1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <linux/pci.h>
13 #include <net/pkt_sched.h>
14
15 #include <net/ipv6.h>
16
17 #include "igc.h"
18 #include "igc_hw.h"
19 #include "igc_tsn.h"
20
21 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
22
23 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
24
25 static int debug = -1;
26
27 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
28 MODULE_DESCRIPTION(DRV_SUMMARY);
29 MODULE_LICENSE("GPL v2");
30 module_param(debug, int, 0);
31 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
32
33 char igc_driver_name[] = "igc";
34 static const char igc_driver_string[] = DRV_SUMMARY;
35 static const char igc_copyright[] =
36 "Copyright(c) 2018 Intel Corporation.";
37
38 static const struct igc_info *igc_info_tbl[] = {
39 [board_base] = &igc_base_info,
40 };
41
42 static const struct pci_device_id igc_pci_tbl[] = {
43 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
44 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
45 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
46 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
47 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
48 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
49 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
50 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
51 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
52 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
53 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
54 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
55 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
56 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
57 /* required last entry */
58 {0, }
59 };
60
61 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
62
63 enum latency_range {
64 lowest_latency = 0,
65 low_latency = 1,
66 bulk_latency = 2,
67 latency_invalid = 255
68 };
69
igc_reset(struct igc_adapter * adapter)70 void igc_reset(struct igc_adapter *adapter)
71 {
72 struct net_device *dev = adapter->netdev;
73 struct igc_hw *hw = &adapter->hw;
74 struct igc_fc_info *fc = &hw->fc;
75 u32 pba, hwm;
76
77 /* Repartition PBA for greater than 9k MTU if required */
78 pba = IGC_PBA_34K;
79
80 /* flow control settings
81 * The high water mark must be low enough to fit one full frame
82 * after transmitting the pause frame. As such we must have enough
83 * space to allow for us to complete our current transmit and then
84 * receive the frame that is in progress from the link partner.
85 * Set it to:
86 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
87 */
88 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
89
90 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
91 fc->low_water = fc->high_water - 16;
92 fc->pause_time = 0xFFFF;
93 fc->send_xon = 1;
94 fc->current_mode = fc->requested_mode;
95
96 hw->mac.ops.reset_hw(hw);
97
98 if (hw->mac.ops.init_hw(hw))
99 netdev_err(dev, "Error on hardware initialization\n");
100
101 /* Re-establish EEE setting */
102 igc_set_eee_i225(hw, true, true, true);
103
104 if (!netif_running(adapter->netdev))
105 igc_power_down_phy_copper_base(&adapter->hw);
106
107 /* Re-enable PTP, where applicable. */
108 igc_ptp_reset(adapter);
109
110 /* Re-enable TSN offloading, where applicable. */
111 igc_tsn_offload_apply(adapter);
112
113 igc_get_phy_info(hw);
114 }
115
116 /**
117 * igc_power_up_link - Power up the phy link
118 * @adapter: address of board private structure
119 */
igc_power_up_link(struct igc_adapter * adapter)120 static void igc_power_up_link(struct igc_adapter *adapter)
121 {
122 igc_reset_phy(&adapter->hw);
123
124 igc_power_up_phy_copper(&adapter->hw);
125
126 igc_setup_link(&adapter->hw);
127 }
128
129 /**
130 * igc_release_hw_control - release control of the h/w to f/w
131 * @adapter: address of board private structure
132 *
133 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
134 * For ASF and Pass Through versions of f/w this means that the
135 * driver is no longer loaded.
136 */
igc_release_hw_control(struct igc_adapter * adapter)137 static void igc_release_hw_control(struct igc_adapter *adapter)
138 {
139 struct igc_hw *hw = &adapter->hw;
140 u32 ctrl_ext;
141
142 if (!pci_device_is_present(adapter->pdev))
143 return;
144
145 /* Let firmware take over control of h/w */
146 ctrl_ext = rd32(IGC_CTRL_EXT);
147 wr32(IGC_CTRL_EXT,
148 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
149 }
150
151 /**
152 * igc_get_hw_control - get control of the h/w from f/w
153 * @adapter: address of board private structure
154 *
155 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
156 * For ASF and Pass Through versions of f/w this means that
157 * the driver is loaded.
158 */
igc_get_hw_control(struct igc_adapter * adapter)159 static void igc_get_hw_control(struct igc_adapter *adapter)
160 {
161 struct igc_hw *hw = &adapter->hw;
162 u32 ctrl_ext;
163
164 /* Let firmware know the driver has taken over */
165 ctrl_ext = rd32(IGC_CTRL_EXT);
166 wr32(IGC_CTRL_EXT,
167 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
168 }
169
170 /**
171 * igc_clean_tx_ring - Free Tx Buffers
172 * @tx_ring: ring to be cleaned
173 */
igc_clean_tx_ring(struct igc_ring * tx_ring)174 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
175 {
176 u16 i = tx_ring->next_to_clean;
177 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
178
179 while (i != tx_ring->next_to_use) {
180 union igc_adv_tx_desc *eop_desc, *tx_desc;
181
182 /* Free all the Tx ring sk_buffs */
183 dev_kfree_skb_any(tx_buffer->skb);
184
185 /* unmap skb header data */
186 dma_unmap_single(tx_ring->dev,
187 dma_unmap_addr(tx_buffer, dma),
188 dma_unmap_len(tx_buffer, len),
189 DMA_TO_DEVICE);
190
191 /* check for eop_desc to determine the end of the packet */
192 eop_desc = tx_buffer->next_to_watch;
193 tx_desc = IGC_TX_DESC(tx_ring, i);
194
195 /* unmap remaining buffers */
196 while (tx_desc != eop_desc) {
197 tx_buffer++;
198 tx_desc++;
199 i++;
200 if (unlikely(i == tx_ring->count)) {
201 i = 0;
202 tx_buffer = tx_ring->tx_buffer_info;
203 tx_desc = IGC_TX_DESC(tx_ring, 0);
204 }
205
206 /* unmap any remaining paged data */
207 if (dma_unmap_len(tx_buffer, len))
208 dma_unmap_page(tx_ring->dev,
209 dma_unmap_addr(tx_buffer, dma),
210 dma_unmap_len(tx_buffer, len),
211 DMA_TO_DEVICE);
212 }
213
214 tx_buffer->next_to_watch = NULL;
215
216 /* move us one more past the eop_desc for start of next pkt */
217 tx_buffer++;
218 i++;
219 if (unlikely(i == tx_ring->count)) {
220 i = 0;
221 tx_buffer = tx_ring->tx_buffer_info;
222 }
223 }
224
225 /* reset BQL for queue */
226 netdev_tx_reset_queue(txring_txq(tx_ring));
227
228 /* reset next_to_use and next_to_clean */
229 tx_ring->next_to_use = 0;
230 tx_ring->next_to_clean = 0;
231 }
232
233 /**
234 * igc_free_tx_resources - Free Tx Resources per Queue
235 * @tx_ring: Tx descriptor ring for a specific queue
236 *
237 * Free all transmit software resources
238 */
igc_free_tx_resources(struct igc_ring * tx_ring)239 void igc_free_tx_resources(struct igc_ring *tx_ring)
240 {
241 igc_clean_tx_ring(tx_ring);
242
243 vfree(tx_ring->tx_buffer_info);
244 tx_ring->tx_buffer_info = NULL;
245
246 /* if not set, then don't free */
247 if (!tx_ring->desc)
248 return;
249
250 dma_free_coherent(tx_ring->dev, tx_ring->size,
251 tx_ring->desc, tx_ring->dma);
252
253 tx_ring->desc = NULL;
254 }
255
256 /**
257 * igc_free_all_tx_resources - Free Tx Resources for All Queues
258 * @adapter: board private structure
259 *
260 * Free all transmit software resources
261 */
igc_free_all_tx_resources(struct igc_adapter * adapter)262 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
263 {
264 int i;
265
266 for (i = 0; i < adapter->num_tx_queues; i++)
267 igc_free_tx_resources(adapter->tx_ring[i]);
268 }
269
270 /**
271 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
272 * @adapter: board private structure
273 */
igc_clean_all_tx_rings(struct igc_adapter * adapter)274 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
275 {
276 int i;
277
278 for (i = 0; i < adapter->num_tx_queues; i++)
279 if (adapter->tx_ring[i])
280 igc_clean_tx_ring(adapter->tx_ring[i]);
281 }
282
283 /**
284 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
285 * @tx_ring: tx descriptor ring (for a specific queue) to setup
286 *
287 * Return 0 on success, negative on failure
288 */
igc_setup_tx_resources(struct igc_ring * tx_ring)289 int igc_setup_tx_resources(struct igc_ring *tx_ring)
290 {
291 struct net_device *ndev = tx_ring->netdev;
292 struct device *dev = tx_ring->dev;
293 int size = 0;
294
295 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
296 tx_ring->tx_buffer_info = vzalloc(size);
297 if (!tx_ring->tx_buffer_info)
298 goto err;
299
300 /* round up to nearest 4K */
301 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
302 tx_ring->size = ALIGN(tx_ring->size, 4096);
303
304 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
305 &tx_ring->dma, GFP_KERNEL);
306
307 if (!tx_ring->desc)
308 goto err;
309
310 tx_ring->next_to_use = 0;
311 tx_ring->next_to_clean = 0;
312
313 return 0;
314
315 err:
316 vfree(tx_ring->tx_buffer_info);
317 netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
318 return -ENOMEM;
319 }
320
321 /**
322 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
323 * @adapter: board private structure
324 *
325 * Return 0 on success, negative on failure
326 */
igc_setup_all_tx_resources(struct igc_adapter * adapter)327 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
328 {
329 struct net_device *dev = adapter->netdev;
330 int i, err = 0;
331
332 for (i = 0; i < adapter->num_tx_queues; i++) {
333 err = igc_setup_tx_resources(adapter->tx_ring[i]);
334 if (err) {
335 netdev_err(dev, "Error on Tx queue %u setup\n", i);
336 for (i--; i >= 0; i--)
337 igc_free_tx_resources(adapter->tx_ring[i]);
338 break;
339 }
340 }
341
342 return err;
343 }
344
345 /**
346 * igc_clean_rx_ring - Free Rx Buffers per Queue
347 * @rx_ring: ring to free buffers from
348 */
igc_clean_rx_ring(struct igc_ring * rx_ring)349 static void igc_clean_rx_ring(struct igc_ring *rx_ring)
350 {
351 u16 i = rx_ring->next_to_clean;
352
353 dev_kfree_skb(rx_ring->skb);
354 rx_ring->skb = NULL;
355
356 /* Free all the Rx ring sk_buffs */
357 while (i != rx_ring->next_to_alloc) {
358 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
359
360 /* Invalidate cache lines that may have been written to by
361 * device so that we avoid corrupting memory.
362 */
363 dma_sync_single_range_for_cpu(rx_ring->dev,
364 buffer_info->dma,
365 buffer_info->page_offset,
366 igc_rx_bufsz(rx_ring),
367 DMA_FROM_DEVICE);
368
369 /* free resources associated with mapping */
370 dma_unmap_page_attrs(rx_ring->dev,
371 buffer_info->dma,
372 igc_rx_pg_size(rx_ring),
373 DMA_FROM_DEVICE,
374 IGC_RX_DMA_ATTR);
375 __page_frag_cache_drain(buffer_info->page,
376 buffer_info->pagecnt_bias);
377
378 i++;
379 if (i == rx_ring->count)
380 i = 0;
381 }
382
383 rx_ring->next_to_alloc = 0;
384 rx_ring->next_to_clean = 0;
385 rx_ring->next_to_use = 0;
386 }
387
388 /**
389 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
390 * @adapter: board private structure
391 */
igc_clean_all_rx_rings(struct igc_adapter * adapter)392 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
393 {
394 int i;
395
396 for (i = 0; i < adapter->num_rx_queues; i++)
397 if (adapter->rx_ring[i])
398 igc_clean_rx_ring(adapter->rx_ring[i]);
399 }
400
401 /**
402 * igc_free_rx_resources - Free Rx Resources
403 * @rx_ring: ring to clean the resources from
404 *
405 * Free all receive software resources
406 */
igc_free_rx_resources(struct igc_ring * rx_ring)407 void igc_free_rx_resources(struct igc_ring *rx_ring)
408 {
409 igc_clean_rx_ring(rx_ring);
410
411 vfree(rx_ring->rx_buffer_info);
412 rx_ring->rx_buffer_info = NULL;
413
414 /* if not set, then don't free */
415 if (!rx_ring->desc)
416 return;
417
418 dma_free_coherent(rx_ring->dev, rx_ring->size,
419 rx_ring->desc, rx_ring->dma);
420
421 rx_ring->desc = NULL;
422 }
423
424 /**
425 * igc_free_all_rx_resources - Free Rx Resources for All Queues
426 * @adapter: board private structure
427 *
428 * Free all receive software resources
429 */
igc_free_all_rx_resources(struct igc_adapter * adapter)430 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
431 {
432 int i;
433
434 for (i = 0; i < adapter->num_rx_queues; i++)
435 igc_free_rx_resources(adapter->rx_ring[i]);
436 }
437
438 /**
439 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
440 * @rx_ring: rx descriptor ring (for a specific queue) to setup
441 *
442 * Returns 0 on success, negative on failure
443 */
igc_setup_rx_resources(struct igc_ring * rx_ring)444 int igc_setup_rx_resources(struct igc_ring *rx_ring)
445 {
446 struct net_device *ndev = rx_ring->netdev;
447 struct device *dev = rx_ring->dev;
448 int size, desc_len;
449
450 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
451 rx_ring->rx_buffer_info = vzalloc(size);
452 if (!rx_ring->rx_buffer_info)
453 goto err;
454
455 desc_len = sizeof(union igc_adv_rx_desc);
456
457 /* Round up to nearest 4K */
458 rx_ring->size = rx_ring->count * desc_len;
459 rx_ring->size = ALIGN(rx_ring->size, 4096);
460
461 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
462 &rx_ring->dma, GFP_KERNEL);
463
464 if (!rx_ring->desc)
465 goto err;
466
467 rx_ring->next_to_alloc = 0;
468 rx_ring->next_to_clean = 0;
469 rx_ring->next_to_use = 0;
470
471 return 0;
472
473 err:
474 vfree(rx_ring->rx_buffer_info);
475 rx_ring->rx_buffer_info = NULL;
476 netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
477 return -ENOMEM;
478 }
479
480 /**
481 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
482 * (Descriptors) for all queues
483 * @adapter: board private structure
484 *
485 * Return 0 on success, negative on failure
486 */
igc_setup_all_rx_resources(struct igc_adapter * adapter)487 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
488 {
489 struct net_device *dev = adapter->netdev;
490 int i, err = 0;
491
492 for (i = 0; i < adapter->num_rx_queues; i++) {
493 err = igc_setup_rx_resources(adapter->rx_ring[i]);
494 if (err) {
495 netdev_err(dev, "Error on Rx queue %u setup\n", i);
496 for (i--; i >= 0; i--)
497 igc_free_rx_resources(adapter->rx_ring[i]);
498 break;
499 }
500 }
501
502 return err;
503 }
504
505 /**
506 * igc_configure_rx_ring - Configure a receive ring after Reset
507 * @adapter: board private structure
508 * @ring: receive ring to be configured
509 *
510 * Configure the Rx unit of the MAC after a reset.
511 */
igc_configure_rx_ring(struct igc_adapter * adapter,struct igc_ring * ring)512 static void igc_configure_rx_ring(struct igc_adapter *adapter,
513 struct igc_ring *ring)
514 {
515 struct igc_hw *hw = &adapter->hw;
516 union igc_adv_rx_desc *rx_desc;
517 int reg_idx = ring->reg_idx;
518 u32 srrctl = 0, rxdctl = 0;
519 u64 rdba = ring->dma;
520
521 /* disable the queue */
522 wr32(IGC_RXDCTL(reg_idx), 0);
523
524 /* Set DMA base address registers */
525 wr32(IGC_RDBAL(reg_idx),
526 rdba & 0x00000000ffffffffULL);
527 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
528 wr32(IGC_RDLEN(reg_idx),
529 ring->count * sizeof(union igc_adv_rx_desc));
530
531 /* initialize head and tail */
532 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
533 wr32(IGC_RDH(reg_idx), 0);
534 writel(0, ring->tail);
535
536 /* reset next-to- use/clean to place SW in sync with hardware */
537 ring->next_to_clean = 0;
538 ring->next_to_use = 0;
539
540 /* set descriptor configuration */
541 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
542 if (ring_uses_large_buffer(ring))
543 srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
544 else
545 srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
546 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
547
548 wr32(IGC_SRRCTL(reg_idx), srrctl);
549
550 rxdctl |= IGC_RX_PTHRESH;
551 rxdctl |= IGC_RX_HTHRESH << 8;
552 rxdctl |= IGC_RX_WTHRESH << 16;
553
554 /* initialize rx_buffer_info */
555 memset(ring->rx_buffer_info, 0,
556 sizeof(struct igc_rx_buffer) * ring->count);
557
558 /* initialize Rx descriptor 0 */
559 rx_desc = IGC_RX_DESC(ring, 0);
560 rx_desc->wb.upper.length = 0;
561
562 /* enable receive descriptor fetching */
563 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
564
565 wr32(IGC_RXDCTL(reg_idx), rxdctl);
566 }
567
568 /**
569 * igc_configure_rx - Configure receive Unit after Reset
570 * @adapter: board private structure
571 *
572 * Configure the Rx unit of the MAC after a reset.
573 */
igc_configure_rx(struct igc_adapter * adapter)574 static void igc_configure_rx(struct igc_adapter *adapter)
575 {
576 int i;
577
578 /* Setup the HW Rx Head and Tail Descriptor Pointers and
579 * the Base and Length of the Rx Descriptor Ring
580 */
581 for (i = 0; i < adapter->num_rx_queues; i++)
582 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
583 }
584
585 /**
586 * igc_configure_tx_ring - Configure transmit ring after Reset
587 * @adapter: board private structure
588 * @ring: tx ring to configure
589 *
590 * Configure a transmit ring after a reset.
591 */
igc_configure_tx_ring(struct igc_adapter * adapter,struct igc_ring * ring)592 static void igc_configure_tx_ring(struct igc_adapter *adapter,
593 struct igc_ring *ring)
594 {
595 struct igc_hw *hw = &adapter->hw;
596 int reg_idx = ring->reg_idx;
597 u64 tdba = ring->dma;
598 u32 txdctl = 0;
599
600 /* disable the queue */
601 wr32(IGC_TXDCTL(reg_idx), 0);
602 wrfl();
603 mdelay(10);
604
605 wr32(IGC_TDLEN(reg_idx),
606 ring->count * sizeof(union igc_adv_tx_desc));
607 wr32(IGC_TDBAL(reg_idx),
608 tdba & 0x00000000ffffffffULL);
609 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
610
611 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
612 wr32(IGC_TDH(reg_idx), 0);
613 writel(0, ring->tail);
614
615 txdctl |= IGC_TX_PTHRESH;
616 txdctl |= IGC_TX_HTHRESH << 8;
617 txdctl |= IGC_TX_WTHRESH << 16;
618
619 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
620 wr32(IGC_TXDCTL(reg_idx), txdctl);
621 }
622
623 /**
624 * igc_configure_tx - Configure transmit Unit after Reset
625 * @adapter: board private structure
626 *
627 * Configure the Tx unit of the MAC after a reset.
628 */
igc_configure_tx(struct igc_adapter * adapter)629 static void igc_configure_tx(struct igc_adapter *adapter)
630 {
631 int i;
632
633 for (i = 0; i < adapter->num_tx_queues; i++)
634 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
635 }
636
637 /**
638 * igc_setup_mrqc - configure the multiple receive queue control registers
639 * @adapter: Board private structure
640 */
igc_setup_mrqc(struct igc_adapter * adapter)641 static void igc_setup_mrqc(struct igc_adapter *adapter)
642 {
643 struct igc_hw *hw = &adapter->hw;
644 u32 j, num_rx_queues;
645 u32 mrqc, rxcsum;
646 u32 rss_key[10];
647
648 netdev_rss_key_fill(rss_key, sizeof(rss_key));
649 for (j = 0; j < 10; j++)
650 wr32(IGC_RSSRK(j), rss_key[j]);
651
652 num_rx_queues = adapter->rss_queues;
653
654 if (adapter->rss_indir_tbl_init != num_rx_queues) {
655 for (j = 0; j < IGC_RETA_SIZE; j++)
656 adapter->rss_indir_tbl[j] =
657 (j * num_rx_queues) / IGC_RETA_SIZE;
658 adapter->rss_indir_tbl_init = num_rx_queues;
659 }
660 igc_write_rss_indir_tbl(adapter);
661
662 /* Disable raw packet checksumming so that RSS hash is placed in
663 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
664 * offloads as they are enabled by default
665 */
666 rxcsum = rd32(IGC_RXCSUM);
667 rxcsum |= IGC_RXCSUM_PCSD;
668
669 /* Enable Receive Checksum Offload for SCTP */
670 rxcsum |= IGC_RXCSUM_CRCOFL;
671
672 /* Don't need to set TUOFL or IPOFL, they default to 1 */
673 wr32(IGC_RXCSUM, rxcsum);
674
675 /* Generate RSS hash based on packet types, TCP/UDP
676 * port numbers and/or IPv4/v6 src and dst addresses
677 */
678 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
679 IGC_MRQC_RSS_FIELD_IPV4_TCP |
680 IGC_MRQC_RSS_FIELD_IPV6 |
681 IGC_MRQC_RSS_FIELD_IPV6_TCP |
682 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
683
684 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
685 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
686 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
687 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
688
689 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
690
691 wr32(IGC_MRQC, mrqc);
692 }
693
694 /**
695 * igc_setup_rctl - configure the receive control registers
696 * @adapter: Board private structure
697 */
igc_setup_rctl(struct igc_adapter * adapter)698 static void igc_setup_rctl(struct igc_adapter *adapter)
699 {
700 struct igc_hw *hw = &adapter->hw;
701 u32 rctl;
702
703 rctl = rd32(IGC_RCTL);
704
705 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
706 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
707
708 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
709 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
710
711 /* enable stripping of CRC. Newer features require
712 * that the HW strips the CRC.
713 */
714 rctl |= IGC_RCTL_SECRC;
715
716 /* disable store bad packets and clear size bits. */
717 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
718
719 /* enable LPE to allow for reception of jumbo frames */
720 rctl |= IGC_RCTL_LPE;
721
722 /* disable queue 0 to prevent tail write w/o re-config */
723 wr32(IGC_RXDCTL(0), 0);
724
725 /* This is useful for sniffing bad packets. */
726 if (adapter->netdev->features & NETIF_F_RXALL) {
727 /* UPE and MPE will be handled by normal PROMISC logic
728 * in set_rx_mode
729 */
730 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
731 IGC_RCTL_BAM | /* RX All Bcast Pkts */
732 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
733
734 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
735 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
736 }
737
738 wr32(IGC_RCTL, rctl);
739 }
740
741 /**
742 * igc_setup_tctl - configure the transmit control registers
743 * @adapter: Board private structure
744 */
igc_setup_tctl(struct igc_adapter * adapter)745 static void igc_setup_tctl(struct igc_adapter *adapter)
746 {
747 struct igc_hw *hw = &adapter->hw;
748 u32 tctl;
749
750 /* disable queue 0 which icould be enabled by default */
751 wr32(IGC_TXDCTL(0), 0);
752
753 /* Program the Transmit Control Register */
754 tctl = rd32(IGC_TCTL);
755 tctl &= ~IGC_TCTL_CT;
756 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
757 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
758
759 /* Enable transmits */
760 tctl |= IGC_TCTL_EN;
761
762 wr32(IGC_TCTL, tctl);
763 }
764
765 /**
766 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
767 * @adapter: Pointer to adapter where the filter should be set
768 * @index: Filter index
769 * @type: MAC address filter type (source or destination)
770 * @addr: MAC address
771 * @queue: If non-negative, queue assignment feature is enabled and frames
772 * matching the filter are enqueued onto 'queue'. Otherwise, queue
773 * assignment is disabled.
774 */
igc_set_mac_filter_hw(struct igc_adapter * adapter,int index,enum igc_mac_filter_type type,const u8 * addr,int queue)775 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
776 enum igc_mac_filter_type type,
777 const u8 *addr, int queue)
778 {
779 struct net_device *dev = adapter->netdev;
780 struct igc_hw *hw = &adapter->hw;
781 u32 ral, rah;
782
783 if (WARN_ON(index >= hw->mac.rar_entry_count))
784 return;
785
786 ral = le32_to_cpup((__le32 *)(addr));
787 rah = le16_to_cpup((__le16 *)(addr + 4));
788
789 if (type == IGC_MAC_FILTER_TYPE_SRC) {
790 rah &= ~IGC_RAH_ASEL_MASK;
791 rah |= IGC_RAH_ASEL_SRC_ADDR;
792 }
793
794 if (queue >= 0) {
795 rah &= ~IGC_RAH_QSEL_MASK;
796 rah |= (queue << IGC_RAH_QSEL_SHIFT);
797 rah |= IGC_RAH_QSEL_ENABLE;
798 }
799
800 rah |= IGC_RAH_AV;
801
802 wr32(IGC_RAL(index), ral);
803 wr32(IGC_RAH(index), rah);
804
805 netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
806 }
807
808 /**
809 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
810 * @adapter: Pointer to adapter where the filter should be cleared
811 * @index: Filter index
812 */
igc_clear_mac_filter_hw(struct igc_adapter * adapter,int index)813 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
814 {
815 struct net_device *dev = adapter->netdev;
816 struct igc_hw *hw = &adapter->hw;
817
818 if (WARN_ON(index >= hw->mac.rar_entry_count))
819 return;
820
821 wr32(IGC_RAL(index), 0);
822 wr32(IGC_RAH(index), 0);
823
824 netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
825 }
826
827 /* Set default MAC address for the PF in the first RAR entry */
igc_set_default_mac_filter(struct igc_adapter * adapter)828 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
829 {
830 struct net_device *dev = adapter->netdev;
831 u8 *addr = adapter->hw.mac.addr;
832
833 netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
834
835 igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
836 }
837
838 /**
839 * igc_set_mac - Change the Ethernet Address of the NIC
840 * @netdev: network interface device structure
841 * @p: pointer to an address structure
842 *
843 * Returns 0 on success, negative on failure
844 */
igc_set_mac(struct net_device * netdev,void * p)845 static int igc_set_mac(struct net_device *netdev, void *p)
846 {
847 struct igc_adapter *adapter = netdev_priv(netdev);
848 struct igc_hw *hw = &adapter->hw;
849 struct sockaddr *addr = p;
850
851 if (!is_valid_ether_addr(addr->sa_data))
852 return -EADDRNOTAVAIL;
853
854 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
855 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
856
857 /* set the correct pool for the new PF MAC address in entry 0 */
858 igc_set_default_mac_filter(adapter);
859
860 return 0;
861 }
862
863 /**
864 * igc_write_mc_addr_list - write multicast addresses to MTA
865 * @netdev: network interface device structure
866 *
867 * Writes multicast address list to the MTA hash table.
868 * Returns: -ENOMEM on failure
869 * 0 on no addresses written
870 * X on writing X addresses to MTA
871 **/
igc_write_mc_addr_list(struct net_device * netdev)872 static int igc_write_mc_addr_list(struct net_device *netdev)
873 {
874 struct igc_adapter *adapter = netdev_priv(netdev);
875 struct igc_hw *hw = &adapter->hw;
876 struct netdev_hw_addr *ha;
877 u8 *mta_list;
878 int i;
879
880 if (netdev_mc_empty(netdev)) {
881 /* nothing to program, so clear mc list */
882 igc_update_mc_addr_list(hw, NULL, 0);
883 return 0;
884 }
885
886 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
887 if (!mta_list)
888 return -ENOMEM;
889
890 /* The shared function expects a packed array of only addresses. */
891 i = 0;
892 netdev_for_each_mc_addr(ha, netdev)
893 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
894
895 igc_update_mc_addr_list(hw, mta_list, i);
896 kfree(mta_list);
897
898 return netdev_mc_count(netdev);
899 }
900
igc_tx_launchtime(struct igc_adapter * adapter,ktime_t txtime)901 static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
902 {
903 ktime_t cycle_time = adapter->cycle_time;
904 ktime_t base_time = adapter->base_time;
905 u32 launchtime;
906
907 /* FIXME: when using ETF together with taprio, we may have a
908 * case where 'delta' is larger than the cycle_time, this may
909 * cause problems if we don't read the current value of
910 * IGC_BASET, as the value writen into the launchtime
911 * descriptor field may be misinterpreted.
912 */
913 div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
914
915 return cpu_to_le32(launchtime);
916 }
917
igc_tx_ctxtdesc(struct igc_ring * tx_ring,struct igc_tx_buffer * first,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)918 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
919 struct igc_tx_buffer *first,
920 u32 vlan_macip_lens, u32 type_tucmd,
921 u32 mss_l4len_idx)
922 {
923 struct igc_adv_tx_context_desc *context_desc;
924 u16 i = tx_ring->next_to_use;
925
926 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
927
928 i++;
929 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
930
931 /* set bits to identify this as an advanced context descriptor */
932 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
933
934 /* For i225, context index must be unique per ring. */
935 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
936 mss_l4len_idx |= tx_ring->reg_idx << 4;
937
938 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
939 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
940 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
941
942 /* We assume there is always a valid Tx time available. Invalid times
943 * should have been handled by the upper layers.
944 */
945 if (tx_ring->launchtime_enable) {
946 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
947 ktime_t txtime = first->skb->tstamp;
948
949 first->skb->tstamp = ktime_set(0, 0);
950 context_desc->launch_time = igc_tx_launchtime(adapter,
951 txtime);
952 } else {
953 context_desc->launch_time = 0;
954 }
955 }
956
igc_ipv6_csum_is_sctp(struct sk_buff * skb)957 static inline bool igc_ipv6_csum_is_sctp(struct sk_buff *skb)
958 {
959 unsigned int offset = 0;
960
961 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
962
963 return offset == skb_checksum_start_offset(skb);
964 }
965
igc_tx_csum(struct igc_ring * tx_ring,struct igc_tx_buffer * first)966 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
967 {
968 struct sk_buff *skb = first->skb;
969 u32 vlan_macip_lens = 0;
970 u32 type_tucmd = 0;
971
972 if (skb->ip_summed != CHECKSUM_PARTIAL) {
973 csum_failed:
974 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
975 !tx_ring->launchtime_enable)
976 return;
977 goto no_csum;
978 }
979
980 switch (skb->csum_offset) {
981 case offsetof(struct tcphdr, check):
982 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
983 fallthrough;
984 case offsetof(struct udphdr, check):
985 break;
986 case offsetof(struct sctphdr, checksum):
987 /* validate that this is actually an SCTP request */
988 if ((first->protocol == htons(ETH_P_IP) &&
989 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
990 (first->protocol == htons(ETH_P_IPV6) &&
991 igc_ipv6_csum_is_sctp(skb))) {
992 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
993 break;
994 }
995 fallthrough;
996 default:
997 skb_checksum_help(skb);
998 goto csum_failed;
999 }
1000
1001 /* update TX checksum flag */
1002 first->tx_flags |= IGC_TX_FLAGS_CSUM;
1003 vlan_macip_lens = skb_checksum_start_offset(skb) -
1004 skb_network_offset(skb);
1005 no_csum:
1006 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1007 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1008
1009 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
1010 }
1011
__igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1012 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1013 {
1014 struct net_device *netdev = tx_ring->netdev;
1015
1016 netif_stop_subqueue(netdev, tx_ring->queue_index);
1017
1018 /* memory barriier comment */
1019 smp_mb();
1020
1021 /* We need to check again in a case another CPU has just
1022 * made room available.
1023 */
1024 if (igc_desc_unused(tx_ring) < size)
1025 return -EBUSY;
1026
1027 /* A reprieve! */
1028 netif_wake_subqueue(netdev, tx_ring->queue_index);
1029
1030 u64_stats_update_begin(&tx_ring->tx_syncp2);
1031 tx_ring->tx_stats.restart_queue2++;
1032 u64_stats_update_end(&tx_ring->tx_syncp2);
1033
1034 return 0;
1035 }
1036
igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1037 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1038 {
1039 if (igc_desc_unused(tx_ring) >= size)
1040 return 0;
1041 return __igc_maybe_stop_tx(tx_ring, size);
1042 }
1043
1044 #define IGC_SET_FLAG(_input, _flag, _result) \
1045 (((_flag) <= (_result)) ? \
1046 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) : \
1047 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1048
igc_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)1049 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1050 {
1051 /* set type for advanced descriptor with frame checksum insertion */
1052 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1053 IGC_ADVTXD_DCMD_DEXT |
1054 IGC_ADVTXD_DCMD_IFCS;
1055
1056 /* set segmentation bits for TSO */
1057 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1058 (IGC_ADVTXD_DCMD_TSE));
1059
1060 /* set timestamp bit if present */
1061 cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1062 (IGC_ADVTXD_MAC_TSTAMP));
1063
1064 return cmd_type;
1065 }
1066
igc_tx_olinfo_status(struct igc_ring * tx_ring,union igc_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)1067 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1068 union igc_adv_tx_desc *tx_desc,
1069 u32 tx_flags, unsigned int paylen)
1070 {
1071 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1072
1073 /* insert L4 checksum */
1074 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1075 ((IGC_TXD_POPTS_TXSM << 8) /
1076 IGC_TX_FLAGS_CSUM);
1077
1078 /* insert IPv4 checksum */
1079 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1080 (((IGC_TXD_POPTS_IXSM << 8)) /
1081 IGC_TX_FLAGS_IPV4);
1082
1083 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1084 }
1085
igc_tx_map(struct igc_ring * tx_ring,struct igc_tx_buffer * first,const u8 hdr_len)1086 static int igc_tx_map(struct igc_ring *tx_ring,
1087 struct igc_tx_buffer *first,
1088 const u8 hdr_len)
1089 {
1090 struct sk_buff *skb = first->skb;
1091 struct igc_tx_buffer *tx_buffer;
1092 union igc_adv_tx_desc *tx_desc;
1093 u32 tx_flags = first->tx_flags;
1094 skb_frag_t *frag;
1095 u16 i = tx_ring->next_to_use;
1096 unsigned int data_len, size;
1097 dma_addr_t dma;
1098 u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1099
1100 tx_desc = IGC_TX_DESC(tx_ring, i);
1101
1102 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1103
1104 size = skb_headlen(skb);
1105 data_len = skb->data_len;
1106
1107 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1108
1109 tx_buffer = first;
1110
1111 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1112 if (dma_mapping_error(tx_ring->dev, dma))
1113 goto dma_error;
1114
1115 /* record length, and DMA address */
1116 dma_unmap_len_set(tx_buffer, len, size);
1117 dma_unmap_addr_set(tx_buffer, dma, dma);
1118
1119 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1120
1121 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1122 tx_desc->read.cmd_type_len =
1123 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1124
1125 i++;
1126 tx_desc++;
1127 if (i == tx_ring->count) {
1128 tx_desc = IGC_TX_DESC(tx_ring, 0);
1129 i = 0;
1130 }
1131 tx_desc->read.olinfo_status = 0;
1132
1133 dma += IGC_MAX_DATA_PER_TXD;
1134 size -= IGC_MAX_DATA_PER_TXD;
1135
1136 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1137 }
1138
1139 if (likely(!data_len))
1140 break;
1141
1142 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1143
1144 i++;
1145 tx_desc++;
1146 if (i == tx_ring->count) {
1147 tx_desc = IGC_TX_DESC(tx_ring, 0);
1148 i = 0;
1149 }
1150 tx_desc->read.olinfo_status = 0;
1151
1152 size = skb_frag_size(frag);
1153 data_len -= size;
1154
1155 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1156 size, DMA_TO_DEVICE);
1157
1158 tx_buffer = &tx_ring->tx_buffer_info[i];
1159 }
1160
1161 /* write last descriptor with RS and EOP bits */
1162 cmd_type |= size | IGC_TXD_DCMD;
1163 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1164
1165 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1166
1167 /* set the timestamp */
1168 first->time_stamp = jiffies;
1169
1170 skb_tx_timestamp(skb);
1171
1172 /* Force memory writes to complete before letting h/w know there
1173 * are new descriptors to fetch. (Only applicable for weak-ordered
1174 * memory model archs, such as IA-64).
1175 *
1176 * We also need this memory barrier to make certain all of the
1177 * status bits have been updated before next_to_watch is written.
1178 */
1179 wmb();
1180
1181 /* set next_to_watch value indicating a packet is present */
1182 first->next_to_watch = tx_desc;
1183
1184 i++;
1185 if (i == tx_ring->count)
1186 i = 0;
1187
1188 tx_ring->next_to_use = i;
1189
1190 /* Make sure there is space in the ring for the next send. */
1191 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1192
1193 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1194 writel(i, tx_ring->tail);
1195 }
1196
1197 return 0;
1198 dma_error:
1199 netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1200 tx_buffer = &tx_ring->tx_buffer_info[i];
1201
1202 /* clear dma mappings for failed tx_buffer_info map */
1203 while (tx_buffer != first) {
1204 if (dma_unmap_len(tx_buffer, len))
1205 dma_unmap_page(tx_ring->dev,
1206 dma_unmap_addr(tx_buffer, dma),
1207 dma_unmap_len(tx_buffer, len),
1208 DMA_TO_DEVICE);
1209 dma_unmap_len_set(tx_buffer, len, 0);
1210
1211 if (i-- == 0)
1212 i += tx_ring->count;
1213 tx_buffer = &tx_ring->tx_buffer_info[i];
1214 }
1215
1216 if (dma_unmap_len(tx_buffer, len))
1217 dma_unmap_single(tx_ring->dev,
1218 dma_unmap_addr(tx_buffer, dma),
1219 dma_unmap_len(tx_buffer, len),
1220 DMA_TO_DEVICE);
1221 dma_unmap_len_set(tx_buffer, len, 0);
1222
1223 dev_kfree_skb_any(tx_buffer->skb);
1224 tx_buffer->skb = NULL;
1225
1226 tx_ring->next_to_use = i;
1227
1228 return -1;
1229 }
1230
igc_tso(struct igc_ring * tx_ring,struct igc_tx_buffer * first,u8 * hdr_len)1231 static int igc_tso(struct igc_ring *tx_ring,
1232 struct igc_tx_buffer *first,
1233 u8 *hdr_len)
1234 {
1235 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1236 struct sk_buff *skb = first->skb;
1237 union {
1238 struct iphdr *v4;
1239 struct ipv6hdr *v6;
1240 unsigned char *hdr;
1241 } ip;
1242 union {
1243 struct tcphdr *tcp;
1244 struct udphdr *udp;
1245 unsigned char *hdr;
1246 } l4;
1247 u32 paylen, l4_offset;
1248 int err;
1249
1250 if (skb->ip_summed != CHECKSUM_PARTIAL)
1251 return 0;
1252
1253 if (!skb_is_gso(skb))
1254 return 0;
1255
1256 err = skb_cow_head(skb, 0);
1257 if (err < 0)
1258 return err;
1259
1260 ip.hdr = skb_network_header(skb);
1261 l4.hdr = skb_checksum_start(skb);
1262
1263 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1264 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1265
1266 /* initialize outer IP header fields */
1267 if (ip.v4->version == 4) {
1268 unsigned char *csum_start = skb_checksum_start(skb);
1269 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1270
1271 /* IP header will have to cancel out any data that
1272 * is not a part of the outer IP header
1273 */
1274 ip.v4->check = csum_fold(csum_partial(trans_start,
1275 csum_start - trans_start,
1276 0));
1277 type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1278
1279 ip.v4->tot_len = 0;
1280 first->tx_flags |= IGC_TX_FLAGS_TSO |
1281 IGC_TX_FLAGS_CSUM |
1282 IGC_TX_FLAGS_IPV4;
1283 } else {
1284 ip.v6->payload_len = 0;
1285 first->tx_flags |= IGC_TX_FLAGS_TSO |
1286 IGC_TX_FLAGS_CSUM;
1287 }
1288
1289 /* determine offset of inner transport header */
1290 l4_offset = l4.hdr - skb->data;
1291
1292 /* remove payload length from inner checksum */
1293 paylen = skb->len - l4_offset;
1294 if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1295 /* compute length of segmentation header */
1296 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1297 csum_replace_by_diff(&l4.tcp->check,
1298 (__force __wsum)htonl(paylen));
1299 } else {
1300 /* compute length of segmentation header */
1301 *hdr_len = sizeof(*l4.udp) + l4_offset;
1302 csum_replace_by_diff(&l4.udp->check,
1303 (__force __wsum)htonl(paylen));
1304 }
1305
1306 /* update gso size and bytecount with header size */
1307 first->gso_segs = skb_shinfo(skb)->gso_segs;
1308 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1309
1310 /* MSS L4LEN IDX */
1311 mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1312 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1313
1314 /* VLAN MACLEN IPLEN */
1315 vlan_macip_lens = l4.hdr - ip.hdr;
1316 vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1317 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1318
1319 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1320 type_tucmd, mss_l4len_idx);
1321
1322 return 1;
1323 }
1324
igc_xmit_frame_ring(struct sk_buff * skb,struct igc_ring * tx_ring)1325 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1326 struct igc_ring *tx_ring)
1327 {
1328 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1329 __be16 protocol = vlan_get_protocol(skb);
1330 struct igc_tx_buffer *first;
1331 u32 tx_flags = 0;
1332 unsigned short f;
1333 u8 hdr_len = 0;
1334 int tso = 0;
1335
1336 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1337 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1338 * + 2 desc gap to keep tail from touching head,
1339 * + 1 desc for context descriptor,
1340 * otherwise try next time
1341 */
1342 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1343 count += TXD_USE_COUNT(skb_frag_size(
1344 &skb_shinfo(skb)->frags[f]));
1345
1346 if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1347 /* this is a hard error */
1348 return NETDEV_TX_BUSY;
1349 }
1350
1351 /* record the location of the first descriptor for this packet */
1352 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1353 first->skb = skb;
1354 first->bytecount = skb->len;
1355 first->gso_segs = 1;
1356
1357 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1358 struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1359
1360 /* FIXME: add support for retrieving timestamps from
1361 * the other timer registers before skipping the
1362 * timestamping request.
1363 */
1364 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1365 !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1366 &adapter->state)) {
1367 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1368 tx_flags |= IGC_TX_FLAGS_TSTAMP;
1369
1370 adapter->ptp_tx_skb = skb_get(skb);
1371 adapter->ptp_tx_start = jiffies;
1372 } else {
1373 adapter->tx_hwtstamp_skipped++;
1374 }
1375 }
1376
1377 /* record initial flags and protocol */
1378 first->tx_flags = tx_flags;
1379 first->protocol = protocol;
1380
1381 tso = igc_tso(tx_ring, first, &hdr_len);
1382 if (tso < 0)
1383 goto out_drop;
1384 else if (!tso)
1385 igc_tx_csum(tx_ring, first);
1386
1387 igc_tx_map(tx_ring, first, hdr_len);
1388
1389 return NETDEV_TX_OK;
1390
1391 out_drop:
1392 dev_kfree_skb_any(first->skb);
1393 first->skb = NULL;
1394
1395 return NETDEV_TX_OK;
1396 }
1397
igc_tx_queue_mapping(struct igc_adapter * adapter,struct sk_buff * skb)1398 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1399 struct sk_buff *skb)
1400 {
1401 unsigned int r_idx = skb->queue_mapping;
1402
1403 if (r_idx >= adapter->num_tx_queues)
1404 r_idx = r_idx % adapter->num_tx_queues;
1405
1406 return adapter->tx_ring[r_idx];
1407 }
1408
igc_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1409 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1410 struct net_device *netdev)
1411 {
1412 struct igc_adapter *adapter = netdev_priv(netdev);
1413
1414 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1415 * in order to meet this minimum size requirement.
1416 */
1417 if (skb->len < 17) {
1418 if (skb_padto(skb, 17))
1419 return NETDEV_TX_OK;
1420 skb->len = 17;
1421 }
1422
1423 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1424 }
1425
igc_rx_checksum(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1426 static void igc_rx_checksum(struct igc_ring *ring,
1427 union igc_adv_rx_desc *rx_desc,
1428 struct sk_buff *skb)
1429 {
1430 skb_checksum_none_assert(skb);
1431
1432 /* Ignore Checksum bit is set */
1433 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1434 return;
1435
1436 /* Rx checksum disabled via ethtool */
1437 if (!(ring->netdev->features & NETIF_F_RXCSUM))
1438 return;
1439
1440 /* TCP/UDP checksum error bit is set */
1441 if (igc_test_staterr(rx_desc,
1442 IGC_RXDEXT_STATERR_L4E |
1443 IGC_RXDEXT_STATERR_IPE)) {
1444 /* work around errata with sctp packets where the TCPE aka
1445 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1446 * packets (aka let the stack check the crc32c)
1447 */
1448 if (!(skb->len == 60 &&
1449 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1450 u64_stats_update_begin(&ring->rx_syncp);
1451 ring->rx_stats.csum_err++;
1452 u64_stats_update_end(&ring->rx_syncp);
1453 }
1454 /* let the stack verify checksum errors */
1455 return;
1456 }
1457 /* It must be a TCP or UDP packet with a valid checksum */
1458 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1459 IGC_RXD_STAT_UDPCS))
1460 skb->ip_summed = CHECKSUM_UNNECESSARY;
1461
1462 netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1463 le32_to_cpu(rx_desc->wb.upper.status_error));
1464 }
1465
igc_rx_hash(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1466 static inline void igc_rx_hash(struct igc_ring *ring,
1467 union igc_adv_rx_desc *rx_desc,
1468 struct sk_buff *skb)
1469 {
1470 if (ring->netdev->features & NETIF_F_RXHASH)
1471 skb_set_hash(skb,
1472 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1473 PKT_HASH_TYPE_L3);
1474 }
1475
1476 /**
1477 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1478 * @rx_ring: rx descriptor ring packet is being transacted on
1479 * @rx_desc: pointer to the EOP Rx descriptor
1480 * @skb: pointer to current skb being populated
1481 *
1482 * This function checks the ring, descriptor, and packet information in order
1483 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1484 * skb.
1485 */
igc_process_skb_fields(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1486 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1487 union igc_adv_rx_desc *rx_desc,
1488 struct sk_buff *skb)
1489 {
1490 igc_rx_hash(rx_ring, rx_desc, skb);
1491
1492 igc_rx_checksum(rx_ring, rx_desc, skb);
1493
1494 skb_record_rx_queue(skb, rx_ring->queue_index);
1495
1496 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1497 }
1498
igc_get_rx_buffer(struct igc_ring * rx_ring,const unsigned int size)1499 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1500 const unsigned int size)
1501 {
1502 struct igc_rx_buffer *rx_buffer;
1503
1504 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1505 prefetchw(rx_buffer->page);
1506
1507 /* we are reusing so sync this buffer for CPU use */
1508 dma_sync_single_range_for_cpu(rx_ring->dev,
1509 rx_buffer->dma,
1510 rx_buffer->page_offset,
1511 size,
1512 DMA_FROM_DEVICE);
1513
1514 rx_buffer->pagecnt_bias--;
1515
1516 return rx_buffer;
1517 }
1518
1519 /**
1520 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1521 * @rx_ring: rx descriptor ring to transact packets on
1522 * @rx_buffer: buffer containing page to add
1523 * @skb: sk_buff to place the data into
1524 * @size: size of buffer to be added
1525 *
1526 * This function will add the data contained in rx_buffer->page to the skb.
1527 */
igc_add_rx_frag(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1528 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1529 struct igc_rx_buffer *rx_buffer,
1530 struct sk_buff *skb,
1531 unsigned int size)
1532 {
1533 #if (PAGE_SIZE < 8192)
1534 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1535
1536 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1537 rx_buffer->page_offset, size, truesize);
1538 rx_buffer->page_offset ^= truesize;
1539 #else
1540 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1541 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1542 SKB_DATA_ALIGN(size);
1543 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1544 rx_buffer->page_offset, size, truesize);
1545 rx_buffer->page_offset += truesize;
1546 #endif
1547 }
1548
igc_build_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,union igc_adv_rx_desc * rx_desc,unsigned int size)1549 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1550 struct igc_rx_buffer *rx_buffer,
1551 union igc_adv_rx_desc *rx_desc,
1552 unsigned int size)
1553 {
1554 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1555 #if (PAGE_SIZE < 8192)
1556 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1557 #else
1558 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1559 SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1560 #endif
1561 struct sk_buff *skb;
1562
1563 /* prefetch first cache line of first page */
1564 net_prefetch(va);
1565
1566 /* build an skb around the page buffer */
1567 skb = build_skb(va - IGC_SKB_PAD, truesize);
1568 if (unlikely(!skb))
1569 return NULL;
1570
1571 /* update pointers within the skb to store the data */
1572 skb_reserve(skb, IGC_SKB_PAD);
1573 __skb_put(skb, size);
1574
1575 /* update buffer offset */
1576 #if (PAGE_SIZE < 8192)
1577 rx_buffer->page_offset ^= truesize;
1578 #else
1579 rx_buffer->page_offset += truesize;
1580 #endif
1581
1582 return skb;
1583 }
1584
igc_construct_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,union igc_adv_rx_desc * rx_desc,unsigned int size)1585 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1586 struct igc_rx_buffer *rx_buffer,
1587 union igc_adv_rx_desc *rx_desc,
1588 unsigned int size)
1589 {
1590 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1591 #if (PAGE_SIZE < 8192)
1592 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1593 #else
1594 unsigned int truesize = SKB_DATA_ALIGN(size);
1595 #endif
1596 unsigned int headlen;
1597 struct sk_buff *skb;
1598
1599 /* prefetch first cache line of first page */
1600 net_prefetch(va);
1601
1602 /* allocate a skb to store the frags */
1603 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1604 if (unlikely(!skb))
1605 return NULL;
1606
1607 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP))) {
1608 igc_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
1609 va += IGC_TS_HDR_LEN;
1610 size -= IGC_TS_HDR_LEN;
1611 }
1612
1613 /* Determine available headroom for copy */
1614 headlen = size;
1615 if (headlen > IGC_RX_HDR_LEN)
1616 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1617
1618 /* align pull length to size of long to optimize memcpy performance */
1619 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1620
1621 /* update all of the pointers */
1622 size -= headlen;
1623 if (size) {
1624 skb_add_rx_frag(skb, 0, rx_buffer->page,
1625 (va + headlen) - page_address(rx_buffer->page),
1626 size, truesize);
1627 #if (PAGE_SIZE < 8192)
1628 rx_buffer->page_offset ^= truesize;
1629 #else
1630 rx_buffer->page_offset += truesize;
1631 #endif
1632 } else {
1633 rx_buffer->pagecnt_bias++;
1634 }
1635
1636 return skb;
1637 }
1638
1639 /**
1640 * igc_reuse_rx_page - page flip buffer and store it back on the ring
1641 * @rx_ring: rx descriptor ring to store buffers on
1642 * @old_buff: donor buffer to have page reused
1643 *
1644 * Synchronizes page for reuse by the adapter
1645 */
igc_reuse_rx_page(struct igc_ring * rx_ring,struct igc_rx_buffer * old_buff)1646 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1647 struct igc_rx_buffer *old_buff)
1648 {
1649 u16 nta = rx_ring->next_to_alloc;
1650 struct igc_rx_buffer *new_buff;
1651
1652 new_buff = &rx_ring->rx_buffer_info[nta];
1653
1654 /* update, and store next to alloc */
1655 nta++;
1656 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1657
1658 /* Transfer page from old buffer to new buffer.
1659 * Move each member individually to avoid possible store
1660 * forwarding stalls.
1661 */
1662 new_buff->dma = old_buff->dma;
1663 new_buff->page = old_buff->page;
1664 new_buff->page_offset = old_buff->page_offset;
1665 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1666 }
1667
igc_page_is_reserved(struct page * page)1668 static inline bool igc_page_is_reserved(struct page *page)
1669 {
1670 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1671 }
1672
igc_can_reuse_rx_page(struct igc_rx_buffer * rx_buffer)1673 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1674 {
1675 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1676 struct page *page = rx_buffer->page;
1677
1678 /* avoid re-using remote pages */
1679 if (unlikely(igc_page_is_reserved(page)))
1680 return false;
1681
1682 #if (PAGE_SIZE < 8192)
1683 /* if we are only owner of page we can reuse it */
1684 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1685 return false;
1686 #else
1687 #define IGC_LAST_OFFSET \
1688 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1689
1690 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1691 return false;
1692 #endif
1693
1694 /* If we have drained the page fragment pool we need to update
1695 * the pagecnt_bias and page count so that we fully restock the
1696 * number of references the driver holds.
1697 */
1698 if (unlikely(!pagecnt_bias)) {
1699 page_ref_add(page, USHRT_MAX);
1700 rx_buffer->pagecnt_bias = USHRT_MAX;
1701 }
1702
1703 return true;
1704 }
1705
1706 /**
1707 * igc_is_non_eop - process handling of non-EOP buffers
1708 * @rx_ring: Rx ring being processed
1709 * @rx_desc: Rx descriptor for current buffer
1710 *
1711 * This function updates next to clean. If the buffer is an EOP buffer
1712 * this function exits returning false, otherwise it will place the
1713 * sk_buff in the next buffer to be chained and return true indicating
1714 * that this is in fact a non-EOP buffer.
1715 */
igc_is_non_eop(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc)1716 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1717 union igc_adv_rx_desc *rx_desc)
1718 {
1719 u32 ntc = rx_ring->next_to_clean + 1;
1720
1721 /* fetch, update, and store next to clean */
1722 ntc = (ntc < rx_ring->count) ? ntc : 0;
1723 rx_ring->next_to_clean = ntc;
1724
1725 prefetch(IGC_RX_DESC(rx_ring, ntc));
1726
1727 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1728 return false;
1729
1730 return true;
1731 }
1732
1733 /**
1734 * igc_cleanup_headers - Correct corrupted or empty headers
1735 * @rx_ring: rx descriptor ring packet is being transacted on
1736 * @rx_desc: pointer to the EOP Rx descriptor
1737 * @skb: pointer to current skb being fixed
1738 *
1739 * Address the case where we are pulling data in on pages only
1740 * and as such no data is present in the skb header.
1741 *
1742 * In addition if skb is not at least 60 bytes we need to pad it so that
1743 * it is large enough to qualify as a valid Ethernet frame.
1744 *
1745 * Returns true if an error was encountered and skb was freed.
1746 */
igc_cleanup_headers(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1747 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1748 union igc_adv_rx_desc *rx_desc,
1749 struct sk_buff *skb)
1750 {
1751 if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
1752 struct net_device *netdev = rx_ring->netdev;
1753
1754 if (!(netdev->features & NETIF_F_RXALL)) {
1755 dev_kfree_skb_any(skb);
1756 return true;
1757 }
1758 }
1759
1760 /* if eth_skb_pad returns an error the skb was freed */
1761 if (eth_skb_pad(skb))
1762 return true;
1763
1764 return false;
1765 }
1766
igc_put_rx_buffer(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer)1767 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1768 struct igc_rx_buffer *rx_buffer)
1769 {
1770 if (igc_can_reuse_rx_page(rx_buffer)) {
1771 /* hand second half of page back to the ring */
1772 igc_reuse_rx_page(rx_ring, rx_buffer);
1773 } else {
1774 /* We are not reusing the buffer so unmap it and free
1775 * any references we are holding to it
1776 */
1777 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1778 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1779 IGC_RX_DMA_ATTR);
1780 __page_frag_cache_drain(rx_buffer->page,
1781 rx_buffer->pagecnt_bias);
1782 }
1783
1784 /* clear contents of rx_buffer */
1785 rx_buffer->page = NULL;
1786 }
1787
igc_rx_offset(struct igc_ring * rx_ring)1788 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1789 {
1790 return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1791 }
1792
igc_alloc_mapped_page(struct igc_ring * rx_ring,struct igc_rx_buffer * bi)1793 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1794 struct igc_rx_buffer *bi)
1795 {
1796 struct page *page = bi->page;
1797 dma_addr_t dma;
1798
1799 /* since we are recycling buffers we should seldom need to alloc */
1800 if (likely(page))
1801 return true;
1802
1803 /* alloc new page for storage */
1804 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1805 if (unlikely(!page)) {
1806 rx_ring->rx_stats.alloc_failed++;
1807 return false;
1808 }
1809
1810 /* map page for use */
1811 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1812 igc_rx_pg_size(rx_ring),
1813 DMA_FROM_DEVICE,
1814 IGC_RX_DMA_ATTR);
1815
1816 /* if mapping failed free memory back to system since
1817 * there isn't much point in holding memory we can't use
1818 */
1819 if (dma_mapping_error(rx_ring->dev, dma)) {
1820 __free_page(page);
1821
1822 rx_ring->rx_stats.alloc_failed++;
1823 return false;
1824 }
1825
1826 bi->dma = dma;
1827 bi->page = page;
1828 bi->page_offset = igc_rx_offset(rx_ring);
1829 bi->pagecnt_bias = 1;
1830
1831 return true;
1832 }
1833
1834 /**
1835 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1836 * @rx_ring: rx descriptor ring
1837 * @cleaned_count: number of buffers to clean
1838 */
igc_alloc_rx_buffers(struct igc_ring * rx_ring,u16 cleaned_count)1839 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1840 {
1841 union igc_adv_rx_desc *rx_desc;
1842 u16 i = rx_ring->next_to_use;
1843 struct igc_rx_buffer *bi;
1844 u16 bufsz;
1845
1846 /* nothing to do */
1847 if (!cleaned_count)
1848 return;
1849
1850 rx_desc = IGC_RX_DESC(rx_ring, i);
1851 bi = &rx_ring->rx_buffer_info[i];
1852 i -= rx_ring->count;
1853
1854 bufsz = igc_rx_bufsz(rx_ring);
1855
1856 do {
1857 if (!igc_alloc_mapped_page(rx_ring, bi))
1858 break;
1859
1860 /* sync the buffer for use by the device */
1861 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1862 bi->page_offset, bufsz,
1863 DMA_FROM_DEVICE);
1864
1865 /* Refresh the desc even if buffer_addrs didn't change
1866 * because each write-back erases this info.
1867 */
1868 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1869
1870 rx_desc++;
1871 bi++;
1872 i++;
1873 if (unlikely(!i)) {
1874 rx_desc = IGC_RX_DESC(rx_ring, 0);
1875 bi = rx_ring->rx_buffer_info;
1876 i -= rx_ring->count;
1877 }
1878
1879 /* clear the length for the next_to_use descriptor */
1880 rx_desc->wb.upper.length = 0;
1881
1882 cleaned_count--;
1883 } while (cleaned_count);
1884
1885 i += rx_ring->count;
1886
1887 if (rx_ring->next_to_use != i) {
1888 /* record the next descriptor to use */
1889 rx_ring->next_to_use = i;
1890
1891 /* update next to alloc since we have filled the ring */
1892 rx_ring->next_to_alloc = i;
1893
1894 /* Force memory writes to complete before letting h/w
1895 * know there are new descriptors to fetch. (Only
1896 * applicable for weak-ordered memory model archs,
1897 * such as IA-64).
1898 */
1899 wmb();
1900 writel(i, rx_ring->tail);
1901 }
1902 }
1903
igc_clean_rx_irq(struct igc_q_vector * q_vector,const int budget)1904 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
1905 {
1906 unsigned int total_bytes = 0, total_packets = 0;
1907 struct igc_ring *rx_ring = q_vector->rx.ring;
1908 struct sk_buff *skb = rx_ring->skb;
1909 u16 cleaned_count = igc_desc_unused(rx_ring);
1910
1911 while (likely(total_packets < budget)) {
1912 union igc_adv_rx_desc *rx_desc;
1913 struct igc_rx_buffer *rx_buffer;
1914 unsigned int size;
1915
1916 /* return some buffers to hardware, one at a time is too slow */
1917 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
1918 igc_alloc_rx_buffers(rx_ring, cleaned_count);
1919 cleaned_count = 0;
1920 }
1921
1922 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
1923 size = le16_to_cpu(rx_desc->wb.upper.length);
1924 if (!size)
1925 break;
1926
1927 /* This memory barrier is needed to keep us from reading
1928 * any other fields out of the rx_desc until we know the
1929 * descriptor has been written back
1930 */
1931 dma_rmb();
1932
1933 rx_buffer = igc_get_rx_buffer(rx_ring, size);
1934
1935 /* retrieve a buffer from the ring */
1936 if (skb)
1937 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
1938 else if (ring_uses_build_skb(rx_ring))
1939 skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
1940 else
1941 skb = igc_construct_skb(rx_ring, rx_buffer,
1942 rx_desc, size);
1943
1944 /* exit if we failed to retrieve a buffer */
1945 if (!skb) {
1946 rx_ring->rx_stats.alloc_failed++;
1947 rx_buffer->pagecnt_bias++;
1948 break;
1949 }
1950
1951 igc_put_rx_buffer(rx_ring, rx_buffer);
1952 cleaned_count++;
1953
1954 /* fetch next buffer in frame if non-eop */
1955 if (igc_is_non_eop(rx_ring, rx_desc))
1956 continue;
1957
1958 /* verify the packet layout is correct */
1959 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
1960 skb = NULL;
1961 continue;
1962 }
1963
1964 /* probably a little skewed due to removing CRC */
1965 total_bytes += skb->len;
1966
1967 /* populate checksum, VLAN, and protocol */
1968 igc_process_skb_fields(rx_ring, rx_desc, skb);
1969
1970 napi_gro_receive(&q_vector->napi, skb);
1971
1972 /* reset skb pointer */
1973 skb = NULL;
1974
1975 /* update budget accounting */
1976 total_packets++;
1977 }
1978
1979 /* place incomplete frames back on ring for completion */
1980 rx_ring->skb = skb;
1981
1982 u64_stats_update_begin(&rx_ring->rx_syncp);
1983 rx_ring->rx_stats.packets += total_packets;
1984 rx_ring->rx_stats.bytes += total_bytes;
1985 u64_stats_update_end(&rx_ring->rx_syncp);
1986 q_vector->rx.total_packets += total_packets;
1987 q_vector->rx.total_bytes += total_bytes;
1988
1989 if (cleaned_count)
1990 igc_alloc_rx_buffers(rx_ring, cleaned_count);
1991
1992 return total_packets;
1993 }
1994
1995 /**
1996 * igc_clean_tx_irq - Reclaim resources after transmit completes
1997 * @q_vector: pointer to q_vector containing needed info
1998 * @napi_budget: Used to determine if we are in netpoll
1999 *
2000 * returns true if ring is completely cleaned
2001 */
igc_clean_tx_irq(struct igc_q_vector * q_vector,int napi_budget)2002 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2003 {
2004 struct igc_adapter *adapter = q_vector->adapter;
2005 unsigned int total_bytes = 0, total_packets = 0;
2006 unsigned int budget = q_vector->tx.work_limit;
2007 struct igc_ring *tx_ring = q_vector->tx.ring;
2008 unsigned int i = tx_ring->next_to_clean;
2009 struct igc_tx_buffer *tx_buffer;
2010 union igc_adv_tx_desc *tx_desc;
2011
2012 if (test_bit(__IGC_DOWN, &adapter->state))
2013 return true;
2014
2015 tx_buffer = &tx_ring->tx_buffer_info[i];
2016 tx_desc = IGC_TX_DESC(tx_ring, i);
2017 i -= tx_ring->count;
2018
2019 do {
2020 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2021
2022 /* if next_to_watch is not set then there is no work pending */
2023 if (!eop_desc)
2024 break;
2025
2026 /* prevent any other reads prior to eop_desc */
2027 smp_rmb();
2028
2029 /* if DD is not set pending work has not been completed */
2030 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2031 break;
2032
2033 /* clear next_to_watch to prevent false hangs */
2034 tx_buffer->next_to_watch = NULL;
2035
2036 /* update the statistics for this packet */
2037 total_bytes += tx_buffer->bytecount;
2038 total_packets += tx_buffer->gso_segs;
2039
2040 /* free the skb */
2041 napi_consume_skb(tx_buffer->skb, napi_budget);
2042
2043 /* unmap skb header data */
2044 dma_unmap_single(tx_ring->dev,
2045 dma_unmap_addr(tx_buffer, dma),
2046 dma_unmap_len(tx_buffer, len),
2047 DMA_TO_DEVICE);
2048
2049 /* clear tx_buffer data */
2050 dma_unmap_len_set(tx_buffer, len, 0);
2051
2052 /* clear last DMA location and unmap remaining buffers */
2053 while (tx_desc != eop_desc) {
2054 tx_buffer++;
2055 tx_desc++;
2056 i++;
2057 if (unlikely(!i)) {
2058 i -= tx_ring->count;
2059 tx_buffer = tx_ring->tx_buffer_info;
2060 tx_desc = IGC_TX_DESC(tx_ring, 0);
2061 }
2062
2063 /* unmap any remaining paged data */
2064 if (dma_unmap_len(tx_buffer, len)) {
2065 dma_unmap_page(tx_ring->dev,
2066 dma_unmap_addr(tx_buffer, dma),
2067 dma_unmap_len(tx_buffer, len),
2068 DMA_TO_DEVICE);
2069 dma_unmap_len_set(tx_buffer, len, 0);
2070 }
2071 }
2072
2073 /* move us one more past the eop_desc for start of next pkt */
2074 tx_buffer++;
2075 tx_desc++;
2076 i++;
2077 if (unlikely(!i)) {
2078 i -= tx_ring->count;
2079 tx_buffer = tx_ring->tx_buffer_info;
2080 tx_desc = IGC_TX_DESC(tx_ring, 0);
2081 }
2082
2083 /* issue prefetch for next Tx descriptor */
2084 prefetch(tx_desc);
2085
2086 /* update budget accounting */
2087 budget--;
2088 } while (likely(budget));
2089
2090 netdev_tx_completed_queue(txring_txq(tx_ring),
2091 total_packets, total_bytes);
2092
2093 i += tx_ring->count;
2094 tx_ring->next_to_clean = i;
2095 u64_stats_update_begin(&tx_ring->tx_syncp);
2096 tx_ring->tx_stats.bytes += total_bytes;
2097 tx_ring->tx_stats.packets += total_packets;
2098 u64_stats_update_end(&tx_ring->tx_syncp);
2099 q_vector->tx.total_bytes += total_bytes;
2100 q_vector->tx.total_packets += total_packets;
2101
2102 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2103 struct igc_hw *hw = &adapter->hw;
2104
2105 /* Detect a transmit hang in hardware, this serializes the
2106 * check with the clearing of time_stamp and movement of i
2107 */
2108 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2109 if (tx_buffer->next_to_watch &&
2110 time_after(jiffies, tx_buffer->time_stamp +
2111 (adapter->tx_timeout_factor * HZ)) &&
2112 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2113 /* detected Tx unit hang */
2114 netdev_err(tx_ring->netdev,
2115 "Detected Tx Unit Hang\n"
2116 " Tx Queue <%d>\n"
2117 " TDH <%x>\n"
2118 " TDT <%x>\n"
2119 " next_to_use <%x>\n"
2120 " next_to_clean <%x>\n"
2121 "buffer_info[next_to_clean]\n"
2122 " time_stamp <%lx>\n"
2123 " next_to_watch <%p>\n"
2124 " jiffies <%lx>\n"
2125 " desc.status <%x>\n",
2126 tx_ring->queue_index,
2127 rd32(IGC_TDH(tx_ring->reg_idx)),
2128 readl(tx_ring->tail),
2129 tx_ring->next_to_use,
2130 tx_ring->next_to_clean,
2131 tx_buffer->time_stamp,
2132 tx_buffer->next_to_watch,
2133 jiffies,
2134 tx_buffer->next_to_watch->wb.status);
2135 netif_stop_subqueue(tx_ring->netdev,
2136 tx_ring->queue_index);
2137
2138 /* we are about to reset, no point in enabling stuff */
2139 return true;
2140 }
2141 }
2142
2143 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2144 if (unlikely(total_packets &&
2145 netif_carrier_ok(tx_ring->netdev) &&
2146 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2147 /* Make sure that anybody stopping the queue after this
2148 * sees the new next_to_clean.
2149 */
2150 smp_mb();
2151 if (__netif_subqueue_stopped(tx_ring->netdev,
2152 tx_ring->queue_index) &&
2153 !(test_bit(__IGC_DOWN, &adapter->state))) {
2154 netif_wake_subqueue(tx_ring->netdev,
2155 tx_ring->queue_index);
2156
2157 u64_stats_update_begin(&tx_ring->tx_syncp);
2158 tx_ring->tx_stats.restart_queue++;
2159 u64_stats_update_end(&tx_ring->tx_syncp);
2160 }
2161 }
2162
2163 return !!budget;
2164 }
2165
igc_find_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)2166 static int igc_find_mac_filter(struct igc_adapter *adapter,
2167 enum igc_mac_filter_type type, const u8 *addr)
2168 {
2169 struct igc_hw *hw = &adapter->hw;
2170 int max_entries = hw->mac.rar_entry_count;
2171 u32 ral, rah;
2172 int i;
2173
2174 for (i = 0; i < max_entries; i++) {
2175 ral = rd32(IGC_RAL(i));
2176 rah = rd32(IGC_RAH(i));
2177
2178 if (!(rah & IGC_RAH_AV))
2179 continue;
2180 if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2181 continue;
2182 if ((rah & IGC_RAH_RAH_MASK) !=
2183 le16_to_cpup((__le16 *)(addr + 4)))
2184 continue;
2185 if (ral != le32_to_cpup((__le32 *)(addr)))
2186 continue;
2187
2188 return i;
2189 }
2190
2191 return -1;
2192 }
2193
igc_get_avail_mac_filter_slot(struct igc_adapter * adapter)2194 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2195 {
2196 struct igc_hw *hw = &adapter->hw;
2197 int max_entries = hw->mac.rar_entry_count;
2198 u32 rah;
2199 int i;
2200
2201 for (i = 0; i < max_entries; i++) {
2202 rah = rd32(IGC_RAH(i));
2203
2204 if (!(rah & IGC_RAH_AV))
2205 return i;
2206 }
2207
2208 return -1;
2209 }
2210
2211 /**
2212 * igc_add_mac_filter() - Add MAC address filter
2213 * @adapter: Pointer to adapter where the filter should be added
2214 * @type: MAC address filter type (source or destination)
2215 * @addr: MAC address
2216 * @queue: If non-negative, queue assignment feature is enabled and frames
2217 * matching the filter are enqueued onto 'queue'. Otherwise, queue
2218 * assignment is disabled.
2219 *
2220 * Return: 0 in case of success, negative errno code otherwise.
2221 */
igc_add_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr,int queue)2222 static int igc_add_mac_filter(struct igc_adapter *adapter,
2223 enum igc_mac_filter_type type, const u8 *addr,
2224 int queue)
2225 {
2226 struct net_device *dev = adapter->netdev;
2227 int index;
2228
2229 index = igc_find_mac_filter(adapter, type, addr);
2230 if (index >= 0)
2231 goto update_filter;
2232
2233 index = igc_get_avail_mac_filter_slot(adapter);
2234 if (index < 0)
2235 return -ENOSPC;
2236
2237 netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2238 index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2239 addr, queue);
2240
2241 update_filter:
2242 igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2243 return 0;
2244 }
2245
2246 /**
2247 * igc_del_mac_filter() - Delete MAC address filter
2248 * @adapter: Pointer to adapter where the filter should be deleted from
2249 * @type: MAC address filter type (source or destination)
2250 * @addr: MAC address
2251 */
igc_del_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)2252 static void igc_del_mac_filter(struct igc_adapter *adapter,
2253 enum igc_mac_filter_type type, const u8 *addr)
2254 {
2255 struct net_device *dev = adapter->netdev;
2256 int index;
2257
2258 index = igc_find_mac_filter(adapter, type, addr);
2259 if (index < 0)
2260 return;
2261
2262 if (index == 0) {
2263 /* If this is the default filter, we don't actually delete it.
2264 * We just reset to its default value i.e. disable queue
2265 * assignment.
2266 */
2267 netdev_dbg(dev, "Disable default MAC filter queue assignment");
2268
2269 igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2270 } else {
2271 netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2272 index,
2273 type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2274 addr);
2275
2276 igc_clear_mac_filter_hw(adapter, index);
2277 }
2278 }
2279
2280 /**
2281 * igc_add_vlan_prio_filter() - Add VLAN priority filter
2282 * @adapter: Pointer to adapter where the filter should be added
2283 * @prio: VLAN priority value
2284 * @queue: Queue number which matching frames are assigned to
2285 *
2286 * Return: 0 in case of success, negative errno code otherwise.
2287 */
igc_add_vlan_prio_filter(struct igc_adapter * adapter,int prio,int queue)2288 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2289 int queue)
2290 {
2291 struct net_device *dev = adapter->netdev;
2292 struct igc_hw *hw = &adapter->hw;
2293 u32 vlanpqf;
2294
2295 vlanpqf = rd32(IGC_VLANPQF);
2296
2297 if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2298 netdev_dbg(dev, "VLAN priority filter already in use\n");
2299 return -EEXIST;
2300 }
2301
2302 vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2303 vlanpqf |= IGC_VLANPQF_VALID(prio);
2304
2305 wr32(IGC_VLANPQF, vlanpqf);
2306
2307 netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2308 prio, queue);
2309 return 0;
2310 }
2311
2312 /**
2313 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2314 * @adapter: Pointer to adapter where the filter should be deleted from
2315 * @prio: VLAN priority value
2316 */
igc_del_vlan_prio_filter(struct igc_adapter * adapter,int prio)2317 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2318 {
2319 struct igc_hw *hw = &adapter->hw;
2320 u32 vlanpqf;
2321
2322 vlanpqf = rd32(IGC_VLANPQF);
2323
2324 vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2325 vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2326
2327 wr32(IGC_VLANPQF, vlanpqf);
2328
2329 netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2330 prio);
2331 }
2332
igc_get_avail_etype_filter_slot(struct igc_adapter * adapter)2333 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2334 {
2335 struct igc_hw *hw = &adapter->hw;
2336 int i;
2337
2338 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2339 u32 etqf = rd32(IGC_ETQF(i));
2340
2341 if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2342 return i;
2343 }
2344
2345 return -1;
2346 }
2347
2348 /**
2349 * igc_add_etype_filter() - Add ethertype filter
2350 * @adapter: Pointer to adapter where the filter should be added
2351 * @etype: Ethertype value
2352 * @queue: If non-negative, queue assignment feature is enabled and frames
2353 * matching the filter are enqueued onto 'queue'. Otherwise, queue
2354 * assignment is disabled.
2355 *
2356 * Return: 0 in case of success, negative errno code otherwise.
2357 */
igc_add_etype_filter(struct igc_adapter * adapter,u16 etype,int queue)2358 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
2359 int queue)
2360 {
2361 struct igc_hw *hw = &adapter->hw;
2362 int index;
2363 u32 etqf;
2364
2365 index = igc_get_avail_etype_filter_slot(adapter);
2366 if (index < 0)
2367 return -ENOSPC;
2368
2369 etqf = rd32(IGC_ETQF(index));
2370
2371 etqf &= ~IGC_ETQF_ETYPE_MASK;
2372 etqf |= etype;
2373
2374 if (queue >= 0) {
2375 etqf &= ~IGC_ETQF_QUEUE_MASK;
2376 etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
2377 etqf |= IGC_ETQF_QUEUE_ENABLE;
2378 }
2379
2380 etqf |= IGC_ETQF_FILTER_ENABLE;
2381
2382 wr32(IGC_ETQF(index), etqf);
2383
2384 netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
2385 etype, queue);
2386 return 0;
2387 }
2388
igc_find_etype_filter(struct igc_adapter * adapter,u16 etype)2389 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
2390 {
2391 struct igc_hw *hw = &adapter->hw;
2392 int i;
2393
2394 for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2395 u32 etqf = rd32(IGC_ETQF(i));
2396
2397 if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
2398 return i;
2399 }
2400
2401 return -1;
2402 }
2403
2404 /**
2405 * igc_del_etype_filter() - Delete ethertype filter
2406 * @adapter: Pointer to adapter where the filter should be deleted from
2407 * @etype: Ethertype value
2408 */
igc_del_etype_filter(struct igc_adapter * adapter,u16 etype)2409 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
2410 {
2411 struct igc_hw *hw = &adapter->hw;
2412 int index;
2413
2414 index = igc_find_etype_filter(adapter, etype);
2415 if (index < 0)
2416 return;
2417
2418 wr32(IGC_ETQF(index), 0);
2419
2420 netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
2421 etype);
2422 }
2423
igc_enable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)2424 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
2425 const struct igc_nfc_rule *rule)
2426 {
2427 int err;
2428
2429 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
2430 err = igc_add_etype_filter(adapter, rule->filter.etype,
2431 rule->action);
2432 if (err)
2433 return err;
2434 }
2435
2436 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
2437 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2438 rule->filter.src_addr, rule->action);
2439 if (err)
2440 return err;
2441 }
2442
2443 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
2444 err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2445 rule->filter.dst_addr, rule->action);
2446 if (err)
2447 return err;
2448 }
2449
2450 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2451 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2452 VLAN_PRIO_SHIFT;
2453
2454 err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
2455 if (err)
2456 return err;
2457 }
2458
2459 return 0;
2460 }
2461
igc_disable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)2462 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
2463 const struct igc_nfc_rule *rule)
2464 {
2465 if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
2466 igc_del_etype_filter(adapter, rule->filter.etype);
2467
2468 if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
2469 int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
2470 VLAN_PRIO_SHIFT;
2471
2472 igc_del_vlan_prio_filter(adapter, prio);
2473 }
2474
2475 if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
2476 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
2477 rule->filter.src_addr);
2478
2479 if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
2480 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
2481 rule->filter.dst_addr);
2482 }
2483
2484 /**
2485 * igc_get_nfc_rule() - Get NFC rule
2486 * @adapter: Pointer to adapter
2487 * @location: Rule location
2488 *
2489 * Context: Expects adapter->nfc_rule_lock to be held by caller.
2490 *
2491 * Return: Pointer to NFC rule at @location. If not found, NULL.
2492 */
igc_get_nfc_rule(struct igc_adapter * adapter,u32 location)2493 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
2494 u32 location)
2495 {
2496 struct igc_nfc_rule *rule;
2497
2498 list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
2499 if (rule->location == location)
2500 return rule;
2501 if (rule->location > location)
2502 break;
2503 }
2504
2505 return NULL;
2506 }
2507
2508 /**
2509 * igc_del_nfc_rule() - Delete NFC rule
2510 * @adapter: Pointer to adapter
2511 * @rule: Pointer to rule to be deleted
2512 *
2513 * Disable NFC rule in hardware and delete it from adapter.
2514 *
2515 * Context: Expects adapter->nfc_rule_lock to be held by caller.
2516 */
igc_del_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)2517 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2518 {
2519 igc_disable_nfc_rule(adapter, rule);
2520
2521 list_del(&rule->list);
2522 adapter->nfc_rule_count--;
2523
2524 kfree(rule);
2525 }
2526
igc_flush_nfc_rules(struct igc_adapter * adapter)2527 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
2528 {
2529 struct igc_nfc_rule *rule, *tmp;
2530
2531 mutex_lock(&adapter->nfc_rule_lock);
2532
2533 list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
2534 igc_del_nfc_rule(adapter, rule);
2535
2536 mutex_unlock(&adapter->nfc_rule_lock);
2537 }
2538
2539 /**
2540 * igc_add_nfc_rule() - Add NFC rule
2541 * @adapter: Pointer to adapter
2542 * @rule: Pointer to rule to be added
2543 *
2544 * Enable NFC rule in hardware and add it to adapter.
2545 *
2546 * Context: Expects adapter->nfc_rule_lock to be held by caller.
2547 *
2548 * Return: 0 on success, negative errno on failure.
2549 */
igc_add_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)2550 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
2551 {
2552 struct igc_nfc_rule *pred, *cur;
2553 int err;
2554
2555 err = igc_enable_nfc_rule(adapter, rule);
2556 if (err)
2557 return err;
2558
2559 pred = NULL;
2560 list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
2561 if (cur->location >= rule->location)
2562 break;
2563 pred = cur;
2564 }
2565
2566 list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
2567 adapter->nfc_rule_count++;
2568 return 0;
2569 }
2570
igc_restore_nfc_rules(struct igc_adapter * adapter)2571 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
2572 {
2573 struct igc_nfc_rule *rule;
2574
2575 mutex_lock(&adapter->nfc_rule_lock);
2576
2577 list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
2578 igc_enable_nfc_rule(adapter, rule);
2579
2580 mutex_unlock(&adapter->nfc_rule_lock);
2581 }
2582
igc_uc_sync(struct net_device * netdev,const unsigned char * addr)2583 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
2584 {
2585 struct igc_adapter *adapter = netdev_priv(netdev);
2586
2587 return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
2588 }
2589
igc_uc_unsync(struct net_device * netdev,const unsigned char * addr)2590 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
2591 {
2592 struct igc_adapter *adapter = netdev_priv(netdev);
2593
2594 igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
2595 return 0;
2596 }
2597
2598 /**
2599 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2600 * @netdev: network interface device structure
2601 *
2602 * The set_rx_mode entry point is called whenever the unicast or multicast
2603 * address lists or the network interface flags are updated. This routine is
2604 * responsible for configuring the hardware for proper unicast, multicast,
2605 * promiscuous mode, and all-multi behavior.
2606 */
igc_set_rx_mode(struct net_device * netdev)2607 static void igc_set_rx_mode(struct net_device *netdev)
2608 {
2609 struct igc_adapter *adapter = netdev_priv(netdev);
2610 struct igc_hw *hw = &adapter->hw;
2611 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
2612 int count;
2613
2614 /* Check for Promiscuous and All Multicast modes */
2615 if (netdev->flags & IFF_PROMISC) {
2616 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
2617 } else {
2618 if (netdev->flags & IFF_ALLMULTI) {
2619 rctl |= IGC_RCTL_MPE;
2620 } else {
2621 /* Write addresses to the MTA, if the attempt fails
2622 * then we should just turn on promiscuous mode so
2623 * that we can at least receive multicast traffic
2624 */
2625 count = igc_write_mc_addr_list(netdev);
2626 if (count < 0)
2627 rctl |= IGC_RCTL_MPE;
2628 }
2629 }
2630
2631 /* Write addresses to available RAR registers, if there is not
2632 * sufficient space to store all the addresses then enable
2633 * unicast promiscuous mode
2634 */
2635 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
2636 rctl |= IGC_RCTL_UPE;
2637
2638 /* update state of unicast and multicast */
2639 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
2640 wr32(IGC_RCTL, rctl);
2641
2642 #if (PAGE_SIZE < 8192)
2643 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
2644 rlpml = IGC_MAX_FRAME_BUILD_SKB;
2645 #endif
2646 wr32(IGC_RLPML, rlpml);
2647 }
2648
2649 /**
2650 * igc_configure - configure the hardware for RX and TX
2651 * @adapter: private board structure
2652 */
igc_configure(struct igc_adapter * adapter)2653 static void igc_configure(struct igc_adapter *adapter)
2654 {
2655 struct net_device *netdev = adapter->netdev;
2656 int i = 0;
2657
2658 igc_get_hw_control(adapter);
2659 igc_set_rx_mode(netdev);
2660
2661 igc_setup_tctl(adapter);
2662 igc_setup_mrqc(adapter);
2663 igc_setup_rctl(adapter);
2664
2665 igc_set_default_mac_filter(adapter);
2666 igc_restore_nfc_rules(adapter);
2667
2668 igc_configure_tx(adapter);
2669 igc_configure_rx(adapter);
2670
2671 igc_rx_fifo_flush_base(&adapter->hw);
2672
2673 /* call igc_desc_unused which always leaves
2674 * at least 1 descriptor unused to make sure
2675 * next_to_use != next_to_clean
2676 */
2677 for (i = 0; i < adapter->num_rx_queues; i++) {
2678 struct igc_ring *ring = adapter->rx_ring[i];
2679
2680 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2681 }
2682 }
2683
2684 /**
2685 * igc_write_ivar - configure ivar for given MSI-X vector
2686 * @hw: pointer to the HW structure
2687 * @msix_vector: vector number we are allocating to a given ring
2688 * @index: row index of IVAR register to write within IVAR table
2689 * @offset: column offset of in IVAR, should be multiple of 8
2690 *
2691 * The IVAR table consists of 2 columns,
2692 * each containing an cause allocation for an Rx and Tx ring, and a
2693 * variable number of rows depending on the number of queues supported.
2694 */
igc_write_ivar(struct igc_hw * hw,int msix_vector,int index,int offset)2695 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2696 int index, int offset)
2697 {
2698 u32 ivar = array_rd32(IGC_IVAR0, index);
2699
2700 /* clear any bits that are currently set */
2701 ivar &= ~((u32)0xFF << offset);
2702
2703 /* write vector and valid bit */
2704 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2705
2706 array_wr32(IGC_IVAR0, index, ivar);
2707 }
2708
igc_assign_vector(struct igc_q_vector * q_vector,int msix_vector)2709 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2710 {
2711 struct igc_adapter *adapter = q_vector->adapter;
2712 struct igc_hw *hw = &adapter->hw;
2713 int rx_queue = IGC_N0_QUEUE;
2714 int tx_queue = IGC_N0_QUEUE;
2715
2716 if (q_vector->rx.ring)
2717 rx_queue = q_vector->rx.ring->reg_idx;
2718 if (q_vector->tx.ring)
2719 tx_queue = q_vector->tx.ring->reg_idx;
2720
2721 switch (hw->mac.type) {
2722 case igc_i225:
2723 if (rx_queue > IGC_N0_QUEUE)
2724 igc_write_ivar(hw, msix_vector,
2725 rx_queue >> 1,
2726 (rx_queue & 0x1) << 4);
2727 if (tx_queue > IGC_N0_QUEUE)
2728 igc_write_ivar(hw, msix_vector,
2729 tx_queue >> 1,
2730 ((tx_queue & 0x1) << 4) + 8);
2731 q_vector->eims_value = BIT(msix_vector);
2732 break;
2733 default:
2734 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2735 break;
2736 }
2737
2738 /* add q_vector eims value to global eims_enable_mask */
2739 adapter->eims_enable_mask |= q_vector->eims_value;
2740
2741 /* configure q_vector to set itr on first interrupt */
2742 q_vector->set_itr = 1;
2743 }
2744
2745 /**
2746 * igc_configure_msix - Configure MSI-X hardware
2747 * @adapter: Pointer to adapter structure
2748 *
2749 * igc_configure_msix sets up the hardware to properly
2750 * generate MSI-X interrupts.
2751 */
igc_configure_msix(struct igc_adapter * adapter)2752 static void igc_configure_msix(struct igc_adapter *adapter)
2753 {
2754 struct igc_hw *hw = &adapter->hw;
2755 int i, vector = 0;
2756 u32 tmp;
2757
2758 adapter->eims_enable_mask = 0;
2759
2760 /* set vector for other causes, i.e. link changes */
2761 switch (hw->mac.type) {
2762 case igc_i225:
2763 /* Turn on MSI-X capability first, or our settings
2764 * won't stick. And it will take days to debug.
2765 */
2766 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2767 IGC_GPIE_PBA | IGC_GPIE_EIAME |
2768 IGC_GPIE_NSICR);
2769
2770 /* enable msix_other interrupt */
2771 adapter->eims_other = BIT(vector);
2772 tmp = (vector++ | IGC_IVAR_VALID) << 8;
2773
2774 wr32(IGC_IVAR_MISC, tmp);
2775 break;
2776 default:
2777 /* do nothing, since nothing else supports MSI-X */
2778 break;
2779 } /* switch (hw->mac.type) */
2780
2781 adapter->eims_enable_mask |= adapter->eims_other;
2782
2783 for (i = 0; i < adapter->num_q_vectors; i++)
2784 igc_assign_vector(adapter->q_vector[i], vector++);
2785
2786 wrfl();
2787 }
2788
2789 /**
2790 * igc_irq_enable - Enable default interrupt generation settings
2791 * @adapter: board private structure
2792 */
igc_irq_enable(struct igc_adapter * adapter)2793 static void igc_irq_enable(struct igc_adapter *adapter)
2794 {
2795 struct igc_hw *hw = &adapter->hw;
2796
2797 if (adapter->msix_entries) {
2798 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
2799 u32 regval = rd32(IGC_EIAC);
2800
2801 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
2802 regval = rd32(IGC_EIAM);
2803 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
2804 wr32(IGC_EIMS, adapter->eims_enable_mask);
2805 wr32(IGC_IMS, ims);
2806 } else {
2807 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2808 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
2809 }
2810 }
2811
2812 /**
2813 * igc_irq_disable - Mask off interrupt generation on the NIC
2814 * @adapter: board private structure
2815 */
igc_irq_disable(struct igc_adapter * adapter)2816 static void igc_irq_disable(struct igc_adapter *adapter)
2817 {
2818 struct igc_hw *hw = &adapter->hw;
2819
2820 if (adapter->msix_entries) {
2821 u32 regval = rd32(IGC_EIAM);
2822
2823 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
2824 wr32(IGC_EIMC, adapter->eims_enable_mask);
2825 regval = rd32(IGC_EIAC);
2826 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
2827 }
2828
2829 wr32(IGC_IAM, 0);
2830 wr32(IGC_IMC, ~0);
2831 wrfl();
2832
2833 if (adapter->msix_entries) {
2834 int vector = 0, i;
2835
2836 synchronize_irq(adapter->msix_entries[vector++].vector);
2837
2838 for (i = 0; i < adapter->num_q_vectors; i++)
2839 synchronize_irq(adapter->msix_entries[vector++].vector);
2840 } else {
2841 synchronize_irq(adapter->pdev->irq);
2842 }
2843 }
2844
igc_set_flag_queue_pairs(struct igc_adapter * adapter,const u32 max_rss_queues)2845 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
2846 const u32 max_rss_queues)
2847 {
2848 /* Determine if we need to pair queues. */
2849 /* If rss_queues > half of max_rss_queues, pair the queues in
2850 * order to conserve interrupts due to limited supply.
2851 */
2852 if (adapter->rss_queues > (max_rss_queues / 2))
2853 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
2854 else
2855 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
2856 }
2857
igc_get_max_rss_queues(struct igc_adapter * adapter)2858 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
2859 {
2860 return IGC_MAX_RX_QUEUES;
2861 }
2862
igc_init_queue_configuration(struct igc_adapter * adapter)2863 static void igc_init_queue_configuration(struct igc_adapter *adapter)
2864 {
2865 u32 max_rss_queues;
2866
2867 max_rss_queues = igc_get_max_rss_queues(adapter);
2868 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2869
2870 igc_set_flag_queue_pairs(adapter, max_rss_queues);
2871 }
2872
2873 /**
2874 * igc_reset_q_vector - Reset config for interrupt vector
2875 * @adapter: board private structure to initialize
2876 * @v_idx: Index of vector to be reset
2877 *
2878 * If NAPI is enabled it will delete any references to the
2879 * NAPI struct. This is preparation for igc_free_q_vector.
2880 */
igc_reset_q_vector(struct igc_adapter * adapter,int v_idx)2881 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2882 {
2883 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2884
2885 /* if we're coming from igc_set_interrupt_capability, the vectors are
2886 * not yet allocated
2887 */
2888 if (!q_vector)
2889 return;
2890
2891 if (q_vector->tx.ring)
2892 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2893
2894 if (q_vector->rx.ring)
2895 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
2896
2897 netif_napi_del(&q_vector->napi);
2898 }
2899
2900 /**
2901 * igc_free_q_vector - Free memory allocated for specific interrupt vector
2902 * @adapter: board private structure to initialize
2903 * @v_idx: Index of vector to be freed
2904 *
2905 * This function frees the memory allocated to the q_vector.
2906 */
igc_free_q_vector(struct igc_adapter * adapter,int v_idx)2907 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
2908 {
2909 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2910
2911 adapter->q_vector[v_idx] = NULL;
2912
2913 /* igc_get_stats64() might access the rings on this vector,
2914 * we must wait a grace period before freeing it.
2915 */
2916 if (q_vector)
2917 kfree_rcu(q_vector, rcu);
2918 }
2919
2920 /**
2921 * igc_free_q_vectors - Free memory allocated for interrupt vectors
2922 * @adapter: board private structure to initialize
2923 *
2924 * This function frees the memory allocated to the q_vectors. In addition if
2925 * NAPI is enabled it will delete any references to the NAPI struct prior
2926 * to freeing the q_vector.
2927 */
igc_free_q_vectors(struct igc_adapter * adapter)2928 static void igc_free_q_vectors(struct igc_adapter *adapter)
2929 {
2930 int v_idx = adapter->num_q_vectors;
2931
2932 adapter->num_tx_queues = 0;
2933 adapter->num_rx_queues = 0;
2934 adapter->num_q_vectors = 0;
2935
2936 while (v_idx--) {
2937 igc_reset_q_vector(adapter, v_idx);
2938 igc_free_q_vector(adapter, v_idx);
2939 }
2940 }
2941
2942 /**
2943 * igc_update_itr - update the dynamic ITR value based on statistics
2944 * @q_vector: pointer to q_vector
2945 * @ring_container: ring info to update the itr for
2946 *
2947 * Stores a new ITR value based on packets and byte
2948 * counts during the last interrupt. The advantage of per interrupt
2949 * computation is faster updates and more accurate ITR for the current
2950 * traffic pattern. Constants in this function were computed
2951 * based on theoretical maximum wire speed and thresholds were set based
2952 * on testing data as well as attempting to minimize response time
2953 * while increasing bulk throughput.
2954 * NOTE: These calculations are only valid when operating in a single-
2955 * queue environment.
2956 */
igc_update_itr(struct igc_q_vector * q_vector,struct igc_ring_container * ring_container)2957 static void igc_update_itr(struct igc_q_vector *q_vector,
2958 struct igc_ring_container *ring_container)
2959 {
2960 unsigned int packets = ring_container->total_packets;
2961 unsigned int bytes = ring_container->total_bytes;
2962 u8 itrval = ring_container->itr;
2963
2964 /* no packets, exit with status unchanged */
2965 if (packets == 0)
2966 return;
2967
2968 switch (itrval) {
2969 case lowest_latency:
2970 /* handle TSO and jumbo frames */
2971 if (bytes / packets > 8000)
2972 itrval = bulk_latency;
2973 else if ((packets < 5) && (bytes > 512))
2974 itrval = low_latency;
2975 break;
2976 case low_latency: /* 50 usec aka 20000 ints/s */
2977 if (bytes > 10000) {
2978 /* this if handles the TSO accounting */
2979 if (bytes / packets > 8000)
2980 itrval = bulk_latency;
2981 else if ((packets < 10) || ((bytes / packets) > 1200))
2982 itrval = bulk_latency;
2983 else if ((packets > 35))
2984 itrval = lowest_latency;
2985 } else if (bytes / packets > 2000) {
2986 itrval = bulk_latency;
2987 } else if (packets <= 2 && bytes < 512) {
2988 itrval = lowest_latency;
2989 }
2990 break;
2991 case bulk_latency: /* 250 usec aka 4000 ints/s */
2992 if (bytes > 25000) {
2993 if (packets > 35)
2994 itrval = low_latency;
2995 } else if (bytes < 1500) {
2996 itrval = low_latency;
2997 }
2998 break;
2999 }
3000
3001 /* clear work counters since we have the values we need */
3002 ring_container->total_bytes = 0;
3003 ring_container->total_packets = 0;
3004
3005 /* write updated itr to ring container */
3006 ring_container->itr = itrval;
3007 }
3008
igc_set_itr(struct igc_q_vector * q_vector)3009 static void igc_set_itr(struct igc_q_vector *q_vector)
3010 {
3011 struct igc_adapter *adapter = q_vector->adapter;
3012 u32 new_itr = q_vector->itr_val;
3013 u8 current_itr = 0;
3014
3015 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3016 switch (adapter->link_speed) {
3017 case SPEED_10:
3018 case SPEED_100:
3019 current_itr = 0;
3020 new_itr = IGC_4K_ITR;
3021 goto set_itr_now;
3022 default:
3023 break;
3024 }
3025
3026 igc_update_itr(q_vector, &q_vector->tx);
3027 igc_update_itr(q_vector, &q_vector->rx);
3028
3029 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3030
3031 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3032 if (current_itr == lowest_latency &&
3033 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3034 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3035 current_itr = low_latency;
3036
3037 switch (current_itr) {
3038 /* counts and packets in update_itr are dependent on these numbers */
3039 case lowest_latency:
3040 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3041 break;
3042 case low_latency:
3043 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3044 break;
3045 case bulk_latency:
3046 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
3047 break;
3048 default:
3049 break;
3050 }
3051
3052 set_itr_now:
3053 if (new_itr != q_vector->itr_val) {
3054 /* this attempts to bias the interrupt rate towards Bulk
3055 * by adding intermediate steps when interrupt rate is
3056 * increasing
3057 */
3058 new_itr = new_itr > q_vector->itr_val ?
3059 max((new_itr * q_vector->itr_val) /
3060 (new_itr + (q_vector->itr_val >> 2)),
3061 new_itr) : new_itr;
3062 /* Don't write the value here; it resets the adapter's
3063 * internal timer, and causes us to delay far longer than
3064 * we should between interrupts. Instead, we write the ITR
3065 * value at the beginning of the next interrupt so the timing
3066 * ends up being correct.
3067 */
3068 q_vector->itr_val = new_itr;
3069 q_vector->set_itr = 1;
3070 }
3071 }
3072
igc_reset_interrupt_capability(struct igc_adapter * adapter)3073 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3074 {
3075 int v_idx = adapter->num_q_vectors;
3076
3077 if (adapter->msix_entries) {
3078 pci_disable_msix(adapter->pdev);
3079 kfree(adapter->msix_entries);
3080 adapter->msix_entries = NULL;
3081 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3082 pci_disable_msi(adapter->pdev);
3083 }
3084
3085 while (v_idx--)
3086 igc_reset_q_vector(adapter, v_idx);
3087 }
3088
3089 /**
3090 * igc_set_interrupt_capability - set MSI or MSI-X if supported
3091 * @adapter: Pointer to adapter structure
3092 * @msix: boolean value for MSI-X capability
3093 *
3094 * Attempt to configure interrupts using the best available
3095 * capabilities of the hardware and kernel.
3096 */
igc_set_interrupt_capability(struct igc_adapter * adapter,bool msix)3097 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3098 bool msix)
3099 {
3100 int numvecs, i;
3101 int err;
3102
3103 if (!msix)
3104 goto msi_only;
3105 adapter->flags |= IGC_FLAG_HAS_MSIX;
3106
3107 /* Number of supported queues. */
3108 adapter->num_rx_queues = adapter->rss_queues;
3109
3110 adapter->num_tx_queues = adapter->rss_queues;
3111
3112 /* start with one vector for every Rx queue */
3113 numvecs = adapter->num_rx_queues;
3114
3115 /* if Tx handler is separate add 1 for every Tx queue */
3116 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3117 numvecs += adapter->num_tx_queues;
3118
3119 /* store the number of vectors reserved for queues */
3120 adapter->num_q_vectors = numvecs;
3121
3122 /* add 1 vector for link status interrupts */
3123 numvecs++;
3124
3125 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3126 GFP_KERNEL);
3127
3128 if (!adapter->msix_entries)
3129 return;
3130
3131 /* populate entry values */
3132 for (i = 0; i < numvecs; i++)
3133 adapter->msix_entries[i].entry = i;
3134
3135 err = pci_enable_msix_range(adapter->pdev,
3136 adapter->msix_entries,
3137 numvecs,
3138 numvecs);
3139 if (err > 0)
3140 return;
3141
3142 kfree(adapter->msix_entries);
3143 adapter->msix_entries = NULL;
3144
3145 igc_reset_interrupt_capability(adapter);
3146
3147 msi_only:
3148 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3149
3150 adapter->rss_queues = 1;
3151 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3152 adapter->num_rx_queues = 1;
3153 adapter->num_tx_queues = 1;
3154 adapter->num_q_vectors = 1;
3155 if (!pci_enable_msi(adapter->pdev))
3156 adapter->flags |= IGC_FLAG_HAS_MSI;
3157 }
3158
3159 /**
3160 * igc_update_ring_itr - update the dynamic ITR value based on packet size
3161 * @q_vector: pointer to q_vector
3162 *
3163 * Stores a new ITR value based on strictly on packet size. This
3164 * algorithm is less sophisticated than that used in igc_update_itr,
3165 * due to the difficulty of synchronizing statistics across multiple
3166 * receive rings. The divisors and thresholds used by this function
3167 * were determined based on theoretical maximum wire speed and testing
3168 * data, in order to minimize response time while increasing bulk
3169 * throughput.
3170 * NOTE: This function is called only when operating in a multiqueue
3171 * receive environment.
3172 */
igc_update_ring_itr(struct igc_q_vector * q_vector)3173 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3174 {
3175 struct igc_adapter *adapter = q_vector->adapter;
3176 int new_val = q_vector->itr_val;
3177 int avg_wire_size = 0;
3178 unsigned int packets;
3179
3180 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3181 * ints/sec - ITR timer value of 120 ticks.
3182 */
3183 switch (adapter->link_speed) {
3184 case SPEED_10:
3185 case SPEED_100:
3186 new_val = IGC_4K_ITR;
3187 goto set_itr_val;
3188 default:
3189 break;
3190 }
3191
3192 packets = q_vector->rx.total_packets;
3193 if (packets)
3194 avg_wire_size = q_vector->rx.total_bytes / packets;
3195
3196 packets = q_vector->tx.total_packets;
3197 if (packets)
3198 avg_wire_size = max_t(u32, avg_wire_size,
3199 q_vector->tx.total_bytes / packets);
3200
3201 /* if avg_wire_size isn't set no work was done */
3202 if (!avg_wire_size)
3203 goto clear_counts;
3204
3205 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3206 avg_wire_size += 24;
3207
3208 /* Don't starve jumbo frames */
3209 avg_wire_size = min(avg_wire_size, 3000);
3210
3211 /* Give a little boost to mid-size frames */
3212 if (avg_wire_size > 300 && avg_wire_size < 1200)
3213 new_val = avg_wire_size / 3;
3214 else
3215 new_val = avg_wire_size / 2;
3216
3217 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3218 if (new_val < IGC_20K_ITR &&
3219 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3220 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3221 new_val = IGC_20K_ITR;
3222
3223 set_itr_val:
3224 if (new_val != q_vector->itr_val) {
3225 q_vector->itr_val = new_val;
3226 q_vector->set_itr = 1;
3227 }
3228 clear_counts:
3229 q_vector->rx.total_bytes = 0;
3230 q_vector->rx.total_packets = 0;
3231 q_vector->tx.total_bytes = 0;
3232 q_vector->tx.total_packets = 0;
3233 }
3234
igc_ring_irq_enable(struct igc_q_vector * q_vector)3235 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3236 {
3237 struct igc_adapter *adapter = q_vector->adapter;
3238 struct igc_hw *hw = &adapter->hw;
3239
3240 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3241 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3242 if (adapter->num_q_vectors == 1)
3243 igc_set_itr(q_vector);
3244 else
3245 igc_update_ring_itr(q_vector);
3246 }
3247
3248 if (!test_bit(__IGC_DOWN, &adapter->state)) {
3249 if (adapter->msix_entries)
3250 wr32(IGC_EIMS, q_vector->eims_value);
3251 else
3252 igc_irq_enable(adapter);
3253 }
3254 }
3255
igc_add_ring(struct igc_ring * ring,struct igc_ring_container * head)3256 static void igc_add_ring(struct igc_ring *ring,
3257 struct igc_ring_container *head)
3258 {
3259 head->ring = ring;
3260 head->count++;
3261 }
3262
3263 /**
3264 * igc_cache_ring_register - Descriptor ring to register mapping
3265 * @adapter: board private structure to initialize
3266 *
3267 * Once we know the feature-set enabled for the device, we'll cache
3268 * the register offset the descriptor ring is assigned to.
3269 */
igc_cache_ring_register(struct igc_adapter * adapter)3270 static void igc_cache_ring_register(struct igc_adapter *adapter)
3271 {
3272 int i = 0, j = 0;
3273
3274 switch (adapter->hw.mac.type) {
3275 case igc_i225:
3276 default:
3277 for (; i < adapter->num_rx_queues; i++)
3278 adapter->rx_ring[i]->reg_idx = i;
3279 for (; j < adapter->num_tx_queues; j++)
3280 adapter->tx_ring[j]->reg_idx = j;
3281 break;
3282 }
3283 }
3284
3285 /**
3286 * igc_poll - NAPI Rx polling callback
3287 * @napi: napi polling structure
3288 * @budget: count of how many packets we should handle
3289 */
igc_poll(struct napi_struct * napi,int budget)3290 static int igc_poll(struct napi_struct *napi, int budget)
3291 {
3292 struct igc_q_vector *q_vector = container_of(napi,
3293 struct igc_q_vector,
3294 napi);
3295 bool clean_complete = true;
3296 int work_done = 0;
3297
3298 if (q_vector->tx.ring)
3299 clean_complete = igc_clean_tx_irq(q_vector, budget);
3300
3301 if (q_vector->rx.ring) {
3302 int cleaned = igc_clean_rx_irq(q_vector, budget);
3303
3304 work_done += cleaned;
3305 if (cleaned >= budget)
3306 clean_complete = false;
3307 }
3308
3309 /* If all work not completed, return budget and keep polling */
3310 if (!clean_complete)
3311 return budget;
3312
3313 /* Exit the polling mode, but don't re-enable interrupts if stack might
3314 * poll us due to busy-polling
3315 */
3316 if (likely(napi_complete_done(napi, work_done)))
3317 igc_ring_irq_enable(q_vector);
3318
3319 return min(work_done, budget - 1);
3320 }
3321
3322 /**
3323 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3324 * @adapter: board private structure to initialize
3325 * @v_count: q_vectors allocated on adapter, used for ring interleaving
3326 * @v_idx: index of vector in adapter struct
3327 * @txr_count: total number of Tx rings to allocate
3328 * @txr_idx: index of first Tx ring to allocate
3329 * @rxr_count: total number of Rx rings to allocate
3330 * @rxr_idx: index of first Rx ring to allocate
3331 *
3332 * We allocate one q_vector. If allocation fails we return -ENOMEM.
3333 */
igc_alloc_q_vector(struct igc_adapter * adapter,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)3334 static int igc_alloc_q_vector(struct igc_adapter *adapter,
3335 unsigned int v_count, unsigned int v_idx,
3336 unsigned int txr_count, unsigned int txr_idx,
3337 unsigned int rxr_count, unsigned int rxr_idx)
3338 {
3339 struct igc_q_vector *q_vector;
3340 struct igc_ring *ring;
3341 int ring_count;
3342
3343 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
3344 if (txr_count > 1 || rxr_count > 1)
3345 return -ENOMEM;
3346
3347 ring_count = txr_count + rxr_count;
3348
3349 /* allocate q_vector and rings */
3350 q_vector = adapter->q_vector[v_idx];
3351 if (!q_vector)
3352 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3353 GFP_KERNEL);
3354 else
3355 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3356 if (!q_vector)
3357 return -ENOMEM;
3358
3359 /* initialize NAPI */
3360 netif_napi_add(adapter->netdev, &q_vector->napi,
3361 igc_poll, 64);
3362
3363 /* tie q_vector and adapter together */
3364 adapter->q_vector[v_idx] = q_vector;
3365 q_vector->adapter = adapter;
3366
3367 /* initialize work limits */
3368 q_vector->tx.work_limit = adapter->tx_work_limit;
3369
3370 /* initialize ITR configuration */
3371 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3372 q_vector->itr_val = IGC_START_ITR;
3373
3374 /* initialize pointer to rings */
3375 ring = q_vector->ring;
3376
3377 /* initialize ITR */
3378 if (rxr_count) {
3379 /* rx or rx/tx vector */
3380 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3381 q_vector->itr_val = adapter->rx_itr_setting;
3382 } else {
3383 /* tx only vector */
3384 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3385 q_vector->itr_val = adapter->tx_itr_setting;
3386 }
3387
3388 if (txr_count) {
3389 /* assign generic ring traits */
3390 ring->dev = &adapter->pdev->dev;
3391 ring->netdev = adapter->netdev;
3392
3393 /* configure backlink on ring */
3394 ring->q_vector = q_vector;
3395
3396 /* update q_vector Tx values */
3397 igc_add_ring(ring, &q_vector->tx);
3398
3399 /* apply Tx specific ring traits */
3400 ring->count = adapter->tx_ring_count;
3401 ring->queue_index = txr_idx;
3402
3403 /* assign ring to adapter */
3404 adapter->tx_ring[txr_idx] = ring;
3405
3406 /* push pointer to next ring */
3407 ring++;
3408 }
3409
3410 if (rxr_count) {
3411 /* assign generic ring traits */
3412 ring->dev = &adapter->pdev->dev;
3413 ring->netdev = adapter->netdev;
3414
3415 /* configure backlink on ring */
3416 ring->q_vector = q_vector;
3417
3418 /* update q_vector Rx values */
3419 igc_add_ring(ring, &q_vector->rx);
3420
3421 /* apply Rx specific ring traits */
3422 ring->count = adapter->rx_ring_count;
3423 ring->queue_index = rxr_idx;
3424
3425 /* assign ring to adapter */
3426 adapter->rx_ring[rxr_idx] = ring;
3427 }
3428
3429 return 0;
3430 }
3431
3432 /**
3433 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3434 * @adapter: board private structure to initialize
3435 *
3436 * We allocate one q_vector per queue interrupt. If allocation fails we
3437 * return -ENOMEM.
3438 */
igc_alloc_q_vectors(struct igc_adapter * adapter)3439 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3440 {
3441 int rxr_remaining = adapter->num_rx_queues;
3442 int txr_remaining = adapter->num_tx_queues;
3443 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3444 int q_vectors = adapter->num_q_vectors;
3445 int err;
3446
3447 if (q_vectors >= (rxr_remaining + txr_remaining)) {
3448 for (; rxr_remaining; v_idx++) {
3449 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3450 0, 0, 1, rxr_idx);
3451
3452 if (err)
3453 goto err_out;
3454
3455 /* update counts and index */
3456 rxr_remaining--;
3457 rxr_idx++;
3458 }
3459 }
3460
3461 for (; v_idx < q_vectors; v_idx++) {
3462 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3463 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3464
3465 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3466 tqpv, txr_idx, rqpv, rxr_idx);
3467
3468 if (err)
3469 goto err_out;
3470
3471 /* update counts and index */
3472 rxr_remaining -= rqpv;
3473 txr_remaining -= tqpv;
3474 rxr_idx++;
3475 txr_idx++;
3476 }
3477
3478 return 0;
3479
3480 err_out:
3481 adapter->num_tx_queues = 0;
3482 adapter->num_rx_queues = 0;
3483 adapter->num_q_vectors = 0;
3484
3485 while (v_idx--)
3486 igc_free_q_vector(adapter, v_idx);
3487
3488 return -ENOMEM;
3489 }
3490
3491 /**
3492 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3493 * @adapter: Pointer to adapter structure
3494 * @msix: boolean for MSI-X capability
3495 *
3496 * This function initializes the interrupts and allocates all of the queues.
3497 */
igc_init_interrupt_scheme(struct igc_adapter * adapter,bool msix)3498 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3499 {
3500 struct net_device *dev = adapter->netdev;
3501 int err = 0;
3502
3503 igc_set_interrupt_capability(adapter, msix);
3504
3505 err = igc_alloc_q_vectors(adapter);
3506 if (err) {
3507 netdev_err(dev, "Unable to allocate memory for vectors\n");
3508 goto err_alloc_q_vectors;
3509 }
3510
3511 igc_cache_ring_register(adapter);
3512
3513 return 0;
3514
3515 err_alloc_q_vectors:
3516 igc_reset_interrupt_capability(adapter);
3517 return err;
3518 }
3519
3520 /**
3521 * igc_sw_init - Initialize general software structures (struct igc_adapter)
3522 * @adapter: board private structure to initialize
3523 *
3524 * igc_sw_init initializes the Adapter private data structure.
3525 * Fields are initialized based on PCI device information and
3526 * OS network device settings (MTU size).
3527 */
igc_sw_init(struct igc_adapter * adapter)3528 static int igc_sw_init(struct igc_adapter *adapter)
3529 {
3530 struct net_device *netdev = adapter->netdev;
3531 struct pci_dev *pdev = adapter->pdev;
3532 struct igc_hw *hw = &adapter->hw;
3533
3534 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3535
3536 /* set default ring sizes */
3537 adapter->tx_ring_count = IGC_DEFAULT_TXD;
3538 adapter->rx_ring_count = IGC_DEFAULT_RXD;
3539
3540 /* set default ITR values */
3541 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
3542 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
3543
3544 /* set default work limits */
3545 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
3546
3547 /* adjust max frame to be at least the size of a standard frame */
3548 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3549 VLAN_HLEN;
3550 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3551
3552 mutex_init(&adapter->nfc_rule_lock);
3553 INIT_LIST_HEAD(&adapter->nfc_rule_list);
3554 adapter->nfc_rule_count = 0;
3555
3556 spin_lock_init(&adapter->stats64_lock);
3557 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3558 adapter->flags |= IGC_FLAG_HAS_MSIX;
3559
3560 igc_init_queue_configuration(adapter);
3561
3562 /* This call may decrease the number of queues */
3563 if (igc_init_interrupt_scheme(adapter, true)) {
3564 netdev_err(netdev, "Unable to allocate memory for queues\n");
3565 return -ENOMEM;
3566 }
3567
3568 /* Explicitly disable IRQ since the NIC can be in any state. */
3569 igc_irq_disable(adapter);
3570
3571 set_bit(__IGC_DOWN, &adapter->state);
3572
3573 return 0;
3574 }
3575
3576 /**
3577 * igc_up - Open the interface and prepare it to handle traffic
3578 * @adapter: board private structure
3579 */
igc_up(struct igc_adapter * adapter)3580 void igc_up(struct igc_adapter *adapter)
3581 {
3582 struct igc_hw *hw = &adapter->hw;
3583 int i = 0;
3584
3585 /* hardware has been reset, we need to reload some things */
3586 igc_configure(adapter);
3587
3588 clear_bit(__IGC_DOWN, &adapter->state);
3589
3590 for (i = 0; i < adapter->num_q_vectors; i++)
3591 napi_enable(&adapter->q_vector[i]->napi);
3592
3593 if (adapter->msix_entries)
3594 igc_configure_msix(adapter);
3595 else
3596 igc_assign_vector(adapter->q_vector[0], 0);
3597
3598 /* Clear any pending interrupts. */
3599 rd32(IGC_ICR);
3600 igc_irq_enable(adapter);
3601
3602 netif_tx_start_all_queues(adapter->netdev);
3603
3604 /* start the watchdog. */
3605 hw->mac.get_link_status = 1;
3606 schedule_work(&adapter->watchdog_task);
3607 }
3608
3609 /**
3610 * igc_update_stats - Update the board statistics counters
3611 * @adapter: board private structure
3612 */
igc_update_stats(struct igc_adapter * adapter)3613 void igc_update_stats(struct igc_adapter *adapter)
3614 {
3615 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
3616 struct pci_dev *pdev = adapter->pdev;
3617 struct igc_hw *hw = &adapter->hw;
3618 u64 _bytes, _packets;
3619 u64 bytes, packets;
3620 unsigned int start;
3621 u32 mpc;
3622 int i;
3623
3624 /* Prevent stats update while adapter is being reset, or if the pci
3625 * connection is down.
3626 */
3627 if (adapter->link_speed == 0)
3628 return;
3629 if (pci_channel_offline(pdev))
3630 return;
3631
3632 packets = 0;
3633 bytes = 0;
3634
3635 rcu_read_lock();
3636 for (i = 0; i < adapter->num_rx_queues; i++) {
3637 struct igc_ring *ring = adapter->rx_ring[i];
3638 u32 rqdpc = rd32(IGC_RQDPC(i));
3639
3640 if (hw->mac.type >= igc_i225)
3641 wr32(IGC_RQDPC(i), 0);
3642
3643 if (rqdpc) {
3644 ring->rx_stats.drops += rqdpc;
3645 net_stats->rx_fifo_errors += rqdpc;
3646 }
3647
3648 do {
3649 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
3650 _bytes = ring->rx_stats.bytes;
3651 _packets = ring->rx_stats.packets;
3652 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
3653 bytes += _bytes;
3654 packets += _packets;
3655 }
3656
3657 net_stats->rx_bytes = bytes;
3658 net_stats->rx_packets = packets;
3659
3660 packets = 0;
3661 bytes = 0;
3662 for (i = 0; i < adapter->num_tx_queues; i++) {
3663 struct igc_ring *ring = adapter->tx_ring[i];
3664
3665 do {
3666 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
3667 _bytes = ring->tx_stats.bytes;
3668 _packets = ring->tx_stats.packets;
3669 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
3670 bytes += _bytes;
3671 packets += _packets;
3672 }
3673 net_stats->tx_bytes = bytes;
3674 net_stats->tx_packets = packets;
3675 rcu_read_unlock();
3676
3677 /* read stats registers */
3678 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
3679 adapter->stats.gprc += rd32(IGC_GPRC);
3680 adapter->stats.gorc += rd32(IGC_GORCL);
3681 rd32(IGC_GORCH); /* clear GORCL */
3682 adapter->stats.bprc += rd32(IGC_BPRC);
3683 adapter->stats.mprc += rd32(IGC_MPRC);
3684 adapter->stats.roc += rd32(IGC_ROC);
3685
3686 adapter->stats.prc64 += rd32(IGC_PRC64);
3687 adapter->stats.prc127 += rd32(IGC_PRC127);
3688 adapter->stats.prc255 += rd32(IGC_PRC255);
3689 adapter->stats.prc511 += rd32(IGC_PRC511);
3690 adapter->stats.prc1023 += rd32(IGC_PRC1023);
3691 adapter->stats.prc1522 += rd32(IGC_PRC1522);
3692 adapter->stats.tlpic += rd32(IGC_TLPIC);
3693 adapter->stats.rlpic += rd32(IGC_RLPIC);
3694
3695 mpc = rd32(IGC_MPC);
3696 adapter->stats.mpc += mpc;
3697 net_stats->rx_fifo_errors += mpc;
3698 adapter->stats.scc += rd32(IGC_SCC);
3699 adapter->stats.ecol += rd32(IGC_ECOL);
3700 adapter->stats.mcc += rd32(IGC_MCC);
3701 adapter->stats.latecol += rd32(IGC_LATECOL);
3702 adapter->stats.dc += rd32(IGC_DC);
3703 adapter->stats.rlec += rd32(IGC_RLEC);
3704 adapter->stats.xonrxc += rd32(IGC_XONRXC);
3705 adapter->stats.xontxc += rd32(IGC_XONTXC);
3706 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
3707 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
3708 adapter->stats.fcruc += rd32(IGC_FCRUC);
3709 adapter->stats.gptc += rd32(IGC_GPTC);
3710 adapter->stats.gotc += rd32(IGC_GOTCL);
3711 rd32(IGC_GOTCH); /* clear GOTCL */
3712 adapter->stats.rnbc += rd32(IGC_RNBC);
3713 adapter->stats.ruc += rd32(IGC_RUC);
3714 adapter->stats.rfc += rd32(IGC_RFC);
3715 adapter->stats.rjc += rd32(IGC_RJC);
3716 adapter->stats.tor += rd32(IGC_TORH);
3717 adapter->stats.tot += rd32(IGC_TOTH);
3718 adapter->stats.tpr += rd32(IGC_TPR);
3719
3720 adapter->stats.ptc64 += rd32(IGC_PTC64);
3721 adapter->stats.ptc127 += rd32(IGC_PTC127);
3722 adapter->stats.ptc255 += rd32(IGC_PTC255);
3723 adapter->stats.ptc511 += rd32(IGC_PTC511);
3724 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
3725 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
3726
3727 adapter->stats.mptc += rd32(IGC_MPTC);
3728 adapter->stats.bptc += rd32(IGC_BPTC);
3729
3730 adapter->stats.tpt += rd32(IGC_TPT);
3731 adapter->stats.colc += rd32(IGC_COLC);
3732 adapter->stats.colc += rd32(IGC_RERC);
3733
3734 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
3735
3736 adapter->stats.tsctc += rd32(IGC_TSCTC);
3737
3738 adapter->stats.iac += rd32(IGC_IAC);
3739
3740 /* Fill out the OS statistics structure */
3741 net_stats->multicast = adapter->stats.mprc;
3742 net_stats->collisions = adapter->stats.colc;
3743
3744 /* Rx Errors */
3745
3746 /* RLEC on some newer hardware can be incorrect so build
3747 * our own version based on RUC and ROC
3748 */
3749 net_stats->rx_errors = adapter->stats.rxerrc +
3750 adapter->stats.crcerrs + adapter->stats.algnerrc +
3751 adapter->stats.ruc + adapter->stats.roc +
3752 adapter->stats.cexterr;
3753 net_stats->rx_length_errors = adapter->stats.ruc +
3754 adapter->stats.roc;
3755 net_stats->rx_crc_errors = adapter->stats.crcerrs;
3756 net_stats->rx_frame_errors = adapter->stats.algnerrc;
3757 net_stats->rx_missed_errors = adapter->stats.mpc;
3758
3759 /* Tx Errors */
3760 net_stats->tx_errors = adapter->stats.ecol +
3761 adapter->stats.latecol;
3762 net_stats->tx_aborted_errors = adapter->stats.ecol;
3763 net_stats->tx_window_errors = adapter->stats.latecol;
3764 net_stats->tx_carrier_errors = adapter->stats.tncrs;
3765
3766 /* Tx Dropped needs to be maintained elsewhere */
3767
3768 /* Management Stats */
3769 adapter->stats.mgptc += rd32(IGC_MGTPTC);
3770 adapter->stats.mgprc += rd32(IGC_MGTPRC);
3771 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
3772 }
3773
3774 /**
3775 * igc_down - Close the interface
3776 * @adapter: board private structure
3777 */
igc_down(struct igc_adapter * adapter)3778 void igc_down(struct igc_adapter *adapter)
3779 {
3780 struct net_device *netdev = adapter->netdev;
3781 struct igc_hw *hw = &adapter->hw;
3782 u32 tctl, rctl;
3783 int i = 0;
3784
3785 set_bit(__IGC_DOWN, &adapter->state);
3786
3787 igc_ptp_suspend(adapter);
3788
3789 if (pci_device_is_present(adapter->pdev)) {
3790 /* disable receives in the hardware */
3791 rctl = rd32(IGC_RCTL);
3792 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
3793 /* flush and sleep below */
3794 }
3795 /* set trans_start so we don't get spurious watchdogs during reset */
3796 netif_trans_update(netdev);
3797
3798 netif_carrier_off(netdev);
3799 netif_tx_stop_all_queues(netdev);
3800
3801 if (pci_device_is_present(adapter->pdev)) {
3802 /* disable transmits in the hardware */
3803 tctl = rd32(IGC_TCTL);
3804 tctl &= ~IGC_TCTL_EN;
3805 wr32(IGC_TCTL, tctl);
3806 /* flush both disables and wait for them to finish */
3807 wrfl();
3808 usleep_range(10000, 20000);
3809
3810 igc_irq_disable(adapter);
3811 }
3812
3813 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
3814
3815 for (i = 0; i < adapter->num_q_vectors; i++) {
3816 if (adapter->q_vector[i]) {
3817 napi_synchronize(&adapter->q_vector[i]->napi);
3818 napi_disable(&adapter->q_vector[i]->napi);
3819 }
3820 }
3821
3822 del_timer_sync(&adapter->watchdog_timer);
3823 del_timer_sync(&adapter->phy_info_timer);
3824
3825 /* record the stats before reset*/
3826 spin_lock(&adapter->stats64_lock);
3827 igc_update_stats(adapter);
3828 spin_unlock(&adapter->stats64_lock);
3829
3830 adapter->link_speed = 0;
3831 adapter->link_duplex = 0;
3832
3833 if (!pci_channel_offline(adapter->pdev))
3834 igc_reset(adapter);
3835
3836 /* clear VLAN promisc flag so VFTA will be updated if necessary */
3837 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
3838
3839 igc_clean_all_tx_rings(adapter);
3840 igc_clean_all_rx_rings(adapter);
3841 }
3842
igc_reinit_locked(struct igc_adapter * adapter)3843 void igc_reinit_locked(struct igc_adapter *adapter)
3844 {
3845 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3846 usleep_range(1000, 2000);
3847 igc_down(adapter);
3848 igc_up(adapter);
3849 clear_bit(__IGC_RESETTING, &adapter->state);
3850 }
3851
igc_reset_task(struct work_struct * work)3852 static void igc_reset_task(struct work_struct *work)
3853 {
3854 struct igc_adapter *adapter;
3855
3856 adapter = container_of(work, struct igc_adapter, reset_task);
3857
3858 rtnl_lock();
3859 /* If we're already down or resetting, just bail */
3860 if (test_bit(__IGC_DOWN, &adapter->state) ||
3861 test_bit(__IGC_RESETTING, &adapter->state)) {
3862 rtnl_unlock();
3863 return;
3864 }
3865
3866 igc_rings_dump(adapter);
3867 igc_regs_dump(adapter);
3868 netdev_err(adapter->netdev, "Reset adapter\n");
3869 igc_reinit_locked(adapter);
3870 rtnl_unlock();
3871 }
3872
3873 /**
3874 * igc_change_mtu - Change the Maximum Transfer Unit
3875 * @netdev: network interface device structure
3876 * @new_mtu: new value for maximum frame size
3877 *
3878 * Returns 0 on success, negative on failure
3879 */
igc_change_mtu(struct net_device * netdev,int new_mtu)3880 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
3881 {
3882 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
3883 struct igc_adapter *adapter = netdev_priv(netdev);
3884
3885 /* adjust max frame to be at least the size of a standard frame */
3886 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
3887 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
3888
3889 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
3890 usleep_range(1000, 2000);
3891
3892 /* igc_down has a dependency on max_frame_size */
3893 adapter->max_frame_size = max_frame;
3894
3895 if (netif_running(netdev))
3896 igc_down(adapter);
3897
3898 netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
3899 netdev->mtu = new_mtu;
3900
3901 if (netif_running(netdev))
3902 igc_up(adapter);
3903 else
3904 igc_reset(adapter);
3905
3906 clear_bit(__IGC_RESETTING, &adapter->state);
3907
3908 return 0;
3909 }
3910
3911 /**
3912 * igc_get_stats64 - Get System Network Statistics
3913 * @netdev: network interface device structure
3914 * @stats: rtnl_link_stats64 pointer
3915 *
3916 * Returns the address of the device statistics structure.
3917 * The statistics are updated here and also from the timer callback.
3918 */
igc_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)3919 static void igc_get_stats64(struct net_device *netdev,
3920 struct rtnl_link_stats64 *stats)
3921 {
3922 struct igc_adapter *adapter = netdev_priv(netdev);
3923
3924 spin_lock(&adapter->stats64_lock);
3925 if (!test_bit(__IGC_RESETTING, &adapter->state))
3926 igc_update_stats(adapter);
3927 memcpy(stats, &adapter->stats64, sizeof(*stats));
3928 spin_unlock(&adapter->stats64_lock);
3929 }
3930
igc_fix_features(struct net_device * netdev,netdev_features_t features)3931 static netdev_features_t igc_fix_features(struct net_device *netdev,
3932 netdev_features_t features)
3933 {
3934 /* Since there is no support for separate Rx/Tx vlan accel
3935 * enable/disable make sure Tx flag is always in same state as Rx.
3936 */
3937 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3938 features |= NETIF_F_HW_VLAN_CTAG_TX;
3939 else
3940 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
3941
3942 return features;
3943 }
3944
igc_set_features(struct net_device * netdev,netdev_features_t features)3945 static int igc_set_features(struct net_device *netdev,
3946 netdev_features_t features)
3947 {
3948 netdev_features_t changed = netdev->features ^ features;
3949 struct igc_adapter *adapter = netdev_priv(netdev);
3950
3951 /* Add VLAN support */
3952 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
3953 return 0;
3954
3955 if (!(features & NETIF_F_NTUPLE))
3956 igc_flush_nfc_rules(adapter);
3957
3958 netdev->features = features;
3959
3960 if (netif_running(netdev))
3961 igc_reinit_locked(adapter);
3962 else
3963 igc_reset(adapter);
3964
3965 return 1;
3966 }
3967
3968 static netdev_features_t
igc_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3969 igc_features_check(struct sk_buff *skb, struct net_device *dev,
3970 netdev_features_t features)
3971 {
3972 unsigned int network_hdr_len, mac_hdr_len;
3973
3974 /* Make certain the headers can be described by a context descriptor */
3975 mac_hdr_len = skb_network_header(skb) - skb->data;
3976 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
3977 return features & ~(NETIF_F_HW_CSUM |
3978 NETIF_F_SCTP_CRC |
3979 NETIF_F_HW_VLAN_CTAG_TX |
3980 NETIF_F_TSO |
3981 NETIF_F_TSO6);
3982
3983 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
3984 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
3985 return features & ~(NETIF_F_HW_CSUM |
3986 NETIF_F_SCTP_CRC |
3987 NETIF_F_TSO |
3988 NETIF_F_TSO6);
3989
3990 /* We can only support IPv4 TSO in tunnels if we can mangle the
3991 * inner IP ID field, so strip TSO if MANGLEID is not supported.
3992 */
3993 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
3994 features &= ~NETIF_F_TSO;
3995
3996 return features;
3997 }
3998
igc_tsync_interrupt(struct igc_adapter * adapter)3999 static void igc_tsync_interrupt(struct igc_adapter *adapter)
4000 {
4001 struct igc_hw *hw = &adapter->hw;
4002 u32 tsicr = rd32(IGC_TSICR);
4003 u32 ack = 0;
4004
4005 if (tsicr & IGC_TSICR_TXTS) {
4006 /* retrieve hardware timestamp */
4007 schedule_work(&adapter->ptp_tx_work);
4008 ack |= IGC_TSICR_TXTS;
4009 }
4010
4011 /* acknowledge the interrupts */
4012 wr32(IGC_TSICR, ack);
4013 }
4014
4015 /**
4016 * igc_msix_other - msix other interrupt handler
4017 * @irq: interrupt number
4018 * @data: pointer to a q_vector
4019 */
igc_msix_other(int irq,void * data)4020 static irqreturn_t igc_msix_other(int irq, void *data)
4021 {
4022 struct igc_adapter *adapter = data;
4023 struct igc_hw *hw = &adapter->hw;
4024 u32 icr = rd32(IGC_ICR);
4025
4026 /* reading ICR causes bit 31 of EICR to be cleared */
4027 if (icr & IGC_ICR_DRSTA)
4028 schedule_work(&adapter->reset_task);
4029
4030 if (icr & IGC_ICR_DOUTSYNC) {
4031 /* HW is reporting DMA is out of sync */
4032 adapter->stats.doosync++;
4033 }
4034
4035 if (icr & IGC_ICR_LSC) {
4036 hw->mac.get_link_status = 1;
4037 /* guard against interrupt when we're going down */
4038 if (!test_bit(__IGC_DOWN, &adapter->state))
4039 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4040 }
4041
4042 if (icr & IGC_ICR_TS)
4043 igc_tsync_interrupt(adapter);
4044
4045 wr32(IGC_EIMS, adapter->eims_other);
4046
4047 return IRQ_HANDLED;
4048 }
4049
igc_write_itr(struct igc_q_vector * q_vector)4050 static void igc_write_itr(struct igc_q_vector *q_vector)
4051 {
4052 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4053
4054 if (!q_vector->set_itr)
4055 return;
4056
4057 if (!itr_val)
4058 itr_val = IGC_ITR_VAL_MASK;
4059
4060 itr_val |= IGC_EITR_CNT_IGNR;
4061
4062 writel(itr_val, q_vector->itr_register);
4063 q_vector->set_itr = 0;
4064 }
4065
igc_msix_ring(int irq,void * data)4066 static irqreturn_t igc_msix_ring(int irq, void *data)
4067 {
4068 struct igc_q_vector *q_vector = data;
4069
4070 /* Write the ITR value calculated from the previous interrupt. */
4071 igc_write_itr(q_vector);
4072
4073 napi_schedule(&q_vector->napi);
4074
4075 return IRQ_HANDLED;
4076 }
4077
4078 /**
4079 * igc_request_msix - Initialize MSI-X interrupts
4080 * @adapter: Pointer to adapter structure
4081 *
4082 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4083 * kernel.
4084 */
igc_request_msix(struct igc_adapter * adapter)4085 static int igc_request_msix(struct igc_adapter *adapter)
4086 {
4087 unsigned int num_q_vectors = adapter->num_q_vectors;
4088 int i = 0, err = 0, vector = 0, free_vector = 0;
4089 struct net_device *netdev = adapter->netdev;
4090
4091 err = request_irq(adapter->msix_entries[vector].vector,
4092 &igc_msix_other, 0, netdev->name, adapter);
4093 if (err)
4094 goto err_out;
4095
4096 if (num_q_vectors > MAX_Q_VECTORS) {
4097 num_q_vectors = MAX_Q_VECTORS;
4098 dev_warn(&adapter->pdev->dev,
4099 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
4100 adapter->num_q_vectors, MAX_Q_VECTORS);
4101 }
4102 for (i = 0; i < num_q_vectors; i++) {
4103 struct igc_q_vector *q_vector = adapter->q_vector[i];
4104
4105 vector++;
4106
4107 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4108
4109 if (q_vector->rx.ring && q_vector->tx.ring)
4110 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4111 q_vector->rx.ring->queue_index);
4112 else if (q_vector->tx.ring)
4113 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4114 q_vector->tx.ring->queue_index);
4115 else if (q_vector->rx.ring)
4116 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4117 q_vector->rx.ring->queue_index);
4118 else
4119 sprintf(q_vector->name, "%s-unused", netdev->name);
4120
4121 err = request_irq(adapter->msix_entries[vector].vector,
4122 igc_msix_ring, 0, q_vector->name,
4123 q_vector);
4124 if (err)
4125 goto err_free;
4126 }
4127
4128 igc_configure_msix(adapter);
4129 return 0;
4130
4131 err_free:
4132 /* free already assigned IRQs */
4133 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4134
4135 vector--;
4136 for (i = 0; i < vector; i++) {
4137 free_irq(adapter->msix_entries[free_vector++].vector,
4138 adapter->q_vector[i]);
4139 }
4140 err_out:
4141 return err;
4142 }
4143
4144 /**
4145 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4146 * @adapter: Pointer to adapter structure
4147 *
4148 * This function resets the device so that it has 0 rx queues, tx queues, and
4149 * MSI-X interrupts allocated.
4150 */
igc_clear_interrupt_scheme(struct igc_adapter * adapter)4151 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4152 {
4153 igc_free_q_vectors(adapter);
4154 igc_reset_interrupt_capability(adapter);
4155 }
4156
4157 /* Need to wait a few seconds after link up to get diagnostic information from
4158 * the phy
4159 */
igc_update_phy_info(struct timer_list * t)4160 static void igc_update_phy_info(struct timer_list *t)
4161 {
4162 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4163
4164 igc_get_phy_info(&adapter->hw);
4165 }
4166
4167 /**
4168 * igc_has_link - check shared code for link and determine up/down
4169 * @adapter: pointer to driver private info
4170 */
igc_has_link(struct igc_adapter * adapter)4171 bool igc_has_link(struct igc_adapter *adapter)
4172 {
4173 struct igc_hw *hw = &adapter->hw;
4174 bool link_active = false;
4175
4176 /* get_link_status is set on LSC (link status) interrupt or
4177 * rx sequence error interrupt. get_link_status will stay
4178 * false until the igc_check_for_link establishes link
4179 * for copper adapters ONLY
4180 */
4181 if (!hw->mac.get_link_status)
4182 return true;
4183 hw->mac.ops.check_for_link(hw);
4184 link_active = !hw->mac.get_link_status;
4185
4186 if (hw->mac.type == igc_i225) {
4187 if (!netif_carrier_ok(adapter->netdev)) {
4188 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4189 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4190 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4191 adapter->link_check_timeout = jiffies;
4192 }
4193 }
4194
4195 return link_active;
4196 }
4197
4198 /**
4199 * igc_watchdog - Timer Call-back
4200 * @t: timer for the watchdog
4201 */
igc_watchdog(struct timer_list * t)4202 static void igc_watchdog(struct timer_list *t)
4203 {
4204 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4205 /* Do the rest outside of interrupt context */
4206 schedule_work(&adapter->watchdog_task);
4207 }
4208
igc_watchdog_task(struct work_struct * work)4209 static void igc_watchdog_task(struct work_struct *work)
4210 {
4211 struct igc_adapter *adapter = container_of(work,
4212 struct igc_adapter,
4213 watchdog_task);
4214 struct net_device *netdev = adapter->netdev;
4215 struct igc_hw *hw = &adapter->hw;
4216 struct igc_phy_info *phy = &hw->phy;
4217 u16 phy_data, retry_count = 20;
4218 u32 link;
4219 int i;
4220
4221 link = igc_has_link(adapter);
4222
4223 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4224 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4225 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4226 else
4227 link = false;
4228 }
4229
4230 if (link) {
4231 /* Cancel scheduled suspend requests. */
4232 pm_runtime_resume(netdev->dev.parent);
4233
4234 if (!netif_carrier_ok(netdev)) {
4235 u32 ctrl;
4236
4237 hw->mac.ops.get_speed_and_duplex(hw,
4238 &adapter->link_speed,
4239 &adapter->link_duplex);
4240
4241 ctrl = rd32(IGC_CTRL);
4242 /* Link status message must follow this format */
4243 netdev_info(netdev,
4244 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4245 adapter->link_speed,
4246 adapter->link_duplex == FULL_DUPLEX ?
4247 "Full" : "Half",
4248 (ctrl & IGC_CTRL_TFCE) &&
4249 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4250 (ctrl & IGC_CTRL_RFCE) ? "RX" :
4251 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
4252
4253 /* disable EEE if enabled */
4254 if ((adapter->flags & IGC_FLAG_EEE) &&
4255 adapter->link_duplex == HALF_DUPLEX) {
4256 netdev_info(netdev,
4257 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
4258 adapter->hw.dev_spec._base.eee_enable = false;
4259 adapter->flags &= ~IGC_FLAG_EEE;
4260 }
4261
4262 /* check if SmartSpeed worked */
4263 igc_check_downshift(hw);
4264 if (phy->speed_downgraded)
4265 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4266
4267 /* adjust timeout factor according to speed/duplex */
4268 adapter->tx_timeout_factor = 1;
4269 switch (adapter->link_speed) {
4270 case SPEED_10:
4271 adapter->tx_timeout_factor = 14;
4272 break;
4273 case SPEED_100:
4274 /* maybe add some timeout factor ? */
4275 break;
4276 }
4277
4278 if (adapter->link_speed != SPEED_1000)
4279 goto no_wait;
4280
4281 /* wait for Remote receiver status OK */
4282 retry_read_status:
4283 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
4284 &phy_data)) {
4285 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4286 retry_count) {
4287 msleep(100);
4288 retry_count--;
4289 goto retry_read_status;
4290 } else if (!retry_count) {
4291 netdev_err(netdev, "exceed max 2 second\n");
4292 }
4293 } else {
4294 netdev_err(netdev, "read 1000Base-T Status Reg\n");
4295 }
4296 no_wait:
4297 netif_carrier_on(netdev);
4298
4299 /* link state has changed, schedule phy info update */
4300 if (!test_bit(__IGC_DOWN, &adapter->state))
4301 mod_timer(&adapter->phy_info_timer,
4302 round_jiffies(jiffies + 2 * HZ));
4303 }
4304 } else {
4305 if (netif_carrier_ok(netdev)) {
4306 adapter->link_speed = 0;
4307 adapter->link_duplex = 0;
4308
4309 /* Links status message must follow this format */
4310 netdev_info(netdev, "NIC Link is Down\n");
4311 netif_carrier_off(netdev);
4312
4313 /* link state has changed, schedule phy info update */
4314 if (!test_bit(__IGC_DOWN, &adapter->state))
4315 mod_timer(&adapter->phy_info_timer,
4316 round_jiffies(jiffies + 2 * HZ));
4317
4318 /* link is down, time to check for alternate media */
4319 if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
4320 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4321 schedule_work(&adapter->reset_task);
4322 /* return immediately */
4323 return;
4324 }
4325 }
4326 pm_schedule_suspend(netdev->dev.parent,
4327 MSEC_PER_SEC * 5);
4328
4329 /* also check for alternate media here */
4330 } else if (!netif_carrier_ok(netdev) &&
4331 (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
4332 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
4333 schedule_work(&adapter->reset_task);
4334 /* return immediately */
4335 return;
4336 }
4337 }
4338 }
4339
4340 spin_lock(&adapter->stats64_lock);
4341 igc_update_stats(adapter);
4342 spin_unlock(&adapter->stats64_lock);
4343
4344 for (i = 0; i < adapter->num_tx_queues; i++) {
4345 struct igc_ring *tx_ring = adapter->tx_ring[i];
4346
4347 if (!netif_carrier_ok(netdev)) {
4348 /* We've lost link, so the controller stops DMA,
4349 * but we've got queued Tx work that's never going
4350 * to get done, so reset controller to flush Tx.
4351 * (Do the reset outside of interrupt context).
4352 */
4353 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
4354 adapter->tx_timeout_count++;
4355 schedule_work(&adapter->reset_task);
4356 /* return immediately since reset is imminent */
4357 return;
4358 }
4359 }
4360
4361 /* Force detection of hung controller every watchdog period */
4362 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4363 }
4364
4365 /* Cause software interrupt to ensure Rx ring is cleaned */
4366 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4367 u32 eics = 0;
4368
4369 for (i = 0; i < adapter->num_q_vectors; i++)
4370 eics |= adapter->q_vector[i]->eims_value;
4371 wr32(IGC_EICS, eics);
4372 } else {
4373 wr32(IGC_ICS, IGC_ICS_RXDMT0);
4374 }
4375
4376 igc_ptp_tx_hang(adapter);
4377
4378 /* Reset the timer */
4379 if (!test_bit(__IGC_DOWN, &adapter->state)) {
4380 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
4381 mod_timer(&adapter->watchdog_timer,
4382 round_jiffies(jiffies + HZ));
4383 else
4384 mod_timer(&adapter->watchdog_timer,
4385 round_jiffies(jiffies + 2 * HZ));
4386 }
4387 }
4388
4389 /**
4390 * igc_intr_msi - Interrupt Handler
4391 * @irq: interrupt number
4392 * @data: pointer to a network interface device structure
4393 */
igc_intr_msi(int irq,void * data)4394 static irqreturn_t igc_intr_msi(int irq, void *data)
4395 {
4396 struct igc_adapter *adapter = data;
4397 struct igc_q_vector *q_vector = adapter->q_vector[0];
4398 struct igc_hw *hw = &adapter->hw;
4399 /* read ICR disables interrupts using IAM */
4400 u32 icr = rd32(IGC_ICR);
4401
4402 igc_write_itr(q_vector);
4403
4404 if (icr & IGC_ICR_DRSTA)
4405 schedule_work(&adapter->reset_task);
4406
4407 if (icr & IGC_ICR_DOUTSYNC) {
4408 /* HW is reporting DMA is out of sync */
4409 adapter->stats.doosync++;
4410 }
4411
4412 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4413 hw->mac.get_link_status = 1;
4414 if (!test_bit(__IGC_DOWN, &adapter->state))
4415 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4416 }
4417
4418 if (icr & IGC_ICR_TS)
4419 igc_tsync_interrupt(adapter);
4420
4421 napi_schedule(&q_vector->napi);
4422
4423 return IRQ_HANDLED;
4424 }
4425
4426 /**
4427 * igc_intr - Legacy Interrupt Handler
4428 * @irq: interrupt number
4429 * @data: pointer to a network interface device structure
4430 */
igc_intr(int irq,void * data)4431 static irqreturn_t igc_intr(int irq, void *data)
4432 {
4433 struct igc_adapter *adapter = data;
4434 struct igc_q_vector *q_vector = adapter->q_vector[0];
4435 struct igc_hw *hw = &adapter->hw;
4436 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
4437 * need for the IMC write
4438 */
4439 u32 icr = rd32(IGC_ICR);
4440
4441 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
4442 * not set, then the adapter didn't send an interrupt
4443 */
4444 if (!(icr & IGC_ICR_INT_ASSERTED))
4445 return IRQ_NONE;
4446
4447 igc_write_itr(q_vector);
4448
4449 if (icr & IGC_ICR_DRSTA)
4450 schedule_work(&adapter->reset_task);
4451
4452 if (icr & IGC_ICR_DOUTSYNC) {
4453 /* HW is reporting DMA is out of sync */
4454 adapter->stats.doosync++;
4455 }
4456
4457 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
4458 hw->mac.get_link_status = 1;
4459 /* guard against interrupt when we're going down */
4460 if (!test_bit(__IGC_DOWN, &adapter->state))
4461 mod_timer(&adapter->watchdog_timer, jiffies + 1);
4462 }
4463
4464 if (icr & IGC_ICR_TS)
4465 igc_tsync_interrupt(adapter);
4466
4467 napi_schedule(&q_vector->napi);
4468
4469 return IRQ_HANDLED;
4470 }
4471
igc_free_irq(struct igc_adapter * adapter)4472 static void igc_free_irq(struct igc_adapter *adapter)
4473 {
4474 if (adapter->msix_entries) {
4475 int vector = 0, i;
4476
4477 free_irq(adapter->msix_entries[vector++].vector, adapter);
4478
4479 for (i = 0; i < adapter->num_q_vectors; i++)
4480 free_irq(adapter->msix_entries[vector++].vector,
4481 adapter->q_vector[i]);
4482 } else {
4483 free_irq(adapter->pdev->irq, adapter);
4484 }
4485 }
4486
4487 /**
4488 * igc_request_irq - initialize interrupts
4489 * @adapter: Pointer to adapter structure
4490 *
4491 * Attempts to configure interrupts using the best available
4492 * capabilities of the hardware and kernel.
4493 */
igc_request_irq(struct igc_adapter * adapter)4494 static int igc_request_irq(struct igc_adapter *adapter)
4495 {
4496 struct net_device *netdev = adapter->netdev;
4497 struct pci_dev *pdev = adapter->pdev;
4498 int err = 0;
4499
4500 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4501 err = igc_request_msix(adapter);
4502 if (!err)
4503 goto request_done;
4504 /* fall back to MSI */
4505 igc_free_all_tx_resources(adapter);
4506 igc_free_all_rx_resources(adapter);
4507
4508 igc_clear_interrupt_scheme(adapter);
4509 err = igc_init_interrupt_scheme(adapter, false);
4510 if (err)
4511 goto request_done;
4512 igc_setup_all_tx_resources(adapter);
4513 igc_setup_all_rx_resources(adapter);
4514 igc_configure(adapter);
4515 }
4516
4517 igc_assign_vector(adapter->q_vector[0], 0);
4518
4519 if (adapter->flags & IGC_FLAG_HAS_MSI) {
4520 err = request_irq(pdev->irq, &igc_intr_msi, 0,
4521 netdev->name, adapter);
4522 if (!err)
4523 goto request_done;
4524
4525 /* fall back to legacy interrupts */
4526 igc_reset_interrupt_capability(adapter);
4527 adapter->flags &= ~IGC_FLAG_HAS_MSI;
4528 }
4529
4530 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
4531 netdev->name, adapter);
4532
4533 if (err)
4534 netdev_err(netdev, "Error %d getting interrupt\n", err);
4535
4536 request_done:
4537 return err;
4538 }
4539
4540 /**
4541 * __igc_open - Called when a network interface is made active
4542 * @netdev: network interface device structure
4543 * @resuming: boolean indicating if the device is resuming
4544 *
4545 * Returns 0 on success, negative value on failure
4546 *
4547 * The open entry point is called when a network interface is made
4548 * active by the system (IFF_UP). At this point all resources needed
4549 * for transmit and receive operations are allocated, the interrupt
4550 * handler is registered with the OS, the watchdog timer is started,
4551 * and the stack is notified that the interface is ready.
4552 */
__igc_open(struct net_device * netdev,bool resuming)4553 static int __igc_open(struct net_device *netdev, bool resuming)
4554 {
4555 struct igc_adapter *adapter = netdev_priv(netdev);
4556 struct pci_dev *pdev = adapter->pdev;
4557 struct igc_hw *hw = &adapter->hw;
4558 int err = 0;
4559 int i = 0;
4560
4561 /* disallow open during test */
4562
4563 if (test_bit(__IGC_TESTING, &adapter->state)) {
4564 WARN_ON(resuming);
4565 return -EBUSY;
4566 }
4567
4568 if (!resuming)
4569 pm_runtime_get_sync(&pdev->dev);
4570
4571 netif_carrier_off(netdev);
4572
4573 /* allocate transmit descriptors */
4574 err = igc_setup_all_tx_resources(adapter);
4575 if (err)
4576 goto err_setup_tx;
4577
4578 /* allocate receive descriptors */
4579 err = igc_setup_all_rx_resources(adapter);
4580 if (err)
4581 goto err_setup_rx;
4582
4583 igc_power_up_link(adapter);
4584
4585 igc_configure(adapter);
4586
4587 err = igc_request_irq(adapter);
4588 if (err)
4589 goto err_req_irq;
4590
4591 /* Notify the stack of the actual queue counts. */
4592 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
4593 if (err)
4594 goto err_set_queues;
4595
4596 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
4597 if (err)
4598 goto err_set_queues;
4599
4600 clear_bit(__IGC_DOWN, &adapter->state);
4601
4602 for (i = 0; i < adapter->num_q_vectors; i++)
4603 napi_enable(&adapter->q_vector[i]->napi);
4604
4605 /* Clear any pending interrupts. */
4606 rd32(IGC_ICR);
4607 igc_irq_enable(adapter);
4608
4609 if (!resuming)
4610 pm_runtime_put(&pdev->dev);
4611
4612 netif_tx_start_all_queues(netdev);
4613
4614 /* start the watchdog. */
4615 hw->mac.get_link_status = 1;
4616 schedule_work(&adapter->watchdog_task);
4617
4618 return IGC_SUCCESS;
4619
4620 err_set_queues:
4621 igc_free_irq(adapter);
4622 err_req_irq:
4623 igc_release_hw_control(adapter);
4624 igc_power_down_phy_copper_base(&adapter->hw);
4625 igc_free_all_rx_resources(adapter);
4626 err_setup_rx:
4627 igc_free_all_tx_resources(adapter);
4628 err_setup_tx:
4629 igc_reset(adapter);
4630 if (!resuming)
4631 pm_runtime_put(&pdev->dev);
4632
4633 return err;
4634 }
4635
igc_open(struct net_device * netdev)4636 int igc_open(struct net_device *netdev)
4637 {
4638 return __igc_open(netdev, false);
4639 }
4640
4641 /**
4642 * __igc_close - Disables a network interface
4643 * @netdev: network interface device structure
4644 * @suspending: boolean indicating the device is suspending
4645 *
4646 * Returns 0, this is not allowed to fail
4647 *
4648 * The close entry point is called when an interface is de-activated
4649 * by the OS. The hardware is still under the driver's control, but
4650 * needs to be disabled. A global MAC reset is issued to stop the
4651 * hardware, and all transmit and receive resources are freed.
4652 */
__igc_close(struct net_device * netdev,bool suspending)4653 static int __igc_close(struct net_device *netdev, bool suspending)
4654 {
4655 struct igc_adapter *adapter = netdev_priv(netdev);
4656 struct pci_dev *pdev = adapter->pdev;
4657
4658 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
4659
4660 if (!suspending)
4661 pm_runtime_get_sync(&pdev->dev);
4662
4663 igc_down(adapter);
4664
4665 igc_release_hw_control(adapter);
4666
4667 igc_free_irq(adapter);
4668
4669 igc_free_all_tx_resources(adapter);
4670 igc_free_all_rx_resources(adapter);
4671
4672 if (!suspending)
4673 pm_runtime_put_sync(&pdev->dev);
4674
4675 return 0;
4676 }
4677
igc_close(struct net_device * netdev)4678 int igc_close(struct net_device *netdev)
4679 {
4680 if (netif_device_present(netdev) || netdev->dismantle)
4681 return __igc_close(netdev, false);
4682 return 0;
4683 }
4684
4685 /**
4686 * igc_ioctl - Access the hwtstamp interface
4687 * @netdev: network interface device structure
4688 * @ifr: interface request data
4689 * @cmd: ioctl command
4690 **/
igc_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)4691 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4692 {
4693 switch (cmd) {
4694 case SIOCGHWTSTAMP:
4695 return igc_ptp_get_ts_config(netdev, ifr);
4696 case SIOCSHWTSTAMP:
4697 return igc_ptp_set_ts_config(netdev, ifr);
4698 default:
4699 return -EOPNOTSUPP;
4700 }
4701 }
4702
igc_save_launchtime_params(struct igc_adapter * adapter,int queue,bool enable)4703 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
4704 bool enable)
4705 {
4706 struct igc_ring *ring;
4707 int i;
4708
4709 if (queue < 0 || queue >= adapter->num_tx_queues)
4710 return -EINVAL;
4711
4712 ring = adapter->tx_ring[queue];
4713 ring->launchtime_enable = enable;
4714
4715 if (adapter->base_time)
4716 return 0;
4717
4718 adapter->cycle_time = NSEC_PER_SEC;
4719
4720 for (i = 0; i < adapter->num_tx_queues; i++) {
4721 ring = adapter->tx_ring[i];
4722 ring->start_time = 0;
4723 ring->end_time = NSEC_PER_SEC;
4724 }
4725
4726 return 0;
4727 }
4728
is_base_time_past(ktime_t base_time,const struct timespec64 * now)4729 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
4730 {
4731 struct timespec64 b;
4732
4733 b = ktime_to_timespec64(base_time);
4734
4735 return timespec64_compare(now, &b) > 0;
4736 }
4737
validate_schedule(struct igc_adapter * adapter,const struct tc_taprio_qopt_offload * qopt)4738 static bool validate_schedule(struct igc_adapter *adapter,
4739 const struct tc_taprio_qopt_offload *qopt)
4740 {
4741 int queue_uses[IGC_MAX_TX_QUEUES] = { };
4742 struct timespec64 now;
4743 size_t n;
4744
4745 if (qopt->cycle_time_extension)
4746 return false;
4747
4748 igc_ptp_read(adapter, &now);
4749
4750 /* If we program the controller's BASET registers with a time
4751 * in the future, it will hold all the packets until that
4752 * time, causing a lot of TX Hangs, so to avoid that, we
4753 * reject schedules that would start in the future.
4754 */
4755 if (!is_base_time_past(qopt->base_time, &now))
4756 return false;
4757
4758 for (n = 0; n < qopt->num_entries; n++) {
4759 const struct tc_taprio_sched_entry *e;
4760 int i;
4761
4762 e = &qopt->entries[n];
4763
4764 /* i225 only supports "global" frame preemption
4765 * settings.
4766 */
4767 if (e->command != TC_TAPRIO_CMD_SET_GATES)
4768 return false;
4769
4770 for (i = 0; i < adapter->num_tx_queues; i++) {
4771 if (e->gate_mask & BIT(i))
4772 queue_uses[i]++;
4773
4774 if (queue_uses[i] > 1)
4775 return false;
4776 }
4777 }
4778
4779 return true;
4780 }
4781
igc_tsn_enable_launchtime(struct igc_adapter * adapter,struct tc_etf_qopt_offload * qopt)4782 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
4783 struct tc_etf_qopt_offload *qopt)
4784 {
4785 struct igc_hw *hw = &adapter->hw;
4786 int err;
4787
4788 if (hw->mac.type != igc_i225)
4789 return -EOPNOTSUPP;
4790
4791 err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
4792 if (err)
4793 return err;
4794
4795 return igc_tsn_offload_apply(adapter);
4796 }
4797
igc_save_qbv_schedule(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)4798 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
4799 struct tc_taprio_qopt_offload *qopt)
4800 {
4801 u32 start_time = 0, end_time = 0;
4802 size_t n;
4803
4804 if (!qopt->enable) {
4805 adapter->base_time = 0;
4806 return 0;
4807 }
4808
4809 if (adapter->base_time)
4810 return -EALREADY;
4811
4812 if (!validate_schedule(adapter, qopt))
4813 return -EINVAL;
4814
4815 adapter->cycle_time = qopt->cycle_time;
4816 adapter->base_time = qopt->base_time;
4817
4818 /* FIXME: be a little smarter about cases when the gate for a
4819 * queue stays open for more than one entry.
4820 */
4821 for (n = 0; n < qopt->num_entries; n++) {
4822 struct tc_taprio_sched_entry *e = &qopt->entries[n];
4823 int i;
4824
4825 end_time += e->interval;
4826
4827 for (i = 0; i < adapter->num_tx_queues; i++) {
4828 struct igc_ring *ring = adapter->tx_ring[i];
4829
4830 if (!(e->gate_mask & BIT(i)))
4831 continue;
4832
4833 ring->start_time = start_time;
4834 ring->end_time = end_time;
4835 }
4836
4837 start_time += e->interval;
4838 }
4839
4840 return 0;
4841 }
4842
igc_tsn_enable_qbv_scheduling(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)4843 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
4844 struct tc_taprio_qopt_offload *qopt)
4845 {
4846 struct igc_hw *hw = &adapter->hw;
4847 int err;
4848
4849 if (hw->mac.type != igc_i225)
4850 return -EOPNOTSUPP;
4851
4852 err = igc_save_qbv_schedule(adapter, qopt);
4853 if (err)
4854 return err;
4855
4856 return igc_tsn_offload_apply(adapter);
4857 }
4858
igc_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)4859 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
4860 void *type_data)
4861 {
4862 struct igc_adapter *adapter = netdev_priv(dev);
4863
4864 switch (type) {
4865 case TC_SETUP_QDISC_TAPRIO:
4866 return igc_tsn_enable_qbv_scheduling(adapter, type_data);
4867
4868 case TC_SETUP_QDISC_ETF:
4869 return igc_tsn_enable_launchtime(adapter, type_data);
4870
4871 default:
4872 return -EOPNOTSUPP;
4873 }
4874 }
4875
4876 static const struct net_device_ops igc_netdev_ops = {
4877 .ndo_open = igc_open,
4878 .ndo_stop = igc_close,
4879 .ndo_start_xmit = igc_xmit_frame,
4880 .ndo_set_rx_mode = igc_set_rx_mode,
4881 .ndo_set_mac_address = igc_set_mac,
4882 .ndo_change_mtu = igc_change_mtu,
4883 .ndo_get_stats64 = igc_get_stats64,
4884 .ndo_fix_features = igc_fix_features,
4885 .ndo_set_features = igc_set_features,
4886 .ndo_features_check = igc_features_check,
4887 .ndo_do_ioctl = igc_ioctl,
4888 .ndo_setup_tc = igc_setup_tc,
4889 };
4890
4891 /* PCIe configuration access */
igc_read_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)4892 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4893 {
4894 struct igc_adapter *adapter = hw->back;
4895
4896 pci_read_config_word(adapter->pdev, reg, value);
4897 }
4898
igc_write_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)4899 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4900 {
4901 struct igc_adapter *adapter = hw->back;
4902
4903 pci_write_config_word(adapter->pdev, reg, *value);
4904 }
4905
igc_read_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)4906 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4907 {
4908 struct igc_adapter *adapter = hw->back;
4909
4910 if (!pci_is_pcie(adapter->pdev))
4911 return -IGC_ERR_CONFIG;
4912
4913 pcie_capability_read_word(adapter->pdev, reg, value);
4914
4915 return IGC_SUCCESS;
4916 }
4917
igc_write_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)4918 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4919 {
4920 struct igc_adapter *adapter = hw->back;
4921
4922 if (!pci_is_pcie(adapter->pdev))
4923 return -IGC_ERR_CONFIG;
4924
4925 pcie_capability_write_word(adapter->pdev, reg, *value);
4926
4927 return IGC_SUCCESS;
4928 }
4929
igc_rd32(struct igc_hw * hw,u32 reg)4930 u32 igc_rd32(struct igc_hw *hw, u32 reg)
4931 {
4932 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
4933 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
4934 u32 value = 0;
4935
4936 if (IGC_REMOVED(hw_addr))
4937 return ~value;
4938
4939 value = readl(&hw_addr[reg]);
4940
4941 /* reads should not return all F's */
4942 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
4943 struct net_device *netdev = igc->netdev;
4944
4945 hw->hw_addr = NULL;
4946 netif_device_detach(netdev);
4947 netdev_err(netdev, "PCIe link lost, device now detached\n");
4948 WARN(pci_device_is_present(igc->pdev),
4949 "igc: Failed to read reg 0x%x!\n", reg);
4950 }
4951
4952 return value;
4953 }
4954
igc_set_spd_dplx(struct igc_adapter * adapter,u32 spd,u8 dplx)4955 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
4956 {
4957 struct igc_mac_info *mac = &adapter->hw.mac;
4958
4959 mac->autoneg = 0;
4960
4961 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4962 * for the switch() below to work
4963 */
4964 if ((spd & 1) || (dplx & ~1))
4965 goto err_inval;
4966
4967 switch (spd + dplx) {
4968 case SPEED_10 + DUPLEX_HALF:
4969 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4970 break;
4971 case SPEED_10 + DUPLEX_FULL:
4972 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4973 break;
4974 case SPEED_100 + DUPLEX_HALF:
4975 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4976 break;
4977 case SPEED_100 + DUPLEX_FULL:
4978 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4979 break;
4980 case SPEED_1000 + DUPLEX_FULL:
4981 mac->autoneg = 1;
4982 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4983 break;
4984 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4985 goto err_inval;
4986 case SPEED_2500 + DUPLEX_FULL:
4987 mac->autoneg = 1;
4988 adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
4989 break;
4990 case SPEED_2500 + DUPLEX_HALF: /* not supported */
4991 default:
4992 goto err_inval;
4993 }
4994
4995 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4996 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4997
4998 return 0;
4999
5000 err_inval:
5001 netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
5002 return -EINVAL;
5003 }
5004
5005 /**
5006 * igc_probe - Device Initialization Routine
5007 * @pdev: PCI device information struct
5008 * @ent: entry in igc_pci_tbl
5009 *
5010 * Returns 0 on success, negative on failure
5011 *
5012 * igc_probe initializes an adapter identified by a pci_dev structure.
5013 * The OS initialization, configuring the adapter private structure,
5014 * and a hardware reset occur.
5015 */
igc_probe(struct pci_dev * pdev,const struct pci_device_id * ent)5016 static int igc_probe(struct pci_dev *pdev,
5017 const struct pci_device_id *ent)
5018 {
5019 struct igc_adapter *adapter;
5020 struct net_device *netdev;
5021 struct igc_hw *hw;
5022 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
5023 int err, pci_using_dac;
5024
5025 err = pci_enable_device_mem(pdev);
5026 if (err)
5027 return err;
5028
5029 pci_using_dac = 0;
5030 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5031 if (!err) {
5032 pci_using_dac = 1;
5033 } else {
5034 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
5035 if (err) {
5036 dev_err(&pdev->dev,
5037 "No usable DMA configuration, aborting\n");
5038 goto err_dma;
5039 }
5040 }
5041
5042 err = pci_request_mem_regions(pdev, igc_driver_name);
5043 if (err)
5044 goto err_pci_reg;
5045
5046 pci_enable_pcie_error_reporting(pdev);
5047
5048 err = pci_enable_ptm(pdev, NULL);
5049 if (err < 0)
5050 dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
5051
5052 pci_set_master(pdev);
5053
5054 err = -ENOMEM;
5055 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
5056 IGC_MAX_TX_QUEUES);
5057
5058 if (!netdev)
5059 goto err_alloc_etherdev;
5060
5061 SET_NETDEV_DEV(netdev, &pdev->dev);
5062
5063 pci_set_drvdata(pdev, netdev);
5064 adapter = netdev_priv(netdev);
5065 adapter->netdev = netdev;
5066 adapter->pdev = pdev;
5067 hw = &adapter->hw;
5068 hw->back = adapter;
5069 adapter->port_num = hw->bus.func;
5070 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5071
5072 err = pci_save_state(pdev);
5073 if (err)
5074 goto err_ioremap;
5075
5076 err = -EIO;
5077 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5078 pci_resource_len(pdev, 0));
5079 if (!adapter->io_addr)
5080 goto err_ioremap;
5081
5082 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5083 hw->hw_addr = adapter->io_addr;
5084
5085 netdev->netdev_ops = &igc_netdev_ops;
5086 igc_ethtool_set_ops(netdev);
5087 netdev->watchdog_timeo = 5 * HZ;
5088
5089 netdev->mem_start = pci_resource_start(pdev, 0);
5090 netdev->mem_end = pci_resource_end(pdev, 0);
5091
5092 /* PCI config space info */
5093 hw->vendor_id = pdev->vendor;
5094 hw->device_id = pdev->device;
5095 hw->revision_id = pdev->revision;
5096 hw->subsystem_vendor_id = pdev->subsystem_vendor;
5097 hw->subsystem_device_id = pdev->subsystem_device;
5098
5099 /* Copy the default MAC and PHY function pointers */
5100 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5101 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5102
5103 /* Initialize skew-specific constants */
5104 err = ei->get_invariants(hw);
5105 if (err)
5106 goto err_sw_init;
5107
5108 /* Add supported features to the features list*/
5109 netdev->features |= NETIF_F_SG;
5110 netdev->features |= NETIF_F_TSO;
5111 netdev->features |= NETIF_F_TSO6;
5112 netdev->features |= NETIF_F_TSO_ECN;
5113 netdev->features |= NETIF_F_RXCSUM;
5114 netdev->features |= NETIF_F_HW_CSUM;
5115 netdev->features |= NETIF_F_SCTP_CRC;
5116 netdev->features |= NETIF_F_HW_TC;
5117
5118 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5119 NETIF_F_GSO_GRE_CSUM | \
5120 NETIF_F_GSO_IPXIP4 | \
5121 NETIF_F_GSO_IPXIP6 | \
5122 NETIF_F_GSO_UDP_TUNNEL | \
5123 NETIF_F_GSO_UDP_TUNNEL_CSUM)
5124
5125 netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5126 netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5127
5128 /* setup the private structure */
5129 err = igc_sw_init(adapter);
5130 if (err)
5131 goto err_sw_init;
5132
5133 /* copy netdev features into list of user selectable features */
5134 netdev->hw_features |= NETIF_F_NTUPLE;
5135 netdev->hw_features |= netdev->features;
5136
5137 if (pci_using_dac)
5138 netdev->features |= NETIF_F_HIGHDMA;
5139
5140 /* MTU range: 68 - 9216 */
5141 netdev->min_mtu = ETH_MIN_MTU;
5142 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5143
5144 /* before reading the NVM, reset the controller to put the device in a
5145 * known good starting state
5146 */
5147 hw->mac.ops.reset_hw(hw);
5148
5149 if (igc_get_flash_presence_i225(hw)) {
5150 if (hw->nvm.ops.validate(hw) < 0) {
5151 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5152 err = -EIO;
5153 goto err_eeprom;
5154 }
5155 }
5156
5157 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5158 /* copy the MAC address out of the NVM */
5159 if (hw->mac.ops.read_mac_addr(hw))
5160 dev_err(&pdev->dev, "NVM Read Error\n");
5161 }
5162
5163 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5164
5165 if (!is_valid_ether_addr(netdev->dev_addr)) {
5166 dev_err(&pdev->dev, "Invalid MAC Address\n");
5167 err = -EIO;
5168 goto err_eeprom;
5169 }
5170
5171 /* configure RXPBSIZE and TXPBSIZE */
5172 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
5173 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
5174
5175 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
5176 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
5177
5178 INIT_WORK(&adapter->reset_task, igc_reset_task);
5179 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
5180
5181 /* Initialize link properties that are user-changeable */
5182 adapter->fc_autoneg = true;
5183 hw->mac.autoneg = true;
5184 hw->phy.autoneg_advertised = 0xaf;
5185
5186 hw->fc.requested_mode = igc_fc_default;
5187 hw->fc.current_mode = igc_fc_default;
5188
5189 /* By default, support wake on port A */
5190 adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
5191
5192 /* initialize the wol settings based on the eeprom settings */
5193 if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
5194 adapter->wol |= IGC_WUFC_MAG;
5195
5196 device_set_wakeup_enable(&adapter->pdev->dev,
5197 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
5198
5199 igc_ptp_init(adapter);
5200
5201 /* reset the hardware with the new settings */
5202 igc_reset(adapter);
5203
5204 /* let the f/w know that the h/w is now under the control of the
5205 * driver.
5206 */
5207 igc_get_hw_control(adapter);
5208
5209 strncpy(netdev->name, "eth%d", IFNAMSIZ);
5210 err = register_netdev(netdev);
5211 if (err)
5212 goto err_register;
5213
5214 /* carrier off reporting is important to ethtool even BEFORE open */
5215 netif_carrier_off(netdev);
5216
5217 /* Check if Media Autosense is enabled */
5218 adapter->ei = *ei;
5219
5220 /* print pcie link status and MAC address */
5221 pcie_print_link_status(pdev);
5222 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
5223
5224 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
5225 /* Disable EEE for internal PHY devices */
5226 hw->dev_spec._base.eee_enable = false;
5227 adapter->flags &= ~IGC_FLAG_EEE;
5228 igc_set_eee_i225(hw, false, false, false);
5229
5230 pm_runtime_put_noidle(&pdev->dev);
5231
5232 return 0;
5233
5234 err_register:
5235 igc_release_hw_control(adapter);
5236 err_eeprom:
5237 if (!igc_check_reset_block(hw))
5238 igc_reset_phy(hw);
5239 err_sw_init:
5240 igc_clear_interrupt_scheme(adapter);
5241 iounmap(adapter->io_addr);
5242 err_ioremap:
5243 free_netdev(netdev);
5244 err_alloc_etherdev:
5245 pci_disable_pcie_error_reporting(pdev);
5246 pci_release_mem_regions(pdev);
5247 err_pci_reg:
5248 err_dma:
5249 pci_disable_device(pdev);
5250 return err;
5251 }
5252
5253 /**
5254 * igc_remove - Device Removal Routine
5255 * @pdev: PCI device information struct
5256 *
5257 * igc_remove is called by the PCI subsystem to alert the driver
5258 * that it should release a PCI device. This could be caused by a
5259 * Hot-Plug event, or because the driver is going to be removed from
5260 * memory.
5261 */
igc_remove(struct pci_dev * pdev)5262 static void igc_remove(struct pci_dev *pdev)
5263 {
5264 struct net_device *netdev = pci_get_drvdata(pdev);
5265 struct igc_adapter *adapter = netdev_priv(netdev);
5266
5267 pm_runtime_get_noresume(&pdev->dev);
5268
5269 igc_flush_nfc_rules(adapter);
5270
5271 igc_ptp_stop(adapter);
5272
5273 set_bit(__IGC_DOWN, &adapter->state);
5274
5275 del_timer_sync(&adapter->watchdog_timer);
5276 del_timer_sync(&adapter->phy_info_timer);
5277
5278 cancel_work_sync(&adapter->reset_task);
5279 cancel_work_sync(&adapter->watchdog_task);
5280
5281 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5282 * would have already happened in close and is redundant.
5283 */
5284 igc_release_hw_control(adapter);
5285 unregister_netdev(netdev);
5286
5287 igc_clear_interrupt_scheme(adapter);
5288 pci_iounmap(pdev, adapter->io_addr);
5289 pci_release_mem_regions(pdev);
5290
5291 free_netdev(netdev);
5292
5293 pci_disable_pcie_error_reporting(pdev);
5294
5295 pci_disable_device(pdev);
5296 }
5297
__igc_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)5298 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
5299 bool runtime)
5300 {
5301 struct net_device *netdev = pci_get_drvdata(pdev);
5302 struct igc_adapter *adapter = netdev_priv(netdev);
5303 u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
5304 struct igc_hw *hw = &adapter->hw;
5305 u32 ctrl, rctl, status;
5306 bool wake;
5307
5308 rtnl_lock();
5309 netif_device_detach(netdev);
5310
5311 if (netif_running(netdev))
5312 __igc_close(netdev, true);
5313
5314 igc_ptp_suspend(adapter);
5315
5316 igc_clear_interrupt_scheme(adapter);
5317 rtnl_unlock();
5318
5319 status = rd32(IGC_STATUS);
5320 if (status & IGC_STATUS_LU)
5321 wufc &= ~IGC_WUFC_LNKC;
5322
5323 if (wufc) {
5324 igc_setup_rctl(adapter);
5325 igc_set_rx_mode(netdev);
5326
5327 /* turn on all-multi mode if wake on multicast is enabled */
5328 if (wufc & IGC_WUFC_MC) {
5329 rctl = rd32(IGC_RCTL);
5330 rctl |= IGC_RCTL_MPE;
5331 wr32(IGC_RCTL, rctl);
5332 }
5333
5334 ctrl = rd32(IGC_CTRL);
5335 ctrl |= IGC_CTRL_ADVD3WUC;
5336 wr32(IGC_CTRL, ctrl);
5337
5338 /* Allow time for pending master requests to run */
5339 igc_disable_pcie_master(hw);
5340
5341 wr32(IGC_WUC, IGC_WUC_PME_EN);
5342 wr32(IGC_WUFC, wufc);
5343 } else {
5344 wr32(IGC_WUC, 0);
5345 wr32(IGC_WUFC, 0);
5346 }
5347
5348 wake = wufc || adapter->en_mng_pt;
5349 if (!wake)
5350 igc_power_down_phy_copper_base(&adapter->hw);
5351 else
5352 igc_power_up_link(adapter);
5353
5354 if (enable_wake)
5355 *enable_wake = wake;
5356
5357 /* Release control of h/w to f/w. If f/w is AMT enabled, this
5358 * would have already happened in close and is redundant.
5359 */
5360 igc_release_hw_control(adapter);
5361
5362 pci_disable_device(pdev);
5363
5364 return 0;
5365 }
5366
5367 #ifdef CONFIG_PM
igc_runtime_suspend(struct device * dev)5368 static int __maybe_unused igc_runtime_suspend(struct device *dev)
5369 {
5370 return __igc_shutdown(to_pci_dev(dev), NULL, 1);
5371 }
5372
igc_deliver_wake_packet(struct net_device * netdev)5373 static void igc_deliver_wake_packet(struct net_device *netdev)
5374 {
5375 struct igc_adapter *adapter = netdev_priv(netdev);
5376 struct igc_hw *hw = &adapter->hw;
5377 struct sk_buff *skb;
5378 u32 wupl;
5379
5380 wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
5381
5382 /* WUPM stores only the first 128 bytes of the wake packet.
5383 * Read the packet only if we have the whole thing.
5384 */
5385 if (wupl == 0 || wupl > IGC_WUPM_BYTES)
5386 return;
5387
5388 skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
5389 if (!skb)
5390 return;
5391
5392 skb_put(skb, wupl);
5393
5394 /* Ensure reads are 32-bit aligned */
5395 wupl = roundup(wupl, 4);
5396
5397 memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
5398
5399 skb->protocol = eth_type_trans(skb, netdev);
5400 netif_rx(skb);
5401 }
5402
igc_resume(struct device * dev)5403 static int __maybe_unused igc_resume(struct device *dev)
5404 {
5405 struct pci_dev *pdev = to_pci_dev(dev);
5406 struct net_device *netdev = pci_get_drvdata(pdev);
5407 struct igc_adapter *adapter = netdev_priv(netdev);
5408 struct igc_hw *hw = &adapter->hw;
5409 u32 err, val;
5410
5411 pci_set_power_state(pdev, PCI_D0);
5412 pci_restore_state(pdev);
5413 pci_save_state(pdev);
5414
5415 if (!pci_device_is_present(pdev))
5416 return -ENODEV;
5417 err = pci_enable_device_mem(pdev);
5418 if (err) {
5419 netdev_err(netdev, "Cannot enable PCI device from suspend\n");
5420 return err;
5421 }
5422 pci_set_master(pdev);
5423
5424 pci_enable_wake(pdev, PCI_D3hot, 0);
5425 pci_enable_wake(pdev, PCI_D3cold, 0);
5426
5427 if (igc_init_interrupt_scheme(adapter, true)) {
5428 netdev_err(netdev, "Unable to allocate memory for queues\n");
5429 return -ENOMEM;
5430 }
5431
5432 igc_reset(adapter);
5433
5434 /* let the f/w know that the h/w is now under the control of the
5435 * driver.
5436 */
5437 igc_get_hw_control(adapter);
5438
5439 val = rd32(IGC_WUS);
5440 if (val & WAKE_PKT_WUS)
5441 igc_deliver_wake_packet(netdev);
5442
5443 wr32(IGC_WUS, ~0);
5444
5445 rtnl_lock();
5446 if (!err && netif_running(netdev))
5447 err = __igc_open(netdev, true);
5448
5449 if (!err)
5450 netif_device_attach(netdev);
5451 rtnl_unlock();
5452
5453 return err;
5454 }
5455
igc_runtime_resume(struct device * dev)5456 static int __maybe_unused igc_runtime_resume(struct device *dev)
5457 {
5458 return igc_resume(dev);
5459 }
5460
igc_suspend(struct device * dev)5461 static int __maybe_unused igc_suspend(struct device *dev)
5462 {
5463 return __igc_shutdown(to_pci_dev(dev), NULL, 0);
5464 }
5465
igc_runtime_idle(struct device * dev)5466 static int __maybe_unused igc_runtime_idle(struct device *dev)
5467 {
5468 struct net_device *netdev = dev_get_drvdata(dev);
5469 struct igc_adapter *adapter = netdev_priv(netdev);
5470
5471 if (!igc_has_link(adapter))
5472 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
5473
5474 return -EBUSY;
5475 }
5476 #endif /* CONFIG_PM */
5477
igc_shutdown(struct pci_dev * pdev)5478 static void igc_shutdown(struct pci_dev *pdev)
5479 {
5480 bool wake;
5481
5482 __igc_shutdown(pdev, &wake, 0);
5483
5484 if (system_state == SYSTEM_POWER_OFF) {
5485 pci_wake_from_d3(pdev, wake);
5486 pci_set_power_state(pdev, PCI_D3hot);
5487 }
5488 }
5489
5490 /**
5491 * igc_io_error_detected - called when PCI error is detected
5492 * @pdev: Pointer to PCI device
5493 * @state: The current PCI connection state
5494 *
5495 * This function is called after a PCI bus error affecting
5496 * this device has been detected.
5497 **/
igc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)5498 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
5499 pci_channel_state_t state)
5500 {
5501 struct net_device *netdev = pci_get_drvdata(pdev);
5502 struct igc_adapter *adapter = netdev_priv(netdev);
5503
5504 netif_device_detach(netdev);
5505
5506 if (state == pci_channel_io_perm_failure)
5507 return PCI_ERS_RESULT_DISCONNECT;
5508
5509 if (netif_running(netdev))
5510 igc_down(adapter);
5511 pci_disable_device(pdev);
5512
5513 /* Request a slot reset. */
5514 return PCI_ERS_RESULT_NEED_RESET;
5515 }
5516
5517 /**
5518 * igc_io_slot_reset - called after the PCI bus has been reset.
5519 * @pdev: Pointer to PCI device
5520 *
5521 * Restart the card from scratch, as if from a cold-boot. Implementation
5522 * resembles the first-half of the igc_resume routine.
5523 **/
igc_io_slot_reset(struct pci_dev * pdev)5524 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
5525 {
5526 struct net_device *netdev = pci_get_drvdata(pdev);
5527 struct igc_adapter *adapter = netdev_priv(netdev);
5528 struct igc_hw *hw = &adapter->hw;
5529 pci_ers_result_t result;
5530
5531 if (pci_enable_device_mem(pdev)) {
5532 netdev_err(netdev, "Could not re-enable PCI device after reset\n");
5533 result = PCI_ERS_RESULT_DISCONNECT;
5534 } else {
5535 pci_set_master(pdev);
5536 pci_restore_state(pdev);
5537 pci_save_state(pdev);
5538
5539 pci_enable_wake(pdev, PCI_D3hot, 0);
5540 pci_enable_wake(pdev, PCI_D3cold, 0);
5541
5542 /* In case of PCI error, adapter loses its HW address
5543 * so we should re-assign it here.
5544 */
5545 hw->hw_addr = adapter->io_addr;
5546
5547 igc_reset(adapter);
5548 wr32(IGC_WUS, ~0);
5549 result = PCI_ERS_RESULT_RECOVERED;
5550 }
5551
5552 return result;
5553 }
5554
5555 /**
5556 * igc_io_resume - called when traffic can start to flow again.
5557 * @pdev: Pointer to PCI device
5558 *
5559 * This callback is called when the error recovery driver tells us that
5560 * its OK to resume normal operation. Implementation resembles the
5561 * second-half of the igc_resume routine.
5562 */
igc_io_resume(struct pci_dev * pdev)5563 static void igc_io_resume(struct pci_dev *pdev)
5564 {
5565 struct net_device *netdev = pci_get_drvdata(pdev);
5566 struct igc_adapter *adapter = netdev_priv(netdev);
5567
5568 rtnl_lock();
5569 if (netif_running(netdev)) {
5570 if (igc_open(netdev)) {
5571 netdev_err(netdev, "igc_open failed after reset\n");
5572 return;
5573 }
5574 }
5575
5576 netif_device_attach(netdev);
5577
5578 /* let the f/w know that the h/w is now under the control of the
5579 * driver.
5580 */
5581 igc_get_hw_control(adapter);
5582 rtnl_unlock();
5583 }
5584
5585 static const struct pci_error_handlers igc_err_handler = {
5586 .error_detected = igc_io_error_detected,
5587 .slot_reset = igc_io_slot_reset,
5588 .resume = igc_io_resume,
5589 };
5590
5591 #ifdef CONFIG_PM
5592 static const struct dev_pm_ops igc_pm_ops = {
5593 SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
5594 SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
5595 igc_runtime_idle)
5596 };
5597 #endif
5598
5599 static struct pci_driver igc_driver = {
5600 .name = igc_driver_name,
5601 .id_table = igc_pci_tbl,
5602 .probe = igc_probe,
5603 .remove = igc_remove,
5604 #ifdef CONFIG_PM
5605 .driver.pm = &igc_pm_ops,
5606 #endif
5607 .shutdown = igc_shutdown,
5608 .err_handler = &igc_err_handler,
5609 };
5610
5611 /**
5612 * igc_reinit_queues - return error
5613 * @adapter: pointer to adapter structure
5614 */
igc_reinit_queues(struct igc_adapter * adapter)5615 int igc_reinit_queues(struct igc_adapter *adapter)
5616 {
5617 struct net_device *netdev = adapter->netdev;
5618 int err = 0;
5619
5620 if (netif_running(netdev))
5621 igc_close(netdev);
5622
5623 igc_reset_interrupt_capability(adapter);
5624
5625 if (igc_init_interrupt_scheme(adapter, true)) {
5626 netdev_err(netdev, "Unable to allocate memory for queues\n");
5627 return -ENOMEM;
5628 }
5629
5630 if (netif_running(netdev))
5631 err = igc_open(netdev);
5632
5633 return err;
5634 }
5635
5636 /**
5637 * igc_get_hw_dev - return device
5638 * @hw: pointer to hardware structure
5639 *
5640 * used by hardware layer to print debugging information
5641 */
igc_get_hw_dev(struct igc_hw * hw)5642 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
5643 {
5644 struct igc_adapter *adapter = hw->back;
5645
5646 return adapter->netdev;
5647 }
5648
5649 /**
5650 * igc_init_module - Driver Registration Routine
5651 *
5652 * igc_init_module is the first routine called when the driver is
5653 * loaded. All it does is register with the PCI subsystem.
5654 */
igc_init_module(void)5655 static int __init igc_init_module(void)
5656 {
5657 int ret;
5658
5659 pr_info("%s\n", igc_driver_string);
5660 pr_info("%s\n", igc_copyright);
5661
5662 ret = pci_register_driver(&igc_driver);
5663 return ret;
5664 }
5665
5666 module_init(igc_init_module);
5667
5668 /**
5669 * igc_exit_module - Driver Exit Cleanup Routine
5670 *
5671 * igc_exit_module is called just before the driver is removed
5672 * from memory.
5673 */
igc_exit_module(void)5674 static void __exit igc_exit_module(void)
5675 {
5676 pci_unregister_driver(&igc_driver);
5677 }
5678
5679 module_exit(igc_exit_module);
5680 /* igc_main.c */
5681