1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Generic pwmlib implementation
4 *
5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6 * Copyright (C) 2011-2012 Avionic Design GmbH
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/pwm.h>
12 #include <linux/radix-tree.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
20
21 #include <dt-bindings/pwm/pwm.h>
22
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/pwm.h>
25
26 #define MAX_PWMS 1024
27
28 static DEFINE_MUTEX(pwm_lookup_lock);
29 static LIST_HEAD(pwm_lookup_list);
30 static DEFINE_MUTEX(pwm_lock);
31 static LIST_HEAD(pwm_chips);
32 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
33 static RADIX_TREE(pwm_tree, GFP_KERNEL);
34
pwm_to_device(unsigned int pwm)35 static struct pwm_device *pwm_to_device(unsigned int pwm)
36 {
37 return radix_tree_lookup(&pwm_tree, pwm);
38 }
39
alloc_pwms(int pwm,unsigned int count)40 static int alloc_pwms(int pwm, unsigned int count)
41 {
42 unsigned int from = 0;
43 unsigned int start;
44
45 if (pwm >= MAX_PWMS)
46 return -EINVAL;
47
48 if (pwm >= 0)
49 from = pwm;
50
51 start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
52 count, 0);
53
54 if (pwm >= 0 && start != pwm)
55 return -EEXIST;
56
57 if (start + count > MAX_PWMS)
58 return -ENOSPC;
59
60 return start;
61 }
62
free_pwms(struct pwm_chip * chip)63 static void free_pwms(struct pwm_chip *chip)
64 {
65 unsigned int i;
66
67 for (i = 0; i < chip->npwm; i++) {
68 struct pwm_device *pwm = &chip->pwms[i];
69
70 radix_tree_delete(&pwm_tree, pwm->pwm);
71 }
72
73 bitmap_clear(allocated_pwms, chip->base, chip->npwm);
74
75 kfree(chip->pwms);
76 chip->pwms = NULL;
77 }
78
pwmchip_find_by_name(const char * name)79 static struct pwm_chip *pwmchip_find_by_name(const char *name)
80 {
81 struct pwm_chip *chip;
82
83 if (!name)
84 return NULL;
85
86 mutex_lock(&pwm_lock);
87
88 list_for_each_entry(chip, &pwm_chips, list) {
89 const char *chip_name = dev_name(chip->dev);
90
91 if (chip_name && strcmp(chip_name, name) == 0) {
92 mutex_unlock(&pwm_lock);
93 return chip;
94 }
95 }
96
97 mutex_unlock(&pwm_lock);
98
99 return NULL;
100 }
101
pwm_device_request(struct pwm_device * pwm,const char * label)102 static int pwm_device_request(struct pwm_device *pwm, const char *label)
103 {
104 int err;
105
106 if (test_bit(PWMF_REQUESTED, &pwm->flags))
107 return -EBUSY;
108
109 if (!try_module_get(pwm->chip->ops->owner))
110 return -ENODEV;
111
112 if (pwm->chip->ops->request) {
113 err = pwm->chip->ops->request(pwm->chip, pwm);
114 if (err) {
115 module_put(pwm->chip->ops->owner);
116 return err;
117 }
118 }
119
120 if (pwm->chip->ops->get_state) {
121 pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state);
122 trace_pwm_get(pwm, &pwm->state);
123
124 if (IS_ENABLED(CONFIG_PWM_DEBUG))
125 pwm->last = pwm->state;
126 }
127
128 set_bit(PWMF_REQUESTED, &pwm->flags);
129 pwm->label = label;
130
131 return 0;
132 }
133
134 struct pwm_device *
of_pwm_xlate_with_flags(struct pwm_chip * pc,const struct of_phandle_args * args)135 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
136 {
137 struct pwm_device *pwm;
138
139 /* check, whether the driver supports a third cell for flags */
140 if (pc->of_pwm_n_cells < 3)
141 return ERR_PTR(-EINVAL);
142
143 /* flags in the third cell are optional */
144 if (args->args_count < 2)
145 return ERR_PTR(-EINVAL);
146
147 if (args->args[0] >= pc->npwm)
148 return ERR_PTR(-EINVAL);
149
150 pwm = pwm_request_from_chip(pc, args->args[0], NULL);
151 if (IS_ERR(pwm))
152 return pwm;
153
154 pwm->args.period = args->args[1];
155 pwm->args.polarity = PWM_POLARITY_NORMAL;
156
157 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
158 pwm->args.polarity = PWM_POLARITY_INVERSED;
159
160 return pwm;
161 }
162 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
163
164 static struct pwm_device *
of_pwm_simple_xlate(struct pwm_chip * pc,const struct of_phandle_args * args)165 of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
166 {
167 struct pwm_device *pwm;
168
169 /* sanity check driver support */
170 if (pc->of_pwm_n_cells < 2)
171 return ERR_PTR(-EINVAL);
172
173 /* all cells are required */
174 if (args->args_count != pc->of_pwm_n_cells)
175 return ERR_PTR(-EINVAL);
176
177 if (args->args[0] >= pc->npwm)
178 return ERR_PTR(-EINVAL);
179
180 pwm = pwm_request_from_chip(pc, args->args[0], NULL);
181 if (IS_ERR(pwm))
182 return pwm;
183
184 pwm->args.period = args->args[1];
185
186 return pwm;
187 }
188
of_pwmchip_add(struct pwm_chip * chip)189 static void of_pwmchip_add(struct pwm_chip *chip)
190 {
191 if (!chip->dev || !chip->dev->of_node)
192 return;
193
194 if (!chip->of_xlate) {
195 chip->of_xlate = of_pwm_simple_xlate;
196 chip->of_pwm_n_cells = 2;
197 }
198
199 of_node_get(chip->dev->of_node);
200 }
201
of_pwmchip_remove(struct pwm_chip * chip)202 static void of_pwmchip_remove(struct pwm_chip *chip)
203 {
204 if (chip->dev)
205 of_node_put(chip->dev->of_node);
206 }
207
208 /**
209 * pwm_set_chip_data() - set private chip data for a PWM
210 * @pwm: PWM device
211 * @data: pointer to chip-specific data
212 *
213 * Returns: 0 on success or a negative error code on failure.
214 */
pwm_set_chip_data(struct pwm_device * pwm,void * data)215 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
216 {
217 if (!pwm)
218 return -EINVAL;
219
220 pwm->chip_data = data;
221
222 return 0;
223 }
224 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
225
226 /**
227 * pwm_get_chip_data() - get private chip data for a PWM
228 * @pwm: PWM device
229 *
230 * Returns: A pointer to the chip-private data for the PWM device.
231 */
pwm_get_chip_data(struct pwm_device * pwm)232 void *pwm_get_chip_data(struct pwm_device *pwm)
233 {
234 return pwm ? pwm->chip_data : NULL;
235 }
236 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
237
pwm_ops_check(const struct pwm_chip * chip)238 static bool pwm_ops_check(const struct pwm_chip *chip)
239 {
240
241 const struct pwm_ops *ops = chip->ops;
242
243 /* driver supports legacy, non-atomic operation */
244 if (ops->config && ops->enable && ops->disable) {
245 if (IS_ENABLED(CONFIG_PWM_DEBUG))
246 dev_warn(chip->dev,
247 "Driver needs updating to atomic API\n");
248
249 return true;
250 }
251
252 if (!ops->apply)
253 return false;
254
255 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
256 dev_warn(chip->dev,
257 "Please implement the .get_state() callback\n");
258
259 return true;
260 }
261
262 /**
263 * pwmchip_add_with_polarity() - register a new PWM chip
264 * @chip: the PWM chip to add
265 * @polarity: initial polarity of PWM channels
266 *
267 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
268 * will be used. The initial polarity for all channels is specified by the
269 * @polarity parameter.
270 *
271 * Returns: 0 on success or a negative error code on failure.
272 */
pwmchip_add_with_polarity(struct pwm_chip * chip,enum pwm_polarity polarity)273 int pwmchip_add_with_polarity(struct pwm_chip *chip,
274 enum pwm_polarity polarity)
275 {
276 struct pwm_device *pwm;
277 unsigned int i;
278 int ret;
279
280 if (!chip || !chip->dev || !chip->ops || !chip->npwm)
281 return -EINVAL;
282
283 if (!pwm_ops_check(chip))
284 return -EINVAL;
285
286 mutex_lock(&pwm_lock);
287
288 ret = alloc_pwms(chip->base, chip->npwm);
289 if (ret < 0)
290 goto out;
291
292 chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
293 if (!chip->pwms) {
294 ret = -ENOMEM;
295 goto out;
296 }
297
298 chip->base = ret;
299
300 for (i = 0; i < chip->npwm; i++) {
301 pwm = &chip->pwms[i];
302
303 pwm->chip = chip;
304 pwm->pwm = chip->base + i;
305 pwm->hwpwm = i;
306 pwm->state.polarity = polarity;
307 pwm->state.output_type = PWM_OUTPUT_FIXED;
308
309 radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
310 }
311
312 bitmap_set(allocated_pwms, chip->base, chip->npwm);
313
314 INIT_LIST_HEAD(&chip->list);
315 list_add(&chip->list, &pwm_chips);
316
317 ret = 0;
318
319 if (IS_ENABLED(CONFIG_OF))
320 of_pwmchip_add(chip);
321
322 out:
323 mutex_unlock(&pwm_lock);
324
325 if (!ret)
326 pwmchip_sysfs_export(chip);
327
328 return ret;
329 }
330 EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
331
332 /**
333 * pwmchip_add() - register a new PWM chip
334 * @chip: the PWM chip to add
335 *
336 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
337 * will be used. The initial polarity for all channels is normal.
338 *
339 * Returns: 0 on success or a negative error code on failure.
340 */
pwmchip_add(struct pwm_chip * chip)341 int pwmchip_add(struct pwm_chip *chip)
342 {
343 return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
344 }
345 EXPORT_SYMBOL_GPL(pwmchip_add);
346
347 /**
348 * pwmchip_remove() - remove a PWM chip
349 * @chip: the PWM chip to remove
350 *
351 * Removes a PWM chip. This function may return busy if the PWM chip provides
352 * a PWM device that is still requested.
353 *
354 * Returns: 0 on success or a negative error code on failure.
355 */
pwmchip_remove(struct pwm_chip * chip)356 int pwmchip_remove(struct pwm_chip *chip)
357 {
358 unsigned int i;
359 int ret = 0;
360
361 pwmchip_sysfs_unexport(chip);
362
363 mutex_lock(&pwm_lock);
364
365 for (i = 0; i < chip->npwm; i++) {
366 struct pwm_device *pwm = &chip->pwms[i];
367
368 if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
369 ret = -EBUSY;
370 goto out;
371 }
372 }
373
374 list_del_init(&chip->list);
375
376 if (IS_ENABLED(CONFIG_OF))
377 of_pwmchip_remove(chip);
378
379 free_pwms(chip);
380
381 out:
382 mutex_unlock(&pwm_lock);
383 return ret;
384 }
385 EXPORT_SYMBOL_GPL(pwmchip_remove);
386
387 /**
388 * pwm_request() - request a PWM device
389 * @pwm: global PWM device index
390 * @label: PWM device label
391 *
392 * This function is deprecated, use pwm_get() instead.
393 *
394 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
395 * failure.
396 */
pwm_request(int pwm,const char * label)397 struct pwm_device *pwm_request(int pwm, const char *label)
398 {
399 struct pwm_device *dev;
400 int err;
401
402 if (pwm < 0 || pwm >= MAX_PWMS)
403 return ERR_PTR(-EINVAL);
404
405 mutex_lock(&pwm_lock);
406
407 dev = pwm_to_device(pwm);
408 if (!dev) {
409 dev = ERR_PTR(-EPROBE_DEFER);
410 goto out;
411 }
412
413 err = pwm_device_request(dev, label);
414 if (err < 0)
415 dev = ERR_PTR(err);
416
417 out:
418 mutex_unlock(&pwm_lock);
419
420 return dev;
421 }
422 EXPORT_SYMBOL_GPL(pwm_request);
423
424 /**
425 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
426 * @chip: PWM chip
427 * @index: per-chip index of the PWM to request
428 * @label: a literal description string of this PWM
429 *
430 * Returns: A pointer to the PWM device at the given index of the given PWM
431 * chip. A negative error code is returned if the index is not valid for the
432 * specified PWM chip or if the PWM device cannot be requested.
433 */
pwm_request_from_chip(struct pwm_chip * chip,unsigned int index,const char * label)434 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
435 unsigned int index,
436 const char *label)
437 {
438 struct pwm_device *pwm;
439 int err;
440
441 if (!chip || index >= chip->npwm)
442 return ERR_PTR(-EINVAL);
443
444 mutex_lock(&pwm_lock);
445 pwm = &chip->pwms[index];
446
447 err = pwm_device_request(pwm, label);
448 if (err < 0)
449 pwm = ERR_PTR(err);
450
451 mutex_unlock(&pwm_lock);
452 return pwm;
453 }
454 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
455
456 /**
457 * pwm_free() - free a PWM device
458 * @pwm: PWM device
459 *
460 * This function is deprecated, use pwm_put() instead.
461 */
pwm_free(struct pwm_device * pwm)462 void pwm_free(struct pwm_device *pwm)
463 {
464 pwm_put(pwm);
465 }
466 EXPORT_SYMBOL_GPL(pwm_free);
467
pwm_apply_state_debug(struct pwm_device * pwm,const struct pwm_state * state)468 static void pwm_apply_state_debug(struct pwm_device *pwm,
469 const struct pwm_state *state)
470 {
471 struct pwm_state *last = &pwm->last;
472 struct pwm_chip *chip = pwm->chip;
473 struct pwm_state s1, s2;
474 int err;
475
476 if (!IS_ENABLED(CONFIG_PWM_DEBUG))
477 return;
478
479 /* No reasonable diagnosis possible without .get_state() */
480 if (!chip->ops->get_state)
481 return;
482
483 /*
484 * *state was just applied. Read out the hardware state and do some
485 * checks.
486 */
487
488 chip->ops->get_state(chip, pwm, &s1);
489 trace_pwm_get(pwm, &s1);
490
491 /*
492 * The lowlevel driver either ignored .polarity (which is a bug) or as
493 * best effort inverted .polarity and fixed .duty_cycle respectively.
494 * Undo this inversion and fixup for further tests.
495 */
496 if (s1.enabled && s1.polarity != state->polarity) {
497 s2.polarity = state->polarity;
498 s2.duty_cycle = s1.period - s1.duty_cycle;
499 s2.period = s1.period;
500 s2.enabled = s1.enabled;
501 } else {
502 s2 = s1;
503 }
504
505 if (s2.polarity != state->polarity &&
506 state->duty_cycle < state->period)
507 dev_warn(chip->dev, ".apply ignored .polarity\n");
508
509 if (state->enabled &&
510 last->polarity == state->polarity &&
511 last->period > s2.period &&
512 last->period <= state->period)
513 dev_warn(chip->dev,
514 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
515 state->period, s2.period, last->period);
516
517 if (state->enabled && state->period < s2.period)
518 dev_warn(chip->dev,
519 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
520 state->period, s2.period);
521
522 if (state->enabled &&
523 last->polarity == state->polarity &&
524 last->period == s2.period &&
525 last->duty_cycle > s2.duty_cycle &&
526 last->duty_cycle <= state->duty_cycle)
527 dev_warn(chip->dev,
528 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
529 state->duty_cycle, state->period,
530 s2.duty_cycle, s2.period,
531 last->duty_cycle, last->period);
532
533 if (state->enabled && state->duty_cycle < s2.duty_cycle)
534 dev_warn(chip->dev,
535 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
536 state->duty_cycle, state->period,
537 s2.duty_cycle, s2.period);
538
539 if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
540 dev_warn(chip->dev,
541 "requested disabled, but yielded enabled with duty > 0\n");
542
543 /* reapply the state that the driver reported being configured. */
544 err = chip->ops->apply(chip, pwm, &s1);
545 if (err) {
546 *last = s1;
547 dev_err(chip->dev, "failed to reapply current setting\n");
548 return;
549 }
550
551 trace_pwm_apply(pwm, &s1);
552
553 chip->ops->get_state(chip, pwm, last);
554 trace_pwm_get(pwm, last);
555
556 /* reapplication of the current state should give an exact match */
557 if (s1.enabled != last->enabled ||
558 s1.polarity != last->polarity ||
559 (s1.enabled && s1.period != last->period) ||
560 (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
561 dev_err(chip->dev,
562 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
563 s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
564 last->enabled, last->polarity, last->duty_cycle,
565 last->period);
566 }
567 }
568
569 /**
570 * pwm_apply_state() - atomically apply a new state to a PWM device
571 * @pwm: PWM device
572 * @state: new state to apply
573 */
pwm_apply_state(struct pwm_device * pwm,const struct pwm_state * state)574 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
575 {
576 struct pwm_chip *chip;
577 int err;
578
579 if (!pwm || !state || !state->period ||
580 state->duty_cycle > state->period)
581 return -EINVAL;
582
583 chip = pwm->chip;
584
585 if (state->period == pwm->state.period &&
586 state->duty_cycle == pwm->state.duty_cycle &&
587 state->polarity == pwm->state.polarity &&
588 #ifdef CONFIG_PWM_ROCKCHIP_ONESHOT
589 state->oneshot_count == pwm->state.oneshot_count &&
590 #endif
591 state->enabled == pwm->state.enabled)
592 return 0;
593
594 if (chip->ops->apply) {
595 err = chip->ops->apply(chip, pwm, state);
596 if (err)
597 return err;
598
599 trace_pwm_apply(pwm, state);
600
601 pwm->state = *state;
602
603 /*
604 * only do this after pwm->state was applied as some
605 * implementations of .get_state depend on this
606 */
607 pwm_apply_state_debug(pwm, state);
608 } else {
609 /*
610 * FIXME: restore the initial state in case of error.
611 */
612 if (state->polarity != pwm->state.polarity) {
613 if (!chip->ops->set_polarity)
614 return -ENOTSUPP;
615
616 /*
617 * Changing the polarity of a running PWM is
618 * only allowed when the PWM driver implements
619 * ->apply().
620 */
621 if (pwm->state.enabled) {
622 chip->ops->disable(chip, pwm);
623 pwm->state.enabled = false;
624 }
625
626 err = chip->ops->set_polarity(chip, pwm,
627 state->polarity);
628 if (err)
629 return err;
630
631 pwm->state.polarity = state->polarity;
632 }
633
634 if (state->period != pwm->state.period ||
635 state->duty_cycle != pwm->state.duty_cycle) {
636 err = chip->ops->config(pwm->chip, pwm,
637 state->duty_cycle,
638 state->period);
639 if (err)
640 return err;
641
642 pwm->state.duty_cycle = state->duty_cycle;
643 pwm->state.period = state->period;
644 }
645
646 if (state->enabled != pwm->state.enabled) {
647 if (state->enabled) {
648 err = chip->ops->enable(chip, pwm);
649 if (err)
650 return err;
651 } else {
652 chip->ops->disable(chip, pwm);
653 }
654
655 pwm->state.enabled = state->enabled;
656 }
657 }
658
659 return 0;
660 }
661 EXPORT_SYMBOL_GPL(pwm_apply_state);
662
663 /**
664 * pwm_capture() - capture and report a PWM signal
665 * @pwm: PWM device
666 * @result: structure to fill with capture result
667 * @timeout: time to wait, in milliseconds, before giving up on capture
668 *
669 * Returns: 0 on success or a negative error code on failure.
670 */
pwm_capture(struct pwm_device * pwm,struct pwm_capture * result,unsigned long timeout)671 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
672 unsigned long timeout)
673 {
674 int err;
675
676 if (!pwm || !pwm->chip->ops)
677 return -EINVAL;
678
679 if (!pwm->chip->ops->capture)
680 return -ENOSYS;
681
682 mutex_lock(&pwm_lock);
683 err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
684 mutex_unlock(&pwm_lock);
685
686 return err;
687 }
688 EXPORT_SYMBOL_GPL(pwm_capture);
689
690 /**
691 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
692 * @pwm: PWM device
693 *
694 * This function will adjust the PWM config to the PWM arguments provided
695 * by the DT or PWM lookup table. This is particularly useful to adapt
696 * the bootloader config to the Linux one.
697 */
pwm_adjust_config(struct pwm_device * pwm)698 int pwm_adjust_config(struct pwm_device *pwm)
699 {
700 struct pwm_state state;
701 struct pwm_args pargs;
702
703 pwm_get_args(pwm, &pargs);
704 pwm_get_state(pwm, &state);
705
706 /*
707 * If the current period is zero it means that either the PWM driver
708 * does not support initial state retrieval or the PWM has not yet
709 * been configured.
710 *
711 * In either case, we setup the new period and polarity, and assign a
712 * duty cycle of 0.
713 */
714 if (!state.period) {
715 state.duty_cycle = 0;
716 state.period = pargs.period;
717 state.polarity = pargs.polarity;
718
719 return pwm_apply_state(pwm, &state);
720 }
721
722 /*
723 * Adjust the PWM duty cycle/period based on the period value provided
724 * in PWM args.
725 */
726 if (pargs.period != state.period) {
727 u64 dutycycle = (u64)state.duty_cycle * pargs.period;
728
729 do_div(dutycycle, state.period);
730 state.duty_cycle = dutycycle;
731 state.period = pargs.period;
732 }
733
734 /*
735 * If the polarity changed, we should also change the duty cycle.
736 */
737 if (pargs.polarity != state.polarity) {
738 state.polarity = pargs.polarity;
739 state.duty_cycle = state.period - state.duty_cycle;
740 }
741
742 return pwm_apply_state(pwm, &state);
743 }
744 EXPORT_SYMBOL_GPL(pwm_adjust_config);
745
of_node_to_pwmchip(struct device_node * np)746 static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
747 {
748 struct pwm_chip *chip;
749
750 mutex_lock(&pwm_lock);
751
752 list_for_each_entry(chip, &pwm_chips, list)
753 if (chip->dev && chip->dev->of_node == np) {
754 mutex_unlock(&pwm_lock);
755 return chip;
756 }
757
758 mutex_unlock(&pwm_lock);
759
760 return ERR_PTR(-EPROBE_DEFER);
761 }
762
pwm_device_link_add(struct device * dev,struct pwm_device * pwm)763 static struct device_link *pwm_device_link_add(struct device *dev,
764 struct pwm_device *pwm)
765 {
766 struct device_link *dl;
767
768 if (!dev) {
769 /*
770 * No device for the PWM consumer has been provided. It may
771 * impact the PM sequence ordering: the PWM supplier may get
772 * suspended before the consumer.
773 */
774 dev_warn(pwm->chip->dev,
775 "No consumer device specified to create a link to\n");
776 return NULL;
777 }
778
779 dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
780 if (!dl) {
781 dev_err(dev, "failed to create device link to %s\n",
782 dev_name(pwm->chip->dev));
783 return ERR_PTR(-EINVAL);
784 }
785
786 return dl;
787 }
788
789 /**
790 * of_pwm_get() - request a PWM via the PWM framework
791 * @dev: device for PWM consumer
792 * @np: device node to get the PWM from
793 * @con_id: consumer name
794 *
795 * Returns the PWM device parsed from the phandle and index specified in the
796 * "pwms" property of a device tree node or a negative error-code on failure.
797 * Values parsed from the device tree are stored in the returned PWM device
798 * object.
799 *
800 * If con_id is NULL, the first PWM device listed in the "pwms" property will
801 * be requested. Otherwise the "pwm-names" property is used to do a reverse
802 * lookup of the PWM index. This also means that the "pwm-names" property
803 * becomes mandatory for devices that look up the PWM device via the con_id
804 * parameter.
805 *
806 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
807 * error code on failure.
808 */
of_pwm_get(struct device * dev,struct device_node * np,const char * con_id)809 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
810 const char *con_id)
811 {
812 struct pwm_device *pwm = NULL;
813 struct of_phandle_args args;
814 struct device_link *dl;
815 struct pwm_chip *pc;
816 int index = 0;
817 int err;
818
819 if (con_id) {
820 index = of_property_match_string(np, "pwm-names", con_id);
821 if (index < 0)
822 return ERR_PTR(index);
823 }
824
825 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
826 &args);
827 if (err) {
828 pr_err("%s(): can't parse \"pwms\" property\n", __func__);
829 return ERR_PTR(err);
830 }
831
832 pc = of_node_to_pwmchip(args.np);
833 if (IS_ERR(pc)) {
834 if (PTR_ERR(pc) != -EPROBE_DEFER)
835 pr_err("%s(): PWM chip not found\n", __func__);
836
837 pwm = ERR_CAST(pc);
838 goto put;
839 }
840
841 pwm = pc->of_xlate(pc, &args);
842 if (IS_ERR(pwm))
843 goto put;
844
845 dl = pwm_device_link_add(dev, pwm);
846 if (IS_ERR(dl)) {
847 /* of_xlate ended up calling pwm_request_from_chip() */
848 pwm_free(pwm);
849 pwm = ERR_CAST(dl);
850 goto put;
851 }
852
853 /*
854 * If a consumer name was not given, try to look it up from the
855 * "pwm-names" property if it exists. Otherwise use the name of
856 * the user device node.
857 */
858 if (!con_id) {
859 err = of_property_read_string_index(np, "pwm-names", index,
860 &con_id);
861 if (err < 0)
862 con_id = np->name;
863 }
864
865 pwm->label = con_id;
866
867 put:
868 of_node_put(args.np);
869
870 return pwm;
871 }
872 EXPORT_SYMBOL_GPL(of_pwm_get);
873
874 #if IS_ENABLED(CONFIG_ACPI)
device_to_pwmchip(struct device * dev)875 static struct pwm_chip *device_to_pwmchip(struct device *dev)
876 {
877 struct pwm_chip *chip;
878
879 mutex_lock(&pwm_lock);
880
881 list_for_each_entry(chip, &pwm_chips, list) {
882 struct acpi_device *adev = ACPI_COMPANION(chip->dev);
883
884 if ((chip->dev == dev) || (adev && &adev->dev == dev)) {
885 mutex_unlock(&pwm_lock);
886 return chip;
887 }
888 }
889
890 mutex_unlock(&pwm_lock);
891
892 return ERR_PTR(-EPROBE_DEFER);
893 }
894 #endif
895
896 /**
897 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
898 * @fwnode: firmware node to get the "pwm" property from
899 *
900 * Returns the PWM device parsed from the fwnode and index specified in the
901 * "pwms" property or a negative error-code on failure.
902 * Values parsed from the device tree are stored in the returned PWM device
903 * object.
904 *
905 * This is analogous to of_pwm_get() except con_id is not yet supported.
906 * ACPI entries must look like
907 * Package () {"pwms", Package ()
908 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
909 *
910 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
911 * error code on failure.
912 */
acpi_pwm_get(struct fwnode_handle * fwnode)913 static struct pwm_device *acpi_pwm_get(struct fwnode_handle *fwnode)
914 {
915 struct pwm_device *pwm = ERR_PTR(-ENODEV);
916 #if IS_ENABLED(CONFIG_ACPI)
917 struct fwnode_reference_args args;
918 struct acpi_device *acpi;
919 struct pwm_chip *chip;
920 int ret;
921
922 memset(&args, 0, sizeof(args));
923
924 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
925 if (ret < 0)
926 return ERR_PTR(ret);
927
928 acpi = to_acpi_device_node(args.fwnode);
929 if (!acpi)
930 return ERR_PTR(-EINVAL);
931
932 if (args.nargs < 2)
933 return ERR_PTR(-EPROTO);
934
935 chip = device_to_pwmchip(&acpi->dev);
936 if (IS_ERR(chip))
937 return ERR_CAST(chip);
938
939 pwm = pwm_request_from_chip(chip, args.args[0], NULL);
940 if (IS_ERR(pwm))
941 return pwm;
942
943 pwm->args.period = args.args[1];
944 pwm->args.polarity = PWM_POLARITY_NORMAL;
945
946 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
947 pwm->args.polarity = PWM_POLARITY_INVERSED;
948 #endif
949
950 return pwm;
951 }
952
953 /**
954 * pwm_add_table() - register PWM device consumers
955 * @table: array of consumers to register
956 * @num: number of consumers in table
957 */
pwm_add_table(struct pwm_lookup * table,size_t num)958 void pwm_add_table(struct pwm_lookup *table, size_t num)
959 {
960 mutex_lock(&pwm_lookup_lock);
961
962 while (num--) {
963 list_add_tail(&table->list, &pwm_lookup_list);
964 table++;
965 }
966
967 mutex_unlock(&pwm_lookup_lock);
968 }
969
970 /**
971 * pwm_remove_table() - unregister PWM device consumers
972 * @table: array of consumers to unregister
973 * @num: number of consumers in table
974 */
pwm_remove_table(struct pwm_lookup * table,size_t num)975 void pwm_remove_table(struct pwm_lookup *table, size_t num)
976 {
977 mutex_lock(&pwm_lookup_lock);
978
979 while (num--) {
980 list_del(&table->list);
981 table++;
982 }
983
984 mutex_unlock(&pwm_lookup_lock);
985 }
986
987 /**
988 * pwm_get() - look up and request a PWM device
989 * @dev: device for PWM consumer
990 * @con_id: consumer name
991 *
992 * Lookup is first attempted using DT. If the device was not instantiated from
993 * a device tree, a PWM chip and a relative index is looked up via a table
994 * supplied by board setup code (see pwm_add_table()).
995 *
996 * Once a PWM chip has been found the specified PWM device will be requested
997 * and is ready to be used.
998 *
999 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1000 * error code on failure.
1001 */
pwm_get(struct device * dev,const char * con_id)1002 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
1003 {
1004 const char *dev_id = dev ? dev_name(dev) : NULL;
1005 struct pwm_device *pwm;
1006 struct pwm_chip *chip;
1007 struct device_link *dl;
1008 unsigned int best = 0;
1009 struct pwm_lookup *p, *chosen = NULL;
1010 unsigned int match;
1011 int err;
1012
1013 /* look up via DT first */
1014 if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
1015 return of_pwm_get(dev, dev->of_node, con_id);
1016
1017 /* then lookup via ACPI */
1018 if (dev && is_acpi_node(dev->fwnode)) {
1019 pwm = acpi_pwm_get(dev->fwnode);
1020 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
1021 return pwm;
1022 }
1023
1024 /*
1025 * We look up the provider in the static table typically provided by
1026 * board setup code. We first try to lookup the consumer device by
1027 * name. If the consumer device was passed in as NULL or if no match
1028 * was found, we try to find the consumer by directly looking it up
1029 * by name.
1030 *
1031 * If a match is found, the provider PWM chip is looked up by name
1032 * and a PWM device is requested using the PWM device per-chip index.
1033 *
1034 * The lookup algorithm was shamelessly taken from the clock
1035 * framework:
1036 *
1037 * We do slightly fuzzy matching here:
1038 * An entry with a NULL ID is assumed to be a wildcard.
1039 * If an entry has a device ID, it must match
1040 * If an entry has a connection ID, it must match
1041 * Then we take the most specific entry - with the following order
1042 * of precedence: dev+con > dev only > con only.
1043 */
1044 mutex_lock(&pwm_lookup_lock);
1045
1046 list_for_each_entry(p, &pwm_lookup_list, list) {
1047 match = 0;
1048
1049 if (p->dev_id) {
1050 if (!dev_id || strcmp(p->dev_id, dev_id))
1051 continue;
1052
1053 match += 2;
1054 }
1055
1056 if (p->con_id) {
1057 if (!con_id || strcmp(p->con_id, con_id))
1058 continue;
1059
1060 match += 1;
1061 }
1062
1063 if (match > best) {
1064 chosen = p;
1065
1066 if (match != 3)
1067 best = match;
1068 else
1069 break;
1070 }
1071 }
1072
1073 mutex_unlock(&pwm_lookup_lock);
1074
1075 if (!chosen)
1076 return ERR_PTR(-ENODEV);
1077
1078 chip = pwmchip_find_by_name(chosen->provider);
1079
1080 /*
1081 * If the lookup entry specifies a module, load the module and retry
1082 * the PWM chip lookup. This can be used to work around driver load
1083 * ordering issues if driver's can't be made to properly support the
1084 * deferred probe mechanism.
1085 */
1086 if (!chip && chosen->module) {
1087 err = request_module(chosen->module);
1088 if (err == 0)
1089 chip = pwmchip_find_by_name(chosen->provider);
1090 }
1091
1092 if (!chip)
1093 return ERR_PTR(-EPROBE_DEFER);
1094
1095 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1096 if (IS_ERR(pwm))
1097 return pwm;
1098
1099 dl = pwm_device_link_add(dev, pwm);
1100 if (IS_ERR(dl)) {
1101 pwm_free(pwm);
1102 return ERR_CAST(dl);
1103 }
1104
1105 pwm->args.period = chosen->period;
1106 pwm->args.polarity = chosen->polarity;
1107
1108 return pwm;
1109 }
1110 EXPORT_SYMBOL_GPL(pwm_get);
1111
1112 /**
1113 * pwm_put() - release a PWM device
1114 * @pwm: PWM device
1115 */
pwm_put(struct pwm_device * pwm)1116 void pwm_put(struct pwm_device *pwm)
1117 {
1118 if (!pwm)
1119 return;
1120
1121 mutex_lock(&pwm_lock);
1122
1123 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1124 pr_warn("PWM device already freed\n");
1125 goto out;
1126 }
1127
1128 if (pwm->chip->ops->free)
1129 pwm->chip->ops->free(pwm->chip, pwm);
1130
1131 pwm_set_chip_data(pwm, NULL);
1132 pwm->label = NULL;
1133
1134 module_put(pwm->chip->ops->owner);
1135 out:
1136 mutex_unlock(&pwm_lock);
1137 }
1138 EXPORT_SYMBOL_GPL(pwm_put);
1139
devm_pwm_release(struct device * dev,void * res)1140 static void devm_pwm_release(struct device *dev, void *res)
1141 {
1142 pwm_put(*(struct pwm_device **)res);
1143 }
1144
1145 /**
1146 * devm_pwm_get() - resource managed pwm_get()
1147 * @dev: device for PWM consumer
1148 * @con_id: consumer name
1149 *
1150 * This function performs like pwm_get() but the acquired PWM device will
1151 * automatically be released on driver detach.
1152 *
1153 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1154 * error code on failure.
1155 */
devm_pwm_get(struct device * dev,const char * con_id)1156 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1157 {
1158 struct pwm_device **ptr, *pwm;
1159
1160 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1161 if (!ptr)
1162 return ERR_PTR(-ENOMEM);
1163
1164 pwm = pwm_get(dev, con_id);
1165 if (!IS_ERR(pwm)) {
1166 *ptr = pwm;
1167 devres_add(dev, ptr);
1168 } else {
1169 devres_free(ptr);
1170 }
1171
1172 return pwm;
1173 }
1174 EXPORT_SYMBOL_GPL(devm_pwm_get);
1175
1176 /**
1177 * devm_of_pwm_get() - resource managed of_pwm_get()
1178 * @dev: device for PWM consumer
1179 * @np: device node to get the PWM from
1180 * @con_id: consumer name
1181 *
1182 * This function performs like of_pwm_get() but the acquired PWM device will
1183 * automatically be released on driver detach.
1184 *
1185 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1186 * error code on failure.
1187 */
devm_of_pwm_get(struct device * dev,struct device_node * np,const char * con_id)1188 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1189 const char *con_id)
1190 {
1191 struct pwm_device **ptr, *pwm;
1192
1193 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1194 if (!ptr)
1195 return ERR_PTR(-ENOMEM);
1196
1197 pwm = of_pwm_get(dev, np, con_id);
1198 if (!IS_ERR(pwm)) {
1199 *ptr = pwm;
1200 devres_add(dev, ptr);
1201 } else {
1202 devres_free(ptr);
1203 }
1204
1205 return pwm;
1206 }
1207 EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1208
1209 /**
1210 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1211 * @dev: device for PWM consumer
1212 * @fwnode: firmware node to get the PWM from
1213 * @con_id: consumer name
1214 *
1215 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1216 * acpi_pwm_get() for a detailed description.
1217 *
1218 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1219 * error code on failure.
1220 */
devm_fwnode_pwm_get(struct device * dev,struct fwnode_handle * fwnode,const char * con_id)1221 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1222 struct fwnode_handle *fwnode,
1223 const char *con_id)
1224 {
1225 struct pwm_device **ptr, *pwm = ERR_PTR(-ENODEV);
1226
1227 ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1228 if (!ptr)
1229 return ERR_PTR(-ENOMEM);
1230
1231 if (is_of_node(fwnode))
1232 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1233 else if (is_acpi_node(fwnode))
1234 pwm = acpi_pwm_get(fwnode);
1235
1236 if (!IS_ERR(pwm)) {
1237 *ptr = pwm;
1238 devres_add(dev, ptr);
1239 } else {
1240 devres_free(ptr);
1241 }
1242
1243 return pwm;
1244 }
1245 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1246
devm_pwm_match(struct device * dev,void * res,void * data)1247 static int devm_pwm_match(struct device *dev, void *res, void *data)
1248 {
1249 struct pwm_device **p = res;
1250
1251 if (WARN_ON(!p || !*p))
1252 return 0;
1253
1254 return *p == data;
1255 }
1256
1257 /**
1258 * devm_pwm_put() - resource managed pwm_put()
1259 * @dev: device for PWM consumer
1260 * @pwm: PWM device
1261 *
1262 * Release a PWM previously allocated using devm_pwm_get(). Calling this
1263 * function is usually not needed because devm-allocated resources are
1264 * automatically released on driver detach.
1265 */
devm_pwm_put(struct device * dev,struct pwm_device * pwm)1266 void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
1267 {
1268 WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
1269 }
1270 EXPORT_SYMBOL_GPL(devm_pwm_put);
1271
1272 #ifdef CONFIG_DEBUG_FS
pwm_dbg_show(struct pwm_chip * chip,struct seq_file * s)1273 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1274 {
1275 unsigned int i;
1276
1277 for (i = 0; i < chip->npwm; i++) {
1278 struct pwm_device *pwm = &chip->pwms[i];
1279 struct pwm_state state;
1280
1281 pwm_get_state(pwm, &state);
1282
1283 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1284
1285 if (test_bit(PWMF_REQUESTED, &pwm->flags))
1286 seq_puts(s, " requested");
1287
1288 if (state.enabled)
1289 seq_puts(s, " enabled");
1290
1291 seq_printf(s, " period: %llu ns", state.period);
1292 seq_printf(s, " duty: %llu ns", state.duty_cycle);
1293 seq_printf(s, " polarity: %s",
1294 state.polarity ? "inverse" : "normal");
1295
1296 seq_puts(s, "\n");
1297 }
1298 }
1299
pwm_seq_start(struct seq_file * s,loff_t * pos)1300 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1301 {
1302 mutex_lock(&pwm_lock);
1303 s->private = "";
1304
1305 return seq_list_start(&pwm_chips, *pos);
1306 }
1307
pwm_seq_next(struct seq_file * s,void * v,loff_t * pos)1308 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1309 {
1310 s->private = "\n";
1311
1312 return seq_list_next(v, &pwm_chips, pos);
1313 }
1314
pwm_seq_stop(struct seq_file * s,void * v)1315 static void pwm_seq_stop(struct seq_file *s, void *v)
1316 {
1317 mutex_unlock(&pwm_lock);
1318 }
1319
pwm_seq_show(struct seq_file * s,void * v)1320 static int pwm_seq_show(struct seq_file *s, void *v)
1321 {
1322 struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1323
1324 seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1325 chip->dev->bus ? chip->dev->bus->name : "no-bus",
1326 dev_name(chip->dev), chip->npwm,
1327 (chip->npwm != 1) ? "s" : "");
1328
1329 pwm_dbg_show(chip, s);
1330
1331 return 0;
1332 }
1333
1334 static const struct seq_operations pwm_debugfs_sops = {
1335 .start = pwm_seq_start,
1336 .next = pwm_seq_next,
1337 .stop = pwm_seq_stop,
1338 .show = pwm_seq_show,
1339 };
1340
1341 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1342
pwm_debugfs_init(void)1343 static int __init pwm_debugfs_init(void)
1344 {
1345 debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1346 &pwm_debugfs_fops);
1347
1348 return 0;
1349 }
1350 subsys_initcall(pwm_debugfs_init);
1351 #endif /* CONFIG_DEBUG_FS */
1352