xref: /OK3568_Linux_fs/kernel/drivers/nvme/host/pci.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/aer.h>
9 #include <linux/async.h>
10 #include <linux/blkdev.h>
11 #include <linux/blk-mq.h>
12 #include <linux/blk-mq-pci.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/once.h>
21 #include <linux/pci.h>
22 #include <linux/suspend.h>
23 #include <linux/t10-pi.h>
24 #include <linux/types.h>
25 #include <linux/io-64-nonatomic-lo-hi.h>
26 #include <linux/io-64-nonatomic-hi-lo.h>
27 #include <linux/sed-opal.h>
28 #include <linux/pci-p2pdma.h>
29 
30 #include "trace.h"
31 #include "nvme.h"
32 
33 #define SQ_SIZE(q)	((q)->q_depth << (q)->sqes)
34 #define CQ_SIZE(q)	((q)->q_depth * sizeof(struct nvme_completion))
35 
36 #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc))
37 
38 /*
39  * These can be higher, but we need to ensure that any command doesn't
40  * require an sg allocation that needs more than a page of data.
41  */
42 #define NVME_MAX_KB_SZ	4096
43 #define NVME_MAX_SEGS	127
44 
45 static int use_threaded_interrupts;
46 module_param(use_threaded_interrupts, int, 0);
47 
48 static bool use_cmb_sqes = true;
49 module_param(use_cmb_sqes, bool, 0444);
50 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
51 
52 static unsigned int max_host_mem_size_mb = 128;
53 module_param(max_host_mem_size_mb, uint, 0444);
54 MODULE_PARM_DESC(max_host_mem_size_mb,
55 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
56 
57 static unsigned int sgl_threshold = SZ_32K;
58 module_param(sgl_threshold, uint, 0644);
59 MODULE_PARM_DESC(sgl_threshold,
60 		"Use SGLs when average request segment size is larger or equal to "
61 		"this size. Use 0 to disable SGLs.");
62 
63 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
64 static const struct kernel_param_ops io_queue_depth_ops = {
65 	.set = io_queue_depth_set,
66 	.get = param_get_uint,
67 };
68 
69 static unsigned int io_queue_depth = 1024;
70 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
71 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
72 
io_queue_count_set(const char * val,const struct kernel_param * kp)73 static int io_queue_count_set(const char *val, const struct kernel_param *kp)
74 {
75 	unsigned int n;
76 	int ret;
77 
78 	ret = kstrtouint(val, 10, &n);
79 	if (ret != 0 || n > num_possible_cpus())
80 		return -EINVAL;
81 	return param_set_uint(val, kp);
82 }
83 
84 static const struct kernel_param_ops io_queue_count_ops = {
85 	.set = io_queue_count_set,
86 	.get = param_get_uint,
87 };
88 
89 static unsigned int write_queues;
90 module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
91 MODULE_PARM_DESC(write_queues,
92 	"Number of queues to use for writes. If not set, reads and writes "
93 	"will share a queue set.");
94 
95 static unsigned int poll_queues;
96 module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
97 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
98 
99 static bool noacpi;
100 module_param(noacpi, bool, 0444);
101 MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
102 
103 struct nvme_dev;
104 struct nvme_queue;
105 
106 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
107 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
108 
109 /*
110  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
111  */
112 struct nvme_dev {
113 	struct nvme_queue *queues;
114 	struct blk_mq_tag_set tagset;
115 	struct blk_mq_tag_set admin_tagset;
116 	u32 __iomem *dbs;
117 	struct device *dev;
118 	struct dma_pool *prp_page_pool;
119 	struct dma_pool *prp_small_pool;
120 	unsigned online_queues;
121 	unsigned max_qid;
122 	unsigned io_queues[HCTX_MAX_TYPES];
123 	unsigned int num_vecs;
124 	u32 q_depth;
125 	int io_sqes;
126 	u32 db_stride;
127 	void __iomem *bar;
128 	unsigned long bar_mapped_size;
129 	struct work_struct remove_work;
130 	struct mutex shutdown_lock;
131 	bool subsystem;
132 	u64 cmb_size;
133 	bool cmb_use_sqes;
134 	u32 cmbsz;
135 	u32 cmbloc;
136 	struct nvme_ctrl ctrl;
137 	u32 last_ps;
138 
139 	mempool_t *iod_mempool;
140 
141 	/* shadow doorbell buffer support: */
142 	u32 *dbbuf_dbs;
143 	dma_addr_t dbbuf_dbs_dma_addr;
144 	u32 *dbbuf_eis;
145 	dma_addr_t dbbuf_eis_dma_addr;
146 
147 	/* host memory buffer support: */
148 	u64 host_mem_size;
149 	u32 nr_host_mem_descs;
150 	dma_addr_t host_mem_descs_dma;
151 	struct nvme_host_mem_buf_desc *host_mem_descs;
152 	void **host_mem_desc_bufs;
153 	unsigned int nr_allocated_queues;
154 	unsigned int nr_write_queues;
155 	unsigned int nr_poll_queues;
156 };
157 
io_queue_depth_set(const char * val,const struct kernel_param * kp)158 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
159 {
160 	int ret;
161 	u32 n;
162 
163 	ret = kstrtou32(val, 10, &n);
164 	if (ret != 0 || n < 2)
165 		return -EINVAL;
166 
167 	return param_set_uint(val, kp);
168 }
169 
sq_idx(unsigned int qid,u32 stride)170 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171 {
172 	return qid * 2 * stride;
173 }
174 
cq_idx(unsigned int qid,u32 stride)175 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176 {
177 	return (qid * 2 + 1) * stride;
178 }
179 
to_nvme_dev(struct nvme_ctrl * ctrl)180 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181 {
182 	return container_of(ctrl, struct nvme_dev, ctrl);
183 }
184 
185 /*
186  * An NVM Express queue.  Each device has at least two (one for admin
187  * commands and one for I/O commands).
188  */
189 struct nvme_queue {
190 	struct nvme_dev *dev;
191 	spinlock_t sq_lock;
192 	void *sq_cmds;
193 	 /* only used for poll queues: */
194 	spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 	struct nvme_completion *cqes;
196 	dma_addr_t sq_dma_addr;
197 	dma_addr_t cq_dma_addr;
198 	u32 __iomem *q_db;
199 	u32 q_depth;
200 	u16 cq_vector;
201 	u16 sq_tail;
202 	u16 last_sq_tail;
203 	u16 cq_head;
204 	u16 qid;
205 	u8 cq_phase;
206 	u8 sqes;
207 	unsigned long flags;
208 #define NVMEQ_ENABLED		0
209 #define NVMEQ_SQ_CMB		1
210 #define NVMEQ_DELETE_ERROR	2
211 #define NVMEQ_POLLED		3
212 	u32 *dbbuf_sq_db;
213 	u32 *dbbuf_cq_db;
214 	u32 *dbbuf_sq_ei;
215 	u32 *dbbuf_cq_ei;
216 	struct completion delete_done;
217 };
218 
219 /*
220  * The nvme_iod describes the data in an I/O.
221  *
222  * The sg pointer contains the list of PRP/SGL chunk allocations in addition
223  * to the actual struct scatterlist.
224  */
225 struct nvme_iod {
226 	struct nvme_request req;
227 	struct nvme_command cmd;
228 	struct nvme_queue *nvmeq;
229 	bool use_sgl;
230 	int aborted;
231 	int npages;		/* In the PRP list. 0 means small pool in use */
232 	int nents;		/* Used in scatterlist */
233 	dma_addr_t first_dma;
234 	unsigned int dma_len;	/* length of single DMA segment mapping */
235 	dma_addr_t meta_dma;
236 	struct scatterlist *sg;
237 };
238 
nvme_dbbuf_size(struct nvme_dev * dev)239 static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
240 {
241 	return dev->nr_allocated_queues * 8 * dev->db_stride;
242 }
243 
nvme_dbbuf_dma_alloc(struct nvme_dev * dev)244 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
245 {
246 	unsigned int mem_size = nvme_dbbuf_size(dev);
247 
248 	if (dev->dbbuf_dbs)
249 		return 0;
250 
251 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
252 					    &dev->dbbuf_dbs_dma_addr,
253 					    GFP_KERNEL);
254 	if (!dev->dbbuf_dbs)
255 		return -ENOMEM;
256 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
257 					    &dev->dbbuf_eis_dma_addr,
258 					    GFP_KERNEL);
259 	if (!dev->dbbuf_eis) {
260 		dma_free_coherent(dev->dev, mem_size,
261 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
262 		dev->dbbuf_dbs = NULL;
263 		return -ENOMEM;
264 	}
265 
266 	return 0;
267 }
268 
nvme_dbbuf_dma_free(struct nvme_dev * dev)269 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
270 {
271 	unsigned int mem_size = nvme_dbbuf_size(dev);
272 
273 	if (dev->dbbuf_dbs) {
274 		dma_free_coherent(dev->dev, mem_size,
275 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
276 		dev->dbbuf_dbs = NULL;
277 	}
278 	if (dev->dbbuf_eis) {
279 		dma_free_coherent(dev->dev, mem_size,
280 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
281 		dev->dbbuf_eis = NULL;
282 	}
283 }
284 
nvme_dbbuf_init(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)285 static void nvme_dbbuf_init(struct nvme_dev *dev,
286 			    struct nvme_queue *nvmeq, int qid)
287 {
288 	if (!dev->dbbuf_dbs || !qid)
289 		return;
290 
291 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
292 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
293 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
294 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
295 }
296 
nvme_dbbuf_free(struct nvme_queue * nvmeq)297 static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
298 {
299 	if (!nvmeq->qid)
300 		return;
301 
302 	nvmeq->dbbuf_sq_db = NULL;
303 	nvmeq->dbbuf_cq_db = NULL;
304 	nvmeq->dbbuf_sq_ei = NULL;
305 	nvmeq->dbbuf_cq_ei = NULL;
306 }
307 
nvme_dbbuf_set(struct nvme_dev * dev)308 static void nvme_dbbuf_set(struct nvme_dev *dev)
309 {
310 	struct nvme_command c;
311 	unsigned int i;
312 
313 	if (!dev->dbbuf_dbs)
314 		return;
315 
316 	memset(&c, 0, sizeof(c));
317 	c.dbbuf.opcode = nvme_admin_dbbuf;
318 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
319 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
320 
321 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
322 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
323 		/* Free memory and continue on */
324 		nvme_dbbuf_dma_free(dev);
325 
326 		for (i = 1; i <= dev->online_queues; i++)
327 			nvme_dbbuf_free(&dev->queues[i]);
328 	}
329 }
330 
nvme_dbbuf_need_event(u16 event_idx,u16 new_idx,u16 old)331 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
332 {
333 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
334 }
335 
336 /* Update dbbuf and return true if an MMIO is required */
nvme_dbbuf_update_and_check_event(u16 value,u32 * dbbuf_db,volatile u32 * dbbuf_ei)337 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
338 					      volatile u32 *dbbuf_ei)
339 {
340 	if (dbbuf_db) {
341 		u16 old_value;
342 
343 		/*
344 		 * Ensure that the queue is written before updating
345 		 * the doorbell in memory
346 		 */
347 		wmb();
348 
349 		old_value = *dbbuf_db;
350 		*dbbuf_db = value;
351 
352 		/*
353 		 * Ensure that the doorbell is updated before reading the event
354 		 * index from memory.  The controller needs to provide similar
355 		 * ordering to ensure the envent index is updated before reading
356 		 * the doorbell.
357 		 */
358 		mb();
359 
360 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
361 			return false;
362 	}
363 
364 	return true;
365 }
366 
367 /*
368  * Will slightly overestimate the number of pages needed.  This is OK
369  * as it only leads to a small amount of wasted memory for the lifetime of
370  * the I/O.
371  */
nvme_pci_npages_prp(void)372 static int nvme_pci_npages_prp(void)
373 {
374 	unsigned nprps = DIV_ROUND_UP(NVME_MAX_KB_SZ + NVME_CTRL_PAGE_SIZE,
375 				      NVME_CTRL_PAGE_SIZE);
376 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
377 }
378 
379 /*
380  * Calculates the number of pages needed for the SGL segments. For example a 4k
381  * page can accommodate 256 SGL descriptors.
382  */
nvme_pci_npages_sgl(void)383 static int nvme_pci_npages_sgl(void)
384 {
385 	return DIV_ROUND_UP(NVME_MAX_SEGS * sizeof(struct nvme_sgl_desc),
386 			PAGE_SIZE);
387 }
388 
nvme_pci_iod_alloc_size(void)389 static size_t nvme_pci_iod_alloc_size(void)
390 {
391 	size_t npages = max(nvme_pci_npages_prp(), nvme_pci_npages_sgl());
392 
393 	return sizeof(__le64 *) * npages +
394 		sizeof(struct scatterlist) * NVME_MAX_SEGS;
395 }
396 
nvme_admin_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)397 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
398 				unsigned int hctx_idx)
399 {
400 	struct nvme_dev *dev = data;
401 	struct nvme_queue *nvmeq = &dev->queues[0];
402 
403 	WARN_ON(hctx_idx != 0);
404 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
405 
406 	hctx->driver_data = nvmeq;
407 	return 0;
408 }
409 
nvme_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)410 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
411 			  unsigned int hctx_idx)
412 {
413 	struct nvme_dev *dev = data;
414 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
415 
416 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
417 	hctx->driver_data = nvmeq;
418 	return 0;
419 }
420 
nvme_init_request(struct blk_mq_tag_set * set,struct request * req,unsigned int hctx_idx,unsigned int numa_node)421 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
422 		unsigned int hctx_idx, unsigned int numa_node)
423 {
424 	struct nvme_dev *dev = set->driver_data;
425 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
426 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
427 	struct nvme_queue *nvmeq = &dev->queues[queue_idx];
428 
429 	BUG_ON(!nvmeq);
430 	iod->nvmeq = nvmeq;
431 
432 	nvme_req(req)->ctrl = &dev->ctrl;
433 	return 0;
434 }
435 
queue_irq_offset(struct nvme_dev * dev)436 static int queue_irq_offset(struct nvme_dev *dev)
437 {
438 	/* if we have more than 1 vec, admin queue offsets us by 1 */
439 	if (dev->num_vecs > 1)
440 		return 1;
441 
442 	return 0;
443 }
444 
nvme_pci_map_queues(struct blk_mq_tag_set * set)445 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
446 {
447 	struct nvme_dev *dev = set->driver_data;
448 	int i, qoff, offset;
449 
450 	offset = queue_irq_offset(dev);
451 	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
452 		struct blk_mq_queue_map *map = &set->map[i];
453 
454 		map->nr_queues = dev->io_queues[i];
455 		if (!map->nr_queues) {
456 			BUG_ON(i == HCTX_TYPE_DEFAULT);
457 			continue;
458 		}
459 
460 		/*
461 		 * The poll queue(s) doesn't have an IRQ (and hence IRQ
462 		 * affinity), so use the regular blk-mq cpu mapping
463 		 */
464 		map->queue_offset = qoff;
465 		if (i != HCTX_TYPE_POLL && offset)
466 			blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
467 		else
468 			blk_mq_map_queues(map);
469 		qoff += map->nr_queues;
470 		offset += map->nr_queues;
471 	}
472 
473 	return 0;
474 }
475 
476 /*
477  * Write sq tail if we are asked to, or if the next command would wrap.
478  */
nvme_write_sq_db(struct nvme_queue * nvmeq,bool write_sq)479 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
480 {
481 	if (!write_sq) {
482 		u16 next_tail = nvmeq->sq_tail + 1;
483 
484 		if (next_tail == nvmeq->q_depth)
485 			next_tail = 0;
486 		if (next_tail != nvmeq->last_sq_tail)
487 			return;
488 	}
489 
490 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
491 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
492 		writel(nvmeq->sq_tail, nvmeq->q_db);
493 	nvmeq->last_sq_tail = nvmeq->sq_tail;
494 }
495 
496 /**
497  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
498  * @nvmeq: The queue to use
499  * @cmd: The command to send
500  * @write_sq: whether to write to the SQ doorbell
501  */
nvme_submit_cmd(struct nvme_queue * nvmeq,struct nvme_command * cmd,bool write_sq)502 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
503 			    bool write_sq)
504 {
505 	spin_lock(&nvmeq->sq_lock);
506 	memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
507 	       cmd, sizeof(*cmd));
508 	if (++nvmeq->sq_tail == nvmeq->q_depth)
509 		nvmeq->sq_tail = 0;
510 	nvme_write_sq_db(nvmeq, write_sq);
511 	spin_unlock(&nvmeq->sq_lock);
512 }
513 
nvme_commit_rqs(struct blk_mq_hw_ctx * hctx)514 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
515 {
516 	struct nvme_queue *nvmeq = hctx->driver_data;
517 
518 	spin_lock(&nvmeq->sq_lock);
519 	if (nvmeq->sq_tail != nvmeq->last_sq_tail)
520 		nvme_write_sq_db(nvmeq, true);
521 	spin_unlock(&nvmeq->sq_lock);
522 }
523 
nvme_pci_iod_list(struct request * req)524 static void **nvme_pci_iod_list(struct request *req)
525 {
526 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
527 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
528 }
529 
nvme_pci_use_sgls(struct nvme_dev * dev,struct request * req)530 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
531 {
532 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
533 	int nseg = blk_rq_nr_phys_segments(req);
534 	unsigned int avg_seg_size;
535 
536 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
537 
538 	if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
539 		return false;
540 	if (!iod->nvmeq->qid)
541 		return false;
542 	if (!sgl_threshold || avg_seg_size < sgl_threshold)
543 		return false;
544 	return true;
545 }
546 
nvme_free_prps(struct nvme_dev * dev,struct request * req)547 static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
548 {
549 	const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
550 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
551 	dma_addr_t dma_addr = iod->first_dma;
552 	int i;
553 
554 	for (i = 0; i < iod->npages; i++) {
555 		__le64 *prp_list = nvme_pci_iod_list(req)[i];
556 		dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
557 
558 		dma_pool_free(dev->prp_page_pool, prp_list, dma_addr);
559 		dma_addr = next_dma_addr;
560 	}
561 
562 }
563 
nvme_free_sgls(struct nvme_dev * dev,struct request * req)564 static void nvme_free_sgls(struct nvme_dev *dev, struct request *req)
565 {
566 	const int last_sg = SGES_PER_PAGE - 1;
567 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
568 	dma_addr_t dma_addr = iod->first_dma;
569 	int i;
570 
571 	for (i = 0; i < iod->npages; i++) {
572 		struct nvme_sgl_desc *sg_list = nvme_pci_iod_list(req)[i];
573 		dma_addr_t next_dma_addr = le64_to_cpu((sg_list[last_sg]).addr);
574 
575 		dma_pool_free(dev->prp_page_pool, sg_list, dma_addr);
576 		dma_addr = next_dma_addr;
577 	}
578 
579 }
580 
nvme_unmap_sg(struct nvme_dev * dev,struct request * req)581 static void nvme_unmap_sg(struct nvme_dev *dev, struct request *req)
582 {
583 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
584 
585 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
586 		pci_p2pdma_unmap_sg(dev->dev, iod->sg, iod->nents,
587 				    rq_dma_dir(req));
588 	else
589 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
590 }
591 
nvme_unmap_data(struct nvme_dev * dev,struct request * req)592 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
593 {
594 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
595 
596 	if (iod->dma_len) {
597 		dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
598 			       rq_dma_dir(req));
599 		return;
600 	}
601 
602 	WARN_ON_ONCE(!iod->nents);
603 
604 	nvme_unmap_sg(dev, req);
605 	if (iod->npages == 0)
606 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
607 			      iod->first_dma);
608 	else if (iod->use_sgl)
609 		nvme_free_sgls(dev, req);
610 	else
611 		nvme_free_prps(dev, req);
612 	mempool_free(iod->sg, dev->iod_mempool);
613 }
614 
nvme_print_sgl(struct scatterlist * sgl,int nents)615 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
616 {
617 	int i;
618 	struct scatterlist *sg;
619 
620 	for_each_sg(sgl, sg, nents, i) {
621 		dma_addr_t phys = sg_phys(sg);
622 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
623 			"dma_address:%pad dma_length:%d\n",
624 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
625 			sg_dma_len(sg));
626 	}
627 }
628 
nvme_pci_setup_prps(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd)629 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
630 		struct request *req, struct nvme_rw_command *cmnd)
631 {
632 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
633 	struct dma_pool *pool;
634 	int length = blk_rq_payload_bytes(req);
635 	struct scatterlist *sg = iod->sg;
636 	int dma_len = sg_dma_len(sg);
637 	u64 dma_addr = sg_dma_address(sg);
638 	int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
639 	__le64 *prp_list;
640 	void **list = nvme_pci_iod_list(req);
641 	dma_addr_t prp_dma;
642 	int nprps, i;
643 
644 	length -= (NVME_CTRL_PAGE_SIZE - offset);
645 	if (length <= 0) {
646 		iod->first_dma = 0;
647 		goto done;
648 	}
649 
650 	dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
651 	if (dma_len) {
652 		dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
653 	} else {
654 		sg = sg_next(sg);
655 		dma_addr = sg_dma_address(sg);
656 		dma_len = sg_dma_len(sg);
657 	}
658 
659 	if (length <= NVME_CTRL_PAGE_SIZE) {
660 		iod->first_dma = dma_addr;
661 		goto done;
662 	}
663 
664 	nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
665 	if (nprps <= (256 / 8)) {
666 		pool = dev->prp_small_pool;
667 		iod->npages = 0;
668 	} else {
669 		pool = dev->prp_page_pool;
670 		iod->npages = 1;
671 	}
672 
673 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
674 	if (!prp_list) {
675 		iod->first_dma = dma_addr;
676 		iod->npages = -1;
677 		return BLK_STS_RESOURCE;
678 	}
679 	list[0] = prp_list;
680 	iod->first_dma = prp_dma;
681 	i = 0;
682 	for (;;) {
683 		if (i == NVME_CTRL_PAGE_SIZE >> 3) {
684 			__le64 *old_prp_list = prp_list;
685 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
686 			if (!prp_list)
687 				goto free_prps;
688 			list[iod->npages++] = prp_list;
689 			prp_list[0] = old_prp_list[i - 1];
690 			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
691 			i = 1;
692 		}
693 		prp_list[i++] = cpu_to_le64(dma_addr);
694 		dma_len -= NVME_CTRL_PAGE_SIZE;
695 		dma_addr += NVME_CTRL_PAGE_SIZE;
696 		length -= NVME_CTRL_PAGE_SIZE;
697 		if (length <= 0)
698 			break;
699 		if (dma_len > 0)
700 			continue;
701 		if (unlikely(dma_len < 0))
702 			goto bad_sgl;
703 		sg = sg_next(sg);
704 		dma_addr = sg_dma_address(sg);
705 		dma_len = sg_dma_len(sg);
706 	}
707 done:
708 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
709 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
710 	return BLK_STS_OK;
711 free_prps:
712 	nvme_free_prps(dev, req);
713 	return BLK_STS_RESOURCE;
714 bad_sgl:
715 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
716 			"Invalid SGL for payload:%d nents:%d\n",
717 			blk_rq_payload_bytes(req), iod->nents);
718 	return BLK_STS_IOERR;
719 }
720 
nvme_pci_sgl_set_data(struct nvme_sgl_desc * sge,struct scatterlist * sg)721 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
722 		struct scatterlist *sg)
723 {
724 	sge->addr = cpu_to_le64(sg_dma_address(sg));
725 	sge->length = cpu_to_le32(sg_dma_len(sg));
726 	sge->type = NVME_SGL_FMT_DATA_DESC << 4;
727 }
728 
nvme_pci_sgl_set_seg(struct nvme_sgl_desc * sge,dma_addr_t dma_addr,int entries)729 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
730 		dma_addr_t dma_addr, int entries)
731 {
732 	sge->addr = cpu_to_le64(dma_addr);
733 	if (entries < SGES_PER_PAGE) {
734 		sge->length = cpu_to_le32(entries * sizeof(*sge));
735 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
736 	} else {
737 		sge->length = cpu_to_le32(PAGE_SIZE);
738 		sge->type = NVME_SGL_FMT_SEG_DESC << 4;
739 	}
740 }
741 
nvme_pci_setup_sgls(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmd,int entries)742 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
743 		struct request *req, struct nvme_rw_command *cmd, int entries)
744 {
745 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
746 	struct dma_pool *pool;
747 	struct nvme_sgl_desc *sg_list;
748 	struct scatterlist *sg = iod->sg;
749 	dma_addr_t sgl_dma;
750 	int i = 0;
751 
752 	/* setting the transfer type as SGL */
753 	cmd->flags = NVME_CMD_SGL_METABUF;
754 
755 	if (entries == 1) {
756 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
757 		return BLK_STS_OK;
758 	}
759 
760 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
761 		pool = dev->prp_small_pool;
762 		iod->npages = 0;
763 	} else {
764 		pool = dev->prp_page_pool;
765 		iod->npages = 1;
766 	}
767 
768 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
769 	if (!sg_list) {
770 		iod->npages = -1;
771 		return BLK_STS_RESOURCE;
772 	}
773 
774 	nvme_pci_iod_list(req)[0] = sg_list;
775 	iod->first_dma = sgl_dma;
776 
777 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
778 
779 	do {
780 		if (i == SGES_PER_PAGE) {
781 			struct nvme_sgl_desc *old_sg_desc = sg_list;
782 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
783 
784 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
785 			if (!sg_list)
786 				goto free_sgls;
787 
788 			i = 0;
789 			nvme_pci_iod_list(req)[iod->npages++] = sg_list;
790 			sg_list[i++] = *link;
791 			nvme_pci_sgl_set_seg(link, sgl_dma, entries);
792 		}
793 
794 		nvme_pci_sgl_set_data(&sg_list[i++], sg);
795 		sg = sg_next(sg);
796 	} while (--entries > 0);
797 
798 	return BLK_STS_OK;
799 free_sgls:
800 	nvme_free_sgls(dev, req);
801 	return BLK_STS_RESOURCE;
802 }
803 
nvme_setup_prp_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)804 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
805 		struct request *req, struct nvme_rw_command *cmnd,
806 		struct bio_vec *bv)
807 {
808 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
809 	unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
810 	unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
811 
812 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
813 	if (dma_mapping_error(dev->dev, iod->first_dma))
814 		return BLK_STS_RESOURCE;
815 	iod->dma_len = bv->bv_len;
816 
817 	cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
818 	if (bv->bv_len > first_prp_len)
819 		cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
820 	else
821 		cmnd->dptr.prp2 = 0;
822 	return BLK_STS_OK;
823 }
824 
nvme_setup_sgl_simple(struct nvme_dev * dev,struct request * req,struct nvme_rw_command * cmnd,struct bio_vec * bv)825 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
826 		struct request *req, struct nvme_rw_command *cmnd,
827 		struct bio_vec *bv)
828 {
829 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
830 
831 	iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
832 	if (dma_mapping_error(dev->dev, iod->first_dma))
833 		return BLK_STS_RESOURCE;
834 	iod->dma_len = bv->bv_len;
835 
836 	cmnd->flags = NVME_CMD_SGL_METABUF;
837 	cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
838 	cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
839 	cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
840 	return BLK_STS_OK;
841 }
842 
nvme_map_data(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)843 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
844 		struct nvme_command *cmnd)
845 {
846 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
847 	blk_status_t ret = BLK_STS_RESOURCE;
848 	int nr_mapped;
849 
850 	if (blk_rq_nr_phys_segments(req) == 1) {
851 		struct bio_vec bv = req_bvec(req);
852 
853 		if (!is_pci_p2pdma_page(bv.bv_page)) {
854 			if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
855 				return nvme_setup_prp_simple(dev, req,
856 							     &cmnd->rw, &bv);
857 
858 			if (iod->nvmeq->qid && sgl_threshold &&
859 			    dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
860 				return nvme_setup_sgl_simple(dev, req,
861 							     &cmnd->rw, &bv);
862 		}
863 	}
864 
865 	iod->dma_len = 0;
866 	iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
867 	if (!iod->sg)
868 		return BLK_STS_RESOURCE;
869 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
870 	iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
871 	if (!iod->nents)
872 		goto out_free_sg;
873 
874 	if (is_pci_p2pdma_page(sg_page(iod->sg)))
875 		nr_mapped = pci_p2pdma_map_sg_attrs(dev->dev, iod->sg,
876 				iod->nents, rq_dma_dir(req), DMA_ATTR_NO_WARN);
877 	else
878 		nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
879 					     rq_dma_dir(req), DMA_ATTR_NO_WARN);
880 	if (!nr_mapped)
881 		goto out_free_sg;
882 
883 	iod->use_sgl = nvme_pci_use_sgls(dev, req);
884 	if (iod->use_sgl)
885 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
886 	else
887 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
888 	if (ret != BLK_STS_OK)
889 		goto out_unmap_sg;
890 	return BLK_STS_OK;
891 
892 out_unmap_sg:
893 	nvme_unmap_sg(dev, req);
894 out_free_sg:
895 	mempool_free(iod->sg, dev->iod_mempool);
896 	return ret;
897 }
898 
nvme_map_metadata(struct nvme_dev * dev,struct request * req,struct nvme_command * cmnd)899 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
900 		struct nvme_command *cmnd)
901 {
902 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
903 
904 	iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
905 			rq_dma_dir(req), 0);
906 	if (dma_mapping_error(dev->dev, iod->meta_dma))
907 		return BLK_STS_IOERR;
908 	cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
909 	return BLK_STS_OK;
910 }
911 
912 /*
913  * NOTE: ns is NULL when called on the admin queue.
914  */
nvme_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)915 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
916 			 const struct blk_mq_queue_data *bd)
917 {
918 	struct nvme_ns *ns = hctx->queue->queuedata;
919 	struct nvme_queue *nvmeq = hctx->driver_data;
920 	struct nvme_dev *dev = nvmeq->dev;
921 	struct request *req = bd->rq;
922 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
923 	struct nvme_command *cmnd = &iod->cmd;
924 	blk_status_t ret;
925 
926 	iod->aborted = 0;
927 	iod->npages = -1;
928 	iod->nents = 0;
929 
930 	/*
931 	 * We should not need to do this, but we're still using this to
932 	 * ensure we can drain requests on a dying queue.
933 	 */
934 	if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
935 		return BLK_STS_IOERR;
936 
937 	ret = nvme_setup_cmd(ns, req, cmnd);
938 	if (ret)
939 		return ret;
940 
941 	if (blk_rq_nr_phys_segments(req)) {
942 		ret = nvme_map_data(dev, req, cmnd);
943 		if (ret)
944 			goto out_free_cmd;
945 	}
946 
947 	if (blk_integrity_rq(req)) {
948 		ret = nvme_map_metadata(dev, req, cmnd);
949 		if (ret)
950 			goto out_unmap_data;
951 	}
952 
953 	blk_mq_start_request(req);
954 	nvme_submit_cmd(nvmeq, cmnd, bd->last);
955 	return BLK_STS_OK;
956 out_unmap_data:
957 	nvme_unmap_data(dev, req);
958 out_free_cmd:
959 	nvme_cleanup_cmd(req);
960 	return ret;
961 }
962 
nvme_pci_complete_rq(struct request * req)963 static void nvme_pci_complete_rq(struct request *req)
964 {
965 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
966 	struct nvme_dev *dev = iod->nvmeq->dev;
967 
968 	if (blk_integrity_rq(req))
969 		dma_unmap_page(dev->dev, iod->meta_dma,
970 			       rq_integrity_vec(req)->bv_len, rq_data_dir(req));
971 	if (blk_rq_nr_phys_segments(req))
972 		nvme_unmap_data(dev, req);
973 	nvme_complete_rq(req);
974 }
975 
976 /* We read the CQE phase first to check if the rest of the entry is valid */
nvme_cqe_pending(struct nvme_queue * nvmeq)977 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
978 {
979 	struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
980 
981 	return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
982 }
983 
nvme_ring_cq_doorbell(struct nvme_queue * nvmeq)984 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
985 {
986 	u16 head = nvmeq->cq_head;
987 
988 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
989 					      nvmeq->dbbuf_cq_ei))
990 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
991 }
992 
nvme_queue_tagset(struct nvme_queue * nvmeq)993 static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
994 {
995 	if (!nvmeq->qid)
996 		return nvmeq->dev->admin_tagset.tags[0];
997 	return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
998 }
999 
nvme_handle_cqe(struct nvme_queue * nvmeq,u16 idx)1000 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
1001 {
1002 	struct nvme_completion *cqe = &nvmeq->cqes[idx];
1003 	__u16 command_id = READ_ONCE(cqe->command_id);
1004 	struct request *req;
1005 
1006 	/*
1007 	 * AEN requests are special as they don't time out and can
1008 	 * survive any kind of queue freeze and often don't respond to
1009 	 * aborts.  We don't even bother to allocate a struct request
1010 	 * for them but rather special case them here.
1011 	 */
1012 	if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1013 		nvme_complete_async_event(&nvmeq->dev->ctrl,
1014 				cqe->status, &cqe->result);
1015 		return;
1016 	}
1017 
1018 	req = nvme_find_rq(nvme_queue_tagset(nvmeq), command_id);
1019 	if (unlikely(!req)) {
1020 		dev_warn(nvmeq->dev->ctrl.device,
1021 			"invalid id %d completed on queue %d\n",
1022 			command_id, le16_to_cpu(cqe->sq_id));
1023 		return;
1024 	}
1025 
1026 	trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
1027 	if (!nvme_try_complete_req(req, cqe->status, cqe->result))
1028 		nvme_pci_complete_rq(req);
1029 }
1030 
nvme_update_cq_head(struct nvme_queue * nvmeq)1031 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1032 {
1033 	u32 tmp = nvmeq->cq_head + 1;
1034 
1035 	if (tmp == nvmeq->q_depth) {
1036 		nvmeq->cq_head = 0;
1037 		nvmeq->cq_phase ^= 1;
1038 	} else {
1039 		nvmeq->cq_head = tmp;
1040 	}
1041 }
1042 
nvme_process_cq(struct nvme_queue * nvmeq)1043 static inline int nvme_process_cq(struct nvme_queue *nvmeq)
1044 {
1045 	int found = 0;
1046 
1047 	while (nvme_cqe_pending(nvmeq)) {
1048 		found++;
1049 		/*
1050 		 * load-load control dependency between phase and the rest of
1051 		 * the cqe requires a full read memory barrier
1052 		 */
1053 		dma_rmb();
1054 		nvme_handle_cqe(nvmeq, nvmeq->cq_head);
1055 		nvme_update_cq_head(nvmeq);
1056 	}
1057 
1058 	if (found)
1059 		nvme_ring_cq_doorbell(nvmeq);
1060 	return found;
1061 }
1062 
nvme_irq(int irq,void * data)1063 static irqreturn_t nvme_irq(int irq, void *data)
1064 {
1065 	struct nvme_queue *nvmeq = data;
1066 	irqreturn_t ret = IRQ_NONE;
1067 
1068 	/*
1069 	 * The rmb/wmb pair ensures we see all updates from a previous run of
1070 	 * the irq handler, even if that was on another CPU.
1071 	 */
1072 	rmb();
1073 	if (nvme_process_cq(nvmeq))
1074 		ret = IRQ_HANDLED;
1075 	wmb();
1076 
1077 	return ret;
1078 }
1079 
nvme_irq_check(int irq,void * data)1080 static irqreturn_t nvme_irq_check(int irq, void *data)
1081 {
1082 	struct nvme_queue *nvmeq = data;
1083 
1084 	if (nvme_cqe_pending(nvmeq))
1085 		return IRQ_WAKE_THREAD;
1086 	return IRQ_NONE;
1087 }
1088 
1089 /*
1090  * Poll for completions for any interrupt driven queue
1091  * Can be called from any context.
1092  */
nvme_poll_irqdisable(struct nvme_queue * nvmeq)1093 static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1094 {
1095 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1096 
1097 	WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1098 
1099 	disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1100 	nvme_process_cq(nvmeq);
1101 	enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1102 }
1103 
nvme_poll(struct blk_mq_hw_ctx * hctx)1104 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1105 {
1106 	struct nvme_queue *nvmeq = hctx->driver_data;
1107 	bool found;
1108 
1109 	if (!nvme_cqe_pending(nvmeq))
1110 		return 0;
1111 
1112 	spin_lock(&nvmeq->cq_poll_lock);
1113 	found = nvme_process_cq(nvmeq);
1114 	spin_unlock(&nvmeq->cq_poll_lock);
1115 
1116 	return found;
1117 }
1118 
nvme_pci_submit_async_event(struct nvme_ctrl * ctrl)1119 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1120 {
1121 	struct nvme_dev *dev = to_nvme_dev(ctrl);
1122 	struct nvme_queue *nvmeq = &dev->queues[0];
1123 	struct nvme_command c;
1124 
1125 	memset(&c, 0, sizeof(c));
1126 	c.common.opcode = nvme_admin_async_event;
1127 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1128 	nvme_submit_cmd(nvmeq, &c, true);
1129 }
1130 
adapter_delete_queue(struct nvme_dev * dev,u8 opcode,u16 id)1131 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1132 {
1133 	struct nvme_command c;
1134 
1135 	memset(&c, 0, sizeof(c));
1136 	c.delete_queue.opcode = opcode;
1137 	c.delete_queue.qid = cpu_to_le16(id);
1138 
1139 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1140 }
1141 
adapter_alloc_cq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq,s16 vector)1142 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1143 		struct nvme_queue *nvmeq, s16 vector)
1144 {
1145 	struct nvme_command c;
1146 	int flags = NVME_QUEUE_PHYS_CONTIG;
1147 
1148 	if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1149 		flags |= NVME_CQ_IRQ_ENABLED;
1150 
1151 	/*
1152 	 * Note: we (ab)use the fact that the prp fields survive if no data
1153 	 * is attached to the request.
1154 	 */
1155 	memset(&c, 0, sizeof(c));
1156 	c.create_cq.opcode = nvme_admin_create_cq;
1157 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1158 	c.create_cq.cqid = cpu_to_le16(qid);
1159 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1160 	c.create_cq.cq_flags = cpu_to_le16(flags);
1161 	c.create_cq.irq_vector = cpu_to_le16(vector);
1162 
1163 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1164 }
1165 
adapter_alloc_sq(struct nvme_dev * dev,u16 qid,struct nvme_queue * nvmeq)1166 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1167 						struct nvme_queue *nvmeq)
1168 {
1169 	struct nvme_ctrl *ctrl = &dev->ctrl;
1170 	struct nvme_command c;
1171 	int flags = NVME_QUEUE_PHYS_CONTIG;
1172 
1173 	/*
1174 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1175 	 * set. Since URGENT priority is zeroes, it makes all queues
1176 	 * URGENT.
1177 	 */
1178 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1179 		flags |= NVME_SQ_PRIO_MEDIUM;
1180 
1181 	/*
1182 	 * Note: we (ab)use the fact that the prp fields survive if no data
1183 	 * is attached to the request.
1184 	 */
1185 	memset(&c, 0, sizeof(c));
1186 	c.create_sq.opcode = nvme_admin_create_sq;
1187 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1188 	c.create_sq.sqid = cpu_to_le16(qid);
1189 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1190 	c.create_sq.sq_flags = cpu_to_le16(flags);
1191 	c.create_sq.cqid = cpu_to_le16(qid);
1192 
1193 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1194 }
1195 
adapter_delete_cq(struct nvme_dev * dev,u16 cqid)1196 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1197 {
1198 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1199 }
1200 
adapter_delete_sq(struct nvme_dev * dev,u16 sqid)1201 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1202 {
1203 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1204 }
1205 
abort_endio(struct request * req,blk_status_t error)1206 static void abort_endio(struct request *req, blk_status_t error)
1207 {
1208 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1209 	struct nvme_queue *nvmeq = iod->nvmeq;
1210 
1211 	dev_warn(nvmeq->dev->ctrl.device,
1212 		 "Abort status: 0x%x", nvme_req(req)->status);
1213 	atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1214 	blk_mq_free_request(req);
1215 }
1216 
nvme_should_reset(struct nvme_dev * dev,u32 csts)1217 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1218 {
1219 	/* If true, indicates loss of adapter communication, possibly by a
1220 	 * NVMe Subsystem reset.
1221 	 */
1222 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1223 
1224 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */
1225 	switch (dev->ctrl.state) {
1226 	case NVME_CTRL_RESETTING:
1227 	case NVME_CTRL_CONNECTING:
1228 		return false;
1229 	default:
1230 		break;
1231 	}
1232 
1233 	/* We shouldn't reset unless the controller is on fatal error state
1234 	 * _or_ if we lost the communication with it.
1235 	 */
1236 	if (!(csts & NVME_CSTS_CFS) && !nssro)
1237 		return false;
1238 
1239 	return true;
1240 }
1241 
nvme_warn_reset(struct nvme_dev * dev,u32 csts)1242 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1243 {
1244 	/* Read a config register to help see what died. */
1245 	u16 pci_status;
1246 	int result;
1247 
1248 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1249 				      &pci_status);
1250 	if (result == PCIBIOS_SUCCESSFUL)
1251 		dev_warn(dev->ctrl.device,
1252 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1253 			 csts, pci_status);
1254 	else
1255 		dev_warn(dev->ctrl.device,
1256 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1257 			 csts, result);
1258 }
1259 
nvme_timeout(struct request * req,bool reserved)1260 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1261 {
1262 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1263 	struct nvme_queue *nvmeq = iod->nvmeq;
1264 	struct nvme_dev *dev = nvmeq->dev;
1265 	struct request *abort_req;
1266 	struct nvme_command cmd;
1267 	u32 csts = readl(dev->bar + NVME_REG_CSTS);
1268 
1269 	/* If PCI error recovery process is happening, we cannot reset or
1270 	 * the recovery mechanism will surely fail.
1271 	 */
1272 	mb();
1273 	if (pci_channel_offline(to_pci_dev(dev->dev)))
1274 		return BLK_EH_RESET_TIMER;
1275 
1276 	/*
1277 	 * Reset immediately if the controller is failed
1278 	 */
1279 	if (nvme_should_reset(dev, csts)) {
1280 		nvme_warn_reset(dev, csts);
1281 		nvme_dev_disable(dev, false);
1282 		nvme_reset_ctrl(&dev->ctrl);
1283 		return BLK_EH_DONE;
1284 	}
1285 
1286 	/*
1287 	 * Did we miss an interrupt?
1288 	 */
1289 	if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1290 		nvme_poll(req->mq_hctx);
1291 	else
1292 		nvme_poll_irqdisable(nvmeq);
1293 
1294 	if (blk_mq_request_completed(req)) {
1295 		dev_warn(dev->ctrl.device,
1296 			 "I/O %d QID %d timeout, completion polled\n",
1297 			 req->tag, nvmeq->qid);
1298 		return BLK_EH_DONE;
1299 	}
1300 
1301 	/*
1302 	 * Shutdown immediately if controller times out while starting. The
1303 	 * reset work will see the pci device disabled when it gets the forced
1304 	 * cancellation error. All outstanding requests are completed on
1305 	 * shutdown, so we return BLK_EH_DONE.
1306 	 */
1307 	switch (dev->ctrl.state) {
1308 	case NVME_CTRL_CONNECTING:
1309 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1310 		fallthrough;
1311 	case NVME_CTRL_DELETING:
1312 		dev_warn_ratelimited(dev->ctrl.device,
1313 			 "I/O %d QID %d timeout, disable controller\n",
1314 			 req->tag, nvmeq->qid);
1315 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1316 		nvme_dev_disable(dev, true);
1317 		return BLK_EH_DONE;
1318 	case NVME_CTRL_RESETTING:
1319 		return BLK_EH_RESET_TIMER;
1320 	default:
1321 		break;
1322 	}
1323 
1324 	/*
1325 	 * Shutdown the controller immediately and schedule a reset if the
1326 	 * command was already aborted once before and still hasn't been
1327 	 * returned to the driver, or if this is the admin queue.
1328 	 */
1329 	if (!nvmeq->qid || iod->aborted) {
1330 		dev_warn(dev->ctrl.device,
1331 			 "I/O %d QID %d timeout, reset controller\n",
1332 			 req->tag, nvmeq->qid);
1333 		nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1334 		nvme_dev_disable(dev, false);
1335 		nvme_reset_ctrl(&dev->ctrl);
1336 
1337 		return BLK_EH_DONE;
1338 	}
1339 
1340 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1341 		atomic_inc(&dev->ctrl.abort_limit);
1342 		return BLK_EH_RESET_TIMER;
1343 	}
1344 	iod->aborted = 1;
1345 
1346 	memset(&cmd, 0, sizeof(cmd));
1347 	cmd.abort.opcode = nvme_admin_abort_cmd;
1348 	cmd.abort.cid = nvme_cid(req);
1349 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1350 
1351 	dev_warn(nvmeq->dev->ctrl.device,
1352 		"I/O %d QID %d timeout, aborting\n",
1353 		 req->tag, nvmeq->qid);
1354 
1355 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1356 			BLK_MQ_REQ_NOWAIT);
1357 	if (IS_ERR(abort_req)) {
1358 		atomic_inc(&dev->ctrl.abort_limit);
1359 		return BLK_EH_RESET_TIMER;
1360 	}
1361 
1362 	abort_req->end_io_data = NULL;
1363 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1364 
1365 	/*
1366 	 * The aborted req will be completed on receiving the abort req.
1367 	 * We enable the timer again. If hit twice, it'll cause a device reset,
1368 	 * as the device then is in a faulty state.
1369 	 */
1370 	return BLK_EH_RESET_TIMER;
1371 }
1372 
nvme_free_queue(struct nvme_queue * nvmeq)1373 static void nvme_free_queue(struct nvme_queue *nvmeq)
1374 {
1375 	dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq),
1376 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1377 	if (!nvmeq->sq_cmds)
1378 		return;
1379 
1380 	if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1381 		pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1382 				nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1383 	} else {
1384 		dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq),
1385 				nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1386 	}
1387 }
1388 
nvme_free_queues(struct nvme_dev * dev,int lowest)1389 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1390 {
1391 	int i;
1392 
1393 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1394 		dev->ctrl.queue_count--;
1395 		nvme_free_queue(&dev->queues[i]);
1396 	}
1397 }
1398 
1399 /**
1400  * nvme_suspend_queue - put queue into suspended state
1401  * @nvmeq: queue to suspend
1402  */
nvme_suspend_queue(struct nvme_queue * nvmeq)1403 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1404 {
1405 	if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1406 		return 1;
1407 
1408 	/* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1409 	mb();
1410 
1411 	nvmeq->dev->online_queues--;
1412 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1413 		blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1414 	if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1415 		pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1416 	return 0;
1417 }
1418 
nvme_suspend_io_queues(struct nvme_dev * dev)1419 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1420 {
1421 	int i;
1422 
1423 	for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1424 		nvme_suspend_queue(&dev->queues[i]);
1425 }
1426 
nvme_disable_admin_queue(struct nvme_dev * dev,bool shutdown)1427 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1428 {
1429 	struct nvme_queue *nvmeq = &dev->queues[0];
1430 
1431 	if (shutdown)
1432 		nvme_shutdown_ctrl(&dev->ctrl);
1433 	else
1434 		nvme_disable_ctrl(&dev->ctrl);
1435 
1436 	nvme_poll_irqdisable(nvmeq);
1437 }
1438 
1439 /*
1440  * Called only on a device that has been disabled and after all other threads
1441  * that can check this device's completion queues have synced, except
1442  * nvme_poll(). This is the last chance for the driver to see a natural
1443  * completion before nvme_cancel_request() terminates all incomplete requests.
1444  */
nvme_reap_pending_cqes(struct nvme_dev * dev)1445 static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1446 {
1447 	int i;
1448 
1449 	for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1450 		spin_lock(&dev->queues[i].cq_poll_lock);
1451 		nvme_process_cq(&dev->queues[i]);
1452 		spin_unlock(&dev->queues[i].cq_poll_lock);
1453 	}
1454 }
1455 
nvme_cmb_qdepth(struct nvme_dev * dev,int nr_io_queues,int entry_size)1456 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1457 				int entry_size)
1458 {
1459 	int q_depth = dev->q_depth;
1460 	unsigned q_size_aligned = roundup(q_depth * entry_size,
1461 					  NVME_CTRL_PAGE_SIZE);
1462 
1463 	if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1464 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1465 
1466 		mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1467 		q_depth = div_u64(mem_per_q, entry_size);
1468 
1469 		/*
1470 		 * Ensure the reduced q_depth is above some threshold where it
1471 		 * would be better to map queues in system memory with the
1472 		 * original depth
1473 		 */
1474 		if (q_depth < 64)
1475 			return -ENOMEM;
1476 	}
1477 
1478 	return q_depth;
1479 }
1480 
nvme_alloc_sq_cmds(struct nvme_dev * dev,struct nvme_queue * nvmeq,int qid)1481 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1482 				int qid)
1483 {
1484 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1485 
1486 	if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1487 		nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1488 		if (nvmeq->sq_cmds) {
1489 			nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1490 							nvmeq->sq_cmds);
1491 			if (nvmeq->sq_dma_addr) {
1492 				set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1493 				return 0;
1494 			}
1495 
1496 			pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1497 		}
1498 	}
1499 
1500 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(nvmeq),
1501 				&nvmeq->sq_dma_addr, GFP_KERNEL);
1502 	if (!nvmeq->sq_cmds)
1503 		return -ENOMEM;
1504 	return 0;
1505 }
1506 
nvme_alloc_queue(struct nvme_dev * dev,int qid,int depth)1507 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1508 {
1509 	struct nvme_queue *nvmeq = &dev->queues[qid];
1510 
1511 	if (dev->ctrl.queue_count > qid)
1512 		return 0;
1513 
1514 	nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1515 	nvmeq->q_depth = depth;
1516 	nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(nvmeq),
1517 					 &nvmeq->cq_dma_addr, GFP_KERNEL);
1518 	if (!nvmeq->cqes)
1519 		goto free_nvmeq;
1520 
1521 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1522 		goto free_cqdma;
1523 
1524 	nvmeq->dev = dev;
1525 	spin_lock_init(&nvmeq->sq_lock);
1526 	spin_lock_init(&nvmeq->cq_poll_lock);
1527 	nvmeq->cq_head = 0;
1528 	nvmeq->cq_phase = 1;
1529 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1530 	nvmeq->qid = qid;
1531 	dev->ctrl.queue_count++;
1532 
1533 	return 0;
1534 
1535  free_cqdma:
1536 	dma_free_coherent(dev->dev, CQ_SIZE(nvmeq), (void *)nvmeq->cqes,
1537 			  nvmeq->cq_dma_addr);
1538  free_nvmeq:
1539 	return -ENOMEM;
1540 }
1541 
queue_request_irq(struct nvme_queue * nvmeq)1542 static int queue_request_irq(struct nvme_queue *nvmeq)
1543 {
1544 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1545 	int nr = nvmeq->dev->ctrl.instance;
1546 
1547 	if (use_threaded_interrupts) {
1548 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1549 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1550 	} else {
1551 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1552 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1553 	}
1554 }
1555 
nvme_init_queue(struct nvme_queue * nvmeq,u16 qid)1556 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1557 {
1558 	struct nvme_dev *dev = nvmeq->dev;
1559 
1560 	nvmeq->sq_tail = 0;
1561 	nvmeq->last_sq_tail = 0;
1562 	nvmeq->cq_head = 0;
1563 	nvmeq->cq_phase = 1;
1564 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1565 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1566 	nvme_dbbuf_init(dev, nvmeq, qid);
1567 	dev->online_queues++;
1568 	wmb(); /* ensure the first interrupt sees the initialization */
1569 }
1570 
nvme_create_queue(struct nvme_queue * nvmeq,int qid,bool polled)1571 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1572 {
1573 	struct nvme_dev *dev = nvmeq->dev;
1574 	int result;
1575 	u16 vector = 0;
1576 
1577 	clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1578 
1579 	/*
1580 	 * A queue's vector matches the queue identifier unless the controller
1581 	 * has only one vector available.
1582 	 */
1583 	if (!polled)
1584 		vector = dev->num_vecs == 1 ? 0 : qid;
1585 	else
1586 		set_bit(NVMEQ_POLLED, &nvmeq->flags);
1587 
1588 	result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1589 	if (result)
1590 		return result;
1591 
1592 	result = adapter_alloc_sq(dev, qid, nvmeq);
1593 	if (result < 0)
1594 		return result;
1595 	if (result)
1596 		goto release_cq;
1597 
1598 	nvmeq->cq_vector = vector;
1599 	nvme_init_queue(nvmeq, qid);
1600 
1601 	if (!polled) {
1602 		result = queue_request_irq(nvmeq);
1603 		if (result < 0)
1604 			goto release_sq;
1605 	}
1606 
1607 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1608 	return result;
1609 
1610 release_sq:
1611 	dev->online_queues--;
1612 	adapter_delete_sq(dev, qid);
1613 release_cq:
1614 	adapter_delete_cq(dev, qid);
1615 	return result;
1616 }
1617 
1618 static const struct blk_mq_ops nvme_mq_admin_ops = {
1619 	.queue_rq	= nvme_queue_rq,
1620 	.complete	= nvme_pci_complete_rq,
1621 	.init_hctx	= nvme_admin_init_hctx,
1622 	.init_request	= nvme_init_request,
1623 	.timeout	= nvme_timeout,
1624 };
1625 
1626 static const struct blk_mq_ops nvme_mq_ops = {
1627 	.queue_rq	= nvme_queue_rq,
1628 	.complete	= nvme_pci_complete_rq,
1629 	.commit_rqs	= nvme_commit_rqs,
1630 	.init_hctx	= nvme_init_hctx,
1631 	.init_request	= nvme_init_request,
1632 	.map_queues	= nvme_pci_map_queues,
1633 	.timeout	= nvme_timeout,
1634 	.poll		= nvme_poll,
1635 };
1636 
nvme_dev_remove_admin(struct nvme_dev * dev)1637 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1638 {
1639 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1640 		/*
1641 		 * If the controller was reset during removal, it's possible
1642 		 * user requests may be waiting on a stopped queue. Start the
1643 		 * queue to flush these to completion.
1644 		 */
1645 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1646 		blk_cleanup_queue(dev->ctrl.admin_q);
1647 		blk_mq_free_tag_set(&dev->admin_tagset);
1648 	}
1649 }
1650 
nvme_alloc_admin_tags(struct nvme_dev * dev)1651 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1652 {
1653 	if (!dev->ctrl.admin_q) {
1654 		dev->admin_tagset.ops = &nvme_mq_admin_ops;
1655 		dev->admin_tagset.nr_hw_queues = 1;
1656 
1657 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1658 		dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1659 		dev->admin_tagset.numa_node = dev->ctrl.numa_node;
1660 		dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1661 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1662 		dev->admin_tagset.driver_data = dev;
1663 
1664 		if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1665 			return -ENOMEM;
1666 		dev->ctrl.admin_tagset = &dev->admin_tagset;
1667 
1668 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1669 		if (IS_ERR(dev->ctrl.admin_q)) {
1670 			blk_mq_free_tag_set(&dev->admin_tagset);
1671 			dev->ctrl.admin_q = NULL;
1672 			return -ENOMEM;
1673 		}
1674 		if (!blk_get_queue(dev->ctrl.admin_q)) {
1675 			nvme_dev_remove_admin(dev);
1676 			dev->ctrl.admin_q = NULL;
1677 			return -ENODEV;
1678 		}
1679 	} else
1680 		blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1681 
1682 	return 0;
1683 }
1684 
db_bar_size(struct nvme_dev * dev,unsigned nr_io_queues)1685 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1686 {
1687 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1688 }
1689 
nvme_remap_bar(struct nvme_dev * dev,unsigned long size)1690 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1691 {
1692 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1693 
1694 	if (size <= dev->bar_mapped_size)
1695 		return 0;
1696 	if (size > pci_resource_len(pdev, 0))
1697 		return -ENOMEM;
1698 	if (dev->bar)
1699 		iounmap(dev->bar);
1700 	dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1701 	if (!dev->bar) {
1702 		dev->bar_mapped_size = 0;
1703 		return -ENOMEM;
1704 	}
1705 	dev->bar_mapped_size = size;
1706 	dev->dbs = dev->bar + NVME_REG_DBS;
1707 
1708 	return 0;
1709 }
1710 
nvme_pci_configure_admin_queue(struct nvme_dev * dev)1711 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1712 {
1713 	int result;
1714 	u32 aqa;
1715 	struct nvme_queue *nvmeq;
1716 
1717 	result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1718 	if (result < 0)
1719 		return result;
1720 
1721 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1722 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1723 
1724 	if (dev->subsystem &&
1725 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1726 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1727 
1728 	result = nvme_disable_ctrl(&dev->ctrl);
1729 	if (result < 0)
1730 		return result;
1731 
1732 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1733 	if (result)
1734 		return result;
1735 
1736 	dev->ctrl.numa_node = dev_to_node(dev->dev);
1737 
1738 	nvmeq = &dev->queues[0];
1739 	aqa = nvmeq->q_depth - 1;
1740 	aqa |= aqa << 16;
1741 
1742 	writel(aqa, dev->bar + NVME_REG_AQA);
1743 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1744 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1745 
1746 	result = nvme_enable_ctrl(&dev->ctrl);
1747 	if (result)
1748 		return result;
1749 
1750 	nvmeq->cq_vector = 0;
1751 	nvme_init_queue(nvmeq, 0);
1752 	result = queue_request_irq(nvmeq);
1753 	if (result) {
1754 		dev->online_queues--;
1755 		return result;
1756 	}
1757 
1758 	set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1759 	return result;
1760 }
1761 
nvme_create_io_queues(struct nvme_dev * dev)1762 static int nvme_create_io_queues(struct nvme_dev *dev)
1763 {
1764 	unsigned i, max, rw_queues;
1765 	int ret = 0;
1766 
1767 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1768 		if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1769 			ret = -ENOMEM;
1770 			break;
1771 		}
1772 	}
1773 
1774 	max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1775 	if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1776 		rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1777 				dev->io_queues[HCTX_TYPE_READ];
1778 	} else {
1779 		rw_queues = max;
1780 	}
1781 
1782 	for (i = dev->online_queues; i <= max; i++) {
1783 		bool polled = i > rw_queues;
1784 
1785 		ret = nvme_create_queue(&dev->queues[i], i, polled);
1786 		if (ret)
1787 			break;
1788 	}
1789 
1790 	/*
1791 	 * Ignore failing Create SQ/CQ commands, we can continue with less
1792 	 * than the desired amount of queues, and even a controller without
1793 	 * I/O queues can still be used to issue admin commands.  This might
1794 	 * be useful to upgrade a buggy firmware for example.
1795 	 */
1796 	return ret >= 0 ? 0 : ret;
1797 }
1798 
nvme_cmb_show(struct device * dev,struct device_attribute * attr,char * buf)1799 static ssize_t nvme_cmb_show(struct device *dev,
1800 			     struct device_attribute *attr,
1801 			     char *buf)
1802 {
1803 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1804 
1805 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n",
1806 		       ndev->cmbloc, ndev->cmbsz);
1807 }
1808 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1809 
nvme_cmb_size_unit(struct nvme_dev * dev)1810 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1811 {
1812 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1813 
1814 	return 1ULL << (12 + 4 * szu);
1815 }
1816 
nvme_cmb_size(struct nvme_dev * dev)1817 static u32 nvme_cmb_size(struct nvme_dev *dev)
1818 {
1819 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1820 }
1821 
nvme_map_cmb(struct nvme_dev * dev)1822 static void nvme_map_cmb(struct nvme_dev *dev)
1823 {
1824 	u64 size, offset;
1825 	resource_size_t bar_size;
1826 	struct pci_dev *pdev = to_pci_dev(dev->dev);
1827 	int bar;
1828 
1829 	if (dev->cmb_size)
1830 		return;
1831 
1832 	if (NVME_CAP_CMBS(dev->ctrl.cap))
1833 		writel(NVME_CMBMSC_CRE, dev->bar + NVME_REG_CMBMSC);
1834 
1835 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1836 	if (!dev->cmbsz)
1837 		return;
1838 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1839 
1840 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1841 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1842 	bar = NVME_CMB_BIR(dev->cmbloc);
1843 	bar_size = pci_resource_len(pdev, bar);
1844 
1845 	if (offset > bar_size)
1846 		return;
1847 
1848 	/*
1849 	 * Tell the controller about the host side address mapping the CMB,
1850 	 * and enable CMB decoding for the NVMe 1.4+ scheme:
1851 	 */
1852 	if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1853 		hi_lo_writeq(NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1854 			     (pci_bus_address(pdev, bar) + offset),
1855 			     dev->bar + NVME_REG_CMBMSC);
1856 	}
1857 
1858 	/*
1859 	 * Controllers may support a CMB size larger than their BAR,
1860 	 * for example, due to being behind a bridge. Reduce the CMB to
1861 	 * the reported size of the BAR
1862 	 */
1863 	if (size > bar_size - offset)
1864 		size = bar_size - offset;
1865 
1866 	if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1867 		dev_warn(dev->ctrl.device,
1868 			 "failed to register the CMB\n");
1869 		return;
1870 	}
1871 
1872 	dev->cmb_size = size;
1873 	dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1874 
1875 	if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1876 			(NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1877 		pci_p2pmem_publish(pdev, true);
1878 
1879 	if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1880 				    &dev_attr_cmb.attr, NULL))
1881 		dev_warn(dev->ctrl.device,
1882 			 "failed to add sysfs attribute for CMB\n");
1883 }
1884 
nvme_release_cmb(struct nvme_dev * dev)1885 static inline void nvme_release_cmb(struct nvme_dev *dev)
1886 {
1887 	if (dev->cmb_size) {
1888 		sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1889 					     &dev_attr_cmb.attr, NULL);
1890 		dev->cmb_size = 0;
1891 	}
1892 }
1893 
nvme_set_host_mem(struct nvme_dev * dev,u32 bits)1894 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1895 {
1896 	u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1897 	u64 dma_addr = dev->host_mem_descs_dma;
1898 	struct nvme_command c;
1899 	int ret;
1900 
1901 	memset(&c, 0, sizeof(c));
1902 	c.features.opcode	= nvme_admin_set_features;
1903 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1904 	c.features.dword11	= cpu_to_le32(bits);
1905 	c.features.dword12	= cpu_to_le32(host_mem_size);
1906 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr));
1907 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr));
1908 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs);
1909 
1910 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1911 	if (ret) {
1912 		dev_warn(dev->ctrl.device,
1913 			 "failed to set host mem (err %d, flags %#x).\n",
1914 			 ret, bits);
1915 	}
1916 	return ret;
1917 }
1918 
nvme_free_host_mem(struct nvme_dev * dev)1919 static void nvme_free_host_mem(struct nvme_dev *dev)
1920 {
1921 	int i;
1922 
1923 	for (i = 0; i < dev->nr_host_mem_descs; i++) {
1924 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1925 		size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1926 
1927 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1928 			       le64_to_cpu(desc->addr),
1929 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1930 	}
1931 
1932 	kfree(dev->host_mem_desc_bufs);
1933 	dev->host_mem_desc_bufs = NULL;
1934 	dma_free_coherent(dev->dev,
1935 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1936 			dev->host_mem_descs, dev->host_mem_descs_dma);
1937 	dev->host_mem_descs = NULL;
1938 	dev->nr_host_mem_descs = 0;
1939 }
1940 
__nvme_alloc_host_mem(struct nvme_dev * dev,u64 preferred,u32 chunk_size)1941 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1942 		u32 chunk_size)
1943 {
1944 	struct nvme_host_mem_buf_desc *descs;
1945 	u32 max_entries, len;
1946 	dma_addr_t descs_dma;
1947 	int i = 0;
1948 	void **bufs;
1949 	u64 size, tmp;
1950 
1951 	tmp = (preferred + chunk_size - 1);
1952 	do_div(tmp, chunk_size);
1953 	max_entries = tmp;
1954 
1955 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1956 		max_entries = dev->ctrl.hmmaxd;
1957 
1958 	descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1959 				   &descs_dma, GFP_KERNEL);
1960 	if (!descs)
1961 		goto out;
1962 
1963 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1964 	if (!bufs)
1965 		goto out_free_descs;
1966 
1967 	for (size = 0; size < preferred && i < max_entries; size += len) {
1968 		dma_addr_t dma_addr;
1969 
1970 		len = min_t(u64, chunk_size, preferred - size);
1971 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1972 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1973 		if (!bufs[i])
1974 			break;
1975 
1976 		descs[i].addr = cpu_to_le64(dma_addr);
1977 		descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1978 		i++;
1979 	}
1980 
1981 	if (!size)
1982 		goto out_free_bufs;
1983 
1984 	dev->nr_host_mem_descs = i;
1985 	dev->host_mem_size = size;
1986 	dev->host_mem_descs = descs;
1987 	dev->host_mem_descs_dma = descs_dma;
1988 	dev->host_mem_desc_bufs = bufs;
1989 	return 0;
1990 
1991 out_free_bufs:
1992 	while (--i >= 0) {
1993 		size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1994 
1995 		dma_free_attrs(dev->dev, size, bufs[i],
1996 			       le64_to_cpu(descs[i].addr),
1997 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1998 	}
1999 
2000 	kfree(bufs);
2001 out_free_descs:
2002 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
2003 			descs_dma);
2004 out:
2005 	dev->host_mem_descs = NULL;
2006 	return -ENOMEM;
2007 }
2008 
nvme_alloc_host_mem(struct nvme_dev * dev,u64 min,u64 preferred)2009 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2010 {
2011 	u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2012 	u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2013 	u64 chunk_size;
2014 
2015 	/* start big and work our way down */
2016 	for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2017 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2018 			if (!min || dev->host_mem_size >= min)
2019 				return 0;
2020 			nvme_free_host_mem(dev);
2021 		}
2022 	}
2023 
2024 	return -ENOMEM;
2025 }
2026 
nvme_setup_host_mem(struct nvme_dev * dev)2027 static int nvme_setup_host_mem(struct nvme_dev *dev)
2028 {
2029 	u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2030 	u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2031 	u64 min = (u64)dev->ctrl.hmmin * 4096;
2032 	u32 enable_bits = NVME_HOST_MEM_ENABLE;
2033 	int ret;
2034 
2035 	preferred = min(preferred, max);
2036 	if (min > max) {
2037 		dev_warn(dev->ctrl.device,
2038 			"min host memory (%lld MiB) above limit (%d MiB).\n",
2039 			min >> ilog2(SZ_1M), max_host_mem_size_mb);
2040 		nvme_free_host_mem(dev);
2041 		return 0;
2042 	}
2043 
2044 	/*
2045 	 * If we already have a buffer allocated check if we can reuse it.
2046 	 */
2047 	if (dev->host_mem_descs) {
2048 		if (dev->host_mem_size >= min)
2049 			enable_bits |= NVME_HOST_MEM_RETURN;
2050 		else
2051 			nvme_free_host_mem(dev);
2052 	}
2053 
2054 	if (!dev->host_mem_descs) {
2055 		if (nvme_alloc_host_mem(dev, min, preferred)) {
2056 			dev_warn(dev->ctrl.device,
2057 				"failed to allocate host memory buffer.\n");
2058 			return 0; /* controller must work without HMB */
2059 		}
2060 
2061 		dev_info(dev->ctrl.device,
2062 			"allocated %lld MiB host memory buffer.\n",
2063 			dev->host_mem_size >> ilog2(SZ_1M));
2064 	}
2065 
2066 	ret = nvme_set_host_mem(dev, enable_bits);
2067 	if (ret)
2068 		nvme_free_host_mem(dev);
2069 	return ret;
2070 }
2071 
2072 /*
2073  * nirqs is the number of interrupts available for write and read
2074  * queues. The core already reserved an interrupt for the admin queue.
2075  */
nvme_calc_irq_sets(struct irq_affinity * affd,unsigned int nrirqs)2076 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2077 {
2078 	struct nvme_dev *dev = affd->priv;
2079 	unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2080 
2081 	/*
2082 	 * If there is no interrupt available for queues, ensure that
2083 	 * the default queue is set to 1. The affinity set size is
2084 	 * also set to one, but the irq core ignores it for this case.
2085 	 *
2086 	 * If only one interrupt is available or 'write_queue' == 0, combine
2087 	 * write and read queues.
2088 	 *
2089 	 * If 'write_queues' > 0, ensure it leaves room for at least one read
2090 	 * queue.
2091 	 */
2092 	if (!nrirqs) {
2093 		nrirqs = 1;
2094 		nr_read_queues = 0;
2095 	} else if (nrirqs == 1 || !nr_write_queues) {
2096 		nr_read_queues = 0;
2097 	} else if (nr_write_queues >= nrirqs) {
2098 		nr_read_queues = 1;
2099 	} else {
2100 		nr_read_queues = nrirqs - nr_write_queues;
2101 	}
2102 
2103 	dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2104 	affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2105 	dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2106 	affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2107 	affd->nr_sets = nr_read_queues ? 2 : 1;
2108 }
2109 
nvme_setup_irqs(struct nvme_dev * dev,unsigned int nr_io_queues)2110 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2111 {
2112 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2113 	struct irq_affinity affd = {
2114 		.pre_vectors	= 1,
2115 		.calc_sets	= nvme_calc_irq_sets,
2116 		.priv		= dev,
2117 	};
2118 	unsigned int irq_queues, poll_queues;
2119 
2120 	/*
2121 	 * Poll queues don't need interrupts, but we need at least one I/O queue
2122 	 * left over for non-polled I/O.
2123 	 */
2124 	poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2125 	dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2126 
2127 	/*
2128 	 * Initialize for the single interrupt case, will be updated in
2129 	 * nvme_calc_irq_sets().
2130 	 */
2131 	dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2132 	dev->io_queues[HCTX_TYPE_READ] = 0;
2133 
2134 	/*
2135 	 * We need interrupts for the admin queue and each non-polled I/O queue,
2136 	 * but some Apple controllers require all queues to use the first
2137 	 * vector.
2138 	 */
2139 	irq_queues = 1;
2140 	if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2141 		irq_queues += (nr_io_queues - poll_queues);
2142 	return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2143 			      PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2144 }
2145 
nvme_disable_io_queues(struct nvme_dev * dev)2146 static void nvme_disable_io_queues(struct nvme_dev *dev)
2147 {
2148 	if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2149 		__nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2150 }
2151 
nvme_max_io_queues(struct nvme_dev * dev)2152 static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2153 {
2154 	return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2155 }
2156 
nvme_setup_io_queues(struct nvme_dev * dev)2157 static int nvme_setup_io_queues(struct nvme_dev *dev)
2158 {
2159 	struct nvme_queue *adminq = &dev->queues[0];
2160 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2161 	unsigned int nr_io_queues;
2162 	unsigned long size;
2163 	int result;
2164 
2165 	/*
2166 	 * Sample the module parameters once at reset time so that we have
2167 	 * stable values to work with.
2168 	 */
2169 	dev->nr_write_queues = write_queues;
2170 	dev->nr_poll_queues = poll_queues;
2171 
2172 	/*
2173 	 * If tags are shared with admin queue (Apple bug), then
2174 	 * make sure we only use one IO queue.
2175 	 */
2176 	if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2177 		nr_io_queues = 1;
2178 	else
2179 		nr_io_queues = min(nvme_max_io_queues(dev),
2180 				   dev->nr_allocated_queues - 1);
2181 
2182 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2183 	if (result < 0)
2184 		return result;
2185 
2186 	if (nr_io_queues == 0)
2187 		return 0;
2188 
2189 	clear_bit(NVMEQ_ENABLED, &adminq->flags);
2190 
2191 	if (dev->cmb_use_sqes) {
2192 		result = nvme_cmb_qdepth(dev, nr_io_queues,
2193 				sizeof(struct nvme_command));
2194 		if (result > 0)
2195 			dev->q_depth = result;
2196 		else
2197 			dev->cmb_use_sqes = false;
2198 	}
2199 
2200 	do {
2201 		size = db_bar_size(dev, nr_io_queues);
2202 		result = nvme_remap_bar(dev, size);
2203 		if (!result)
2204 			break;
2205 		if (!--nr_io_queues)
2206 			return -ENOMEM;
2207 	} while (1);
2208 	adminq->q_db = dev->dbs;
2209 
2210  retry:
2211 	/* Deregister the admin queue's interrupt */
2212 	pci_free_irq(pdev, 0, adminq);
2213 
2214 	/*
2215 	 * If we enable msix early due to not intx, disable it again before
2216 	 * setting up the full range we need.
2217 	 */
2218 	pci_free_irq_vectors(pdev);
2219 
2220 	result = nvme_setup_irqs(dev, nr_io_queues);
2221 	if (result <= 0)
2222 		return -EIO;
2223 
2224 	dev->num_vecs = result;
2225 	result = max(result - 1, 1);
2226 	dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2227 
2228 	/*
2229 	 * Should investigate if there's a performance win from allocating
2230 	 * more queues than interrupt vectors; it might allow the submission
2231 	 * path to scale better, even if the receive path is limited by the
2232 	 * number of interrupts.
2233 	 */
2234 	result = queue_request_irq(adminq);
2235 	if (result)
2236 		return result;
2237 	set_bit(NVMEQ_ENABLED, &adminq->flags);
2238 
2239 	result = nvme_create_io_queues(dev);
2240 	if (result || dev->online_queues < 2)
2241 		return result;
2242 
2243 	if (dev->online_queues - 1 < dev->max_qid) {
2244 		nr_io_queues = dev->online_queues - 1;
2245 		nvme_disable_io_queues(dev);
2246 		nvme_suspend_io_queues(dev);
2247 		goto retry;
2248 	}
2249 	dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2250 					dev->io_queues[HCTX_TYPE_DEFAULT],
2251 					dev->io_queues[HCTX_TYPE_READ],
2252 					dev->io_queues[HCTX_TYPE_POLL]);
2253 	return 0;
2254 }
2255 
nvme_del_queue_end(struct request * req,blk_status_t error)2256 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2257 {
2258 	struct nvme_queue *nvmeq = req->end_io_data;
2259 
2260 	blk_mq_free_request(req);
2261 	complete(&nvmeq->delete_done);
2262 }
2263 
nvme_del_cq_end(struct request * req,blk_status_t error)2264 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2265 {
2266 	struct nvme_queue *nvmeq = req->end_io_data;
2267 
2268 	if (error)
2269 		set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2270 
2271 	nvme_del_queue_end(req, error);
2272 }
2273 
nvme_delete_queue(struct nvme_queue * nvmeq,u8 opcode)2274 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2275 {
2276 	struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2277 	struct request *req;
2278 	struct nvme_command cmd;
2279 
2280 	memset(&cmd, 0, sizeof(cmd));
2281 	cmd.delete_queue.opcode = opcode;
2282 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2283 
2284 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
2285 	if (IS_ERR(req))
2286 		return PTR_ERR(req);
2287 
2288 	req->end_io_data = nvmeq;
2289 
2290 	init_completion(&nvmeq->delete_done);
2291 	blk_execute_rq_nowait(q, NULL, req, false,
2292 			opcode == nvme_admin_delete_cq ?
2293 				nvme_del_cq_end : nvme_del_queue_end);
2294 	return 0;
2295 }
2296 
__nvme_disable_io_queues(struct nvme_dev * dev,u8 opcode)2297 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2298 {
2299 	int nr_queues = dev->online_queues - 1, sent = 0;
2300 	unsigned long timeout;
2301 
2302  retry:
2303 	timeout = ADMIN_TIMEOUT;
2304 	while (nr_queues > 0) {
2305 		if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2306 			break;
2307 		nr_queues--;
2308 		sent++;
2309 	}
2310 	while (sent) {
2311 		struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2312 
2313 		timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2314 				timeout);
2315 		if (timeout == 0)
2316 			return false;
2317 
2318 		sent--;
2319 		if (nr_queues)
2320 			goto retry;
2321 	}
2322 	return true;
2323 }
2324 
nvme_dev_add(struct nvme_dev * dev)2325 static void nvme_dev_add(struct nvme_dev *dev)
2326 {
2327 	int ret;
2328 
2329 	if (!dev->ctrl.tagset) {
2330 		dev->tagset.ops = &nvme_mq_ops;
2331 		dev->tagset.nr_hw_queues = dev->online_queues - 1;
2332 		dev->tagset.nr_maps = 2; /* default + read */
2333 		if (dev->io_queues[HCTX_TYPE_POLL])
2334 			dev->tagset.nr_maps++;
2335 		dev->tagset.timeout = NVME_IO_TIMEOUT;
2336 		dev->tagset.numa_node = dev->ctrl.numa_node;
2337 		dev->tagset.queue_depth = min_t(unsigned int, dev->q_depth,
2338 						BLK_MQ_MAX_DEPTH) - 1;
2339 		dev->tagset.cmd_size = sizeof(struct nvme_iod);
2340 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2341 		dev->tagset.driver_data = dev;
2342 
2343 		/*
2344 		 * Some Apple controllers requires tags to be unique
2345 		 * across admin and IO queue, so reserve the first 32
2346 		 * tags of the IO queue.
2347 		 */
2348 		if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2349 			dev->tagset.reserved_tags = NVME_AQ_DEPTH;
2350 
2351 		ret = blk_mq_alloc_tag_set(&dev->tagset);
2352 		if (ret) {
2353 			dev_warn(dev->ctrl.device,
2354 				"IO queues tagset allocation failed %d\n", ret);
2355 			return;
2356 		}
2357 		dev->ctrl.tagset = &dev->tagset;
2358 	} else {
2359 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2360 
2361 		/* Free previously allocated queues that are no longer usable */
2362 		nvme_free_queues(dev, dev->online_queues);
2363 	}
2364 
2365 	nvme_dbbuf_set(dev);
2366 }
2367 
nvme_pci_enable(struct nvme_dev * dev)2368 static int nvme_pci_enable(struct nvme_dev *dev)
2369 {
2370 	int result = -ENOMEM;
2371 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2372 
2373 	if (pci_enable_device_mem(pdev))
2374 		return result;
2375 
2376 	pci_set_master(pdev);
2377 
2378 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2379 		goto disable;
2380 
2381 	if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2382 		result = -ENODEV;
2383 		goto disable;
2384 	}
2385 
2386 	/*
2387 	 * Some devices and/or platforms don't advertise or work with INTx
2388 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2389 	 * adjust this later.
2390 	 */
2391 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2392 	if (result < 0)
2393 		return result;
2394 
2395 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2396 
2397 	if (dev->ctrl.quirks & NVME_QUIRK_LIMIT_IOQD32)
2398 		io_queue_depth = 32;
2399 
2400 	dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2401 				io_queue_depth);
2402 	dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2403 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2404 	dev->dbs = dev->bar + 4096;
2405 
2406 	/*
2407 	 * Some Apple controllers require a non-standard SQE size.
2408 	 * Interestingly they also seem to ignore the CC:IOSQES register
2409 	 * so we don't bother updating it here.
2410 	 */
2411 	if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2412 		dev->io_sqes = 7;
2413 	else
2414 		dev->io_sqes = NVME_NVM_IOSQES;
2415 
2416 	/*
2417 	 * Temporary fix for the Apple controller found in the MacBook8,1 and
2418 	 * some MacBook7,1 to avoid controller resets and data loss.
2419 	 */
2420 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2421 		dev->q_depth = 2;
2422 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2423 			"set queue depth=%u to work around controller resets\n",
2424 			dev->q_depth);
2425 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2426 		   (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2427 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2428 		dev->q_depth = 64;
2429 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2430                         "set queue depth=%u\n", dev->q_depth);
2431 	}
2432 
2433 	/*
2434 	 * Controllers with the shared tags quirk need the IO queue to be
2435 	 * big enough so that we get 32 tags for the admin queue
2436 	 */
2437 	if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2438 	    (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2439 		dev->q_depth = NVME_AQ_DEPTH + 2;
2440 		dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2441 			 dev->q_depth);
2442 	}
2443 
2444 
2445 	nvme_map_cmb(dev);
2446 
2447 	pci_enable_pcie_error_reporting(pdev);
2448 	pci_save_state(pdev);
2449 	return 0;
2450 
2451  disable:
2452 	pci_disable_device(pdev);
2453 	return result;
2454 }
2455 
nvme_dev_unmap(struct nvme_dev * dev)2456 static void nvme_dev_unmap(struct nvme_dev *dev)
2457 {
2458 	if (dev->bar)
2459 		iounmap(dev->bar);
2460 	pci_release_mem_regions(to_pci_dev(dev->dev));
2461 }
2462 
nvme_pci_disable(struct nvme_dev * dev)2463 static void nvme_pci_disable(struct nvme_dev *dev)
2464 {
2465 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2466 
2467 	pci_free_irq_vectors(pdev);
2468 
2469 	if (pci_is_enabled(pdev)) {
2470 		pci_disable_pcie_error_reporting(pdev);
2471 		pci_disable_device(pdev);
2472 	}
2473 }
2474 
nvme_dev_disable(struct nvme_dev * dev,bool shutdown)2475 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2476 {
2477 	bool dead = true, freeze = false;
2478 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2479 
2480 	mutex_lock(&dev->shutdown_lock);
2481 	if (pci_is_enabled(pdev)) {
2482 		u32 csts = readl(dev->bar + NVME_REG_CSTS);
2483 
2484 		if (dev->ctrl.state == NVME_CTRL_LIVE ||
2485 		    dev->ctrl.state == NVME_CTRL_RESETTING) {
2486 			freeze = true;
2487 			nvme_start_freeze(&dev->ctrl);
2488 		}
2489 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2490 			pdev->error_state  != pci_channel_io_normal);
2491 	}
2492 
2493 	/*
2494 	 * Give the controller a chance to complete all entered requests if
2495 	 * doing a safe shutdown.
2496 	 */
2497 	if (!dead && shutdown && freeze)
2498 		nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2499 
2500 	nvme_stop_queues(&dev->ctrl);
2501 
2502 	if (!dead && dev->ctrl.queue_count > 0) {
2503 		nvme_disable_io_queues(dev);
2504 		nvme_disable_admin_queue(dev, shutdown);
2505 	}
2506 	nvme_suspend_io_queues(dev);
2507 	nvme_suspend_queue(&dev->queues[0]);
2508 	nvme_pci_disable(dev);
2509 	nvme_reap_pending_cqes(dev);
2510 
2511 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2512 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2513 	blk_mq_tagset_wait_completed_request(&dev->tagset);
2514 	blk_mq_tagset_wait_completed_request(&dev->admin_tagset);
2515 
2516 	/*
2517 	 * The driver will not be starting up queues again if shutting down so
2518 	 * must flush all entered requests to their failed completion to avoid
2519 	 * deadlocking blk-mq hot-cpu notifier.
2520 	 */
2521 	if (shutdown) {
2522 		nvme_start_queues(&dev->ctrl);
2523 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2524 			blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2525 	}
2526 	mutex_unlock(&dev->shutdown_lock);
2527 }
2528 
nvme_disable_prepare_reset(struct nvme_dev * dev,bool shutdown)2529 static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2530 {
2531 	if (!nvme_wait_reset(&dev->ctrl))
2532 		return -EBUSY;
2533 	nvme_dev_disable(dev, shutdown);
2534 	return 0;
2535 }
2536 
nvme_setup_prp_pools(struct nvme_dev * dev)2537 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2538 {
2539 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2540 						NVME_CTRL_PAGE_SIZE,
2541 						NVME_CTRL_PAGE_SIZE, 0);
2542 	if (!dev->prp_page_pool)
2543 		return -ENOMEM;
2544 
2545 	/* Optimisation for I/Os between 4k and 128k */
2546 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2547 						256, 256, 0);
2548 	if (!dev->prp_small_pool) {
2549 		dma_pool_destroy(dev->prp_page_pool);
2550 		return -ENOMEM;
2551 	}
2552 	return 0;
2553 }
2554 
nvme_release_prp_pools(struct nvme_dev * dev)2555 static void nvme_release_prp_pools(struct nvme_dev *dev)
2556 {
2557 	dma_pool_destroy(dev->prp_page_pool);
2558 	dma_pool_destroy(dev->prp_small_pool);
2559 }
2560 
nvme_free_tagset(struct nvme_dev * dev)2561 static void nvme_free_tagset(struct nvme_dev *dev)
2562 {
2563 	if (dev->tagset.tags)
2564 		blk_mq_free_tag_set(&dev->tagset);
2565 	dev->ctrl.tagset = NULL;
2566 }
2567 
nvme_pci_free_ctrl(struct nvme_ctrl * ctrl)2568 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2569 {
2570 	struct nvme_dev *dev = to_nvme_dev(ctrl);
2571 
2572 	nvme_dbbuf_dma_free(dev);
2573 	nvme_free_tagset(dev);
2574 	if (dev->ctrl.admin_q)
2575 		blk_put_queue(dev->ctrl.admin_q);
2576 	free_opal_dev(dev->ctrl.opal_dev);
2577 	mempool_destroy(dev->iod_mempool);
2578 	put_device(dev->dev);
2579 	kfree(dev->queues);
2580 	kfree(dev);
2581 }
2582 
nvme_remove_dead_ctrl(struct nvme_dev * dev)2583 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2584 {
2585 	/*
2586 	 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2587 	 * may be holding this pci_dev's device lock.
2588 	 */
2589 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2590 	nvme_get_ctrl(&dev->ctrl);
2591 	nvme_dev_disable(dev, false);
2592 	nvme_kill_queues(&dev->ctrl);
2593 	if (!queue_work(nvme_wq, &dev->remove_work))
2594 		nvme_put_ctrl(&dev->ctrl);
2595 }
2596 
nvme_reset_work(struct work_struct * work)2597 static void nvme_reset_work(struct work_struct *work)
2598 {
2599 	struct nvme_dev *dev =
2600 		container_of(work, struct nvme_dev, ctrl.reset_work);
2601 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2602 	int result;
2603 
2604 	if (dev->ctrl.state != NVME_CTRL_RESETTING) {
2605 		dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2606 			 dev->ctrl.state);
2607 		result = -ENODEV;
2608 		goto out;
2609 	}
2610 
2611 	/*
2612 	 * If we're called to reset a live controller first shut it down before
2613 	 * moving on.
2614 	 */
2615 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2616 		nvme_dev_disable(dev, false);
2617 	nvme_sync_queues(&dev->ctrl);
2618 
2619 	mutex_lock(&dev->shutdown_lock);
2620 	result = nvme_pci_enable(dev);
2621 	if (result)
2622 		goto out_unlock;
2623 
2624 	result = nvme_pci_configure_admin_queue(dev);
2625 	if (result)
2626 		goto out_unlock;
2627 
2628 	result = nvme_alloc_admin_tags(dev);
2629 	if (result)
2630 		goto out_unlock;
2631 
2632 	dma_set_min_align_mask(dev->dev, NVME_CTRL_PAGE_SIZE - 1);
2633 
2634 	/*
2635 	 * Limit the max command size to prevent iod->sg allocations going
2636 	 * over a single page.
2637 	 */
2638 	dev->ctrl.max_hw_sectors = min_t(u32,
2639 		NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2640 	dev->ctrl.max_segments = NVME_MAX_SEGS;
2641 
2642 	/*
2643 	 * Don't limit the IOMMU merged segment size.
2644 	 */
2645 	dma_set_max_seg_size(dev->dev, 0xffffffff);
2646 
2647 	mutex_unlock(&dev->shutdown_lock);
2648 
2649 	/*
2650 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2651 	 * initializing procedure here.
2652 	 */
2653 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2654 		dev_warn(dev->ctrl.device,
2655 			"failed to mark controller CONNECTING\n");
2656 		result = -EBUSY;
2657 		goto out;
2658 	}
2659 
2660 	/*
2661 	 * We do not support an SGL for metadata (yet), so we are limited to a
2662 	 * single integrity segment for the separate metadata pointer.
2663 	 */
2664 	dev->ctrl.max_integrity_segments = 1;
2665 
2666 	result = nvme_init_identify(&dev->ctrl);
2667 	if (result)
2668 		goto out;
2669 
2670 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2671 		if (!dev->ctrl.opal_dev)
2672 			dev->ctrl.opal_dev =
2673 				init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2674 		else if (was_suspend)
2675 			opal_unlock_from_suspend(dev->ctrl.opal_dev);
2676 	} else {
2677 		free_opal_dev(dev->ctrl.opal_dev);
2678 		dev->ctrl.opal_dev = NULL;
2679 	}
2680 
2681 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2682 		result = nvme_dbbuf_dma_alloc(dev);
2683 		if (result)
2684 			dev_warn(dev->dev,
2685 				 "unable to allocate dma for dbbuf\n");
2686 	}
2687 
2688 	if (dev->ctrl.hmpre) {
2689 		result = nvme_setup_host_mem(dev);
2690 		if (result < 0)
2691 			goto out;
2692 	}
2693 
2694 	result = nvme_setup_io_queues(dev);
2695 	if (result)
2696 		goto out;
2697 
2698 	/*
2699 	 * Keep the controller around but remove all namespaces if we don't have
2700 	 * any working I/O queue.
2701 	 */
2702 	if (dev->online_queues < 2) {
2703 		dev_warn(dev->ctrl.device, "IO queues not created\n");
2704 		nvme_kill_queues(&dev->ctrl);
2705 		nvme_remove_namespaces(&dev->ctrl);
2706 		nvme_free_tagset(dev);
2707 	} else {
2708 		nvme_start_queues(&dev->ctrl);
2709 		nvme_wait_freeze(&dev->ctrl);
2710 		nvme_dev_add(dev);
2711 		nvme_unfreeze(&dev->ctrl);
2712 	}
2713 
2714 	/*
2715 	 * If only admin queue live, keep it to do further investigation or
2716 	 * recovery.
2717 	 */
2718 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) {
2719 		dev_warn(dev->ctrl.device,
2720 			"failed to mark controller live state\n");
2721 		result = -ENODEV;
2722 		goto out;
2723 	}
2724 
2725 	nvme_start_ctrl(&dev->ctrl);
2726 	return;
2727 
2728  out_unlock:
2729 	mutex_unlock(&dev->shutdown_lock);
2730  out:
2731 	if (result)
2732 		dev_warn(dev->ctrl.device,
2733 			 "Removing after probe failure status: %d\n", result);
2734 	nvme_remove_dead_ctrl(dev);
2735 }
2736 
nvme_remove_dead_ctrl_work(struct work_struct * work)2737 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2738 {
2739 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2740 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2741 
2742 	if (pci_get_drvdata(pdev))
2743 		device_release_driver(&pdev->dev);
2744 	nvme_put_ctrl(&dev->ctrl);
2745 }
2746 
nvme_pci_reg_read32(struct nvme_ctrl * ctrl,u32 off,u32 * val)2747 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2748 {
2749 	*val = readl(to_nvme_dev(ctrl)->bar + off);
2750 	return 0;
2751 }
2752 
nvme_pci_reg_write32(struct nvme_ctrl * ctrl,u32 off,u32 val)2753 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2754 {
2755 	writel(val, to_nvme_dev(ctrl)->bar + off);
2756 	return 0;
2757 }
2758 
nvme_pci_reg_read64(struct nvme_ctrl * ctrl,u32 off,u64 * val)2759 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2760 {
2761 	*val = lo_hi_readq(to_nvme_dev(ctrl)->bar + off);
2762 	return 0;
2763 }
2764 
nvme_pci_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2765 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2766 {
2767 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2768 
2769 	return snprintf(buf, size, "%s\n", dev_name(&pdev->dev));
2770 }
2771 
2772 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2773 	.name			= "pcie",
2774 	.module			= THIS_MODULE,
2775 	.flags			= NVME_F_METADATA_SUPPORTED |
2776 				  NVME_F_PCI_P2PDMA,
2777 	.reg_read32		= nvme_pci_reg_read32,
2778 	.reg_write32		= nvme_pci_reg_write32,
2779 	.reg_read64		= nvme_pci_reg_read64,
2780 	.free_ctrl		= nvme_pci_free_ctrl,
2781 	.submit_async_event	= nvme_pci_submit_async_event,
2782 	.get_address		= nvme_pci_get_address,
2783 };
2784 
nvme_dev_map(struct nvme_dev * dev)2785 static int nvme_dev_map(struct nvme_dev *dev)
2786 {
2787 	struct pci_dev *pdev = to_pci_dev(dev->dev);
2788 
2789 	if (pci_request_mem_regions(pdev, "nvme"))
2790 		return -ENODEV;
2791 
2792 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2793 		goto release;
2794 
2795 	return 0;
2796   release:
2797 	pci_release_mem_regions(pdev);
2798 	return -ENODEV;
2799 }
2800 
check_vendor_combination_bug(struct pci_dev * pdev)2801 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2802 {
2803 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2804 		/*
2805 		 * Several Samsung devices seem to drop off the PCIe bus
2806 		 * randomly when APST is on and uses the deepest sleep state.
2807 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2808 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2809 		 * 950 PRO 256GB", but it seems to be restricted to two Dell
2810 		 * laptops.
2811 		 */
2812 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2813 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2814 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2815 			return NVME_QUIRK_NO_DEEPEST_PS;
2816 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2817 		/*
2818 		 * Samsung SSD 960 EVO drops off the PCIe bus after system
2819 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2820 		 * within few minutes after bootup on a Coffee Lake board -
2821 		 * ASUS PRIME Z370-A
2822 		 */
2823 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2824 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2825 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2826 			return NVME_QUIRK_NO_APST;
2827 	} else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2828 		    pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2829 		   (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2830 		/*
2831 		 * Forcing to use host managed nvme power settings for
2832 		 * lowest idle power with quick resume latency on
2833 		 * Samsung and Toshiba SSDs based on suspend behavior
2834 		 * on Coffee Lake board for LENOVO C640
2835 		 */
2836 		if ((dmi_match(DMI_BOARD_VENDOR, "LENOVO")) &&
2837 		     dmi_match(DMI_BOARD_NAME, "LNVNB161216"))
2838 			return NVME_QUIRK_SIMPLE_SUSPEND;
2839 	}
2840 
2841 	return 0;
2842 }
2843 
2844 #ifdef CONFIG_ACPI
nvme_acpi_storage_d3(struct pci_dev * dev)2845 static bool nvme_acpi_storage_d3(struct pci_dev *dev)
2846 {
2847 	struct acpi_device *adev = ACPI_COMPANION(&dev->dev);
2848 	u8 val;
2849 
2850 	/*
2851 	 * Look for _DSD property specifying that the storage device on the port
2852 	 * must use D3 to support deep platform power savings during
2853 	 * suspend-to-idle.
2854 	 */
2855 
2856 	if (!adev)
2857 		return false;
2858 	if (fwnode_property_read_u8(acpi_fwnode_handle(adev), "StorageD3Enable",
2859 			&val))
2860 		return false;
2861 	return val == 1;
2862 }
2863 #else
nvme_acpi_storage_d3(struct pci_dev * dev)2864 static inline bool nvme_acpi_storage_d3(struct pci_dev *dev)
2865 {
2866 	return false;
2867 }
2868 #endif /* CONFIG_ACPI */
2869 
nvme_async_probe(void * data,async_cookie_t cookie)2870 static void nvme_async_probe(void *data, async_cookie_t cookie)
2871 {
2872 	struct nvme_dev *dev = data;
2873 
2874 	flush_work(&dev->ctrl.reset_work);
2875 	flush_work(&dev->ctrl.scan_work);
2876 	nvme_put_ctrl(&dev->ctrl);
2877 }
2878 
nvme_probe(struct pci_dev * pdev,const struct pci_device_id * id)2879 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2880 {
2881 	int node, result = -ENOMEM;
2882 	struct nvme_dev *dev;
2883 	unsigned long quirks = id->driver_data;
2884 	size_t alloc_size;
2885 
2886 	node = dev_to_node(&pdev->dev);
2887 	if (node == NUMA_NO_NODE)
2888 		set_dev_node(&pdev->dev, first_memory_node);
2889 
2890 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2891 	if (!dev)
2892 		return -ENOMEM;
2893 
2894 	dev->nr_write_queues = write_queues;
2895 	dev->nr_poll_queues = poll_queues;
2896 	dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2897 	dev->queues = kcalloc_node(dev->nr_allocated_queues,
2898 			sizeof(struct nvme_queue), GFP_KERNEL, node);
2899 	if (!dev->queues)
2900 		goto free;
2901 
2902 	dev->dev = get_device(&pdev->dev);
2903 	pci_set_drvdata(pdev, dev);
2904 
2905 	result = nvme_dev_map(dev);
2906 	if (result)
2907 		goto put_pci;
2908 
2909 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2910 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2911 	mutex_init(&dev->shutdown_lock);
2912 
2913 	result = nvme_setup_prp_pools(dev);
2914 	if (result)
2915 		goto unmap;
2916 
2917 	quirks |= check_vendor_combination_bug(pdev);
2918 
2919 	if (!noacpi && nvme_acpi_storage_d3(pdev)) {
2920 		/*
2921 		 * Some systems use a bios work around to ask for D3 on
2922 		 * platforms that support kernel managed suspend.
2923 		 */
2924 		dev_info(&pdev->dev,
2925 			 "platform quirk: setting simple suspend\n");
2926 		quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2927 	}
2928 
2929 	/*
2930 	 * Double check that our mempool alloc size will cover the biggest
2931 	 * command we support.
2932 	 */
2933 	alloc_size = nvme_pci_iod_alloc_size();
2934 	WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2935 
2936 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2937 						mempool_kfree,
2938 						(void *) alloc_size,
2939 						GFP_KERNEL, node);
2940 	if (!dev->iod_mempool) {
2941 		result = -ENOMEM;
2942 		goto release_pools;
2943 	}
2944 
2945 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2946 			quirks);
2947 	if (result)
2948 		goto release_mempool;
2949 
2950 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2951 
2952 	nvme_reset_ctrl(&dev->ctrl);
2953 	async_schedule(nvme_async_probe, dev);
2954 
2955 	return 0;
2956 
2957  release_mempool:
2958 	mempool_destroy(dev->iod_mempool);
2959  release_pools:
2960 	nvme_release_prp_pools(dev);
2961  unmap:
2962 	nvme_dev_unmap(dev);
2963  put_pci:
2964 	put_device(dev->dev);
2965  free:
2966 	kfree(dev->queues);
2967 	kfree(dev);
2968 	return result;
2969 }
2970 
nvme_reset_prepare(struct pci_dev * pdev)2971 static void nvme_reset_prepare(struct pci_dev *pdev)
2972 {
2973 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2974 
2975 	/*
2976 	 * We don't need to check the return value from waiting for the reset
2977 	 * state as pci_dev device lock is held, making it impossible to race
2978 	 * with ->remove().
2979 	 */
2980 	nvme_disable_prepare_reset(dev, false);
2981 	nvme_sync_queues(&dev->ctrl);
2982 }
2983 
nvme_reset_done(struct pci_dev * pdev)2984 static void nvme_reset_done(struct pci_dev *pdev)
2985 {
2986 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2987 
2988 	if (!nvme_try_sched_reset(&dev->ctrl))
2989 		flush_work(&dev->ctrl.reset_work);
2990 }
2991 
nvme_shutdown(struct pci_dev * pdev)2992 static void nvme_shutdown(struct pci_dev *pdev)
2993 {
2994 	struct nvme_dev *dev = pci_get_drvdata(pdev);
2995 
2996 	nvme_disable_prepare_reset(dev, true);
2997 }
2998 
2999 /*
3000  * The driver's remove may be called on a device in a partially initialized
3001  * state. This function must not have any dependencies on the device state in
3002  * order to proceed.
3003  */
nvme_remove(struct pci_dev * pdev)3004 static void nvme_remove(struct pci_dev *pdev)
3005 {
3006 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3007 
3008 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
3009 	pci_set_drvdata(pdev, NULL);
3010 
3011 	if (!pci_device_is_present(pdev)) {
3012 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
3013 		nvme_dev_disable(dev, true);
3014 	}
3015 
3016 	flush_work(&dev->ctrl.reset_work);
3017 	nvme_stop_ctrl(&dev->ctrl);
3018 	nvme_remove_namespaces(&dev->ctrl);
3019 	nvme_dev_disable(dev, true);
3020 	nvme_release_cmb(dev);
3021 	nvme_free_host_mem(dev);
3022 	nvme_dev_remove_admin(dev);
3023 	nvme_free_queues(dev, 0);
3024 	nvme_release_prp_pools(dev);
3025 	nvme_dev_unmap(dev);
3026 	nvme_uninit_ctrl(&dev->ctrl);
3027 }
3028 
3029 #ifdef CONFIG_PM_SLEEP
nvme_get_power_state(struct nvme_ctrl * ctrl,u32 * ps)3030 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3031 {
3032 	return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
3033 }
3034 
nvme_set_power_state(struct nvme_ctrl * ctrl,u32 ps)3035 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3036 {
3037 	return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
3038 }
3039 
nvme_resume(struct device * dev)3040 static int nvme_resume(struct device *dev)
3041 {
3042 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3043 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3044 
3045 	if (ndev->last_ps == U32_MAX ||
3046 	    nvme_set_power_state(ctrl, ndev->last_ps) != 0)
3047 		return nvme_try_sched_reset(&ndev->ctrl);
3048 	return 0;
3049 }
3050 
nvme_suspend(struct device * dev)3051 static int nvme_suspend(struct device *dev)
3052 {
3053 	struct pci_dev *pdev = to_pci_dev(dev);
3054 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3055 	struct nvme_ctrl *ctrl = &ndev->ctrl;
3056 	int ret = -EBUSY;
3057 
3058 	ndev->last_ps = U32_MAX;
3059 
3060 	/*
3061 	 * The platform does not remove power for a kernel managed suspend so
3062 	 * use host managed nvme power settings for lowest idle power if
3063 	 * possible. This should have quicker resume latency than a full device
3064 	 * shutdown.  But if the firmware is involved after the suspend or the
3065 	 * device does not support any non-default power states, shut down the
3066 	 * device fully.
3067 	 *
3068 	 * If ASPM is not enabled for the device, shut down the device and allow
3069 	 * the PCI bus layer to put it into D3 in order to take the PCIe link
3070 	 * down, so as to allow the platform to achieve its minimum low-power
3071 	 * state (which may not be possible if the link is up).
3072 	 *
3073 	 * If a host memory buffer is enabled, shut down the device as the NVMe
3074 	 * specification allows the device to access the host memory buffer in
3075 	 * host DRAM from all power states, but hosts will fail access to DRAM
3076 	 * during S3.
3077 	 */
3078 	if (pm_suspend_via_firmware() || !ctrl->npss ||
3079 	    !pcie_aspm_enabled(pdev) ||
3080 	    ndev->nr_host_mem_descs ||
3081 	    (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3082 		return nvme_disable_prepare_reset(ndev, true);
3083 
3084 	nvme_start_freeze(ctrl);
3085 	nvme_wait_freeze(ctrl);
3086 	nvme_sync_queues(ctrl);
3087 
3088 	if (ctrl->state != NVME_CTRL_LIVE)
3089 		goto unfreeze;
3090 
3091 	ret = nvme_get_power_state(ctrl, &ndev->last_ps);
3092 	if (ret < 0)
3093 		goto unfreeze;
3094 
3095 	/*
3096 	 * A saved state prevents pci pm from generically controlling the
3097 	 * device's power. If we're using protocol specific settings, we don't
3098 	 * want pci interfering.
3099 	 */
3100 	pci_save_state(pdev);
3101 
3102 	ret = nvme_set_power_state(ctrl, ctrl->npss);
3103 	if (ret < 0)
3104 		goto unfreeze;
3105 
3106 	if (ret) {
3107 		/* discard the saved state */
3108 		pci_load_saved_state(pdev, NULL);
3109 
3110 		/*
3111 		 * Clearing npss forces a controller reset on resume. The
3112 		 * correct value will be rediscovered then.
3113 		 */
3114 		ret = nvme_disable_prepare_reset(ndev, true);
3115 		ctrl->npss = 0;
3116 	}
3117 unfreeze:
3118 	nvme_unfreeze(ctrl);
3119 	return ret;
3120 }
3121 
nvme_simple_suspend(struct device * dev)3122 static int nvme_simple_suspend(struct device *dev)
3123 {
3124 	struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3125 
3126 	return nvme_disable_prepare_reset(ndev, true);
3127 }
3128 
nvme_simple_resume(struct device * dev)3129 static int nvme_simple_resume(struct device *dev)
3130 {
3131 	struct pci_dev *pdev = to_pci_dev(dev);
3132 	struct nvme_dev *ndev = pci_get_drvdata(pdev);
3133 
3134 	return nvme_try_sched_reset(&ndev->ctrl);
3135 }
3136 
3137 static const struct dev_pm_ops nvme_dev_pm_ops = {
3138 	.suspend	= nvme_suspend,
3139 	.resume		= nvme_resume,
3140 	.freeze		= nvme_simple_suspend,
3141 	.thaw		= nvme_simple_resume,
3142 	.poweroff	= nvme_simple_suspend,
3143 	.restore	= nvme_simple_resume,
3144 };
3145 #endif /* CONFIG_PM_SLEEP */
3146 
nvme_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3147 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3148 						pci_channel_state_t state)
3149 {
3150 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3151 
3152 	/*
3153 	 * A frozen channel requires a reset. When detected, this method will
3154 	 * shutdown the controller to quiesce. The controller will be restarted
3155 	 * after the slot reset through driver's slot_reset callback.
3156 	 */
3157 	switch (state) {
3158 	case pci_channel_io_normal:
3159 		return PCI_ERS_RESULT_CAN_RECOVER;
3160 	case pci_channel_io_frozen:
3161 		dev_warn(dev->ctrl.device,
3162 			"frozen state error detected, reset controller\n");
3163 		nvme_dev_disable(dev, false);
3164 		return PCI_ERS_RESULT_NEED_RESET;
3165 	case pci_channel_io_perm_failure:
3166 		dev_warn(dev->ctrl.device,
3167 			"failure state error detected, request disconnect\n");
3168 		return PCI_ERS_RESULT_DISCONNECT;
3169 	}
3170 	return PCI_ERS_RESULT_NEED_RESET;
3171 }
3172 
nvme_slot_reset(struct pci_dev * pdev)3173 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3174 {
3175 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3176 
3177 	dev_info(dev->ctrl.device, "restart after slot reset\n");
3178 	pci_restore_state(pdev);
3179 	nvme_reset_ctrl(&dev->ctrl);
3180 	return PCI_ERS_RESULT_RECOVERED;
3181 }
3182 
nvme_error_resume(struct pci_dev * pdev)3183 static void nvme_error_resume(struct pci_dev *pdev)
3184 {
3185 	struct nvme_dev *dev = pci_get_drvdata(pdev);
3186 
3187 	flush_work(&dev->ctrl.reset_work);
3188 }
3189 
3190 static const struct pci_error_handlers nvme_err_handler = {
3191 	.error_detected	= nvme_error_detected,
3192 	.slot_reset	= nvme_slot_reset,
3193 	.resume		= nvme_error_resume,
3194 	.reset_prepare	= nvme_reset_prepare,
3195 	.reset_done	= nvme_reset_done,
3196 };
3197 
3198 static const struct pci_device_id nvme_id_table[] = {
3199 	{ PCI_VDEVICE(INTEL, 0x0953),	/* Intel 750/P3500/P3600/P3700 */
3200 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3201 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3202 	{ PCI_VDEVICE(INTEL, 0x0a53),	/* Intel P3520 */
3203 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3204 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3205 	{ PCI_VDEVICE(INTEL, 0x0a54),	/* Intel P4500/P4600 */
3206 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3207 				NVME_QUIRK_DEALLOCATE_ZEROES |
3208 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3209 	{ PCI_VDEVICE(INTEL, 0x0a55),	/* Dell Express Flash P4600 */
3210 		.driver_data = NVME_QUIRK_STRIPE_SIZE |
3211 				NVME_QUIRK_DEALLOCATE_ZEROES, },
3212 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */
3213 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3214 				NVME_QUIRK_MEDIUM_PRIO_SQ |
3215 				NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3216 				NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3217 	{ PCI_VDEVICE(INTEL, 0xf1a6),	/* Intel 760p/Pro 7600p */
3218 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3219 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */
3220 		.driver_data = NVME_QUIRK_IDENTIFY_CNS |
3221 				NVME_QUIRK_DISABLE_WRITE_ZEROES |
3222 				NVME_QUIRK_BOGUS_NID, },
3223 	{ PCI_VDEVICE(REDHAT, 0x0010),	/* Qemu emulated controller */
3224 		.driver_data = NVME_QUIRK_BOGUS_NID, },
3225 	{ PCI_DEVICE(0x126f, 0x2263),	/* Silicon Motion unidentified */
3226 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST, },
3227 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */
3228 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3229 				NVME_QUIRK_NO_NS_DESC_LIST, },
3230 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */
3231 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3232 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */
3233 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3234 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */
3235 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3236 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */
3237 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3238 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */
3239 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3240 				NVME_QUIRK_DISABLE_WRITE_ZEROES|
3241 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3242 	{ PCI_DEVICE(0x1987, 0x5013),	/* Phison E13 */
3243 		.driver_data = NVME_QUIRK_LIMIT_IOQD32},
3244 	{ PCI_DEVICE(0x1987, 0x5016),	/* Phison E16 */
3245 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3246 				NVME_QUIRK_BOGUS_NID, },
3247 	{ PCI_DEVICE(0x1b4b, 0x1092),	/* Lexar 256 GB SSD */
3248 		.driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3249 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3250 	{ PCI_DEVICE(0x1d1d, 0x1f1f),	/* LighNVM qemu device */
3251 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3252 	{ PCI_DEVICE(0x1d1d, 0x2807),	/* CNEX WL */
3253 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3254 	{ PCI_DEVICE(0x1d1d, 0x2601),	/* CNEX Granby */
3255 		.driver_data = NVME_QUIRK_LIGHTNVM, },
3256 	{ PCI_DEVICE(0x10ec, 0x5762),   /* ADATA SX6000LNP */
3257 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3258 				NVME_QUIRK_BOGUS_NID, },
3259 	{ PCI_DEVICE(0x1cc1, 0x8201),   /* ADATA SX8200PNP 512GB */
3260 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3261 				NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3262 	 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3263 		.driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3264 	 { PCI_DEVICE(0x1344, 0x6001),   /* Micron Nitro NVMe */
3265 		 .driver_data = NVME_QUIRK_BOGUS_NID, },
3266 	{ PCI_DEVICE(0x1c5c, 0x1504),   /* SK Hynix PC400 */
3267 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3268 	{ PCI_DEVICE(0x15b7, 0x2001),   /*  Sandisk Skyhawk */
3269 		.driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3270 	{ PCI_DEVICE(0x2646, 0x2262),   /* KINGSTON SKC2000 NVMe SSD */
3271 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3272 	{ PCI_DEVICE(0x2646, 0x2263),   /* KINGSTON A2000 NVMe SSD  */
3273 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3274 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3275 		.driver_data = NVME_QUIRK_SINGLE_VECTOR },
3276 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3277 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3278 		.driver_data = NVME_QUIRK_SINGLE_VECTOR |
3279 				NVME_QUIRK_128_BYTES_SQES |
3280 				NVME_QUIRK_SHARED_TAGS |
3281 				NVME_QUIRK_SKIP_CID_GEN },
3282 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3283 	{ 0, }
3284 };
3285 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3286 
3287 static struct pci_driver nvme_driver = {
3288 	.name		= "nvme",
3289 	.id_table	= nvme_id_table,
3290 	.probe		= nvme_probe,
3291 	.remove		= nvme_remove,
3292 	.shutdown	= nvme_shutdown,
3293 #ifdef CONFIG_PM_SLEEP
3294 	.driver		= {
3295 		.pm	= &nvme_dev_pm_ops,
3296 	},
3297 #endif
3298 	.sriov_configure = pci_sriov_configure_simple,
3299 	.err_handler	= &nvme_err_handler,
3300 };
3301 
nvme_init(void)3302 static int __init nvme_init(void)
3303 {
3304 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3305 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3306 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3307 	BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3308 
3309 	return pci_register_driver(&nvme_driver);
3310 }
3311 
nvme_exit(void)3312 static void __exit nvme_exit(void)
3313 {
3314 	pci_unregister_driver(&nvme_driver);
3315 	flush_workqueue(nvme_wq);
3316 }
3317 
3318 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3319 MODULE_LICENSE("GPL");
3320 MODULE_VERSION("1.0");
3321 module_init(nvme_init);
3322 module_exit(nvme_exit);
3323