1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2004-2013 Synopsys, Inc. (www.synopsys.com)
4 *
5 * Driver for the ARC EMAC 10100 (hardware revision 5)
6 *
7 * Contributors:
8 * Amit Bhor
9 * Sameer Dhavale
10 * Vineet Gupta
11 */
12
13 #include <linux/crc32.h>
14 #include <linux/etherdevice.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/module.h>
18 #include <linux/of_address.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_mdio.h>
21 #include <linux/of_net.h>
22 #include <linux/of_platform.h>
23
24 #include "emac.h"
25
26 static void arc_emac_restart(struct net_device *ndev);
27
28 /**
29 * arc_emac_tx_avail - Return the number of available slots in the tx ring.
30 * @priv: Pointer to ARC EMAC private data structure.
31 *
32 * returns: the number of slots available for transmission in tx the ring.
33 */
arc_emac_tx_avail(struct arc_emac_priv * priv)34 static inline int arc_emac_tx_avail(struct arc_emac_priv *priv)
35 {
36 return (priv->txbd_dirty + TX_BD_NUM - priv->txbd_curr - 1) % TX_BD_NUM;
37 }
38
39 /**
40 * arc_emac_adjust_link - Adjust the PHY link duplex.
41 * @ndev: Pointer to the net_device structure.
42 *
43 * This function is called to change the duplex setting after auto negotiation
44 * is done by the PHY.
45 */
arc_emac_adjust_link(struct net_device * ndev)46 static void arc_emac_adjust_link(struct net_device *ndev)
47 {
48 struct arc_emac_priv *priv = netdev_priv(ndev);
49 struct phy_device *phy_dev = ndev->phydev;
50 unsigned int reg, state_changed = 0;
51
52 if (priv->link != phy_dev->link) {
53 priv->link = phy_dev->link;
54 state_changed = 1;
55 }
56
57 if (priv->speed != phy_dev->speed) {
58 priv->speed = phy_dev->speed;
59 state_changed = 1;
60 if (priv->set_mac_speed)
61 priv->set_mac_speed(priv, priv->speed);
62 }
63
64 if (priv->duplex != phy_dev->duplex) {
65 reg = arc_reg_get(priv, R_CTRL);
66
67 if (phy_dev->duplex == DUPLEX_FULL)
68 reg |= ENFL_MASK;
69 else
70 reg &= ~ENFL_MASK;
71
72 arc_reg_set(priv, R_CTRL, reg);
73 priv->duplex = phy_dev->duplex;
74 state_changed = 1;
75 }
76
77 if (state_changed)
78 phy_print_status(phy_dev);
79 }
80
81 /**
82 * arc_emac_get_drvinfo - Get EMAC driver information.
83 * @ndev: Pointer to net_device structure.
84 * @info: Pointer to ethtool_drvinfo structure.
85 *
86 * This implements ethtool command for getting the driver information.
87 * Issue "ethtool -i ethX" under linux prompt to execute this function.
88 */
arc_emac_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)89 static void arc_emac_get_drvinfo(struct net_device *ndev,
90 struct ethtool_drvinfo *info)
91 {
92 struct arc_emac_priv *priv = netdev_priv(ndev);
93
94 strlcpy(info->driver, priv->drv_name, sizeof(info->driver));
95 }
96
97 static const struct ethtool_ops arc_emac_ethtool_ops = {
98 .get_drvinfo = arc_emac_get_drvinfo,
99 .get_link = ethtool_op_get_link,
100 .get_link_ksettings = phy_ethtool_get_link_ksettings,
101 .set_link_ksettings = phy_ethtool_set_link_ksettings,
102 };
103
104 #define FIRST_OR_LAST_MASK (FIRST_MASK | LAST_MASK)
105
106 /**
107 * arc_emac_tx_clean - clears processed by EMAC Tx BDs.
108 * @ndev: Pointer to the network device.
109 */
arc_emac_tx_clean(struct net_device * ndev)110 static void arc_emac_tx_clean(struct net_device *ndev)
111 {
112 struct arc_emac_priv *priv = netdev_priv(ndev);
113 struct net_device_stats *stats = &ndev->stats;
114 unsigned int i;
115
116 for (i = 0; i < TX_BD_NUM; i++) {
117 unsigned int *txbd_dirty = &priv->txbd_dirty;
118 struct arc_emac_bd *txbd = &priv->txbd[*txbd_dirty];
119 struct buffer_state *tx_buff = &priv->tx_buff[*txbd_dirty];
120 struct sk_buff *skb = tx_buff->skb;
121 unsigned int info = le32_to_cpu(txbd->info);
122
123 if ((info & FOR_EMAC) || !txbd->data || !skb)
124 break;
125
126 if (unlikely(info & (DROP | DEFR | LTCL | UFLO))) {
127 stats->tx_errors++;
128 stats->tx_dropped++;
129
130 if (info & DEFR)
131 stats->tx_carrier_errors++;
132
133 if (info & LTCL)
134 stats->collisions++;
135
136 if (info & UFLO)
137 stats->tx_fifo_errors++;
138 } else if (likely(info & FIRST_OR_LAST_MASK)) {
139 stats->tx_packets++;
140 stats->tx_bytes += skb->len;
141 }
142
143 dma_unmap_single(ndev->dev.parent, dma_unmap_addr(tx_buff, addr),
144 dma_unmap_len(tx_buff, len), DMA_TO_DEVICE);
145
146 /* return the sk_buff to system */
147 dev_consume_skb_irq(skb);
148
149 txbd->data = 0;
150 txbd->info = 0;
151 tx_buff->skb = NULL;
152
153 *txbd_dirty = (*txbd_dirty + 1) % TX_BD_NUM;
154 }
155
156 /* Ensure that txbd_dirty is visible to tx() before checking
157 * for queue stopped.
158 */
159 smp_mb();
160
161 if (netif_queue_stopped(ndev) && arc_emac_tx_avail(priv))
162 netif_wake_queue(ndev);
163 }
164
165 /**
166 * arc_emac_rx - processing of Rx packets.
167 * @ndev: Pointer to the network device.
168 * @budget: How many BDs to process on 1 call.
169 *
170 * returns: Number of processed BDs
171 *
172 * Iterate through Rx BDs and deliver received packages to upper layer.
173 */
arc_emac_rx(struct net_device * ndev,int budget)174 static int arc_emac_rx(struct net_device *ndev, int budget)
175 {
176 struct arc_emac_priv *priv = netdev_priv(ndev);
177 unsigned int work_done;
178
179 for (work_done = 0; work_done < budget; work_done++) {
180 unsigned int *last_rx_bd = &priv->last_rx_bd;
181 struct net_device_stats *stats = &ndev->stats;
182 struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd];
183 struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd];
184 unsigned int pktlen, info = le32_to_cpu(rxbd->info);
185 struct sk_buff *skb;
186 dma_addr_t addr;
187
188 if (unlikely((info & OWN_MASK) == FOR_EMAC))
189 break;
190
191 /* Make a note that we saw a packet at this BD.
192 * So next time, driver starts from this + 1
193 */
194 *last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM;
195
196 if (unlikely((info & FIRST_OR_LAST_MASK) !=
197 FIRST_OR_LAST_MASK)) {
198 /* We pre-allocate buffers of MTU size so incoming
199 * packets won't be split/chained.
200 */
201 if (net_ratelimit())
202 netdev_err(ndev, "incomplete packet received\n");
203
204 /* Return ownership to EMAC */
205 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
206 stats->rx_errors++;
207 stats->rx_length_errors++;
208 continue;
209 }
210
211 /* Prepare the BD for next cycle. netif_receive_skb()
212 * only if new skb was allocated and mapped to avoid holes
213 * in the RX fifo.
214 */
215 skb = netdev_alloc_skb_ip_align(ndev, EMAC_BUFFER_SIZE);
216 if (unlikely(!skb)) {
217 if (net_ratelimit())
218 netdev_err(ndev, "cannot allocate skb\n");
219 /* Return ownership to EMAC */
220 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
221 stats->rx_errors++;
222 stats->rx_dropped++;
223 continue;
224 }
225
226 addr = dma_map_single(ndev->dev.parent, (void *)skb->data,
227 EMAC_BUFFER_SIZE, DMA_FROM_DEVICE);
228 if (dma_mapping_error(ndev->dev.parent, addr)) {
229 if (net_ratelimit())
230 netdev_err(ndev, "cannot map dma buffer\n");
231 dev_kfree_skb(skb);
232 /* Return ownership to EMAC */
233 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
234 stats->rx_errors++;
235 stats->rx_dropped++;
236 continue;
237 }
238
239 /* unmap previosly mapped skb */
240 dma_unmap_single(ndev->dev.parent, dma_unmap_addr(rx_buff, addr),
241 dma_unmap_len(rx_buff, len), DMA_FROM_DEVICE);
242
243 pktlen = info & LEN_MASK;
244 stats->rx_packets++;
245 stats->rx_bytes += pktlen;
246 skb_put(rx_buff->skb, pktlen);
247 rx_buff->skb->dev = ndev;
248 rx_buff->skb->protocol = eth_type_trans(rx_buff->skb, ndev);
249
250 netif_receive_skb(rx_buff->skb);
251
252 rx_buff->skb = skb;
253 dma_unmap_addr_set(rx_buff, addr, addr);
254 dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE);
255
256 rxbd->data = cpu_to_le32(addr);
257
258 /* Make sure pointer to data buffer is set */
259 wmb();
260
261 /* Return ownership to EMAC */
262 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
263 }
264
265 return work_done;
266 }
267
268 /**
269 * arc_emac_rx_miss_handle - handle R_MISS register
270 * @ndev: Pointer to the net_device structure.
271 */
arc_emac_rx_miss_handle(struct net_device * ndev)272 static void arc_emac_rx_miss_handle(struct net_device *ndev)
273 {
274 struct arc_emac_priv *priv = netdev_priv(ndev);
275 struct net_device_stats *stats = &ndev->stats;
276 unsigned int miss;
277
278 miss = arc_reg_get(priv, R_MISS);
279 if (miss) {
280 stats->rx_errors += miss;
281 stats->rx_missed_errors += miss;
282 priv->rx_missed_errors += miss;
283 }
284 }
285
286 /**
287 * arc_emac_rx_stall_check - check RX stall
288 * @ndev: Pointer to the net_device structure.
289 * @budget: How many BDs requested to process on 1 call.
290 * @work_done: How many BDs processed
291 *
292 * Under certain conditions EMAC stop reception of incoming packets and
293 * continuously increment R_MISS register instead of saving data into
294 * provided buffer. This function detect that condition and restart
295 * EMAC.
296 */
arc_emac_rx_stall_check(struct net_device * ndev,int budget,unsigned int work_done)297 static void arc_emac_rx_stall_check(struct net_device *ndev,
298 int budget, unsigned int work_done)
299 {
300 struct arc_emac_priv *priv = netdev_priv(ndev);
301 struct arc_emac_bd *rxbd;
302
303 if (work_done)
304 priv->rx_missed_errors = 0;
305
306 if (priv->rx_missed_errors && budget) {
307 rxbd = &priv->rxbd[priv->last_rx_bd];
308 if (le32_to_cpu(rxbd->info) & FOR_EMAC) {
309 arc_emac_restart(ndev);
310 priv->rx_missed_errors = 0;
311 }
312 }
313 }
314
315 /**
316 * arc_emac_poll - NAPI poll handler.
317 * @napi: Pointer to napi_struct structure.
318 * @budget: How many BDs to process on 1 call.
319 *
320 * returns: Number of processed BDs
321 */
arc_emac_poll(struct napi_struct * napi,int budget)322 static int arc_emac_poll(struct napi_struct *napi, int budget)
323 {
324 struct net_device *ndev = napi->dev;
325 struct arc_emac_priv *priv = netdev_priv(ndev);
326 unsigned int work_done;
327
328 arc_emac_rx_miss_handle(ndev);
329
330 work_done = arc_emac_rx(ndev, budget);
331 if (work_done < budget) {
332 napi_complete_done(napi, work_done);
333 arc_reg_or(priv, R_ENABLE, RXINT_MASK);
334 }
335
336 arc_emac_rx_stall_check(ndev, budget, work_done);
337
338 return work_done;
339 }
340
341 /**
342 * arc_emac_intr - Global interrupt handler for EMAC.
343 * @irq: irq number.
344 * @dev_instance: device instance.
345 *
346 * returns: IRQ_HANDLED for all cases.
347 *
348 * ARC EMAC has only 1 interrupt line, and depending on bits raised in
349 * STATUS register we may tell what is a reason for interrupt to fire.
350 */
arc_emac_intr(int irq,void * dev_instance)351 static irqreturn_t arc_emac_intr(int irq, void *dev_instance)
352 {
353 struct net_device *ndev = dev_instance;
354 struct arc_emac_priv *priv = netdev_priv(ndev);
355 struct net_device_stats *stats = &ndev->stats;
356 unsigned int status;
357
358 status = arc_reg_get(priv, R_STATUS);
359 status &= ~MDIO_MASK;
360
361 /* Reset all flags except "MDIO complete" */
362 arc_reg_set(priv, R_STATUS, status);
363
364 if (status & RXINT_MASK) {
365 if (likely(napi_schedule_prep(&priv->napi))) {
366 arc_reg_clr(priv, R_ENABLE, RXINT_MASK);
367 __napi_schedule(&priv->napi);
368 }
369 }
370
371 if (status & ERR_MASK) {
372 /* MSER/RXCR/RXFR/RXFL interrupt fires on corresponding
373 * 8-bit error counter overrun.
374 */
375
376 if (status & MSER_MASK) {
377 stats->rx_missed_errors += 0x100;
378 stats->rx_errors += 0x100;
379 priv->rx_missed_errors += 0x100;
380 napi_schedule(&priv->napi);
381 }
382
383 if (status & RXCR_MASK) {
384 stats->rx_crc_errors += 0x100;
385 stats->rx_errors += 0x100;
386 }
387
388 if (status & RXFR_MASK) {
389 stats->rx_frame_errors += 0x100;
390 stats->rx_errors += 0x100;
391 }
392
393 if (status & RXFL_MASK) {
394 stats->rx_over_errors += 0x100;
395 stats->rx_errors += 0x100;
396 }
397 }
398
399 return IRQ_HANDLED;
400 }
401
402 #ifdef CONFIG_NET_POLL_CONTROLLER
arc_emac_poll_controller(struct net_device * dev)403 static void arc_emac_poll_controller(struct net_device *dev)
404 {
405 disable_irq(dev->irq);
406 arc_emac_intr(dev->irq, dev);
407 enable_irq(dev->irq);
408 }
409 #endif
410
411 /**
412 * arc_emac_open - Open the network device.
413 * @ndev: Pointer to the network device.
414 *
415 * returns: 0, on success or non-zero error value on failure.
416 *
417 * This function sets the MAC address, requests and enables an IRQ
418 * for the EMAC device and starts the Tx queue.
419 * It also connects to the phy device.
420 */
arc_emac_open(struct net_device * ndev)421 static int arc_emac_open(struct net_device *ndev)
422 {
423 struct arc_emac_priv *priv = netdev_priv(ndev);
424 struct phy_device *phy_dev = ndev->phydev;
425 int i;
426
427 phy_dev->autoneg = AUTONEG_ENABLE;
428 phy_dev->speed = 0;
429 phy_dev->duplex = 0;
430 linkmode_and(phy_dev->advertising, phy_dev->advertising,
431 phy_dev->supported);
432
433 priv->last_rx_bd = 0;
434
435 /* Allocate and set buffers for Rx BD's */
436 for (i = 0; i < RX_BD_NUM; i++) {
437 dma_addr_t addr;
438 unsigned int *last_rx_bd = &priv->last_rx_bd;
439 struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd];
440 struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd];
441
442 rx_buff->skb = netdev_alloc_skb_ip_align(ndev,
443 EMAC_BUFFER_SIZE);
444 if (unlikely(!rx_buff->skb))
445 return -ENOMEM;
446
447 addr = dma_map_single(ndev->dev.parent, (void *)rx_buff->skb->data,
448 EMAC_BUFFER_SIZE, DMA_FROM_DEVICE);
449 if (dma_mapping_error(ndev->dev.parent, addr)) {
450 netdev_err(ndev, "cannot dma map\n");
451 dev_kfree_skb(rx_buff->skb);
452 return -ENOMEM;
453 }
454 dma_unmap_addr_set(rx_buff, addr, addr);
455 dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE);
456
457 rxbd->data = cpu_to_le32(addr);
458
459 /* Make sure pointer to data buffer is set */
460 wmb();
461
462 /* Return ownership to EMAC */
463 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
464
465 *last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM;
466 }
467
468 priv->txbd_curr = 0;
469 priv->txbd_dirty = 0;
470
471 /* Clean Tx BD's */
472 memset(priv->txbd, 0, TX_RING_SZ);
473
474 /* Initialize logical address filter */
475 arc_reg_set(priv, R_LAFL, 0);
476 arc_reg_set(priv, R_LAFH, 0);
477
478 /* Set BD ring pointers for device side */
479 arc_reg_set(priv, R_RX_RING, (unsigned int)priv->rxbd_dma);
480 arc_reg_set(priv, R_TX_RING, (unsigned int)priv->txbd_dma);
481
482 /* Enable interrupts */
483 arc_reg_set(priv, R_ENABLE, RXINT_MASK | ERR_MASK);
484
485 /* Set CONTROL */
486 arc_reg_set(priv, R_CTRL,
487 (RX_BD_NUM << 24) | /* RX BD table length */
488 (TX_BD_NUM << 16) | /* TX BD table length */
489 TXRN_MASK | RXRN_MASK);
490
491 napi_enable(&priv->napi);
492
493 /* Enable EMAC */
494 arc_reg_or(priv, R_CTRL, EN_MASK);
495
496 phy_start(ndev->phydev);
497
498 netif_start_queue(ndev);
499
500 return 0;
501 }
502
503 /**
504 * arc_emac_set_rx_mode - Change the receive filtering mode.
505 * @ndev: Pointer to the network device.
506 *
507 * This function enables/disables promiscuous or all-multicast mode
508 * and updates the multicast filtering list of the network device.
509 */
arc_emac_set_rx_mode(struct net_device * ndev)510 static void arc_emac_set_rx_mode(struct net_device *ndev)
511 {
512 struct arc_emac_priv *priv = netdev_priv(ndev);
513
514 if (ndev->flags & IFF_PROMISC) {
515 arc_reg_or(priv, R_CTRL, PROM_MASK);
516 } else {
517 arc_reg_clr(priv, R_CTRL, PROM_MASK);
518
519 if (ndev->flags & IFF_ALLMULTI) {
520 arc_reg_set(priv, R_LAFL, ~0);
521 arc_reg_set(priv, R_LAFH, ~0);
522 } else if (ndev->flags & IFF_MULTICAST) {
523 struct netdev_hw_addr *ha;
524 unsigned int filter[2] = { 0, 0 };
525 int bit;
526
527 netdev_for_each_mc_addr(ha, ndev) {
528 bit = ether_crc_le(ETH_ALEN, ha->addr) >> 26;
529 filter[bit >> 5] |= 1 << (bit & 31);
530 }
531
532 arc_reg_set(priv, R_LAFL, filter[0]);
533 arc_reg_set(priv, R_LAFH, filter[1]);
534 } else {
535 arc_reg_set(priv, R_LAFL, 0);
536 arc_reg_set(priv, R_LAFH, 0);
537 }
538 }
539 }
540
541 /**
542 * arc_free_tx_queue - free skb from tx queue
543 * @ndev: Pointer to the network device.
544 *
545 * This function must be called while EMAC disable
546 */
arc_free_tx_queue(struct net_device * ndev)547 static void arc_free_tx_queue(struct net_device *ndev)
548 {
549 struct arc_emac_priv *priv = netdev_priv(ndev);
550 unsigned int i;
551
552 for (i = 0; i < TX_BD_NUM; i++) {
553 struct arc_emac_bd *txbd = &priv->txbd[i];
554 struct buffer_state *tx_buff = &priv->tx_buff[i];
555
556 if (tx_buff->skb) {
557 dma_unmap_single(ndev->dev.parent,
558 dma_unmap_addr(tx_buff, addr),
559 dma_unmap_len(tx_buff, len),
560 DMA_TO_DEVICE);
561
562 /* return the sk_buff to system */
563 dev_kfree_skb_irq(tx_buff->skb);
564 }
565
566 txbd->info = 0;
567 txbd->data = 0;
568 tx_buff->skb = NULL;
569 }
570 }
571
572 /**
573 * arc_free_rx_queue - free skb from rx queue
574 * @ndev: Pointer to the network device.
575 *
576 * This function must be called while EMAC disable
577 */
arc_free_rx_queue(struct net_device * ndev)578 static void arc_free_rx_queue(struct net_device *ndev)
579 {
580 struct arc_emac_priv *priv = netdev_priv(ndev);
581 unsigned int i;
582
583 for (i = 0; i < RX_BD_NUM; i++) {
584 struct arc_emac_bd *rxbd = &priv->rxbd[i];
585 struct buffer_state *rx_buff = &priv->rx_buff[i];
586
587 if (rx_buff->skb) {
588 dma_unmap_single(ndev->dev.parent,
589 dma_unmap_addr(rx_buff, addr),
590 dma_unmap_len(rx_buff, len),
591 DMA_FROM_DEVICE);
592
593 /* return the sk_buff to system */
594 dev_kfree_skb_irq(rx_buff->skb);
595 }
596
597 rxbd->info = 0;
598 rxbd->data = 0;
599 rx_buff->skb = NULL;
600 }
601 }
602
603 /**
604 * arc_emac_stop - Close the network device.
605 * @ndev: Pointer to the network device.
606 *
607 * This function stops the Tx queue, disables interrupts and frees the IRQ for
608 * the EMAC device.
609 * It also disconnects the PHY device associated with the EMAC device.
610 */
arc_emac_stop(struct net_device * ndev)611 static int arc_emac_stop(struct net_device *ndev)
612 {
613 struct arc_emac_priv *priv = netdev_priv(ndev);
614
615 napi_disable(&priv->napi);
616 netif_stop_queue(ndev);
617
618 phy_stop(ndev->phydev);
619
620 /* Disable interrupts */
621 arc_reg_clr(priv, R_ENABLE, RXINT_MASK | ERR_MASK);
622
623 /* Disable EMAC */
624 arc_reg_clr(priv, R_CTRL, EN_MASK);
625
626 /* Return the sk_buff to system */
627 arc_free_tx_queue(ndev);
628 arc_free_rx_queue(ndev);
629
630 return 0;
631 }
632
633 /**
634 * arc_emac_stats - Get system network statistics.
635 * @ndev: Pointer to net_device structure.
636 *
637 * Returns the address of the device statistics structure.
638 * Statistics are updated in interrupt handler.
639 */
arc_emac_stats(struct net_device * ndev)640 static struct net_device_stats *arc_emac_stats(struct net_device *ndev)
641 {
642 struct arc_emac_priv *priv = netdev_priv(ndev);
643 struct net_device_stats *stats = &ndev->stats;
644 unsigned long miss, rxerr;
645 u8 rxcrc, rxfram, rxoflow;
646
647 rxerr = arc_reg_get(priv, R_RXERR);
648 miss = arc_reg_get(priv, R_MISS);
649
650 rxcrc = rxerr;
651 rxfram = rxerr >> 8;
652 rxoflow = rxerr >> 16;
653
654 stats->rx_errors += miss;
655 stats->rx_errors += rxcrc + rxfram + rxoflow;
656
657 stats->rx_over_errors += rxoflow;
658 stats->rx_frame_errors += rxfram;
659 stats->rx_crc_errors += rxcrc;
660 stats->rx_missed_errors += miss;
661
662 return stats;
663 }
664
665 /**
666 * arc_emac_tx - Starts the data transmission.
667 * @skb: sk_buff pointer that contains data to be Transmitted.
668 * @ndev: Pointer to net_device structure.
669 *
670 * returns: NETDEV_TX_OK, on success
671 * NETDEV_TX_BUSY, if any of the descriptors are not free.
672 *
673 * This function is invoked from upper layers to initiate transmission.
674 */
arc_emac_tx(struct sk_buff * skb,struct net_device * ndev)675 static netdev_tx_t arc_emac_tx(struct sk_buff *skb, struct net_device *ndev)
676 {
677 struct arc_emac_priv *priv = netdev_priv(ndev);
678 unsigned int len, *txbd_curr = &priv->txbd_curr;
679 struct net_device_stats *stats = &ndev->stats;
680 __le32 *info = &priv->txbd[*txbd_curr].info;
681 dma_addr_t addr;
682
683 arc_emac_tx_clean(ndev);
684
685 if (skb_padto(skb, ETH_ZLEN))
686 return NETDEV_TX_OK;
687
688 len = max_t(unsigned int, ETH_ZLEN, skb->len);
689
690 if (unlikely(!arc_emac_tx_avail(priv))) {
691 netif_stop_queue(ndev);
692 netdev_err(ndev, "BUG! Tx Ring full when queue awake!\n");
693 return NETDEV_TX_BUSY;
694 }
695
696 addr = dma_map_single(ndev->dev.parent, (void *)skb->data, len,
697 DMA_TO_DEVICE);
698
699 if (unlikely(dma_mapping_error(ndev->dev.parent, addr))) {
700 stats->tx_dropped++;
701 stats->tx_errors++;
702 dev_kfree_skb_any(skb);
703 return NETDEV_TX_OK;
704 }
705 dma_unmap_addr_set(&priv->tx_buff[*txbd_curr], addr, addr);
706 dma_unmap_len_set(&priv->tx_buff[*txbd_curr], len, len);
707
708 priv->txbd[*txbd_curr].data = cpu_to_le32(addr);
709
710 /* Make sure pointer to data buffer is set */
711 wmb();
712
713 skb_tx_timestamp(skb);
714
715 *info = cpu_to_le32(FOR_EMAC | FIRST_OR_LAST_MASK | len);
716
717 /* Make sure info word is set */
718 wmb();
719
720 priv->tx_buff[*txbd_curr].skb = skb;
721
722 /* Increment index to point to the next BD */
723 *txbd_curr = (*txbd_curr + 1) % TX_BD_NUM;
724
725 /* Ensure that tx_clean() sees the new txbd_curr before
726 * checking the queue status. This prevents an unneeded wake
727 * of the queue in tx_clean().
728 */
729 smp_mb();
730
731 if (!arc_emac_tx_avail(priv)) {
732 netif_stop_queue(ndev);
733 /* Refresh tx_dirty */
734 smp_mb();
735 if (arc_emac_tx_avail(priv))
736 netif_start_queue(ndev);
737 }
738
739 arc_reg_set(priv, R_STATUS, TXPL_MASK);
740
741 return NETDEV_TX_OK;
742 }
743
arc_emac_set_address_internal(struct net_device * ndev)744 static void arc_emac_set_address_internal(struct net_device *ndev)
745 {
746 struct arc_emac_priv *priv = netdev_priv(ndev);
747 unsigned int addr_low, addr_hi;
748
749 addr_low = le32_to_cpu(*(__le32 *)&ndev->dev_addr[0]);
750 addr_hi = le16_to_cpu(*(__le16 *)&ndev->dev_addr[4]);
751
752 arc_reg_set(priv, R_ADDRL, addr_low);
753 arc_reg_set(priv, R_ADDRH, addr_hi);
754 }
755
756 /**
757 * arc_emac_set_address - Set the MAC address for this device.
758 * @ndev: Pointer to net_device structure.
759 * @p: 6 byte Address to be written as MAC address.
760 *
761 * This function copies the HW address from the sockaddr structure to the
762 * net_device structure and updates the address in HW.
763 *
764 * returns: -EBUSY if the net device is busy or 0 if the address is set
765 * successfully.
766 */
arc_emac_set_address(struct net_device * ndev,void * p)767 static int arc_emac_set_address(struct net_device *ndev, void *p)
768 {
769 struct sockaddr *addr = p;
770
771 if (netif_running(ndev))
772 return -EBUSY;
773
774 if (!is_valid_ether_addr(addr->sa_data))
775 return -EADDRNOTAVAIL;
776
777 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
778
779 arc_emac_set_address_internal(ndev);
780
781 return 0;
782 }
783
784 /**
785 * arc_emac_restart - Restart EMAC
786 * @ndev: Pointer to net_device structure.
787 *
788 * This function do hardware reset of EMAC in order to restore
789 * network packets reception.
790 */
arc_emac_restart(struct net_device * ndev)791 static void arc_emac_restart(struct net_device *ndev)
792 {
793 struct arc_emac_priv *priv = netdev_priv(ndev);
794 struct net_device_stats *stats = &ndev->stats;
795 int i;
796
797 if (net_ratelimit())
798 netdev_warn(ndev, "restarting stalled EMAC\n");
799
800 netif_stop_queue(ndev);
801
802 /* Disable interrupts */
803 arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
804
805 /* Disable EMAC */
806 arc_reg_clr(priv, R_CTRL, EN_MASK);
807
808 /* Return the sk_buff to system */
809 arc_free_tx_queue(ndev);
810
811 /* Clean Tx BD's */
812 priv->txbd_curr = 0;
813 priv->txbd_dirty = 0;
814 memset(priv->txbd, 0, TX_RING_SZ);
815
816 for (i = 0; i < RX_BD_NUM; i++) {
817 struct arc_emac_bd *rxbd = &priv->rxbd[i];
818 unsigned int info = le32_to_cpu(rxbd->info);
819
820 if (!(info & FOR_EMAC)) {
821 stats->rx_errors++;
822 stats->rx_dropped++;
823 }
824 /* Return ownership to EMAC */
825 rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
826 }
827 priv->last_rx_bd = 0;
828
829 /* Make sure info is visible to EMAC before enable */
830 wmb();
831
832 /* Enable interrupts */
833 arc_reg_set(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
834
835 /* Enable EMAC */
836 arc_reg_or(priv, R_CTRL, EN_MASK);
837
838 netif_start_queue(ndev);
839 }
840
841 static const struct net_device_ops arc_emac_netdev_ops = {
842 .ndo_open = arc_emac_open,
843 .ndo_stop = arc_emac_stop,
844 .ndo_start_xmit = arc_emac_tx,
845 .ndo_set_mac_address = arc_emac_set_address,
846 .ndo_get_stats = arc_emac_stats,
847 .ndo_set_rx_mode = arc_emac_set_rx_mode,
848 .ndo_do_ioctl = phy_do_ioctl_running,
849 #ifdef CONFIG_NET_POLL_CONTROLLER
850 .ndo_poll_controller = arc_emac_poll_controller,
851 #endif
852 };
853
arc_emac_probe(struct net_device * ndev,int interface)854 int arc_emac_probe(struct net_device *ndev, int interface)
855 {
856 struct device *dev = ndev->dev.parent;
857 struct resource res_regs;
858 struct device_node *phy_node;
859 struct phy_device *phydev = NULL;
860 struct arc_emac_priv *priv;
861 const char *mac_addr;
862 unsigned int id, clock_frequency, irq;
863 int err;
864
865 /* Get PHY from device tree */
866 phy_node = of_parse_phandle(dev->of_node, "phy", 0);
867 if (!phy_node) {
868 dev_err(dev, "failed to retrieve phy description from device tree\n");
869 return -ENODEV;
870 }
871
872 /* Get EMAC registers base address from device tree */
873 err = of_address_to_resource(dev->of_node, 0, &res_regs);
874 if (err) {
875 dev_err(dev, "failed to retrieve registers base from device tree\n");
876 err = -ENODEV;
877 goto out_put_node;
878 }
879
880 /* Get IRQ from device tree */
881 irq = irq_of_parse_and_map(dev->of_node, 0);
882 if (!irq) {
883 dev_err(dev, "failed to retrieve <irq> value from device tree\n");
884 err = -ENODEV;
885 goto out_put_node;
886 }
887
888 ndev->netdev_ops = &arc_emac_netdev_ops;
889 ndev->ethtool_ops = &arc_emac_ethtool_ops;
890 ndev->watchdog_timeo = TX_TIMEOUT;
891
892 priv = netdev_priv(ndev);
893 priv->dev = dev;
894
895 priv->regs = devm_ioremap_resource(dev, &res_regs);
896 if (IS_ERR(priv->regs)) {
897 err = PTR_ERR(priv->regs);
898 goto out_put_node;
899 }
900
901 dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs);
902
903 if (priv->clk) {
904 err = clk_prepare_enable(priv->clk);
905 if (err) {
906 dev_err(dev, "failed to enable clock\n");
907 goto out_put_node;
908 }
909
910 clock_frequency = clk_get_rate(priv->clk);
911 } else {
912 /* Get CPU clock frequency from device tree */
913 if (of_property_read_u32(dev->of_node, "clock-frequency",
914 &clock_frequency)) {
915 dev_err(dev, "failed to retrieve <clock-frequency> from device tree\n");
916 err = -EINVAL;
917 goto out_put_node;
918 }
919 }
920
921 id = arc_reg_get(priv, R_ID);
922
923 /* Check for EMAC revision 5 or 7, magic number */
924 if (!(id == 0x0005fd02 || id == 0x0007fd02)) {
925 dev_err(dev, "ARC EMAC not detected, id=0x%x\n", id);
926 err = -ENODEV;
927 goto out_clken;
928 }
929 dev_info(dev, "ARC EMAC detected with id: 0x%x\n", id);
930
931 /* Set poll rate so that it polls every 1 ms */
932 arc_reg_set(priv, R_POLLRATE, clock_frequency / 1000000);
933
934 ndev->irq = irq;
935 dev_info(dev, "IRQ is %d\n", ndev->irq);
936
937 /* Register interrupt handler for device */
938 err = devm_request_irq(dev, ndev->irq, arc_emac_intr, 0,
939 ndev->name, ndev);
940 if (err) {
941 dev_err(dev, "could not allocate IRQ\n");
942 goto out_clken;
943 }
944
945 /* Get MAC address from device tree */
946 mac_addr = of_get_mac_address(dev->of_node);
947
948 if (!IS_ERR(mac_addr))
949 ether_addr_copy(ndev->dev_addr, mac_addr);
950 else
951 eth_hw_addr_random(ndev);
952
953 arc_emac_set_address_internal(ndev);
954 dev_info(dev, "MAC address is now %pM\n", ndev->dev_addr);
955
956 /* Do 1 allocation instead of 2 separate ones for Rx and Tx BD rings */
957 priv->rxbd = dmam_alloc_coherent(dev, RX_RING_SZ + TX_RING_SZ,
958 &priv->rxbd_dma, GFP_KERNEL);
959
960 if (!priv->rxbd) {
961 dev_err(dev, "failed to allocate data buffers\n");
962 err = -ENOMEM;
963 goto out_clken;
964 }
965
966 priv->txbd = priv->rxbd + RX_BD_NUM;
967
968 priv->txbd_dma = priv->rxbd_dma + RX_RING_SZ;
969 dev_dbg(dev, "EMAC Device addr: Rx Ring [0x%x], Tx Ring[%x]\n",
970 (unsigned int)priv->rxbd_dma, (unsigned int)priv->txbd_dma);
971
972 err = arc_mdio_probe(priv);
973 if (err) {
974 dev_err(dev, "failed to probe MII bus\n");
975 goto out_clken;
976 }
977
978 phydev = of_phy_connect(ndev, phy_node, arc_emac_adjust_link, 0,
979 interface);
980 if (!phydev) {
981 dev_err(dev, "of_phy_connect() failed\n");
982 err = -ENODEV;
983 goto out_mdio;
984 }
985
986 dev_info(dev, "connected to %s phy with id 0x%x\n",
987 phydev->drv->name, phydev->phy_id);
988
989 netif_napi_add(ndev, &priv->napi, arc_emac_poll, ARC_EMAC_NAPI_WEIGHT);
990
991 err = register_netdev(ndev);
992 if (err) {
993 dev_err(dev, "failed to register network device\n");
994 goto out_netif_api;
995 }
996
997 of_node_put(phy_node);
998 return 0;
999
1000 out_netif_api:
1001 netif_napi_del(&priv->napi);
1002 phy_disconnect(phydev);
1003 out_mdio:
1004 arc_mdio_remove(priv);
1005 out_clken:
1006 if (priv->clk)
1007 clk_disable_unprepare(priv->clk);
1008 out_put_node:
1009 of_node_put(phy_node);
1010
1011 return err;
1012 }
1013 EXPORT_SYMBOL_GPL(arc_emac_probe);
1014
arc_emac_remove(struct net_device * ndev)1015 int arc_emac_remove(struct net_device *ndev)
1016 {
1017 struct arc_emac_priv *priv = netdev_priv(ndev);
1018
1019 phy_disconnect(ndev->phydev);
1020 arc_mdio_remove(priv);
1021 unregister_netdev(ndev);
1022 netif_napi_del(&priv->napi);
1023
1024 if (!IS_ERR(priv->clk))
1025 clk_disable_unprepare(priv->clk);
1026
1027 return 0;
1028 }
1029 EXPORT_SYMBOL_GPL(arc_emac_remove);
1030
1031 MODULE_AUTHOR("Alexey Brodkin <abrodkin@synopsys.com>");
1032 MODULE_DESCRIPTION("ARC EMAC driver");
1033 MODULE_LICENSE("GPL");
1034