1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4 ST Ethernet IPs are built around a Synopsys IP Core.
5
6 Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11 Documentation available at:
12 http://www.stlinux.com
13 Support available at:
14 https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <net/pkt_cls.h>
42 #include "stmmac_ptp.h"
43 #include "stmmac.h"
44 #include <linux/reset.h>
45 #include <linux/of_mdio.h>
46 #include "dwmac1000.h"
47 #include "dwxgmac2.h"
48 #include "hwif.h"
49
50 /* As long as the interface is active, we keep the timestamping counter enabled
51 * with fine resolution and binary rollover. This avoid non-monotonic behavior
52 * (clock jumps) when changing timestamping settings at runtime.
53 */
54 #define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
55 PTP_TCR_TSCTRLSSR)
56
57 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
58 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
59
60 /* Module parameters */
61 #define TX_TIMEO 5000
62 static int watchdog = TX_TIMEO;
63 module_param(watchdog, int, 0644);
64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
65
66 static int debug = -1;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
69
70 static int phyaddr = -1;
71 module_param(phyaddr, int, 0444);
72 MODULE_PARM_DESC(phyaddr, "Physical device address");
73
74 #define STMMAC_TX_THRESH(x) ((x)->dma_tx_size / 4)
75 #define STMMAC_RX_THRESH(x) ((x)->dma_rx_size / 4)
76
77 static int flow_ctrl = FLOW_AUTO;
78 module_param(flow_ctrl, int, 0644);
79 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
80
81 static int pause = PAUSE_TIME;
82 module_param(pause, int, 0644);
83 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
84
85 #define TC_DEFAULT 64
86 static int tc = TC_DEFAULT;
87 module_param(tc, int, 0644);
88 MODULE_PARM_DESC(tc, "DMA threshold control value");
89
90 #define DEFAULT_BUFSIZE 1536
91 static int buf_sz = DEFAULT_BUFSIZE;
92 module_param(buf_sz, int, 0644);
93 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
94
95 #define STMMAC_RX_COPYBREAK 256
96
97 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
98 NETIF_MSG_LINK | NETIF_MSG_IFUP |
99 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
100
101 #define STMMAC_DEFAULT_LPI_TIMER 1000
102 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
103 module_param(eee_timer, int, 0644);
104 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
105 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
106
107 /* By default the driver will use the ring mode to manage tx and rx descriptors,
108 * but allow user to force to use the chain instead of the ring
109 */
110 static unsigned int chain_mode;
111 module_param(chain_mode, int, 0444);
112 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
113
114 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
115
116 #ifdef CONFIG_DEBUG_FS
117 static const struct net_device_ops stmmac_netdev_ops;
118 static void stmmac_init_fs(struct net_device *dev);
119 static void stmmac_exit_fs(struct net_device *dev);
120 #endif
121
122 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
123
stmmac_bus_clks_config(struct stmmac_priv * priv,bool enabled)124 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
125 {
126 int ret = 0;
127
128 if (enabled) {
129 ret = clk_prepare_enable(priv->plat->stmmac_clk);
130 if (ret)
131 return ret;
132 ret = clk_prepare_enable(priv->plat->pclk);
133 if (ret) {
134 clk_disable_unprepare(priv->plat->stmmac_clk);
135 return ret;
136 }
137 } else {
138 clk_disable_unprepare(priv->plat->stmmac_clk);
139 clk_disable_unprepare(priv->plat->pclk);
140 }
141
142 return ret;
143 }
144 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
145
146 /**
147 * stmmac_verify_args - verify the driver parameters.
148 * Description: it checks the driver parameters and set a default in case of
149 * errors.
150 */
stmmac_verify_args(void)151 static void stmmac_verify_args(void)
152 {
153 if (unlikely(watchdog < 0))
154 watchdog = TX_TIMEO;
155 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
156 buf_sz = DEFAULT_BUFSIZE;
157 if (unlikely(flow_ctrl > 1))
158 flow_ctrl = FLOW_AUTO;
159 else if (likely(flow_ctrl < 0))
160 flow_ctrl = FLOW_OFF;
161 if (unlikely((pause < 0) || (pause > 0xffff)))
162 pause = PAUSE_TIME;
163 if (eee_timer < 0)
164 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
165 }
166
167 /**
168 * stmmac_disable_all_queues - Disable all queues
169 * @priv: driver private structure
170 */
stmmac_disable_all_queues(struct stmmac_priv * priv)171 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
172 {
173 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
174 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
175 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
176 u32 queue;
177
178 for (queue = 0; queue < maxq; queue++) {
179 struct stmmac_channel *ch = &priv->channel[queue];
180
181 if (queue < rx_queues_cnt)
182 napi_disable(&ch->rx_napi);
183 if (queue < tx_queues_cnt)
184 napi_disable(&ch->tx_napi);
185 }
186 }
187
188 /**
189 * stmmac_enable_all_queues - Enable all queues
190 * @priv: driver private structure
191 */
stmmac_enable_all_queues(struct stmmac_priv * priv)192 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
193 {
194 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
195 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
196 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
197 u32 queue;
198
199 for (queue = 0; queue < maxq; queue++) {
200 struct stmmac_channel *ch = &priv->channel[queue];
201
202 if (queue < rx_queues_cnt)
203 napi_enable(&ch->rx_napi);
204 if (queue < tx_queues_cnt)
205 napi_enable(&ch->tx_napi);
206 }
207 }
208
stmmac_service_event_schedule(struct stmmac_priv * priv)209 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
210 {
211 if (!test_bit(STMMAC_DOWN, &priv->state) &&
212 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
213 queue_work(priv->wq, &priv->service_task);
214 }
215
stmmac_global_err(struct stmmac_priv * priv)216 static void stmmac_global_err(struct stmmac_priv *priv)
217 {
218 netif_carrier_off(priv->dev);
219 set_bit(STMMAC_RESET_REQUESTED, &priv->state);
220 stmmac_service_event_schedule(priv);
221 }
222
223 /**
224 * stmmac_clk_csr_set - dynamically set the MDC clock
225 * @priv: driver private structure
226 * Description: this is to dynamically set the MDC clock according to the csr
227 * clock input.
228 * Note:
229 * If a specific clk_csr value is passed from the platform
230 * this means that the CSR Clock Range selection cannot be
231 * changed at run-time and it is fixed (as reported in the driver
232 * documentation). Viceversa the driver will try to set the MDC
233 * clock dynamically according to the actual clock input.
234 */
stmmac_clk_csr_set(struct stmmac_priv * priv)235 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
236 {
237 u32 clk_rate;
238
239 clk_rate = clk_get_rate(priv->plat->pclk);
240
241 /* Platform provided default clk_csr would be assumed valid
242 * for all other cases except for the below mentioned ones.
243 * For values higher than the IEEE 802.3 specified frequency
244 * we can not estimate the proper divider as it is not known
245 * the frequency of clk_csr_i. So we do not change the default
246 * divider.
247 */
248 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
249 if (clk_rate < CSR_F_35M)
250 priv->clk_csr = STMMAC_CSR_20_35M;
251 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
252 priv->clk_csr = STMMAC_CSR_35_60M;
253 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
254 priv->clk_csr = STMMAC_CSR_60_100M;
255 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
256 priv->clk_csr = STMMAC_CSR_100_150M;
257 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
258 priv->clk_csr = STMMAC_CSR_150_250M;
259 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
260 priv->clk_csr = STMMAC_CSR_250_300M;
261 }
262
263 if (priv->plat->has_sun8i) {
264 if (clk_rate > 160000000)
265 priv->clk_csr = 0x03;
266 else if (clk_rate > 80000000)
267 priv->clk_csr = 0x02;
268 else if (clk_rate > 40000000)
269 priv->clk_csr = 0x01;
270 else
271 priv->clk_csr = 0;
272 }
273
274 if (priv->plat->has_xgmac) {
275 if (clk_rate > 400000000)
276 priv->clk_csr = 0x5;
277 else if (clk_rate > 350000000)
278 priv->clk_csr = 0x4;
279 else if (clk_rate > 300000000)
280 priv->clk_csr = 0x3;
281 else if (clk_rate > 250000000)
282 priv->clk_csr = 0x2;
283 else if (clk_rate > 150000000)
284 priv->clk_csr = 0x1;
285 else
286 priv->clk_csr = 0x0;
287 }
288 }
289
print_pkt(unsigned char * buf,int len)290 static void print_pkt(unsigned char *buf, int len)
291 {
292 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
293 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
294 }
295
stmmac_tx_avail(struct stmmac_priv * priv,u32 queue)296 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
297 {
298 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
299 u32 avail;
300
301 if (tx_q->dirty_tx > tx_q->cur_tx)
302 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
303 else
304 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
305
306 return avail;
307 }
308
309 /**
310 * stmmac_rx_dirty - Get RX queue dirty
311 * @priv: driver private structure
312 * @queue: RX queue index
313 */
stmmac_rx_dirty(struct stmmac_priv * priv,u32 queue)314 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
315 {
316 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
317 u32 dirty;
318
319 if (rx_q->dirty_rx <= rx_q->cur_rx)
320 dirty = rx_q->cur_rx - rx_q->dirty_rx;
321 else
322 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
323
324 return dirty;
325 }
326
327 /**
328 * stmmac_enable_eee_mode - check and enter in LPI mode
329 * @priv: driver private structure
330 * Description: this function is to verify and enter in LPI mode in case of
331 * EEE.
332 */
stmmac_enable_eee_mode(struct stmmac_priv * priv)333 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
334 {
335 u32 tx_cnt = priv->plat->tx_queues_to_use;
336 u32 queue;
337
338 /* check if all TX queues have the work finished */
339 for (queue = 0; queue < tx_cnt; queue++) {
340 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
341
342 if (tx_q->dirty_tx != tx_q->cur_tx)
343 return; /* still unfinished work */
344 }
345
346 /* Check and enter in LPI mode */
347 if (!priv->tx_path_in_lpi_mode)
348 stmmac_set_eee_mode(priv, priv->hw,
349 priv->plat->en_tx_lpi_clockgating);
350 }
351
352 /**
353 * stmmac_disable_eee_mode - disable and exit from LPI mode
354 * @priv: driver private structure
355 * Description: this function is to exit and disable EEE in case of
356 * LPI state is true. This is called by the xmit.
357 */
stmmac_disable_eee_mode(struct stmmac_priv * priv)358 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
359 {
360 stmmac_reset_eee_mode(priv, priv->hw);
361 del_timer_sync(&priv->eee_ctrl_timer);
362 priv->tx_path_in_lpi_mode = false;
363 }
364
365 /**
366 * stmmac_eee_ctrl_timer - EEE TX SW timer.
367 * @t: timer_list struct containing private info
368 * Description:
369 * if there is no data transfer and if we are not in LPI state,
370 * then MAC Transmitter can be moved to LPI state.
371 */
stmmac_eee_ctrl_timer(struct timer_list * t)372 static void stmmac_eee_ctrl_timer(struct timer_list *t)
373 {
374 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
375
376 stmmac_enable_eee_mode(priv);
377 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
378 }
379
380 /**
381 * stmmac_eee_init - init EEE
382 * @priv: driver private structure
383 * Description:
384 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
385 * can also manage EEE, this function enable the LPI state and start related
386 * timer.
387 */
stmmac_eee_init(struct stmmac_priv * priv)388 bool stmmac_eee_init(struct stmmac_priv *priv)
389 {
390 int eee_tw_timer = priv->eee_tw_timer;
391
392 /* Using PCS we cannot dial with the phy registers at this stage
393 * so we do not support extra feature like EEE.
394 */
395 if (priv->hw->pcs == STMMAC_PCS_TBI ||
396 priv->hw->pcs == STMMAC_PCS_RTBI)
397 return false;
398
399 /* Check if MAC core supports the EEE feature. */
400 if (!priv->dma_cap.eee)
401 return false;
402
403 mutex_lock(&priv->lock);
404
405 /* Check if it needs to be deactivated */
406 if (!priv->eee_active) {
407 if (priv->eee_enabled) {
408 netdev_dbg(priv->dev, "disable EEE\n");
409 del_timer_sync(&priv->eee_ctrl_timer);
410 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
411 }
412 mutex_unlock(&priv->lock);
413 return false;
414 }
415
416 if (priv->eee_active && !priv->eee_enabled) {
417 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
418 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
419 eee_tw_timer);
420 }
421
422 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
423
424 mutex_unlock(&priv->lock);
425 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
426 return true;
427 }
428
429 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
430 * @priv: driver private structure
431 * @p : descriptor pointer
432 * @skb : the socket buffer
433 * Description :
434 * This function will read timestamp from the descriptor & pass it to stack.
435 * and also perform some sanity checks.
436 */
stmmac_get_tx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct sk_buff * skb)437 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
438 struct dma_desc *p, struct sk_buff *skb)
439 {
440 struct skb_shared_hwtstamps shhwtstamp;
441 bool found = false;
442 u64 ns = 0;
443
444 if (!priv->hwts_tx_en)
445 return;
446
447 /* exit if skb doesn't support hw tstamp */
448 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
449 return;
450
451 /* check tx tstamp status */
452 if (stmmac_get_tx_timestamp_status(priv, p)) {
453 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
454 found = true;
455 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
456 found = true;
457 }
458
459 if (found) {
460 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
461 shhwtstamp.hwtstamp = ns_to_ktime(ns);
462
463 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
464 /* pass tstamp to stack */
465 skb_tstamp_tx(skb, &shhwtstamp);
466 }
467 }
468
469 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
470 * @priv: driver private structure
471 * @p : descriptor pointer
472 * @np : next descriptor pointer
473 * @skb : the socket buffer
474 * Description :
475 * This function will read received packet's timestamp from the descriptor
476 * and pass it to stack. It also perform some sanity checks.
477 */
stmmac_get_rx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct dma_desc * np,struct sk_buff * skb)478 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
479 struct dma_desc *np, struct sk_buff *skb)
480 {
481 struct skb_shared_hwtstamps *shhwtstamp = NULL;
482 struct dma_desc *desc = p;
483 u64 ns = 0;
484
485 if (!priv->hwts_rx_en)
486 return;
487 /* For GMAC4, the valid timestamp is from CTX next desc. */
488 if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
489 desc = np;
490
491 /* Check if timestamp is available */
492 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
493 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
494 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
495 shhwtstamp = skb_hwtstamps(skb);
496 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
497 shhwtstamp->hwtstamp = ns_to_ktime(ns);
498 } else {
499 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
500 }
501 }
502
503 /**
504 * stmmac_hwtstamp_set - control hardware timestamping.
505 * @dev: device pointer.
506 * @ifr: An IOCTL specific structure, that can contain a pointer to
507 * a proprietary structure used to pass information to the driver.
508 * Description:
509 * This function configures the MAC to enable/disable both outgoing(TX)
510 * and incoming(RX) packets time stamping based on user input.
511 * Return Value:
512 * 0 on success and an appropriate -ve integer on failure.
513 */
stmmac_hwtstamp_set(struct net_device * dev,struct ifreq * ifr)514 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
515 {
516 struct stmmac_priv *priv = netdev_priv(dev);
517 struct hwtstamp_config config;
518 u32 ptp_v2 = 0;
519 u32 tstamp_all = 0;
520 u32 ptp_over_ipv4_udp = 0;
521 u32 ptp_over_ipv6_udp = 0;
522 u32 ptp_over_ethernet = 0;
523 u32 snap_type_sel = 0;
524 u32 ts_master_en = 0;
525 u32 ts_event_en = 0;
526
527 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
528 netdev_alert(priv->dev, "No support for HW time stamping\n");
529 priv->hwts_tx_en = 0;
530 priv->hwts_rx_en = 0;
531
532 return -EOPNOTSUPP;
533 }
534
535 if (copy_from_user(&config, ifr->ifr_data,
536 sizeof(config)))
537 return -EFAULT;
538
539 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
540 __func__, config.flags, config.tx_type, config.rx_filter);
541
542 /* reserved for future extensions */
543 if (config.flags)
544 return -EINVAL;
545
546 if (config.tx_type != HWTSTAMP_TX_OFF &&
547 config.tx_type != HWTSTAMP_TX_ON)
548 return -ERANGE;
549
550 if (priv->adv_ts) {
551 switch (config.rx_filter) {
552 case HWTSTAMP_FILTER_NONE:
553 /* time stamp no incoming packet at all */
554 config.rx_filter = HWTSTAMP_FILTER_NONE;
555 break;
556
557 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
558 /* PTP v1, UDP, any kind of event packet */
559 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
560 /* 'xmac' hardware can support Sync, Pdelay_Req and
561 * Pdelay_resp by setting bit14 and bits17/16 to 01
562 * This leaves Delay_Req timestamps out.
563 * Enable all events *and* general purpose message
564 * timestamping
565 */
566 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
567 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
568 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
569 break;
570
571 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
572 /* PTP v1, UDP, Sync packet */
573 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
574 /* take time stamp for SYNC messages only */
575 ts_event_en = PTP_TCR_TSEVNTENA;
576
577 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
578 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
579 break;
580
581 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
582 /* PTP v1, UDP, Delay_req packet */
583 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
584 /* take time stamp for Delay_Req messages only */
585 ts_master_en = PTP_TCR_TSMSTRENA;
586 ts_event_en = PTP_TCR_TSEVNTENA;
587
588 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
589 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
590 break;
591
592 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
593 /* PTP v2, UDP, any kind of event packet */
594 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
595 ptp_v2 = PTP_TCR_TSVER2ENA;
596 /* take time stamp for all event messages */
597 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
598
599 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
600 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
601 break;
602
603 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
604 /* PTP v2, UDP, Sync packet */
605 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
606 ptp_v2 = PTP_TCR_TSVER2ENA;
607 /* take time stamp for SYNC messages only */
608 ts_event_en = PTP_TCR_TSEVNTENA;
609
610 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
611 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
612 break;
613
614 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
615 /* PTP v2, UDP, Delay_req packet */
616 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
617 ptp_v2 = PTP_TCR_TSVER2ENA;
618 /* take time stamp for Delay_Req messages only */
619 ts_master_en = PTP_TCR_TSMSTRENA;
620 ts_event_en = PTP_TCR_TSEVNTENA;
621
622 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
623 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
624 break;
625
626 case HWTSTAMP_FILTER_PTP_V2_EVENT:
627 /* PTP v2/802.AS1 any layer, any kind of event packet */
628 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
629 ptp_v2 = PTP_TCR_TSVER2ENA;
630 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
631 if (priv->synopsys_id < DWMAC_CORE_4_10)
632 ts_event_en = PTP_TCR_TSEVNTENA;
633 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
634 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
635 ptp_over_ethernet = PTP_TCR_TSIPENA;
636 break;
637
638 case HWTSTAMP_FILTER_PTP_V2_SYNC:
639 /* PTP v2/802.AS1, any layer, Sync packet */
640 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
641 ptp_v2 = PTP_TCR_TSVER2ENA;
642 /* take time stamp for SYNC messages only */
643 ts_event_en = PTP_TCR_TSEVNTENA;
644
645 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
646 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
647 ptp_over_ethernet = PTP_TCR_TSIPENA;
648 break;
649
650 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
651 /* PTP v2/802.AS1, any layer, Delay_req packet */
652 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
653 ptp_v2 = PTP_TCR_TSVER2ENA;
654 /* take time stamp for Delay_Req messages only */
655 ts_master_en = PTP_TCR_TSMSTRENA;
656 ts_event_en = PTP_TCR_TSEVNTENA;
657
658 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
659 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
660 ptp_over_ethernet = PTP_TCR_TSIPENA;
661 break;
662
663 case HWTSTAMP_FILTER_NTP_ALL:
664 case HWTSTAMP_FILTER_ALL:
665 /* time stamp any incoming packet */
666 config.rx_filter = HWTSTAMP_FILTER_ALL;
667 tstamp_all = PTP_TCR_TSENALL;
668 break;
669
670 default:
671 return -ERANGE;
672 }
673 } else {
674 switch (config.rx_filter) {
675 case HWTSTAMP_FILTER_NONE:
676 config.rx_filter = HWTSTAMP_FILTER_NONE;
677 break;
678 default:
679 /* PTP v1, UDP, any kind of event packet */
680 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
681 break;
682 }
683 }
684 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
685 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
686
687 priv->systime_flags = STMMAC_HWTS_ACTIVE;
688
689 if (priv->hwts_tx_en || priv->hwts_rx_en) {
690 priv->systime_flags |= tstamp_all | ptp_v2 |
691 ptp_over_ethernet | ptp_over_ipv6_udp |
692 ptp_over_ipv4_udp | ts_event_en |
693 ts_master_en | snap_type_sel;
694 }
695
696 stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
697
698 memcpy(&priv->tstamp_config, &config, sizeof(config));
699
700 return copy_to_user(ifr->ifr_data, &config,
701 sizeof(config)) ? -EFAULT : 0;
702 }
703
704 /**
705 * stmmac_hwtstamp_get - read hardware timestamping.
706 * @dev: device pointer.
707 * @ifr: An IOCTL specific structure, that can contain a pointer to
708 * a proprietary structure used to pass information to the driver.
709 * Description:
710 * This function obtain the current hardware timestamping settings
711 * as requested.
712 */
stmmac_hwtstamp_get(struct net_device * dev,struct ifreq * ifr)713 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
714 {
715 struct stmmac_priv *priv = netdev_priv(dev);
716 struct hwtstamp_config *config = &priv->tstamp_config;
717
718 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
719 return -EOPNOTSUPP;
720
721 return copy_to_user(ifr->ifr_data, config,
722 sizeof(*config)) ? -EFAULT : 0;
723 }
724
725 /**
726 * stmmac_init_tstamp_counter - init hardware timestamping counter
727 * @priv: driver private structure
728 * @systime_flags: timestamping flags
729 * Description:
730 * Initialize hardware counter for packet timestamping.
731 * This is valid as long as the interface is open and not suspended.
732 * Will be rerun after resuming from suspend, case in which the timestamping
733 * flags updated by stmmac_hwtstamp_set() also need to be restored.
734 */
stmmac_init_tstamp_counter(struct stmmac_priv * priv,u32 systime_flags)735 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
736 {
737 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
738 struct timespec64 now;
739 u32 sec_inc = 0;
740 u64 temp = 0;
741
742 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
743 return -EOPNOTSUPP;
744
745 stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
746 priv->systime_flags = systime_flags;
747
748 /* program Sub Second Increment reg */
749 stmmac_config_sub_second_increment(priv, priv->ptpaddr,
750 priv->plat->clk_ptp_rate,
751 xmac, &sec_inc);
752 temp = div_u64(1000000000ULL, sec_inc);
753
754 /* Store sub second increment for later use */
755 priv->sub_second_inc = sec_inc;
756
757 /* calculate default added value:
758 * formula is :
759 * addend = (2^32)/freq_div_ratio;
760 * where, freq_div_ratio = 1e9ns/sec_inc
761 */
762 temp = (u64)(temp << 32);
763 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
764 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
765
766 /* initialize system time */
767 ktime_get_real_ts64(&now);
768
769 /* lower 32 bits of tv_sec are safe until y2106 */
770 stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
771
772 return 0;
773 }
774 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
775
776 /**
777 * stmmac_init_ptp - init PTP
778 * @priv: driver private structure
779 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
780 * This is done by looking at the HW cap. register.
781 * This function also registers the ptp driver.
782 */
stmmac_init_ptp(struct stmmac_priv * priv)783 static int stmmac_init_ptp(struct stmmac_priv *priv)
784 {
785 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
786 int ret;
787
788 ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
789 if (ret)
790 return ret;
791
792 priv->adv_ts = 0;
793 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
794 if (xmac && priv->dma_cap.atime_stamp)
795 priv->adv_ts = 1;
796 /* Dwmac 3.x core with extend_desc can support adv_ts */
797 else if (priv->extend_desc && priv->dma_cap.atime_stamp)
798 priv->adv_ts = 1;
799
800 if (priv->dma_cap.time_stamp)
801 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
802
803 if (priv->adv_ts)
804 netdev_info(priv->dev,
805 "IEEE 1588-2008 Advanced Timestamp supported\n");
806
807 priv->hwts_tx_en = 0;
808 priv->hwts_rx_en = 0;
809
810 return 0;
811 }
812
stmmac_release_ptp(struct stmmac_priv * priv)813 static void stmmac_release_ptp(struct stmmac_priv *priv)
814 {
815 clk_disable_unprepare(priv->plat->clk_ptp_ref);
816 stmmac_ptp_unregister(priv);
817 }
818
819 /**
820 * stmmac_mac_flow_ctrl - Configure flow control in all queues
821 * @priv: driver private structure
822 * @duplex: duplex passed to the next function
823 * Description: It is used for configuring the flow control in all queues
824 */
stmmac_mac_flow_ctrl(struct stmmac_priv * priv,u32 duplex)825 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
826 {
827 u32 tx_cnt = priv->plat->tx_queues_to_use;
828
829 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl & priv->plat->flow_ctrl,
830 priv->pause, tx_cnt);
831 }
832
stmmac_validate(struct phylink_config * config,unsigned long * supported,struct phylink_link_state * state)833 static void stmmac_validate(struct phylink_config *config,
834 unsigned long *supported,
835 struct phylink_link_state *state)
836 {
837 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
838 __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
839 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
840 int tx_cnt = priv->plat->tx_queues_to_use;
841 int max_speed = priv->plat->max_speed;
842
843 phylink_set(mac_supported, 10baseT_Half);
844 phylink_set(mac_supported, 10baseT_Full);
845 phylink_set(mac_supported, 100baseT_Half);
846 phylink_set(mac_supported, 100baseT_Full);
847 phylink_set(mac_supported, 1000baseT_Half);
848 phylink_set(mac_supported, 1000baseT_Full);
849 phylink_set(mac_supported, 1000baseKX_Full);
850 phylink_set(mac_supported, 100baseT1_Full);
851 phylink_set(mac_supported, 1000baseT1_Full);
852
853 phylink_set(mac_supported, Autoneg);
854 phylink_set(mac_supported, Pause);
855 phylink_set(mac_supported, Asym_Pause);
856 phylink_set_port_modes(mac_supported);
857
858 /* Cut down 1G if asked to */
859 if ((max_speed > 0) && (max_speed < 1000)) {
860 phylink_set(mask, 1000baseT_Full);
861 phylink_set(mask, 1000baseX_Full);
862 } else if (priv->plat->has_xgmac) {
863 if (!max_speed || (max_speed >= 2500)) {
864 phylink_set(mac_supported, 2500baseT_Full);
865 phylink_set(mac_supported, 2500baseX_Full);
866 }
867 if (!max_speed || (max_speed >= 5000)) {
868 phylink_set(mac_supported, 5000baseT_Full);
869 }
870 if (!max_speed || (max_speed >= 10000)) {
871 phylink_set(mac_supported, 10000baseSR_Full);
872 phylink_set(mac_supported, 10000baseLR_Full);
873 phylink_set(mac_supported, 10000baseER_Full);
874 phylink_set(mac_supported, 10000baseLRM_Full);
875 phylink_set(mac_supported, 10000baseT_Full);
876 phylink_set(mac_supported, 10000baseKX4_Full);
877 phylink_set(mac_supported, 10000baseKR_Full);
878 }
879 if (!max_speed || (max_speed >= 25000)) {
880 phylink_set(mac_supported, 25000baseCR_Full);
881 phylink_set(mac_supported, 25000baseKR_Full);
882 phylink_set(mac_supported, 25000baseSR_Full);
883 }
884 if (!max_speed || (max_speed >= 40000)) {
885 phylink_set(mac_supported, 40000baseKR4_Full);
886 phylink_set(mac_supported, 40000baseCR4_Full);
887 phylink_set(mac_supported, 40000baseSR4_Full);
888 phylink_set(mac_supported, 40000baseLR4_Full);
889 }
890 if (!max_speed || (max_speed >= 50000)) {
891 phylink_set(mac_supported, 50000baseCR2_Full);
892 phylink_set(mac_supported, 50000baseKR2_Full);
893 phylink_set(mac_supported, 50000baseSR2_Full);
894 phylink_set(mac_supported, 50000baseKR_Full);
895 phylink_set(mac_supported, 50000baseSR_Full);
896 phylink_set(mac_supported, 50000baseCR_Full);
897 phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
898 phylink_set(mac_supported, 50000baseDR_Full);
899 }
900 if (!max_speed || (max_speed >= 100000)) {
901 phylink_set(mac_supported, 100000baseKR4_Full);
902 phylink_set(mac_supported, 100000baseSR4_Full);
903 phylink_set(mac_supported, 100000baseCR4_Full);
904 phylink_set(mac_supported, 100000baseLR4_ER4_Full);
905 phylink_set(mac_supported, 100000baseKR2_Full);
906 phylink_set(mac_supported, 100000baseSR2_Full);
907 phylink_set(mac_supported, 100000baseCR2_Full);
908 phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
909 phylink_set(mac_supported, 100000baseDR2_Full);
910 }
911 }
912
913 /* Half-Duplex can only work with single queue */
914 if (tx_cnt > 1) {
915 phylink_set(mask, 10baseT_Half);
916 phylink_set(mask, 100baseT_Half);
917 phylink_set(mask, 1000baseT_Half);
918 }
919
920 linkmode_and(supported, supported, mac_supported);
921 linkmode_andnot(supported, supported, mask);
922
923 linkmode_and(state->advertising, state->advertising, mac_supported);
924 linkmode_andnot(state->advertising, state->advertising, mask);
925
926 /* If PCS is supported, check which modes it supports. */
927 stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state);
928 }
929
stmmac_mac_pcs_get_state(struct phylink_config * config,struct phylink_link_state * state)930 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
931 struct phylink_link_state *state)
932 {
933 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
934
935 state->link = 0;
936 stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state);
937 }
938
stmmac_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)939 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
940 const struct phylink_link_state *state)
941 {
942 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
943
944 stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state);
945 }
946
stmmac_mac_an_restart(struct phylink_config * config)947 static void stmmac_mac_an_restart(struct phylink_config *config)
948 {
949 /* Not Supported */
950 }
951
stmmac_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)952 static void stmmac_mac_link_down(struct phylink_config *config,
953 unsigned int mode, phy_interface_t interface)
954 {
955 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
956
957 stmmac_mac_set(priv, priv->ioaddr, false);
958 priv->eee_active = false;
959 priv->tx_lpi_enabled = false;
960 stmmac_eee_init(priv);
961 stmmac_set_eee_pls(priv, priv->hw, false);
962 }
963
stmmac_mac_link_up(struct phylink_config * config,struct phy_device * phy,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)964 static void stmmac_mac_link_up(struct phylink_config *config,
965 struct phy_device *phy,
966 unsigned int mode, phy_interface_t interface,
967 int speed, int duplex,
968 bool tx_pause, bool rx_pause)
969 {
970 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
971 u32 ctrl;
972
973 stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface);
974
975 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
976 ctrl &= ~priv->hw->link.speed_mask;
977
978 if (interface == PHY_INTERFACE_MODE_USXGMII) {
979 switch (speed) {
980 case SPEED_10000:
981 ctrl |= priv->hw->link.xgmii.speed10000;
982 break;
983 case SPEED_5000:
984 ctrl |= priv->hw->link.xgmii.speed5000;
985 break;
986 case SPEED_2500:
987 ctrl |= priv->hw->link.xgmii.speed2500;
988 break;
989 default:
990 return;
991 }
992 } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
993 switch (speed) {
994 case SPEED_100000:
995 ctrl |= priv->hw->link.xlgmii.speed100000;
996 break;
997 case SPEED_50000:
998 ctrl |= priv->hw->link.xlgmii.speed50000;
999 break;
1000 case SPEED_40000:
1001 ctrl |= priv->hw->link.xlgmii.speed40000;
1002 break;
1003 case SPEED_25000:
1004 ctrl |= priv->hw->link.xlgmii.speed25000;
1005 break;
1006 case SPEED_10000:
1007 ctrl |= priv->hw->link.xgmii.speed10000;
1008 break;
1009 case SPEED_2500:
1010 ctrl |= priv->hw->link.speed2500;
1011 break;
1012 case SPEED_1000:
1013 ctrl |= priv->hw->link.speed1000;
1014 break;
1015 default:
1016 return;
1017 }
1018 } else {
1019 switch (speed) {
1020 case SPEED_2500:
1021 ctrl |= priv->hw->link.speed2500;
1022 break;
1023 case SPEED_1000:
1024 ctrl |= priv->hw->link.speed1000;
1025 break;
1026 case SPEED_100:
1027 ctrl |= priv->hw->link.speed100;
1028 break;
1029 case SPEED_10:
1030 ctrl |= priv->hw->link.speed10;
1031 break;
1032 default:
1033 return;
1034 }
1035 }
1036
1037 priv->speed = speed;
1038
1039 if (priv->plat->fix_mac_speed)
1040 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1041
1042 if (!duplex)
1043 ctrl &= ~priv->hw->link.duplex;
1044 else
1045 ctrl |= priv->hw->link.duplex;
1046
1047 /* Flow Control operation */
1048 if (rx_pause && tx_pause)
1049 priv->flow_ctrl = FLOW_AUTO;
1050 else if (rx_pause && !tx_pause)
1051 priv->flow_ctrl = FLOW_RX;
1052 else if (!rx_pause && tx_pause)
1053 priv->flow_ctrl = FLOW_TX;
1054 else
1055 priv->flow_ctrl = FLOW_OFF;
1056
1057 stmmac_mac_flow_ctrl(priv, duplex);
1058
1059 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1060
1061 stmmac_mac_set(priv, priv->ioaddr, true);
1062 if (phy && priv->dma_cap.eee) {
1063 priv->eee_active = phy_init_eee(phy, 1) >= 0;
1064 priv->eee_enabled = stmmac_eee_init(priv);
1065 priv->tx_lpi_enabled = priv->eee_enabled;
1066 stmmac_set_eee_pls(priv, priv->hw, true);
1067 }
1068 }
1069
1070 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1071 .validate = stmmac_validate,
1072 .mac_pcs_get_state = stmmac_mac_pcs_get_state,
1073 .mac_config = stmmac_mac_config,
1074 .mac_an_restart = stmmac_mac_an_restart,
1075 .mac_link_down = stmmac_mac_link_down,
1076 .mac_link_up = stmmac_mac_link_up,
1077 };
1078
1079 /**
1080 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1081 * @priv: driver private structure
1082 * Description: this is to verify if the HW supports the PCS.
1083 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1084 * configured for the TBI, RTBI, or SGMII PHY interface.
1085 */
stmmac_check_pcs_mode(struct stmmac_priv * priv)1086 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1087 {
1088 int interface = priv->plat->interface;
1089
1090 if (priv->dma_cap.pcs) {
1091 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1092 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1093 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1094 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1095 netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1096 priv->hw->pcs = STMMAC_PCS_RGMII;
1097 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1098 netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1099 priv->hw->pcs = STMMAC_PCS_SGMII;
1100 }
1101 }
1102 }
1103
1104 /**
1105 * stmmac_init_phy - PHY initialization
1106 * @dev: net device structure
1107 * Description: it initializes the driver's PHY state, and attaches the PHY
1108 * to the mac driver.
1109 * Return value:
1110 * 0 on success
1111 */
stmmac_init_phy(struct net_device * dev)1112 static int stmmac_init_phy(struct net_device *dev)
1113 {
1114 struct stmmac_priv *priv = netdev_priv(dev);
1115 struct device_node *node;
1116 int ret;
1117
1118 if (priv->plat->integrated_phy_power)
1119 ret = priv->plat->integrated_phy_power(priv->plat->bsp_priv, true);
1120
1121 node = priv->plat->phylink_node;
1122
1123 if (node)
1124 ret = phylink_of_phy_connect(priv->phylink, node, 0);
1125
1126 /* Some DT bindings do not set-up the PHY handle. Let's try to
1127 * manually parse it
1128 */
1129 if (!node || ret) {
1130 int addr = priv->plat->phy_addr;
1131 struct phy_device *phydev;
1132
1133 phydev = mdiobus_get_phy(priv->mii, addr);
1134 if (!phydev) {
1135 netdev_err(priv->dev, "no phy at addr %d\n", addr);
1136 return -ENODEV;
1137 }
1138
1139 ret = phylink_connect_phy(priv->phylink, phydev);
1140 }
1141
1142 if (!priv->plat->pmt) {
1143 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1144
1145 phylink_ethtool_get_wol(priv->phylink, &wol);
1146 device_set_wakeup_capable(priv->device, !!wol.supported);
1147 }
1148
1149 return ret;
1150 }
1151
stmmac_phy_setup(struct stmmac_priv * priv)1152 static int stmmac_phy_setup(struct stmmac_priv *priv)
1153 {
1154 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1155 int mode = priv->plat->phy_interface;
1156 struct phylink *phylink;
1157
1158 priv->phylink_config.dev = &priv->dev->dev;
1159 priv->phylink_config.type = PHYLINK_NETDEV;
1160 priv->phylink_config.pcs_poll = true;
1161
1162 if (!fwnode)
1163 fwnode = dev_fwnode(priv->device);
1164
1165 phylink = phylink_create(&priv->phylink_config, fwnode,
1166 mode, &stmmac_phylink_mac_ops);
1167 if (IS_ERR(phylink))
1168 return PTR_ERR(phylink);
1169
1170 priv->phylink = phylink;
1171 return 0;
1172 }
1173
stmmac_display_rx_rings(struct stmmac_priv * priv)1174 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1175 {
1176 u32 rx_cnt = priv->plat->rx_queues_to_use;
1177 unsigned int desc_size;
1178 void *head_rx;
1179 u32 queue;
1180
1181 /* Display RX rings */
1182 for (queue = 0; queue < rx_cnt; queue++) {
1183 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1184
1185 pr_info("\tRX Queue %u rings\n", queue);
1186
1187 if (priv->extend_desc) {
1188 head_rx = (void *)rx_q->dma_erx;
1189 desc_size = sizeof(struct dma_extended_desc);
1190 } else {
1191 head_rx = (void *)rx_q->dma_rx;
1192 desc_size = sizeof(struct dma_desc);
1193 }
1194
1195 /* Display RX ring */
1196 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1197 rx_q->dma_rx_phy, desc_size);
1198 }
1199 }
1200
stmmac_display_tx_rings(struct stmmac_priv * priv)1201 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1202 {
1203 u32 tx_cnt = priv->plat->tx_queues_to_use;
1204 unsigned int desc_size;
1205 void *head_tx;
1206 u32 queue;
1207
1208 /* Display TX rings */
1209 for (queue = 0; queue < tx_cnt; queue++) {
1210 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1211
1212 pr_info("\tTX Queue %d rings\n", queue);
1213
1214 if (priv->extend_desc) {
1215 head_tx = (void *)tx_q->dma_etx;
1216 desc_size = sizeof(struct dma_extended_desc);
1217 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1218 head_tx = (void *)tx_q->dma_entx;
1219 desc_size = sizeof(struct dma_edesc);
1220 } else {
1221 head_tx = (void *)tx_q->dma_tx;
1222 desc_size = sizeof(struct dma_desc);
1223 }
1224
1225 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1226 tx_q->dma_tx_phy, desc_size);
1227 }
1228 }
1229
stmmac_display_rings(struct stmmac_priv * priv)1230 static void stmmac_display_rings(struct stmmac_priv *priv)
1231 {
1232 /* Display RX ring */
1233 stmmac_display_rx_rings(priv);
1234
1235 /* Display TX ring */
1236 stmmac_display_tx_rings(priv);
1237 }
1238
stmmac_set_bfsize(int mtu,int bufsize)1239 static int stmmac_set_bfsize(int mtu, int bufsize)
1240 {
1241 int ret = bufsize;
1242
1243 if (mtu >= BUF_SIZE_8KiB)
1244 ret = BUF_SIZE_16KiB;
1245 else if (mtu >= BUF_SIZE_4KiB)
1246 ret = BUF_SIZE_8KiB;
1247 else if (mtu >= BUF_SIZE_2KiB)
1248 ret = BUF_SIZE_4KiB;
1249 else if (mtu > DEFAULT_BUFSIZE)
1250 ret = BUF_SIZE_2KiB;
1251 else
1252 ret = DEFAULT_BUFSIZE;
1253
1254 return ret;
1255 }
1256
1257 /**
1258 * stmmac_clear_rx_descriptors - clear RX descriptors
1259 * @priv: driver private structure
1260 * @queue: RX queue index
1261 * Description: this function is called to clear the RX descriptors
1262 * in case of both basic and extended descriptors are used.
1263 */
stmmac_clear_rx_descriptors(struct stmmac_priv * priv,u32 queue)1264 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1265 {
1266 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1267 int i;
1268
1269 /* Clear the RX descriptors */
1270 for (i = 0; i < priv->dma_rx_size; i++)
1271 if (priv->extend_desc)
1272 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1273 priv->use_riwt, priv->mode,
1274 (i == priv->dma_rx_size - 1),
1275 priv->dma_buf_sz);
1276 else
1277 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1278 priv->use_riwt, priv->mode,
1279 (i == priv->dma_rx_size - 1),
1280 priv->dma_buf_sz);
1281 }
1282
1283 /**
1284 * stmmac_clear_tx_descriptors - clear tx descriptors
1285 * @priv: driver private structure
1286 * @queue: TX queue index.
1287 * Description: this function is called to clear the TX descriptors
1288 * in case of both basic and extended descriptors are used.
1289 */
stmmac_clear_tx_descriptors(struct stmmac_priv * priv,u32 queue)1290 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1291 {
1292 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1293 int i;
1294
1295 /* Clear the TX descriptors */
1296 for (i = 0; i < priv->dma_tx_size; i++) {
1297 int last = (i == (priv->dma_tx_size - 1));
1298 struct dma_desc *p;
1299
1300 if (priv->extend_desc)
1301 p = &tx_q->dma_etx[i].basic;
1302 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1303 p = &tx_q->dma_entx[i].basic;
1304 else
1305 p = &tx_q->dma_tx[i];
1306
1307 stmmac_init_tx_desc(priv, p, priv->mode, last);
1308 }
1309 }
1310
1311 /**
1312 * stmmac_clear_descriptors - clear descriptors
1313 * @priv: driver private structure
1314 * Description: this function is called to clear the TX and RX descriptors
1315 * in case of both basic and extended descriptors are used.
1316 */
stmmac_clear_descriptors(struct stmmac_priv * priv)1317 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1318 {
1319 u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1320 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1321 u32 queue;
1322
1323 /* Clear the RX descriptors */
1324 for (queue = 0; queue < rx_queue_cnt; queue++)
1325 stmmac_clear_rx_descriptors(priv, queue);
1326
1327 /* Clear the TX descriptors */
1328 for (queue = 0; queue < tx_queue_cnt; queue++)
1329 stmmac_clear_tx_descriptors(priv, queue);
1330 }
1331
1332 /**
1333 * stmmac_init_rx_buffers - init the RX descriptor buffer.
1334 * @priv: driver private structure
1335 * @p: descriptor pointer
1336 * @i: descriptor index
1337 * @flags: gfp flag
1338 * @queue: RX queue index
1339 * Description: this function is called to allocate a receive buffer, perform
1340 * the DMA mapping and init the descriptor.
1341 */
stmmac_init_rx_buffers(struct stmmac_priv * priv,struct dma_desc * p,int i,gfp_t flags,u32 queue)1342 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1343 int i, gfp_t flags, u32 queue)
1344 {
1345 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1346 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1347 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1348
1349 if (priv->dma_cap.addr64 <= 32)
1350 gfp |= GFP_DMA32;
1351
1352 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1353 if (!buf->page)
1354 return -ENOMEM;
1355
1356 if (priv->sph) {
1357 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1358 if (!buf->sec_page)
1359 return -ENOMEM;
1360
1361 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1362 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1363 } else {
1364 buf->sec_page = NULL;
1365 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1366 }
1367
1368 buf->addr = page_pool_get_dma_addr(buf->page);
1369 stmmac_set_desc_addr(priv, p, buf->addr);
1370 if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1371 stmmac_init_desc3(priv, p);
1372
1373 return 0;
1374 }
1375
1376 /**
1377 * stmmac_free_rx_buffer - free RX dma buffers
1378 * @priv: private structure
1379 * @queue: RX queue index
1380 * @i: buffer index.
1381 */
stmmac_free_rx_buffer(struct stmmac_priv * priv,u32 queue,int i)1382 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1383 {
1384 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1385 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1386
1387 if (buf->page)
1388 page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1389 buf->page = NULL;
1390
1391 if (buf->sec_page)
1392 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1393 buf->sec_page = NULL;
1394 }
1395
1396 /**
1397 * stmmac_free_tx_buffer - free RX dma buffers
1398 * @priv: private structure
1399 * @queue: RX queue index
1400 * @i: buffer index.
1401 */
stmmac_free_tx_buffer(struct stmmac_priv * priv,u32 queue,int i)1402 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1403 {
1404 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1405
1406 if (tx_q->tx_skbuff_dma[i].buf) {
1407 if (tx_q->tx_skbuff_dma[i].map_as_page)
1408 dma_unmap_page(priv->device,
1409 tx_q->tx_skbuff_dma[i].buf,
1410 tx_q->tx_skbuff_dma[i].len,
1411 DMA_TO_DEVICE);
1412 else
1413 dma_unmap_single(priv->device,
1414 tx_q->tx_skbuff_dma[i].buf,
1415 tx_q->tx_skbuff_dma[i].len,
1416 DMA_TO_DEVICE);
1417 }
1418
1419 if (tx_q->tx_skbuff[i]) {
1420 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1421 tx_q->tx_skbuff[i] = NULL;
1422 tx_q->tx_skbuff_dma[i].buf = 0;
1423 tx_q->tx_skbuff_dma[i].map_as_page = false;
1424 }
1425 }
1426
1427 /**
1428 * init_dma_rx_desc_rings - init the RX descriptor rings
1429 * @dev: net device structure
1430 * @flags: gfp flag.
1431 * Description: this function initializes the DMA RX descriptors
1432 * and allocates the socket buffers. It supports the chained and ring
1433 * modes.
1434 */
init_dma_rx_desc_rings(struct net_device * dev,gfp_t flags)1435 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1436 {
1437 struct stmmac_priv *priv = netdev_priv(dev);
1438 u32 rx_count = priv->plat->rx_queues_to_use;
1439 int ret = -ENOMEM;
1440 int queue;
1441 int i;
1442
1443 /* RX INITIALIZATION */
1444 netif_dbg(priv, probe, priv->dev,
1445 "SKB addresses:\nskb\t\tskb data\tdma data\n");
1446
1447 for (queue = 0; queue < rx_count; queue++) {
1448 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1449
1450 netif_dbg(priv, probe, priv->dev,
1451 "(%s) dma_rx_phy=0x%08x\n", __func__,
1452 (u32)rx_q->dma_rx_phy);
1453
1454 stmmac_clear_rx_descriptors(priv, queue);
1455
1456 for (i = 0; i < priv->dma_rx_size; i++) {
1457 struct dma_desc *p;
1458
1459 if (priv->extend_desc)
1460 p = &((rx_q->dma_erx + i)->basic);
1461 else
1462 p = rx_q->dma_rx + i;
1463
1464 ret = stmmac_init_rx_buffers(priv, p, i, flags,
1465 queue);
1466 if (ret)
1467 goto err_init_rx_buffers;
1468 }
1469
1470 rx_q->cur_rx = 0;
1471 rx_q->dirty_rx = (unsigned int)(i - priv->dma_rx_size);
1472
1473 /* Setup the chained descriptor addresses */
1474 if (priv->mode == STMMAC_CHAIN_MODE) {
1475 if (priv->extend_desc)
1476 stmmac_mode_init(priv, rx_q->dma_erx,
1477 rx_q->dma_rx_phy,
1478 priv->dma_rx_size, 1);
1479 else
1480 stmmac_mode_init(priv, rx_q->dma_rx,
1481 rx_q->dma_rx_phy,
1482 priv->dma_rx_size, 0);
1483 }
1484 }
1485
1486 return 0;
1487
1488 err_init_rx_buffers:
1489 while (queue >= 0) {
1490 while (--i >= 0)
1491 stmmac_free_rx_buffer(priv, queue, i);
1492
1493 if (queue == 0)
1494 break;
1495
1496 i = priv->dma_rx_size;
1497 queue--;
1498 }
1499
1500 return ret;
1501 }
1502
1503 /**
1504 * init_dma_tx_desc_rings - init the TX descriptor rings
1505 * @dev: net device structure.
1506 * Description: this function initializes the DMA TX descriptors
1507 * and allocates the socket buffers. It supports the chained and ring
1508 * modes.
1509 */
init_dma_tx_desc_rings(struct net_device * dev)1510 static int init_dma_tx_desc_rings(struct net_device *dev)
1511 {
1512 struct stmmac_priv *priv = netdev_priv(dev);
1513 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1514 u32 queue;
1515 int i;
1516
1517 for (queue = 0; queue < tx_queue_cnt; queue++) {
1518 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1519
1520 netif_dbg(priv, probe, priv->dev,
1521 "(%s) dma_tx_phy=0x%08x\n", __func__,
1522 (u32)tx_q->dma_tx_phy);
1523
1524 /* Setup the chained descriptor addresses */
1525 if (priv->mode == STMMAC_CHAIN_MODE) {
1526 if (priv->extend_desc)
1527 stmmac_mode_init(priv, tx_q->dma_etx,
1528 tx_q->dma_tx_phy,
1529 priv->dma_tx_size, 1);
1530 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1531 stmmac_mode_init(priv, tx_q->dma_tx,
1532 tx_q->dma_tx_phy,
1533 priv->dma_tx_size, 0);
1534 }
1535
1536 for (i = 0; i < priv->dma_tx_size; i++) {
1537 struct dma_desc *p;
1538 if (priv->extend_desc)
1539 p = &((tx_q->dma_etx + i)->basic);
1540 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1541 p = &((tx_q->dma_entx + i)->basic);
1542 else
1543 p = tx_q->dma_tx + i;
1544
1545 stmmac_clear_desc(priv, p);
1546
1547 tx_q->tx_skbuff_dma[i].buf = 0;
1548 tx_q->tx_skbuff_dma[i].map_as_page = false;
1549 tx_q->tx_skbuff_dma[i].len = 0;
1550 tx_q->tx_skbuff_dma[i].last_segment = false;
1551 tx_q->tx_skbuff[i] = NULL;
1552 }
1553
1554 tx_q->dirty_tx = 0;
1555 tx_q->cur_tx = 0;
1556 tx_q->mss = 0;
1557
1558 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1559 }
1560
1561 return 0;
1562 }
1563
1564 /**
1565 * init_dma_desc_rings - init the RX/TX descriptor rings
1566 * @dev: net device structure
1567 * @flags: gfp flag.
1568 * Description: this function initializes the DMA RX/TX descriptors
1569 * and allocates the socket buffers. It supports the chained and ring
1570 * modes.
1571 */
init_dma_desc_rings(struct net_device * dev,gfp_t flags)1572 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1573 {
1574 struct stmmac_priv *priv = netdev_priv(dev);
1575 int ret;
1576
1577 ret = init_dma_rx_desc_rings(dev, flags);
1578 if (ret)
1579 return ret;
1580
1581 ret = init_dma_tx_desc_rings(dev);
1582
1583 stmmac_clear_descriptors(priv);
1584
1585 if (netif_msg_hw(priv))
1586 stmmac_display_rings(priv);
1587
1588 return ret;
1589 }
1590
1591 /**
1592 * dma_free_rx_skbufs - free RX dma buffers
1593 * @priv: private structure
1594 * @queue: RX queue index
1595 */
dma_free_rx_skbufs(struct stmmac_priv * priv,u32 queue)1596 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1597 {
1598 int i;
1599
1600 for (i = 0; i < priv->dma_rx_size; i++)
1601 stmmac_free_rx_buffer(priv, queue, i);
1602 }
1603
1604 /**
1605 * dma_free_tx_skbufs - free TX dma buffers
1606 * @priv: private structure
1607 * @queue: TX queue index
1608 */
dma_free_tx_skbufs(struct stmmac_priv * priv,u32 queue)1609 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1610 {
1611 int i;
1612
1613 for (i = 0; i < priv->dma_tx_size; i++)
1614 stmmac_free_tx_buffer(priv, queue, i);
1615 }
1616
1617 /**
1618 * stmmac_free_tx_skbufs - free TX skb buffers
1619 * @priv: private structure
1620 */
stmmac_free_tx_skbufs(struct stmmac_priv * priv)1621 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1622 {
1623 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1624 u32 queue;
1625
1626 for (queue = 0; queue < tx_queue_cnt; queue++)
1627 dma_free_tx_skbufs(priv, queue);
1628 }
1629
1630 /**
1631 * free_dma_rx_desc_resources - free RX dma desc resources
1632 * @priv: private structure
1633 */
free_dma_rx_desc_resources(struct stmmac_priv * priv)1634 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1635 {
1636 u32 rx_count = priv->plat->rx_queues_to_use;
1637 u32 queue;
1638
1639 /* Free RX queue resources */
1640 for (queue = 0; queue < rx_count; queue++) {
1641 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1642
1643 /* Release the DMA RX socket buffers */
1644 dma_free_rx_skbufs(priv, queue);
1645
1646 /* Free DMA regions of consistent memory previously allocated */
1647 if (!priv->extend_desc)
1648 dma_free_coherent(priv->device, priv->dma_rx_size *
1649 sizeof(struct dma_desc),
1650 rx_q->dma_rx, rx_q->dma_rx_phy);
1651 else
1652 dma_free_coherent(priv->device, priv->dma_rx_size *
1653 sizeof(struct dma_extended_desc),
1654 rx_q->dma_erx, rx_q->dma_rx_phy);
1655
1656 kfree(rx_q->buf_pool);
1657 if (rx_q->page_pool)
1658 page_pool_destroy(rx_q->page_pool);
1659 }
1660 }
1661
1662 /**
1663 * free_dma_tx_desc_resources - free TX dma desc resources
1664 * @priv: private structure
1665 */
free_dma_tx_desc_resources(struct stmmac_priv * priv)1666 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1667 {
1668 u32 tx_count = priv->plat->tx_queues_to_use;
1669 u32 queue;
1670
1671 /* Free TX queue resources */
1672 for (queue = 0; queue < tx_count; queue++) {
1673 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1674 size_t size;
1675 void *addr;
1676
1677 /* Release the DMA TX socket buffers */
1678 dma_free_tx_skbufs(priv, queue);
1679
1680 if (priv->extend_desc) {
1681 size = sizeof(struct dma_extended_desc);
1682 addr = tx_q->dma_etx;
1683 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1684 size = sizeof(struct dma_edesc);
1685 addr = tx_q->dma_entx;
1686 } else {
1687 size = sizeof(struct dma_desc);
1688 addr = tx_q->dma_tx;
1689 }
1690
1691 size *= priv->dma_tx_size;
1692
1693 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1694
1695 kfree(tx_q->tx_skbuff_dma);
1696 kfree(tx_q->tx_skbuff);
1697 }
1698 }
1699
1700 /**
1701 * alloc_dma_rx_desc_resources - alloc RX resources.
1702 * @priv: private structure
1703 * Description: according to which descriptor can be used (extend or basic)
1704 * this function allocates the resources for TX and RX paths. In case of
1705 * reception, for example, it pre-allocated the RX socket buffer in order to
1706 * allow zero-copy mechanism.
1707 */
alloc_dma_rx_desc_resources(struct stmmac_priv * priv)1708 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1709 {
1710 u32 rx_count = priv->plat->rx_queues_to_use;
1711 int ret = -ENOMEM;
1712 u32 queue;
1713
1714 /* RX queues buffers and DMA */
1715 for (queue = 0; queue < rx_count; queue++) {
1716 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1717 struct page_pool_params pp_params = { 0 };
1718 unsigned int num_pages;
1719
1720 rx_q->queue_index = queue;
1721 rx_q->priv_data = priv;
1722
1723 pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1724 pp_params.pool_size = priv->dma_rx_size;
1725 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1726 pp_params.order = ilog2(num_pages);
1727 pp_params.nid = dev_to_node(priv->device);
1728 pp_params.dev = priv->device;
1729 pp_params.dma_dir = DMA_FROM_DEVICE;
1730 pp_params.max_len = num_pages * PAGE_SIZE;
1731
1732 rx_q->page_pool = page_pool_create(&pp_params);
1733 if (IS_ERR(rx_q->page_pool)) {
1734 ret = PTR_ERR(rx_q->page_pool);
1735 rx_q->page_pool = NULL;
1736 goto err_dma;
1737 }
1738
1739 rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1740 sizeof(*rx_q->buf_pool),
1741 GFP_KERNEL);
1742 if (!rx_q->buf_pool)
1743 goto err_dma;
1744
1745 if (priv->extend_desc) {
1746 rx_q->dma_erx = dma_alloc_coherent(priv->device,
1747 priv->dma_rx_size *
1748 sizeof(struct dma_extended_desc),
1749 &rx_q->dma_rx_phy,
1750 GFP_KERNEL);
1751 if (!rx_q->dma_erx)
1752 goto err_dma;
1753
1754 } else {
1755 rx_q->dma_rx = dma_alloc_coherent(priv->device,
1756 priv->dma_rx_size *
1757 sizeof(struct dma_desc),
1758 &rx_q->dma_rx_phy,
1759 GFP_KERNEL);
1760 if (!rx_q->dma_rx)
1761 goto err_dma;
1762 }
1763 }
1764
1765 return 0;
1766
1767 err_dma:
1768 free_dma_rx_desc_resources(priv);
1769
1770 return ret;
1771 }
1772
1773 /**
1774 * alloc_dma_tx_desc_resources - alloc TX resources.
1775 * @priv: private structure
1776 * Description: according to which descriptor can be used (extend or basic)
1777 * this function allocates the resources for TX and RX paths. In case of
1778 * reception, for example, it pre-allocated the RX socket buffer in order to
1779 * allow zero-copy mechanism.
1780 */
alloc_dma_tx_desc_resources(struct stmmac_priv * priv)1781 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1782 {
1783 u32 tx_count = priv->plat->tx_queues_to_use;
1784 int ret = -ENOMEM;
1785 u32 queue;
1786
1787 /* TX queues buffers and DMA */
1788 for (queue = 0; queue < tx_count; queue++) {
1789 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1790 size_t size;
1791 void *addr;
1792
1793 tx_q->queue_index = queue;
1794 tx_q->priv_data = priv;
1795
1796 tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
1797 sizeof(*tx_q->tx_skbuff_dma),
1798 GFP_KERNEL);
1799 if (!tx_q->tx_skbuff_dma)
1800 goto err_dma;
1801
1802 tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
1803 sizeof(struct sk_buff *),
1804 GFP_KERNEL);
1805 if (!tx_q->tx_skbuff)
1806 goto err_dma;
1807
1808 if (priv->extend_desc)
1809 size = sizeof(struct dma_extended_desc);
1810 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1811 size = sizeof(struct dma_edesc);
1812 else
1813 size = sizeof(struct dma_desc);
1814
1815 size *= priv->dma_tx_size;
1816
1817 addr = dma_alloc_coherent(priv->device, size,
1818 &tx_q->dma_tx_phy, GFP_KERNEL);
1819 if (!addr)
1820 goto err_dma;
1821
1822 if (priv->extend_desc)
1823 tx_q->dma_etx = addr;
1824 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1825 tx_q->dma_entx = addr;
1826 else
1827 tx_q->dma_tx = addr;
1828 }
1829
1830 return 0;
1831
1832 err_dma:
1833 free_dma_tx_desc_resources(priv);
1834 return ret;
1835 }
1836
1837 /**
1838 * alloc_dma_desc_resources - alloc TX/RX resources.
1839 * @priv: private structure
1840 * Description: according to which descriptor can be used (extend or basic)
1841 * this function allocates the resources for TX and RX paths. In case of
1842 * reception, for example, it pre-allocated the RX socket buffer in order to
1843 * allow zero-copy mechanism.
1844 */
alloc_dma_desc_resources(struct stmmac_priv * priv)1845 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1846 {
1847 /* RX Allocation */
1848 int ret = alloc_dma_rx_desc_resources(priv);
1849
1850 if (ret)
1851 return ret;
1852
1853 ret = alloc_dma_tx_desc_resources(priv);
1854
1855 return ret;
1856 }
1857
1858 /**
1859 * free_dma_desc_resources - free dma desc resources
1860 * @priv: private structure
1861 */
free_dma_desc_resources(struct stmmac_priv * priv)1862 static void free_dma_desc_resources(struct stmmac_priv *priv)
1863 {
1864 /* Release the DMA RX socket buffers */
1865 free_dma_rx_desc_resources(priv);
1866
1867 /* Release the DMA TX socket buffers */
1868 free_dma_tx_desc_resources(priv);
1869 }
1870
1871 /**
1872 * stmmac_mac_enable_rx_queues - Enable MAC rx queues
1873 * @priv: driver private structure
1874 * Description: It is used for enabling the rx queues in the MAC
1875 */
stmmac_mac_enable_rx_queues(struct stmmac_priv * priv)1876 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1877 {
1878 u32 rx_queues_count = priv->plat->rx_queues_to_use;
1879 int queue;
1880 u8 mode;
1881
1882 for (queue = 0; queue < rx_queues_count; queue++) {
1883 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1884 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1885 }
1886 }
1887
1888 /**
1889 * stmmac_start_rx_dma - start RX DMA channel
1890 * @priv: driver private structure
1891 * @chan: RX channel index
1892 * Description:
1893 * This starts a RX DMA channel
1894 */
stmmac_start_rx_dma(struct stmmac_priv * priv,u32 chan)1895 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1896 {
1897 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1898 stmmac_start_rx(priv, priv->ioaddr, chan);
1899 }
1900
1901 /**
1902 * stmmac_start_tx_dma - start TX DMA channel
1903 * @priv: driver private structure
1904 * @chan: TX channel index
1905 * Description:
1906 * This starts a TX DMA channel
1907 */
stmmac_start_tx_dma(struct stmmac_priv * priv,u32 chan)1908 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1909 {
1910 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1911 stmmac_start_tx(priv, priv->ioaddr, chan);
1912 }
1913
1914 /**
1915 * stmmac_stop_rx_dma - stop RX DMA channel
1916 * @priv: driver private structure
1917 * @chan: RX channel index
1918 * Description:
1919 * This stops a RX DMA channel
1920 */
stmmac_stop_rx_dma(struct stmmac_priv * priv,u32 chan)1921 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1922 {
1923 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1924 stmmac_stop_rx(priv, priv->ioaddr, chan);
1925 }
1926
1927 /**
1928 * stmmac_stop_tx_dma - stop TX DMA channel
1929 * @priv: driver private structure
1930 * @chan: TX channel index
1931 * Description:
1932 * This stops a TX DMA channel
1933 */
stmmac_stop_tx_dma(struct stmmac_priv * priv,u32 chan)1934 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1935 {
1936 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1937 stmmac_stop_tx(priv, priv->ioaddr, chan);
1938 }
1939
1940 /**
1941 * stmmac_start_all_dma - start all RX and TX DMA channels
1942 * @priv: driver private structure
1943 * Description:
1944 * This starts all the RX and TX DMA channels
1945 */
stmmac_start_all_dma(struct stmmac_priv * priv)1946 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1947 {
1948 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1949 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1950 u32 chan = 0;
1951
1952 for (chan = 0; chan < rx_channels_count; chan++)
1953 stmmac_start_rx_dma(priv, chan);
1954
1955 for (chan = 0; chan < tx_channels_count; chan++)
1956 stmmac_start_tx_dma(priv, chan);
1957 }
1958
1959 /**
1960 * stmmac_stop_all_dma - stop all RX and TX DMA channels
1961 * @priv: driver private structure
1962 * Description:
1963 * This stops the RX and TX DMA channels
1964 */
stmmac_stop_all_dma(struct stmmac_priv * priv)1965 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1966 {
1967 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1968 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1969 u32 chan = 0;
1970
1971 for (chan = 0; chan < rx_channels_count; chan++)
1972 stmmac_stop_rx_dma(priv, chan);
1973
1974 for (chan = 0; chan < tx_channels_count; chan++)
1975 stmmac_stop_tx_dma(priv, chan);
1976 }
1977
1978 /**
1979 * stmmac_dma_operation_mode - HW DMA operation mode
1980 * @priv: driver private structure
1981 * Description: it is used for configuring the DMA operation mode register in
1982 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1983 */
stmmac_dma_operation_mode(struct stmmac_priv * priv)1984 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1985 {
1986 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1987 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1988 int rxfifosz = priv->plat->rx_fifo_size;
1989 int txfifosz = priv->plat->tx_fifo_size;
1990 u32 txmode = 0;
1991 u32 rxmode = 0;
1992 u32 chan = 0;
1993 u8 qmode = 0;
1994
1995 if (rxfifosz == 0)
1996 rxfifosz = priv->dma_cap.rx_fifo_size;
1997 if (txfifosz == 0)
1998 txfifosz = priv->dma_cap.tx_fifo_size;
1999
2000 /* Adjust for real per queue fifo size */
2001 rxfifosz /= rx_channels_count;
2002 txfifosz /= tx_channels_count;
2003
2004 if (priv->plat->force_thresh_dma_mode) {
2005 txmode = tc;
2006 rxmode = tc;
2007 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2008 /*
2009 * In case of GMAC, SF mode can be enabled
2010 * to perform the TX COE in HW. This depends on:
2011 * 1) TX COE if actually supported
2012 * 2) There is no bugged Jumbo frame support
2013 * that needs to not insert csum in the TDES.
2014 */
2015 txmode = SF_DMA_MODE;
2016 rxmode = SF_DMA_MODE;
2017 priv->xstats.threshold = SF_DMA_MODE;
2018 } else {
2019 txmode = tc;
2020 rxmode = SF_DMA_MODE;
2021 }
2022
2023 /* configure all channels */
2024 for (chan = 0; chan < rx_channels_count; chan++) {
2025 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2026
2027 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2028 rxfifosz, qmode);
2029 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
2030 chan);
2031 }
2032
2033 for (chan = 0; chan < tx_channels_count; chan++) {
2034 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2035
2036 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2037 txfifosz, qmode);
2038 }
2039 }
2040
2041 /**
2042 * stmmac_tx_clean - to manage the transmission completion
2043 * @priv: driver private structure
2044 * @budget: napi budget limiting this functions packet handling
2045 * @queue: TX queue index
2046 * Description: it reclaims the transmit resources after transmission completes.
2047 */
stmmac_tx_clean(struct stmmac_priv * priv,int budget,u32 queue)2048 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2049 {
2050 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2051 unsigned int bytes_compl = 0, pkts_compl = 0;
2052 unsigned int entry, count = 0;
2053
2054 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2055
2056 priv->xstats.tx_clean++;
2057
2058 entry = tx_q->dirty_tx;
2059 while ((entry != tx_q->cur_tx) && (count < budget)) {
2060 struct sk_buff *skb = tx_q->tx_skbuff[entry];
2061 struct dma_desc *p;
2062 int status;
2063
2064 if (priv->extend_desc)
2065 p = (struct dma_desc *)(tx_q->dma_etx + entry);
2066 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2067 p = &tx_q->dma_entx[entry].basic;
2068 else
2069 p = tx_q->dma_tx + entry;
2070
2071 status = stmmac_tx_status(priv, &priv->dev->stats,
2072 &priv->xstats, p, priv->ioaddr);
2073 /* Check if the descriptor is owned by the DMA */
2074 if (unlikely(status & tx_dma_own))
2075 break;
2076
2077 count++;
2078
2079 /* Make sure descriptor fields are read after reading
2080 * the own bit.
2081 */
2082 dma_rmb();
2083
2084 /* Just consider the last segment and ...*/
2085 if (likely(!(status & tx_not_ls))) {
2086 /* ... verify the status error condition */
2087 if (unlikely(status & tx_err)) {
2088 priv->dev->stats.tx_errors++;
2089 } else {
2090 priv->dev->stats.tx_packets++;
2091 priv->xstats.tx_pkt_n++;
2092 }
2093 stmmac_get_tx_hwtstamp(priv, p, skb);
2094 }
2095
2096 if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
2097 if (tx_q->tx_skbuff_dma[entry].map_as_page)
2098 dma_unmap_page(priv->device,
2099 tx_q->tx_skbuff_dma[entry].buf,
2100 tx_q->tx_skbuff_dma[entry].len,
2101 DMA_TO_DEVICE);
2102 else
2103 dma_unmap_single(priv->device,
2104 tx_q->tx_skbuff_dma[entry].buf,
2105 tx_q->tx_skbuff_dma[entry].len,
2106 DMA_TO_DEVICE);
2107 tx_q->tx_skbuff_dma[entry].buf = 0;
2108 tx_q->tx_skbuff_dma[entry].len = 0;
2109 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2110 }
2111
2112 stmmac_clean_desc3(priv, tx_q, p);
2113
2114 tx_q->tx_skbuff_dma[entry].last_segment = false;
2115 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2116
2117 if (likely(skb != NULL)) {
2118 pkts_compl++;
2119 bytes_compl += skb->len;
2120 dev_consume_skb_any(skb);
2121 tx_q->tx_skbuff[entry] = NULL;
2122 }
2123
2124 stmmac_release_tx_desc(priv, p, priv->mode);
2125
2126 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2127 }
2128 tx_q->dirty_tx = entry;
2129
2130 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2131 pkts_compl, bytes_compl);
2132
2133 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2134 queue))) &&
2135 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2136
2137 netif_dbg(priv, tx_done, priv->dev,
2138 "%s: restart transmit\n", __func__);
2139 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2140 }
2141
2142 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
2143 stmmac_enable_eee_mode(priv);
2144 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2145 }
2146
2147 /* We still have pending packets, let's call for a new scheduling */
2148 if (tx_q->dirty_tx != tx_q->cur_tx)
2149 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2150
2151 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2152
2153 return count;
2154 }
2155
2156 /**
2157 * stmmac_tx_err - to manage the tx error
2158 * @priv: driver private structure
2159 * @chan: channel index
2160 * Description: it cleans the descriptors and restarts the transmission
2161 * in case of transmission errors.
2162 */
stmmac_tx_err(struct stmmac_priv * priv,u32 chan)2163 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2164 {
2165 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2166
2167 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2168
2169 stmmac_stop_tx_dma(priv, chan);
2170 dma_free_tx_skbufs(priv, chan);
2171 stmmac_clear_tx_descriptors(priv, chan);
2172 tx_q->dirty_tx = 0;
2173 tx_q->cur_tx = 0;
2174 tx_q->mss = 0;
2175 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2176 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2177 tx_q->dma_tx_phy, chan);
2178 stmmac_start_tx_dma(priv, chan);
2179
2180 priv->dev->stats.tx_errors++;
2181 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2182 }
2183
2184 /**
2185 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2186 * @priv: driver private structure
2187 * @txmode: TX operating mode
2188 * @rxmode: RX operating mode
2189 * @chan: channel index
2190 * Description: it is used for configuring of the DMA operation mode in
2191 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2192 * mode.
2193 */
stmmac_set_dma_operation_mode(struct stmmac_priv * priv,u32 txmode,u32 rxmode,u32 chan)2194 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2195 u32 rxmode, u32 chan)
2196 {
2197 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2198 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2199 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2200 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2201 int rxfifosz = priv->plat->rx_fifo_size;
2202 int txfifosz = priv->plat->tx_fifo_size;
2203
2204 if (rxfifosz == 0)
2205 rxfifosz = priv->dma_cap.rx_fifo_size;
2206 if (txfifosz == 0)
2207 txfifosz = priv->dma_cap.tx_fifo_size;
2208
2209 /* Adjust for real per queue fifo size */
2210 rxfifosz /= rx_channels_count;
2211 txfifosz /= tx_channels_count;
2212
2213 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2214 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2215 }
2216
stmmac_safety_feat_interrupt(struct stmmac_priv * priv)2217 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2218 {
2219 int ret;
2220
2221 ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2222 priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2223 if (ret && (ret != -EINVAL)) {
2224 stmmac_global_err(priv);
2225 return true;
2226 }
2227
2228 return false;
2229 }
2230
stmmac_napi_check(struct stmmac_priv * priv,u32 chan)2231 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2232 {
2233 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2234 &priv->xstats, chan);
2235 struct stmmac_channel *ch = &priv->channel[chan];
2236 unsigned long flags;
2237
2238 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2239 if (napi_schedule_prep(&ch->rx_napi)) {
2240 spin_lock_irqsave(&ch->lock, flags);
2241 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2242 spin_unlock_irqrestore(&ch->lock, flags);
2243 __napi_schedule(&ch->rx_napi);
2244 }
2245 }
2246
2247 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2248 if (napi_schedule_prep(&ch->tx_napi)) {
2249 spin_lock_irqsave(&ch->lock, flags);
2250 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2251 spin_unlock_irqrestore(&ch->lock, flags);
2252 __napi_schedule(&ch->tx_napi);
2253 }
2254 }
2255
2256 return status;
2257 }
2258
2259 /**
2260 * stmmac_dma_interrupt - DMA ISR
2261 * @priv: driver private structure
2262 * Description: this is the DMA ISR. It is called by the main ISR.
2263 * It calls the dwmac dma routine and schedule poll method in case of some
2264 * work can be done.
2265 */
stmmac_dma_interrupt(struct stmmac_priv * priv)2266 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2267 {
2268 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2269 u32 rx_channel_count = priv->plat->rx_queues_to_use;
2270 u32 channels_to_check = tx_channel_count > rx_channel_count ?
2271 tx_channel_count : rx_channel_count;
2272 u32 chan;
2273 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2274
2275 /* Make sure we never check beyond our status buffer. */
2276 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2277 channels_to_check = ARRAY_SIZE(status);
2278
2279 for (chan = 0; chan < channels_to_check; chan++)
2280 status[chan] = stmmac_napi_check(priv, chan);
2281
2282 for (chan = 0; chan < tx_channel_count; chan++) {
2283 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2284 /* Try to bump up the dma threshold on this failure */
2285 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2286 (tc <= 256)) {
2287 tc += 64;
2288 if (priv->plat->force_thresh_dma_mode)
2289 stmmac_set_dma_operation_mode(priv,
2290 tc,
2291 tc,
2292 chan);
2293 else
2294 stmmac_set_dma_operation_mode(priv,
2295 tc,
2296 SF_DMA_MODE,
2297 chan);
2298 priv->xstats.threshold = tc;
2299 }
2300 } else if (unlikely(status[chan] == tx_hard_error)) {
2301 stmmac_tx_err(priv, chan);
2302 }
2303 }
2304 }
2305
2306 /**
2307 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2308 * @priv: driver private structure
2309 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2310 */
stmmac_mmc_setup(struct stmmac_priv * priv)2311 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2312 {
2313 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2314 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2315
2316 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2317
2318 if (priv->dma_cap.rmon) {
2319 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2320 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2321 } else
2322 netdev_info(priv->dev, "No MAC Management Counters available\n");
2323 }
2324
2325 /**
2326 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2327 * @priv: driver private structure
2328 * Description:
2329 * new GMAC chip generations have a new register to indicate the
2330 * presence of the optional feature/functions.
2331 * This can be also used to override the value passed through the
2332 * platform and necessary for old MAC10/100 and GMAC chips.
2333 */
stmmac_get_hw_features(struct stmmac_priv * priv)2334 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2335 {
2336 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2337 }
2338
2339 /**
2340 * stmmac_check_ether_addr - check if the MAC addr is valid
2341 * @priv: driver private structure
2342 * Description:
2343 * it is to verify if the MAC address is valid, in case of failures it
2344 * generates a random MAC address
2345 */
stmmac_check_ether_addr(struct stmmac_priv * priv)2346 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2347 {
2348 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2349 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2350 if (likely(priv->plat->get_eth_addr))
2351 priv->plat->get_eth_addr(priv->plat->bsp_priv,
2352 priv->dev->dev_addr);
2353 if (!is_valid_ether_addr(priv->dev->dev_addr))
2354 eth_hw_addr_random(priv->dev);
2355 dev_info(priv->device, "device MAC address %pM\n",
2356 priv->dev->dev_addr);
2357 }
2358 }
2359
2360 /**
2361 * stmmac_init_dma_engine - DMA init.
2362 * @priv: driver private structure
2363 * Description:
2364 * It inits the DMA invoking the specific MAC/GMAC callback.
2365 * Some DMA parameters can be passed from the platform;
2366 * in case of these are not passed a default is kept for the MAC or GMAC.
2367 */
stmmac_init_dma_engine(struct stmmac_priv * priv)2368 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2369 {
2370 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2371 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2372 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2373 struct stmmac_rx_queue *rx_q;
2374 struct stmmac_tx_queue *tx_q;
2375 u32 chan = 0;
2376 int atds = 0;
2377 int ret = 0;
2378
2379 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2380 dev_err(priv->device, "Invalid DMA configuration\n");
2381 return -EINVAL;
2382 }
2383
2384 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2385 atds = 1;
2386
2387 ret = stmmac_reset(priv, priv->ioaddr);
2388 if (ret) {
2389 dev_err(priv->device, "Failed to reset the dma\n");
2390 return ret;
2391 }
2392
2393 /* DMA Configuration */
2394 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2395
2396 if (priv->plat->axi)
2397 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2398
2399 /* DMA CSR Channel configuration */
2400 for (chan = 0; chan < dma_csr_ch; chan++)
2401 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2402
2403 /* DMA RX Channel Configuration */
2404 for (chan = 0; chan < rx_channels_count; chan++) {
2405 rx_q = &priv->rx_queue[chan];
2406
2407 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2408 rx_q->dma_rx_phy, chan);
2409
2410 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2411 (priv->dma_rx_size *
2412 sizeof(struct dma_desc));
2413 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2414 rx_q->rx_tail_addr, chan);
2415 }
2416
2417 /* DMA TX Channel Configuration */
2418 for (chan = 0; chan < tx_channels_count; chan++) {
2419 tx_q = &priv->tx_queue[chan];
2420
2421 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2422 tx_q->dma_tx_phy, chan);
2423
2424 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2425 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2426 tx_q->tx_tail_addr, chan);
2427 }
2428
2429 return ret;
2430 }
2431
stmmac_tx_timer_arm(struct stmmac_priv * priv,u32 queue)2432 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2433 {
2434 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2435
2436 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2437 }
2438
2439 /**
2440 * stmmac_tx_timer - mitigation sw timer for tx.
2441 * @t: data pointer
2442 * Description:
2443 * This is the timer handler to directly invoke the stmmac_tx_clean.
2444 */
stmmac_tx_timer(struct timer_list * t)2445 static void stmmac_tx_timer(struct timer_list *t)
2446 {
2447 struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2448 struct stmmac_priv *priv = tx_q->priv_data;
2449 struct stmmac_channel *ch;
2450
2451 ch = &priv->channel[tx_q->queue_index];
2452
2453 if (likely(napi_schedule_prep(&ch->tx_napi))) {
2454 unsigned long flags;
2455
2456 spin_lock_irqsave(&ch->lock, flags);
2457 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2458 spin_unlock_irqrestore(&ch->lock, flags);
2459 __napi_schedule(&ch->tx_napi);
2460 }
2461 }
2462
2463 /**
2464 * stmmac_init_coalesce - init mitigation options.
2465 * @priv: driver private structure
2466 * Description:
2467 * This inits the coalesce parameters: i.e. timer rate,
2468 * timer handler and default threshold used for enabling the
2469 * interrupt on completion bit.
2470 */
stmmac_init_coalesce(struct stmmac_priv * priv)2471 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2472 {
2473 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2474 u32 chan;
2475
2476 priv->tx_coal_frames = STMMAC_TX_FRAMES;
2477 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2478 priv->rx_coal_frames = STMMAC_RX_FRAMES;
2479
2480 for (chan = 0; chan < tx_channel_count; chan++) {
2481 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2482
2483 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2484 }
2485 }
2486
stmmac_set_rings_length(struct stmmac_priv * priv)2487 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2488 {
2489 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2490 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2491 u32 chan;
2492
2493 /* set TX ring length */
2494 for (chan = 0; chan < tx_channels_count; chan++)
2495 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2496 (priv->dma_tx_size - 1), chan);
2497
2498 /* set RX ring length */
2499 for (chan = 0; chan < rx_channels_count; chan++)
2500 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2501 (priv->dma_rx_size - 1), chan);
2502 }
2503
2504 /**
2505 * stmmac_set_tx_queue_weight - Set TX queue weight
2506 * @priv: driver private structure
2507 * Description: It is used for setting TX queues weight
2508 */
stmmac_set_tx_queue_weight(struct stmmac_priv * priv)2509 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2510 {
2511 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2512 u32 weight;
2513 u32 queue;
2514
2515 for (queue = 0; queue < tx_queues_count; queue++) {
2516 weight = priv->plat->tx_queues_cfg[queue].weight;
2517 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2518 }
2519 }
2520
2521 /**
2522 * stmmac_configure_cbs - Configure CBS in TX queue
2523 * @priv: driver private structure
2524 * Description: It is used for configuring CBS in AVB TX queues
2525 */
stmmac_configure_cbs(struct stmmac_priv * priv)2526 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2527 {
2528 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2529 u32 mode_to_use;
2530 u32 queue;
2531
2532 /* queue 0 is reserved for legacy traffic */
2533 for (queue = 1; queue < tx_queues_count; queue++) {
2534 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2535 if (mode_to_use == MTL_QUEUE_DCB)
2536 continue;
2537
2538 stmmac_config_cbs(priv, priv->hw,
2539 priv->plat->tx_queues_cfg[queue].send_slope,
2540 priv->plat->tx_queues_cfg[queue].idle_slope,
2541 priv->plat->tx_queues_cfg[queue].high_credit,
2542 priv->plat->tx_queues_cfg[queue].low_credit,
2543 queue);
2544 }
2545 }
2546
2547 /**
2548 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2549 * @priv: driver private structure
2550 * Description: It is used for mapping RX queues to RX dma channels
2551 */
stmmac_rx_queue_dma_chan_map(struct stmmac_priv * priv)2552 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2553 {
2554 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2555 u32 queue;
2556 u32 chan;
2557
2558 for (queue = 0; queue < rx_queues_count; queue++) {
2559 chan = priv->plat->rx_queues_cfg[queue].chan;
2560 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2561 }
2562 }
2563
2564 /**
2565 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2566 * @priv: driver private structure
2567 * Description: It is used for configuring the RX Queue Priority
2568 */
stmmac_mac_config_rx_queues_prio(struct stmmac_priv * priv)2569 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2570 {
2571 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2572 u32 queue;
2573 u32 prio;
2574
2575 for (queue = 0; queue < rx_queues_count; queue++) {
2576 if (!priv->plat->rx_queues_cfg[queue].use_prio)
2577 continue;
2578
2579 prio = priv->plat->rx_queues_cfg[queue].prio;
2580 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2581 }
2582 }
2583
2584 /**
2585 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2586 * @priv: driver private structure
2587 * Description: It is used for configuring the TX Queue Priority
2588 */
stmmac_mac_config_tx_queues_prio(struct stmmac_priv * priv)2589 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2590 {
2591 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2592 u32 queue;
2593 u32 prio;
2594
2595 for (queue = 0; queue < tx_queues_count; queue++) {
2596 if (!priv->plat->tx_queues_cfg[queue].use_prio)
2597 continue;
2598
2599 prio = priv->plat->tx_queues_cfg[queue].prio;
2600 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2601 }
2602 }
2603
2604 /**
2605 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2606 * @priv: driver private structure
2607 * Description: It is used for configuring the RX queue routing
2608 */
stmmac_mac_config_rx_queues_routing(struct stmmac_priv * priv)2609 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2610 {
2611 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2612 u32 queue;
2613 u8 packet;
2614
2615 for (queue = 0; queue < rx_queues_count; queue++) {
2616 /* no specific packet type routing specified for the queue */
2617 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2618 continue;
2619
2620 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2621 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2622 }
2623 }
2624
stmmac_mac_config_rss(struct stmmac_priv * priv)2625 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2626 {
2627 if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2628 priv->rss.enable = false;
2629 return;
2630 }
2631
2632 if (priv->dev->features & NETIF_F_RXHASH)
2633 priv->rss.enable = true;
2634 else
2635 priv->rss.enable = false;
2636
2637 stmmac_rss_configure(priv, priv->hw, &priv->rss,
2638 priv->plat->rx_queues_to_use);
2639 }
2640
2641 /**
2642 * stmmac_mtl_configuration - Configure MTL
2643 * @priv: driver private structure
2644 * Description: It is used for configurring MTL
2645 */
stmmac_mtl_configuration(struct stmmac_priv * priv)2646 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2647 {
2648 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2649 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2650
2651 if (tx_queues_count > 1)
2652 stmmac_set_tx_queue_weight(priv);
2653
2654 /* Configure MTL RX algorithms */
2655 if (rx_queues_count > 1)
2656 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2657 priv->plat->rx_sched_algorithm);
2658
2659 /* Configure MTL TX algorithms */
2660 if (tx_queues_count > 1)
2661 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2662 priv->plat->tx_sched_algorithm);
2663
2664 /* Configure CBS in AVB TX queues */
2665 if (tx_queues_count > 1)
2666 stmmac_configure_cbs(priv);
2667
2668 /* Map RX MTL to DMA channels */
2669 stmmac_rx_queue_dma_chan_map(priv);
2670
2671 /* Enable MAC RX Queues */
2672 stmmac_mac_enable_rx_queues(priv);
2673
2674 /* Set RX priorities */
2675 if (rx_queues_count > 1)
2676 stmmac_mac_config_rx_queues_prio(priv);
2677
2678 /* Set TX priorities */
2679 if (tx_queues_count > 1)
2680 stmmac_mac_config_tx_queues_prio(priv);
2681
2682 /* Set RX routing */
2683 if (rx_queues_count > 1)
2684 stmmac_mac_config_rx_queues_routing(priv);
2685
2686 /* Receive Side Scaling */
2687 if (rx_queues_count > 1)
2688 stmmac_mac_config_rss(priv);
2689 }
2690
stmmac_safety_feat_configuration(struct stmmac_priv * priv)2691 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2692 {
2693 if (priv->dma_cap.asp) {
2694 netdev_info(priv->dev, "Enabling Safety Features\n");
2695 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2696 } else {
2697 netdev_info(priv->dev, "No Safety Features support found\n");
2698 }
2699 }
2700
2701 /**
2702 * stmmac_hw_setup - setup mac in a usable state.
2703 * @dev : pointer to the device structure.
2704 * @ptp_register: register PTP if set
2705 * Description:
2706 * this is the main function to setup the HW in a usable state because the
2707 * dma engine is reset, the core registers are configured (e.g. AXI,
2708 * Checksum features, timers). The DMA is ready to start receiving and
2709 * transmitting.
2710 * Return value:
2711 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2712 * file on failure.
2713 */
stmmac_hw_setup(struct net_device * dev,bool ptp_register)2714 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
2715 {
2716 struct stmmac_priv *priv = netdev_priv(dev);
2717 u32 rx_cnt = priv->plat->rx_queues_to_use;
2718 u32 tx_cnt = priv->plat->tx_queues_to_use;
2719 u32 chan;
2720 int ret;
2721
2722 /* DMA initialization and SW reset */
2723 ret = stmmac_init_dma_engine(priv);
2724 if (ret < 0) {
2725 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2726 __func__);
2727 return ret;
2728 }
2729
2730 /* Copy the MAC addr into the HW */
2731 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2732
2733 /* PS and related bits will be programmed according to the speed */
2734 if (priv->hw->pcs) {
2735 int speed = priv->plat->mac_port_sel_speed;
2736
2737 if ((speed == SPEED_10) || (speed == SPEED_100) ||
2738 (speed == SPEED_1000)) {
2739 priv->hw->ps = speed;
2740 } else {
2741 dev_warn(priv->device, "invalid port speed\n");
2742 priv->hw->ps = 0;
2743 }
2744 }
2745
2746 /* Initialize the MAC Core */
2747 stmmac_core_init(priv, priv->hw, dev);
2748
2749 /* Initialize MTL*/
2750 stmmac_mtl_configuration(priv);
2751
2752 /* Initialize Safety Features */
2753 stmmac_safety_feat_configuration(priv);
2754
2755 ret = stmmac_rx_ipc(priv, priv->hw);
2756 if (!ret) {
2757 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2758 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2759 priv->hw->rx_csum = 0;
2760 }
2761
2762 /* Enable the MAC Rx/Tx */
2763 stmmac_mac_set(priv, priv->ioaddr, true);
2764
2765 /* Set the HW DMA mode and the COE */
2766 stmmac_dma_operation_mode(priv);
2767
2768 stmmac_mmc_setup(priv);
2769
2770 if (ptp_register) {
2771 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2772 if (ret < 0)
2773 netdev_warn(priv->dev,
2774 "failed to enable PTP reference clock: %pe\n",
2775 ERR_PTR(ret));
2776 }
2777
2778 ret = stmmac_init_ptp(priv);
2779 if (ret == -EOPNOTSUPP)
2780 netdev_warn(priv->dev, "PTP not supported by HW\n");
2781 else if (ret)
2782 netdev_warn(priv->dev, "PTP init failed\n");
2783 else if (ptp_register)
2784 stmmac_ptp_register(priv);
2785
2786 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
2787
2788 /* Convert the timer from msec to usec */
2789 if (!priv->tx_lpi_timer)
2790 priv->tx_lpi_timer = eee_timer * 1000;
2791
2792 if (priv->use_riwt) {
2793 if (!priv->rx_riwt)
2794 priv->rx_riwt = DEF_DMA_RIWT;
2795
2796 ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2797 }
2798
2799 if (priv->hw->pcs)
2800 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2801
2802 /* set TX and RX rings length */
2803 stmmac_set_rings_length(priv);
2804
2805 /* Enable TSO */
2806 if (priv->tso) {
2807 for (chan = 0; chan < tx_cnt; chan++) {
2808 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2809
2810 /* TSO and TBS cannot co-exist */
2811 if (tx_q->tbs & STMMAC_TBS_AVAIL)
2812 continue;
2813
2814 stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2815 }
2816 }
2817
2818 /* Enable Split Header */
2819 if (priv->sph && priv->hw->rx_csum) {
2820 for (chan = 0; chan < rx_cnt; chan++)
2821 stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2822 }
2823
2824 /* VLAN Tag Insertion */
2825 if (priv->dma_cap.vlins)
2826 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2827
2828 /* TBS */
2829 for (chan = 0; chan < tx_cnt; chan++) {
2830 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2831 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
2832
2833 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
2834 }
2835
2836 /* Configure real RX and TX queues */
2837 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
2838 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
2839
2840 /* Start the ball rolling... */
2841 stmmac_start_all_dma(priv);
2842
2843 return 0;
2844 }
2845
stmmac_hw_teardown(struct net_device * dev)2846 static void stmmac_hw_teardown(struct net_device *dev)
2847 {
2848 struct stmmac_priv *priv = netdev_priv(dev);
2849
2850 clk_disable_unprepare(priv->plat->clk_ptp_ref);
2851 }
2852
2853 /**
2854 * stmmac_open - open entry point of the driver
2855 * @dev : pointer to the device structure.
2856 * Description:
2857 * This function is the open entry point of the driver.
2858 * Return value:
2859 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2860 * file on failure.
2861 */
stmmac_open(struct net_device * dev)2862 static int stmmac_open(struct net_device *dev)
2863 {
2864 struct stmmac_priv *priv = netdev_priv(dev);
2865 int bfsize = 0;
2866 u32 chan;
2867 int ret;
2868
2869 ret = pm_runtime_get_sync(priv->device);
2870 if (ret < 0) {
2871 pm_runtime_put_noidle(priv->device);
2872 return ret;
2873 }
2874
2875 if (priv->hw->pcs != STMMAC_PCS_TBI &&
2876 priv->hw->pcs != STMMAC_PCS_RTBI &&
2877 priv->hw->xpcs == NULL) {
2878 ret = stmmac_init_phy(dev);
2879 if (ret) {
2880 netdev_err(priv->dev,
2881 "%s: Cannot attach to PHY (error: %d)\n",
2882 __func__, ret);
2883 goto init_phy_error;
2884 }
2885 }
2886
2887 /* Extra statistics */
2888 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2889 priv->xstats.threshold = tc;
2890
2891 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
2892 if (bfsize < 0)
2893 bfsize = 0;
2894
2895 if (bfsize < BUF_SIZE_16KiB)
2896 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
2897
2898 priv->dma_buf_sz = bfsize;
2899 buf_sz = bfsize;
2900
2901 priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2902
2903 if (!priv->dma_tx_size)
2904 priv->dma_tx_size = priv->plat->dma_tx_size ? priv->plat->dma_tx_size :
2905 DMA_DEFAULT_TX_SIZE;
2906
2907 if (!priv->dma_rx_size)
2908 priv->dma_rx_size = priv->plat->dma_rx_size ? priv->plat->dma_rx_size :
2909 DMA_DEFAULT_RX_SIZE;
2910
2911 /* Earlier check for TBS */
2912 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
2913 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2914 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
2915
2916 /* Setup per-TXQ tbs flag before TX descriptor alloc */
2917 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
2918 }
2919
2920 ret = alloc_dma_desc_resources(priv);
2921 if (ret < 0) {
2922 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2923 __func__);
2924 goto dma_desc_error;
2925 }
2926
2927 ret = init_dma_desc_rings(dev, GFP_KERNEL);
2928 if (ret < 0) {
2929 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2930 __func__);
2931 goto init_error;
2932 }
2933
2934 if (priv->plat->serdes_powerup) {
2935 ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
2936 if (ret < 0) {
2937 netdev_err(priv->dev, "%s: Serdes powerup failed\n",
2938 __func__);
2939 goto init_error;
2940 }
2941 }
2942
2943 ret = stmmac_hw_setup(dev, true);
2944 if (ret < 0) {
2945 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2946 goto init_error;
2947 }
2948
2949 stmmac_init_coalesce(priv);
2950
2951 phylink_start(priv->phylink);
2952 /* We may have called phylink_speed_down before */
2953 phylink_speed_up(priv->phylink);
2954
2955 /* Request the IRQ lines */
2956 ret = request_irq(dev->irq, stmmac_interrupt,
2957 IRQF_SHARED, dev->name, dev);
2958 if (unlikely(ret < 0)) {
2959 netdev_err(priv->dev,
2960 "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2961 __func__, dev->irq, ret);
2962 goto irq_error;
2963 }
2964
2965 /* Request the Wake IRQ in case of another line is used for WoL */
2966 if (priv->wol_irq != dev->irq) {
2967 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2968 IRQF_SHARED, dev->name, dev);
2969 if (unlikely(ret < 0)) {
2970 netdev_err(priv->dev,
2971 "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2972 __func__, priv->wol_irq, ret);
2973 goto wolirq_error;
2974 }
2975 }
2976
2977 /* Request the IRQ lines */
2978 if (priv->lpi_irq > 0) {
2979 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2980 dev->name, dev);
2981 if (unlikely(ret < 0)) {
2982 netdev_err(priv->dev,
2983 "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2984 __func__, priv->lpi_irq, ret);
2985 goto lpiirq_error;
2986 }
2987 }
2988
2989 stmmac_enable_all_queues(priv);
2990 netif_tx_start_all_queues(priv->dev);
2991
2992 return 0;
2993
2994 lpiirq_error:
2995 if (priv->wol_irq != dev->irq)
2996 free_irq(priv->wol_irq, dev);
2997 wolirq_error:
2998 free_irq(dev->irq, dev);
2999 irq_error:
3000 phylink_stop(priv->phylink);
3001
3002 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3003 del_timer_sync(&priv->tx_queue[chan].txtimer);
3004
3005 stmmac_hw_teardown(dev);
3006 init_error:
3007 free_dma_desc_resources(priv);
3008 dma_desc_error:
3009 phylink_disconnect_phy(priv->phylink);
3010 init_phy_error:
3011 pm_runtime_put(priv->device);
3012 return ret;
3013 }
3014
3015 /**
3016 * stmmac_release - close entry point of the driver
3017 * @dev : device pointer.
3018 * Description:
3019 * This is the stop entry point of the driver.
3020 */
stmmac_release(struct net_device * dev)3021 static int stmmac_release(struct net_device *dev)
3022 {
3023 struct stmmac_priv *priv = netdev_priv(dev);
3024 u32 chan;
3025
3026 if (device_may_wakeup(priv->device))
3027 phylink_speed_down(priv->phylink, false);
3028 /* Stop and disconnect the PHY */
3029 phylink_stop(priv->phylink);
3030 phylink_disconnect_phy(priv->phylink);
3031
3032 if (priv->plat->integrated_phy_power)
3033 priv->plat->integrated_phy_power(priv->plat->bsp_priv, false);
3034
3035 stmmac_disable_all_queues(priv);
3036
3037 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3038 del_timer_sync(&priv->tx_queue[chan].txtimer);
3039
3040 /* Free the IRQ lines */
3041 free_irq(dev->irq, dev);
3042 if (priv->wol_irq != dev->irq)
3043 free_irq(priv->wol_irq, dev);
3044 if (priv->lpi_irq > 0)
3045 free_irq(priv->lpi_irq, dev);
3046
3047 if (priv->eee_enabled) {
3048 priv->tx_path_in_lpi_mode = false;
3049 del_timer_sync(&priv->eee_ctrl_timer);
3050 }
3051
3052 /* Stop TX/RX DMA and clear the descriptors */
3053 stmmac_stop_all_dma(priv);
3054
3055 /* Release and free the Rx/Tx resources */
3056 free_dma_desc_resources(priv);
3057
3058 /* Disable the MAC Rx/Tx */
3059 stmmac_mac_set(priv, priv->ioaddr, false);
3060
3061 /* Powerdown Serdes if there is */
3062 if (priv->plat->serdes_powerdown)
3063 priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3064
3065 netif_carrier_off(dev);
3066
3067 stmmac_release_ptp(priv);
3068
3069 pm_runtime_put(priv->device);
3070
3071 return 0;
3072 }
3073
stmmac_vlan_insert(struct stmmac_priv * priv,struct sk_buff * skb,struct stmmac_tx_queue * tx_q)3074 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3075 struct stmmac_tx_queue *tx_q)
3076 {
3077 u16 tag = 0x0, inner_tag = 0x0;
3078 u32 inner_type = 0x0;
3079 struct dma_desc *p;
3080
3081 if (!priv->dma_cap.vlins)
3082 return false;
3083 if (!skb_vlan_tag_present(skb))
3084 return false;
3085 if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3086 inner_tag = skb_vlan_tag_get(skb);
3087 inner_type = STMMAC_VLAN_INSERT;
3088 }
3089
3090 tag = skb_vlan_tag_get(skb);
3091
3092 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3093 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3094 else
3095 p = &tx_q->dma_tx[tx_q->cur_tx];
3096
3097 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3098 return false;
3099
3100 stmmac_set_tx_owner(priv, p);
3101 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3102 return true;
3103 }
3104
3105 /**
3106 * stmmac_tso_allocator - close entry point of the driver
3107 * @priv: driver private structure
3108 * @des: buffer start address
3109 * @total_len: total length to fill in descriptors
3110 * @last_segment: condition for the last descriptor
3111 * @queue: TX queue index
3112 * Description:
3113 * This function fills descriptor and request new descriptors according to
3114 * buffer length to fill
3115 */
stmmac_tso_allocator(struct stmmac_priv * priv,dma_addr_t des,int total_len,bool last_segment,u32 queue)3116 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3117 int total_len, bool last_segment, u32 queue)
3118 {
3119 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3120 struct dma_desc *desc;
3121 u32 buff_size;
3122 int tmp_len;
3123
3124 tmp_len = total_len;
3125
3126 while (tmp_len > 0) {
3127 dma_addr_t curr_addr;
3128
3129 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3130 priv->dma_tx_size);
3131 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3132
3133 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3134 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3135 else
3136 desc = &tx_q->dma_tx[tx_q->cur_tx];
3137
3138 curr_addr = des + (total_len - tmp_len);
3139 if (priv->dma_cap.addr64 <= 32)
3140 desc->des0 = cpu_to_le32(curr_addr);
3141 else
3142 stmmac_set_desc_addr(priv, desc, curr_addr);
3143
3144 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3145 TSO_MAX_BUFF_SIZE : tmp_len;
3146
3147 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3148 0, 1,
3149 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3150 0, 0);
3151
3152 tmp_len -= TSO_MAX_BUFF_SIZE;
3153 }
3154 }
3155
3156 /**
3157 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3158 * @skb : the socket buffer
3159 * @dev : device pointer
3160 * Description: this is the transmit function that is called on TSO frames
3161 * (support available on GMAC4 and newer chips).
3162 * Diagram below show the ring programming in case of TSO frames:
3163 *
3164 * First Descriptor
3165 * --------
3166 * | DES0 |---> buffer1 = L2/L3/L4 header
3167 * | DES1 |---> TCP Payload (can continue on next descr...)
3168 * | DES2 |---> buffer 1 and 2 len
3169 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3170 * --------
3171 * |
3172 * ...
3173 * |
3174 * --------
3175 * | DES0 | --| Split TCP Payload on Buffers 1 and 2
3176 * | DES1 | --|
3177 * | DES2 | --> buffer 1 and 2 len
3178 * | DES3 |
3179 * --------
3180 *
3181 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3182 */
stmmac_tso_xmit(struct sk_buff * skb,struct net_device * dev)3183 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3184 {
3185 struct dma_desc *desc, *first, *mss_desc = NULL;
3186 struct stmmac_priv *priv = netdev_priv(dev);
3187 int desc_size, tmp_pay_len = 0, first_tx;
3188 int nfrags = skb_shinfo(skb)->nr_frags;
3189 u32 queue = skb_get_queue_mapping(skb);
3190 unsigned int first_entry, tx_packets;
3191 struct stmmac_tx_queue *tx_q;
3192 bool has_vlan, set_ic;
3193 u8 proto_hdr_len, hdr;
3194 u32 pay_len, mss;
3195 dma_addr_t des;
3196 int i;
3197
3198 tx_q = &priv->tx_queue[queue];
3199 first_tx = tx_q->cur_tx;
3200
3201 /* Compute header lengths */
3202 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3203 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3204 hdr = sizeof(struct udphdr);
3205 } else {
3206 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3207 hdr = tcp_hdrlen(skb);
3208 }
3209
3210 /* Desc availability based on threshold should be enough safe */
3211 if (unlikely(stmmac_tx_avail(priv, queue) <
3212 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3213 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3214 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3215 queue));
3216 /* This is a hard error, log it. */
3217 netdev_err(priv->dev,
3218 "%s: Tx Ring full when queue awake\n",
3219 __func__);
3220 }
3221 return NETDEV_TX_BUSY;
3222 }
3223
3224 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3225
3226 mss = skb_shinfo(skb)->gso_size;
3227
3228 /* set new MSS value if needed */
3229 if (mss != tx_q->mss) {
3230 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3231 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3232 else
3233 mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3234
3235 stmmac_set_mss(priv, mss_desc, mss);
3236 tx_q->mss = mss;
3237 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3238 priv->dma_tx_size);
3239 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3240 }
3241
3242 if (netif_msg_tx_queued(priv)) {
3243 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3244 __func__, hdr, proto_hdr_len, pay_len, mss);
3245 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3246 skb->data_len);
3247 }
3248
3249 /* Check if VLAN can be inserted by HW */
3250 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3251
3252 first_entry = tx_q->cur_tx;
3253 WARN_ON(tx_q->tx_skbuff[first_entry]);
3254
3255 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3256 desc = &tx_q->dma_entx[first_entry].basic;
3257 else
3258 desc = &tx_q->dma_tx[first_entry];
3259 first = desc;
3260
3261 if (has_vlan)
3262 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3263
3264 /* first descriptor: fill Headers on Buf1 */
3265 des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
3266 DMA_TO_DEVICE);
3267 if (dma_mapping_error(priv->device, des))
3268 goto dma_map_err;
3269
3270 tx_q->tx_skbuff_dma[first_entry].buf = des;
3271 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
3272
3273 if (priv->dma_cap.addr64 <= 32) {
3274 first->des0 = cpu_to_le32(des);
3275
3276 /* Fill start of payload in buff2 of first descriptor */
3277 if (pay_len)
3278 first->des1 = cpu_to_le32(des + proto_hdr_len);
3279
3280 /* If needed take extra descriptors to fill the remaining payload */
3281 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3282 } else {
3283 stmmac_set_desc_addr(priv, first, des);
3284 tmp_pay_len = pay_len;
3285 des += proto_hdr_len;
3286 pay_len = 0;
3287 }
3288
3289 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3290
3291 /* Prepare fragments */
3292 for (i = 0; i < nfrags; i++) {
3293 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3294
3295 des = skb_frag_dma_map(priv->device, frag, 0,
3296 skb_frag_size(frag),
3297 DMA_TO_DEVICE);
3298 if (dma_mapping_error(priv->device, des))
3299 goto dma_map_err;
3300
3301 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3302 (i == nfrags - 1), queue);
3303
3304 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3305 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3306 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3307 }
3308
3309 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3310
3311 /* Only the last descriptor gets to point to the skb. */
3312 tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3313
3314 /* Manage tx mitigation */
3315 tx_packets = (tx_q->cur_tx + 1) - first_tx;
3316 tx_q->tx_count_frames += tx_packets;
3317
3318 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3319 set_ic = true;
3320 else if (!priv->tx_coal_frames)
3321 set_ic = false;
3322 else if (tx_packets > priv->tx_coal_frames)
3323 set_ic = true;
3324 else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3325 set_ic = true;
3326 else
3327 set_ic = false;
3328
3329 if (set_ic) {
3330 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3331 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3332 else
3333 desc = &tx_q->dma_tx[tx_q->cur_tx];
3334
3335 tx_q->tx_count_frames = 0;
3336 stmmac_set_tx_ic(priv, desc);
3337 priv->xstats.tx_set_ic_bit++;
3338 }
3339
3340 /* We've used all descriptors we need for this skb, however,
3341 * advance cur_tx so that it references a fresh descriptor.
3342 * ndo_start_xmit will fill this descriptor the next time it's
3343 * called and stmmac_tx_clean may clean up to this descriptor.
3344 */
3345 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3346
3347 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3348 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3349 __func__);
3350 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3351 }
3352
3353 dev->stats.tx_bytes += skb->len;
3354 priv->xstats.tx_tso_frames++;
3355 priv->xstats.tx_tso_nfrags += nfrags;
3356
3357 if (priv->sarc_type)
3358 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3359
3360 skb_tx_timestamp(skb);
3361
3362 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3363 priv->hwts_tx_en)) {
3364 /* declare that device is doing timestamping */
3365 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3366 stmmac_enable_tx_timestamp(priv, first);
3367 }
3368
3369 /* Complete the first descriptor before granting the DMA */
3370 stmmac_prepare_tso_tx_desc(priv, first, 1,
3371 proto_hdr_len,
3372 pay_len,
3373 1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3374 hdr / 4, (skb->len - proto_hdr_len));
3375
3376 /* If context desc is used to change MSS */
3377 if (mss_desc) {
3378 /* Make sure that first descriptor has been completely
3379 * written, including its own bit. This is because MSS is
3380 * actually before first descriptor, so we need to make
3381 * sure that MSS's own bit is the last thing written.
3382 */
3383 dma_wmb();
3384 stmmac_set_tx_owner(priv, mss_desc);
3385 }
3386
3387 /* The own bit must be the latest setting done when prepare the
3388 * descriptor and then barrier is needed to make sure that
3389 * all is coherent before granting the DMA engine.
3390 */
3391 wmb();
3392
3393 if (netif_msg_pktdata(priv)) {
3394 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3395 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3396 tx_q->cur_tx, first, nfrags);
3397 pr_info(">>> frame to be transmitted: ");
3398 print_pkt(skb->data, skb_headlen(skb));
3399 }
3400
3401 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3402
3403 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3404 desc_size = sizeof(struct dma_edesc);
3405 else
3406 desc_size = sizeof(struct dma_desc);
3407
3408 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3409 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3410 stmmac_tx_timer_arm(priv, queue);
3411
3412 return NETDEV_TX_OK;
3413
3414 dma_map_err:
3415 dev_err(priv->device, "Tx dma map failed\n");
3416 dev_kfree_skb(skb);
3417 priv->dev->stats.tx_dropped++;
3418 return NETDEV_TX_OK;
3419 }
3420
3421 /**
3422 * stmmac_xmit - Tx entry point of the driver
3423 * @skb : the socket buffer
3424 * @dev : device pointer
3425 * Description : this is the tx entry point of the driver.
3426 * It programs the chain or the ring and supports oversized frames
3427 * and SG feature.
3428 */
stmmac_xmit(struct sk_buff * skb,struct net_device * dev)3429 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3430 {
3431 unsigned int first_entry, tx_packets, enh_desc;
3432 struct stmmac_priv *priv = netdev_priv(dev);
3433 unsigned int nopaged_len = skb_headlen(skb);
3434 int i, csum_insertion = 0, is_jumbo = 0;
3435 u32 queue = skb_get_queue_mapping(skb);
3436 int nfrags = skb_shinfo(skb)->nr_frags;
3437 int gso = skb_shinfo(skb)->gso_type;
3438 struct dma_edesc *tbs_desc = NULL;
3439 int entry, desc_size, first_tx;
3440 struct dma_desc *desc, *first;
3441 struct stmmac_tx_queue *tx_q;
3442 bool has_vlan, set_ic;
3443 dma_addr_t des;
3444
3445 tx_q = &priv->tx_queue[queue];
3446 first_tx = tx_q->cur_tx;
3447
3448 if (priv->tx_path_in_lpi_mode)
3449 stmmac_disable_eee_mode(priv);
3450
3451 /* Manage oversized TCP frames for GMAC4 device */
3452 if (skb_is_gso(skb) && priv->tso) {
3453 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3454 return stmmac_tso_xmit(skb, dev);
3455 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3456 return stmmac_tso_xmit(skb, dev);
3457 }
3458
3459 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3460 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3461 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3462 queue));
3463 /* This is a hard error, log it. */
3464 netdev_err(priv->dev,
3465 "%s: Tx Ring full when queue awake\n",
3466 __func__);
3467 }
3468 return NETDEV_TX_BUSY;
3469 }
3470
3471 /* Check if VLAN can be inserted by HW */
3472 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3473
3474 entry = tx_q->cur_tx;
3475 first_entry = entry;
3476 WARN_ON(tx_q->tx_skbuff[first_entry]);
3477
3478 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3479
3480 if (likely(priv->extend_desc))
3481 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3482 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3483 desc = &tx_q->dma_entx[entry].basic;
3484 else
3485 desc = tx_q->dma_tx + entry;
3486
3487 first = desc;
3488
3489 if (has_vlan)
3490 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3491
3492 enh_desc = priv->plat->enh_desc;
3493 /* To program the descriptors according to the size of the frame */
3494 if (enh_desc)
3495 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3496
3497 if (unlikely(is_jumbo)) {
3498 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3499 if (unlikely(entry < 0) && (entry != -EINVAL))
3500 goto dma_map_err;
3501 }
3502
3503 for (i = 0; i < nfrags; i++) {
3504 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3505 int len = skb_frag_size(frag);
3506 bool last_segment = (i == (nfrags - 1));
3507
3508 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
3509 WARN_ON(tx_q->tx_skbuff[entry]);
3510
3511 if (likely(priv->extend_desc))
3512 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3513 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3514 desc = &tx_q->dma_entx[entry].basic;
3515 else
3516 desc = tx_q->dma_tx + entry;
3517
3518 des = skb_frag_dma_map(priv->device, frag, 0, len,
3519 DMA_TO_DEVICE);
3520 if (dma_mapping_error(priv->device, des))
3521 goto dma_map_err; /* should reuse desc w/o issues */
3522
3523 tx_q->tx_skbuff_dma[entry].buf = des;
3524
3525 stmmac_set_desc_addr(priv, desc, des);
3526
3527 tx_q->tx_skbuff_dma[entry].map_as_page = true;
3528 tx_q->tx_skbuff_dma[entry].len = len;
3529 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3530
3531 /* Prepare the descriptor and set the own bit too */
3532 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3533 priv->mode, 1, last_segment, skb->len);
3534 }
3535
3536 /* Only the last descriptor gets to point to the skb. */
3537 tx_q->tx_skbuff[entry] = skb;
3538
3539 /* According to the coalesce parameter the IC bit for the latest
3540 * segment is reset and the timer re-started to clean the tx status.
3541 * This approach takes care about the fragments: desc is the first
3542 * element in case of no SG.
3543 */
3544 tx_packets = (entry + 1) - first_tx;
3545 tx_q->tx_count_frames += tx_packets;
3546
3547 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3548 set_ic = true;
3549 else if (!priv->tx_coal_frames)
3550 set_ic = false;
3551 else if (tx_packets > priv->tx_coal_frames)
3552 set_ic = true;
3553 else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3554 set_ic = true;
3555 else
3556 set_ic = false;
3557
3558 if (set_ic) {
3559 if (likely(priv->extend_desc))
3560 desc = &tx_q->dma_etx[entry].basic;
3561 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3562 desc = &tx_q->dma_entx[entry].basic;
3563 else
3564 desc = &tx_q->dma_tx[entry];
3565
3566 tx_q->tx_count_frames = 0;
3567 stmmac_set_tx_ic(priv, desc);
3568 priv->xstats.tx_set_ic_bit++;
3569 }
3570
3571 /* We've used all descriptors we need for this skb, however,
3572 * advance cur_tx so that it references a fresh descriptor.
3573 * ndo_start_xmit will fill this descriptor the next time it's
3574 * called and stmmac_tx_clean may clean up to this descriptor.
3575 */
3576 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
3577 tx_q->cur_tx = entry;
3578
3579 if (netif_msg_pktdata(priv)) {
3580 netdev_dbg(priv->dev,
3581 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3582 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3583 entry, first, nfrags);
3584
3585 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3586 print_pkt(skb->data, skb->len);
3587 }
3588
3589 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3590 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3591 __func__);
3592 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3593 }
3594
3595 dev->stats.tx_bytes += skb->len;
3596
3597 if (priv->sarc_type)
3598 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3599
3600 skb_tx_timestamp(skb);
3601
3602 /* Ready to fill the first descriptor and set the OWN bit w/o any
3603 * problems because all the descriptors are actually ready to be
3604 * passed to the DMA engine.
3605 */
3606 if (likely(!is_jumbo)) {
3607 bool last_segment = (nfrags == 0);
3608
3609 des = dma_map_single(priv->device, skb->data,
3610 nopaged_len, DMA_TO_DEVICE);
3611 if (dma_mapping_error(priv->device, des))
3612 goto dma_map_err;
3613
3614 tx_q->tx_skbuff_dma[first_entry].buf = des;
3615
3616 stmmac_set_desc_addr(priv, first, des);
3617
3618 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3619 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3620
3621 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3622 priv->hwts_tx_en)) {
3623 /* declare that device is doing timestamping */
3624 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3625 stmmac_enable_tx_timestamp(priv, first);
3626 }
3627
3628 /* Prepare the first descriptor setting the OWN bit too */
3629 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3630 csum_insertion, priv->mode, 0, last_segment,
3631 skb->len);
3632 }
3633
3634 if (tx_q->tbs & STMMAC_TBS_EN) {
3635 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
3636
3637 tbs_desc = &tx_q->dma_entx[first_entry];
3638 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
3639 }
3640
3641 stmmac_set_tx_owner(priv, first);
3642
3643 /* The own bit must be the latest setting done when prepare the
3644 * descriptor and then barrier is needed to make sure that
3645 * all is coherent before granting the DMA engine.
3646 */
3647 wmb();
3648
3649 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3650
3651 stmmac_enable_dma_transmission(priv, priv->ioaddr);
3652
3653 if (likely(priv->extend_desc))
3654 desc_size = sizeof(struct dma_extended_desc);
3655 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3656 desc_size = sizeof(struct dma_edesc);
3657 else
3658 desc_size = sizeof(struct dma_desc);
3659
3660 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3661 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3662 stmmac_tx_timer_arm(priv, queue);
3663
3664 return NETDEV_TX_OK;
3665
3666 dma_map_err:
3667 netdev_err(priv->dev, "Tx DMA map failed\n");
3668 dev_kfree_skb(skb);
3669 priv->dev->stats.tx_dropped++;
3670 return NETDEV_TX_OK;
3671 }
3672
stmmac_rx_vlan(struct net_device * dev,struct sk_buff * skb)3673 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3674 {
3675 struct vlan_ethhdr *veth;
3676 __be16 vlan_proto;
3677 u16 vlanid;
3678
3679 veth = (struct vlan_ethhdr *)skb->data;
3680 vlan_proto = veth->h_vlan_proto;
3681
3682 if ((vlan_proto == htons(ETH_P_8021Q) &&
3683 dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3684 (vlan_proto == htons(ETH_P_8021AD) &&
3685 dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3686 /* pop the vlan tag */
3687 vlanid = ntohs(veth->h_vlan_TCI);
3688 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3689 skb_pull(skb, VLAN_HLEN);
3690 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3691 }
3692 }
3693
3694 /**
3695 * stmmac_rx_refill - refill used skb preallocated buffers
3696 * @priv: driver private structure
3697 * @queue: RX queue index
3698 * Description : this is to reallocate the skb for the reception process
3699 * that is based on zero-copy.
3700 */
stmmac_rx_refill(struct stmmac_priv * priv,u32 queue)3701 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3702 {
3703 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3704 int len, dirty = stmmac_rx_dirty(priv, queue);
3705 unsigned int entry = rx_q->dirty_rx;
3706 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
3707
3708 if (priv->dma_cap.addr64 <= 32)
3709 gfp |= GFP_DMA32;
3710
3711 len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3712
3713 while (dirty-- > 0) {
3714 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3715 struct dma_desc *p;
3716 bool use_rx_wd;
3717
3718 if (priv->extend_desc)
3719 p = (struct dma_desc *)(rx_q->dma_erx + entry);
3720 else
3721 p = rx_q->dma_rx + entry;
3722
3723 if (!buf->page) {
3724 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
3725 if (!buf->page)
3726 break;
3727 }
3728
3729 if (priv->sph && !buf->sec_page) {
3730 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
3731 if (!buf->sec_page)
3732 break;
3733
3734 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3735 }
3736
3737 buf->addr = page_pool_get_dma_addr(buf->page);
3738 stmmac_set_desc_addr(priv, p, buf->addr);
3739 if (priv->sph)
3740 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
3741 else
3742 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
3743 stmmac_refill_desc3(priv, rx_q, p);
3744
3745 rx_q->rx_count_frames++;
3746 rx_q->rx_count_frames += priv->rx_coal_frames;
3747 if (rx_q->rx_count_frames > priv->rx_coal_frames)
3748 rx_q->rx_count_frames = 0;
3749
3750 use_rx_wd = !priv->rx_coal_frames;
3751 use_rx_wd |= rx_q->rx_count_frames > 0;
3752 if (!priv->use_riwt)
3753 use_rx_wd = false;
3754
3755 dma_wmb();
3756 stmmac_set_rx_owner(priv, p, use_rx_wd);
3757
3758 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
3759 }
3760 rx_q->dirty_rx = entry;
3761 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3762 (rx_q->dirty_rx * sizeof(struct dma_desc));
3763 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3764 }
3765
stmmac_rx_buf1_len(struct stmmac_priv * priv,struct dma_desc * p,int status,unsigned int len)3766 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3767 struct dma_desc *p,
3768 int status, unsigned int len)
3769 {
3770 unsigned int plen = 0, hlen = 0;
3771 int coe = priv->hw->rx_csum;
3772
3773 /* Not first descriptor, buffer is always zero */
3774 if (priv->sph && len)
3775 return 0;
3776
3777 /* First descriptor, get split header length */
3778 stmmac_get_rx_header_len(priv, p, &hlen);
3779 if (priv->sph && hlen) {
3780 priv->xstats.rx_split_hdr_pkt_n++;
3781 return hlen;
3782 }
3783
3784 /* First descriptor, not last descriptor and not split header */
3785 if (status & rx_not_ls)
3786 return priv->dma_buf_sz;
3787
3788 plen = stmmac_get_rx_frame_len(priv, p, coe);
3789
3790 /* First descriptor and last descriptor and not split header */
3791 return min_t(unsigned int, priv->dma_buf_sz, plen);
3792 }
3793
stmmac_rx_buf2_len(struct stmmac_priv * priv,struct dma_desc * p,int status,unsigned int len)3794 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3795 struct dma_desc *p,
3796 int status, unsigned int len)
3797 {
3798 int coe = priv->hw->rx_csum;
3799 unsigned int plen = 0;
3800
3801 /* Not split header, buffer is not available */
3802 if (!priv->sph)
3803 return 0;
3804
3805 /* Not last descriptor */
3806 if (status & rx_not_ls)
3807 return priv->dma_buf_sz;
3808
3809 plen = stmmac_get_rx_frame_len(priv, p, coe);
3810
3811 /* Last descriptor */
3812 return plen - len;
3813 }
3814
3815 /**
3816 * stmmac_rx - manage the receive process
3817 * @priv: driver private structure
3818 * @limit: napi bugget
3819 * @queue: RX queue index.
3820 * Description : this the function called by the napi poll method.
3821 * It gets all the frames inside the ring.
3822 */
stmmac_rx(struct stmmac_priv * priv,int limit,u32 queue)3823 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3824 {
3825 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3826 struct stmmac_channel *ch = &priv->channel[queue];
3827 unsigned int count = 0, error = 0, len = 0;
3828 int status = 0, coe = priv->hw->rx_csum;
3829 unsigned int next_entry = rx_q->cur_rx;
3830 unsigned int desc_size;
3831 struct sk_buff *skb = NULL;
3832
3833 if (netif_msg_rx_status(priv)) {
3834 void *rx_head;
3835
3836 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3837 if (priv->extend_desc) {
3838 rx_head = (void *)rx_q->dma_erx;
3839 desc_size = sizeof(struct dma_extended_desc);
3840 } else {
3841 rx_head = (void *)rx_q->dma_rx;
3842 desc_size = sizeof(struct dma_desc);
3843 }
3844
3845 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
3846 rx_q->dma_rx_phy, desc_size);
3847 }
3848 while (count < limit) {
3849 unsigned int buf1_len = 0, buf2_len = 0;
3850 enum pkt_hash_types hash_type;
3851 struct stmmac_rx_buffer *buf;
3852 struct dma_desc *np, *p;
3853 int entry;
3854 u32 hash;
3855
3856 if (!count && rx_q->state_saved) {
3857 skb = rx_q->state.skb;
3858 error = rx_q->state.error;
3859 len = rx_q->state.len;
3860 } else {
3861 rx_q->state_saved = false;
3862 skb = NULL;
3863 error = 0;
3864 len = 0;
3865 }
3866
3867 if ((count >= limit - 1) && limit > 1)
3868 break;
3869
3870 read_again:
3871 buf1_len = 0;
3872 buf2_len = 0;
3873 entry = next_entry;
3874 buf = &rx_q->buf_pool[entry];
3875
3876 if (priv->extend_desc)
3877 p = (struct dma_desc *)(rx_q->dma_erx + entry);
3878 else
3879 p = rx_q->dma_rx + entry;
3880
3881 /* read the status of the incoming frame */
3882 status = stmmac_rx_status(priv, &priv->dev->stats,
3883 &priv->xstats, p);
3884 /* check if managed by the DMA otherwise go ahead */
3885 if (unlikely(status & dma_own))
3886 break;
3887
3888 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
3889 priv->dma_rx_size);
3890 next_entry = rx_q->cur_rx;
3891
3892 if (priv->extend_desc)
3893 np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3894 else
3895 np = rx_q->dma_rx + next_entry;
3896
3897 prefetch(np);
3898
3899 if (priv->extend_desc)
3900 stmmac_rx_extended_status(priv, &priv->dev->stats,
3901 &priv->xstats, rx_q->dma_erx + entry);
3902 if (unlikely(status == discard_frame)) {
3903 page_pool_recycle_direct(rx_q->page_pool, buf->page);
3904 buf->page = NULL;
3905 error = 1;
3906 if (!priv->hwts_rx_en)
3907 priv->dev->stats.rx_errors++;
3908 }
3909
3910 if (unlikely(error && (status & rx_not_ls)))
3911 goto read_again;
3912 if (unlikely(error)) {
3913 dev_kfree_skb(skb);
3914 skb = NULL;
3915 count++;
3916 continue;
3917 }
3918
3919 /* Buffer is good. Go on. */
3920
3921 prefetch(page_address(buf->page));
3922 if (buf->sec_page)
3923 prefetch(page_address(buf->sec_page));
3924
3925 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3926 len += buf1_len;
3927 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3928 len += buf2_len;
3929
3930 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3931 * Type frames (LLC/LLC-SNAP)
3932 *
3933 * llc_snap is never checked in GMAC >= 4, so this ACS
3934 * feature is always disabled and packets need to be
3935 * stripped manually.
3936 */
3937 if (likely(!(status & rx_not_ls)) &&
3938 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3939 unlikely(status != llc_snap))) {
3940 if (buf2_len)
3941 buf2_len -= ETH_FCS_LEN;
3942 else
3943 buf1_len -= ETH_FCS_LEN;
3944
3945 len -= ETH_FCS_LEN;
3946 }
3947
3948 if (!skb) {
3949 skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3950 if (!skb) {
3951 priv->dev->stats.rx_dropped++;
3952 count++;
3953 goto drain_data;
3954 }
3955
3956 dma_sync_single_for_cpu(priv->device, buf->addr,
3957 buf1_len, DMA_FROM_DEVICE);
3958 skb_copy_to_linear_data(skb, page_address(buf->page),
3959 buf1_len);
3960 skb_put(skb, buf1_len);
3961
3962 /* Data payload copied into SKB, page ready for recycle */
3963 page_pool_recycle_direct(rx_q->page_pool, buf->page);
3964 buf->page = NULL;
3965 } else if (buf1_len) {
3966 dma_sync_single_for_cpu(priv->device, buf->addr,
3967 buf1_len, DMA_FROM_DEVICE);
3968 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3969 buf->page, 0, buf1_len,
3970 priv->dma_buf_sz);
3971
3972 /* Data payload appended into SKB */
3973 page_pool_release_page(rx_q->page_pool, buf->page);
3974 buf->page = NULL;
3975 }
3976
3977 if (buf2_len) {
3978 dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3979 buf2_len, DMA_FROM_DEVICE);
3980 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3981 buf->sec_page, 0, buf2_len,
3982 priv->dma_buf_sz);
3983
3984 /* Data payload appended into SKB */
3985 page_pool_release_page(rx_q->page_pool, buf->sec_page);
3986 buf->sec_page = NULL;
3987 }
3988
3989 drain_data:
3990 if (likely(status & rx_not_ls))
3991 goto read_again;
3992 if (!skb)
3993 continue;
3994
3995 /* Got entire packet into SKB. Finish it. */
3996
3997 stmmac_get_rx_hwtstamp(priv, p, np, skb);
3998 stmmac_rx_vlan(priv->dev, skb);
3999 skb->protocol = eth_type_trans(skb, priv->dev);
4000
4001 if (unlikely(!coe))
4002 skb_checksum_none_assert(skb);
4003 else
4004 skb->ip_summed = CHECKSUM_UNNECESSARY;
4005
4006 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4007 skb_set_hash(skb, hash, hash_type);
4008
4009 skb_record_rx_queue(skb, queue);
4010 napi_gro_receive(&ch->rx_napi, skb);
4011 skb = NULL;
4012
4013 priv->dev->stats.rx_packets++;
4014 priv->dev->stats.rx_bytes += len;
4015 count++;
4016 }
4017
4018 if (status & rx_not_ls || skb) {
4019 rx_q->state_saved = true;
4020 rx_q->state.skb = skb;
4021 rx_q->state.error = error;
4022 rx_q->state.len = len;
4023 }
4024
4025 stmmac_rx_refill(priv, queue);
4026
4027 priv->xstats.rx_pkt_n += count;
4028
4029 return count;
4030 }
4031
stmmac_napi_poll_rx(struct napi_struct * napi,int budget)4032 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
4033 {
4034 struct stmmac_channel *ch =
4035 container_of(napi, struct stmmac_channel, rx_napi);
4036 struct stmmac_priv *priv = ch->priv_data;
4037 u32 chan = ch->index;
4038 int work_done;
4039
4040 priv->xstats.napi_poll++;
4041
4042 work_done = stmmac_rx(priv, budget, chan);
4043 if (work_done < budget && napi_complete_done(napi, work_done)) {
4044 unsigned long flags;
4045
4046 spin_lock_irqsave(&ch->lock, flags);
4047 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
4048 spin_unlock_irqrestore(&ch->lock, flags);
4049 }
4050
4051 return work_done;
4052 }
4053
stmmac_napi_poll_tx(struct napi_struct * napi,int budget)4054 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
4055 {
4056 struct stmmac_channel *ch =
4057 container_of(napi, struct stmmac_channel, tx_napi);
4058 struct stmmac_priv *priv = ch->priv_data;
4059 u32 chan = ch->index;
4060 int work_done;
4061
4062 priv->xstats.napi_poll++;
4063
4064 work_done = stmmac_tx_clean(priv, priv->dma_tx_size, chan);
4065 work_done = min(work_done, budget);
4066
4067 if (work_done < budget && napi_complete_done(napi, work_done)) {
4068 unsigned long flags;
4069
4070 spin_lock_irqsave(&ch->lock, flags);
4071 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
4072 spin_unlock_irqrestore(&ch->lock, flags);
4073 }
4074
4075 return work_done;
4076 }
4077
4078 /**
4079 * stmmac_tx_timeout
4080 * @dev : Pointer to net device structure
4081 * @txqueue: the index of the hanging transmit queue
4082 * Description: this function is called when a packet transmission fails to
4083 * complete within a reasonable time. The driver will mark the error in the
4084 * netdev structure and arrange for the device to be reset to a sane state
4085 * in order to transmit a new packet.
4086 */
stmmac_tx_timeout(struct net_device * dev,unsigned int txqueue)4087 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
4088 {
4089 struct stmmac_priv *priv = netdev_priv(dev);
4090
4091 stmmac_global_err(priv);
4092 }
4093
4094 /**
4095 * stmmac_set_rx_mode - entry point for multicast addressing
4096 * @dev : pointer to the device structure
4097 * Description:
4098 * This function is a driver entry point which gets called by the kernel
4099 * whenever multicast addresses must be enabled/disabled.
4100 * Return value:
4101 * void.
4102 */
stmmac_set_rx_mode(struct net_device * dev)4103 static void stmmac_set_rx_mode(struct net_device *dev)
4104 {
4105 struct stmmac_priv *priv = netdev_priv(dev);
4106
4107 stmmac_set_filter(priv, priv->hw, dev);
4108 }
4109
4110 /**
4111 * stmmac_change_mtu - entry point to change MTU size for the device.
4112 * @dev : device pointer.
4113 * @new_mtu : the new MTU size for the device.
4114 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
4115 * to drive packet transmission. Ethernet has an MTU of 1500 octets
4116 * (ETH_DATA_LEN). This value can be changed with ifconfig.
4117 * Return value:
4118 * 0 on success and an appropriate (-)ve integer as defined in errno.h
4119 * file on failure.
4120 */
stmmac_change_mtu(struct net_device * dev,int new_mtu)4121 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
4122 {
4123 struct stmmac_priv *priv = netdev_priv(dev);
4124 int txfifosz = priv->plat->tx_fifo_size;
4125 const int mtu = new_mtu;
4126
4127 if (txfifosz == 0)
4128 txfifosz = priv->dma_cap.tx_fifo_size;
4129
4130 txfifosz /= priv->plat->tx_queues_to_use;
4131
4132 if (netif_running(dev)) {
4133 netdev_err(priv->dev, "must be stopped to change its MTU\n");
4134 return -EBUSY;
4135 }
4136
4137 new_mtu = STMMAC_ALIGN(new_mtu);
4138
4139 /* If condition true, FIFO is too small or MTU too large */
4140 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
4141 return -EINVAL;
4142
4143 dev->mtu = mtu;
4144
4145 netdev_update_features(dev);
4146
4147 return 0;
4148 }
4149
stmmac_fix_features(struct net_device * dev,netdev_features_t features)4150 static netdev_features_t stmmac_fix_features(struct net_device *dev,
4151 netdev_features_t features)
4152 {
4153 struct stmmac_priv *priv = netdev_priv(dev);
4154
4155 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
4156 features &= ~NETIF_F_RXCSUM;
4157
4158 if (!priv->plat->tx_coe)
4159 features &= ~NETIF_F_CSUM_MASK;
4160
4161 /* Some GMAC devices have a bugged Jumbo frame support that
4162 * needs to have the Tx COE disabled for oversized frames
4163 * (due to limited buffer sizes). In this case we disable
4164 * the TX csum insertion in the TDES and not use SF.
4165 */
4166 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
4167 features &= ~NETIF_F_CSUM_MASK;
4168
4169 /* Disable tso if asked by ethtool */
4170 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4171 if (features & NETIF_F_TSO)
4172 priv->tso = true;
4173 else
4174 priv->tso = false;
4175 }
4176
4177 return features;
4178 }
4179
stmmac_set_features(struct net_device * netdev,netdev_features_t features)4180 static int stmmac_set_features(struct net_device *netdev,
4181 netdev_features_t features)
4182 {
4183 struct stmmac_priv *priv = netdev_priv(netdev);
4184 bool sph_en;
4185 u32 chan;
4186
4187 /* Keep the COE Type in case of csum is supporting */
4188 if (features & NETIF_F_RXCSUM)
4189 priv->hw->rx_csum = priv->plat->rx_coe;
4190 else
4191 priv->hw->rx_csum = 0;
4192 /* No check needed because rx_coe has been set before and it will be
4193 * fixed in case of issue.
4194 */
4195 stmmac_rx_ipc(priv, priv->hw);
4196
4197 sph_en = (priv->hw->rx_csum > 0) && priv->sph;
4198 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
4199 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
4200
4201 return 0;
4202 }
4203
4204 /**
4205 * stmmac_interrupt - main ISR
4206 * @irq: interrupt number.
4207 * @dev_id: to pass the net device pointer (must be valid).
4208 * Description: this is the main driver interrupt service routine.
4209 * It can call:
4210 * o DMA service routine (to manage incoming frame reception and transmission
4211 * status)
4212 * o Core interrupts to manage: remote wake-up, management counter, LPI
4213 * interrupts.
4214 */
stmmac_interrupt(int irq,void * dev_id)4215 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
4216 {
4217 struct net_device *dev = (struct net_device *)dev_id;
4218 struct stmmac_priv *priv = netdev_priv(dev);
4219 u32 rx_cnt = priv->plat->rx_queues_to_use;
4220 u32 tx_cnt = priv->plat->tx_queues_to_use;
4221 u32 queues_count;
4222 u32 queue;
4223 bool xmac;
4224
4225 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
4226 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
4227
4228 if (priv->irq_wake)
4229 pm_wakeup_event(priv->device, 0);
4230
4231 /* Check if adapter is up */
4232 if (test_bit(STMMAC_DOWN, &priv->state))
4233 return IRQ_HANDLED;
4234 /* Check if a fatal error happened */
4235 if (stmmac_safety_feat_interrupt(priv))
4236 return IRQ_HANDLED;
4237
4238 /* To handle GMAC own interrupts */
4239 if ((priv->plat->has_gmac) || xmac) {
4240 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
4241
4242 if (unlikely(status)) {
4243 /* For LPI we need to save the tx status */
4244 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
4245 priv->tx_path_in_lpi_mode = true;
4246 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
4247 priv->tx_path_in_lpi_mode = false;
4248 }
4249
4250 for (queue = 0; queue < queues_count; queue++) {
4251 status = stmmac_host_mtl_irq_status(priv, priv->hw,
4252 queue);
4253 }
4254
4255 /* PCS link status */
4256 if (priv->hw->pcs) {
4257 if (priv->xstats.pcs_link)
4258 netif_carrier_on(dev);
4259 else
4260 netif_carrier_off(dev);
4261 }
4262 }
4263
4264 /* To handle DMA interrupts */
4265 stmmac_dma_interrupt(priv);
4266
4267 return IRQ_HANDLED;
4268 }
4269
4270 #ifdef CONFIG_NET_POLL_CONTROLLER
4271 /* Polling receive - used by NETCONSOLE and other diagnostic tools
4272 * to allow network I/O with interrupts disabled.
4273 */
stmmac_poll_controller(struct net_device * dev)4274 static void stmmac_poll_controller(struct net_device *dev)
4275 {
4276 disable_irq(dev->irq);
4277 stmmac_interrupt(dev->irq, dev);
4278 enable_irq(dev->irq);
4279 }
4280 #endif
4281
4282 /**
4283 * stmmac_ioctl - Entry point for the Ioctl
4284 * @dev: Device pointer.
4285 * @rq: An IOCTL specefic structure, that can contain a pointer to
4286 * a proprietary structure used to pass information to the driver.
4287 * @cmd: IOCTL command
4288 * Description:
4289 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
4290 */
stmmac_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)4291 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4292 {
4293 struct stmmac_priv *priv = netdev_priv (dev);
4294 int ret = -EOPNOTSUPP;
4295
4296 if (!netif_running(dev))
4297 return -EINVAL;
4298
4299 switch (cmd) {
4300 case SIOCGMIIPHY:
4301 case SIOCGMIIREG:
4302 case SIOCSMIIREG:
4303 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4304 break;
4305 case SIOCSHWTSTAMP:
4306 ret = stmmac_hwtstamp_set(dev, rq);
4307 break;
4308 case SIOCGHWTSTAMP:
4309 ret = stmmac_hwtstamp_get(dev, rq);
4310 break;
4311 default:
4312 break;
4313 }
4314
4315 return ret;
4316 }
4317
stmmac_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)4318 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4319 void *cb_priv)
4320 {
4321 struct stmmac_priv *priv = cb_priv;
4322 int ret = -EOPNOTSUPP;
4323
4324 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4325 return ret;
4326
4327 stmmac_disable_all_queues(priv);
4328
4329 switch (type) {
4330 case TC_SETUP_CLSU32:
4331 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4332 break;
4333 case TC_SETUP_CLSFLOWER:
4334 ret = stmmac_tc_setup_cls(priv, priv, type_data);
4335 break;
4336 default:
4337 break;
4338 }
4339
4340 stmmac_enable_all_queues(priv);
4341 return ret;
4342 }
4343
4344 static LIST_HEAD(stmmac_block_cb_list);
4345
stmmac_setup_tc(struct net_device * ndev,enum tc_setup_type type,void * type_data)4346 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4347 void *type_data)
4348 {
4349 struct stmmac_priv *priv = netdev_priv(ndev);
4350
4351 switch (type) {
4352 case TC_SETUP_BLOCK:
4353 return flow_block_cb_setup_simple(type_data,
4354 &stmmac_block_cb_list,
4355 stmmac_setup_tc_block_cb,
4356 priv, priv, true);
4357 case TC_SETUP_QDISC_CBS:
4358 return stmmac_tc_setup_cbs(priv, priv, type_data);
4359 case TC_SETUP_QDISC_TAPRIO:
4360 return stmmac_tc_setup_taprio(priv, priv, type_data);
4361 case TC_SETUP_QDISC_ETF:
4362 return stmmac_tc_setup_etf(priv, priv, type_data);
4363 default:
4364 return -EOPNOTSUPP;
4365 }
4366 }
4367
stmmac_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4368 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4369 struct net_device *sb_dev)
4370 {
4371 int gso = skb_shinfo(skb)->gso_type;
4372
4373 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4374 /*
4375 * There is no way to determine the number of TSO/USO
4376 * capable Queues. Let's use always the Queue 0
4377 * because if TSO/USO is supported then at least this
4378 * one will be capable.
4379 */
4380 return 0;
4381 }
4382
4383 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4384 }
4385
stmmac_set_mac_address(struct net_device * ndev,void * addr)4386 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4387 {
4388 struct stmmac_priv *priv = netdev_priv(ndev);
4389 int ret = 0;
4390
4391 ret = pm_runtime_get_sync(priv->device);
4392 if (ret < 0) {
4393 pm_runtime_put_noidle(priv->device);
4394 return ret;
4395 }
4396
4397 ret = eth_mac_addr(ndev, addr);
4398 if (ret)
4399 goto set_mac_error;
4400
4401 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4402
4403 set_mac_error:
4404 pm_runtime_put(priv->device);
4405
4406 return ret;
4407 }
4408
4409 #ifdef CONFIG_DEBUG_FS
4410 static struct dentry *stmmac_fs_dir;
4411
sysfs_display_ring(void * head,int size,int extend_desc,struct seq_file * seq,dma_addr_t dma_phy_addr)4412 static void sysfs_display_ring(void *head, int size, int extend_desc,
4413 struct seq_file *seq, dma_addr_t dma_phy_addr)
4414 {
4415 int i;
4416 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4417 struct dma_desc *p = (struct dma_desc *)head;
4418 dma_addr_t dma_addr;
4419
4420 for (i = 0; i < size; i++) {
4421 if (extend_desc) {
4422 dma_addr = dma_phy_addr + i * sizeof(*ep);
4423 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
4424 i, &dma_addr,
4425 le32_to_cpu(ep->basic.des0),
4426 le32_to_cpu(ep->basic.des1),
4427 le32_to_cpu(ep->basic.des2),
4428 le32_to_cpu(ep->basic.des3));
4429 ep++;
4430 } else {
4431 dma_addr = dma_phy_addr + i * sizeof(*p);
4432 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
4433 i, &dma_addr,
4434 le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4435 le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4436 p++;
4437 }
4438 seq_printf(seq, "\n");
4439 }
4440 }
4441
stmmac_rings_status_show(struct seq_file * seq,void * v)4442 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4443 {
4444 struct net_device *dev = seq->private;
4445 struct stmmac_priv *priv = netdev_priv(dev);
4446 u32 rx_count = priv->plat->rx_queues_to_use;
4447 u32 tx_count = priv->plat->tx_queues_to_use;
4448 u32 queue;
4449
4450 if ((dev->flags & IFF_UP) == 0)
4451 return 0;
4452
4453 for (queue = 0; queue < rx_count; queue++) {
4454 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4455
4456 seq_printf(seq, "RX Queue %d:\n", queue);
4457
4458 if (priv->extend_desc) {
4459 seq_printf(seq, "Extended descriptor ring:\n");
4460 sysfs_display_ring((void *)rx_q->dma_erx,
4461 priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
4462 } else {
4463 seq_printf(seq, "Descriptor ring:\n");
4464 sysfs_display_ring((void *)rx_q->dma_rx,
4465 priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
4466 }
4467 }
4468
4469 for (queue = 0; queue < tx_count; queue++) {
4470 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4471
4472 seq_printf(seq, "TX Queue %d:\n", queue);
4473
4474 if (priv->extend_desc) {
4475 seq_printf(seq, "Extended descriptor ring:\n");
4476 sysfs_display_ring((void *)tx_q->dma_etx,
4477 priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
4478 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
4479 seq_printf(seq, "Descriptor ring:\n");
4480 sysfs_display_ring((void *)tx_q->dma_tx,
4481 priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
4482 }
4483 }
4484
4485 return 0;
4486 }
4487 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4488
stmmac_dma_cap_show(struct seq_file * seq,void * v)4489 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4490 {
4491 struct net_device *dev = seq->private;
4492 struct stmmac_priv *priv = netdev_priv(dev);
4493
4494 if (!priv->hw_cap_support) {
4495 seq_printf(seq, "DMA HW features not supported\n");
4496 return 0;
4497 }
4498
4499 seq_printf(seq, "==============================\n");
4500 seq_printf(seq, "\tDMA HW features\n");
4501 seq_printf(seq, "==============================\n");
4502
4503 seq_printf(seq, "\t10/100 Mbps: %s\n",
4504 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4505 seq_printf(seq, "\t1000 Mbps: %s\n",
4506 (priv->dma_cap.mbps_1000) ? "Y" : "N");
4507 seq_printf(seq, "\tHalf duplex: %s\n",
4508 (priv->dma_cap.half_duplex) ? "Y" : "N");
4509 seq_printf(seq, "\tHash Filter: %s\n",
4510 (priv->dma_cap.hash_filter) ? "Y" : "N");
4511 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4512 (priv->dma_cap.multi_addr) ? "Y" : "N");
4513 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4514 (priv->dma_cap.pcs) ? "Y" : "N");
4515 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4516 (priv->dma_cap.sma_mdio) ? "Y" : "N");
4517 seq_printf(seq, "\tPMT Remote wake up: %s\n",
4518 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4519 seq_printf(seq, "\tPMT Magic Frame: %s\n",
4520 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4521 seq_printf(seq, "\tRMON module: %s\n",
4522 (priv->dma_cap.rmon) ? "Y" : "N");
4523 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4524 (priv->dma_cap.time_stamp) ? "Y" : "N");
4525 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4526 (priv->dma_cap.atime_stamp) ? "Y" : "N");
4527 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4528 (priv->dma_cap.eee) ? "Y" : "N");
4529 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4530 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4531 (priv->dma_cap.tx_coe) ? "Y" : "N");
4532 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4533 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4534 (priv->dma_cap.rx_coe) ? "Y" : "N");
4535 } else {
4536 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4537 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4538 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4539 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4540 }
4541 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4542 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4543 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4544 priv->dma_cap.number_rx_channel);
4545 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4546 priv->dma_cap.number_tx_channel);
4547 seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
4548 priv->dma_cap.number_rx_queues);
4549 seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
4550 priv->dma_cap.number_tx_queues);
4551 seq_printf(seq, "\tEnhanced descriptors: %s\n",
4552 (priv->dma_cap.enh_desc) ? "Y" : "N");
4553 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
4554 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
4555 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
4556 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
4557 seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
4558 priv->dma_cap.pps_out_num);
4559 seq_printf(seq, "\tSafety Features: %s\n",
4560 priv->dma_cap.asp ? "Y" : "N");
4561 seq_printf(seq, "\tFlexible RX Parser: %s\n",
4562 priv->dma_cap.frpsel ? "Y" : "N");
4563 seq_printf(seq, "\tEnhanced Addressing: %d\n",
4564 priv->dma_cap.addr64);
4565 seq_printf(seq, "\tReceive Side Scaling: %s\n",
4566 priv->dma_cap.rssen ? "Y" : "N");
4567 seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
4568 priv->dma_cap.vlhash ? "Y" : "N");
4569 seq_printf(seq, "\tSplit Header: %s\n",
4570 priv->dma_cap.sphen ? "Y" : "N");
4571 seq_printf(seq, "\tVLAN TX Insertion: %s\n",
4572 priv->dma_cap.vlins ? "Y" : "N");
4573 seq_printf(seq, "\tDouble VLAN: %s\n",
4574 priv->dma_cap.dvlan ? "Y" : "N");
4575 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
4576 priv->dma_cap.l3l4fnum);
4577 seq_printf(seq, "\tARP Offloading: %s\n",
4578 priv->dma_cap.arpoffsel ? "Y" : "N");
4579 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
4580 priv->dma_cap.estsel ? "Y" : "N");
4581 seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
4582 priv->dma_cap.fpesel ? "Y" : "N");
4583 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
4584 priv->dma_cap.tbssel ? "Y" : "N");
4585 return 0;
4586 }
4587 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4588
4589 /* Use network device events to rename debugfs file entries.
4590 */
stmmac_device_event(struct notifier_block * unused,unsigned long event,void * ptr)4591 static int stmmac_device_event(struct notifier_block *unused,
4592 unsigned long event, void *ptr)
4593 {
4594 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4595 struct stmmac_priv *priv = netdev_priv(dev);
4596
4597 if (dev->netdev_ops != &stmmac_netdev_ops)
4598 goto done;
4599
4600 switch (event) {
4601 case NETDEV_CHANGENAME:
4602 if (priv->dbgfs_dir)
4603 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
4604 priv->dbgfs_dir,
4605 stmmac_fs_dir,
4606 dev->name);
4607 break;
4608 }
4609 done:
4610 return NOTIFY_DONE;
4611 }
4612
4613 static struct notifier_block stmmac_notifier = {
4614 .notifier_call = stmmac_device_event,
4615 };
4616
stmmac_init_fs(struct net_device * dev)4617 static void stmmac_init_fs(struct net_device *dev)
4618 {
4619 struct stmmac_priv *priv = netdev_priv(dev);
4620
4621 rtnl_lock();
4622
4623 /* Create per netdev entries */
4624 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4625
4626 /* Entry to report DMA RX/TX rings */
4627 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4628 &stmmac_rings_status_fops);
4629
4630 /* Entry to report the DMA HW features */
4631 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4632 &stmmac_dma_cap_fops);
4633
4634 rtnl_unlock();
4635 }
4636
stmmac_exit_fs(struct net_device * dev)4637 static void stmmac_exit_fs(struct net_device *dev)
4638 {
4639 struct stmmac_priv *priv = netdev_priv(dev);
4640
4641 debugfs_remove_recursive(priv->dbgfs_dir);
4642 }
4643 #endif /* CONFIG_DEBUG_FS */
4644
stmmac_vid_crc32_le(__le16 vid_le)4645 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4646 {
4647 unsigned char *data = (unsigned char *)&vid_le;
4648 unsigned char data_byte = 0;
4649 u32 crc = ~0x0;
4650 u32 temp = 0;
4651 int i, bits;
4652
4653 bits = get_bitmask_order(VLAN_VID_MASK);
4654 for (i = 0; i < bits; i++) {
4655 if ((i % 8) == 0)
4656 data_byte = data[i / 8];
4657
4658 temp = ((crc & 1) ^ data_byte) & 1;
4659 crc >>= 1;
4660 data_byte >>= 1;
4661
4662 if (temp)
4663 crc ^= 0xedb88320;
4664 }
4665
4666 return crc;
4667 }
4668
stmmac_vlan_update(struct stmmac_priv * priv,bool is_double)4669 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4670 {
4671 u32 crc, hash = 0;
4672 __le16 pmatch = 0;
4673 int count = 0;
4674 u16 vid = 0;
4675
4676 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4677 __le16 vid_le = cpu_to_le16(vid);
4678 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4679 hash |= (1 << crc);
4680 count++;
4681 }
4682
4683 if (!priv->dma_cap.vlhash) {
4684 if (count > 2) /* VID = 0 always passes filter */
4685 return -EOPNOTSUPP;
4686
4687 pmatch = cpu_to_le16(vid);
4688 hash = 0;
4689 }
4690
4691 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4692 }
4693
stmmac_vlan_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)4694 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4695 {
4696 struct stmmac_priv *priv = netdev_priv(ndev);
4697 bool is_double = false;
4698 int ret;
4699
4700 if (be16_to_cpu(proto) == ETH_P_8021AD)
4701 is_double = true;
4702
4703 set_bit(vid, priv->active_vlans);
4704 ret = stmmac_vlan_update(priv, is_double);
4705 if (ret) {
4706 clear_bit(vid, priv->active_vlans);
4707 return ret;
4708 }
4709
4710 if (priv->hw->num_vlan) {
4711 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4712 if (ret)
4713 return ret;
4714 }
4715
4716 return 0;
4717 }
4718
stmmac_vlan_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)4719 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4720 {
4721 struct stmmac_priv *priv = netdev_priv(ndev);
4722 bool is_double = false;
4723 int ret;
4724
4725 ret = pm_runtime_get_sync(priv->device);
4726 if (ret < 0) {
4727 pm_runtime_put_noidle(priv->device);
4728 return ret;
4729 }
4730
4731 if (be16_to_cpu(proto) == ETH_P_8021AD)
4732 is_double = true;
4733
4734 clear_bit(vid, priv->active_vlans);
4735
4736 if (priv->hw->num_vlan) {
4737 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4738 if (ret)
4739 goto del_vlan_error;
4740 }
4741
4742 ret = stmmac_vlan_update(priv, is_double);
4743
4744 del_vlan_error:
4745 pm_runtime_put(priv->device);
4746
4747 return ret;
4748 }
4749
4750 static const struct net_device_ops stmmac_netdev_ops = {
4751 .ndo_open = stmmac_open,
4752 .ndo_start_xmit = stmmac_xmit,
4753 .ndo_stop = stmmac_release,
4754 .ndo_change_mtu = stmmac_change_mtu,
4755 .ndo_fix_features = stmmac_fix_features,
4756 .ndo_set_features = stmmac_set_features,
4757 .ndo_set_rx_mode = stmmac_set_rx_mode,
4758 .ndo_tx_timeout = stmmac_tx_timeout,
4759 .ndo_do_ioctl = stmmac_ioctl,
4760 .ndo_setup_tc = stmmac_setup_tc,
4761 .ndo_select_queue = stmmac_select_queue,
4762 #ifdef CONFIG_NET_POLL_CONTROLLER
4763 .ndo_poll_controller = stmmac_poll_controller,
4764 #endif
4765 .ndo_set_mac_address = stmmac_set_mac_address,
4766 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4767 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4768 };
4769
stmmac_reset_subtask(struct stmmac_priv * priv)4770 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4771 {
4772 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4773 return;
4774 if (test_bit(STMMAC_DOWN, &priv->state))
4775 return;
4776
4777 netdev_err(priv->dev, "Reset adapter.\n");
4778
4779 rtnl_lock();
4780 netif_trans_update(priv->dev);
4781 while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4782 usleep_range(1000, 2000);
4783
4784 set_bit(STMMAC_DOWN, &priv->state);
4785 dev_close(priv->dev);
4786 dev_open(priv->dev, NULL);
4787 clear_bit(STMMAC_DOWN, &priv->state);
4788 clear_bit(STMMAC_RESETING, &priv->state);
4789 rtnl_unlock();
4790 }
4791
stmmac_service_task(struct work_struct * work)4792 static void stmmac_service_task(struct work_struct *work)
4793 {
4794 struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4795 service_task);
4796
4797 stmmac_reset_subtask(priv);
4798 clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4799 }
4800
4801 /**
4802 * stmmac_hw_init - Init the MAC device
4803 * @priv: driver private structure
4804 * Description: this function is to configure the MAC device according to
4805 * some platform parameters or the HW capability register. It prepares the
4806 * driver to use either ring or chain modes and to setup either enhanced or
4807 * normal descriptors.
4808 */
stmmac_hw_init(struct stmmac_priv * priv)4809 static int stmmac_hw_init(struct stmmac_priv *priv)
4810 {
4811 int ret;
4812
4813 /* dwmac-sun8i only work in chain mode */
4814 if (priv->plat->has_sun8i)
4815 chain_mode = 1;
4816 priv->chain_mode = chain_mode;
4817
4818 /* Initialize HW Interface */
4819 ret = stmmac_hwif_init(priv);
4820 if (ret)
4821 return ret;
4822
4823 /* Get the HW capability (new GMAC newer than 3.50a) */
4824 priv->hw_cap_support = stmmac_get_hw_features(priv);
4825 if (priv->hw_cap_support) {
4826 dev_info(priv->device, "DMA HW capability register supported\n");
4827
4828 /* We can override some gmac/dma configuration fields: e.g.
4829 * enh_desc, tx_coe (e.g. that are passed through the
4830 * platform) with the values from the HW capability
4831 * register (if supported).
4832 */
4833 priv->plat->enh_desc = priv->dma_cap.enh_desc;
4834 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4835 priv->hw->pmt = priv->plat->pmt;
4836 if (priv->dma_cap.hash_tb_sz) {
4837 priv->hw->multicast_filter_bins =
4838 (BIT(priv->dma_cap.hash_tb_sz) << 5);
4839 priv->hw->mcast_bits_log2 =
4840 ilog2(priv->hw->multicast_filter_bins);
4841 }
4842
4843 /* TXCOE doesn't work in thresh DMA mode */
4844 if (priv->plat->force_thresh_dma_mode)
4845 priv->plat->tx_coe = 0;
4846 else
4847 priv->plat->tx_coe = priv->dma_cap.tx_coe;
4848
4849 /* In case of GMAC4 rx_coe is from HW cap register. */
4850 priv->plat->rx_coe = priv->dma_cap.rx_coe;
4851
4852 if (priv->dma_cap.rx_coe_type2)
4853 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4854 else if (priv->dma_cap.rx_coe_type1)
4855 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4856
4857 } else {
4858 dev_info(priv->device, "No HW DMA feature register supported\n");
4859 }
4860
4861 if (priv->plat->rx_coe) {
4862 priv->hw->rx_csum = priv->plat->rx_coe;
4863 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4864 if (priv->synopsys_id < DWMAC_CORE_4_00)
4865 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4866 }
4867 if (priv->plat->tx_coe)
4868 dev_info(priv->device, "TX Checksum insertion supported\n");
4869
4870 if (priv->plat->pmt) {
4871 dev_info(priv->device, "Wake-Up On Lan supported\n");
4872 device_set_wakeup_capable(priv->device, 1);
4873 }
4874
4875 if (priv->dma_cap.tsoen)
4876 dev_info(priv->device, "TSO supported\n");
4877
4878 priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
4879 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
4880
4881 /* Run HW quirks, if any */
4882 if (priv->hwif_quirks) {
4883 ret = priv->hwif_quirks(priv);
4884 if (ret)
4885 return ret;
4886 }
4887
4888 /* Rx Watchdog is available in the COREs newer than the 3.40.
4889 * In some case, for example on bugged HW this feature
4890 * has to be disable and this can be done by passing the
4891 * riwt_off field from the platform.
4892 */
4893 if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4894 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4895 priv->use_riwt = 1;
4896 dev_info(priv->device,
4897 "Enable RX Mitigation via HW Watchdog Timer\n");
4898 }
4899
4900 return 0;
4901 }
4902
stmmac_napi_add(struct net_device * dev)4903 static void stmmac_napi_add(struct net_device *dev)
4904 {
4905 struct stmmac_priv *priv = netdev_priv(dev);
4906 u32 queue, maxq;
4907
4908 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4909
4910 for (queue = 0; queue < maxq; queue++) {
4911 struct stmmac_channel *ch = &priv->channel[queue];
4912 int rx_budget = ((priv->plat->dma_rx_size < NAPI_POLL_WEIGHT) &&
4913 (priv->plat->dma_rx_size > 0)) ?
4914 priv->plat->dma_rx_size : NAPI_POLL_WEIGHT;
4915 int tx_budget = ((priv->plat->dma_tx_size < NAPI_POLL_WEIGHT) &&
4916 (priv->plat->dma_tx_size > 0)) ?
4917 priv->plat->dma_tx_size : NAPI_POLL_WEIGHT;
4918
4919 ch->priv_data = priv;
4920 ch->index = queue;
4921 spin_lock_init(&ch->lock);
4922
4923 if (queue < priv->plat->rx_queues_to_use) {
4924 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
4925 rx_budget);
4926 }
4927 if (queue < priv->plat->tx_queues_to_use) {
4928 netif_tx_napi_add(dev, &ch->tx_napi,
4929 stmmac_napi_poll_tx, tx_budget);
4930 }
4931 }
4932 }
4933
stmmac_napi_del(struct net_device * dev)4934 static void stmmac_napi_del(struct net_device *dev)
4935 {
4936 struct stmmac_priv *priv = netdev_priv(dev);
4937 u32 queue, maxq;
4938
4939 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4940
4941 for (queue = 0; queue < maxq; queue++) {
4942 struct stmmac_channel *ch = &priv->channel[queue];
4943
4944 if (queue < priv->plat->rx_queues_to_use)
4945 netif_napi_del(&ch->rx_napi);
4946 if (queue < priv->plat->tx_queues_to_use)
4947 netif_napi_del(&ch->tx_napi);
4948 }
4949 }
4950
stmmac_reinit_queues(struct net_device * dev,u32 rx_cnt,u32 tx_cnt)4951 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
4952 {
4953 struct stmmac_priv *priv = netdev_priv(dev);
4954 int ret = 0;
4955
4956 if (netif_running(dev))
4957 stmmac_release(dev);
4958
4959 stmmac_napi_del(dev);
4960
4961 priv->plat->rx_queues_to_use = rx_cnt;
4962 priv->plat->tx_queues_to_use = tx_cnt;
4963
4964 stmmac_napi_add(dev);
4965
4966 if (netif_running(dev))
4967 ret = stmmac_open(dev);
4968
4969 return ret;
4970 }
4971
stmmac_reinit_ringparam(struct net_device * dev,u32 rx_size,u32 tx_size)4972 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
4973 {
4974 struct stmmac_priv *priv = netdev_priv(dev);
4975 int ret = 0;
4976
4977 if (netif_running(dev))
4978 stmmac_release(dev);
4979
4980 priv->dma_rx_size = rx_size;
4981 priv->dma_tx_size = tx_size;
4982
4983 if (netif_running(dev))
4984 ret = stmmac_open(dev);
4985
4986 return ret;
4987 }
4988
4989 /**
4990 * stmmac_dvr_probe
4991 * @device: device pointer
4992 * @plat_dat: platform data pointer
4993 * @res: stmmac resource pointer
4994 * Description: this is the main probe function used to
4995 * call the alloc_etherdev, allocate the priv structure.
4996 * Return:
4997 * returns 0 on success, otherwise errno.
4998 */
stmmac_dvr_probe(struct device * device,struct plat_stmmacenet_data * plat_dat,struct stmmac_resources * res)4999 int stmmac_dvr_probe(struct device *device,
5000 struct plat_stmmacenet_data *plat_dat,
5001 struct stmmac_resources *res)
5002 {
5003 struct net_device *ndev = NULL;
5004 struct stmmac_priv *priv;
5005 u32 rxq;
5006 int i, ret = 0;
5007
5008 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
5009 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
5010 if (!ndev)
5011 return -ENOMEM;
5012
5013 SET_NETDEV_DEV(ndev, device);
5014
5015 priv = netdev_priv(ndev);
5016 priv->device = device;
5017 priv->dev = ndev;
5018
5019 stmmac_set_ethtool_ops(ndev);
5020 priv->pause = pause;
5021 priv->plat = plat_dat;
5022 priv->ioaddr = res->addr;
5023 priv->dev->base_addr = (unsigned long)res->addr;
5024
5025 priv->dev->irq = res->irq;
5026 priv->wol_irq = res->wol_irq;
5027 priv->lpi_irq = res->lpi_irq;
5028
5029 if (!IS_ERR_OR_NULL(res->mac))
5030 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
5031
5032 dev_set_drvdata(device, priv->dev);
5033
5034 /* Verify driver arguments */
5035 stmmac_verify_args();
5036
5037 /* Allocate workqueue */
5038 priv->wq = create_singlethread_workqueue("stmmac_wq");
5039 if (!priv->wq) {
5040 dev_err(priv->device, "failed to create workqueue\n");
5041 return -ENOMEM;
5042 }
5043
5044 INIT_WORK(&priv->service_task, stmmac_service_task);
5045
5046 /* Override with kernel parameters if supplied XXX CRS XXX
5047 * this needs to have multiple instances
5048 */
5049 if ((phyaddr >= 0) && (phyaddr <= 31))
5050 priv->plat->phy_addr = phyaddr;
5051
5052 if (priv->plat->stmmac_rst) {
5053 ret = reset_control_assert(priv->plat->stmmac_rst);
5054 reset_control_deassert(priv->plat->stmmac_rst);
5055 /* Some reset controllers have only reset callback instead of
5056 * assert + deassert callbacks pair.
5057 */
5058 if (ret == -ENOTSUPP)
5059 reset_control_reset(priv->plat->stmmac_rst);
5060 }
5061
5062 /* Init MAC and get the capabilities */
5063 ret = stmmac_hw_init(priv);
5064 if (ret)
5065 goto error_hw_init;
5066
5067 stmmac_check_ether_addr(priv);
5068
5069 ndev->netdev_ops = &stmmac_netdev_ops;
5070
5071 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5072 NETIF_F_RXCSUM;
5073
5074 ret = stmmac_tc_init(priv, priv);
5075 if (!ret) {
5076 ndev->hw_features |= NETIF_F_HW_TC;
5077 }
5078
5079 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5080 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
5081 if (priv->plat->has_gmac4)
5082 ndev->hw_features |= NETIF_F_GSO_UDP_L4;
5083 priv->tso = true;
5084 dev_info(priv->device, "TSO feature enabled\n");
5085 }
5086
5087 if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
5088 ndev->hw_features |= NETIF_F_GRO;
5089 if (!priv->plat->sph_disable) {
5090 priv->sph = true;
5091 dev_info(priv->device, "SPH feature enabled\n");
5092 }
5093 }
5094
5095 /* The current IP register MAC_HW_Feature1[ADDR64] only define
5096 * 32/40/64 bit width, but some SOC support others like i.MX8MP
5097 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
5098 * So overwrite dma_cap.addr64 according to HW real design.
5099 */
5100 if (priv->plat->addr64)
5101 priv->dma_cap.addr64 = priv->plat->addr64;
5102
5103 if (priv->dma_cap.addr64) {
5104 ret = dma_set_mask_and_coherent(device,
5105 DMA_BIT_MASK(priv->dma_cap.addr64));
5106 if (!ret) {
5107 dev_info(priv->device, "Using %d bits DMA width\n",
5108 priv->dma_cap.addr64);
5109
5110 /*
5111 * If more than 32 bits can be addressed, make sure to
5112 * enable enhanced addressing mode.
5113 */
5114 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
5115 priv->plat->dma_cfg->eame = true;
5116 } else {
5117 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
5118 if (ret) {
5119 dev_err(priv->device, "Failed to set DMA Mask\n");
5120 goto error_hw_init;
5121 }
5122
5123 priv->dma_cap.addr64 = 32;
5124 }
5125 }
5126
5127 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
5128 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
5129 #ifdef STMMAC_VLAN_TAG_USED
5130 /* Both mac100 and gmac support receive VLAN tag detection */
5131 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
5132 if (priv->dma_cap.vlhash) {
5133 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5134 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
5135 }
5136 if (priv->dma_cap.vlins) {
5137 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
5138 if (priv->dma_cap.dvlan)
5139 ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
5140 }
5141 #endif
5142 priv->msg_enable = netif_msg_init(debug, default_msg_level);
5143
5144 /* Initialize RSS */
5145 rxq = priv->plat->rx_queues_to_use;
5146 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
5147 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
5148 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
5149
5150 if (priv->dma_cap.rssen && priv->plat->rss_en)
5151 ndev->features |= NETIF_F_RXHASH;
5152
5153 /* MTU range: 46 - hw-specific max */
5154 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
5155 if (priv->plat->has_xgmac)
5156 ndev->max_mtu = XGMAC_JUMBO_LEN;
5157 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
5158 ndev->max_mtu = JUMBO_LEN;
5159 else
5160 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
5161 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
5162 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
5163 */
5164 if ((priv->plat->maxmtu < ndev->max_mtu) &&
5165 (priv->plat->maxmtu >= ndev->min_mtu))
5166 ndev->max_mtu = priv->plat->maxmtu;
5167 else if (priv->plat->maxmtu < ndev->min_mtu)
5168 dev_warn(priv->device,
5169 "%s: warning: maxmtu having invalid value (%d)\n",
5170 __func__, priv->plat->maxmtu);
5171
5172 if (flow_ctrl)
5173 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
5174
5175 /* Setup channels NAPI */
5176 stmmac_napi_add(ndev);
5177
5178 mutex_init(&priv->lock);
5179
5180 /* If a specific clk_csr value is passed from the platform
5181 * this means that the CSR Clock Range selection cannot be
5182 * changed at run-time and it is fixed. Viceversa the driver'll try to
5183 * set the MDC clock dynamically according to the csr actual
5184 * clock input.
5185 */
5186 if (priv->plat->clk_csr >= 0)
5187 priv->clk_csr = priv->plat->clk_csr;
5188 else
5189 stmmac_clk_csr_set(priv);
5190
5191 stmmac_check_pcs_mode(priv);
5192
5193 pm_runtime_get_noresume(device);
5194 pm_runtime_set_active(device);
5195 pm_runtime_enable(device);
5196
5197 if (priv->hw->pcs != STMMAC_PCS_TBI &&
5198 priv->hw->pcs != STMMAC_PCS_RTBI) {
5199 /* MDIO bus Registration */
5200 ret = stmmac_mdio_register(ndev);
5201 if (ret < 0) {
5202 dev_err(priv->device,
5203 "%s: MDIO bus (id: %d) registration failed",
5204 __func__, priv->plat->bus_id);
5205 goto error_mdio_register;
5206 }
5207 }
5208
5209 ret = stmmac_phy_setup(priv);
5210 if (ret) {
5211 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
5212 goto error_phy_setup;
5213 }
5214
5215 ret = register_netdev(ndev);
5216 if (ret) {
5217 dev_err(priv->device, "%s: ERROR %i registering the device\n",
5218 __func__, ret);
5219 goto error_netdev_register;
5220 }
5221
5222 #ifdef CONFIG_DEBUG_FS
5223 stmmac_init_fs(ndev);
5224 #endif
5225
5226 /* Let pm_runtime_put() disable the clocks.
5227 * If CONFIG_PM is not enabled, the clocks will stay powered.
5228 */
5229 pm_runtime_put(device);
5230
5231 return ret;
5232
5233 error_netdev_register:
5234 phylink_destroy(priv->phylink);
5235 error_phy_setup:
5236 if (priv->hw->pcs != STMMAC_PCS_TBI &&
5237 priv->hw->pcs != STMMAC_PCS_RTBI)
5238 stmmac_mdio_unregister(ndev);
5239 error_mdio_register:
5240 stmmac_napi_del(ndev);
5241 error_hw_init:
5242 destroy_workqueue(priv->wq);
5243
5244 return ret;
5245 }
5246 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
5247
5248 /**
5249 * stmmac_dvr_remove
5250 * @dev: device pointer
5251 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
5252 * changes the link status, releases the DMA descriptor rings.
5253 */
stmmac_dvr_remove(struct device * dev)5254 int stmmac_dvr_remove(struct device *dev)
5255 {
5256 struct net_device *ndev = dev_get_drvdata(dev);
5257 struct stmmac_priv *priv = netdev_priv(ndev);
5258
5259 netdev_info(priv->dev, "%s: removing driver", __func__);
5260
5261 stmmac_stop_all_dma(priv);
5262 stmmac_mac_set(priv, priv->ioaddr, false);
5263 netif_carrier_off(ndev);
5264 unregister_netdev(ndev);
5265
5266 /* Serdes power down needs to happen after VLAN filter
5267 * is deleted that is triggered by unregister_netdev().
5268 */
5269 if (priv->plat->serdes_powerdown)
5270 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5271
5272 #ifdef CONFIG_DEBUG_FS
5273 stmmac_exit_fs(ndev);
5274 #endif
5275 phylink_destroy(priv->phylink);
5276 if (priv->plat->stmmac_rst)
5277 reset_control_assert(priv->plat->stmmac_rst);
5278 pm_runtime_put(dev);
5279 pm_runtime_disable(dev);
5280 if (priv->hw->pcs != STMMAC_PCS_TBI &&
5281 priv->hw->pcs != STMMAC_PCS_RTBI)
5282 stmmac_mdio_unregister(ndev);
5283 destroy_workqueue(priv->wq);
5284 mutex_destroy(&priv->lock);
5285
5286 return 0;
5287 }
5288 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
5289
5290 /**
5291 * stmmac_suspend - suspend callback
5292 * @dev: device pointer
5293 * Description: this is the function to suspend the device and it is called
5294 * by the platform driver to stop the network queue, release the resources,
5295 * program the PMT register (for WoL), clean and release driver resources.
5296 */
stmmac_suspend(struct device * dev)5297 int stmmac_suspend(struct device *dev)
5298 {
5299 struct net_device *ndev = dev_get_drvdata(dev);
5300 struct stmmac_priv *priv = netdev_priv(ndev);
5301 u32 chan;
5302
5303 if (!ndev || !netif_running(ndev))
5304 return 0;
5305
5306 phylink_mac_change(priv->phylink, false);
5307
5308 mutex_lock(&priv->lock);
5309
5310 netif_device_detach(ndev);
5311
5312 stmmac_disable_all_queues(priv);
5313
5314 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
5315 del_timer_sync(&priv->tx_queue[chan].txtimer);
5316
5317 if (priv->eee_enabled) {
5318 priv->tx_path_in_lpi_mode = false;
5319 del_timer_sync(&priv->eee_ctrl_timer);
5320 }
5321
5322 /* Stop TX/RX DMA */
5323 stmmac_stop_all_dma(priv);
5324
5325 if (priv->plat->serdes_powerdown)
5326 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5327
5328 /* Enable Power down mode by programming the PMT regs */
5329 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5330 stmmac_pmt(priv, priv->hw, priv->wolopts);
5331 priv->irq_wake = 1;
5332 } else {
5333 mutex_unlock(&priv->lock);
5334 rtnl_lock();
5335 if (device_may_wakeup(priv->device))
5336 phylink_speed_down(priv->phylink, false);
5337 if (priv->plat->integrated_phy_power)
5338 priv->plat->integrated_phy_power(priv->plat->bsp_priv,
5339 false);
5340 phylink_stop(priv->phylink);
5341 rtnl_unlock();
5342 mutex_lock(&priv->lock);
5343
5344 stmmac_mac_set(priv, priv->ioaddr, false);
5345 pinctrl_pm_select_sleep_state(priv->device);
5346 }
5347 mutex_unlock(&priv->lock);
5348
5349 priv->speed = SPEED_UNKNOWN;
5350 return 0;
5351 }
5352 EXPORT_SYMBOL_GPL(stmmac_suspend);
5353
5354 /**
5355 * stmmac_reset_queues_param - reset queue parameters
5356 * @priv: device pointer
5357 */
stmmac_reset_queues_param(struct stmmac_priv * priv)5358 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
5359 {
5360 u32 rx_cnt = priv->plat->rx_queues_to_use;
5361 u32 tx_cnt = priv->plat->tx_queues_to_use;
5362 u32 queue;
5363
5364 for (queue = 0; queue < rx_cnt; queue++) {
5365 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5366
5367 rx_q->cur_rx = 0;
5368 rx_q->dirty_rx = 0;
5369 }
5370
5371 for (queue = 0; queue < tx_cnt; queue++) {
5372 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5373
5374 tx_q->cur_tx = 0;
5375 tx_q->dirty_tx = 0;
5376 tx_q->mss = 0;
5377
5378 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
5379 }
5380 }
5381
5382 /**
5383 * stmmac_resume - resume callback
5384 * @dev: device pointer
5385 * Description: when resume this function is invoked to setup the DMA and CORE
5386 * in a usable state.
5387 */
stmmac_resume(struct device * dev)5388 int stmmac_resume(struct device *dev)
5389 {
5390 struct net_device *ndev = dev_get_drvdata(dev);
5391 struct stmmac_priv *priv = netdev_priv(ndev);
5392 int ret;
5393
5394 if (!netif_running(ndev))
5395 return 0;
5396
5397 /* Power Down bit, into the PM register, is cleared
5398 * automatically as soon as a magic packet or a Wake-up frame
5399 * is received. Anyway, it's better to manually clear
5400 * this bit because it can generate problems while resuming
5401 * from another devices (e.g. serial console).
5402 */
5403 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5404 mutex_lock(&priv->lock);
5405 stmmac_pmt(priv, priv->hw, 0);
5406 mutex_unlock(&priv->lock);
5407 priv->irq_wake = 0;
5408 } else {
5409 pinctrl_pm_select_default_state(priv->device);
5410 /* reset the phy so that it's ready */
5411 if (priv->mii)
5412 stmmac_mdio_reset(priv->mii);
5413 if (priv->plat->integrated_phy_power)
5414 priv->plat->integrated_phy_power(priv->plat->bsp_priv,
5415 true);
5416 }
5417
5418 if (priv->plat->serdes_powerup) {
5419 ret = priv->plat->serdes_powerup(ndev,
5420 priv->plat->bsp_priv);
5421
5422 if (ret < 0)
5423 return ret;
5424 }
5425
5426 if (!device_may_wakeup(priv->device) || !priv->plat->pmt) {
5427 rtnl_lock();
5428 phylink_start(priv->phylink);
5429 /* We may have called phylink_speed_down before */
5430 phylink_speed_up(priv->phylink);
5431 rtnl_unlock();
5432 }
5433
5434 rtnl_lock();
5435 mutex_lock(&priv->lock);
5436
5437 stmmac_reset_queues_param(priv);
5438
5439 stmmac_free_tx_skbufs(priv);
5440 stmmac_clear_descriptors(priv);
5441
5442 stmmac_hw_setup(ndev, false);
5443 stmmac_init_coalesce(priv);
5444 stmmac_set_rx_mode(ndev);
5445
5446 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
5447
5448 stmmac_enable_all_queues(priv);
5449
5450 mutex_unlock(&priv->lock);
5451 rtnl_unlock();
5452
5453 phylink_mac_change(priv->phylink, true);
5454
5455 netif_device_attach(ndev);
5456
5457 return 0;
5458 }
5459 EXPORT_SYMBOL_GPL(stmmac_resume);
5460
5461 #ifndef MODULE
stmmac_cmdline_opt(char * str)5462 static int __init stmmac_cmdline_opt(char *str)
5463 {
5464 char *opt;
5465
5466 if (!str || !*str)
5467 return 1;
5468 while ((opt = strsep(&str, ",")) != NULL) {
5469 if (!strncmp(opt, "debug:", 6)) {
5470 if (kstrtoint(opt + 6, 0, &debug))
5471 goto err;
5472 } else if (!strncmp(opt, "phyaddr:", 8)) {
5473 if (kstrtoint(opt + 8, 0, &phyaddr))
5474 goto err;
5475 } else if (!strncmp(opt, "buf_sz:", 7)) {
5476 if (kstrtoint(opt + 7, 0, &buf_sz))
5477 goto err;
5478 } else if (!strncmp(opt, "tc:", 3)) {
5479 if (kstrtoint(opt + 3, 0, &tc))
5480 goto err;
5481 } else if (!strncmp(opt, "watchdog:", 9)) {
5482 if (kstrtoint(opt + 9, 0, &watchdog))
5483 goto err;
5484 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
5485 if (kstrtoint(opt + 10, 0, &flow_ctrl))
5486 goto err;
5487 } else if (!strncmp(opt, "pause:", 6)) {
5488 if (kstrtoint(opt + 6, 0, &pause))
5489 goto err;
5490 } else if (!strncmp(opt, "eee_timer:", 10)) {
5491 if (kstrtoint(opt + 10, 0, &eee_timer))
5492 goto err;
5493 } else if (!strncmp(opt, "chain_mode:", 11)) {
5494 if (kstrtoint(opt + 11, 0, &chain_mode))
5495 goto err;
5496 }
5497 }
5498 return 1;
5499
5500 err:
5501 pr_err("%s: ERROR broken module parameter conversion", __func__);
5502 return 1;
5503 }
5504
5505 __setup("stmmaceth=", stmmac_cmdline_opt);
5506 #endif /* MODULE */
5507
stmmac_init(void)5508 static int __init stmmac_init(void)
5509 {
5510 #ifdef CONFIG_DEBUG_FS
5511 /* Create debugfs main directory if it doesn't exist yet */
5512 if (!stmmac_fs_dir)
5513 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5514 register_netdevice_notifier(&stmmac_notifier);
5515 #endif
5516
5517 return 0;
5518 }
5519
stmmac_exit(void)5520 static void __exit stmmac_exit(void)
5521 {
5522 #ifdef CONFIG_DEBUG_FS
5523 unregister_netdevice_notifier(&stmmac_notifier);
5524 debugfs_remove_recursive(stmmac_fs_dir);
5525 #endif
5526 }
5527
5528 module_init(stmmac_init)
5529 module_exit(stmmac_exit)
5530
5531 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5532 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5533 MODULE_LICENSE("GPL");
5534