwm_put() - resource managed pwm_put()
1259  * @dev: device for PWM consumer
1260  * @pwm: PWM device
1261  *
1262  * Release a PWM previously allocated using devm_pwm_get(). Calling this
1263  * function is usually not needed because devm-allocated resources are
1264  * automatically released on driver detach.
1265  */
devm_pwm_put(struct device * dev,struct pwm_device * pwm)1266 void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
1267 {
1268 	WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
1269 }
1270 EXPORT_SYMBOL_GPL(devm_pwm_put);
1271 
1272 #ifdef CONFIG_DEBUG_FS
pwm_dbg_show(struct pwm_chip * chip,struct seq_file * s)1273 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1274 {
1275 	unsigned int i;
1276 
1277 	for (i = 0; i < chip->npwm; i++) {
1278 		struct pwm_device *pwm = &chip->pwms[i];
1279 		struct pwm_state state;
1280 
1281 		pwm_get_state(pwm, &state);
1282 
1283 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1284 
1285 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1286 			seq_puts(s, " requested");
1287 
1288 		if (state.enabled)
1289 			seq_puts(s, " enabled");
1290 
1291 		seq_printf(s, " period: %llu ns", state.period);
1292 		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1293 		seq_printf(s, " polarity: %s",
1294 			   state.polarity ? "inverse" : "normal");
1295 
1296 		seq_puts(s, "\n");
1297 	}
1298 }
1299 
pwm_seq_start(struct seq_file * s,loff_t * pos)1300 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1301 {
1302 	mutex_lock(&pwm_lock);
1303 	s->private = "";
1304 
1305 	return seq_list_start(&pwm_chips, *pos);
1306 }
1307 
pwm_seq_next(struct seq_file * s,void * v,loff_t * pos)1308 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1309 {
1310 	s->private = "\n";
1311 
1312 	return seq_list_next(v, &pwm_chips, pos);
1313 }
1314 
pwm_seq_stop(struct seq_file * s,void * v)1315 static void pwm_seq_stop(struct seq_file *s, void *v)
1316 {
1317 	mutex_unlock(&pwm_lock);
1318 }
1319 
pwm_seq_show(struct seq_file * s,void * v)1320 static int pwm_seq_show(struct seq_file *s, void *v)
1321 {
1322 	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1323 
1324 	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1325 		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1326 		   dev_name(chip->dev), chip->npwm,
1327 		   (chip->npwm != 1) ? "s" : "");
1328 
1329 	pwm_dbg_show(chip, s);
1330 
1331 	return 0;
1332 }
1333 
1334 static const struct seq_operations pwm_debugfs_sops = {
1335 	.start = pwm_seq_start,
1336 	.next = pwm_seq_next,
1337 	.stop = pwm_seq_stop,
1338 	.show = pwm_seq_show,
1339 };
1340 
1341 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1342 
pwm_debugfs_init(void)1343 static int __init pwm_debugfs_init(void)
1344 {
1345 	debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1346 			    &pwm_debugfs_fops);
1347 
1348 	return 0;
1349 }
1350 subsys_initcall(pwm_debugfs_init);
1351 #endif /* CONFIG_DEBUG_FS */
1352