1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 #include <linux/sed-opal.h>
28 #include <linux/pci-p2pdma.h>
29
30 #include "trace.h"
31 #include "nvme.h"
32
33 #define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
34 #define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
35
36 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
37
38 /*
39 * These can be higher, but we need to ensure that any command doesn't
40 * require an sg allocation that needs more than a page of data.
41 */
42 #define NVME_MAX_KB_SZ 4096
43 #define NVME_MAX_SEGS 127
44
45 static int use_threaded_interrupts;
46 module_param(use_threaded_interrupts, int, 0);
47
48 static bool use_cmb_sqes = true;
49 module_param(use_cmb_sqes, bool, 0444);
50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
51
52 static unsigned int max_host_mem_size_mb = 128;
53 module_param(max_host_mem_size_mb, uint, 0444);
54 MODULE_PARM_DESC(max_host_mem_size_mb,
55 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
56
57 static unsigned int sgl_threshold = SZ_32K;
58 module_param(sgl_threshold, uint, 0644);
59 MODULE_PARM_DESC(sgl_threshold,
60 "Use SGLs when average request segment size is larger or equal to "
61 "this size. Use 0 to disable SGLs.");
62
63 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
64 static const struct kernel_param_ops io_queue_depth_ops = {
65 .set = io_queue_depth_set,
66 .get = param_get_uint,
67 };
68
69 static unsigned int io_queue_depth = 1024;
70 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
71 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
72
io_queue_count_set(const char * val,const struct kernel_param * kp)73 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
74 {
75 unsigned int n;
76 int ret;
77
78 ret = kstrtouint(val, 10, &n);
79 if (ret != 0 || n > num_possible_cpus())
80 return -EINVAL;
81 return param_set_uint(val, kp);
82 }
83
84 static const struct kernel_param_ops io_queue_count_ops = {
85 .set = io_queue_count_set,
86 .get = param_get_uint,
87 };
88
89 static unsigned int write_queues;
90 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
91 MODULE_PARM_DESC(write_queues,
92 "Number of queues to use for writes. If not set, reads and writes "
93 "will share a queue set.");
94
95 static unsigned int poll_queues;
96 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
97 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
98
99 static bool noacpi;
100 module_param(noacpi, bool, 0444);
101 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
102
103 struct nvme_dev;
104 struct nvme_queue;
105
106 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
107 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
108
109 /*
110 * Represents an NVM Express device. Each nvme_dev is a PCI function.
111 */
112 struct nvme_dev {
113 struct nvme_queue *queues;
114 struct blk_mq_tag_set tagset;
115 struct blk_mq_tag_set admin_tagset;
116 u32 __iomem *dbs;
117 struct device *dev;
118 struct dma_pool *prp_page_pool;
119 struct dma_pool *prp_small_pool;
120 unsigned online_queues;
121 unsigned max_qid;
122 unsigned io_queues[HCTX_MAX_TYPES];
123 unsigned int num_vecs;
124 u32 q_depth;
125 int io_sqes;
126 u32 db_stride;
127 void __iomem *bar;
128 unsigned long bar_mapped_size;
129 struct work_struct remove_work;
130 struct mutex shutdown_lock;
131 bool subsystem;
132 u64 cmb_size;
133 bool cmb_use_sqes;
134 u32 cmbsz;
135 u32 cmbloc;
136 struct nvme_ctrl ctrl;
137 u32 last_ps;
138
139 mempool_t *iod_mempool;
140
141 /* shadow doorbell buffer support: */
142 u32 *dbbuf_dbs;
143 dma_addr_t dbbuf_dbs_dma_addr;
144 u32 *dbbuf_eis;
145 dma_addr_t dbbuf_eis_dma_addr;
146
147 /* host memory buffer support: */
148 u64 host_mem_size;
149 u32 nr_host_mem_descs;
150 dma_addr_t host_mem_descs_dma;
151 struct nvme_host_mem_buf_desc *host_mem_descs;
152 void **host_mem_desc_bufs;
153 unsigned int nr_allocated_queues;
154 unsigned int nr_write_queues;
155 unsigned int nr_poll_queues;
156 };
157
io_queue_depth_set(const char * val,const struct kernel_param * kp)158 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
159 {
160 int ret;
161 u32 n;
162
163 ret = kstrtou32(val, 10, &n);
164 if (ret != 0 || n < 2)
165 return -EINVAL;
166
167 return param_set_uint(val, kp);
168 }
169
sq_idx(unsigned int qid,u32 stride)170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172 return qid * 2 * stride;
173 }
174
cq_idx(unsigned int qid,u32 stride)175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177 return (qid * 2 + 1) * stride;
178 }
179
to_nvme_dev(struct nvme_ctrl * ctrl)180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182 return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184
185 /*
186 * An NVM Express queue. Each device has at least two (one for admin
187 * commands and one for I/O commands).
188 */
189 struct nvme_queue {
190 struct nvme_dev *dev;
191 spinlock_t sq_lock;
192 void *sq_cmds;
193 /* only used for poll queues: */
194 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 struct nvme_completion *cqes;
196 dma_addr_t sq_dma_addr;
197 dma_addr_t cq_dma_addr;
198 u32 __iomem *q_db;
199 u32 q_depth;
200 u16 cq_vector;
201 u16 sq_tail;
202 u16 last_sq_tail;
203 u16 cq_head;
204 u16 qid;
205 u8 cq_phase;
206 u8 sqes;
207 unsigned long flags;
208 #define NVMEQ_ENABLED 0
209 #define NVMEQ_SQ_CMB 1
210 #define NVMEQ_DELETE_ERROR 2
211 #define NVMEQ_POLLED 3
212 u32 *dbbuf_sq_db;
213 u32 *dbbuf_cq_db;
214 u32 *dbbuf_sq_ei;
215 u32 *dbbuf_cq_ei;
216 struct completion delete_done;
217 };
218
219 /*
220 * The nvme_iod describes the data in an I/O.
221 *
222 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
223 * to the actual struct scatterlist.
224 */
225 struct nvme_iod {
226 struct nvme_request req;
227 struct nvme_command cmd;
228 struct nvme_queue *nvmeq;
229 bool use_sgl;
230 int aborted;
231 int npages; /* In the PRP list. 0 means small pool in use */
232 int nents; /* Used in scatterlist */
233 dma_addr_t first_dma;
234 unsigned int dma_len; /* length of single DMA segment mapping */
235 dma_addr_t meta_dma;
236 struct scatterlist *sg;
237 };
238
nvme_dbbuf_size(struct nvme_dev * dev)239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
240 {
241 return dev->nr_allocated_queues * 8 * dev->db_stride;
242 }
243
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
245 {
246 unsigned int mem_size = nvme_dbbuf_size(dev);
247
248 if (dev->dbbuf_dbs)
249 return 0;
250
251 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
252 &dev->dbbuf_dbs_dma_addr,
253 GFP_KERNEL);
254 if (!dev->dbbuf_dbs)
255 return -ENOMEM;
256 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
257 &dev->dbbuf_eis_dma_addr,
258 GFP_KERNEL);
259 if (!dev->dbbuf_eis) {
260 dma_free_coherent(dev->dev, mem_size,
261 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
262 dev->dbbuf_dbs = NULL;
263 return -ENOMEM;
264 }
265
266 return 0;
267 }
268
nvme_dbbuf_dma_free(struct nvme_dev * dev)269 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
270 {
271 unsigned int mem_size = nvme_dbbuf_size(dev);
272
273 if (dev->dbbuf_dbs) {
274 dma_free_coherent(dev->dev, mem_size,
275 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
276 dev->dbbuf_dbs = NULL;
277 }
278 if (dev->dbbuf_eis) {
279 dma_free_coherent(dev->dev, mem_size,
280 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
281 dev->dbbuf_eis = NULL;
282 }
283 }
284
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)285 static void nvme_dbbuf_init(struct nvme_dev *dev,
286 struct nvme_queue *nvmeq, int qid)
287 {
288 if (!dev->dbbuf_dbs || !qid)
289 return;
290
291 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
292 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
293 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
294 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
295 }
296
nvme_dbbuf_free(struct nvme_queue * nvmeq)297 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
298 {
299 if (!nvmeq->qid)
300 return;
301
302 nvmeq->dbbuf_sq_db = NULL;
303 nvmeq->dbbuf_cq_db = NULL;
304 nvmeq->dbbuf_sq_ei = NULL;
305 nvmeq->dbbuf_cq_ei = NULL;
306 }
307
nvme_dbbuf_set(struct nvme_dev * dev)308 static void nvme_dbbuf_set(struct nvme_dev *dev)
309 {
310 struct nvme_command c;
311 unsigned int i;
312
313 if (!dev->dbbuf_dbs)
314 return;
315
316 memset(&c, 0, sizeof(c));
317 c.dbbuf.opcode = nvme_admin_dbbuf;
318 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
319 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
320
321 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
322 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
323 /* Free memory and continue on */
324 nvme_dbbuf_dma_free(dev);
325
326 for (i = 1; i <= dev->online_queues; i++)
327 nvme_dbbuf_free(&dev->queues[i]);
328 }
329 }
330
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)331 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
332 {
333 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
334 }
335
336 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,u32 * dbbuf_db,volatile u32 * dbbuf_ei)337 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
338 volatile u32 *dbbuf_ei)
339 {
340 if (dbbuf_db) {
341 u16 old_value;
342
343 /*
344 * Ensure that the queue is written before updating
345 * the doorbell in memory
346 */
347 wmb();
348
349 old_value = *dbbuf_db;
350 *dbbuf_db = value;
351
352 /*
353 * Ensure that the doorbell is updated before reading the event
354 * index from memory. The controller needs to provide similar
355 * ordering to ensure the envent index is updated before reading
356 * the doorbell.
357 */
358 mb();
359
360 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
361 return false;
362 }
363
364 return true;
365 }
366
367 /*
368 * Will slightly overestimate the number of pages needed. This is OK
369 * as it only leads to a small amount of wasted memory for the lifetime of
370 * the I/O.
371 */
nvme_pci_npages_prp(void)372 static int nvme_pci_npages_prp(void)
373 {
374 unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
375 NVME_CTRL_PAGE_SIZE);
376 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
377 }
378
379 /*
380 * Calculates the number of pages needed for the SGL segments. For example a 4k
381 * page can accommodate 256 SGL descriptors.
382 */
nvme_pci_npages_sgl(void)383 static int nvme_pci_npages_sgl(void)
384 {
385 return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
386 PAGE_SIZE);
387 }
388
nvme_pci_iod_alloc_size(void)389 static size_t nvme_pci_iod_alloc_size(void)
390 {
391 size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
392
393 return sizeof(__le64 *) * npages +
394 sizeof(struct scatterlist) * NVME_MAX_SEGS;
395 }
396
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)397 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
398 unsigned int hctx_idx)
399 {
400 struct nvme_dev *dev = data;
401 struct nvme_queue *nvmeq = &dev->queues[0];
402
403 WARN_ON(hctx_idx != 0);
404 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
405
406 hctx->driver_data = nvmeq;
407 return 0;
408 }
409
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)410 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
411 unsigned int hctx_idx)
412 {
413 struct nvme_dev *dev = data;
414 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
415
416 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
417 hctx->driver_data = nvmeq;
418 return 0;
419 }
420
nvme_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)421 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
422 unsigned int hctx_idx, unsigned int numa_node)
423 {
424 struct nvme_dev *dev = set->driver_data;
425 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
426 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
427 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
428
429 BUG_ON(!nvmeq);
430 iod->nvmeq = nvmeq;
431
432 nvme_req(req)->ctrl = &dev->ctrl;
433 return 0;
434 }
435
queue_irq_offset(struct nvme_dev * dev)436 static int queue_irq_offset(struct nvme_dev *dev)
437 {
438 /* if we have more than 1 vec, admin queue offsets us by 1 */
439 if (dev->num_vecs > 1)
440 return 1;
441
442 return 0;
443 }
444
nvme_pci_map_queues(struct blk_mq_tag_set * set)445 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
446 {
447 struct nvme_dev *dev = set->driver_data;
448 int i, qoff, offset;
449
450 offset = queue_irq_offset(dev);
451 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
452 struct blk_mq_queue_map *map = &set->map[i];
453
454 map->nr_queues = dev->io_queues[i];
455 if (!map->nr_queues) {
456 BUG_ON(i == HCTX_TYPE_DEFAULT);
457 continue;
458 }
459
460 /*
461 * The poll queue(s) doesn't have an IRQ (and hence IRQ
462 * affinity), so use the regular blk-mq cpu mapping
463 */
464 map->queue_offset = qoff;
465 if (i != HCTX_TYPE_POLL && offset)
466 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
467 else
468 blk_mq_map_queues(map);
469 qoff += map->nr_queues;
470 offset += map->nr_queues;
471 }
472
473 return 0;
474 }
475
476 /*
477 * Write sq tail if we are asked to, or if the next command would wrap.
478 */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)479 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
480 {
481 if (!write_sq) {
482 u16 next_tail = nvmeq->sq_tail + 1;
483
484 if (next_tail == nvmeq->q_depth)
485 next_tail = 0;
486 if (next_tail != nvmeq->last_sq_tail)
487 return;
488 }
489
490 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
491 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
492 writel(nvmeq->sq_tail, nvmeq->q_db);
493 nvmeq->last_sq_tail = nvmeq->sq_tail;
494 }
495
496 /**
497 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
498 * @nvmeq: The queue to use
499 * @cmd: The command to send
500 * @write_sq: whether to write to the SQ doorbell
501 */
nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd,bool write_sq)502 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
503 bool write_sq)
504 {
505 spin_lock(&nvmeq->sq_lock);
506 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
507 cmd, sizeof(*cmd));
508 if (++nvmeq->sq_tail == nvmeq->q_depth)
509 nvmeq->sq_tail = 0;
510 nvme_write_sq_db(nvmeq, write_sq);
511 spin_unlock(&nvmeq->sq_lock);
512 }
513
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)514 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
515 {
516 struct nvme_queue *nvmeq = hctx->driver_data;
517
518 spin_lock(&nvmeq->sq_lock);
519 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
520 nvme_write_sq_db(nvmeq, true);
521 spin_unlock(&nvmeq->sq_lock);
522 }
523
nvme_pci_iod_list(struct request * req)524 static void **nvme_pci_iod_list(struct request *req)
525 {
526 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
527 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
528 }
529
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req)530 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
531 {
532 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
533 int nseg = blk_rq_nr_phys_segments(req);
534 unsigned int avg_seg_size;
535
536 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
537
538 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
539 return false;
540 if (!iod->nvmeq->qid)
541 return false;
542 if (!sgl_threshold || avg_seg_size < sgl_threshold)
543 return false;
544 return true;
545 }
546
nvme_free_prps(struct nvme_dev * dev,struct request * req)547 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
548 {
549 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
550 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
551 dma_addr_t dma_addr = iod->first_dma;
552 int i;
553
554 for (i = 0; i < iod->npages; i++) {
555 __le64 *prp_list = nvme_pci_iod_list(req)[i];
556 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
557
558 dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
559 dma_addr = next_dma_addr;
560 }
561
562 }
563
nvme_free_sgls(struct nvme_dev * dev,struct request * req)564 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
565 {
566 const int last_sg = SGES_PER_PAGE - 1;
567 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
568 dma_addr_t dma_addr = iod->first_dma;
569 int i;
570
571 for (i = 0; i < iod->npages; i++) {
572 struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
573 dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
574
575 dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
576 dma_addr = next_dma_addr;
577 }
578
579 }
580
nvme_unmap_sg(struct nvme_dev * dev,struct request * req)581 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
582 {
583 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
584
585 if (is_pci_p2pdma_page(sg_page(iod->sg)))
586 pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
587 rq_dma_dir(req));
588 else
589 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
590 }
591
nvme_unmap_data(struct nvme_dev * dev,struct request * req)592 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
593 {
594 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
595
596 if (iod->dma_len) {
597 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
598 rq_dma_dir(req));
599 return;
600 }
601
602 WARN_ON_ONCE(!iod->nents);
603
604 nvme_unmap_sg(dev, req);
605 if (iod->npages == 0)
606 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
607 iod->first_dma);
608 else if (iod->use_sgl)
609 nvme_free_sgls(dev, req);
610 else
611 nvme_free_prps(dev, req);
612 mempool_free(iod->sg, dev->iod_mempool);
613 }
614
nvme_print_sgl(struct scatterlist * sgl,int nents)615 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
616 {
617 int i;
618 struct scatterlist *sg;
619
620 for_each_sg(sgl, sg, nents, i) {
621 dma_addr_t phys = sg_phys(sg);
622 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
623 "dma_address:%pad dma_length:%d\n",
624 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
625 sg_dma_len(sg));
626 }
627 }
628
nvme_pci_setup_prps(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd)629 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
630 struct request *req, struct nvme_rw_command *cmnd)
631 {
632 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
633 struct dma_pool *pool;
634 int length = blk_rq_payload_bytes(req);
635 struct scatterlist *sg = iod->sg;
636 int dma_len = sg_dma_len(sg);
637 u64 dma_addr = sg_dma_address(sg);
638 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
639 __le64 *prp_list;
640 void **list = nvme_pci_iod_list(req);
641 dma_addr_t prp_dma;
642 int nprps, i;
643
644 length -= (NVME_CTRL_PAGE_SIZE - offset);
645 if (length <= 0) {
646 iod->first_dma = 0;
647 goto done;
648 }
649
650 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
651 if (dma_len) {
652 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
653 } else {
654 sg = sg_next(sg);
655 dma_addr = sg_dma_address(sg);
656 dma_len = sg_dma_len(sg);
657 }
658
659 if (length <= NVME_CTRL_PAGE_SIZE) {
660 iod->first_dma = dma_addr;
661 goto done;
662 }
663
664 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
665 if (nprps <= (256 / 8)) {
666 pool = dev->prp_small_pool;
667 iod->npages = 0;
668 } else {
669 pool = dev->prp_page_pool;
670 iod->npages = 1;
671 }
672
673 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
674 if (!prp_list) {
675 iod->first_dma = dma_addr;
676 iod->npages = -1;
677 return BLK_STS_RESOURCE;
678 }
679 list[0] = prp_list;
680 iod->first_dma = prp_dma;
681 i = 0;
682 for (;;) {
683 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
684 __le64 *old_prp_list = prp_list;
685 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
686 if (!prp_list)
687 goto free_prps;
688 list[iod->npages++] = prp_list;
689 prp_list[0] = old_prp_list[i - 1];
690 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
691 i = 1;
692 }
693 prp_list[i++] = cpu_to_le64(dma_addr);
694 dma_len -= NVME_CTRL_PAGE_SIZE;
695 dma_addr += NVME_CTRL_PAGE_SIZE;
696 length -= NVME_CTRL_PAGE_SIZE;
697 if (length <= 0)
698 break;
699 if (dma_len > 0)
700 continue;
701 if (unlikely(dma_len < 0))
702 goto bad_sgl;
703 sg = sg_next(sg);
704 dma_addr = sg_dma_address(sg);
705 dma_len = sg_dma_len(sg);
706 }
707 done:
708 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
709 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
710 return BLK_STS_OK;
711 free_prps:
712 nvme_free_prps(dev, req);
713 return BLK_STS_RESOURCE;
714 bad_sgl:
715 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
716 "Invalid SGL for payload:%d nents:%d\n",
717 blk_rq_payload_bytes(req), iod->nents);
718 return BLK_STS_IOERR;
719 }
720
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)721 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
722 struct scatterlist *sg)
723 {
724 sge->addr = cpu_to_le64(sg_dma_address(sg));
725 sge->length = cpu_to_le32(sg_dma_len(sg));
726 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
727 }
728
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)729 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
730 dma_addr_t dma_addr, int entries)
731 {
732 sge->addr = cpu_to_le64(dma_addr);
733 if (entries < SGES_PER_PAGE) {
734 sge->length = cpu_to_le32(entries * sizeof(*sge));
735 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
736 } else {
737 sge->length = cpu_to_le32(PAGE_SIZE);
738 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
739 }
740 }
741
nvme_pci_setup_sgls(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmd,int entries)742 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
743 struct request *req, struct nvme_rw_command *cmd, int entries)
744 {
745 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
746 struct dma_pool *pool;
747 struct nvme_sgl_desc *sg_list;
748 struct scatterlist *sg = iod->sg;
749 dma_addr_t sgl_dma;
750 int i = 0;
751
752 /* setting the transfer type as SGL */
753 cmd->flags = NVME_CMD_SGL_METABUF;
754
755 if (entries == 1) {
756 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
757 return BLK_STS_OK;
758 }
759
760 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
761 pool = dev->prp_small_pool;
762 iod->npages = 0;
763 } else {
764 pool = dev->prp_page_pool;
765 iod->npages = 1;
766 }
767
768 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
769 if (!sg_list) {
770 iod->npages = -1;
771 return BLK_STS_RESOURCE;
772 }
773
774 nvme_pci_iod_list(req)[0] = sg_list;
775 iod->first_dma = sgl_dma;
776
777 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
778
779 do {
780 if (i == SGES_PER_PAGE) {
781 struct nvme_sgl_desc *old_sg_desc = sg_list;
782 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
783
784 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
785 if (!sg_list)
786 goto free_sgls;
787
788 i = 0;
789 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
790 sg_list[i++] = *link;
791 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
792 }
793
794 nvme_pci_sgl_set_data(&sg_list[i++], sg);
795 sg = sg_next(sg);
796 } while (--entries > 0);
797
798 return BLK_STS_OK;
799 free_sgls:
800 nvme_free_sgls(dev, req);
801 return BLK_STS_RESOURCE;
802 }
803
nvme_setup_prp_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)804 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
805 struct request *req, struct nvme_rw_command *cmnd,
806 struct bio_vec *bv)
807 {
808 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
809 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
810 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
811
812 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
813 if (dma_mapping_error(dev->dev, iod->first_dma))
814 return BLK_STS_RESOURCE;
815 iod->dma_len = bv->bv_len;
816
817 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
818 if (bv->bv_len > first_prp_len)
819 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
820 else
821 cmnd->dptr.prp2 = 0;
822 return BLK_STS_OK;
823 }
824
nvme_setup_sgl_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)825 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
826 struct request *req, struct nvme_rw_command *cmnd,
827 struct bio_vec *bv)
828 {
829 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
830
831 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
832 if (dma_mapping_error(dev->dev, iod->first_dma))
833 return BLK_STS_RESOURCE;
834 iod->dma_len = bv->bv_len;
835
836 cmnd->flags = NVME_CMD_SGL_METABUF;
837 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
838 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
839 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
840 return BLK_STS_OK;
841 }
842
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)843 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
844 struct nvme_command *cmnd)
845 {
846 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
847 blk_status_t ret = BLK_STS_RESOURCE;
848 int nr_mapped;
849
850 if (blk_rq_nr_phys_segments(req) == 1) {
851 struct bio_vec bv = req_bvec(req);
852
853 if (!is_pci_p2pdma_page(bv.bv_page)) {
854 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
855 return nvme_setup_prp_simple(dev, req,
856 &cmnd->rw, &bv);
857
858 if (iod->nvmeq->qid && sgl_threshold &&
859 dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
860 return nvme_setup_sgl_simple(dev, req,
861 &cmnd->rw, &bv);
862 }
863 }
864
865 iod->dma_len = 0;
866 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
867 if (!iod->sg)
868 return BLK_STS_RESOURCE;
869 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
870 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
871 if (!iod->nents)
872 goto out_free_sg;
873
874 if (is_pci_p2pdma_page(sg_page(iod->sg)))
875 nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
876 iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
877 else
878 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
879 rq_dma_dir(req), DMA_ATTR_NO_WARN);
880 if (!nr_mapped)
881 goto out_free_sg;
882
883 iod->use_sgl = nvme_pci_use_sgls(dev, req);
884 if (iod->use_sgl)
885 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
886 else
887 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
888 if (ret != BLK_STS_OK)
889 goto out_unmap_sg;
890 return BLK_STS_OK;
891
892 out_unmap_sg:
893 nvme_unmap_sg(dev, req);
894 out_free_sg:
895 mempool_free(iod->sg, dev->iod_mempool);
896 return ret;
897 }
898
nvme_map_metadata(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)899 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
900 struct nvme_command *cmnd)
901 {
902 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
903
904 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
905 rq_dma_dir(req), 0);
906 if (dma_mapping_error(dev->dev, iod->meta_dma))
907 return BLK_STS_IOERR;
908 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
909 return BLK_STS_OK;
910 }
911
912 /*
913 * NOTE: ns is NULL when called on the admin queue.
914 */
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)915 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
916 const struct blk_mq_queue_data *bd)
917 {
918 struct nvme_ns *ns = hctx->queue->queuedata;
919 struct nvme_queue *nvmeq = hctx->driver_data;
920 struct nvme_dev *dev = nvmeq->dev;
921 struct request *req = bd->rq;
922 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
923 struct nvme_command *cmnd = &iod->cmd;
924 blk_status_t ret;
925
926 iod->aborted = 0;
927 iod->npages = -1;
928 iod->nents = 0;
929
930 /*
931 * We should not need to do this, but we're still using this to
932 * ensure we can drain requests on a dying queue.
933 */
934 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
935 return BLK_STS_IOERR;
936
937 ret = nvme_setup_cmd(ns, req, cmnd);
938 if (ret)
939 return ret;
940
941 if (blk_rq_nr_phys_segments(req)) {
942 ret = nvme_map_data(dev, req, cmnd);
943 if (ret)
944 goto out_free_cmd;
945 }
946
947 if (blk_integrity_rq(req)) {
948 ret = nvme_map_metadata(dev, req, cmnd);
949 if (ret)
950 goto out_unmap_data;
951 }
952
953 blk_mq_start_request(req);
954 nvme_submit_cmd(nvmeq, cmnd, bd->last);
955 return BLK_STS_OK;
956 out_unmap_data:
957 nvme_unmap_data(dev, req);
958 out_free_cmd:
959 nvme_cleanup_cmd(req);
960 return ret;
961 }
962
nvme_pci_complete_rq(struct request * req)963 static void nvme_pci_complete_rq(struct request *req)
964 {
965 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
966 struct nvme_dev *dev = iod->nvmeq->dev;
967
968 if (blk_integrity_rq(req))
969 dma_unmap_page(dev->dev, iod->meta_dma,
970 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
971 if (blk_rq_nr_phys_segments(req))
972 nvme_unmap_data(dev, req);
973 nvme_complete_rq(req);
974 }
975
976 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)977 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
978 {
979 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
980
981 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
982 }
983
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)984 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
985 {
986 u16 head = nvmeq->cq_head;
987
988 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
989 nvmeq->dbbuf_cq_ei))
990 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
991 }
992
nvme_queue_tagset(struct nvme_queue * nvmeq)993 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
994 {
995 if (!nvmeq->qid)
996 return nvmeq->dev->admin_tagset.tags[0];
997 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
998 }
999
nvme_handle_cqe(struct nvme_queue * nvmeq,u16 idx)1000 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
1001 {
1002 struct nvme_completion *cqe = &nvmeq->cqes[idx];
1003 __u16 command_id = READ_ONCE(cqe->command_id);
1004 struct request *req;
1005
1006 /*
1007 * AEN requests are special as they don't time out and can
1008 * survive any kind of queue freeze and often don't respond to
1009 * aborts. We don't even bother to allocate a struct request
1010 * for them but rather special case them here.
1011 */
1012 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1013 nvme_complete_async_event(&nvmeq->dev->ctrl,
1014 cqe->status, &cqe->result);
1015 return;
1016 }
1017
1018 req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1019 if (unlikely(!req)) {
1020 dev_warn(nvmeq->dev->ctrl.device,
1021 "invalid id %d completed on queue %d\n",
1022 command_id, le16_to_cpu(cqe->sq_id));
1023 return;
1024 }
1025
1026 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1027 if (!nvme_try_complete_req(req, cqe->status, cqe->result))
1028 nvme_pci_complete_rq(req);
1029 }
1030
nvme_update_cq_head(struct nvme_queue * nvmeq)1031 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1032 {
1033 u32 tmp = nvmeq->cq_head + 1;
1034
1035 if (tmp == nvmeq->q_depth) {
1036 nvmeq->cq_head = 0;
1037 nvmeq->cq_phase ^= 1;
1038 } else {
1039 nvmeq->cq_head = tmp;
1040 }
1041 }
1042
nvme_process_cq(struct nvme_queue * nvmeq)1043 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1044 {
1045 int found = 0;
1046
1047 while (nvme_cqe_pending(nvmeq)) {
1048 found++;
1049 /*
1050 * load-load control dependency between phase and the rest of
1051 * the cqe requires a full read memory barrier
1052 */
1053 dma_rmb();
1054 nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1055 nvme_update_cq_head(nvmeq);
1056 }
1057
1058 if (found)
1059 nvme_ring_cq_doorbell(nvmeq);
1060 return found;
1061 }
1062
nvme_irq(int irq,void * data)1063 static irqreturn_t nvme_irq(int irq, void *data)
1064 {
1065 struct nvme_queue *nvmeq = data;
1066 irqreturn_t ret = IRQ_NONE;
1067
1068 /*
1069 * The rmb/wmb pair ensures we see all updates from a previous run of
1070 * the irq handler, even if that was on another CPU.
1071 */
1072 rmb();
1073 if (nvme_process_cq(nvmeq))
1074 ret = IRQ_HANDLED;
1075 wmb();
1076
1077 return ret;
1078 }
1079
nvme_irq_check(int irq,void * data)1080 static irqreturn_t nvme_irq_check(int irq, void *data)
1081 {
1082 struct nvme_queue *nvmeq = data;
1083
1084 if (nvme_cqe_pending(nvmeq))
1085 return IRQ_WAKE_THREAD;
1086 return IRQ_NONE;
1087 }
1088
1089 /*
1090 * Poll for completions for any interrupt driven queue
1091 * Can be called from any context.
1092 */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1093 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1094 {
1095 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1096
1097 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1098
1099 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1100 nvme_process_cq(nvmeq);
1101 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1102 }
1103
nvme_poll(struct blk_mq_hw_ctx * hctx)1104 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1105 {
1106 struct nvme_queue *nvmeq = hctx->driver_data;
1107 bool found;
1108
1109 if (!nvme_cqe_pending(nvmeq))
1110 return 0;
1111
1112 spin_lock(&nvmeq->cq_poll_lock);
1113 found = nvme_process_cq(nvmeq);
1114 spin_unlock(&nvmeq->cq_poll_lock);
1115
1116 return found;
1117 }
1118
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1119 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1120 {
1121 struct nvme_dev *dev = to_nvme_dev(ctrl);
1122 struct nvme_queue *nvmeq = &dev->queues[0];
1123 struct nvme_command c;
1124
1125 memset(&c, 0, sizeof(c));
1126 c.common.opcode = nvme_admin_async_event;
1127 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1128 nvme_submit_cmd(nvmeq, &c, true);
1129 }
1130
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1131 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1132 {
1133 struct nvme_command c;
1134
1135 memset(&c, 0, sizeof(c));
1136 c.delete_queue.opcode = opcode;
1137 c.delete_queue.qid = cpu_to_le16(id);
1138
1139 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1140 }
1141
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1142 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1143 struct nvme_queue *nvmeq, s16 vector)
1144 {
1145 struct nvme_command c;
1146 int flags = NVME_QUEUE_PHYS_CONTIG;
1147
1148 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1149 flags |= NVME_CQ_IRQ_ENABLED;
1150
1151 /*
1152 * Note: we (ab)use the fact that the prp fields survive if no data
1153 * is attached to the request.
1154 */
1155 memset(&c, 0, sizeof(c));
1156 c.create_cq.opcode = nvme_admin_create_cq;
1157 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1158 c.create_cq.cqid = cpu_to_le16(qid);
1159 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1160 c.create_cq.cq_flags = cpu_to_le16(flags);
1161 c.create_cq.irq_vector = cpu_to_le16(vector);
1162
1163 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1164 }
1165
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1166 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1167 struct nvme_queue *nvmeq)
1168 {
1169 struct nvme_ctrl *ctrl = &dev->ctrl;
1170 struct nvme_command c;
1171 int flags = NVME_QUEUE_PHYS_CONTIG;
1172
1173 /*
1174 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1175 * set. Since URGENT priority is zeroes, it makes all queues
1176 * URGENT.
1177 */
1178 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1179 flags |= NVME_SQ_PRIO_MEDIUM;
1180
1181 /*
1182 * Note: we (ab)use the fact that the prp fields survive if no data
1183 * is attached to the request.
1184 */
1185 memset(&c, 0, sizeof(c));
1186 c.create_sq.opcode = nvme_admin_create_sq;
1187 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1188 c.create_sq.sqid = cpu_to_le16(qid);
1189 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1190 c.create_sq.sq_flags = cpu_to_le16(flags);
1191 c.create_sq.cqid = cpu_to_le16(qid);
1192
1193 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1194 }
1195
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1196 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1197 {
1198 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1199 }
1200
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1201 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1202 {
1203 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1204 }
1205
abort_endio(struct request * req,blk_status_t error)1206 static void abort_endio(struct request *req, blk_status_t error)
1207 {
1208 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1209 struct nvme_queue *nvmeq = iod->nvmeq;
1210
1211 dev_warn(nvmeq->dev->ctrl.device,
1212 "Abort status: 0x%x", nvme_req(req)->status);
1213 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1214 blk_mq_free_request(req);
1215 }
1216
nvme_should_reset(struct nvme_dev * dev,u32 csts)1217 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1218 {
1219 /* If true, indicates loss of adapter communication, possibly by a
1220 * NVMe Subsystem reset.
1221 */
1222 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1223
1224 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1225 switch (dev->ctrl.state) {
1226 case NVME_CTRL_RESETTING:
1227 case NVME_CTRL_CONNECTING:
1228 return false;
1229 default:
1230 break;
1231 }
1232
1233 /* We shouldn't reset unless the controller is on fatal error state
1234 * _or_ if we lost the communication with it.
1235 */
1236 if (!(csts & NVME_CSTS_CFS) && !nssro)
1237 return false;
1238
1239 return true;
1240 }
1241
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1242 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1243 {
1244 /* Read a config register to help see what died. */
1245 u16 pci_status;
1246 int result;
1247
1248 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1249 &pci_status);
1250 if (result == PCIBIOS_SUCCESSFUL)
1251 dev_warn(dev->ctrl.device,
1252 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1253 csts, pci_status);
1254 else
1255 dev_warn(dev->ctrl.device,
1256 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1257 csts, result);
1258 }
1259
nvme_timeout(struct request * req,bool reserved)1260 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1261 {
1262 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1263 struct nvme_queue *nvmeq = iod->nvmeq;
1264 struct nvme_dev *dev = nvmeq->dev;
1265 struct request *abort_req;
1266 struct nvme_command cmd;
1267 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1268
1269 /* If PCI error recovery process is happening, we cannot reset or
1270 * the recovery mechanism will surely fail.
1271 */
1272 mb();
1273 if (pci_channel_offline(to_pci_dev(dev->dev)))
1274 return BLK_EH_RESET_TIMER;
1275
1276 /*
1277 * Reset immediately if the controller is failed
1278 */
1279 if (nvme_should_reset(dev, csts)) {
1280 nvme_warn_reset(dev, csts);
1281 nvme_dev_disable(dev, false);
1282 nvme_reset_ctrl(&dev->ctrl);
1283 return BLK_EH_DONE;
1284 }
1285
1286 /*
1287 * Did we miss an interrupt?
1288 */
1289 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1290 nvme_poll(req->mq_hctx);
1291 else
1292 nvme_poll_irqdisable(nvmeq);
1293
1294 if (blk_mq_request_completed(req)) {
1295 dev_warn(dev->ctrl.device,
1296 "I/O %d QID %d timeout, completion polled\n",
1297 req->tag, nvmeq->qid);
1298 return BLK_EH_DONE;
1299 }
1300
1301 /*
1302 * Shutdown immediately if controller times out while starting. The
1303 * reset work will see the pci device disabled when it gets the forced
1304 * cancellation error. All outstanding requests are completed on
1305 * shutdown, so we return BLK_EH_DONE.
1306 */
1307 switch (dev->ctrl.state) {
1308 case NVME_CTRL_CONNECTING:
1309 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1310 fallthrough;
1311 case NVME_CTRL_DELETING:
1312 dev_warn_ratelimited(dev->ctrl.device,
1313 "I/O %d QID %d timeout, disable controller\n",
1314 req->tag, nvmeq->qid);
1315 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1316 nvme_dev_disable(dev, true);
1317 return BLK_EH_DONE;
1318 case NVME_CTRL_RESETTING:
1319 return BLK_EH_RESET_TIMER;
1320 default:
1321 break;
1322 }
1323
1324 /*
1325 * Shutdown the controller immediately and schedule a reset if the
1326 * command was already aborted once before and still hasn't been
1327 * returned to the driver, or if this is the admin queue.
1328 */
1329 if (!nvmeq->qid || iod->aborted) {
1330 dev_warn(dev->ctrl.device,
1331 "I/O %d QID %d timeout, reset controller\n",
1332 req->tag, nvmeq->qid);
1333 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1334 nvme_dev_disable(dev, false);
1335 nvme_reset_ctrl(&dev->ctrl);
1336
1337 return BLK_EH_DONE;
1338 }
1339
1340 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1341 atomic_inc(&dev->ctrl.abort_limit);
1342 return BLK_EH_RESET_TIMER;
1343 }
1344 iod->aborted = 1;
1345
1346 memset(&cmd, 0, sizeof(cmd));
1347 cmd.abort.opcode = nvme_admin_abort_cmd;
1348 cmd.abort.cid = nvme_cid(req);
1349 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1350
1351 dev_warn(nvmeq->dev->ctrl.device,
1352 "I/O %d QID %d timeout, aborting\n",
1353 req->tag, nvmeq->qid);
1354
1355 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1356 BLK_MQ_REQ_NOWAIT);
1357 if (IS_ERR(abort_req)) {
1358 atomic_inc(&dev->ctrl.abort_limit);
1359 return BLK_EH_RESET_TIMER;
1360 }
1361
1362 abort_req->end_io_data = NULL;
1363 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1364
1365 /*
1366 * The aborted req will be completed on receiving the abort req.
1367 * We enable the timer again. If hit twice, it'll cause a device reset,
1368 * as the device then is in a faulty state.
1369 */
1370 return BLK_EH_RESET_TIMER;
1371 }
1372
nvme_free_queue(struct nvme_queue * nvmeq)1373 static void nvme_free_queue(struct nvme_queue *nvmeq)
1374 {
1375 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1376 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1377 if (!nvmeq->sq_cmds)
1378 return;
1379
1380 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1381 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1382 nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1383 } else {
1384 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1385 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1386 }
1387 }
1388
nvme_free_queues(struct nvme_dev * dev,int lowest)1389 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1390 {
1391 int i;
1392
1393 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1394 dev->ctrl.queue_count--;
1395 nvme_free_queue(&dev->queues[i]);
1396 }
1397 }
1398
1399 /**
1400 * nvme_suspend_queue - put queue into suspended state
1401 * @nvmeq: queue to suspend
1402 */
nvme_suspend_queue(struct nvme_queue * nvmeq)1403 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1404 {
1405 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1406 return 1;
1407
1408 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1409 mb();
1410
1411 nvmeq->dev->online_queues--;
1412 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1413 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1414 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1415 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1416 return 0;
1417 }
1418
nvme_suspend_io_queues(struct nvme_dev * dev)1419 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1420 {
1421 int i;
1422
1423 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1424 nvme_suspend_queue(&dev->queues[i]);
1425 }
1426
nvme_disable_admin_queue(struct nvme_dev * dev,bool shutdown)1427 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1428 {
1429 struct nvme_queue *nvmeq = &dev->queues[0];
1430
1431 if (shutdown)
1432 nvme_shutdown_ctrl(&dev->ctrl);
1433 else
1434 nvme_disable_ctrl(&dev->ctrl);
1435
1436 nvme_poll_irqdisable(nvmeq);
1437 }
1438
1439 /*
1440 * Called only on a device that has been disabled and after all other threads
1441 * that can check this device's completion queues have synced, except
1442 * nvme_poll(). This is the last chance for the driver to see a natural
1443 * completion before nvme_cancel_request() terminates all incomplete requests.
1444 */
nvme_reap_pending_cqes(struct nvme_dev * dev)1445 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1446 {
1447 int i;
1448
1449 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1450 spin_lock(&dev->queues[i].cq_poll_lock);
1451 nvme_process_cq(&dev->queues[i]);
1452 spin_unlock(&dev->queues[i].cq_poll_lock);
1453 }
1454 }
1455
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1456 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1457 int entry_size)
1458 {
1459 int q_depth = dev->q_depth;
1460 unsigned q_size_aligned = roundup(q_depth * entry_size,
1461 NVME_CTRL_PAGE_SIZE);
1462
1463 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1464 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1465
1466 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1467 q_depth = div_u64(mem_per_q, entry_size);
1468
1469 /*
1470 * Ensure the reduced q_depth is above some threshold where it
1471 * would be better to map queues in system memory with the
1472 * original depth
1473 */
1474 if (q_depth < 64)
1475 return -ENOMEM;
1476 }
1477
1478 return q_depth;
1479 }
1480
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1481 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1482 int qid)
1483 {
1484 struct pci_dev *pdev = to_pci_dev(dev->dev);
1485
1486 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1487 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1488 if (nvmeq->sq_cmds) {
1489 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1490 nvmeq->sq_cmds);
1491 if (nvmeq->sq_dma_addr) {
1492 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1493 return 0;
1494 }
1495
1496 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1497 }
1498 }
1499
1500 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1501 &nvmeq->sq_dma_addr, GFP_KERNEL);
1502 if (!nvmeq->sq_cmds)
1503 return -ENOMEM;
1504 return 0;
1505 }
1506
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1507 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1508 {
1509 struct nvme_queue *nvmeq = &dev->queues[qid];
1510
1511 if (dev->ctrl.queue_count > qid)
1512 return 0;
1513
1514 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1515 nvmeq->q_depth = depth;
1516 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1517 &nvmeq->cq_dma_addr, GFP_KERNEL);
1518 if (!nvmeq->cqes)
1519 goto free_nvmeq;
1520
1521 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1522 goto free_cqdma;
1523
1524 nvmeq->dev = dev;
1525 spin_lock_init(&nvmeq->sq_lock);
1526 spin_lock_init(&nvmeq->cq_poll_lock);
1527 nvmeq->cq_head = 0;
1528 nvmeq->cq_phase = 1;
1529 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1530 nvmeq->qid = qid;
1531 dev->ctrl.queue_count++;
1532
1533 return 0;
1534
1535 free_cqdma:
1536 dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1537 nvmeq->cq_dma_addr);
1538 free_nvmeq:
1539 return -ENOMEM;
1540 }
1541
queue_request_irq(struct nvme_queue * nvmeq)1542 static int queue_request_irq(struct nvme_queue *nvmeq)
1543 {
1544 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1545 int nr = nvmeq->dev->ctrl.instance;
1546
1547 if (use_threaded_interrupts) {
1548 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1549 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1550 } else {
1551 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1552 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1553 }
1554 }
1555
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1556 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1557 {
1558 struct nvme_dev *dev = nvmeq->dev;
1559
1560 nvmeq->sq_tail = 0;
1561 nvmeq->last_sq_tail = 0;
1562 nvmeq->cq_head = 0;
1563 nvmeq->cq_phase = 1;
1564 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1565 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1566 nvme_dbbuf_init(dev, nvmeq, qid);
1567 dev->online_queues++;
1568 wmb(); /* ensure the first interrupt sees the initialization */
1569 }
1570
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1571 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1572 {
1573 struct nvme_dev *dev = nvmeq->dev;
1574 int result;
1575 u16 vector = 0;
1576
1577 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1578
1579 /*
1580 * A queue's vector matches the queue identifier unless the controller
1581 * has only one vector available.
1582 */
1583 if (!polled)
1584 vector = dev->num_vecs == 1 ? 0 : qid;
1585 else
1586 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1587
1588 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1589 if (result)
1590 return result;
1591
1592 result = adapter_alloc_sq(dev, qid, nvmeq);
1593 if (result < 0)
1594 return result;
1595 if (result)
1596 goto release_cq;
1597
1598 nvmeq->cq_vector = vector;
1599 nvme_init_queue(nvmeq, qid);
1600
1601 if (!polled) {
1602 result = queue_request_irq(nvmeq);
1603 if (result < 0)
1604 goto release_sq;
1605 }
1606
1607 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1608 return result;
1609
1610 release_sq:
1611 dev->online_queues--;
1612 adapter_delete_sq(dev, qid);
1613 release_cq:
1614 adapter_delete_cq(dev, qid);
1615 return result;
1616 }
1617
1618 static const struct blk_mq_ops nvme_mq_admin_ops = {
1619 .queue_rq = nvme_queue_rq,
1620 .complete = nvme_pci_complete_rq,
1621 .init_hctx = nvme_admin_init_hctx,
1622 .init_request = nvme_init_request,
1623 .timeout = nvme_timeout,
1624 };
1625
1626 static const struct blk_mq_ops nvme_mq_ops = {
1627 .queue_rq = nvme_queue_rq,
1628 .complete = nvme_pci_complete_rq,
1629 .commit_rqs = nvme_commit_rqs,
1630 .init_hctx = nvme_init_hctx,
1631 .init_request = nvme_init_request,
1632 .map_queues = nvme_pci_map_queues,
1633 .timeout = nvme_timeout,
1634 .poll = nvme_poll,
1635 };
1636
nvme_dev_remove_admin(struct nvme_dev * dev)1637 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1638 {
1639 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1640 /*
1641 * If the controller was reset during removal, it's possible
1642 * user requests may be waiting on a stopped queue. Start the
1643 * queue to flush these to completion.
1644 */
1645 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1646 blk_cleanup_queue(dev->ctrl.admin_q);
1647 blk_mq_free_tag_set(&dev->admin_tagset);
1648 }
1649 }
1650
nvme_alloc_admin_tags(struct nvme_dev * dev)1651 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1652 {
1653 if (!dev->ctrl.admin_q) {
1654 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1655 dev->admin_tagset.nr_hw_queues = 1;
1656
1657 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1658 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1659 dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1660 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1661 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1662 dev->admin_tagset.driver_data = dev;
1663
1664 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1665 return -ENOMEM;
1666 dev->ctrl.admin_tagset = &dev->admin_tagset;
1667
1668 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1669 if (IS_ERR(dev->ctrl.admin_q)) {
1670 blk_mq_free_tag_set(&dev->admin_tagset);
1671 dev->ctrl.admin_q = NULL;
1672 return -ENOMEM;
1673 }
1674 if (!blk_get_queue(dev->ctrl.admin_q)) {
1675 nvme_dev_remove_admin(dev);
1676 dev->ctrl.admin_q = NULL;
1677 return -ENODEV;
1678 }
1679 } else
1680 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1681
1682 return 0;
1683 }
1684
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1685 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1686 {
1687 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1688 }
1689
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1690 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1691 {
1692 struct pci_dev *pdev = to_pci_dev(dev->dev);
1693
1694 if (size <= dev->bar_mapped_size)
1695 return 0;
1696 if (size > pci_resource_len(pdev, 0))
1697 return -ENOMEM;
1698 if (dev->bar)
1699 iounmap(dev->bar);
1700 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1701 if (!dev->bar) {
1702 dev->bar_mapped_size = 0;
1703 return -ENOMEM;
1704 }
1705 dev->bar_mapped_size = size;
1706 dev->dbs = dev->bar + NVME_REG_DBS;
1707
1708 return 0;
1709 }
1710
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1711 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1712 {
1713 int result;
1714 u32 aqa;
1715 struct nvme_queue *nvmeq;
1716
1717 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1718 if (result < 0)
1719 return result;
1720
1721 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1722 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1723
1724 if (dev->subsystem &&
1725 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1726 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1727
1728 result = nvme_disable_ctrl(&dev->ctrl);
1729 if (result < 0)
1730 return result;
1731
1732 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1733 if (result)
1734 return result;
1735
1736 dev->ctrl.numa_node = dev_to_node(dev->dev);
1737
1738 nvmeq = &dev->queues[0];
1739 aqa = nvmeq->q_depth - 1;
1740 aqa |= aqa << 16;
1741
1742 writel(aqa, dev->bar + NVME_REG_AQA);
1743 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1744 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1745
1746 result = nvme_enable_ctrl(&dev->ctrl);
1747 if (result)
1748 return result;
1749
1750 nvmeq->cq_vector = 0;
1751 nvme_init_queue(nvmeq, 0);
1752 result = queue_request_irq(nvmeq);
1753 if (result) {
1754 dev->online_queues--;
1755 return result;
1756 }
1757
1758 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1759 return result;
1760 }
1761
nvme_create_io_queues(struct nvme_dev * dev)1762 static int nvme_create_io_queues(struct nvme_dev *dev)
1763 {
1764 unsigned i, max, rw_queues;
1765 int ret = 0;
1766
1767 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1768 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1769 ret = -ENOMEM;
1770 break;
1771 }
1772 }
1773
1774 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1775 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1776 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1777 dev->io_queues[HCTX_TYPE_READ];
1778 } else {
1779 rw_queues = max;
1780 }
1781
1782 for (i = dev->online_queues; i <= max; i++) {
1783 bool polled = i > rw_queues;
1784
1785 ret = nvme_create_queue(&dev->queues[i], i, polled);
1786 if (ret)
1787 break;
1788 }
1789
1790 /*
1791 * Ignore failing Create SQ/CQ commands, we can continue with less
1792 * than the desired amount of queues, and even a controller without
1793 * I/O queues can still be used to issue admin commands. This might
1794 * be useful to upgrade a buggy firmware for example.
1795 */
1796 return ret >= 0 ? 0 : ret;
1797 }
1798
nvme_cmb_show(struct device * dev,struct device_attribute * attr,char * buf)1799 static ssize_t nvme_cmb_show(struct device *dev,
1800 struct device_attribute *attr,
1801 char *buf)
1802 {
1803 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1804
1805 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1806 ndev->cmbloc, ndev->cmbsz);
1807 }
1808 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1809
nvme_cmb_size_unit(struct nvme_dev * dev)1810 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1811 {
1812 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1813
1814 return 1ULL << (12 + 4 * szu);
1815 }
1816
nvme_cmb_size(struct nvme_dev * dev)1817 static u32 nvme_cmb_size(struct nvme_dev *dev)
1818 {
1819 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1820 }
1821
nvme_map_cmb(struct nvme_dev * dev)1822 static void nvme_map_cmb(struct nvme_dev *dev)
1823 {
1824 u64 size, offset;
1825 resource_size_t bar_size;
1826 struct pci_dev *pdev = to_pci_dev(dev->dev);
1827 int bar;
1828
1829 if (dev->cmb_size)
1830 return;
1831
1832 if (NVME_CAP_CMBS(dev->ctrl.cap))
1833 writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1834
1835 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1836 if (!dev->cmbsz)
1837 return;
1838 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1839
1840 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1841 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1842 bar = NVME_CMB_BIR(dev->cmbloc);
1843 bar_size = pci_resource_len(pdev, bar);
1844
1845 if (offset > bar_size)
1846 return;
1847
1848 /*
1849 * Tell the controller about the host side address mapping the CMB,
1850 * and enable CMB decoding for the NVMe 1.4+ scheme:
1851 */
1852 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1853 hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1854 (pci_bus_address(pdev, bar) + offset),
1855 dev->bar + NVME_REG_CMBMSC);
1856 }
1857
1858 /*
1859 * Controllers may support a CMB size larger than their BAR,
1860 * for example, due to being behind a bridge. Reduce the CMB to
1861 * the reported size of the BAR
1862 */
1863 if (size > bar_size - offset)
1864 size = bar_size - offset;
1865
1866 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1867 dev_warn(dev->ctrl.device,
1868 "failed to register the CMB\n");
1869 return;
1870 }
1871
1872 dev->cmb_size = size;
1873 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1874
1875 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1876 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1877 pci_p2pmem_publish(pdev, true);
1878
1879 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1880 &dev_attr_cmb.attr, NULL))
1881 dev_warn(dev->ctrl.device,
1882 "failed to add sysfs attribute for CMB\n");
1883 }
1884
nvme_release_cmb(struct nvme_dev * dev)1885 static inline void nvme_release_cmb(struct nvme_dev *dev)
1886 {
1887 if (dev->cmb_size) {
1888 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1889 &dev_attr_cmb.attr, NULL);
1890 dev->cmb_size = 0;
1891 }
1892 }
1893
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)1894 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1895 {
1896 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1897 u64 dma_addr = dev->host_mem_descs_dma;
1898 struct nvme_command c;
1899 int ret;
1900
1901 memset(&c, 0, sizeof(c));
1902 c.features.opcode = nvme_admin_set_features;
1903 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1904 c.features.dword11 = cpu_to_le32(bits);
1905 c.features.dword12 = cpu_to_le32(host_mem_size);
1906 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1907 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1908 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1909
1910 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1911 if (ret) {
1912 dev_warn(dev->ctrl.device,
1913 "failed to set host mem (err %d, flags %#x).\n",
1914 ret, bits);
1915 }
1916 return ret;
1917 }
1918
nvme_free_host_mem(struct nvme_dev * dev)1919 static void nvme_free_host_mem(struct nvme_dev *dev)
1920 {
1921 int i;
1922
1923 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1924 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1925 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1926
1927 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1928 le64_to_cpu(desc->addr),
1929 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1930 }
1931
1932 kfree(dev->host_mem_desc_bufs);
1933 dev->host_mem_desc_bufs = NULL;
1934 dma_free_coherent(dev->dev,
1935 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1936 dev->host_mem_descs, dev->host_mem_descs_dma);
1937 dev->host_mem_descs = NULL;
1938 dev->nr_host_mem_descs = 0;
1939 }
1940
__nvme_alloc_host_mem(struct nvme_dev * dev,u64 preferred,u32 chunk_size)1941 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1942 u32 chunk_size)
1943 {
1944 struct nvme_host_mem_buf_desc *descs;
1945 u32 max_entries, len;
1946 dma_addr_t descs_dma;
1947 int i = 0;
1948 void **bufs;
1949 u64 size, tmp;
1950
1951 tmp = (preferred + chunk_size - 1);
1952 do_div(tmp, chunk_size);
1953 max_entries = tmp;
1954
1955 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1956 max_entries = dev->ctrl.hmmaxd;
1957
1958 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1959 &descs_dma, GFP_KERNEL);
1960 if (!descs)
1961 goto out;
1962
1963 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1964 if (!bufs)
1965 goto out_free_descs;
1966
1967 for (size = 0; size < preferred && i < max_entries; size += len) {
1968 dma_addr_t dma_addr;
1969
1970 len = min_t(u64, chunk_size, preferred - size);
1971 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1972 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1973 if (!bufs[i])
1974 break;
1975
1976 descs[i].addr = cpu_to_le64(dma_addr);
1977 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1978 i++;
1979 }
1980
1981 if (!size)
1982 goto out_free_bufs;
1983
1984 dev->nr_host_mem_descs = i;
1985 dev->host_mem_size = size;
1986 dev->host_mem_descs = descs;
1987 dev->host_mem_descs_dma = descs_dma;
1988 dev->host_mem_desc_bufs = bufs;
1989 return 0;
1990
1991 out_free_bufs:
1992 while (--i >= 0) {
1993 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1994
1995 dma_free_attrs(dev->dev, size, bufs[i],
1996 le64_to_cpu(descs[i].addr),
1997 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1998 }
1999
2000 kfree(bufs);
2001 out_free_descs:
2002 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2003 descs_dma);
2004 out:
2005 dev->host_mem_descs = NULL;
2006 return -ENOMEM;
2007 }
2008
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2009 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2010 {
2011 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2012 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2013 u64 chunk_size;
2014
2015 /* start big and work our way down */
2016 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2017 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2018 if (!min || dev->host_mem_size >= min)
2019 return 0;
2020 nvme_free_host_mem(dev);
2021 }
2022 }
2023
2024 return -ENOMEM;
2025 }
2026
nvme_setup_host_mem(struct nvme_dev * dev)2027 static int nvme_setup_host_mem(struct nvme_dev *dev)
2028 {
2029 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2030 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2031 u64 min = (u64)dev->ctrl.hmmin * 4096;
2032 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2033 int ret;
2034
2035 preferred = min(preferred, max);
2036 if (min > max) {
2037 dev_warn(dev->ctrl.device,
2038 "min host memory (%lld MiB) above limit (%d MiB).\n",
2039 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2040 nvme_free_host_mem(dev);
2041 return 0;
2042 }
2043
2044 /*
2045 * If we already have a buffer allocated check if we can reuse it.
2046 */
2047 if (dev->host_mem_descs) {
2048 if (dev->host_mem_size >= min)
2049 enable_bits |= NVME_HOST_MEM_RETURN;
2050 else
2051 nvme_free_host_mem(dev);
2052 }
2053
2054 if (!dev->host_mem_descs) {
2055 if (nvme_alloc_host_mem(dev, min, preferred)) {
2056 dev_warn(dev->ctrl.device,
2057 "failed to allocate host memory buffer.\n");
2058 return 0; /* controller must work without HMB */
2059 }
2060
2061 dev_info(dev->ctrl.device,
2062 "allocated %lld MiB host memory buffer.\n",
2063 dev->host_mem_size >> ilog2(SZ_1M));
2064 }
2065
2066 ret = nvme_set_host_mem(dev, enable_bits);
2067 if (ret)
2068 nvme_free_host_mem(dev);
2069 return ret;
2070 }
2071
2072 /*
2073 * nirqs is the number of interrupts available for write and read
2074 * queues. The core already reserved an interrupt for the admin queue.
2075 */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2076 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2077 {
2078 struct nvme_dev *dev = affd->priv;
2079 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2080
2081 /*
2082 * If there is no interrupt available for queues, ensure that
2083 * the default queue is set to 1. The affinity set size is
2084 * also set to one, but the irq core ignores it for this case.
2085 *
2086 * If only one interrupt is available or 'write_queue' == 0, combine
2087 * write and read queues.
2088 *
2089 * If 'write_queues' > 0, ensure it leaves room for at least one read
2090 * queue.
2091 */
2092 if (!nrirqs) {
2093 nrirqs = 1;
2094 nr_read_queues = 0;
2095 } else if (nrirqs == 1 || !nr_write_queues) {
2096 nr_read_queues = 0;
2097 } else if (nr_write_queues >= nrirqs) {
2098 nr_read_queues = 1;
2099 } else {
2100 nr_read_queues = nrirqs - nr_write_queues;
2101 }
2102
2103 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2104 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2105 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2106 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2107 affd->nr_sets = nr_read_queues ? 2 : 1;
2108 }
2109
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2110 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2111 {
2112 struct pci_dev *pdev = to_pci_dev(dev->dev);
2113 struct irq_affinity affd = {
2114 .pre_vectors = 1,
2115 .calc_sets = nvme_calc_irq_sets,
2116 .priv = dev,
2117 };
2118 unsigned int irq_queues, poll_queues;
2119
2120 /*
2121 * Poll queues don't need interrupts, but we need at least one I/O queue
2122 * left over for non-polled I/O.
2123 */
2124 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2125 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2126
2127 /*
2128 * Initialize for the single interrupt case, will be updated in
2129 * nvme_calc_irq_sets().
2130 */
2131 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2132 dev->io_queues[HCTX_TYPE_READ] = 0;
2133
2134 /*
2135 * We need interrupts for the admin queue and each non-polled I/O queue,
2136 * but some Apple controllers require all queues to use the first
2137 * vector.
2138 */
2139 irq_queues = 1;
2140 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2141 irq_queues += (nr_io_queues - poll_queues);
2142 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2143 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2144 }
2145
nvme_disable_io_queues(struct nvme_dev * dev)2146 static void nvme_disable_io_queues(struct nvme_dev *dev)
2147 {
2148 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2149 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2150 }
2151
nvme_max_io_queues(struct nvme_dev * dev)2152 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2153 {
2154 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2155 }
2156
nvme_setup_io_queues(struct nvme_dev * dev)2157 static int nvme_setup_io_queues(struct nvme_dev *dev)
2158 {
2159 struct nvme_queue *adminq = &dev->queues[0];
2160 struct pci_dev *pdev = to_pci_dev(dev->dev);
2161 unsigned int nr_io_queues;
2162 unsigned long size;
2163 int result;
2164
2165 /*
2166 * Sample the module parameters once at reset time so that we have
2167 * stable values to work with.
2168 */
2169 dev->nr_write_queues = write_queues;
2170 dev->nr_poll_queues = poll_queues;
2171
2172 /*
2173 * If tags are shared with admin queue (Apple bug), then
2174 * make sure we only use one IO queue.
2175 */
2176 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2177 nr_io_queues = 1;
2178 else
2179 nr_io_queues = min(nvme_max_io_queues(dev),
2180 dev->nr_allocated_queues - 1);
2181
2182 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2183 if (result < 0)
2184 return result;
2185
2186 if (nr_io_queues == 0)
2187 return 0;
2188
2189 clear_bit(NVMEQ_ENABLED, &adminq->flags);
2190
2191 if (dev->cmb_use_sqes) {
2192 result = nvme_cmb_qdepth(dev, nr_io_queues,
2193 sizeof(struct nvme_command));
2194 if (result > 0)
2195 dev->q_depth = result;
2196 else
2197 dev->cmb_use_sqes = false;
2198 }
2199
2200 do {
2201 size = db_bar_size(dev, nr_io_queues);
2202 result = nvme_remap_bar(dev, size);
2203 if (!result)
2204 break;
2205 if (!--nr_io_queues)
2206 return -ENOMEM;
2207 } while (1);
2208 adminq->q_db = dev->dbs;
2209
2210 retry:
2211 /* Deregister the admin queue's interrupt */
2212 pci_free_irq(pdev, 0, adminq);
2213
2214 /*
2215 * If we enable msix early due to not intx, disable it again before
2216 * setting up the full range we need.
2217 */
2218 pci_free_irq_vectors(pdev);
2219
2220 result = nvme_setup_irqs(dev, nr_io_queues);
2221 if (result <= 0)
2222 return -EIO;
2223
2224 dev->num_vecs = result;
2225 result = max(result - 1, 1);
2226 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2227
2228 /*
2229 * Should investigate if there's a performance win from allocating
2230 * more queues than interrupt vectors; it might allow the submission
2231 * path to scale better, even if the receive path is limited by the
2232 * number of interrupts.
2233 */
2234 result = queue_request_irq(adminq);
2235 if (result)
2236 return result;
2237 set_bit(NVMEQ_ENABLED, &adminq->flags);
2238
2239 result = nvme_create_io_queues(dev);
2240 if (result || dev->online_queues < 2)
2241 return result;
2242
2243 if (dev->online_queues - 1 < dev->max_qid) {
2244 nr_io_queues = dev->online_queues - 1;
2245 nvme_disable_io_queues(dev);
2246 nvme_suspend_io_queues(dev);
2247 goto retry;
2248 }
2249 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2250 dev->io_queues[HCTX_TYPE_DEFAULT],
2251 dev->io_queues[HCTX_TYPE_READ],
2252 dev->io_queues[HCTX_TYPE_POLL]);
2253 return 0;
2254 }
2255
nvme_del_queue_end(struct request * req,blk_status_t error)2256 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2257 {
2258 struct nvme_queue *nvmeq = req->end_io_data;
2259
2260 blk_mq_free_request(req);
2261 complete(&nvmeq->delete_done);
2262 }
2263
nvme_del_cq_end(struct request * req,blk_status_t error)2264 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2265 {
2266 struct nvme_queue *nvmeq = req->end_io_data;
2267
2268 if (error)
2269 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2270
2271 nvme_del_queue_end(req, error);
2272 }
2273
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2274 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2275 {
2276 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2277 struct request *req;
2278 struct nvme_command cmd;
2279
2280 memset(&cmd, 0, sizeof(cmd));
2281 cmd.delete_queue.opcode = opcode;
2282 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2283
2284 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2285 if (IS_ERR(req))
2286 return PTR_ERR(req);
2287
2288 req->end_io_data = nvmeq;
2289
2290 init_completion(&nvmeq->delete_done);
2291 blk_execute_rq_nowait(q, NULL, req, false,
2292 opcode == nvme_admin_delete_cq ?
2293 nvme_del_cq_end : nvme_del_queue_end);
2294 return 0;
2295 }
2296
__nvme_disable_io_queues(struct nvme_dev * dev,u8 opcode)2297 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2298 {
2299 int nr_queues = dev->online_queues - 1, sent = 0;
2300 unsigned long timeout;
2301
2302 retry:
2303 timeout = ADMIN_TIMEOUT;
2304 while (nr_queues > 0) {
2305 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2306 break;
2307 nr_queues--;
2308 sent++;
2309 }
2310 while (sent) {
2311 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2312
2313 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2314 timeout);
2315 if (timeout == 0)
2316 return false;
2317
2318 sent--;
2319 if (nr_queues)
2320 goto retry;
2321 }
2322 return true;
2323 }
2324
nvme_dev_add(struct nvme_dev * dev)2325 static void nvme_dev_add(struct nvme_dev *dev)
2326 {
2327 int ret;
2328
2329 if (!dev->ctrl.tagset) {
2330 dev->tagset.ops = &nvme_mq_ops;
2331 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2332 dev->tagset.nr_maps = 2; /* default + read */
2333 if (dev->io_queues[HCTX_TYPE_POLL])
2334 dev->tagset.nr_maps++;
2335 dev->tagset.timeout = NVME_IO_TIMEOUT;
2336 dev->tagset.numa_node = dev->ctrl.numa_node;
2337 dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2338 BLK_MQ_MAX_DEPTH) - 1;
2339 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2340 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2341 dev->tagset.driver_data = dev;
2342
2343 /*
2344 * Some Apple controllers requires tags to be unique
2345 * across admin and IO queue, so reserve the first 32
2346 * tags of the IO queue.
2347 */
2348 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2349 dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2350
2351 ret = blk_mq_alloc_tag_set(&dev->tagset);
2352 if (ret) {
2353 dev_warn(dev->ctrl.device,
2354 "IO queues tagset allocation failed %d\n", ret);
2355 return;
2356 }
2357 dev->ctrl.tagset = &dev->tagset;
2358 } else {
2359 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2360
2361 /* Free previously allocated queues that are no longer usable */
2362 nvme_free_queues(dev, dev->online_queues);
2363 }
2364
2365 nvme_dbbuf_set(dev);
2366 }
2367
nvme_pci_enable(struct nvme_dev * dev)2368 static int nvme_pci_enable(struct nvme_dev *dev)
2369 {
2370 int result = -ENOMEM;
2371 struct pci_dev *pdev = to_pci_dev(dev->dev);
2372
2373 if (pci_enable_device_mem(pdev))
2374 return result;
2375
2376 pci_set_master(pdev);
2377
2378 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2379 goto disable;
2380
2381 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2382 result = -ENODEV;
2383 goto disable;
2384 }
2385
2386 /*
2387 * Some devices and/or platforms don't advertise or work with INTx
2388 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2389 * adjust this later.
2390 */
2391 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2392 if (result < 0)
2393 return result;
2394
2395 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2396
2397 if (dev->ctrl.quirks & NVME_QUIRK_LIMIT_IOQD32)
2398 io_queue_depth = 32;
2399
2400 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2401 io_queue_depth);
2402 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2403 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2404 dev->dbs = dev->bar + 4096;
2405
2406 /*
2407 * Some Apple controllers require a non-standard SQE size.
2408 * Interestingly they also seem to ignore the CC:IOSQES register
2409 * so we don't bother updating it here.
2410 */
2411 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2412 dev->io_sqes = 7;
2413 else
2414 dev->io_sqes = NVME_NVM_IOSQES;
2415
2416 /*
2417 * Temporary fix for the Apple controller found in the MacBook8,1 and
2418 * some MacBook7,1 to avoid controller resets and data loss.
2419 */
2420 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2421 dev->q_depth = 2;
2422 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2423 "set queue depth=%u to work around controller resets\n",
2424 dev->q_depth);
2425 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2426 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2427 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2428 dev->q_depth = 64;
2429 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2430 "set queue depth=%u\n", dev->q_depth);
2431 }
2432
2433 /*
2434 * Controllers with the shared tags quirk need the IO queue to be
2435 * big enough so that we get 32 tags for the admin queue
2436 */
2437 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2438 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2439 dev->q_depth = NVME_AQ_DEPTH + 2;
2440 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2441 dev->q_depth);
2442 }
2443
2444
2445 nvme_map_cmb(dev);
2446
2447 pci_enable_pcie_error_reporting(pdev);
2448 pci_save_state(pdev);
2449 return 0;
2450
2451 disable:
2452 pci_disable_device(pdev);
2453 return result;
2454 }
2455
nvme_dev_unmap(struct nvme_dev * dev)2456 static void nvme_dev_unmap(struct nvme_dev *dev)
2457 {
2458 if (dev->bar)
2459 iounmap(dev->bar);
2460 pci_release_mem_regions(to_pci_dev(dev->dev));
2461 }
2462
nvme_pci_disable(struct nvme_dev * dev)2463 static void nvme_pci_disable(struct nvme_dev *dev)
2464 {
2465 struct pci_dev *pdev = to_pci_dev(dev->dev);
2466
2467 pci_free_irq_vectors(pdev);
2468
2469 if (pci_is_enabled(pdev)) {
2470 pci_disable_pcie_error_reporting(pdev);
2471 pci_disable_device(pdev);
2472 }
2473 }
2474
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2475 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2476 {
2477 bool dead = true, freeze = false;
2478 struct pci_dev *pdev = to_pci_dev(dev->dev);
2479
2480 mutex_lock(&dev->shutdown_lock);
2481 if (pci_is_enabled(pdev)) {
2482 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2483
2484 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2485 dev->ctrl.state == NVME_CTRL_RESETTING) {
2486 freeze = true;
2487 nvme_start_freeze(&dev->ctrl);
2488 }
2489 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2490 pdev->error_state != pci_channel_io_normal);
2491 }
2492
2493 /*
2494 * Give the controller a chance to complete all entered requests if
2495 * doing a safe shutdown.
2496 */
2497 if (!dead && shutdown && freeze)
2498 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2499
2500 nvme_stop_queues(&dev->ctrl);
2501
2502 if (!dead && dev->ctrl.queue_count > 0) {
2503 nvme_disable_io_queues(dev);
2504 nvme_disable_admin_queue(dev, shutdown);
2505 }
2506 nvme_suspend_io_queues(dev);
2507 nvme_suspend_queue(&dev->queues[0]);
2508 nvme_pci_disable(dev);
2509 nvme_reap_pending_cqes(dev);
2510
2511 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2512 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2513 blk_mq_tagset_wait_completed_request(&dev->tagset);
2514 blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2515
2516 /*
2517 * The driver will not be starting up queues again if shutting down so
2518 * must flush all entered requests to their failed completion to avoid
2519 * deadlocking blk-mq hot-cpu notifier.
2520 */
2521 if (shutdown) {
2522 nvme_start_queues(&dev->ctrl);
2523 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2524 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2525 }
2526 mutex_unlock(&dev->shutdown_lock);
2527 }
2528
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)2529 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2530 {
2531 if (!nvme_wait_reset(&dev->ctrl))
2532 return -EBUSY;
2533 nvme_dev_disable(dev, shutdown);
2534 return 0;
2535 }
2536
nvme_setup_prp_pools(struct nvme_dev * dev)2537 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2538 {
2539 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2540 NVME_CTRL_PAGE_SIZE,
2541 NVME_CTRL_PAGE_SIZE, 0);
2542 if (!dev->prp_page_pool)
2543 return -ENOMEM;
2544
2545 /* Optimisation for I/Os between 4k and 128k */
2546 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2547 256, 256, 0);
2548 if (!dev->prp_small_pool) {
2549 dma_pool_destroy(dev->prp_page_pool);
2550 return -ENOMEM;
2551 }
2552 return 0;
2553 }
2554
nvme_release_prp_pools(struct nvme_dev * dev)2555 static void nvme_release_prp_pools(struct nvme_dev *dev)
2556 {
2557 dma_pool_destroy(dev->prp_page_pool);
2558 dma_pool_destroy(dev->prp_small_pool);
2559 }
2560
nvme_free_tagset(struct nvme_dev * dev)2561 static void nvme_free_tagset(struct nvme_dev *dev)
2562 {
2563 if (dev->tagset.tags)
2564 blk_mq_free_tag_set(&dev->tagset);
2565 dev->ctrl.tagset = NULL;
2566 }
2567
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2568 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2569 {
2570 struct nvme_dev *dev = to_nvme_dev(ctrl);
2571
2572 nvme_dbbuf_dma_free(dev);
2573 nvme_free_tagset(dev);
2574 if (dev->ctrl.admin_q)
2575 blk_put_queue(dev->ctrl.admin_q);
2576 free_opal_dev(dev->ctrl.opal_dev);
2577 mempool_destroy(dev->iod_mempool);
2578 put_device(dev->dev);
2579 kfree(dev->queues);
2580 kfree(dev);
2581 }
2582
nvme_remove_dead_ctrl(struct nvme_dev * dev)2583 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2584 {
2585 /*
2586 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2587 * may be holding this pci_dev's device lock.
2588 */
2589 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2590 nvme_get_ctrl(&dev->ctrl);
2591 nvme_dev_disable(dev, false);
2592 nvme_kill_queues(&dev->ctrl);
2593 if (!queue_work(nvme_wq, &dev->remove_work))
2594 nvme_put_ctrl(&dev->ctrl);
2595 }
2596
nvme_reset_work(struct work_struct * work)2597 static void nvme_reset_work(struct work_struct *work)
2598 {
2599 struct nvme_dev *dev =
2600 container_of(work, struct nvme_dev, ctrl.reset_work);
2601 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2602 int result;
2603
2604 if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2605 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2606 dev->ctrl.state);
2607 result = -ENODEV;
2608 goto out;
2609 }
2610
2611 /*
2612 * If we're called to reset a live controller first shut it down before
2613 * moving on.
2614 */
2615 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2616 nvme_dev_disable(dev, false);
2617 nvme_sync_queues(&dev->ctrl);
2618
2619 mutex_lock(&dev->shutdown_lock);
2620 result = nvme_pci_enable(dev);
2621 if (result)
2622 goto out_unlock;
2623
2624 result = nvme_pci_configure_admin_queue(dev);
2625 if (result)
2626 goto out_unlock;
2627
2628 result = nvme_alloc_admin_tags(dev);
2629 if (result)
2630 goto out_unlock;
2631
2632 dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2633
2634 /*
2635 * Limit the max command size to prevent iod->sg allocations going
2636 * over a single page.
2637 */
2638 dev->ctrl.max_hw_sectors = min_t(u32,
2639 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2640 dev->ctrl.max_segments = NVME_MAX_SEGS;
2641
2642 /*
2643 * Don't limit the IOMMU merged segment size.
2644 */
2645 dma_set_max_seg_size(dev->dev, 0xffffffff);
2646
2647 mutex_unlock(&dev->shutdown_lock);
2648
2649 /*
2650 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2651 * initializing procedure here.
2652 */
2653 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2654 dev_warn(dev->ctrl.device,
2655 "failed to mark controller CONNECTING\n");
2656 result = -EBUSY;
2657 goto out;
2658 }
2659
2660 /*
2661 * We do not support an SGL for metadata (yet), so we are limited to a
2662 * single integrity segment for the separate metadata pointer.
2663 */
2664 dev->ctrl.max_integrity_segments = 1;
2665
2666 result = nvme_init_identify(&dev->ctrl);
2667 if (result)
2668 goto out;
2669
2670 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2671 if (!dev->ctrl.opal_dev)
2672 dev->ctrl.opal_dev =
2673 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2674 else if (was_suspend)
2675 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2676 } else {
2677 free_opal_dev(dev->ctrl.opal_dev);
2678 dev->ctrl.opal_dev = NULL;
2679 }
2680
2681 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2682 result = nvme_dbbuf_dma_alloc(dev);
2683 if (result)
2684 dev_warn(dev->dev,
2685 "unable to allocate dma for dbbuf\n");
2686 }
2687
2688 if (dev->ctrl.hmpre) {
2689 result = nvme_setup_host_mem(dev);
2690 if (result < 0)
2691 goto out;
2692 }
2693
2694 result = nvme_setup_io_queues(dev);
2695 if (result)
2696 goto out;
2697
2698 /*
2699 * Keep the controller around but remove all namespaces if we don't have
2700 * any working I/O queue.
2701 */
2702 if (dev->online_queues < 2) {
2703 dev_warn(dev->ctrl.device, "IO queues not created\n");
2704 nvme_kill_queues(&dev->ctrl);
2705 nvme_remove_namespaces(&dev->ctrl);
2706 nvme_free_tagset(dev);
2707 } else {
2708 nvme_start_queues(&dev->ctrl);
2709 nvme_wait_freeze(&dev->ctrl);
2710 nvme_dev_add(dev);
2711 nvme_unfreeze(&dev->ctrl);
2712 }
2713
2714 /*
2715 * If only admin queue live, keep it to do further investigation or
2716 * recovery.
2717 */
2718 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2719 dev_warn(dev->ctrl.device,
2720 "failed to mark controller live state\n");
2721 result = -ENODEV;
2722 goto out;
2723 }
2724
2725 nvme_start_ctrl(&dev->ctrl);
2726 return;
2727
2728 out_unlock:
2729 mutex_unlock(&dev->shutdown_lock);
2730 out:
2731 if (result)
2732 dev_warn(dev->ctrl.device,
2733 "Removing after probe failure status: %d\n", result);
2734 nvme_remove_dead_ctrl(dev);
2735 }
2736
nvme_remove_dead_ctrl_work(struct work_struct * work)2737 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2738 {
2739 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2740 struct pci_dev *pdev = to_pci_dev(dev->dev);
2741
2742 if (pci_get_drvdata(pdev))
2743 device_release_driver(&pdev->dev);
2744 nvme_put_ctrl(&dev->ctrl);
2745 }
2746
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)2747 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2748 {
2749 *val = readl(to_nvme_dev(ctrl)->bar + off);
2750 return 0;
2751 }
2752
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)2753 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2754 {
2755 writel(val, to_nvme_dev(ctrl)->bar + off);
2756 return 0;
2757 }
2758
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)2759 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2760 {
2761 *val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2762 return 0;
2763 }
2764
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2765 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2766 {
2767 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2768
2769 return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2770 }
2771
2772 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2773 .name = "pcie",
2774 .module = THIS_MODULE,
2775 .flags = NVME_F_METADATA_SUPPORTED |
2776 NVME_F_PCI_P2PDMA,
2777 .reg_read32 = nvme_pci_reg_read32,
2778 .reg_write32 = nvme_pci_reg_write32,
2779 .reg_read64 = nvme_pci_reg_read64,
2780 .free_ctrl = nvme_pci_free_ctrl,
2781 .submit_async_event = nvme_pci_submit_async_event,
2782 .get_address = nvme_pci_get_address,
2783 };
2784
nvme_dev_map(struct nvme_dev * dev)2785 static int nvme_dev_map(struct nvme_dev *dev)
2786 {
2787 struct pci_dev *pdev = to_pci_dev(dev->dev);
2788
2789 if (pci_request_mem_regions(pdev, "nvme"))
2790 return -ENODEV;
2791
2792 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2793 goto release;
2794
2795 return 0;
2796 release:
2797 pci_release_mem_regions(pdev);
2798 return -ENODEV;
2799 }
2800
check_vendor_combination_bug(struct pci_dev * pdev)2801 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2802 {
2803 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2804 /*
2805 * Several Samsung devices seem to drop off the PCIe bus
2806 * randomly when APST is on and uses the deepest sleep state.
2807 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2808 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2809 * 950 PRO 256GB", but it seems to be restricted to two Dell
2810 * laptops.
2811 */
2812 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2813 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2814 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2815 return NVME_QUIRK_NO_DEEPEST_PS;
2816 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2817 /*
2818 * Samsung SSD 960 EVO drops off the PCIe bus after system
2819 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2820 * within few minutes after bootup on a Coffee Lake board -
2821 * ASUS PRIME Z370-A
2822 */
2823 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2824 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2825 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2826 return NVME_QUIRK_NO_APST;
2827 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2828 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2829 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2830 /*
2831 * Forcing to use host managed nvme power settings for
2832 * lowest idle power with quick resume latency on
2833 * Samsung and Toshiba SSDs based on suspend behavior
2834 * on Coffee Lake board for LENOVO C640
2835 */
2836 if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2837 dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2838 return NVME_QUIRK_SIMPLE_SUSPEND;
2839 }
2840
2841 return 0;
2842 }
2843
2844 #ifdef CONFIG_ACPI
nvme_acpi_storage_d3(struct pci_dev * dev)2845 static bool nvme_acpi_storage_d3(struct pci_dev *dev)
2846 {
2847 struct acpi_device *adev = ACPI_COMPANION(&dev->dev);
2848 u8 val;
2849
2850 /*
2851 * Look for _DSD property specifying that the storage device on the port
2852 * must use D3 to support deep platform power savings during
2853 * suspend-to-idle.
2854 */
2855
2856 if (!adev)
2857 return false;
2858 if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable",
2859 &val))
2860 return false;
2861 return val == 1;
2862 }
2863 #else
nvme_acpi_storage_d3(struct pci_dev * dev)2864 static inline bool nvme_acpi_storage_d3(struct pci_dev *dev)
2865 {
2866 return false;
2867 }
2868 #endif /* CONFIG_ACPI */
2869
nvme_async_probe(void * data,async_cookie_t cookie)2870 static void nvme_async_probe(void *data, async_cookie_t cookie)
2871 {
2872 struct nvme_dev *dev = data;
2873
2874 flush_work(&dev->ctrl.reset_work);
2875 flush_work(&dev->ctrl.scan_work);
2876 nvme_put_ctrl(&dev->ctrl);
2877 }
2878
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)2879 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2880 {
2881 int node, result = -ENOMEM;
2882 struct nvme_dev *dev;
2883 unsigned long quirks = id->driver_data;
2884 size_t alloc_size;
2885
2886 node = dev_to_node(&pdev->dev);
2887 if (node == NUMA_NO_NODE)
2888 set_dev_node(&pdev->dev, first_memory_node);
2889
2890 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2891 if (!dev)
2892 return -ENOMEM;
2893
2894 dev->nr_write_queues = write_queues;
2895 dev->nr_poll_queues = poll_queues;
2896 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2897 dev->queues = kcalloc_node(dev->nr_allocated_queues,
2898 sizeof(struct nvme_queue), GFP_KERNEL, node);
2899 if (!dev->queues)
2900 goto free;
2901
2902 dev->dev = get_device(&pdev->dev);
2903 pci_set_drvdata(pdev, dev);
2904
2905 result = nvme_dev_map(dev);
2906 if (result)
2907 goto put_pci;
2908
2909 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2910 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2911 mutex_init(&dev->shutdown_lock);
2912
2913 result = nvme_setup_prp_pools(dev);
2914 if (result)
2915 goto unmap;
2916
2917 quirks |= check_vendor_combination_bug(pdev);
2918
2919 if (!noacpi && nvme_acpi_storage_d3(pdev)) {
2920 /*
2921 * Some systems use a bios work around to ask for D3 on
2922 * platforms that support kernel managed suspend.
2923 */
2924 dev_info(&pdev->dev,
2925 "platform quirk: setting simple suspend\n");
2926 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2927 }
2928
2929 /*
2930 * Double check that our mempool alloc size will cover the biggest
2931 * command we support.
2932 */
2933 alloc_size = nvme_pci_iod_alloc_size();
2934 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2935
2936 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2937 mempool_kfree,
2938 (void *) alloc_size,
2939 GFP_KERNEL, node);
2940 if (!dev->iod_mempool) {
2941 result = -ENOMEM;
2942 goto release_pools;
2943 }
2944
2945 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2946 quirks);
2947 if (result)
2948 goto release_mempool;
2949
2950 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2951
2952 nvme_reset_ctrl(&dev->ctrl);
2953 async_schedule(nvme_async_probe, dev);
2954
2955 return 0;
2956
2957 release_mempool:
2958 mempool_destroy(dev->iod_mempool);
2959 release_pools:
2960 nvme_release_prp_pools(dev);
2961 unmap:
2962 nvme_dev_unmap(dev);
2963 put_pci:
2964 put_device(dev->dev);
2965 free:
2966 kfree(dev->queues);
2967 kfree(dev);
2968 return result;
2969 }
2970
nvme_reset_prepare(struct pci_dev * pdev)2971 static void nvme_reset_prepare(struct pci_dev *pdev)
2972 {
2973 struct nvme_dev *dev = pci_get_drvdata(pdev);
2974
2975 /*
2976 * We don't need to check the return value from waiting for the reset
2977 * state as pci_dev device lock is held, making it impossible to race
2978 * with ->remove().
2979 */
2980 nvme_disable_prepare_reset(dev, false);
2981 nvme_sync_queues(&dev->ctrl);
2982 }
2983
nvme_reset_done(struct pci_dev * pdev)2984 static void nvme_reset_done(struct pci_dev *pdev)
2985 {
2986 struct nvme_dev *dev = pci_get_drvdata(pdev);
2987
2988 if (!nvme_try_sched_reset(&dev->ctrl))
2989 flush_work(&dev->ctrl.reset_work);
2990 }
2991
nvme_shutdown(struct pci_dev * pdev)2992 static void nvme_shutdown(struct pci_dev *pdev)
2993 {
2994 struct nvme_dev *dev = pci_get_drvdata(pdev);
2995
2996 nvme_disable_prepare_reset(dev, true);
2997 }
2998
2999 /*
3000 * The driver's remove may be called on a device in a partially initialized
3001 * state. This function must not have any dependencies on the device state in
3002 * order to proceed.
3003 */
nvme_remove(struct pci_dev * pdev)3004 static void nvme_remove(struct pci_dev *pdev)
3005 {
3006 struct nvme_dev *dev = pci_get_drvdata(pdev);
3007
3008 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3009 pci_set_drvdata(pdev, NULL);
3010
3011 if (!pci_device_is_present(pdev)) {
3012 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3013 nvme_dev_disable(dev, true);
3014 }
3015
3016 flush_work(&dev->ctrl.reset_work);
3017 nvme_stop_ctrl(&dev->ctrl);
3018 nvme_remove_namespaces(&dev->ctrl);
3019 nvme_dev_disable(dev, true);
3020 nvme_release_cmb(dev);
3021 nvme_free_host_mem(dev);
3022 nvme_dev_remove_admin(dev);
3023 nvme_free_queues(dev, 0);
3024 nvme_release_prp_pools(dev);
3025 nvme_dev_unmap(dev);
3026 nvme_uninit_ctrl(&dev->ctrl);
3027 }
3028
3029 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3030 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3031 {
3032 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3033 }
3034
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3035 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3036 {
3037 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3038 }
3039
nvme_resume(struct device * dev)3040 static int nvme_resume(struct device *dev)
3041 {
3042 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3043 struct nvme_ctrl *ctrl = &ndev->ctrl;
3044
3045 if (ndev->last_ps == U32_MAX ||
3046 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3047 return nvme_try_sched_reset(&ndev->ctrl);
3048 return 0;
3049 }
3050
nvme_suspend(struct device * dev)3051 static int nvme_suspend(struct device *dev)
3052 {
3053 struct pci_dev *pdev = to_pci_dev(dev);
3054 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3055 struct nvme_ctrl *ctrl = &ndev->ctrl;
3056 int ret = -EBUSY;
3057
3058 ndev->last_ps = U32_MAX;
3059
3060 /*
3061 * The platform does not remove power for a kernel managed suspend so
3062 * use host managed nvme power settings for lowest idle power if
3063 * possible. This should have quicker resume latency than a full device
3064 * shutdown. But if the firmware is involved after the suspend or the
3065 * device does not support any non-default power states, shut down the
3066 * device fully.
3067 *
3068 * If ASPM is not enabled for the device, shut down the device and allow
3069 * the PCI bus layer to put it into D3 in order to take the PCIe link
3070 * down, so as to allow the platform to achieve its minimum low-power
3071 * state (which may not be possible if the link is up).
3072 *
3073 * If a host memory buffer is enabled, shut down the device as the NVMe
3074 * specification allows the device to access the host memory buffer in
3075 * host DRAM from all power states, but hosts will fail access to DRAM
3076 * during S3.
3077 */
3078 if (pm_suspend_via_firmware() || !ctrl->npss ||
3079 !pcie_aspm_enabled(pdev) ||
3080 ndev->nr_host_mem_descs ||
3081 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3082 return nvme_disable_prepare_reset(ndev, true);
3083
3084 nvme_start_freeze(ctrl);
3085 nvme_wait_freeze(ctrl);
3086 nvme_sync_queues(ctrl);
3087
3088 if (ctrl->state != NVME_CTRL_LIVE)
3089 goto unfreeze;
3090
3091 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3092 if (ret < 0)
3093 goto unfreeze;
3094
3095 /*
3096 * A saved state prevents pci pm from generically controlling the
3097 * device's power. If we're using protocol specific settings, we don't
3098 * want pci interfering.
3099 */
3100 pci_save_state(pdev);
3101
3102 ret = nvme_set_power_state(ctrl, ctrl->npss);
3103 if (ret < 0)
3104 goto unfreeze;
3105
3106 if (ret) {
3107 /* discard the saved state */
3108 pci_load_saved_state(pdev, NULL);
3109
3110 /*
3111 * Clearing npss forces a controller reset on resume. The
3112 * correct value will be rediscovered then.
3113 */
3114 ret = nvme_disable_prepare_reset(ndev, true);
3115 ctrl->npss = 0;
3116 }
3117 unfreeze:
3118 nvme_unfreeze(ctrl);
3119 return ret;
3120 }
3121
nvme_simple_suspend(struct device * dev)3122 static int nvme_simple_suspend(struct device *dev)
3123 {
3124 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3125
3126 return nvme_disable_prepare_reset(ndev, true);
3127 }
3128
nvme_simple_resume(struct device * dev)3129 static int nvme_simple_resume(struct device *dev)
3130 {
3131 struct pci_dev *pdev = to_pci_dev(dev);
3132 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3133
3134 return nvme_try_sched_reset(&ndev->ctrl);
3135 }
3136
3137 static const struct dev_pm_ops nvme_dev_pm_ops = {
3138 .suspend = nvme_suspend,
3139 .resume = nvme_resume,
3140 .freeze = nvme_simple_suspend,
3141 .thaw = nvme_simple_resume,
3142 .poweroff = nvme_simple_suspend,
3143 .restore = nvme_simple_resume,
3144 };
3145 #endif /* CONFIG_PM_SLEEP */
3146
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3147 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3148 pci_channel_state_t state)
3149 {
3150 struct nvme_dev *dev = pci_get_drvdata(pdev);
3151
3152 /*
3153 * A frozen channel requires a reset. When detected, this method will
3154 * shutdown the controller to quiesce. The controller will be restarted
3155 * after the slot reset through driver's slot_reset callback.
3156 */
3157 switch (state) {
3158 case pci_channel_io_normal:
3159 return PCI_ERS_RESULT_CAN_RECOVER;
3160 case pci_channel_io_frozen:
3161 dev_warn(dev->ctrl.device,
3162 "frozen state error detected, reset controller\n");
3163 nvme_dev_disable(dev, false);
3164 return PCI_ERS_RESULT_NEED_RESET;
3165 case pci_channel_io_perm_failure:
3166 dev_warn(dev->ctrl.device,
3167 "failure state error detected, request disconnect\n");
3168 return PCI_ERS_RESULT_DISCONNECT;
3169 }
3170 return PCI_ERS_RESULT_NEED_RESET;
3171 }
3172
nvme_slot_reset(struct pci_dev * pdev)3173 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3174 {
3175 struct nvme_dev *dev = pci_get_drvdata(pdev);
3176
3177 dev_info(dev->ctrl.device, "restart after slot reset\n");
3178 pci_restore_state(pdev);
3179 nvme_reset_ctrl(&dev->ctrl);
3180 return PCI_ERS_RESULT_RECOVERED;
3181 }
3182
nvme_error_resume(struct pci_dev * pdev)3183 static void nvme_error_resume(struct pci_dev *pdev)
3184 {
3185 struct nvme_dev *dev = pci_get_drvdata(pdev);
3186
3187 flush_work(&dev->ctrl.reset_work);
3188 }
3189
3190 static const struct pci_error_handlers nvme_err_handler = {
3191 .error_detected = nvme_error_detected,
3192 .slot_reset = nvme_slot_reset,
3193 .resume = nvme_error_resume,
3194 .reset_prepare = nvme_reset_prepare,
3195 .reset_done = nvme_reset_done,
3196 };
3197
3198 static const struct pci_device_id nvme_id_table[] = {
3199 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3200 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3201 NVME_QUIRK_DEALLOCATE_ZEROES, },
3202 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3203 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3204 NVME_QUIRK_DEALLOCATE_ZEROES, },
3205 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3206 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3207 NVME_QUIRK_DEALLOCATE_ZEROES |
3208 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3209 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3210 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3211 NVME_QUIRK_DEALLOCATE_ZEROES, },
3212 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3213 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3214 NVME_QUIRK_MEDIUM_PRIO_SQ |
3215 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3216 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3217 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3218 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3219 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3220 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3221 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3222 NVME_QUIRK_BOGUS_NID, },
3223 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3224 .driver_data = NVME_QUIRK_BOGUS_NID, },
3225 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3226 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3227 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3228 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3229 NVME_QUIRK_NO_NS_DESC_LIST, },
3230 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3231 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3232 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3233 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3234 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3235 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3236 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3237 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3238 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3239 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3240 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3241 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3242 { PCI_DEVICE(0x1987, 0x5013), /* Phison E13 */
3243 .driver_data = NVME_QUIRK_LIMIT_IOQD32},
3244 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3245 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3246 NVME_QUIRK_BOGUS_NID, },
3247 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3248 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3249 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3250 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
3251 .driver_data = NVME_QUIRK_LIGHTNVM, },
3252 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
3253 .driver_data = NVME_QUIRK_LIGHTNVM, },
3254 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
3255 .driver_data = NVME_QUIRK_LIGHTNVM, },
3256 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3257 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3258 NVME_QUIRK_BOGUS_NID, },
3259 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3260 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3261 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3262 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3263 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3264 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3265 .driver_data = NVME_QUIRK_BOGUS_NID, },
3266 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3267 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3268 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3269 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3270 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3271 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3272 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3273 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3274 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3275 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3276 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3277 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3278 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3279 NVME_QUIRK_128_BYTES_SQES |
3280 NVME_QUIRK_SHARED_TAGS |
3281 NVME_QUIRK_SKIP_CID_GEN },
3282 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3283 { 0, }
3284 };
3285 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3286
3287 static struct pci_driver nvme_driver = {
3288 .name = "nvme",
3289 .id_table = nvme_id_table,
3290 .probe = nvme_probe,
3291 .remove = nvme_remove,
3292 .shutdown = nvme_shutdown,
3293 #ifdef CONFIG_PM_SLEEP
3294 .driver = {
3295 .pm = &nvme_dev_pm_ops,
3296 },
3297 #endif
3298 .sriov_configure = pci_sriov_configure_simple,
3299 .err_handler = &nvme_err_handler,
3300 };
3301
nvme_init(void)3302 static int __init nvme_init(void)
3303 {
3304 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3305 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3306 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3307 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3308
3309 return pci_register_driver(&nvme_driver);
3310 }
3311
nvme_exit(void)3312 static void __exit nvme_exit(void)
3313 {
3314 pci_unregister_driver(&nvme_driver);
3315 flush_workqueue(nvme_wq);
3316 }
3317
3318 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3319 MODULE_LICENSE("GPL");
3320 MODULE_VERSION("1.0");
3321 module_init(nvme_init);
3322 module_exit(nvme_exit);
3323